Efficient Bounding of Displaced Bézier Patches

Jacob Munkberg
Lund University /
Intel Corporation

Jon Hasselgren
Intel Corporation

Robert Toth
Intel Corporation

Tomas Akenine-Möller
Lund University /
Intel Corporation

High Performance Graphics, June 2010.

Abstract

In this paper, we present a new approach to conservative bounding of displaced Bézier patches. These surfaces are expected to be a common use case for tessellation in interactive and real-time rendering. Our algorithm combines efficient normal bounding techniques, min-max mipmap hierarchies and oriented bounding boxes. This results in substantially faster convergence for the bounding volumes of displaced surfaces, prior to tessellation and displacement shading. Our work can be used for different types of culling, ray tracing, and to sort higher order primitives in tiling architectures. For our hull shader implementation, we report performance benefits even for moderate tessellation rates.

Downloads

An author generated version of the paper. [pdf 4.3 MB]

bibtex