
Elicitation and Management of
User Requirements in Market-Driven

Software Development
Johan Natt och Dag
Department of Communication Systems
Lund Institute of Technology

ISSN 1101-3931

KFS AB

ISRN LUTEDX/TETS--1054--SE+158P

 Johan Natt och Dag

Printed in Sweden

Lund 2002

To my mother, Catharina, and my sister, Ann.

Contact Information:

Johan Natt och Dag
Department of Communication Systems
Lund University
P.O. Box 118
SE-221 00 LUND
Sweden

Tel: +46 46 222 08 83
Fax: +46 46 14 58 23
E-mail: johan.nattochdag@telecom.lth.se
Web: http://www.telecom.lth.se/Personal/johannod

This thesis is submitted to Research Board FIME – Physics, Informatics, Mathematics and
Electrical Engineering – at Lund Institute of Technology (LTH), Lund University, in partial
fulfilment of the requirements for the degree of Licentiate of Technology in Software Engineering.

Abstract
Market-driven software development companies experience challenges in
requirements management that many traditional requirements engineering
methods and techniques do not acknowledge. Large markets, limited
contact with end users, and strong competition forces the market-driven
software development company to constantly invent new, selling
requirements, frequently release new versions with an accompanying
pressure of short time-to-market, and take both the technical and financial
risks of development.

This thesis presents empirical results from case studies in requirements
elicitation and management at a software development company. The
results include techniques to explore, understand, and handle bottlenecks
in the requirements process where requirements continuously arrive at a
high rate from many different stakeholders. Through simulation of the
requirements process, potential bottlenecks are identified at an early stage,
and fruitless improvement attempts may be avoided.

Several techniques are evaluated and recommended to support the
market-driven organisation in order to increase software quality and avoid
process overload situations. It is shown that a quick and uncomplicated in-
house usability evaluation technique, an improved heuristic evaluation,
may be adequate to get closer to customer satisfaction. Since needs and
opportunities differ between markets, a distributed prioritisation technique
is suggested that will help the organisation to pick the most cost-beneficial
and customer satisfying requirements for development. Finally, a technique
based on automated natural language analysis is investigated with the aim
to help resolve congestion in the requirements engineering process, yet
retaining ideas that may bring a competitive advantage.

Acknowledgements

This work was partly funded by VINNOVA under grant for LUCAS –
the Center of Applied Software Research at Lund University. Telelogic AB
have provided invaluable support; their personnel have generously con-
tributed with time and data.
I cannot fully express the gratitude I feel to the persons that have helped, supported, and inspired me
the last two years. I am happy that the founder of our research group and my first supervisor,
Prof. Claes Wohlin, attracted my attention to PhD studies in Software Engineering. And without
Assist. Prof. Björn Regnell, my colleague, supervisor, coach and friend, I would never have managed
this far. His deep knowledge, commitment, and support have certainly made my work exciting,
inspiring, and fun.

Invaluable is also the support from Assoc. Prof. Per Runeson, head of our Software Engineering
Research Group and my second current supervisor. He makes me enjoy working in and for our
department as well as in the Center for Applied Software Research (LUCAS). Warm thanks to
Assist. Prof. Martin Höst whose competence and experience in research inspire and help me. I would
also like to thank all my colleagues who influence and help me, both at work and after work. In
particular I would like to thank Tekn. Lic. Håkan Petersson, Tekn. Lic. Thomas Thelin,
Tekn. Lic. Enrico Johansson, Thomas Olsson, Josef Nedstam, Daniel Karlström, Lena Karlsson,
Dr. Maria Kihl, Assist. Prof. Christian Nyberg and Tekn. Lic. Niklas Widell. Many thanks to
Prof. Ulf Körner, head of our department, for providing and enabling an open and inspiring
environment, and to Ingrid Nilsson, who, always with a smile, makes my administration issues a
whole lot easier.

Countless thanks to my industrial partners for their valuable contribution, making my work
worthwhile and the research results more credible: Per Beremark at Appium AB, Ofelia S. Madsen at
C-Technologies AB, Michael Andersson and Thomas Hjelm at Telelogic AB and Dr. Joachim Karlsson
at Focal Point AB. Also, a very special thanks to all the researchers I have met around the world for
inspiring discussions. In particular I would like to thank my colleagues and friends
Dr. Aybüke Aurum and Kerstin Lindmark, who both have taken the time to proofread the
introduction. Also thanks to Prof. Pierre Nugues for checking Section 1.4. Special thanks to
Dr. Pär Carlshamre, Åsa G. Dahlstedt and Dr. Anne Persson for their assistance, constructive input and
fruitful discussions. For an inspiring and excellent REFSQ’01 workshop I would also like to thank
Prof. Andreas L. Opdahl, Dr. Camille Ben Achour-Saliensi and Dr. Matti Rossi.

I would like to express my warmest appreciation to all my friends who have supported me
through joy and despair and who make my life richer. Thanks to Ted for listening to me. Thanks to
Ofelia for her never-ending care. Thanks to Lena & Jonas, Christina, Klara, Marie, Urban, Tobias,
Pernilla and Kjell for coping with me.

A billion thanks to mum for all your love and for helping me out when times have been difficult.
Thanks to Kaj for taking care of her. And thanks to Ann, the greatest sister a brother can ask for.

Contents
List of papers 11

Related publications 12

Introduction 15

1. Research focus . 17

2. Research methodology . 36

3. Research results . 43

4. Further research and future plan . 50

5. References . 56

Paper I: Exploring bottlenecks in market-driven requirements
management processes with discrete event simulations 61

1. Introduction . 62

2. The REPEAT process . 63

3. The simulation model . 66

4. Results . 72

5. Conclusions . 80

6. References . 82
9

10
Paper II: An industrial case study of usability engineering in
market-driven packaged software development 85

1. Introduction .86

2. Research methodology .87

3. Results .89

4. Conclusions .92

5. References .94

Paper III: An industrial case study on distributed prioritisation
in market-driven requirements engineering
for packaged software 97

1. Introduction .98

2. A distributed prioritization process .99

3. Case study planning and operation .102

4. Results from questionnaires .103

5. Visualization of prioritization data .109

6. Conclusions and further work .116

7. References .120

Appendix A: Raw data from prioritization .122

Paper IV: A feasibility study of automated natural language
requirements analysis in market-driven development 127

1. Introduction .128

2. Requirements similarity analysis .133

3. Automated similarity measurement .135

4. Empirical investigation .138

5. Further applications .150

6. Further improvements .152

7. Conclusions .153

8. References .155

Elicitation
List of papers

The following papers are included in the thesis:

[I] Exploring bottlenecks in market-driven requirements
management processes with discrete event simulations
Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam,
& Christian Nyberg.
Journal of Systems and Software, 59, 323-332. 2001.

[II] An industrial case study of usability engineering in
market-driven packaged software development
Johan Natt och Dag, Björn Regnell, Ofelia S. Madsen, & Aybüke Aurum.
M. J. Smith, G. Salvendy, D. Harris & R. J. Koubek (Eds.), Proceedings of
HCI International: Vol 1. Usability Evaluation and Interface Design:
Cognitive Engineering, Intelligent Agents and Virtual Reality (pp. 425-429).
Mahwah, NJ: Erlbaum. 2001.

[III] An industrial case study on distributed prioritisation in
market-driven requirements engineering for packaged software
Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark,
Thomas Hjelm.
Requirements Engineering, 6, 51–62. 2001.

[IV] A feasibility study of automated natural language
requirements analysis in market-driven development
Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson,
& Joachim Karlsson.
Requirements Engineering, 7, 20-33. 2002.
 and Management of User Requirements in Market-Driven Software Development 11

12
Related publications

The following papers are related but not included in the thesis:

[V] Exploring bottlenecks in market-driven requirements management
processes with discrete event simulation
Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam,
& Christian Nyberg.
Paper presented at the Software Process Simulation Modeling Workshop,
London, UK. July, 2000.
This paper is an earlier version of paper I. It was selected and extended for
a special issue of Journal of Systems and Software.

[VI] An industrial case study of usability evaluation
Johan Natt och Dag, & Ofelia S. Madsen.
Master’s Thesis, Report No. CODEN:LUTEDX (TETS-5390)/1-190/
(2000)&local 8. Lund, Sweden: Lund University, Department of
Communication Systems. 2000.
This thesis is the basis for the research presented in paper II. It contains
more elaborate background information and more research data.

[VII] Visualization of agreement and satisfaction in distributed
prioritization of market requirements
Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark,
& Thomas Hjelm.
A. L. Opdahl, K. Pohl & M. Rossi (Eds.), Proceedings of the Sixth
International Workshop on Requirements Engineering: Foundation for
Software Quality (pp. 125-136). Essen, Germany: Essener Informatik
Beiträge. 2000.
This paper is an earlier version of paper III. It was selected and extended
for publication in a special issue of Requirements Engineering.

[VIII] Evaluating automated support for requirements similarity analysis in
market-driven development
Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson,
& Joachim Karlsson.
C. Ben Achour-Saliensi, A. L. Opdahl, K. Pohl, M. Rossi (Eds.),
Proceedings of the Seventh International Workshop on Requirements
Engineering: Foundations for Software Quality (pp. 190-201). Essen,
Germany: Essen Informatik Beiträge, 2001.
This paper is an earlier version of paper IV. It was selected and extended
for publication in a special issue of Requirements Engineering.
Elicitation and Management of User Requirements in Market-Driven Software Development

Elicitation
[IX] An industrial survey of requirements interdependencies in
software release planning
Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell,
& Johan Natt och Dag.
Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering (pp. 84-91). Los Alamitos, CA: IEEE Computer Society
Press. 2001.
This paper contains an automated analysis of interrelationships between
requirements. The techniques used are those in Paper IV.

[X] Requirements mean decisions! – Research issues for understanding
and supporting decision-making in requirements engineering
Björn Regnell, Barbara Paech, Aybüke Aurum, Claes Wohlin,
Allen Dutoit, & Johan Natt och Dag.
Proceedings of the First Swedish Conference on Software Engineering Research
and Practise (pp. 49-52) (Report No. 2001:10). Ronneby, Sweden:
Blekinge Institute of Technology, Department of Software Engineering
and Computer Science. 2001.
This paper presents research issues with focus on requirements
engineering as a decision-making process.

[XI] Market-driven requirements engineering challenges:
an industrial case study of a process performance declination
Robert Booth, Björn Regnell, Aybüke Aurum, Ross Jeffery,
& Johan Natt och Dag.
A. Aurum & R. Jeffery (Eds.), Proceeding of the Sixth Australian Workshop
on Requirements Engineering (pp. 41-47). Sydney, Australia: University of
New South Wales, The Centre for Advanced Software Engineering
Research. 2001.
This paper presents a second study of the requirements engineering
process at Telelogic AB.

[XII] Challenges in market-driven requirements engineering -
an industrial interview study
Lena Karlsson, Åsa G. Dahlstedt, Johan Natt och Dag, Björn Regnell,
& Anne Persson.
Manuscript submitted for publication, 2002.
This paper presents preliminary results from a survey of market-driven
sofware development companies in Sweden.
 and Management of User Requirements in Market-Driven Software Development 13

14
 Elicitation and Management of User Requirements in Market-Driven Software Development

Elicitatio
Introduction
Without much notice to the uninitiated, the importance of software has
grown tremendously during the last 40 years. Industrial as well as
developing societies and economies depend considerably on good-
working software systems; power plants, hospitals, aviation,
communications systems, cars – they all rely on software in order to work
properly. And the dependencies keep growing. As the operations manager
at Ericsson answers to the question on which competences they will need:
“Radio skills are always good. Signal processing, microwave techniques.
But there will also be even more software” (Ahlbom, 2002).

Still, software engineering is a young practice and an even younger
research area compared to most engineering disciplines. Up until just
about a decade ago it was not even considered a true engineering
discipline (Shaw, 1990). After the software crisis in the late sixties, the
software engineering community has theorized and promoted a vast
number of models, methods, techniques, and guidelines to aid software
developers to handle the difficulties in developing increasingly complex
software systems with acceptable quality.

Research and industry have faced many successes, but the growth in
usage and complexity of software systems keep revealing new challenges at
a pace that seems hard to keep up with. Although the current body of
knowledge in software engineering is quite extensive, novel ideas, whether
based on previous convictions or not, are still needed.
n and Management of User Requirements in Market-Driven Software Development 15

Introduction

16
As software systems are developed in order to support and aid the
human being, those systems are assumed to do precisely that.
Unfortunately, it is still a rare case to find a completely satisfied end user.
One reason is that the quality level that is considered acceptable is
dependent on both the usage and the application domain. End users fall
into different categories having different demands. For example, the
technical end user may accept a less appealing graphical user interface,
provided that the functionality is satisfactory, while the non-technical end
user may also demand that the software system is easy to learn and easy to
use.

If software is developed for a single user or a single company the
diversity issue may be less problematic, yet present. The customer is well-
defined and consensus between customer and developer may eventually
be reached through negotiation. The difficulties, however, may become
more clear for companies developing software for large markets that
comprise many different kinds of users: occasional and frequent users,
technical and non-technical users, novice and expert users, etc. The
variety in users’ needs calls for a balance between the needs taken into
consideration and those rejected. This balance is extremely hard to reach
as it is influenced by a number of factors: users’ needs constantly change,
users never become satisfied, new technologies are misjudged, believes
turn into truths, time is critical, and timing is crucial, to mention a few.

This thesis concentrates on large-scale software development for large
markets and how developing companies in the market-driven situation
may find a representative collection of users’ needs. It shows that this
collection must and may be reduced to a reasonable satisfactory and
manageable set of needs that the software shall fulfil – satisfactory on
behalf of the end user and manageable on behalf of the developing
company.

This introduction is organised as follows: In Chapter 1, the focus of
the presented research is described, and the specific concepts addressed in
the thesis are introduced and explained. In Chapter 2 the practised
research methodology is presented and the research methods and
questions and validity issues are further described. A summary of the
research results, main contributions, and the identified threats to validity,
together with the abstracts of the papers included in the thesis, are
presented in Chapter 3. In Chapter 4 several issues for further work are
suggested and a plan is presented covering at least two years of research
impelled by the results from this thesis.
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
1. Research focus

The research and associated results presented in this thesis apply to the
field of software engineering, in which methods, techniques, and tools are
utilized to overcome the challenges in development and maintenance of
complex software systems (Sommerville, 2001). About 15 years ago a sub-
discipline within software engineering emerged due to specific challenges
in handling customers’ wishes and needs (Sommerville & Sawyer, 1997).
The sub-discipline, termed requirements engineering (RE), mainly focuses
on the first stage of software development where customers’ wishes and
needs, i.e. the requirements, are collected, analysed and selected before
proceeding with software design, implementation, verification and
validation.

The last years, a new form of development called market-driven
development or packaged software development (Sawyer, Sommerville, &
Kotonya, 1999), have gained increasing importance as software
development companies turn to new and larger markets. The approach
affects requirements engineering techniques, as there is very limited
negotiation with end users. Instead, many requirements have to be
invented within the developing company (Potts, 1995). The absence of
negotiations may also be desirable. The market-driven development
company often have competitors that may only be defeated by secretly
developing successful solutions. The competition also puts a schedule
constraint where short time-to-market is crucial (Sawyer, 2000).
Constantly striving to be ahead of competitors, the market-driven
development company therefore frequently delivers new and improved
releases of a software system in order to keep old customers satisfied and
to win new ones (Potts, 1995; Carlshamre & Regnell, 2000).

The characteristic differences between traditional, or bespoke, software
development and market-driven software development have been
summarized by Carlshamre (Carlshamre, 2002). His findings (derived
from Kamsties, Hörmann, & Schlich, 1998; Keil & Carmel, 1995;
Lubars, Potts, & Richter, 1993; Novorita & Grube, 1996; Potts, 1995;
Yeh, 1992) with further additions (from Lubars et al.; Robertson &
Robertson, 1999) are found in Table 1. From the table it can be found
that fundamental organisational issues, such as the primary goal, the
success measurements and the product life cycle, are very unlike. The
differences are so all-pervading that many traditional requirements
engineering practices are unusable for the market-driven company. In
 and Management of User Requirements in Market-Driven Software Development 17

Introduction

18
Table 1. Comparison of traditional software development and market-driven
software development characteristics (based on Carlshamre, 2002; Lubars et al.,
1993; Robertson & Robertson, 1999).

Characteristics Bespoke development Market-driven development

Primary goal Compliance to require-
ments specification.

Time-to-market.

Measure of success Satisfaction, acceptance. Sales, market share, product
reviews.

Life cycle One release, then mainte-
nance.

Several releases, as long as
there is a market for the
product.

Requirements
conception

Elicited, analysed, vali-
dated.

Invented.

Requirements
specification

Used as a contract
between customer and
supplier.

Rarely exists or much less
formal. Requirements com-
municated verbally.

Usersa Known or easily identifia-
ble.

Difficult to identify or ini-
tially unknown.

Customera Software orderer.
Contract negotiator.

Agents for different markets.
Key customers may get tai-
lored software.

Physical distance to
users

Usually small. Usually large.

Main stakeholder Customer organization. Developing organization.

Specific RE issues Elicitation, modelling,
validation, conflict resolu-
tion.

Managing a steady stream of
new requirements. Prioritiz-
ing, cost-estimating, release
planning.

Developer’s
association with
the software

Short-term (until end of
project).

Long-term, promoting e.g.
investment in maintainabil-
ity.

Validation Ongoing process. Very late, e.g., at trade
affairs.

RE standards and
explicit methods

More common. Rare.

Iterative techniques Less common. More common.

Domain expertise
available on the
development team

More common. Less common (product
development often breaks
new ground).

a. The terms user and customer are here further elaborated compared to Carlshamre (2002).
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
Section 1.1, the characteristics of requirements engineering in market-
driven software development and related challenges are further
elaborated.

One of the specific RE issues (see Table 1) is the steady stream of
incoming requirements. For large companies, the flow may average up to
several requirements a day, arriving from many different stakeholders in
the organisation (Regnell, Beremark, & Eklund, 1998). This puts a high
pressure on the people responsible for analysing and finding ‘good’
requirements. Bottlenecks are likely to appear in the requirements
management process, and exposing these bottlenecks before they appear is
highly desirable. One way to expose potential bottlenecks may be to
simulate the current process. By using historical data about the process
and by building a model of the actual process, simulations may reveal
what will happen in the future. In Paper I, discrete-event simulation
(Banks, Carson, & Nelson, 1996) is used to provide a better
understanding of a requirements engineering process and to unveil its
potential bottlenecks. The possibilities and advantages of simulation are
further elaborated in Section 1.3.

Since one of the challenges of developing software for larger markets is
to satisfy the end user albeit contact with the end user is limited, there is a
need for techniques that validate that the product is usable and help to
reveal tasks that the end user may feel cumbersome or some functionality
that the end user may feel is missing. Therefore, for the market-driven
organisation, usability evaluation techniques that require no actual end
users are highly desirable. From the field of human-computer interaction,
usability engineering has emerged to address the specific issues concerned
with the often-misunderstood concept of usability. A number of methods
and techniques have been proposed, of which several are difficult to adopt
in the market-driven development organisation (Natt och Dag &
Madsen, 2000). In Paper II this has been addressed by evaluating a
slightly improved heuristic evaluation (Nielsen, 1994) to see if it may give
valid results when conducted in-house. The results are compared with
results from a survey using the SUMI questionnaire (Kirakowski &
Corbett, 1996), in which end users are asked about their opinions and
feelings about the software application. In Section 1.2, usability
engineering is further motivated and explained, as well as the term
usability.

Usability evaluations may not be sufficient to determine what will
satisfy end users and customers. For companies developing software for a
 and Management of User Requirements in Market-Driven Software Development 19

Introduction

20
worldwide market place, needs and opportunities may differ between
market segments, and collecting these concerns would provide valuable
support for decision-making. The information may make it easier for the
developing organisation to comply with business goals and to please
customers and end users. Paper III presents techniques to first let each
market provide a prioritized list of requirements and then visualize the
differences and similarities in these priorities.

More efficient processes may be reached in different ways. One way is
to relieve the burden on people working in the process (see Paper I).
Having easy-to-use, supportive computer tools that automate certain
tasks is a dream that many companies would love to see coming true. In
market-driven development companies, requirements are often managed
using a database in which requirements are entered in natural language.
Consequently, automation of tasks related to natural language may be

Figure 1. Concept map of the research focus.

New
requirements

SatisfactionAggregated
prioritization

Suggestions

Understanding

Solution?

Decision support

Finding
bottlenecks

through
simulation

Automated
analysis

Distributed
prioritization

Usability
evaluation

Product
level

Process
level

Market-driven
software development

Requirements
engineering
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
addressed through natural language processing techniques. By
automatically analysing requirements based on linguistic content,
potential duplicates may be found and suggested for removal. The control
should still be in the hands of the requirements analyst. In Section 1.4
natural language processing is described and related techniques are
presented, and in Paper IV, techniques from the field of information
retrieval, related to natural language processing, are tested on actual
requirements from the industry.

The research focus is illustrated in Figure 1 using a concept map. It
shows how the different topics addressed in this thesis are related and that
they all aim at giving decision support in requirements engineering.

The above review of the research focus of this thesis reveals the multi-
disciplinary property of software engineering. It is the author’s belief that
software engineering in general and requirements engineering in
particular may benefit from applying well known principles from other
research fields. The presented research may, at least partially, support this
belief.

1.1 Requirements engineering

When requirements engineering still was in its infancy, the discipline
stipulated to write a perfect specification describing what the resulting
software system should accomplish. “Perfect” essentially meant fulfilling
the quality attributes listed in Table 2 (Davis, 1993), and obliged
developers to be very rigorous. For example, to make the requirements
specification both understandable by the customer and complete can take
some time with a complex system. The tackling was nevertheless wise
since one reason for the software crisis was a lack of control when systems
became too complex. By accurately describing what the system should do,
the requirements specification could act as an agreement, and even as a
formal contract, between the customer and the software developer.
Solutions were at first banned from the specification and it had to be
finalized before any successive work in the development process was
initiated. This waterfall development process model, illustrated in Figure 2,
was a first solution to the chaotic development situation and was strongly
advocated.

The basic idea of the waterfall model is still used but the model has
gone through many refinements and is now mainly a constituent of other
models. For example, a new compound development strategy, extreme
 and Management of User Requirements in Market-Driven Software Development 21

Introduction

22
programming (XP), incorporates parts of the waterfall model in extremely
small increments (Beck, 2000). The benefits of the waterfall model are
utilized, such as its straight-forwardness, while some of the drawbacks are
avoided, such as the need for heavy documentation and the lack of
support for parallel activities, user involvement, and quick results.

In line with the refinement of the waterfall model and due to new and
changing software development paradigms, the attitude arguing that all
the quality attributes should be fulfilled has lost ground. The incremental

Table 2. Quality attributes for the software requirements specification (derived
from Davis, 1993).

Attribute Description

Correct Every requirement represents something required by the
system.

Unambiguous Every requirement has only one interpretation.

Complete Everything the software is supposed to do is included.

Verifiable There exists a cost-effective process with which a person
or machine can check that the actual as-built software
product meets every requirement.

Consistent No requirements in a given subset within the specifica-
tion conflict with each other.

Understandable by
customers

Requirements should be negotiated in a form that suits
the customer or user who usually do not understand for-
mal methods.

Modifiable Structure and style are such that any necessary changes to
the requirements can be easily, completely, and consist-
ently executed.

Traced The origin of each requirement is clear.

Traceable The specification is written to facilitate referencing of
each requirement.

Design
independent

The specification does not imply a specific software
architecture or algorithm.

Annotated The necessity of each requirements is denoted essential,
desirable or optional. Volatility is indicated by a textual
annotation.

Concise Given two specifications of the same system, each exhib-
iting identical levels of all the above qualities, the shorter
specification is the better one.

Organised Requirements are easy to locate.
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
and evolutionary development models have affected requirements
engineering and it has been realised that completeness sometimes is
impossible to achieve (Siddiqi & Shekaran, 1996; Goguen, 1996). Yet,
requirements quality is considered important to enable full control of the
development. And the initial objectives of requirements engineering
remain:

1. To understand the problem that the system is supposed to solve

2. To select and document the requirements on the system

Requirements engineering in market-driven software development

Requirements engineering in market-driven development have difficulties
with the majority of the quality attributes in Table 2 due to its specific
characteristics (see Table 1). There are three main, interlinked reasons: (1)
the time constraint, (2) the constant arrival of new requirements during
the whole development process, and (3) the need to promptly deliver new
improved software releases.

The time-to-market constraint may insist upon requirements being
implemented before all quality attributes have been properly checked. A

Figure 2. The classical waterfall development process model where software requirements
are to be specified in a first, separate stage (Royce, 1970).

Software Requirements

Analysis

Program Design

Coding

Testing

Operations

System Requirements
 and Management of User Requirements in Market-Driven Software Development 23

Introduction

24
quality attribute such as completeness is not always prioritized when
requirements at an early stage are found to bring competitive advantage.

Requirements continuously arrive from several different sources, called
stakeholders, such as the marketing department, usability architects,
support, developers, etc. This makes it virtually impossible to write a
correct requirements specification before proceeding to a subsequent
phase in the development process. Rather, requirements are stored in a
database and there is a strong focus in the requirements engineering
process on managing the evolution of requirements and assuring their
quality. Although it is difficult, the person responsible for managing the
requirements, the requirements manager, tries to make sure that all
requirements live up to the quality attributes to a reasonable extent.
Requirements management has three main concerns (Kotonya &
Sommerville, 1997):

• managing changed and agreed requirements

• managing relationships between requirements

• managing dependencies between requirements and other
documentation produced during the software engineering process

A European survey of 4,000 companies has shown that management of
requirements was one of the major problem areas in software
development (ibid.). Thus, research in requirements engineering may,
most likely, still be needed. For the market-driven development
organisation, the particular need of proper management of requirements
is more obvious than for traditional requirements engineering (see
Table 1).

For the companies to stay ahead of competitors, new versions of the
software have to be released as soon as there is a major improvement
available. Again, the time-constraint leads to special demands. It is
sometimes desirable to release new versions more frequently than it is
possible, with acceptable quality, to develop. The company being the
target of the research presented in this thesis has solved this by scheduling
the activities in the development process in parallel (Regnell et al., 1998).
In Figure 3 the requirements management processes is showed. By
pipelining the releases, requirements management can be a continuous
activity and releases may be delivered more often. The figure shows that it
takes 14 months to develop a new release, while a new release nevertheless
can be delivered every six months.
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
Still, the solution to the release-delivery problem unfortunately makes
the situation even worse for the requirements manager. The process makes
it possible to postpone incoming requirements as well as sending
important requirements to the release currently implemented. The
difficulty is to decide which requirements are to be developed in the
current release, which requirements should be postponed, and which
requirements should be regarded so important that they are to be selected
for implementation into the release soon to be delivered.

To aid the decisions, requirements are given different priorities, which
implies that they must at least have been partially analysed. Requirements
prioritization may be conducted in at least two ways:

• Direct assignment
A predefined scale is used to classify requirements as they are
analysed. For example, a scale ranging from 1 to 3 may be used to
classify requirements as having high, medium or low priority.

• Pair-wise prioritization
Two requirements are compared at a time to make a fairly accurate
judgement about which one should be prioritized above the other.
In one systematic approach, the analytical hierarchy process (Saaty,
1980), all requirements are pair-wise compared to one another,
needing n·(n–1)/2 comparisons for n requirements. The result is a
prioritized list. The method has shown to be efficient, informative,
and accurate for prioritizing software requirements (Karlsson,

Figure 3. The REPEAT requirements management process enabling a new release every six
months although development of a release takes 14 months (Regnell et al., 1998).

Ju
l 3

1

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

1

S
ep

 3
0

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

2 3 4 5

6

1 2 3 4 5

6

1 2 3 4 5

6

Milestones Phases

1

2

3

5

6

RQ Start

RQ Deadline

4

Spec Baseline

Code Stop

Release

Kick-out

Elicitation

Selection

Change management

Conclusion

Release n-1

Release n

Release n+1

in parallel with
Construction

D
ec

 3
1

 and Management of User Requirements in Market-Driven Software Development 25

Introduction

26
1998). It is also possible to randomly neglect half of the
prioritizations without significant accuracy loss (Carmone, Kara, &
Zanakis, 1997).

In Paper III a variant of the first, prioritization using fictitious money,
is used in a distributed setting. Several stakeholders are asked to prioritize
the same set of high-level requirements and the different prioritizations
are then consolidated in order to find an appropriate prioritization with
respect to business goals and user satisfaction.

Unfortunately, many of the general challenges in traditional
requirements engineering are adopted by the market-driven development
organisation, e.g. requirements are erroneous, errors are detected late,
ambiguities are difficult to resolve, etc. In addition, there are several new
challenges that may be subjects for further research.

1.2 Usability engineering

Usability engineering has its roots in the concept of man-machine
interaction (MMI), a term that was more frequently used after the
technology explosion of the 1970’s. Aspects such as psychology were given
new ground and became a general concern to both researchers and system
designers. MMI begun the exploration of the potential to make user-
friendly systems but was far too narrow in identifying the central concerns
for creating these systems. In practice, user-friendliness all too often
meant tidying up the screen displays and making them more aesthetically
satisfying (Preece et al., 1994).

In the mid-eighties, when computers were introduced on a wide front,
there was a natural shift from MMI to a new field named human-
computer interaction (HCI). HCI developed as a way of focusing on the
specific interaction between humans and computers and a wide range of
subjects became part of the development of HCI, such as psychology,
cognitive science, and sociology, together with the more traditional
subjects: computer science, computer engineering, and graphical design.
This made HCI an interdisciplinary subject and extremely difficult to
master (Concejero et al., 1996).

From the comprehensive field of HCI a new field emerged called
usability, in which the primary focus is on the users and their acceptance
of computer systems. Many different textual definitions of usability exists
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
(ISO; IEEE), but it is preferably defined through five usability attributes
(Nielsen, 1993; Wixon & Wilson, 1997):

• Learnability
Learnability is the degree of how easy it is to learn how a new
software system works. In the market-driven software development
organisation this may be a crucial usability attribute to be
acknowledged when turning to new markets. It is important to
recognize that the learning of a system usually takes place during
usage.

• Rememberability
The user should have little problem remembering how the software
is operated. Many users fall into the category of “sporadic users”,
who are neither experts nor novices. They use the software from
time to time, irregularly, and the software should help the user
remember how a certain task is performed.

• Efficiency
When the user has learnt how to operate the software, productivity
should be as high as possible. Further, the application must be
perceived to execute fast enough to keep up with the user. The
feature is denoted perceived execution speed, since it does not
necessarily refer to the actual speed but rather to the extent to
which the user feels that she is in control.

• Reliability
If the user nevertheless makes mistakes, the software should be able
to recover from them. The most severe kinds of errors are those not
discovered by the user, leading to inadequate work or destroyed
data. The software should help the user avoid these situations.

• Satisfaction
The user should be pleased when using the software, and should be
subjectively satisfied. The satisfaction attribute is often used in
software reviews as it states how pleasant the user may think the
software is to use. Satisfaction is a purely subjective attribute.

The definition, using the attributes above, should help make it clear
that usability covers much more than just the graphical design of the user
interface. Still, usability is just one part of an even bigger picture, which is
 and Management of User Requirements in Market-Driven Software Development 27

Introduction

28
best explained through system acceptability, a concept which is described
below.

System acceptability

To be able to sell a product there has to be some users who have needs that
the product fulfills. If not, the product will likely not be on the market for
very long. If the user is satisfied, she accepts the way the software is
developed or designed. This may be referred to as system acceptability
(Nielsen, 1993).

System acceptability comprises many different attributes. A model of
these attributes is shown in Figure 4, in which the usability attribute is
found as well. From this viewpoint, a software system is acceptable when
it is both socially acceptable and practically acceptable. For example,
software may not be socially acceptable if it is intended to find out who of
the company employees uses the bathroom or the coffee machine most
times during a day. It may nevertheless be considered practically
acceptable if it is excellent in its performance of identifying the user and
reporting it correctly.

Practical acceptability can then be further investigated and be found to
constitute attributes well-known to the software developer, such as cost,
compatibility, robustness, etc., in addition to usefulness. Usefulness
comprises utility and usability, and is basically the issue of whether the
software can be used to achieve a desired goal. Utility, in turn, is the
question whether the functionality of the system can do what is needed,
and finally, usability is the question of how well users can use that
functionality. Thereby, usability applies to all aspects of the software
system with which a human interacts (Nielsen, 1993).

Usability also affects and is affected by the functionality of the software
product. Software is usually developed with a certain kind of functionality
and new versions are released with what is believed to be increased
functionality, new features, and improved features. What has to be
remembered is that the user must also be able to use that functionality.
Still, it does not matter if usability is increased if there is not enough
functionality. Without the functionality the software will not be usable
anyway. Thus, functionality and usability are complementary
characteristics (Goodwin, 1987).

For the market-driven organisation there is an important economical
aspect. If a product cannot be sold no money will be made. If the product
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
is not good enough it will not sell. The methods and techniques from
experiences of usability engineering help to make a better product and
also save money (Bias, 1994).

Paper II concentrates on two usability evaluation techniques that are
very easy to use. They give complementary data, the first providing input
to the requirements engineering process in the form of new requirements,
and the second bringing quantitative data to confirm the focus of the
suggested improvements.

1.3 Process simulation

Simulation may be applied to a vast number of areas to imitate the
operation of a real-world process or system over time (Banks et al., 1996).
It may be executed either by hand or by computer to generate artificial
historical data, which is observed to investigate the plausible behaviour of
the real system. The behaviour is studied by developing a simulation
model, which describes the system through mathematical, logical and
symbolic relationships between objects in the system that are of interest. A
useful model always simplifies and idealizes and the boundaries between
the system and the model are rather arbitrary defined. However, the
usefulness is dependent of the possibility to practically determine all its

Figure 4. Model of attributes of system acceptability (Nielsen, 1993)

Usability

Utility

Learnability

System
acceptability

Social
acceptability

Practical
acceptability

Cost

Compability

Usefulness

Robustness

Rememberability

Efficiency

Reliability

Satisfaction

…

 and Management of User Requirements in Market-Driven Software Development 29

Introduction

30
relevant behaviour: analytically, numerically, or by running the model
with certain inputs and observe the outputs (Bratley, Fox, & Schrage,
1987).

The purposes of simulation are many (Naylor, Balintfy, Burdick, &
Chu, 1966, pp. 8–9; Banks et al., 1996, p. 4):

1. Enable the study of, and experimentation with, the internal
interaction of or within a complex system.

2. Simulate informational, organisational and environmental changes
and observe the effects of alterations.

3. Provide knowledge from designing a simulation model that may be
of great value towards suggestion of improvements to the system.

4. Obtain insight into the questions of which variables are most
important and how variables interact.

5. Pedagogically reinforce analytical solution methodologies.

6. Experiment with new designs or policies prior to implementation,
so as to prepare for what may happen.

7. Verify analytical solutions.

The appealing property of simulation, to mimic what does or may
happen in a real system, makes it an attractive approach with several
benefits (Pegden, Shannon, & Sadowski, 1995, p. 9):

1. New policies, operating procedures, decision rules, organizational
structures, and the like, can be explored without disrupting
ongoing operations.

2. New hardware designs, physical layouts, software programs,
transportation systems, etc., can be tested before committing
resources to their acquisition and/or implementation.

3. Hypotheses about how or why certain phenomena occur can be
tested.

4. Time can be controlled; it can be compressed, expanded, etc.,
allowing to speed up or slow down a phenomenon for study.

5. Insight can be gained about which variables are most important for
performance and how these interact.
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
6. Bottlenecks in material, information and product flow can be
identified.

7. A simulation study can prove invaluable to understanding how the
system actually operates as opposed to how everyone thinks it
operates.

8. New situations, about which there is limited knowledge and
experience, can be manipulated in order to prepare for theoretical
future events. Simulation’s great strength lies in its ability to enable
the exploration of “what if ” questions.

The research presented in Paper I, involving modeling and simulation
of a requirements process, mainly aimed at studying the internal
interaction within the requirements process (purpose 1) and to simulate
the effects of informational and organisational changes to the process
(purpose 2). A primary goal was also a better understanding of the system
in order to suggest improvements (purpose 3). Finally, by showing how a
simulation model of the requirements process may look like, the
organisation under study was enabled to experiment prior to
implementation (purpose 6). The identified advantages for choosing
simulation were the possibility to explore the information flow and new
process policies (advantage 1), to reveal bottlenecks (advantage 6), to
understand how the process behaved (advantage 7) and to answer what
would happen if certain changes were made in the process (advantage 8).
More information may be found in Paper I.

However, simulation also has a few disadvantages (Pegden et al., 1995,
p. 9). Firstly, model building requires special training and experience. Two
models that are constructed by two competent individuals may have
similarities but is highly unlikely to be the same. Secondly, simulation
results may be difficult to interpret, as it may be hard to determine
whether the output depends on randomness or system interrelationships.
Thirdly, simulation modeling and analysis can be time consuming and
expensive. If enough resources are not assigned, the model or analysis may
be insufficient. Fourthly, a disadvantage identified by Banks et al., 1996,
p. 5), simulation is sometimes used when an analytical solution is
possible, or even preferable. Solvable queuing models may be used in
some circumstances.

Thanks to vendors of simulation software, model packages and
thorough analysis tools are available to address the disadvantages. Also,
 and Management of User Requirements in Market-Driven Software Development 31

Introduction

32
simulation may continually be performed even faster, thanks to advances
in hardware.

Simulation models

Simulation models may be classified in several ways. One general
classification scheme is shown in Figure 5 (Gordon, 1969; Banks et al.,
1996). The two main models are the physical and the mathematical. The
physical model is self-explanatory; the mathematical model uses symbolic
notation and mathematical equations to represent a system. These models
may then be further classified into static or dynamic. The static simulation
model, also referred to as Monte Carlo simulation, represents a system at a
particular point in time, i.e. time is not a variable. In contrast, the
dynamic model represents systems as they change over time. A
mathematical model may be dealt with either numerically or analytically.
The analytical approach is mostly used for optimization models to solve a
problem. Simulation models, on the other hand, are ‘run’ rather than
solved.

A third important distinction is made when describing simulation
models to tell whether the model contains random variables or not. A
model is said to be deterministic if it has a known set of inputs, which

Figure 5. General classification scheme of simulation models (combined from Gordon,
1969; Banks et al., 1996)

Models

Physical Mathematical

Static Dynamic Static Dynamic

Discrete

Simulation

Numeric

Continuous

Analytic Numeric
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
result in a known set of outputs, i.e. no random variables. The opposite
model, the stochastic simulation model, has one or more random variables.
The output is then also random and must be treated accordingly as
statistical estimates of averages over time.

Finally, models may be classified into discrete or continuous models. In
a discrete simulation model, changes in the simulation happen only at
discrete points in time. In the continuous simulation model, the variables
change continuously over time. The difference is illustrated in Figure 6.
Although the models are categorized into discrete and continuous, it is
rare to find systems in the real world to fall exclusively in these two
categories. “But since one type of change predominates for most systems,
it will usually be possible to classify a system as being either discrete or
continuous” (Law & Kelton, 1991, p. 4). Discrete models are not always
used to model discrete systems, continuous models are not always used to
model continuous systems, and simulation models may even be
integrated (Zeigler, Praehofer, & Kim, 2000).

For the research presented in this thesis computers were utilized to
simulate a discrete, dynamic and stochastic queuing network model of a
requirements process. Queuing models may be used to calculate
performance in systems that can be described through a number of servers
and associated queues and are very well suited to reveal congestion (Banks
et al., 1996; Gordon, 1969). An illustration of a simple queuing system is
found in Figure 7, where a single server is serving the units of a calling
population. When the server is busy, the units in the calling population,
one at a time in a random fashion, joins the waiting line. The system is
described by its calling population, the nature of arrivals and servers, the

Figure 6. Difference between the discrete and the continuous simulation models (Banks et
al., 1996)

Discrete model state variable Continuous model state variable

Time

N
um

be
r

of
 c

us
to

m
er

s

Time

H
ea

d
of

 w
at

er

1

2

3
4

5

6
7

0

 and Management of User Requirements in Market-Driven Software Development 33

Introduction

34
capacity of the system (how many units can be served simultaneously),
and the queuing discipline (how is the next unit to be served selected).
Simple queuing models may, as mentioned when reviewing the
disadvantages of simulation, be solved analytically but when they become
too complex, simulation is the only way to draw proper conclusions about
the system. For further details about the queuing network model used in
the research, see Paper I.

1.4 Natural language processing

Language processing techniques emerged during the Second World War
when computers were utilized to break message codes (Jurafsky & Martin,
2000). Since then a number of overlapping fields have emerged:
computational linguistics, natural language processing (NLP), speech
recognition, and computational psycholinguistics. Although the fields
have more or less merged, NLP, which emerged in the field of computer
science, is the main interest of the research presented in this thesis.

The quest of NLP is to deliver well-engineered systems that rely on the
use of natural language. Such systems may serve as front-ends to databases
and allow users to enter queries in natural language rather than having to
learn a database query language, or to produce programs automatically
from a natural language description. This is accomplished through the use
of well-defined concepts within linguistics and computer science:

• Morphology
The study of the meaningful components of words.

• Syntax
The study of the structural relationships between words.

Figure 7. A simple queuing system.

Server

Waiting line / Queue

Calling population

Arrival
Pattern

Queuing
Policy Capacity
Elicitation and Management of User Requirements in Market-Driven Software Development

1. Research focus

Elicitation
• Semantics
The study of meaning.

• Pragmatics
The study of how language is used to accomplish a goal.

• Discourse
The study of linguistic units larger than a single utterance.

The task in language processing is to resolve ambiguity in these
categories. This is accomplished through lexical or syntactic
disambiguation, which utilizes various techniques, such as part-of-speech
tagging, word sense disambiguation and probabilistic parsing (Jurafsky &
Martin, 2000).

For the market-driven development organisation, NLP may be a
means of finding support in handling requirements. Requirements are
still often written in natural language and although many requirements
activities rely on verbal communication and negotiations, requirements
carry information that somehow must be managed. Further, it becomes
more and more common for market-driven organisation to store
requirements in some form of repository, i.e. a database. Thus, NLP
techniques may be of even higher interest in such settings.

Although the boundaries are fuzzy, natural language processing may be
subdivided into statistical and non-statistical NLP. Statistical NLP can be
said to comprise all quantitative approaches to automated language
processing, including probabilistic modeling, information theory, and
linear algebra (Manning & Schütze, 2000). Further, for the purposes of
the research presented in this thesis, yet another closely related field has
been explored: information retrieval (IR). Information retrieval primarily
deals with the representation, storage, organisation of, and access to
information items (Baeza-Yates & Ribeiro-Neto, 1999). Thus,
information retrieval is a highly interesting field when trying to manage
requirements.

In traditional information retrieval, the information items, called
documents, are indexed to provide a foundation for retrieving the
particular document. The index consists of index terms, which in a
restricted sense are keywords or groups of related words. By querying an
information retrieval system, i.e. requesting a document by submitting
one or more keywords, relevant documents are returned based on a match
between the submitted queries and the available index terms. The
described scenario is a rather simplified illustration of an information
 and Management of User Requirements in Market-Driven Software Development 35

Introduction

36
retrieval system. Behind the curtains, advanced ranking algorithms are
used to return the most relevant document.

The matching techniques in information retrieval may be used to
compare requirements and reveal similarities and relationships between
requirements. By complementing these techniques with semantic parsing
techniques from NLP, a rather high matching precision may be reached.
Unfortunately, the available techniques have not solved many of the
problems of NLP and a variety of approaches have been taken to try to
automatically handle requirements. An extensive survey of related work
within this field may be found in Paper IV. Progress has been made and
there is a better understanding of some of the limitations of the methods
that have been used. Thus, research will move on to investigate other
promising techniques and application areas.

Paper IV presents a baseline of an evaluation of duplicate identification
using a rather simplistic lexical analysis of requirements. Although
simplistic, a surprising accuracy can be reported. The evaluation scheme
in the paper and the baseline can be used in evaluations of future
improved approaches.

2. Research methodology

The research presented in this thesis has mainly been conducted using an
engineering approach, where situations have been observed and better
solutions have been proposed and evaluated. It is based on previous
findings in the study of a market-driven software development company,
which was struggling with process bottlenecks (Regnell et al., 1998) and
usability competition (Natt och Dag & Madsen, 2000). A number of
research issues, based on those findings, were formulated with one
fundamental vision in mind: to support the market-driven software
development organisation to timely deliver products that satisfy end users.
The purpose was thus to explore, describe and explain the market-driven
software development strategy, discover if improvements may be necessary
and, if they are, decide on which improvements that may be rewarding.

The vision and the research focus was used to formulate relevant
research questions, of which the ones addressed in this thesis are found in
the next section. With the research questions as the guide, research
projects were designed using both fixed and flexible design strategies. In a
fixed strategy, which is also referred to as the quantitative approach, the
Elicitation and Management of User Requirements in Market-Driven Software Development

2. Research methodology

Elicitation
design is finished before data collection begins and the data collected is
usually in the form of numbers. In contrast, the flexible design, also
referred to as the qualitative approach, evolves during data collection and
usually involves collection of non-numerical data (Robson, 20021).

The fixed and flexible design strategies may be further classified. It is
virtually impossible to cover for all possible forms of enquiry, but the
following traditional research strategies are widely recognized (ibid.):

Traditional fixed design research strategies

1. Experimental strategy
A small number of variables are measured and others are
controlled. The researcher actively and deliberately introduces
some form of change in the situation, circumstances or experience
of participants with the view to producing a resultant change in
their behaviour.

2. Non-experimental strategy
A small number of variables are measured while others are
controlled. The research does not try to change the situation,
circumstances or experience.

Traditional flexible design research strategies

1. Case study
A single ‘case’ or a small number of related ‘cases’ are studied to
develop detailed, intensive knowledge. The study is made in the
context of the case.

2. Ethnographic study
How a group, organisation or community live, experience and
make sense of their lives and their world is captured, interpreted
and explained.

3. Grounded theory
A theory is generated from data collected during the study.

Research in software engineering is young and the subject is cross-
disciplinary. Therefore several research approaches and methods have
been adopted from other fields. Attempts have been made to characterize

1. The 2002 edition of Real World Research by Colin Robson has been thoroughly revised.
 and Management of User Requirements in Market-Driven Software Development 37

Introduction

38
research in software engineering but the picture is still not as clear as in
many other, more mature research fields (Shaw, 2002). Thus, software
engineering research methodology consensus is still to be reached. A part
of the problem lies in defining the boundaries of the field, which differ
from typical engineering research that builds on clearly defined scientific
principles. In a 1989 workshop, four methodologies were identified to
address this problem (Adrion, 1993; Glass, 1994; Wohlin et al., 2000):

• Scientific method
The world is observed and a model or theory of behaviour is
proposed based on the observations. The proposition is measured
and analysed, and hypotheses of the proposition are validated. If
possible, the procedure is repeated.

• Engineering method
Existing solutions are observed and better ones are proposed. The
propositions are realised and then measured and analysed. Until no
further refinements can be made the procedure is repeated.

• Empirical method
A model is proposed and measured and then analysed using
statistical methods. The model is validated and the procedure is
repeated.

• Analytical method
A formal theory, or a set of axioms, is proposed from which a
method is developed. Results are derived and, if possible, compared
with empirical observations.

The software engineering researcher typically seeks better (e.g. more
efficient, faster, less cumbersome, etc.) ways to develop and evaluate
software of acceptable quality, and motivated by real world problems,
solutions are sought that are also applicable to the real world. The
research presented in this thesis has mainly been conducted using the
engineering method. However, one singular label does not fully cover for
the approach taken. In addition to the engineering method, both the
scientific method and the empirical method have contributed to the
research in this thesis. A further classification of the research is found in
Section 2.3.
Elicitation and Management of User Requirements in Market-Driven Software Development

2. Research methodology

Elicitation
2.1 Research questions

The research questions that have impelled the research presented in this
thesis are listed below in the order they are addressed in the thesis. The
research and accompanying research questions focus on requirements
elicitation and management in the market-driven software development
situation.

RQ1. Can discrete-event simulation be used to identify potential, future
bottlenecks in the requirements process?

RQ2. Which treatments are possible to avoid requirements process overload
due to high inflow of requirements?

RQ3. May an in-house usability evaluation be used, in a company inexpe-
rienced in usability, as a reliable sources for competitive software
requirements?

RQ4. How may differences and similarities of the needs and opportunities
from different market segments distributed around the world, be
collected, measured and visualized?

RQ5. Can lexical constituents of natural language requirements be used to
automatically identify duplicates among requirements as a means to
reduce process overload?

2.2 Research methods

As mentioned, depending on the specific research methods chosen,
research may fit more or less accurately to a specific methodology. There
are a vast number of research methods available and the ones to choose is
dependent on the type of information that is sought (Robson, 2002). The
following list include the research methods most used:

• Surveys and questionnaires
A relatively small amount of data in standardized form is collected
from a relatively large number of individuals. The sample of
representative individuals is collected from a known population.
The standardize form is usually a written questionnaire.

• Interviews
An interviewer asks questions and the response is noted. Interviews
 and Management of User Requirements in Market-Driven Software Development 39

Introduction

4

may be fully structured, semi-structured or unstructured. The fully
structured interview has predetermined questions with fixed
wording, usually in a pre-set order. The semi-structured interview
has predetermined questions, but the order may be modified based
upon interviewers perception of what seems most appropriate. Also,
question wording may be changed and questions may be omitted or
added. Finally, the unstructured interview has a general area of
interest and may be completely informal.

• Observation
People are watched and what they do is recorded. Observation may
be direct or non-participatory. In the former the researcher takes part
in the activity while observing. In the latter the researcher does not
take part in the activity but rather tries to be quiet, watch and
understand. Ethically questionable in this stance is to conceal being
a observer.

• Simulation
Used to generate artificial historical data, which is observed to
investigate the plausible behaviour of a real system. This method
was further described in Section 1.3. To give good results,
simulation studies require a sound and thorough realization (Banks
et al., 1996).

• Content analysis
The content of existing documentation, which can be virtually any
written information, is analysed and conclusions based on the
content is reported.

In the next section a declaration of the methods used in this thesis is
found.

2.3 Research classification

The results in this thesis have been reached through the use of several of
the presented strategies and research methods. Table 3 provides a
mapping between the presented papers and the research questions,
strategies, methodologies and methods used. As mentioned before, one
methodology may not be a complete and accurate representation of the
presented research. The methodologies listed should rather be regarded as
an indication of the long-term approach taken.
0 Elicitation and Management of User Requirements in Market-Driven Software Development

2. Research methodology

Elicitation
2.4 Validity

Although well-known strategies, methodologies, and methods have been
used to conduct the research and arrive at the conclusions presented in
this thesis, the results may be questioned for a number of reasons. The
validity of the results is a property that always should be addressed in
good research. Validity of research results is subdivided into four different
types, each addressing a specific methodological question (Trochim,
2000). They are explained below in the context of a causal study, where a
potential relationship between a cause and effect is sought.

• Conclusion validity
Is there a relationship between the cause and the effect? It may be
concluded that there is a relationship, that there is a positive
relationship, that there is no relationship, etc. In each of these cases,
the conclusion validity may be assessed.

• Internal validity
Assuming that there is a relationship, is the relationship a causal
one? A correlation between the cause and the effect in a study does
not necessarily mean that the construct is causing the effect.

Table 3. A mapping between the papers in this thesis and the research questions,
strategies, methodologies and methods used. The listed methodologies do not
make up an exact representation of the presented research, but are rather
indications of the long-term approach taken.

Paper Question Strategy Methodology Method

I RQ1, RQ2 Fixed &
Flexible,
Case study

Empirical Simulation,
Interview

II RQ3 Fixed &
Flexible,
Case study

Engineering Questionnaire,
Interview

III RQ4 Fixed &
Flexible,
Case study

Empirical,
Engineering

Survey,
Questionnaire,
Interview

IV RQ1, RQ5 Fixed &
Flexible,
Case study

Engineering,
Empirical

Content analysis,
Interview
 and Management of User Requirements in Market-Driven Software Development 41

Introduction

4

• Construct validity
Assuming that there is a causal relationship, can it be claimed that
the treatment reflects the construct of the treatment and that the
measure well reflects the idea of the construct of the measure? I.e.,
was the intended treatment really implemented and was the
intended measure really what was measured?

• External validity
Assuming that there is a causal relationship in the study between
the constructs of the cause and the effect, can the effect be
generalized to other places, times, or people? Claims may be made
that the research findings have implications for other similar
settings.

As the methodological questions above point out, the validity types
build on each other. In Figure 8 this relationship is illustrated, i.e. each
type assumes that the previous validity type is ensured.

Attempts should be made to reduce the threats to validity, i.e. the
reasons that a conclusion is wrong. For example, there may be insufficient
statistical power to detect a relationship, a sample size may be to small, a
measure may be unreliable, variability in the data may be caused by
random heterogeneity, etc. By showing that the possible alternative
explanations are not credible, the most plausible conclusion may correctly
and reliably be reached (Trochim, 2000).

Threats to validity of the research results in this thesis are discussed in
conjunction with the main contributions in Section 3.2.

Figure 8. Illustration of the relationship between the different types of validity.

Internal

Conclusion

Construct

External

Va
li

di
ty
2 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Research results

Elicitation
3. Research results

This chapter summarizes the main contributions and gives the reader an
introduction to the contents of each of the papers included in this thesis.

3.1 Main contributions

This thesis addresses a line of issues concerning requirements elicitation
and management in the market-driven software development
organisation. The main contributions from each paper presented in this
thesis are summarized below and related to the research questions RQ1–
RQ5 in Section 2.1.

C1: Technique to early identify forthcoming bottlenecks in the require-
ments process. (RQ1, RQ2)
Discrete-event modelling and simulation techniques are showed
to correctly predict overload conditions in a requirements man-
agement process. The techniques may provide validated decision
support for process improvements.

C2: Methods for eliciting and validating reliable usability requirements
within the company. (RQ3)
Usability breaks are added to improve a well-known informal usa-
bility inspection technique, the heuristic evaluation. The tech-
nique is used to show how employees, unskilled in usability, may
successfully and rapidly find usability problems in the software
product that may be used as input to the requirements process. A
complementary usability evaluation, using questionnaires, is con-
ducted and evaluated. The method is suggested be used to cost-
effectively validate the appropriateness of requirements elicited in
the heuristic evaluation.

C3: Methods and visualization techniques for distributed prioritization of
requirements in order to provide decision support when regarding the
needs of several different markets. (RQ4)
A distributed prioritization process is tested and evaluated. The
process is used to capture the different prioritizations of require-
ments made by stakeholders in order to allow the next software
release to satisfy both the developing organisation and the
intended users. Two charts are proposed that help interpret prior-
 and Management of User Requirements in Market-Driven Software Development 43

Introduction

4

itization data collected in distributed prioritization. The charts
visualize differences and agreements among the different stake-
holders’ prioritizations.

C4: A baseline for evaluating supportive techniques that may assist the
requirements analyst through automated analysis of requirements
written in informal natural language. (RQ1, RQ5)
The feasibility of using natural language processing techniques to
identify duplicates is demonstrated through empirical investiga-
tion of using information retrieval techniques on real industrial
requirements. The results are evaluated and an evaluation baseline
is presented. An evaluation scheme is demonstrated and suggested
to be used to assess possible improvements.

The contributions above should be accredited to all the corresponding
authors who have been involved in the research. As far as my own
contributions are concerned, these are further elaborated in conjunction
with each of the listed papers in Section 3.3.

3.2 Threats to validity

The contributions listed in the previous section rely on conclusions drawn
from the results obtained. In the following paragraphs, the threats to
validity of these conclusions are discussed.

In the simulation study the major threat to validity concerns the
construct, i.e. the model and the degree to which it faithfully represents
its system counterpart (Zeigler et al, 2000). In the presented study,
validation has been achieved through an iterative process of running the
model and analyse the output behaviour. This process was terminated
when the model was considered to capture the system behaviour to the
extent demanded by our objectives. Furthermore, the company under
study validated the simulation output to be accurate, thus further assuring
construct validity. There may be threats to internal validity of the
conclusions on how to avoid bottlenecks, but although the results may be
somewhat surprising, they are considered plausible. Improvements to the
model were then identified and thus also other potential threats to
validity.

In the usability evaluation study, the heuristic evaluation was an
already tested and approved method for evaluation of usability.
Nevertheless, it was noted that the company found the outcome from the
4 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Research results

Elicitation
evaluation to be very valuable in the development process. Exactly how
simple the heuristic evaluation was perceived to be has not been properly
investigated, but the time invested by each evaluator in relation to the
outcome of the evaluation indicates that the effort anyhow was well spent.
The SUMI questionnaire used to obtain end users’ opinions is well
documented and has been thoroughly validated (Kirakowski & Corbett,
1996). These threats to construct and internal validity were parts of the
earlier concerns when choosing evaluation methods.

In the distributed prioritization study, two identified threats to internal
and construct validity are presented in the paper. The first concerned the
quality of prioritizations. It was recognized that stakeholders may not
know how particular requirements should be interpreted or how
important they are for the potential customers on their market. The other
threat concerned ‘shrewd tactics’, implying that stakeholders could give an
extra-low priority to requirements they knew other stakeholders would
give high priorities, just in order to influence the total result to fit their
aims. With the presented technique the actual events are impossible to
determine. In both cases, another prioritization method is suggested that
may address these threats. The threats to the validity of the results from
questionnaire lie in the testing method itself, i.e. how questions are
formulated and ordered and which answers were available in the closed
questions.

In the study of automated duplicate identification, there may be
several threats to internal and construct validity of the implementations of
the programs that parsed the requirements. Several questions may be
raised: if the stop word list is appropriate, if the stemming scheme is
appropriate, the results are credible, etc. Fortunately, errors were detected
in the analysis when they were repeated. By using different tools to
analyse the results, those threats were minimized. However, for the
purpose of the study, to investigate the feasibility of the techniques
through duplicate identification and to provide a baseline for further
evaluations, the methods were carefully evaluated.

The case study strategy, which is used throughout the presented
research, entails specific external validity threats. The external validity, i.e.
the generalizability, is the most problematic and results from further
studies are the only cure to this threat. However, the presented work has
been conducted with previously stated objectives in mind (see start of
Section 2 on page 36) and it has been of ethical concern and aim to only
 and Management of User Requirements in Market-Driven Software Development 45

Introduction

4

report on results that have also been questioned by the authors
themselves.

3.3 Summary of papers

The following summary lists the title, author, conference or publication,
and abstract of each individual paper in this thesis. In conjuction to each
abstract, the indiviual authors’ contributions are reported.

PAPER I: Exploring bottlenecks in market-driven requirements
management processes with discrete event simulation

Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam,
& Christian Nyberg.

Journal of Systems and Software, 59, 323–332, 2001.

This paper presents a study where a market-driven requirements
management process is simulated. In market-driven software
development, software packages are released to a market and not
developed specifically for a single customer. New requirements are
continuously issued, and the objective of the requirements management
process is to sort, manage, and prioritize the requirements. In the
presented study, a specific requirements management process is modelled
using discrete event simulation, and the parameters of the model are
estimated based on interviews with people from the specific organisation
where the process is used. Based on the results from simulations,
conditions that result in an overload situation are identified. Simulations
are also used to find process change proposals that can result in a non-
overloaded process. The risk of overload can be avoided if the capacity of
the requirements management process is increased, or if the number of
incoming requirements is decreased, for example, through early rejection
of low-priority requirements.

The research in this paper was mainly initiated by Dr. Höst and Dr. Regnell.
In terms of writing the authors contributed to an extent corresponding to the
order of the authors’ names. All the authors contributed in the discussions,
implementation and simulations of the queuing network model.
6 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Research results

Elicitation
PAPER II: An industrial case study of usability engineering in market-
driven packaged software development

Johan Natt och Dag, Björn Regnell, Ofelia S. Madsen, & Aybüke Aurum.

M. J. Smith, G. Salvendy, D. Harris & R. J. Koubek (Eds.), Proceedings of HCI
International: Vol. 1. Usability Evaluation and Interface Design: Cognitive
Engineering, Intelligent Agents and Virtual Reality (pp. 425–429). Mahwah, NJ:
Erlbaum. 2001.

In market-driven software development it is crucial to produce the best
product as quickly as possible in order to reach customer satisfaction.
Requirements arrive at a high rate and the main focus tends to be on the
functional requirements. The functional requirements are important, but
their usefulness relies on their usability, which may be a rewarding
competitive means on its own. Existing methods help software
development companies to improve the usability of their product.
However, companies that have little experience in usability still find them
to be difficult to use, unreliable, and expensive. In this study we present
results and experiences on conducting two known usability evaluations,
using a questionnaire and a heuristic evaluation, at a large software
development company. We have found that the two methods
complement each other very well, the first giving scientific measures of
usability attributes, and the second revealing actual usability deficiencies
in the software. Although we did not use any usability experts, evaluations
performed by company employees produced valuable results. The
company, which had no prior experience in usability evaluation, found
the results both useful and meaningful. We can conclude that the
evaluators need a brief introduction on usability to receive even better
results from the heuristic evaluation, but this may not be required in the
initial stages. Much more essential is the support from every level of
management. Usability engineering is cost effective and does not require
many resources. However, without direct management support, usability
engineering efforts will most likely be fruitless.

The research presented in this paper is based on previous work by Ms. Madsen
and Mr. Natt och Dag. The first author pursued, together with Dr. Regnell
and Dr. Aurum, with further conclusions on the context. The paper was
mainly written by Mr. Natt och Dag.
 and Management of User Requirements in Market-Driven Software Development 47

Introduction

4

PAPER III: An industrial case study on distributed prioritisation in
market-driven requirements engineering for packaged software

Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark,
& Thomas Hjelm.

Requirements Engineering, 6, 51–62, 2001.

When developing packaged software, which is sold ‘off-the-shelf ’ on a
worldwide marketplace, it is essential to collect needs and opportunities
from different market segments and use this information in the
prioritisation of requirements for the next software release. This paper
presents an industrial case study where a distributed prioritisation process
is proposed, observed and evaluated. The stakeholders in the
requirements prioritisation process include marketing of offices
distributed around the world. A major objective of the distributed
prioritisation is to gather and highlight the differences and similarities in
the requirement priorities of the different market segments. The
evaluation through questionnaires shows that the stakeholders found the
process useful. The paper also presents novel approaches to visualise the
priority distribution among stakeholders, together with measures on
disagreement and satisfaction. Product management found the proposed
charts valuable as decision support when selecting requirements for the
next release, as they revealed unforeseen differences among stakeholder
priorities. Conclusions on stakeholder tactics are provided and issues of
further research are identified, including ways of addressing identified
challenges.

The approach to use fictitous money in the prioritization of requirements was
proposed by Mr. Hjelm. Dr. Regnell and Dr. Höst developed the distributed
prioritization method together with Mr. Beremark and Mr. Hjelm. The
visualization charts and the measures were mainly developed by Dr. Regnell.
The questionnaire was designed by Dr. Regnell and Dr. Höst and validated by
Mr. Beremark and Mr. Hjelm. The results from the evaluation were analysed
and presented by Mr. Natt och Dag.
8 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Research results

Elicitation
PAPER IV: A feasibility study of automated natural language
requirements analysis in market-driven development

Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson,
& Joachim Karlsson.

Requirements Engineering, 7, 20–33, 2002.

In market-driven software development there is a strong need for support
to handle congestion in the requirements engineering process, which may
occur as the demand for short time-to-market is combined with a rapid
arrival of new requirements from many different sources. Automated
analysis of the continuous flow of incoming requirements provides an
opportunity to increase the efficiency of the requirements engineering
process. This paper presents empirical evaluations of the benefit of
automated similarity analysis of textual requirements, where existing
Information Retrieval techniques are used to statistically measure
requirements similarity. The results show that automated analysis of
similarity among textual requirements is a promising technique that may
provide effective support in identifying relationships between
requirements.

The techniques used in this paper were selected, implemented and evaluated
by Mr. Natt och Dag, with assitance from Dr. Regnell. The evaluation scheme
was suggested by Dr. Regnell. Dr Carlshamre contributed with the data for the
interrelationsship analysis and also to conclusions on the presented work.
Mr. Beremark provided the underlying data and Mr. Andersson provided
additional information and also conducted a manual analysis of a subset of
the requirements. Dr. Karlsson contributed with ideas for further applications.
Mr. Natt och Dag wrote most of the paper with assistance from Dr. Regnell
and Dr. Carlshamre.
 and Management of User Requirements in Market-Driven Software Development 49

Introduction

50
4. Further research and future plan

Several issues for further research have been identified during and in
connection with the research presented in this thesis. Examples of these
issues are listed and described in the following section and a more focused
plan and accompanying research strategy for the following two years are
presented in Section 4.2.

4.1 Further research

There are many possible improvements to be made to the methods and
techniques presented in this thesis. Furthermore, the research strategy
used, i.e. the case study, entails threats to external validity. Therefore, a
general improvement would be to replicate the studies in various, similar
settings or with different data. Before that, no certain conclusions on the
generalizability of the results can be made. Other, specific suggestions for
improvements are grouped below according to the related paper.

The simulation study may be superseded by investigating different
ways of improving the simulation model and by looking into different
ways of reducing congestion in the requirements process:

FR1: The simulation model simplifies the implementation of the
must- and wish-lists. The simulation model may be improved
to more realistically represent the actual process of how require-
ments are selected for the lists. This may enable investigation of
the quality of the process outcome.

FR2: The simulation model simplifies the use of employees to be
dedicated to a particular phase. Modelling servers as a single
pool of resources, in which each resource has certain competen-
cies, may improve accuracy.

FR3: The simulation study suggest two ways of reducing congestion
in the process. Exactly how this may be achieved could be sub-
ject for further research.

FR4: The discrete-event nature of requirements may be motivated,
but there may also be continuous elements in the process that is
better modelled with a continuous simulation model. Advan-
tages and drawbacks of using discrete-event, continuous, or
hybrid simulation models may be investigated.
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Further research and future plan

Elicitation
The market-driven development organisation demands quick and
accurate results. Thus, the usability evaluation study may be superseded
by further evaluations and improvements of the heuristic evaluation as an
in-house usability evaluation technique:

FR5: The presented study proposes usability breaks in the scenarios
to keep inexperienced evaluators focused on usability issues. To
which extent this improvement actually helps may be an issue
for further research.

FR6: Employees may be short of time and have diverse competen-
cies. Exploring the quickest and best ways to select usability
evaluators within a software development company, may pro-
vide means to keep obtaining good results from subsequent
evaluations.

FR7: Results from the presented study suggest that a short introduc-
tion or education in usability could give a usability evaluation
outcome of higher quality. Measurements of the improvements
achieved by first educating potential usability evaluators in usa-
bility may verify this.

FR8: How the outcome of the usability evaluation is utilized in the
software development process has not been studied. To better
motivate usability evaluations of the kind presented, investiga-
tions could be made of to what extent the evaluation results in
improved usability of the product. It could also be studied if
the techniques cause any other benefits, e.g. any kind of
improvements in software or development but not specifically
in usability.

Prioritization is an important issue for the market-driven software
development company (see ‘Specific RE issues’ in Table 1 on page 18).
Prioritization methods may be further investigated and situations how
distributed prioritization is best utilized may be studied:

FR9: The presented paper use fictitious money to prioritize require-
ments. As pair-wise comparison, based on the analytical hierar-
chy process, have been shown to be accurate and efficient, this
method may be of interest to evaluate in a distributed setting.
 and Management of User Requirements in Market-Driven Software Development 51

Introduction

52
FR10: The study concludes that stakeholders and product and quality
management find the distributed prioritization useful and the
visualization charts valuable decision support. A follow-up
study may investigate the actual impact of the decided consoli-
dated prioritization from distributed prioritization.

FR11: The acceptance among stakeholders of the presented technique
was somewhat evaluated. Further studies may investigate if
stakeholders whose ratings in prioritization differ significantly
from the final decision are more inclined to accept the decision
thanks to the increased transparency of the prioritization proc-
ess.

One way to resolve congestion in the requirements process was found
to be to relieve the burden on people working in the process (see Paper I).
Automated requirements relationship analysis may be one step to towards
this goal. The simplistic techniques presented in Paper IV may obviously
be further investigated, improved and evaluated:

FR12: The presented study found automated requirements analysis to
be feasible for duplicates identification and removal. For a bet-
ter understanding of when these techniques may be supportive,
process issues, such as when requirements analysis should be
performed, who should perform the analysis and how the anal-
ysis is cost-efficient to perform, may be further studied.

FR13: The content in natural language is one relevant source for anal-
ysis. Additional information carrying requirements attributes
and fields may improve precision. It may be interesting to
investigate how different ways of representing requirements
affect the results. Which representation is best suited for high
precision in automated similarity analysis?

FR14: Several NLP-related improvements may be considered to
increase method accuracy. Examples include: the use of a
domain-specific stop list, a thesaurus with general synonym
words, spelling correction prior to the automated similarity
analysis and by not discriminating between words with a short
editing distance.
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Further research and future plan

Elicitation
FR15: In the borderland between natural language processing and lin-
guistics, smart algorithms may improve method accuracy. Some
words may be over-represented in the set of false positives.
Removing these words may improve the precision. This is also
an example of where it may be possible to make the algorithm
self-adjustable based on human corrections.

FR16: Pure linguistic methods and techniques may provide means for
improving method accuracy. For example, linguistic methods
may provide more precise analysis of natural language require-
ments on a semantic level. This may include the use of ontolo-
gies or word nets.

FR17: Automated analysis techniques may work at a technical and
engineering level. For the ideas to be useful it is valuable to
investigate ways of visualising the results from automated simi-
larity analysis and supporting the requirements engineer in the
navigation among related requirements.

4.2 Future plan

A possible plan for further research for the next two years, incited by the
results presented in this thesis, is here hypothesized, motivated and
presented.

According to a study of software technologies it takes in between 15 to
20 years for a technology to evolve from concept formulation to the
propagation throughout the community of users (Redwine & Riddle,
1985; Shaw, 2002). Considering the age of requirements engineering and
the attempts made so far to automatically analyse textual representations
using natural language processing techniques, a breakthrough may still be
some years away. Nevertheless, the issue is interesting and several
industrial partners are positive.

Preliminary results from an ongoing, not yet published, industrial
survey (Related Papers, [XII], page 13) indicate that tools for basic needs
that are simple to use are highly desirable. The results also indicate that
natural language is used extensivly when specifying and managing
requirements. One of the basic needs, avoiding requirements process
bottlenecks, is presented in this thesis and linguistic methods are
suggested to partially fulfil this need. Thus, it is of high interest to develop
 and Management of User Requirements in Market-Driven Software Development 53

Introduction

54
supportive tools that incorporates several techniques aimed for the
market-driven software development organisation.

The following research issues are planned to be addressed:

1. Explore and understand the current state of affairs in market-driven
requirements engineering.
An important basis for drawing conclusions about situations when
automated analysis may be of interest, is the understanding of the
current situation in requirements engineering. Descriptive,
qualitative, and quantitative studies provide means to explore and
understand how requirements are managed today and what the
problematic issues may be.
Research question (FRQ1): To what extent is natural language used
to specify requirements in current market-driven software development
companies?

2. Further evaluate automated relationship analysis of requirements.
To further validate automated relationship analysis techniques it is
of vital importance to replicate the evaluation using different sets of
requirements. With a substantial set of requirements databases it
may be possible to find means of refinement and improvements of
the techniques in order to increase their accuracy. In a forthcoming
study, it will be investigated if the techniques may be used to relate
market requirements and business requirements.
Research question (FRQ2): Which techniques may improve the
accuracy of automated relationship analysis of requirements?

3. Investigate the limits of real-word applications of automated analysis
It is desirable to find techniques suitable for supporting the
requirements analyst in her daily work. The intent is not in any way
to replace human judgement. Therefore, it is of interest to
investigate to what extent the requirements manager could be
assisted by the proposed techniques. How reliable are the
techniques and when and how are they best used?
Research question (FRQ3): What are the possible applications of
automated relationship analysis techniques to support the requirements
analyst?

4. Develop prototype tools to test utilization and visualization of
automated analysis techniques.
Putting the analysis techniques in the context they belong enables
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Further research and future plan

Elicitation
further assessment of their feasibility. In developing tools to support
the techniques, further improvements issues may be revealed. In
order for the techniques to be usable, there must be ways to easily
adopt them and incorporate them into the present development
process. Proper visualization of the results from automated analysis
may be one way to aid the requirements manager.
Research question (FRQ4): How may the result from automated
relationship analysis techniques best be supported by and visualized in
CASE tools?

The research questions will be tried to be answered by conducting case
studies on as many sets of real industrial requirements as possible. By
using empirical methods to validate each step, proper improvement will
hopefully be possible to be made. Experiments in a real-world setting
would be a desirable strategy to investigate the usefulness of automated
analysis techniques. A mapping, corresponding to the one found in
Table 3 on page 41, between the research questions and the planned
strategies, methodologies and methods to be used, is found in Table 4.

Table 4 concludes the introduction of this thesis. In the subsequent
pages, following the references in the next section, research papers I
through IV are found.

Table 4. A mapping between future research questions and planned strategies,
models, methods. The methodologies may not make up an exact representation of
the planned research, but are rather indications of the approach to be taken.

Question Strategy Methodology Method

FRQ1 Fixed &
Flexible,
Etnographic study

Empirical Interview,
Survey,
Questionnaire

FRQ2 Fixed &
Flexible,
Case study

Engineering,
Empirical

Content analysis

FRQ3 Flexible,
Etnographic study

Empirical Survey,
Questionnaire,
Simulation

FRQ4 Fixed &
Flexible,
Experimental

Engineering,
Empirical

Controlled
experiment,
Questionnaire,
Interview
 and Management of User Requirements in Market-Driven Software Development 55

Introduction

56
5. References

Adrion, W. R. (1993). Research methodologies in Software Engineering. In W. F. Tichy,
N. Habermann & L. Prechelt (Eds.), Summary of the Dagstuhl Workshop on Future
Directions on Software Engineering. ACM Software Engineering Notes, 18(1), 35–48.

Ahlbom, H. (2002, May 2). Ericsson hårdbantar forskningen. Ny Teknik, p. 2:5.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Harlow, Eng-
land: Addison-Wesley.

Banks, J., Carson, J. S., & Nelson, B. (1996). Discrete-Event System Simulation (2nd ed.).
Upper Saddle River, NJ: Prentice Hall.

Beck, K. (2000). Extreme Programming Explained. Reading, MA: Addison-Wesley.

Bias, R. G., & Mayhew, D. J. (1994). Cost-justifying usability. Boston: Academic Press.

Bratley, P., Fox, B. L., & Schrage, L. E. (1987). A Guide to Simulation (2nd ed.). New
York: Springer-Verlag.

Carlshamre, P., & Regnell, B. (2000). Requirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineering Processes. In A. M. Tjoa, R. R.
Wagner, A. & Al-Zobaidie (Eds.), Proceedings of the 11th International Workshop on
Database and Expert Systems Applications Process (pp. 961–965). Los Alamitos, CA:
IEEE Computer Society Press.

Carlshamre, P. (2002). A Usability Perspective on Requirements Engineering – From Meth-
odology to Product Development (Dissertation No. 726). Linköping: Linköping Univer-
sity, Linköping Studies in Science and Technology.

Carmone, Jr., F. J., Kara, A., & Zanakis, S. H. (1997). A Monte Carlo investigation of
incomplete pairwise comparison matrices in AHP. European Journal of Operational
Research, 102, 538–553.

Concejero, P., Clarke, A., Carter, C., Muehlbach, L., Ruschin, D., Kaasinen, E., et al.
(1996). Currently available HF guidelines and standards (Tech. Rep. No. AC224/TID/
2270/DR/P/002/b1). USINACT Project AC224.

Davis, A. M. (1993). Software Requirements – Objects, Functions, & States (Rev. ed.).
Upper Saddle River, NJ: Prentice Hall.

Glass, R. L. (1994). The Software–Research Crisis. IEEE Software, 11(6), 42–47.

Goguen, J. A. (1996). Formality and Informality in Requirements Engineering. In Pro-
ceedings of the Fourth International Conference on Requirements Engineering (pp. 102–
108). Los Alamitos, CA: IEEE Computer Society Press.
Elicitation and Management of User Requirements in Market-Driven Software Development

5. References

Elicitation
Goodwin, N. C. (1987, March). Functionality and usability. Communications of the
ACM, 30, 229–233.

Gordon, G. (1969). System Simulation. Engelwood Cliffs, NJ: Prentice-Hall.

IEEE 610.12–1990. Standard Glossary of Software Engineering Terminology.

ISO 9241–11:1998. Ergonomic requirements for office work with visual display termi-
nals (VDTs) – Part 11: Guidance on usability.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing. Upper Saddle
River, NJ: Prentice Hall.

Kamsties, E., Hörmann, K., & Schlich, M. (1998). Requirements Engineering in Small
and Medium Enterprises. Requirements Engineering, 3, 84–90.

Karlsson, J. (1998). A systematic approach for prioritizing software requirements (Disserta-
tion No. 526). Linköping: Linköping University: Department of Computer and Infor-
mation Science.

Keil, M., & Carmel, E. (1995). Customer–Developer Links in software Development.
Communications of the ACM, 38(5), 33–44.

Kirakowski, J., & Corbett M. (1996). The software usability measurement inventory:
Background and usage. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. L.
McClelland (Eds.), Usability Evaluation in Industry (pp. 169–177). London: Taylor &
Francis.

Kotonya, G., & Sommerville, I. (1997). Requirements engineering: processes and tech-
niques. New York: John Wiley & Sons.

Lauesen, S. (2002). Software Requirements – Styles and Techniques. London: Addison-
Wesley.

Law, A. M., & Kelton, W. D. (1991). Simulation Modeling and Analysis (2nd ed.). Engel-
wood Cliffs, NJ: Prentice-Hall.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of the practice in
requirements modelling. In Proceedings of IEEE International Symposium on Require-
ments Engineering (pp. 2–14). Los Alamitos, CA: IEEE Computer Society Press.

Manning, C. D., & Schütze, H. (2000). Foundations of Statistical Natural Language Proc-
cessing. Cambridge, MA: MIT Press.

Natt och Dag, J., & Madsen, O. S. (2000). An Industrial Case Study of Usability Evalua-
tion (Master’s Thesis. Report No. CODEN:LUTEDEX (TETS–5390)/1–190/
(2000)&local 8). Lund: Lund University: Department of Communication Systems.
 and Management of User Requirements in Market-Driven Software Development 57

Introduction

58
Naylor, T. H., Balintfy, J. L., Burdick, D. S., & Chu, K. (1966). Computer Simulation
Techniques. New York: John Wiley & Sons.

Nielsen, J. (1993). Usability Engineering. San Diego, CA: Morgan Kaufmann.

Nielsen, J. (1994). Heuristic Evaluation. In J. Nielsen, & R. L. Mack (Eds.), Usability
Inspection Methods (pp. 25–61). New York: John Wiley & Sons.

Novorita, R. J., & Grube, G. (1996). Benefits of structured requirements methods for
market-based enterprises. In Proceedings of Sixth Annual International INCOSE Sympo-
sium. Seattle, WA: INCOSE.

Pegden, C. D., Shannon, R. E., & Sadowski, R. P. (1995). Introduction to simulation
using SIMAN (2nd ed.). New York: McGraw-Hill.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software. In Proceedings of the Second IEEE International
Symposium on Requirements Engineering (pp. 128–130). Los Alamitos, CA: IEEE
Computer Society Press.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human-
Computer Interaction. Wokingham, England: Addison-Wesley.

Redwine, Jr., S. T., & Riddle, W. E. (1985). Software technology maturation. In Proceed-
ings of the Eighth International Conference on Software Engineering, (pp. 189–200). Los
Alamitos, CA: IEEE Computer Society Press.

Regnell, B. Beremark, P., & Eklund, O. (1998). A Market-Driven Requirements Engi-
neering Process – Results from an Industrial Process Improvement Programme.
Requirements Engineering, 3, 121–129.

Robertson, S., & Robertson, J. (1999). Mastering the Requirements Process. Harlow, Eng-
land: Addison-Wesley.

Robson, C. (2002). Real World Research (2nd ed.). Oxford, UK: Blackwell.

Royce, W. W. (1970). Managing the development of large software systems: concepts
and techniques. Proceedings of IEEE WESTCON (pp. 1–9). Los Alamitos, CA: IEEE
Computer Society Press.

Saaty, T. L. (1980). The Analytical Hierarchy Process. New York: McGraw Hill.

Sawyer, P. (2000). Packaged Software: Challenges for RE. In Proceedings of Sixth Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality (pp.
137–142). Essen, Germany: Essener Informatik Beiträge.
Elicitation and Management of User Requirements in Market-Driven Software Development

5. References

Elicitation

Sawyer, P., Sommerville, I., & Kotonya, G. (1999). Improving Market-Driven RE Proc-
esses. In M. Oivo, & P. Kuvaja (Eds.), Proceedings of the International Conference on
Product Focused Software Process Improvement (pp. 222–236). Oulu, Finland: Technical
Research Centre of Finlad (VTT).

Shaw, M. (1990). Prospects for an Engineering Discipline of Software. IEEE Software,
7(6), 15–24.

Shaw, M. (2002, April). What makes good research in Software Engineering? Paper pre-
sented at the Fifth European Joint Conferences on Theory and Practice of Software,
Grenoble, France.

Siddiqi, J., & Shekaran, C. (1996). Requirements Engineering: The Emerging Wisdom.
IEEE Software, 13(2), 15–19.

Somerville, I. (2001). Software Engineering. Harlow, England: Addison-Wesley.

Sommerville, I., & Sawyer, P. (1997). Requirements Engineering – A Good Practice Guide.
Chichester, England: John Wiley & Sons.

Trochim, W. (2000). The Research Methods Knowledge Base (2nd ed.). Cincinnati, OH:
Atomic Dog Publishing.

Wixon, D., & Wilson, C. (1997). The usability engineering framework for product
design and evaluation. In Handbook of human-computer interaction (pp. 653–689).
Amsterdam: Elsevier Science.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000).
Experimentation in Software Engineering – An Introduction. Norwell, MA: Kluwer.

Yeh, A. (1992). Requirements Engineering Support Technique (REQUEST) – A Market
Driven Requirements Management Process, In Proceedings of the Second Symposium on
Assessment of Quality Software Development Tools (pp. 211–223), Los Alamitos, CA:
IEEE Computer Society Press.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of Modeling and Simulation –
Integrating Discrete Event and Continuous Complex Dynamic Systems (2nd ed.). San
Diego, CA: Academic Press.
 and Management of User Requirements in Market-Driven Software Development 59

Introduction

60
 Elicitation and Management of User Requirements in Market-Driven Software Development

I

PAPER I

Exploring bottlenecks in market-driven
requirements management processes
with discrete event simulations

Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, Christian Nyberg

Journal of Systems and Software, 59, 323–332, 2001.
Elicitatio
Abstract

This paper presents a study where a market-driven requirements
management process is simulated. In market-driven software
development, generic software packages are released to a market with
many customers. New requirements are continuously issued, and the
objective of the requirements management process is to elicit, manage,
and prioritize the requirements. In the presented study, a specific
requirements management process is modelled using discrete event
simulation, and the parameters of the model are estimated based on
interviews with people from the specific organisation where the process is
used. Based on the results from simulations, conditions that result in an
overload situation are identified. Simulations are also used to find process
change proposals that can result in a non-overloaded process. The risk of
overload can be avoided if the capacity of the requirements management
process is increased, or if the number of incoming requirements is
decreased, for example, through early rejection of low-priority
requirements.
n and Management of User Requirements in Market-Driven Software Development 61

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

62
1. Introduction

Requirements Engineering (RE) in a market-driven context, where
succeeding versions of a software package are released to a market, is
getting increased attention (Lubars, Potts & Richter, 1993; Potts, 1995;
Yeh, 1992). When developing software for a market, rather than for a
single customer, the pressure on short time-to-market is evident. An
effective engineering of software requirements is an important success
factor for meeting market demands. RE involves activities such as
analysing and prioritizing requirements, and maintaining a database of
requirements that may be implemented in the future. This part of the
software process requires resources, and the allocation of resources to
activities related to requirements selection and release planning is crucial
to the continuous delivery of competitive software releases. Traditional
RE has mainly been focused on the bespoke situation where a specific
system is developed based on a contract with a specific customer. The
market-driven situation, however, has special challenges regarding
scheduling constraints and stakeholding (Sawyer, 2000), and there is an
industrial need for process improvement in this area (Sawyer, Sommerville
& Kotonya, 1999).

One way of analysing process improvement proposals is to carry out
pilot studies or controlled experiments within the specific organisation
(Wohlin et al., 2000). However, this requires much resources and an
alternative approach is to carry out simulations of the organisation instead
(Kellner, Madachy, & Raffo, 1999; Pfahl & Lebsanft, 2000). This is an
engineering approach that is chosen in many other areas, and it can, of
course, be applied in evaluation of software development processes too.
After the new processes have been analysed through simulation they can
be analysed in experiments and case studies. In this way simulations can
be a natural part of technology transfer and evaluation. Simulations may
reduce the risk of implementing process changes that are not resulting in
improvements. Since many people in the organisation often are involved
in experiments and pilot-studies, it may be a large problem if the wrong
changes are introduced and evaluated. This can very well damage the
continued process improvement work in the organisation for a long time.
Thus, there is a clear opportunity for simulation as a first step in the
evaluation of new software process technology.

The objective of the presented study is to investigate if simulation can
help in exploring bottlenecks and overload situations in RE processes.
Elicitation and Management of User Requirements in Market-Driven Software Development

2. The REPEAT process

Elicitation
The object of simulation is a specific process called REPEAT (Regnell,
Beremark, & Eklundh, 1998), which is used by a leading CASE-tool
developer for real-time systems development (Telelogic AB). The
REPEAT process is a result of an improvement programme that started in
1995, as Telelogic considered efficient RE a key success factor. After the
introduction of REPEAT, a significant improvement in delivery precision
and product quality was gained. However, after a number of releases with
REPEAT, it was realized that market pressure resulted in a number of
further challenges regarding through-put and congestion (Regnell et al.).
This led to a research project with the objective of further understanding
and improving market-driven RE. The presented work is a part of this
effort.

All figures and data in this paper refer to the period 1998–1999. Since
then, Telelogic has grown considerably, and Telelogic has continuously
introduced improvements in order to meet the challenges of the market.
The principal results presented in this paper are thus relevant for
understanding market-driven requirements management in general,
rather than characterizing the current and future situation at Telelogic. In
the following, all references to the “current” or “actual” situation relates to
the time-frame from 1998–1999.

The simulation study presented in this paper, applies discrete event
simulation (Banks, Carson, & Nelson, 1996) using a queuing network
model (King, 1990). A major objective of the simulation study is to
explore the conditions under which the process becomes overloaded. It is
also investigated which resources are needed in order to handle a certain
frequency of new requirements. Simulations are carried out in order to
explore the conditions that result in an overloaded process, and to find
changes to the process that may remove bottlenecks.

The paper is structured as follows. In Section 2, the REPEAT process
is presented, and Section 3 presents the simulation model. The results of
the performed simulations are presented in Section 4. In Section 5,
conclusions and suggestions for further research in the field are presented.

2. The REPEAT process

REPEAT manages requirements continuously by controlling a product
pipeline in which three releases are developed in parallel. The product
pipeline delivers two new product releases per year. REPEAT covers
 and Management of User Requirements in Market-Driven Software Development 63

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

64
typical RE activities, such as elicitation, documentation, and validation,
and the process has a strong focus on requirements selection and release
planning. A schematic picture of the process is shown in Figure 1.

REPEAT is instantiated for each release, and each process instance has
a fixed duration of 14 months. Each REPEAT instance consists of five
different phases separated by milestones at pre-defined dates. The
Elicitation phase deals with the collection and initial classification of
requirements. The Selection phase includes detailed specification of each
requirement and release planning. The Change Management phase is
active in parallel with construction (design, implementation, and testing
of requirements for the coming release) and manages changes in
requirements priorities due to events such as emergence of high-priority
requirements and delays. The Conclusion phase includes post-mortem
documentation. Each of these phases are further described below.

2.1 Elicitation.

The elicitation phase includes two activities: collection and classification.
Collection of requirements is made by an issuer that fills out a web-form
and submits the requirement for storage in an in-house-built database.
Requirements are described using natural language and given a summary
name by the issuer. An explanation of why the requirement is needed is
also given. The issuer gives the requirement an initial priority P, which
suggests in which release it may be implemented. P is a subjective measure

Figure 1. The milestones and phases of the REPEAT process, aligned with a fixed release
schedule.

Ju
l 3

1

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

1

S
ep

 3
0

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

2 3 4 5

6

1 2 3 4 5

6

1 2 3 4 5

6

Milestones Phases

1

2

3

5

6

RQ Start

RQ Deadline

4

Spec Baseline

Code Stop

Release

Kick-out

Elicitation

Selection

Change management

Conclusion

Release n-1

Release n

Release n+1

in parallel with
Construction

D
ec

 3
1

Elicitation and Management of User Requirements in Market-Driven Software Development

2. The REPEAT process

Elicitation
reflecting the view of the issuer, and is measured on an ordinal scale with
three levels, as shown in Table 1.

2.2 Selection.

The goals of this phase are:

1. to select which requirements to implement in the current release

2. to specify the selected requirements in more detail

3. to validate the requirements.

The output of this phase is a requirements document which includes a
selected-list with a detailed specification and effort estimation in hours of
all selected requirements, and a not-selected-list including the
requirements that are postponed to the next release. The selected
requirements are divided into a must-list and a wish-list. The must-list
comprises requirements that are estimated to take 70% of the available
effort, while the wish-list comprises requirements that are estimated to
take 60% of the available effort. This implies that if the effort estimations
are correct, half of the wish-list will be implemented, and the rest will be
reconsidered for implementation in the next release. However, all the
requirements on the wish-list are specified, so if the estimations are not
correct there will still be a number of specified requirements to implement
in the release.

2.3 Change management during construction.

This phase of the REPEAT process is carried out in parallel with the
design, implementation, and testing of the requirements, and handles
changes in the priorities of the requirements. There are two sub-phases of
this phase, one before code-stop (3–4 in Figure 1) and one after code-stop
(4–5 in Figure 1). After code-stop no implementation is carried out.
Instead the focus is on testing. If new priority-1-requirements are issued,
these may be allowed to affect ongoing construction, and in the change
management phase the requirements on the must- and wish-list may be
rearranged so that new and more important requirements can be
incorporated. The 70%–60% rule for the must- and wish-lists must,
however, still hold, implying that some less important requirements
 and Management of User Requirements in Market-Driven Software Development 65

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

66
should be postponed in order to incorporate the new, more important,
requirements.

2.4 Conclusion.

In this phase metrics are collected and a final report is written that
summarises the lessons learnt from this REPEAT enactment.

During 1998 and 1999, the number of unimplemented requirements
in the requirements database has increased, and the REPEAT process has
at times been in a state of congestion. Process simulation gives the
opportunity of investigating the behaviour of the process under different
circumstances. Results from simulations may provide quantitative
measures, which can act as decision support when allocating resources to
different activities in REPEAT.

3. The simulation model

Based on the REPEAT process model (Regnell et al., 1998), an initial
simulation model was created, including some major simplifications. The
model was then iteratively refined and specialized until it provided an
adequate degree of abstraction. As a last step an interview with personnel
at Telelogic gave the actual values for the model parameters, along with a
confirmation that the model was sufficiently accurate.

3.1 Structure of the model

The REPEAT process simulator is a queuing network model and is
implemented using discrete event simulation (Banks et al., 1996). The
simulated model is depicted in Figure 2. Requirements enter the
simulator from the environment. A requirement must pass the three
phases elicitation, selection and construction in order to be included in a
release. (The conclusion phase found in Figure 1 was not included in the
simulation model as it is independent from the rest of the phases and does
not affect congestion and throughput).

In the elicitation phase, incoming requirements are entered into the
system and given an initial priority. In the selection phase, the
requirements that are to be included in the release are selected, and in the
last phase the requirements are constructed. The phases are modelled as
Elicitation and Management of User Requirements in Market-Driven Software Development

3. The simulation model

Elicitation
processes with a queue of incoming requirements, and a pool of servers
which represent the employees. Each phase is thus modelled as a FIFO
queue with m servers. Requirements enter the system according to a
Poisson-process, and the elicitation phase is therefore an M/G/m queue,
while the two other phases are G/G/m queues.

In the elicitation phase, every requirement receives a priority. All
requirements having normal priority, i.e. priority 2, are transferred to the
selection phase within the current release. Priority 3 requirements are
postponed to the selection phase of the next release. Priority 1
requirements are moved to the selection phase of the previous release.

In the simulation model all releases have their own resources. That is,
when a release is instantiated in the model, a number of servers in each
phase are created. The servers in the selection phase are idle during
elicitation, waiting for the selection phase to start. The servers in the
construction phase are idle during elicitation and selection, while waiting
for the construction phase of the previous release to finish. The personnel
that are represented in the simulation model by the servers, are in reality
the same persons represented by the servers in the previous release. This is
a simple way of modelling that the same persons divide their time
between different activities.

During selection, the time each requirement will spend in construction
is estimated. A must-list and a wish-list is constructed according to the
description of the REPEAT process given above. Requirements that enter
either of these lists are transferred to the construction phase of the current
release. Requirements that are not selected for either of these lists are sent

Figure 2. Simulation model.

Previous
Release

Current
Release

Next
Release

Incoming
requirements Prio 1

Prio 3
Not
Selected Completed

Not

Elicit Select Construct

Elicit Select Construct

Elicit Select Construct

R
el

ea
se
 and Management of User Requirements in Market-Driven Software Development 67

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

68
to the selection phase of the next release, where they may or may not be
selected for construction.

When the servers start working they check if it is possible to perform
the job next-in-line within the deadline of the release. When the deadline
for the release approaches, some requirements may be left uncompleted
and sent to the selection phase of the next release. This occurs because
there is a parameter-controlled error in the estimation of the required
work, and because the wish-list includes more requirements than is
possible to construct during one release in order to get a better utilization
of the available resources.

All this means that a requirement may pass the selection phase several
times during its lifetime. A requirement requires serving time in every
phase it passes, which imply a certain amount of overhead when re-
routing a requirement to another release.

3.2 Parameter estimation

The simulator accepts a set of input parameters which specify the
simulated situation. These input parameters include the number of
requirements entering the process each day, the number of available
servers (employees) for each phase, and the average time spent on a
requirement in each phase (see further Table 2).

The actual values for the parameters are based on data from interviews
with an expert from Telelogic. The requirements are modelled to have an
exponentially distributed intensity of arrival, i.e. they arrive according to a
Poisson process. The distributions of the serving times in the various
phases can be modelled in a number of ways. In (Höst & Wohlin, 1997;
Höst & Wohlin, 1998) it is shown that a suitable way to model serving
times based on subjective estimates given by domain experts is to use
triangular distributions. Based on a triangular distribution, the
interviewed expert estimated the smallest possible value, the most likely
value, and largest possible value of the serving time for each phase. Data
from interviews also provided estimations of parameters regarding the
number of employees in each phase, the number of requirements of
different priorities, and the average estimation error that is made when
estimating the serving time in the construction phase.

The interviews also exhibited that if a requirement has been in one
selection phase, and later is sent to a selection phase in another release, it
requires only about a fifth of the time spent in the original phase.
Elicitation and Management of User Requirements in Market-Driven Software Development

3. The simulation model

Elicitation
Ta
bl

e
1.

 S
im

ul
at

io
n

pa
ra

m
et

er
sa .

a.
T

he
 u

ni
t

of
 p

ar
am

et
er

s
re

pr
es

en
ti

ng
 ti

m
e

is
 w

or
ki

ng
 d

ay
s.

Pa
ra

m
et

er
C

as
e

1
C

as
e

2
C

as
e

3
C

as
e

4

T
im

e
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
re

le
as

e
st

ar
t-

up
s

12
6

12
6

12
6

12
6

T
im

e
fr

om
 s

ta
rt

 o
f r

el
ea

se

to
 s

ta
rt

 o
f s

el
ec

ti
on

 p
ha

se
12

6
12

6
12

6
12

6

T
im

e
fr

om
 s

ta
rt

 o
f r

el
ea

se

to
 s

ta
rt

 o
f c

on
st

ru
ct

io
n

ph
as

e
16

8
16

8
16

8
16

8

Le
ng

th
 o

f c
on

st
ru

ct
io

n
ph

as
e

12
6

12
6

12
6

12
6

M
ea

n
ti

m
e

be
tw

ee
n

tw
o

co
ns

ec
ut

iv
e

re
qu

ir
em

en
ts

0.
33

0.
33

0.
33

1.
8

N
um

be
r

of
 s

er
ve

rs
 in

 t
he

 e
lic

ita
tio

n
ph

as
e

30
30

1
30

E
lic

it
at

io
n

tim
e

pe
r

re
qu

ir
em

en
tb

b.
T

he
se

 p
ar

am
et

er
s a

re
 d

ef
in

ed
 a

cc
or

di
ng

 to
 a

 tr
ia

ng
ul

ar
 d

is
tr

ib
ut

io
n

(l
ow

es
t p

os
si

bl
e

va
lu

e,
 m

os
t l

ik
el

y
va

lu
e,

 h
ig

he
st

 p
os

si
bl

e
va

lu
e)

 a
s d

es
cr

ib
ed

 in

Se
ct

io
n

3.
2.

(0
.0

10
, 0

.0
31

, 0
.0

62
)

(0
.0

10
, 0

.0
31

, 0
.0

62
)

(0
.0

10
, 0

.0
31

, 0
.0

62
)

(0
.0

10
, 0

.0
31

, 0
.0

62
)

N
um

be
r

of
 s

er
ve

rs
 in

 t
he

 s
el

ec
ti

on
 p

ha
se

30
30

16
30

Se
le

ct
io

n
ti

m
e

pe
r

re
qu

ir
em

en
tb

(1
, 2

, 1
0)

(1
, 2

, 1
0)

(1
, 2

, 1
0)

(1
, 2

, 1
0)

N
um

be
r

of
 s

er
ve

rs
 in

 t
he

 c
on

st
ru

ct
io

n
ph

as
e

30
30

16
5

30

C
on

st
ru

ct
io

n
ti

m
e

pe
r

re
qu

ir
em

en
tb

(1
, 4

5,
 9

1)
(1

, 4
5,

 9
1)

(1
, 4

5,
 9

1)
(1

, 4
5,

 9
1)

Fr
ac

tio
n

of
 r

eq
ui

re
m

en
ts

 o
f p

ri
or

it
y

1
0%

10
%

10
%

10
%

Fr
ac

tio
n

of
 r

eq
ui

re
m

en
ts

 o
f p

ri
or

it
y

3
0%

25
%

25
%

25
%

 and Management of User Requirements in Market-Driven Software Development 69

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

70
The interviews with the expert also concerned general experiences with
the REPEAT process. After five releases the requirements database
contained almost 2,000 requirements. For each of the five releases, about
75 requirements were implemented, which imply that the requirements
database contained about 1625 unimplemented requirements.

3.3 Discrepancies between simulator and process

There are two significant simplifications in the model. First of all, the
server model does not completely match the actual use of employees. In
reality there is a single pool of employees containing a number developers
working on a number of modules. The single pool of developers work in
all three phases (elicitation, selection and construction) for all releases.
The simulation model, however, has one pool of servers for every phase of
every release. To adjust this, each phase has a parameter indicating when it
starts, and the construction phase has a parameter indicating when it
finishes, i.e. the release deadline. The servers of each phase are idle when
the phase is inactive. This solution gives an adequate accuracy validated
by the interview results.

The second simplification is the way the must- and wish-lists are
constructed. The model just takes the first incoming requirements and
puts them into the must-list until it is full. Thereafter the wish-list is
filled, and late jobs are not selected. This means that priority 1
requirements rarely get selected, as they are sent to the previous release,
and arrive there late, when the lists are already full. This simplification
can be addressed by changing the simulation model so that requirements
are inserted into the lists in a way more similar to the real situation, e.g.
by inserting a new job into a random position in the list, whereby the last
jobs are pushed off the list. The random distribution can in turn be
dependent on the priority of the requirement, or other factors, such as
how old the requirement is. These possible enhancements are, however,
not implemented in the simulation model as the simulator is not used for
investigating the quality of the outcome, but for exploring timing,
capacity and throughput.

Another simplification regards the estimated construction effort. Data
from the interviews specify the distribution of the total time spent on
construction for each requirement. However, large requirements can in
reality be divided into several smaller requirements, which in turn can be
scheduled over many releases. Therefore, the triangular distribution of the
Elicitation and Management of User Requirements in Market-Driven Software Development

3. The simulation model

Elicitation
serving times in the construction phase was modified. The maximum
serving time was changed from the original 170 days to 91 days, and the
most common serving time was changed from 19 days to 45 days in order
to produce the same workload. Otherwise the largest jobs would never be
implemented in the simulation model.

Other simplifications include the fact that the simulator model never
rejects requirements, which is done to a small extent in the actual process.
However, requirements are removed so rarely in reality that we do not
believe that it affects the validity of the results very much.

In general, we believe that the identified simplifications have
insignificant impact on the principal results of the simulations.

3.4 Model implementation

The model was implemented as a discrete event simulation model in SDL
(ITU–T, 1999). A discrete event simulation model was chosen, because it
is a straightforward way of implementing models that represent networks
of queues. SDL was chosen because it is based on real-time processes and
it supports the creation of discrete event simulators. Another advantage of
choosing SDL is that the case tool that the modelled company develops
can be used to develop systems in SDL. In fact, the model is implemented
with the case tool developed by Telelogic. This means that almost all
people at the company understand the notation of the model. The
presented research represents the first attempt to model the REPEAT
process in a simulation model. In the future it would be possible to carry
out not only discrete event simulations, but also systems dynamics
simulations of the process.

After the model was implemented, a simple version was created by
making all serving times exponentially distributed. Special-case
parameters were used which enabled analytical validation of the simulator
through e.g. Little's theorem (King, 1990). This proved that the
simulator was implemented according to the queuing network model.
The complete simulator was then validated by comparing throughput and
congestion against data from the expert interviews. The simulator
matched the real number of requirements implemented per release, and
therefore also the real number of requirements waiting to be implemented
after five enactments of the REPEAT process.
 and Management of User Requirements in Market-Driven Software Development 71

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

72
4. Results

The results from simulations of the REPEAT process are based on a
number of executions of the simulator with various input parameter
settings in order to verify the simulation model and draw conclusions
from it. The simulation model can be used to analyse many different
characteristics of requirements management processes, and the simulation
results may act as a valuable decision support.

Four simulation cases are presented in order to illustrate the usage of
the simulator and to show the impact of process changes.

The first case is a baseline situation where no prioritization of
requirements are made, i.e. all requirements have priority 2. This case is
primarily used to verify the model and is presented and analysed to
facilitate comparison with the following cases. The second case introduces
prioritization and is based on the actual situation as determined by the
data from interviews. In the third and fourth case, changes to the
simulation parameters are introduced in order to investigate what amount
of increase in capacity or decrease in work load is needed to make the
process stable. These values have been found by observing the result for a
number of different values. The parameter values that are used in the
simulations are summarized in Table 2.

4.1 Case 1: No priorities

A baseline situation, to which other cases can be compared, is when every
elicited requirement is selected and subsequently constructed within the
same release, and all requirements have priority 2. In this case, no
requirements are re-routed between releases based on priority
(requirements are only re-routed when time constraints forces
requirements to be forwarded to the selection phase of the next release).

Figure 3 shows the total number of requirements in the selection
phases for a number of releases. The selection phases are shown for up to
five full releases, with the left-most curve corresponding to release 1 and
the subsequent curves corresponding to the following releases. Release 6
and 7 can thus be viewed in part.

The y–axis shows, for each release, the sum of requirements in the
queue and requirements currently being processed by the servers. From
the time when selection begins, there are always requirements to handle
and the servers are never idle. For example, in release 1 there are
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results

Elicitation
approximately 400 requirements waiting in the queue ready to be
analysed. Thus, from the time when selection begins the servers are
constantly busy until all requirements have been handled.

An important conclusion that can be made from the figure is that this
process is overloaded. In the fifth release there are approximately 1600
requirements waiting to be handled in the next selection phase and the
amount increases to the next release. There are approximately an
additional 250 requirements for each release.

There is no rejection of requirements in the simulation model. All
requirements entering the elicitation phase are kept in the system until
released. The requirements that the construction servers do not manage to
implement are forwarded to the next release. As the figure shows, the
number of requirements in the queue is constantly increasing. Rejecting
some requirements, such as duplicates or obsolete requirements, would
reduce the queue build up. From the interviews it is found that in reality
only about 5–10% of the total number of requirements are rejected. This
low rejection rate is not enough to make the process stable.

In release 2, a slight deflection at day 180 from the start of the
simulation can be noticed. This happens when requirements no longer are
forwarded from the previous release.

In release 1, the slope of the first half of the curve corresponds to that
of the arrival intensity. In the subsequent releases the slope of the curves,
after the deflections, also corresponds to the arrival intensity. We can
therefore draw the conclusion that the elicitation phase does not get

Figure 3. Case 1: No priorities. Number of requirements in the selection phases of releases
1–5 and parts of release 6 and 7.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N

0 100 200 300 400 500 600 700 800 t
 and Management of User Requirements in Market-Driven Software Development 73

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

74
overloaded; it is selection and construction that is in a state of congestion.
This conclusion can be verified by a separate analysis of the elicitation
phase.

Figure 4 shows the results from the simulation of the construction
phases of subsequent releases. As before, the graph shows releases 1
through 5 from left to right. The construction phase is situated later in
time and consequently we can only see a part of release 6.

This graph shows both the number of requirements in the queue
overlaid with the number of requirements currently being handled in the
servers. Focusing on one release, as shown magnified in Figure 5, it can be
seen that the queue builds up rather fast. The fast build-up of the queue
(105 requirements in about 30 days) can be derived from the selection
phase graph (Figure 3). By observing how many requirements that are
handled from the point when the selection phase begins and 30 days
ahead, it is clear that the decrease corresponds to the number of
requirements arriving to the construction phase during the same time
period.

The increase of the number of requirements in the construction queue
of release 1 abruptly stops at 105 requirements. The reason for this is that
when the total effort of the requirements transferred to the construction
phase equals the available time in the construction phase, no more
requirements arrive from the selection phase.

When construction begins there is a large drop from 105 requirements
in the queue to only 75 requirements. This is when all 30 available servers

Figure 4. Case 1: No priorities. Number of requirements in the construction phases of
releases 1–5.

0

20

40

60

80

100

120

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Queue

Server
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results

Elicitation
are occupied at once. Then, the servers are constantly busy until there are
no more work to do, continuously taking care of the requirements in the
construction queue.

It may be tempting to read off the graph that 105 requirements are
implemented in the first release. This is unfortunately not true. As it is
stated in Section 2, only about half of the wish-list will be implemented.
Since the needed effort is not equal for every requirement in the
construction phase, it is not possible to use the graph to calculate the
number of requirements that is actually implemented. For each release, a
certain percentage of the requirements arriving to the construction phase
will actually be implemented. The remaining requirements are sent to the
selection phase of the next release.

In Figures 4 and 5 it can be seen that when a succeeding release
receives requirements to the selection phase, the construction phase of the
current release has not yet finished and implementation is still
undertaken. When there are no more requirements to implement the
servers representing employees enter an idle state and are ready to get to
work in the next release. This can be seen in release 1 approximately after
day 260.

4.2 Case 2: Actual situation

Using the parameters determined from expert interviews (see Section 3.2)
the actual situation can be simulated. Prioritization is now introduced, as

Figure 5. Case 1: No priorities. Number of requirements in the construction phase of
release 1.

0

10

20
30

40

50

60

70

80
90

100

110

120

Nq, Ns

100 120 140 160 180 200 220 240 260 280 300 t

Server

Queue
 and Management of User Requirements in Market-Driven Software Development 75

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

76
explained in Section 2. This will result in some requirements being
transferred to the next release and a few requirements being sent to a
previous release still under development.

Figure 6 shows the selection phases of release 1 through 5 as before.
We can see that there is not much difference from the previous case. As
before, the selection phase is overloaded. This is because of the time
constraints in the construction phase, and because there is no rejection of
requirements. If the capacity is not enough to take care of all
requirements, priorities will not completely solve the situation. Priorities
will however make the organization focus on the most important
requirements.

The reason that no curve, from release 2 and onwards, start at zero
requirements requires an explanation. In the simulation model a
subsequent release and its queue is not started until it actually should be,
as shown in Figure 1. Thus, when the simulation of a release is started,
there are some requirements already waiting from a previous release. Here
the first part of the curve corresponding to the initial build-up of the
queue is not shown.

Since no conditions for the construction phase has been changed
compared to case 1, Figure 7, showing the construction phase, does not
differ much. About the same number of requirements, on average, are
implemented when we add prioritization. The analysis of the
construction phase made for case 1 is appropriate for this case as well.

Figure 6. Case 2: Actual Situation. Number of requirements in the selection phases of
releases 1–5.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N

0 100 200 300 400 500 600 700 800 t
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results

Elicitation
4.3 Case 3: Increased capacity

A first obvious change of the process in order to remove bottlenecks
would be just to reallocate resources or adding more people. This
alternative is simulated in order to ascertain what the impact would be
and to find the amount of resources needed (or the needed increase in
productivity) to reduce the bottlenecks.

Figure 8 shows the selection phases of 13 releases and Figure 9 shows
the construction phase of release 1 after increasing the number of servers
in these phases in order to make the process stable. Many releases are
shown in Figure 8 to support the assumption of stability. To make it
stable, 16 employees are required in the selection phase and as many as
165 persons in the construction phase. This means an increase in
construction capacity by a factor 165/30=5.5. Elicitation is not a
bottleneck, as it is enough with only one elicitation server (see Table 2).

It can be seen in Figure 9 that when the construction starts (day 168)
there is enough server capacity available to take care of every requirement
in the queue and additional ones arriving in the following 10 days.
However, the utilization of the resources in the construction phase is
lower than before.

Figure 7. Case 2: Actual Situation. Number of requirements in the construction phases of
releases 1–5.

0

20

40

60

80

100

120

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Server

Queue
 and Management of User Requirements in Market-Driven Software Development 77

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

78
4.4 Case 4: Decreased work load

Another approach to remove the state of congestion is to reduce the
number of requirements that arrive to the elicitation phase and thereby
reduce the number of requirements that are forwarded to the selection
phase.

In Figure 10, the impact of reducing the arrival intensity is shown.
Here the arrival intensity has been decreased from the value from reality
of 3 requirement a day to only 0.55 requirements a day. This means a
decrease in the rate of incoming requirements from 3 to 1/1.8=0.55,

Figure 8. Case 3: Number of requirements in the selection phases of releases 1–13.

Figure 9. Case 3: Number of requirements in the construction phase of release 1.

0

50

100

150

200

250

300

350

400

450

N

0 200 400 600 800 1000 1200 1400 1600 1800 t

0

20

40

60

80

100

120

140

160

180
Nq, Ns

100 125 150 175 200 225 250 275 300 t

Server

Queue
Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results

Elicitation
which corresponds to 0.55/3=18% of the actual value. This reduces the
maximum number of requirements in the selection phase to about 80
requirements, which is a notable decrease.

As Figure 11 shows, only about 80 requirements are received to the
construction phase for each release. However, now there are resources
enough to implement every requirement. The requirements in the
selection phase can all be forwarded to the construction phase and
implemented.

Figure 10. Case 4: Number of requirements in the selection phases of releases 1–5.

Figure 11. Case 4: Number of requirements in the construction phases of releases 1–5.

0

20

40

60

80

100
N

0 100 200 300 400 500 600 700 800 t

0

10

20

30

40

50

60

70

80

90

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Queue Server
 and Management of User Requirements in Market-Driven Software Development 79

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

80
5. Conclusions

This paper presents a study that shows how discrete event simulation can
be used in order to explore overload conditions of an industrial software
requirements management process for packaged software. The simulation
model is created based on a previous study of the process (Regnell et al.,
1998) and the simulation parameters are estimated based on interviews
with a process expert with in-depth knowledge of how the process
performed during the studied period of 1998–1999. The situation of
overload that has been observed in reality can also be observed when
executing the simulation model.

It can be concluded from the simulations that there are at least two
different ways of changing the process in order to avoid congestion:

• The capacity of the requirements management process can be
improved, either by increasing the number of employees or by
improving productivity. The simulations show that it is necessary to
increase the capacity of the construction phase by a factor 5.5 in
order to completely remove the bottlenecks.

• The workload on the requirements management process can be
decreased. The simulations show that it is necessary to decrease the
rate of issuing new requirements to 18% of the initial value. One
way of lowering the workload is through early prioritization (Karls-
son, Wohlin, & Regnell, 1998) and thereby rejecting requirements
that will not be implemented at an early stage in the process. Of
course, this is an area that needs further investigation, as it is always
difficult to remove issues early in a process. If the objective is to
remove requirements in order to lower the effort required in analy-
sis, then an analysis effort is required in order to know which
requirements to remove. Prioritization of requirements and release
planning in packaged software development is acknowledged to be
an important research area (Regnell, Höst, Natt och Dag, Bere-
mark, & Hjelm, 2000).

In conclusion, the presented simulations represent a feasible way of
analysing the investigated process. However, the simulation model can be
improved in a number of ways. One improvement regards a more realistic
modelling of the must- and wish-lists (see Sections 2-3). Another area of
further work is to make a more thorough analysis of the real process by
Elicitation and Management of User Requirements in Market-Driven Software Development

 Acknowledgements

Elicitation
interviewing more people representing more roles in the organization
about their opinions concerning both the parameter values of the model
and the validity of the simulation results.

It is also interesting to extend the simulation model by modelling the
servers as a single pool of resources where each resource (employee) has
certain competencies. This may lead to a more realistic simulation model,
where the same persons are involved in many tasks, and, as in reality, the
lack of a certain competency may be a bottleneck.

A promising benefit of the presented approach is the potential of
achieving validated decision support that can facilitate informed decisions
on improvements of software processes in general, and market-driven
requirements engineering processes in particular.

Acknowledgements

The authors would like to thank all people involved in the development
and investigation of REPEAT, in particular Per Beremark (Group Quality
Manager at Telelogic) without whom this work would not have been
possible. We would also like to thank Carina Andersson and Lena
Karlsson, both with the Dept. of Communication Systems, for providing
suggestions for improvements of the simulation model. The presented
research is partly funded by the National Board of Industrial and
Technical Development (NUTEK).
 and Management of User Requirements in Market-Driven Software Development 81

Exploring bottlenecks in market-driven requirements management processes with discrete event simulations

82
6. References
Banks, J., Carson, J. S., & Nelson, B. (1996). Discrete-Event System Simulation (2nd ed.).

Upper Saddle River, NJ: Prentice Hall.

Höst, M. & Wohlin, C. (1997). A Subjective Effort Estimation Experiment. Information
and Software Technology, 39, 755–762.

Höst, M., & Wohlin, C. (1998). An Experimental Study of Individual Subjective Effort
Estimations and Combinations of the Estimates. In B. Werner (Ed.), Proceedings of
20th International Conference on Software Engineering (pp. 332–339). Los Alamitos,
CA: IEEE Computer Society Press.

ITU–T Z.100–11/99. Specification and Description Language (SDL).

Karlsson, J., Wohlin, C., & Regnell, B. (1998, February). An Evaluation of Methods for
Prioritizing Software Requirements, Information and Software Technology, 39, 939–
947.

Kellner, M.I., Madachy, R.J., Raffo, D.M. (1999, April 15). Software Process Simulation
Modeling: Why? What? How? Journal of Systems and Software, 46, 91–105.

King, P. J. B. (1990). Computer and Communication Systems Performance Modelling. Lon-
don: Prentice-Hall.

Lubars, M., Potts, C., & Richter, C. (1993). A Review of the State of the Practice in
Requirements Modeling. In Proceedings of IEEE International Symposium on Require-
ments Engineering (pp. 2–14). Los Alamitos, CA: IEEE Computer Society Press.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software In Proceedings of IEEE International Symposium on
Requirements Engineering (pp. 128–130). Los Alamitos, CA: IEEE Computer Society
Press.

Pfahl, D., & Lebsanft, K. (2000). Using Simulation to Analyse the Impact of Software
Requirement Volatility on Project Performance. In K. D. Maxwell, R. J. Kusters, E. P.
W. M. van Veenendaal, & A. J. C. Cowderoy (Eds.) Project Control: The Human Fac-
tur, Proceedings of the combined 11th European Software Control and Metrics Conference
and the 3rd SCOPE conference on Software Product Quality (pp. 267–275). Maastricht,
Holland: Shaker Publishing.

Regnell, B., Beremark, P., & Eklundh, O. (1998). A Market-Driven Requirements Engi-
neering Process – Results from an Industrial Process Improvement Programme.
Requirements Engineering, 3, 121–129.
Elicitation and Management of User Requirements in Market-Driven Software Development

6. References

Elicitation
Regnell, B., Höst, M., Natt och Dag, J., Beremark, P. & Hjelm, T. (2000). Visualization
of Agreement and Satisfaction in Distributed Prioritization of Market Requirements,
In A. L. Opdahl, K. Pohl, & M. Rossi (Eds.), Proceedings of the Sixth International
Workshop on Requirements Engineering: Foundation for Software Quality. Essen, Ger-
many: Essener Informatik Beiträge.

Sawyer, P. (2000). Packaged Software: Challenges for RE. In Proceedings of Sixth Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality (pp.
137–142). Essen, Germany: Essener Informatik Beiträge.

Sawyer, P., Sommerville, I., & Kotonya, G. (1999). Improving Market-Driven RE Proc-
esses. In M. Oivo, & P. Kuvaja (Eds.), Proceedings of the International Conference on
Product Focused Software Process Improvement (pp. 222–236). Oulu, Finland: Technical
Research Centre of Finlad (VTT).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000).
Experimentation in Software Engineering – An Introduction. Norwell, MA: Kluwer.

Yeh, A. (1992). Requirements Engineering Support Technique (REQUEST) – A Market
Driven Requirements Management Process, In Proceedings of the Second Symposium on
Assessment of Quality Software Development Tools (pp. 211–223), Los Alamitos, CA:
IEEE Computer Society Press.
 and Management of User Requirements in Market-Driven Software Development 83

84
 Elicitation and Management of User Requirements in Market-Driven Software Development

II
PAPER II

An industrial case study of usability engineering in
market-driven packaged software development

Johan Natt och Dag, Björn Regnell, Ofelia S. Madsen, Aybüke Aurum

M. J. Smith, G. Salvendy, D. Harris & R. J. Koubek (Eds.), Proceedings of HCI
International: Vol. 1. Usability Evaluation and Interface Design: Cognitive Engineering,
Intelligent Agents and Virtual Reality (pp. 425-429). Mahwah, NJ: Erlbaum. 2001.
Elicitatio
Abstract

In market-driven software development it is crucial to produce the best
product as quickly as possible in order to reach customer satisfaction.
Requirements arrive at a high rate and the main focus tends to be on the
functional requirements. The functional requirements are important, but
their usefulness relies on their usability, which may be a rewarding
competitive means on its own. Existing methods help software
development companies to improve the usability of their product.
However, companies that have little experience in usability still find them
to be difficult to use, unreliable, and expensive. In this study we present
results and experiences on conducting two known usability evaluations,
using a questionnaire and a heuristic evaluation, at a large software
development company. We have found that the two methods
complement each other very well, the first giving scientific measures of
usability attributes, and the second revealing actual usability deficiencies
in the software. Although we did not use any usability experts, evaluations
performed by company employees produced valuable results. The
company, who had no prior experience in usability evaluation, found the
results both useful and meaningful. We can conclude that the evaluators
need a brief introduction on usability to receive even better results from
the heuristic evaluation, but this may not be required in the initial stages.
n and Management of User Requirements in Market-Driven Software Development 85

An industrial case study of usability engineering in market-driven packaged software development

86
Much more essential is the support from every level of management.
Usability engineering is cost effective and does not require many
resources. However, without direct management support, usability
engineering efforts will most likely be fruitless.

1. Introduction

When developing packaged software for a market place rather than
bespoke software for a specific customer, short time-to-market is very
important (Potts, 1995). Packaged software products are delivered in a
succession of releases and there is a strong focus on user satisfaction and
market share (Regnell, Beremark, & Eklundh, 1998). Thus, companies
tend to put their primary effort into inventing and implementing new
functional features that are expected to improve the product. Although
developers rely heavily on the number and the existence of new features,
usability is recognized as a competitive advantage on its own. Still after
many years of usability engineering research, there are many companies
that do not approach and explicitly improve usability. Although several
methods and techniques exist (Nielsen, 1993) and studies show their cost-
effectiveness (Bias & Mayhew, 1994), the seeming difficulty of
approaching usability prevents the success of companies. Since usability
evaluations of software products are necessary in order to increase user-
friendliness (Nielsen, 1993), there is a need to put even more focus on
usability evaluation methods that are easy to use and adopt and that give
fast and appropriate results.

In this paper we present an industrial case study that employs two
known usability evaluation methods (Natt och Dag & Madsen, 2000).
The study was conducted at Telelogic AB, a large software developing
company in Sweden, and the methods were used to evaluate their main
product, Telelogic Tau, a graphical software development tool aimed for
the telecommunications industry. It is shown that the two methods may
be used for continuous evaluation of usability without much effort or
resources and without any particular experience in usability engineering.
Elicitation and Management of User Requirements in Market-Driven Software Development

2. Research methodology

Elicitation
2. Research methodology

Several factors have been taken into consideration when choosing
evaluation methods. The methods must be easy to perform and give
understandable results that can be utilized in daily work without
extraordinary analysis. Furthermore, the methods need to be appropriate
for use over and over again, and it must be possible to extend the
proficiency in using these methods when experience in usability
evaluation within the company increases. If usability experience is
lacking, the methods must not be too sensitive to the evaluators’
performances.

To obtain satisfactory results that fulfil these requirements, we carefully
selected two known usability evaluation methods, a questionnaire and a
heuristic evaluation, which give quantitative and qualitative results
respectively.

2.1 The SUMI questionnaire

In order to obtain end users’ opinions about the software we used a
commercially available questionnaire, ‘The Software Usability
Measurement Inventory’ (SUMI) (Kirakowski & Corbett, 1996). SUMI
is a standard questionnaire specifically developed and validated to give an
accurate indication of which areas of usability should be improved. It is
tested in industry and mentioned in ISO–9241 as a method of measuring
user satisfaction. The questionnaire consists of 50 statements to which
each end user answers whether he or she agrees, disagrees or is undecided.
Only 12 end users are necessary to get adequate precision in the analysis,
but it is possible to use fewer users and still obtain useful results.

The questionnaire was sent to 90 selected end users in Europe.
Returned answers were sent to the questionnaire designers who
statistically analysed the answers and compared them with the results in a
continuously updated standardization database. The database contains
the answers from over 1000 SUMI questionnaires used in the evaluations
of a wide range of software products. The comparison results in the
measurement of five usability aspects:

• Efficiency – the degree to which users feel that the software assists
them in their work.

• Affect – the user’s general emotional reaction to the software.
 and Management of User Requirements in Market-Driven Software Development 87

An industrial case study of usability engineering in market-driven packaged software development

88
• Helpfulness – the degree to which the software is self-explanatory.
Adequacy of documentation.

• Control – the extent to which the users feel in control of the soft-
ware.

• Learnability – the ease with which the users feel that they have been
able to master the system.

Each aspect is represented by 10 statements in the questionnaire and
the raw scores for each of the aspects are converted into scales with a mean
value of 50 and a standard deviation of 10, with respect to the
standardization database. Also, a global scale is calculated that is
represented by the answers to 25 of the 50 statements that best reveal
global usability.

To identify the statements to which the answers differ significantly
from the average in the standardization database, item consensual analysis,
a feature developed by the questionnaire designers, is used. Through
comparison between the observed and expected answer patterns, the
individual usability problems may be more accurately determined.

2.2 The heuristic evaluation

To find usability problems specific to the evaluated software, we used a
slightly extended version of a standard heuristic evaluation (Nielsen,
1994). In the heuristic evaluation, usability experts go through the
interface and inspect the behaviour of the software. The behaviour is
compared to the meaning and purpose of a set of ten guidelines called
heuristics that focus on the central and most important aspects of
usability, such as ‘user control and freedom’ and ‘flexibility and efficiency
in use’. This enables the evaluator to systematically check the software for
usability problems against actual requirements in the specification and
given features in the product. The result is a list of identified usability
problems that may be used to improve the software.

In the market-driven development organization, there may be little
experience in usability and usability experts may not be available. As this
was the situation at Telelogic, we used experts on the software from
within the company. The number of evaluators needed may then increase,
as less usability problems may be found. Experts specializing only in
usability tend to find problems mainly related to how easy the system is to
Elicitation and Management of User Requirements in Market-Driven Software Development

3. Results

Elicitation
operate, whereas domain experts rather find problems related to how well
the system responds to its intended behaviour. In this sense the usability
and the domain experts complement each other, as domain experts,
according to Muller, Matheson, Page and Gallup (1998), bring
perspectives and knowledge not otherwise available. However, an
evaluation is more likely to be conducted in the first place if we initially
do not require the involvement of usability experts.

Twelve employees from within the company participated in the study.
They were presented with a set of scenarios comprised of different tasks to
perform. The method was extended in order to add increased structure to
the evaluation and to help the evaluators to stay focused on usability
issues. This was accomplished through the introduction of usability breaks
(UB). A UB is a position in the detailed scenario where the evaluator is
supposed to (1) stop the execution of the scenario and write down any
problems found up to that point together with the associated heuristics,
and (2) go through the ten heuristics to identify additional problems with
the tasks just performed.

The evaluators were advised to spend 1 uninterrupted hour on finding
relevant usability problems. In addition to generating a list of problems,
the evaluators were asked to write down during which scenario identified
problem were encountered, at what specific UB they were found, the
heuristics that apply, the severity of each problem (high, medium or low),
and a suggestion of a solution.

3. Results

3.1 The SUMI questionnaire

Of the 90 questionnaires sent to end users, 62 were properly filled out and
returned. The analysis of the returned answers revealed that the evaluated
software did not meet the appropriate standards on several aspects of
usability. In Figure 1 the medians for each of the six SUMI scales are
shown. The median corresponds to the middle value in a list where all the
individual scores given by each evaluator have been numerically sorted.
The figure also shows error bars for each scale, representing the upper and
lower 95% confidence limits. As seen in the figure, all but two of the six
SUMI scales are below average. The sub-scale affect is the only one that
lies above average, indicating that users feel slightly better about this
 and Management of User Requirements in Market-Driven Software Development 89

An industrial case study of usability engineering in market-driven packaged software development

90
product than they feel in general about software products. The
learnability sub-scale indicates that the software may be regarded to be as
easy or hard to learn as software products are in general.

The item consensual analysis (see Section 2.1) revealed 9 specific
statements that differed significantly from the standardization database
(99.99% certain). In Figure 2, the statement that was most likely to differ
from the expected is shown. This particular result reveals that the software
may not be very helpful. Of the remaining 8 statements that most
certainly differed from the standardization database, only 1 statement
generated a more positive response than what was expected. As many as
74% of the end users disagreed with the statement ‘if the software stops it
is not easy to restart it’, indicating that the software is easy to restart.
Further analysis of the statements revealed several reasons to the low
scores in Figure 1.

Figure 1. The SUMI satisfaction profile.

Figure 2. Item consensual analysis of the answers to statement 28.

35

40

45

50

55

60

Global Efficiency Affect Helpfulness Control Learnability

Sc
or

e

Statement 28: The software has helped me overcome any problems I
have had using it.

Agree Undecided Disagree

Profile 12 19 31

Expected 17.10 30.97 13.93

Chi Square 1.52 4.63 20.93
Elicitation and Management of User Requirements in Market-Driven Software Development

3. Results

Elicitation
3.2 The heuristic evaluation

The heuristic evaluation revealed 72 unique usability problems directly
related to the software application. A sample usability problem identified
by an evaluator is shown in Table 1. About 20% of the identified
problems were considered highly severe, about 65% somewhat severe, and
no more than 14% less severe. This indicates that usability needs
attention in order to increase the usefulness of the software, which is
confirmed by the results from the more reliable SUMI questionnaire
evaluation.

Solutions were given to most of the problems but for the 18 that had
none a solution may be inferred through the problem descriptions and
through the particular UBs in the scenario. The problem descriptions had
high enough quality to be used as input into the requirements process.

Figure 3 shows the number of times each of the ten heuristics were
used to classify the identified problems. The high use of flexibility and
efficiency in use indicates that users may get frustrated when using the
software. Further analysis of the particular problems related to this
heuristic and at which UBs the problems were encountered, reveals that
there are many tasks that are bothersome to complete due to non-intuitive
functionality and a non-supportive graphical interface.

The results in Figure 3 are confirmed by the results from the SUMI
questionnaire evaluation. Efficiency is identified as a problematic area by
both methods and helpfulness is related to recognition rather than recall
and user control and freedom. This and the fact that experts on the
software were used as evaluators indicate that the heuristic evaluation
pinpoints relevant usability problems.

Table 1. Sample usability problem found by an evaluator.

Problem How to change a unidirectional channel to a bidirectional channel

Scenario A

UB 1.3

Heuristic Flexibility and efficiency in use

Severity High

Solution Add a channel symbol to the symbol menu and then add symbols
for unidirectional (one in each direction) and bidirectional.
 and Management of User Requirements in Market-Driven Software Development 91

An industrial case study of usability engineering in market-driven packaged software development

92
4. Conclusions

In this paper we have presented the results of using two known usability
evaluation methods at a market-driven software development company
inexperienced in usability. We have found that although experience on
usability is lacking, the two methods are easy to use and do not require
many resources. The questionnaire is available at a low cost and system
experts can easily develop the heuristic evaluation scenarios. Furthermore,
the two methods complement each other very well. Both kinds of result
were found to be usable and meaningful by the developing company and
the generated problem list was particularly welcomed. The results gave
them insight into the specific areas that needed improvement and helped
them to appreciate the issues to put their effort into.

The selection of evaluators was the most time-consuming task. Mainly,
this was because there was little support for usability issues. There was a
noteworthy interest from the development department, but we have
found that management support on every level in the organization is
crucial to effectively get results. Without management support it is not
very likely that the results will be used in further development at all. Also,
a short 30-minute introduction to the concept of usability will most likely
motivate the evaluators to perform even better and be more focused on
usability issues in particular.

The initial drawbacks were nevertheless highly compensated by the
low cost and the quick and useful results. The estimated costs of applying

Figure 3. The number of heuristics used to classify the 72 identified usability problems.

Flexibility and efficiency in use

Recognition rather than recall

User control and freedom

Error prevention

Consistency and standards

Aesthetic and minimalistic design

Visibility of system status

Help users recognize, diagnose, and recover from errors

Match between system and real world

Help and documentation

Frequency
0 5 10 15 20 25 30 35 40
Elicitation and Management of User Requirements in Market-Driven Software Development

 Acknowledgements

Elicitation
the methods are shown in Table 2 (Melchior, Bösser, Meder, Koch, &
Schnitzler, 1995).

Currently, we are applying a follow-up study to investigate precisely
how the generated problem lists have been used in succeeding releases,
what impact on software usability they have had, and to what extent the
usability has increased.

Acknowledgements

This work is partly funded by the National Board of Industrial and
Technical Development (NUTEK), Sweden, within the REMARKS
project (Requirements Engineering for Market-Driven Software
Development) grant 1K1P–97–09690.

Table 2. Estimation of cost of applying the two usability evaluation methods.

Method Heuristic Evaluation SUMI Questionnaire

C
os

t
(i

n
m

an
-d

ay
s)

Small 2 1

Medium 4 3

Extensive 4 3

Training 1 2

Material None US$500

Reliability Medium High
 and Management of User Requirements in Market-Driven Software Development 93

An industrial case study of usability engineering in market-driven packaged software development

94
5. References
Bias, R. G., & Mayhew, D. J. (1994). Cost-justifying usability. Boston: Academic Press.

Kirakowski, J., & Corbett M. (1996). The software usability measurement inventory:
Background and usage. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. L.
McClelland (Eds.), Usability Evaluation in Industry (pp. 169–177). London: Taylor &
Francis.

Melchior, E.-M., Bösser, T., Meder, S., Koch, A., & Schnitzler, F. (1995). Usability
Study – Handbook for practical usability engineering in IE projects (Report. No.
ELPUB 105 10107). Cork, Ireland: University College Cork, The BASELINE Con-
sortium.

Muller, M. J., Matheson, L. Page, C., & Gallup, R. (1998). Participatory Heuristic Eval-
uation. Interactions, 5(5), 13–18.

Natt och Dag, J., & Madsen, O. S. (2000). An Industrial Case Study of Usability Evalua-
tion (Master’s Thesis. Report No. CODEN:LUTEDEX (TETS–5390)/1–190/
(2000)&local 8). Lund: Lund University: Department of Communication Systems.

Nielsen, J. (1993). Usability Engineering. San Diego, CA: Morgan Kaufmann.

Nielsen, J. (1994). Heuristic Evaluation. J. Nielsen, & R. L. Mack (Eds.), Usability
Inspection Methods (pp. 25–61). New York: John Wiley & Sons.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software. In Proceedings of the Second IEEE International
Symposium on Requirements Engineering (pp. 128–130). Los Alamitos, CA: IEEE
Computer Society Press.

Regnell, B. Beremark, P., & Eklund, O. (1998). A Market-driven Requirements Engi-
neering Process – Results from an Industrial Process Improvement Programme.
Requirements Engineering, 3, 121–129.
Elicitation and Management of User Requirements in Market-Driven Software Development

Elicitation and Management of User Requirements in Market-Driven Software Development 95

96 Elicitation and Management of User Requirements in Market-Driven Software Development

II
PAPER III

An industrial case study on distributed prioritisation
in market-driven requirements engineering for
packaged software

Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark, Thomas Hjelm

Requirements Engineering, 6, 51–62. Springer-Verlag, 2001.

I

Elicitatio
Abstract

When developing packaged software which is sold “off-the-shelf ” on a
world-wide market place, it is essential to collect needs and opportunities
from different market segments and use this information in the
prioritization of requirements for the next software release. This paper
presents an industrial case study where a distributed prioritization process
is proposed, observed and evaluated. The stakeholders in the
requirements prioritization process include marketing offices distributed
around the world. A major objective of the distributed prioritization is to
gather and highlight the differences and similarities in the requirement
priorities of the different market segments. The evaluation through
questionnaires shows that the stakeholders found the process useful. The
paper also presents novel approaches to visualize the priority distribution
among stakeholders, together with measures on disagreement and
satisfaction. Product management found the proposed charts valuable as
decision support when selecting requirements for the next release, as they
revealed unforeseen differences among stakeholder priorities. Conclusions
on stakeholder tactics are provided and issues of further research are
identified including ways of addressing identified challenges.
n and Management of User Requirements in Market-Driven Software Development 97

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

98
1. Introduction

Requirements Engineering (RE) research is beginning to address the
specific issues in market-driven RE, where requirements are invented for
packaged software offered “off-the-shelf ” to a mass market (Potts, 1995;
Lubars, Potts, & Richter, 1993). This situation is in many respects
different from the contract situation, where a developer interacts with a
specific customer to elicit requirements for a bespoke system. A
description of the specific challenges of market-driven RE can be found in
(Potts, 1995; Lubars, Potts, & Richter, 1993; Sawyer, Sommerville, &
Kotonya, 1999; Kamsties, Hörmann, & Schlich, 1998). As pointed out
by Sawyer (2000), two major differences between bespoke software
development and market-driven software development regards the
characteristics of stakeholding and schedule constraints. The developer
decides about the requirements and selects the stakeholder representatives.
The developer bears all financial risks and there is no single customer who
is the principal stakeholder as with bespoke software development. There
is a major pressure on time-to-market and the software product is often
offered to a market through recurrent releases, requiring careful release
planning and requirements prioritization. Such challenges pose special
demands on the RE process. Examples of market-driven RE processes,
which try to address these special demands, can be found in (Regnell,
Beremark, & Eklund, 1998; Deifel, 1999; Yeh, 1992; Carmel & Becker,
1995).

This paper focuses on the important challenge within market-driven
RE of how to combine information from different market segments and
make a trade-off between their priorities. In particular, the paper focuses
on the visualization of disagreement between stakeholders and differences
in the satisfaction with a certain priority decision. A number of charts are
proposed, which are intended to be used as decision support when
determining what to implement in the coming release of a software
package.

The presented work is conducted in the context of an industrial case
study, which is a follow-up on the study reported in (Regnell, Beremark,
& Eklund, 1998). One of the main challenges identified in (Regnell,
Beremark, & Eklund, 1998) was to relate the continuous prioritization of
incoming requirements to a long-term product strategy for a range of
market segments. An important issue here is how to incorporate the
expertise from marketing departments and the visions of top-level
Elicitation and Management of User Requirements in Market-Driven Software Development

2. A distributed prioritization process

Elicitation
management in the prioritization process. This paper focuses on how to
elevate a prioritization strategy, such as (Karlsson & Ryan, 1997) or
(Büyükekici, Deifel, Jacobi, & Sandner, 1999), by making differences in
the priorities of the various market segments explicit.

The presented case study is conducted as part of an improvement
program for a specific industrial RE process for packaged software, called
REPEAT (Requirements Engineering Process at Telelogic), which is
enacted by the Swedish CASE-tool vendor Telelogic AB; a company with
450 employees (January 2000), more than 7000 users world-wide, and a
revenue for 1999 of 318 million SEK (increase from 178 million SEK,
1998). REPEAT is used in-house at Telelogic for eliciting, selecting and
managing requirements on a product family called Telelogic Tau; a
software development tool package for real-time systems, used by many of
the world’s largest telecom systems providers in their software
development. Telelogic Tau supports standardized graphical languages,
such as SDL, MSC, TTCN, and UML, and provides code generators for
integration with several real-time operating systems (for further
information, see www.telelogic.com).

The paper is structured as follows. Section 2 describes the process used
within the presented case study for making distributed requirements
prioritization in a world-wide organization. The planning and operation
of the case study is reported in Section 3. The main findings from the
questionnaire-based evaluation of the distributed prioritization case study
is summarized in Section 4, together with a description of the
visualization charts for supporting the selection of requirements. Section
5 provides a discussion on the findings and identifies issues of further
research.

2. A distributed prioritization process

When selling packaged software, the potential market segments may be
spread worldwide. This calls for a distributed marketing organization
with close relations to targeted customers. The organization, in which the
presented case study has been conducted, is depicted in Figure 1. The
Product Strategy Team (PST) is responsible for making strategic decisions
and communicates with a number of Market Operations (MOs) for
gathering information and promoting strategies. The PST also
communicates with Customer Support and Product Development.
 and Management of User Requirements in Market-Driven Software Development 99

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

10
At the time of writing there are 8 Market Operations representing 6
geographically segmented markets in Northern America, Germany,
France, United Kingdom, Japan, Emerging Markets, and also 2 markets
segmented by key corporations in the telecom industry. The centralized
Customer Support department has valuable information regarding what
customers desire based on support issues. Similarly, the centralized
Product Development department has valuable information on where
technology is heading. Hence, there are in total 10 stakeholders from
which the PST gathers information on requirements priorities, before
making strategic decisions regarding products. These strategies are applied
in every-day requirements decisions, made by the Requirements
Management Group (More information on the role of this group can be
found in (Regnell, Beremark, & Eklund, 1998)).

In the efforts of further improving RE at Telelogic, a baseline sub-
process for strategic prioritization of high-level requirements was
formulated where each stakeholder can contribute with their particular
priorities. This process is the object of the presented pilot case study
which started in October 1999 (see further Section 3). The sequencing of
tasks in the process is illustrated in Figure 2.

Step 1. The PST starts the process by making a candidate list of strate-
gic high-level requirements. The requirements on the candi-
date list are divided in two abstraction levels. At the high level,
the items are feature groups, and at the next level the items are
individual features.

Figure 1. The Product Strategy Team communicates with a number of stakeholders
representing valuable information sources on market opportunities, user
expectations, and technology trends.

Product Strategy Team

MO Japan

MO UK

MO Northern America

MO Germany MO France

MO Nokia MO Ericsson

MO Emerging Markets

Product

Customer

Development

Support
0 Elicitation and Management of User Requirements in Market-Driven Software Development

2. A distributed prioritization process

Elicitation
Step 2. The candidate list is distributed to the different stakeholder
around the world. Each stakeholder in parallel makes a priori-
tization of the requirements on the candidate list. It is also pos-
sible for each stakeholder to add new features or feature groups
to the list.

Step 3. Based on the separate priorities of each stakeholder, the PST
decides on a combined list including an aggregation of the
individual priorities.

Step 4. The decision is communicated to all stakeholders.

Step 5. The stakeholders give feedback on the impact of the decision to
the PST. If the PST finds it necessary, another iteration may be
started. Otherwise, the process results in a decision on high-
level requirements priorities for the next release. This list is
then used as a guidance when making trade-offs between value
and cost of more detailed requirements (see Regnell, Bere-
mark, & Eklund, 1998) for further description on the use of
must- and wish-lists).

When the PST aggregates the priorities of the individual stakeholders
into a combined decision, there are a number of criteria for adjusting the
influence of each stakeholder. This aggregation can be carried out by
weighting the market segments based on one or several weighting criteria,
for example:

Figure 2. The Product Strategy Team communicates with a number of stakeholders
representing valuable information sources on market opportunities, user
expectations, and technology trends.

1. PST makes candidate list of

3.PST combines all priorities

4. PST communicates the5. All stakeholders give

?

strategic high-level requriements

and decides on one resulting
list of priorities

!!!

decision to all stakeholdersfeedback on the result

!
!

!
! !

!2.Each stakeholder
makes prioritization

Ready
?

Iterate if necessary

!!!
Resulting high-level requirements priorities
for the next release
 and Management of User Requirements in Market-Driven Software Development 101

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

10
• revenue last release

• profit last release

• number of sold licenses last release

• predictions of the above criteria for the coming release

• number of contracts lost to competitors

• number of potential customers with nil licenses to date

• size of total market segment.

Which weighting criteria to use depend on which general strategy that
the top-level management perceives best fit with the current market phase
(Moore, 1991).

3. Case study planning and operation

During the summer of 1999, the case study was planned with the
objective of obtaining feedback on the distributed prioritization process
shown in Figure 2. The case study was conducted during the fall of 1999,
and comprised one iteration of the process.

First, the PST decided on a list of requirements. The requirements
were represented on two levels of abstraction. The lower level consisted of
features, which in turn were grouped into high-level feature groups. This
grouping was natural, according to the product manager, as there were
related feature requirements which easily formed coherent groups. In this
study there were 17 feature groups (denoted A-Q in the analysis). The
feature groups A-P each consist of up to 10 closely related features as
shown in Table 1. Feature group Q consists of remaining features with no
natural relation to other features. Feature groups B and G contained no
specified features, and were only prioritized on the group level. In total
there were 58 features. The total number of objects given to stakeholders
for prioritization was thus 17+58=75, as the stakeholders were asked to
prioritize both the feature groups and the features.

Each feature group and each feature were represented by a short but
informative name together with a natural language description
comprising a couple of sentences. Examples of requirements at feature
group level were ‘External tool integration’ and ‘Support for deployment
and partitioning on target level’. The former feature group included
2 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results from questionnaires

Elicitation
features such as ‘Integrate SDL Suite with DOORS’ and ‘Improved
integration with Clearcase’2.

All requirements were described in a spreadsheet and sent out via e-
mail to the 10 stakeholders. Each stakeholder made two prioritizations:
one for the feature groups and one for the individual features. Each
prioritization was carried out through the distribution of a pre-defined
amount of fictitious money ($100,000) over the items to be prioritized.
During the prioritization, the stakeholders were given the possibility to
add new items, both feature groups (denoted group Z in the analysis) and
features.

Each stakeholder was represented by a number of persons, ranging
from one to six. Each group of representatives delivered one set of
priorities for the 17+1 feature groups A-Z and one set of priorities for the
58 (plus added) features. These priorities represent the stakeholder
representatives’ agreed upon views on the importance of the requirements.

After the individual stakeholder prioritization, a questionnaire was sent
out to each stakeholder, with the objective of receiving feedback on the
distributed prioritization process. The results from the analysis of the
questionnaire answers are summarized in Section 4. The outcome of the
prioritization is presented in Section 5, together with a number of charts
for visualizing the data from distributed prioritization.

4. Results from questionnaires

We received responses from 8 participants (1 response each from 6
stakeholders and 2 responses from 1 stakeholder). The questions and
answers can be found in Table 2. Some stakeholders gave additional
information to questions number 10, 14, and 16. This additional

Table 1. Number of features per feature group.

Feature
group

A B C D E F G H I J K L M N O P Q Total

Number of
features

10 0 4 2 3 4 0 2 2 3 2 6 4 7 2 4 3 58

2. The requirements in this study are strictly confidential, but the few carefully selected examples
above were allowed to be revealed in order to give a flavour of their abstraction level, as long as
they cannot be explicitly related to the anonymous data given in the paper.
 and Management of User Requirements in Market-Driven Software Development 103

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

10
information, together with an interpretation of the results, is presented in
the following.

The first questions were aimed at relating the time spent on the
prioritization to the other answers. Unfortunately, there seem to have
been different interpretations of the questions, which makes the answers
to questions 2 and 4 unreliable. As a result we can not draw any
conclusions from questions 3 and 5 either.

As indicated by the answers to question 15 and question 17, the
stakeholders seem to have good confidence in the usefulness of distributed
prioritization of requirements using the selected method. One quarter of
the stakeholders thought the distributed prioritization was very useful.
The rest of the stakeholders though it was rather useful.

According to the answers to questions 6 and 7, the stakeholders also
thought that it was easy or very easy to understand what to do and not
difficult at all to carry out the prioritization. The answers to question 12
possibly indicate that there were some difficulties interpreting the
requirements description, although most stakeholders did not come up
against any problems. Also, the answers to question 13 show that the
stakeholders were not very confident that the other stakeholders would
have the same interpretation of the requirements. The quality of
requirements descriptions may influence the participants’ opinion about
the method. The requirements descriptions can, however, be improved
regardless of the method used and possibly improve confidence in the
interpretation.

The answers to question 8 also support the usefulness and simplicity of
the method. The stakeholders found that the result closely reflected their
“gut feeling” of what was important. This positive outcome naturally
influences the opinion of the method but it is also important in order to
avoid further iteration in the prioritization process.

All the stakeholders used the same order of prioritization, starting with
the high-level requirements and then proceeding with the low-level
requirements. This is not very surprising, as the method description
indirectly suggested this order. The majority of the stakeholders also used
the same strategy when distributing the money and started with the
requirements they found most important. Only one stakeholder started
from the top of the list. The rest of the stakeholders used variants of the
“most important” strategy. Stakeholder number 8 emphasized that they
started with the requirements that were important for the whole
company, not only for them. Another stakeholder used a simple algorithm
4 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results from questionnaires

Elicitation
*
A

dd
iti

on
al

 in
fo

rm
at

io
n

on
 m

ar
ke

d
nu

m
be

rs
 c

an
 b

e
fo

un
d

in
 th

e
te

xt
.

-
T

he
 d

as
h

in
di

ca
te

s
th

at
 n

o
an

sw
er

 w
as

 g
iv

en
.

Ta
bl

e
2.

 T
he

 r
es

ul
ts

 o
f t

he
 q

ue
st

io
nn

ai
re

 u
se

d
to

 e
va

lu
at

e
th

e
pr

io
ri

ti
za

ti
on

 m
et

ho
d.

Q
ue

st
io

n
A

ns
w

er
fo

rm
at

1
2

3
4

5
6

7
8

1
N

um
be

r
of

pe
op

le
in

vo
lv

ed
in

pr
io

ri
ti

za
ti

on
C

ou
nt

1
1

4
6

1
5

2
6

2
T

im
e

sp
en

to
n

hi
gh

-l
ev

el
re

qu
ir

em
en

ts
pr

io
ri

ti
za

ti
on

P
er

so
n

m
in

ut
es

10
60

11
0

30
0

30
60

18
0

18
0

3
W

as
th

e
ti

m
e

sp
en

te
no

ug
h?

1 –
M

or
e

th
an

en
ou

gh
2–

E
no

ug
h

3–
To

o
sh

or
t

2
2

2
3

3
2

2
2

4
T

im
e

sp
en

to
n

lo
w

-l
ev

el
re

qu
ir

em
en

ts
pr

io
ri

ti
za

ti
on

P
er

so
n

m
in

ut
es

20
60

20
0

30
30

20
80

54
0

5
W

as
th

e
ti

m
e

sp
en

te
no

ug
h?

1 –
M

or
e

th
an

en
ou

gh
2–

E
no

ug
h

3–
To

o
sh

or
t

2
2

3
3

3
-

2
2

6
H

ow
ea

sy
w

as
it

to
un

de
rs

ta
nd

w
ha

tt
o

do
ba

se
d

on
th

e
m

et
ho

d
de

sc
ri

pt
io

n?
1 –

V
er

y
E

as
y

2–
E

as
y

3 –
N

ei
th

er
ea

sy
no

r
di

ff
ic

ul
t

4–
D

if
fi

cu
lt

5–
V

er
y

di
ff

ic
ul

t

2
1

2
1

2
1

2
2

7
H

ow
ea

sy
w

as
it

to
ca

rr
y

ou
tt

he
pr

io
ri

ti
za

ti
on

of
re

qu
ir

em
en

ts
?

1 –
V

er
y

E
as

y
2–

E
as

y
3 –

N
ei

th
er

ea
sy

no
r

di
ff

ic
ul

t
4–

D
if

fi
cu

lt
5–

V
er

y
di

ff
ic

ul
t

3
2

3
3

2
2

2
2

8
W

he
n

fi
ni

sh
ed

w
it

h
pr

io
ri

ti
za

ti
on

,d
id

in
ve

st
ed

m
on

ey
re

fl
ec

tt
he

“g
ut

fe
el

in
g”

of
w

ha
tw

as
im

po
r-

ta
nt

?

1 –
T

he
re

su
lt

w
as

ex
ac

tl
y

co
rr

ec
t

2–
T

he
re

su
lt

w
as

al
m

os
tc

or
re

ct
3 –

T
he

re
su

lt
w

as
no

tv
er

y
co

r-
re

ct

2
2

2
2

1
2

2
-

 and Management of User Requirements in Market-Driven Software Development 105

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

10
*
A

dd
iti

on
al

 in
fo

rm
at

io
n

on
 m

ar
ke

d
nu

m
be

rs
 c

an
 b

e
fo

un
d

in
 th

e
te

xt
.

-
T

he
 d

as
h

in
di

ca
te

s
th

at
 n

o
an

sw
er

 w
as

 g
iv

en
.

Ta
bl

e
2.

 (
co

nt
d.

)
T

he
 r

es
ul

ts
 o

f t
he

 q
ue

st
io

nn
ai

re
 u

se
d

to
 e

va
lu

at
e

th
e

pr
io

ri
ti

za
tio

n
m

et
ho

d.

Q
ue

st
io

n
A

ns
w

er
fo

rm
at

1
2

3
4

5
6

7
8

9
O

rd
er

of
pr

io
ri

ti
za

ti
on

1 –
H

ig
h-

le
ve

l,
th

en
lo

w
-l

ev
el

2–
L

ow
-l

ev
el

,t
he

n
hi

gh
-l

ev
el

3–
It

er
at

ed
be

tw
ee

n
le

ve
ls

1
1

1
1

1
1

1
1

10
St

ra
te

gy
w

he
n

di
st

ri
bu

ti
ng

th
e

m
on

ey
1–

St
ar

te
d

w
it

h
th

e
im

po
rt

an
t

2–
St

ar
te

d
fr

om
to

p
of

li
st

3 –
O

th
er

1
3*

2
1

1
1

1
3*

11
B

es
tw

ay
to

di
st

ri
bu

te
th

e
m

on
ey

?
1–

C
on

si
de

r
al

ll
ow

-l
ev

el
re

qu
ir

em
en

ts
as

a
w

ho
le

an
d

di
s-

tr
ib

ut
e

on
e

su
m

of
m

on
ey

on
al

l
of

th
em

2 –
H

av
e

on
e

su
m

of
m

on
ey

fo
r

ea
ch

gr
ou

p,
so

th
at

w
e

ca
n

co
n-

si
de

r
th

em
se

pa
ra

te
ly

3–
E

qu
al

ly
go

od
to

di
st

ri
bu

te
m

on
ey

on
al

lo
r

pe
r

gr
ou

p
4–

D
on

’t
kn

ow

1
4

1
4

2
2

2
2

12
H

ow
ea

sy
w

as
it

to
in

te
rp

re
tt

he
re

qu
ir

em
en

ts
de

sc
ri

p-
ti

on
s?

1–
V

er
y

E
as

y
2–

E
as

y
3 –

N
ei

th
er

ea
sy

no
r

di
ff

ic
ul

t
4–

D
if

fi
cu

lt
5–

V
er

y
di

ff
ic

ul
t

2
2

3
2

2
2

4
2

13
D

o
yo

u
th

in
k

yo
u

ha
ve

th
e

sa
m

e
in

te
rp

re
ta

ti
on

of
re

qu
ir

em
en

ts
as

ot
he

rs
?

1 –
E

xa
ct

ly
2–

A
lm

os
te

xa
ct

ly
3 –

P
ar

tl
y

th
e

sa
m

e
4–

N
ot

ve
ry

si
m

il
ar

5–
C

om
pl

et
el

y
di

ff
er

en
t

2
4

3
2

3
2

3
2

6 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Results from questionnaires

Elicitation
*
A

dd
iti

on
al

 in
fo

rm
at

io
n

on
 m

ar
ke

d
nu

m
be

rs
 c

an
 b

e
fo

un
d

in
 th

e
te

xt
.

–
T

he
 d

as
h

in
di

ca
te

s
th

at
 n

o
an

sw
er

 w
as

 g
iv

en
.

Ta
bl

e
2.

 (
co

nt
d.

)
T

he
 r

es
ul

ts
 o

f t
he

 q
ue

st
io

nn
ai

re
 u

se
d

to
 e

va
lu

at
e

th
e

pr
io

ri
ti

za
tio

n
m

et
ho

d.

Q
ue

st
io

n
A

ns
w

er
fo

rm
at

1
2

3
4

5
6

7
8

14
M

os
ti

nf
lu

en
ti

al
cr

it
er

io
n/

cr
it

er
ia

w
he

n
de

ci
di

ng
w

ha
t

w
as

im
po

rt
an

t
1–

In
cr

ea
si

ng
sa

le
s

2 –
In

cr
ea

si
ng

pr
of

it
3–

Fi
nd

in
g

ne
w

cu
st

om
er

s
4–

R
ed

uc
in

g
su

pp
or

te
ff

or
ts

5 –
B

ea
ti

ng
co

m
pe

ti
to

rs
6–

O
th

er

1 3 4

5 6* 3

4 6*
1

1
1 5 4

3 1 6*

1 2 4

15
U

se
fu

ln
es

s
of

th
e

m
et

ho
d

w
it

h
m

on
op

ol
y

m
on

ey
1 –

V
er

y
us

ef
ul

2–
R

at
he

r
us

ef
ul

3–
N

ot
us

ef
ul

4 –
W

as
te

of
ti

m
e

1
2

2
2

1
1

2
2

16
Is

th
e

pr
io

ri
ty

in
fo

rm
at

io
n

yo
u

pr
ov

id
e

en
ou

gh
,o

r
sh

ou
ld

yo
u

ha
ve

ha
d

op
po

rt
un

it
y

to
pr

ov
id

e
m

or
e?

1–
T

he
m

et
ho

d
co

ll
ec

ts
ne

ce
ss

ar
y

in
fo

rm
at

io
n

fr
om

us
2 –

It
is

no
te

no
ug

h.
W

e
w

an
tt

o
pr

ov
id

e
ad

di
ti

on
al

in
fo

rm
at

io
n

2*
1

2*
1

1
1

2*
2*

17
U

se
fu

ln
es

s
of

pr
io

ri
ti

za
ti

on
in

ge
ne

ra
l,

by
co

ll
ec

ti
ng

in
fo

rm
at

io
n

fr
om

di
ff

er
en

ts
ou

rc
es

1 –
V

er
y

us
ef

ul
2–

R
at

he
r

us
ef

ul
3 –

N
ot

us
ef

ul
4–

W
as

te
of

ti
m

e

1
2

2
2

1
2

2
2

18
A

gr
ee

m
en

tw
it

h
th

e
re

su
lt

in
g

li
st

of
pr

io
ri

ti
es

m
ad

e
by

th
e

pr
od

uc
tm

an
ag

er
1 –

A
gr

ee
d

co
m

pl
et

el
y

2–
A

gr
ee

d
to

m
os

to
f

it
3–

A
gr

ee
d

to
so

m
e

of
it

4 –
D

is
ag

re
ed

in
m

os
tc

as
es

5–
D

id
no

ta
gr

ee
at

al
l

1
2

2
3

2
2

3
3

 and Management of User Requirements in Market-Driven Software Development 107

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

10
to distribute the money and started investing $N on the most important
requirements. Then, the stakeholder invested $N/2 on the next important
ones, $N/4 on the next important ones after that, and so on until all
wanted investments were made. N was then adjusted so that the sum
became $100,000.

The answers to question 14 reveal the most influential criteria used by
the stakeholders when deciding what was important. We can see that
increasing sales was a highly influential criterion for most of the
stakeholders. Other important criteria were to find new customers, to
reduce support effort, and to beat competitors. Stakeholder 2 provided
other criteria and stated that using company skills to the best and
technology push was rather important. Stakeholder 3 thought it was
important to create complete functions and a truly usable product.
Stakeholder 7 wanted to satisfy a key customer.

In this study, the stakeholders were asked to distribute a total of
$100,000 on all requirements across groups. As question 11 suggests,
another way would be to give $100,000 for each group of low-level
requirements and distribute them only within the group. This second
suggested way to distribute the money was supported by half of the
stakeholders, although they had not tried it. Only two, as the answers
would indicate, were convinced that the used distribution method was the
best. The rest had difficulties to decide which was the best approach.

The priority information that the method collected was enough for
half of the stakeholders. The other half wanted to provide additional
priority information and brought up several interesting and important
aspects. Stakeholder 1 though it was necessary to discuss the impact of
new features: if they open new markets, increase sales to existing
customers, and keep existing customers pleased. Stakeholder 3 found that
“after the collection of requirements it was clear that some top
requirements were not specified in detail and therefore rejected or
questioned”. Stakeholder 3 also though that a requirement capturing
process is needed for requirements that have not been addressed in the
past.

Stakeholder 7 was concerned about that “even if much money was
spent on new requirements [...] it is not known if they will be part of the
product”. The stakeholders, which provided new requirements, is
probably the only ones prioritizing them, and thus it is not very likely that
new requirements would get a high priority in the resulting list of
8 Elicitation and Management of User Requirements in Market-Driven Software Development

5. Visualization of prioritization data

Elicitation
priorities. Therefore the added requirements were placed in separate
groups (see further Section 5).

Stakeholder 8 thought that the prioritization procedure itself needed a
prioritization, since “all people involved in the requirement definition
have too much of the view from the sales. The people how work with the
tool in real and big projects are not asked”.

Although the answers to question 12 and 13 indicate some difficulties
with the requirement interpretations, the stakeholders’ response to
question 18 shows that they largely agreed with the resulting list of
priorities made by the product manager.

5. Visualization of prioritization data

The raw data provided by each stakeholder is given in Appendix A, where
Table 4 shows the data for the prioritization of the high-level feature
groups, while Table 5 shows the prioritization of each individual feature.
The stakeholders were, as explained in Section 3, given the opportunity to
add new feature groups and new features to the lists. Feature group Z in
Table 4 and features numbered 99 in Table 5 represent added feature
groups and added features respectively.

The resulting priorities show that there are large differences in
stakeholder opinions on which requirements are most important. It seems
also to be the case, that the stakeholders had different strategies for how
they distributed their priorities. Some stakeholders have put all their
money on a few requirements, while others have distributed their money
more evenly on a larger number of requirements. Stakeholder M2, M5,
M6, M7, and M10 added their own new groups of features (requirement
Z) and gave them a certain priority. Hence, it should be noted that the
priority of Z is special, since the stakeholders voted on different
requirements.

In order to compare the priorities of each stakeholder the data is
preferably normalized by dividing each data point by the total of each
column, resulting in that the sum of priorities for each stakeholder equals
1. The normalized data from the prioritization of the feature groups is
shown in Table 3. Each cell shows the normalized priority, subsequently
denoted pij for requirement i and stakeholder j, where there are n=18
requirements and m=10 stakeholders.
 and Management of User Requirements in Market-Driven Software Development 109

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

11
Ta
bl

e
3.

 N
or

m
al

iz
ed

 p
ri

or
it

ie
s

fo
r

ea
ch

 s
ta

ke
ho

ld
er

 a
nd

 h
ig

h-
le

ve
l r

eq
ui

re
m

en
t.

R
eq

.
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
Su

m

A
0.

..0
00

0.
00

0
0.

00
0

0.
20

0
0.

00
0

0.
07

3
0.

00
0

0.
00

0
0.

30
0

0.
10

8
0.

68
1

B
0.

20
0

0.
00

0
0.

05
0

0.
01

0
0.

00
0

0.
07

3
0.

00
0

0.
00

0
0.

15
0

0.
05

4
0.

53
7

C
0.

20
0

0.
10

0
0.

08
0

0.
05

0
0.

00
0

0.
08

0
0.

00
0

0.
00

0
0.

00
0

0.
21

6
0.

72
6

D
0.

05
0

0.
00

0
0.

20
0

0.
03

0
0.

00
0

0.
15

0
0.

07
0

0.
00

0
0.

00
0

0.
05

4
0.

55
4

E
0.

05
0

0.
30

0
0.

07
0

0.
00

0
0.

00
0

0.
00

0
0.

07
0

0.
00

0
0.

00
0

0.
05

4
0.

54
4

F
0.

00
0

0.
00

0
0.

00
0

0.
01

0
0.

00
0

0.
02

5
0.

00
0

0.
00

0
0.

00
0

0.
05

4
0.

08
9

G
0.

05
0

0.
00

0
0.

00
0

0.
01

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
02

7
0.

08
7

H
0.

05
0

0.
20

0
0.

00
0

0.
05

0
0.

00
0

0.
04

0
0.

03
0

0.
20

0
0.

15
0

0.
10

8
0.

82
8

I
0.

00
0

0.
00

0
0.

00
0

0.
20

0
0.

00
0

0.
01

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

21
0

J
0.

00
0

0.
00

0
0.

00
0

0.
15

0
0.

20
0

0.
02

0
0.

07
0

0.
00

0
0.

00
0

0.
02

7
0.

46
7

K
0.

00
0

0.
00

0
0.

15
0

0.
05

0
0.

00
0

0.
12

5
0.

07
0

0.
20

0
0.

10
0

0.
05

4
0.

74
9

L
0.

00
0

0.
00

0
0.

15
0

0.
05

0
0.

00
0

0.
07

0
0.

07
0

0.
20

0
0.

00
0

0.
05

4
0.

59
4

M
0.

20
0

0.
20

0
0.

15
0

0.
00

0
0.

00
0

0.
04

0
0.

03
0

0.
00

0
0.

20
0

0.
05

4
0.

87
4

N
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
01

0
0.

00
0

0.
20

0
0.

00
0

0.
00

0
0.

21
0

O
0.

00
0

0.
00

0
0.

00
0

0.
02

0
0.

00
0

0.
02

5
0.

03
0

0.
20

0
0.

00
0

0.
02

7
0.

30
2

P
0.

20
0

0.
00

0
0.

15
0

0.
17

0
0.

30
0

0.
23

0
0.

14
0

0.
00

0
0.

10
0

0.
02

7
1.

31
7

Q
0.

00
0

0.
10

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

10
0

Z
0.

00
0

0.
10

0
0.

00
0

0.
00

0
0.

50
0

0.
03

0
0.

42
0

0.
00

0
0.

00
0

0.
08

1
1.

13
1

To
ta

l:
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
10

.0
00
0 Elicitation and Management of User Requirements in Market-Driven Software Development

5. Visualization of prioritization data

Elicitation
When the data in Table 1 was received from the stakeholders it became
obvious that its interpretation would be easier if it was visualized using
some type of diagrams. The following diagrams were developed by the
researchers in order to support the visualisation and interpretation of the
data:

• Distribution Chart for showing how the different stakeholders voted
and the resulting priority ranking.

• Disagreement Chart for showing the size of variation between stake-
holder priorities for each requirement.

• Satisfaction Chart for showing how well the resulting priority rank-
ing corresponds to the priorities of each individual stakeholder.

• Influence Chart for showing how much influence each market is
given on the resulting priority.

These diagrams are explained in the following, and exemplified with
real data from the industrial case study.3

The resulting priority denoted pi for each requirement i is calculated as
the weighted average of the priorities over stakeholders using a weight
denoted wj where the sum of all wj equals 1. The weights wj are used to
adjust the influence on the resulting priorities for each stakeholder. If all
stakeholders have equal influence, then all wj = 1/m, and the unweighted
resulting priorities correspond to the ordinary average.

Figure 3 shows an unweighted Distribution Chart, where the priority
distribution is visualized using a stacked Pareto bar chart. The
requirements are sorted based on the resulting priorities, starting with the
requirement with the highest total priority. Each stakeholder is
distinguished with a specific colour. We can see that many stakeholders
have given high priority to requirement P, whereas e.g. requirement N,
although important for stakeholder M8, is given a low total priority.

As a disagreement measure denoted di for each requirement i, the
variation coefficient was used. The variation coefficient is calculated for
each requirement as the standard deviation of the weighted priorities
divided by the average of the priorities over the m stakeholders. The

3. Unfortunately, the timing of the decision-making in the PST hindered the use of these dia-
grams in the actual release plan decision meetings, but they were examined by the PST after-
wards. Hence, the PST did not build their decision on the diagrams, although the PST felt that
the charts would have been valuable as an integral part of the prioritization process.
 and Management of User Requirements in Market-Driven Software Development 111

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

11
Figure 3. Priority Distribution Chart for equal market influence.

Figure 4. Disagreement Chart visualizing the dispersion of priorities among stakeholders.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

P Z M H K C A L D E B J O N I Q F G

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0,5

1

1,5

2

2,5

3

3,5

P Z M H K C A L D E B J O N I Q F G
2 Elicitation and Management of User Requirements in Market-Driven Software Development

5. Visualization of prioritization data

Elicitation
variation coefficient is a commonly used statistical measure of dispersion,
and it can be argued that large disagreement means precisely that there is a
large variation between the priorities of the stakeholders.

Figure 4 shows an unweighted (i.e. all wj equals 1/m) Disagreement
Chart that displays the disagreement measure di for each requirement.
The chart makes it clear that there is more consensus on e.g. the priority
of P compared to N. We also see that, although C and A have almost the
same total priority in the Distribution Chart, there is more disagreement
over A than over C.

Another result from the case study is the visualization of stakeholder
satisfaction with the resulting priority order decided by the PST. This is
accomplished by correlating the ranks of the total priorities with each
stakeholder’s original priority ranks using the Spearman rank-order
correlation coefficient (Siegel & Castellan, 1988), denoted rj for each
stakeholder j. The use of the Spearman rank-order correlation coefficient
is motivated by the intuitive notion of satisfaction as how well the
resulting priority order corresponds to the original priority order of each
stakeholder. The Satisfaction Chart, shown in Figure 5, reveals that
stakeholder M6 is most satisfied and that stakeholder M8 is least satisfied
with the resulting unweighted priorities.

In the case study, the different stakeholders were prioritized by the
Product Manager according to a subset of the criteria mentioned in
Section 5. This revealed, e.g., that two stakeholders representing special
markets were considered more important than the others (M1 and M5)
and that four stakeholders were to be given low priority (M6, M10, M8,

Figure 5. Satisfaction Chart visualizing the correlation of each stakeholder’s priorities with
the resulting priorities.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

M 1

M 2

M 3

M 4

M 5

M 6

M 7

M 8

M 9

M 10
 and Management of User Requirements in Market-Driven Software Development 113

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

11
Figure 6. Influence Chart visualizing the weighting of stakeholder influence.

Figure 7. Priority Distribution Chart for weighted market influence.

M1
19%

M2
10%

M3
10%

M4
10%

M5
15%

M6
5%

M7
10%

M8
8%

M9
8%

M10
5%

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

P Z M C H B K E J A D L O I N G Q F

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
4 Elicitation and Management of User Requirements in Market-Driven Software Development

5. Visualization of prioritization data

Elicitation
and M9). Figure 6 shows an Influence Chart, which displays the decision
by the Product Manager on the market influence, in terms of the weights
wj for each stakeholder. Given these weights, recalculation of pi, di, and rj
are made, and the charts are redrawn.

Figure 7 displays the Distribution Chart after weighting by market
influence using the weights of Figure 6. It can be seen that the priorities of
M1 and M5 are boosted. This in turn have altered the priority order,
making, for example, C and B to move up, and A and L to move down.

The Disagreement Chart in Figure 8 reveals an increase in
disagreement for requirement C and B, while the disagreement over

Figure 8. Disagreement Chart with weighted market influence.

Figure 9. Satisfaction Chart visualizing the correlation of each stakeholder’s priorities with
the total priorities with weighted market influence.

0

0,5

1

1,5

2

2,5

3

3,5

P Z M C H B K E J A D L O I N G Q F

-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6

M 1

M 2

M 3

M 4

M 5

M 6

M 7

M 8

M 9

M 10
 and Management of User Requirements in Market-Driven Software Development 115

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

11
requirement A and L is only slightly affected. In the Satisfaction Chart in
Figure 9 we can see that stakeholder M8 is least satisfied with the
weighted priority order. The negative value on the satisfaction means that
the resulting priority order have a tendency to be the opposite of the
individual priority order, meaning that high priorities of M8 are given low
priorities in the result and vice versa. Also, both stakeholder M1 and M5
are more satisfied compared to the unweighted case.

6. Conclusions and further work

The presented work is aimed at making similarities and differences in
priorities among market segments explicit. This is valuable as a decision
support in market-driven software development, when strategic high-level
requirements are to be selected for the coming release of a software
package. The presented charts for visualization of requirements priority
distribution, disagreement, and satisfaction have been developed based on
data from an industrial case study. The main objective of the case study
was to study how distributed prioritization can be used in the connection
between every day requirements management and a high-level product
strategy. The case study included real requirements and real stakeholders.

The presented case study was evaluated qualitatively through
questionnaires answered by stakeholders and by interviews with product
and quality management. The general conclusions from the case study are
(1) that distributed prioritization is useful, and (2) that the visualization
charts are valuable decision support.

When comparing the sum of priorities from all stakeholders to the
management’s original view of the priorities from before the case study,
the management was able to identify three interesting groups of
requirements:

• Confirmed Priorities. Some requirements were prioritized in a way
that corresponded to the views before the case study, and thus con-
firmed the strategic value of these requirements. This information
was valuable, as it strengthened the PST in the belief that many of
the requirements previously in focus were still right.
6 Elicitation and Management of User Requirements in Market-Driven Software Development

6. Conclusions and further work

Elicitation
• Elevated Priorities. Some requirements were given surprisingly high
priorities, compared to what was anticipated. This information was
valuable, as it gave the opportunity to adjust the strategies to focus
on new opportunities which might otherwise have been missed.

• Cancelled Priorities. Some requirements were given surprisingly low
priorities. This information was valuable, as it helped to avoid
implementing requirements that may be of little success on the
market.

Based on the analysis and visualisation of the data from the case study,
the following major findings were made:

• Differences among stakeholders. The colour-coded Priority Distribu-
tion Chart shows that there were large differences among the stake-
holders regarding requirements priorities. The Disagreement Chart
shows that for some of the requirements the stakeholders agreed
more on their priorities compared to other requirements. The Satis-
faction Chart shows that there were large differences in the stake-
holders’ satisfaction with the resulting total.

• Impact of influence weights. When some stakeholders were given a
higher influence than others on the resulting total, the Satisfaction
Chart shows that some stakeholder’s priorities were very far from
the resulting total, while others were relatively close.

• Stakeholder tactics. The stakeholders had different tactics when
assigning absolute priority values to the requirements. Some stake-
holders concentrated on a few requirements and gave them high
priorities while other requirements were given zero. Some stake-
holders made a more even distribution of their priorities.

The main challenges with the proposed approach include the
following:

• Difficulties with absolute assessment. The individual prioritization
was carried out by placing an absolute amount of fictitious money
on each requirement in accordance to its perceived importance.
The assessment of priorities through assignment of absolute numer-
ical values is inherently difficult, and there are strong indications
that relative judgements through pairwise comparison rather than
assigning absolute values is easier for humans and also more accu-
rate (Karlsson & Ryan, 1997).
 and Management of User Requirements in Market-Driven Software Development 117

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

11
• Assessment of prioritization quality. The quality of the priorities
given by stakeholders is a major issue. The stakeholders are repre-
sentatives from marketing and may not know how a particular
requirement should be interpreted or how important it is for the
potential customers of their market. Furthermore, all stakeholders
gave the same priority to many requirements, especially the ones
with low priorities. This makes it more difficult to discriminate
requirements. If pairwise comparison (Karlsson & Ryan, 1997) is
introduced, the stakeholders are forced to take a stand for every
requirement. When using pairwise comparison it is possible to cal-
culate a consistency index (ibid.), which may indicate if require-
ments are interpreted inconsistently, e.g. due to poor knowledge or
ambiguous descriptions.

• Sensitivity to ‘shrewd tactics’. It is difficult to know if some stakehold-
ers, e.g., gave an extra low priority to requirements they knew other
stakeholders would give high priorities, just in order to influence
the total result to fit their aims. Such tactics would compromise the
quality of the result in that it would not truly correspond to the
importance to the different market segments represented by the
stakeholders. It is difficult to avoid this type of obstruction in gen-
eral. However, if pairwise comparison (Karlsson & Ryan, 1997) is
introduced, obstructive tactics may be more difficult to carry
through in a consistent way.

There are several candidate techniques involving relative judgement
through pairwise comparison (Karlsson, Wohlin, & Regnell, 1998), and
one of the most promising technique is the Analytical Hierarchy Process
(AHP) (Saaty, 1980). This technique is, however, not in its original form
adapted to distributed prioritization with multiple stakeholders.
Furthermore, this technique may require specialized tools for the matrix
calculations required. An interesting question for further research is how
to incorporate relative judgement through pairwise comparison in the
presented distributed prioritization process, including the usage of an
Internet-based tool for gathering pairwise comparison data in a global
organization. It is also interesting to evaluate the utility of the charts for
visualization of distribution, disagreement and satisfaction, when applied
to prioritization data from pairwise comparison.

Other work in the area have focused on arriving at a consensus
between stakeholders. Boehm and Ross (1989) proposes Theory-W,
8 Elicitation and Management of User Requirements in Market-Driven Software Development

 Acknowledgements

Elicitation
which is concerned with how to negotiate between many stakeholders
with conflicting win-conditions. Kotonya and Sommerville (1996)
proposes a Viewpoint-oriented approach with explicit planning for
conflict resolution. The approach presented in this paper is not focused
on creating consensus among stakeholders, but rather on revealing the
differences between stakeholder priorities in order to make an informed
decision about which stakeholders to prioritize in relation to foreseen
market opportunities. The business strategy governing the selection of
requirements to implement in the next release of a packaged software
product may very well result in that some stakeholders representing a
market segment with a lower priority will not get what is considered
important for those particular stakeholders.

The process proposed in Section 2 is general and Step 2 and 3 can be
carried out using many different methods. Based on the above
conclusions, one of the most promising methods to investigate in further
studies is pairwise comparison. Another industrial case study, similar to
the one presented here, but with pairwise comparison instead of absolute
priority assignment, would give the interesting opportunity of comparing
methods and further improve distributed requirements prioritization in
global software development organizations. It would also be interesting to
investigate if the stakeholders whose ratings differ significantly from the
final decision are more inclined to accept this decision due to the
increased transparency of the prioritization process.

Acknowledgements

The authors would like to thank everyone at Telelogic who have
participated in the case study. This work is partly funded by the National
Board of Industrial and Technical Development (NUTEK), Sweden,
within the REMARKS project (Requirements Engineering for Market-
Driven Software Development) grant no. 1K1P-99-06123. This paper is
an extended version of a paper presented at the REFSQ workshop
(Regnell, Höst, Natt och Dag, Beremark, & Hjelm, 2000). The authors
would like to thank the workshop participants for fruitful discussions,
and the REFSQ organizers and the anonymous reviewers for valuable
improvement suggestions.
 and Management of User Requirements in Market-Driven Software Development 119

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

12
7. References
Boehm, B. W. &, Ross, R. (1989, July). Theory-W Software Project Management: Prin-

ciples and Examples. IEEE Transactions on Software Engineering, 15, 902–916.

Büyükekici, B., Deifel, B., Jacobi, C., & Sandner, R. (1999). Prioritization of Complex
COTS. In A. L. Opdahl, K. Pohl, & E. Dubois (Eds.) Proceedings of the Fifth Interna-
tional Workshop on Requirements Engineering: Foundations for Software Quality (pp.
161–168). Namur, Belgium: Presses Universitaires De Namur.

Carmel, E., & Becker, S. (1995, February). A Process Model for Packaged Software
Development. IEEE Transactions on Engineering Management, 42, 50–61.

Deifel, B. (1999). A Process Model for Requirements Engineering of CCOTS. In Pro-
ceedings of Tenth International Workshop on Database and Expert Systems Applications
(pp. 316–320). Los Alamitos, CA: IEEE Computer Society Press.

Kamsties, E., Hörmann, K., & Schlich, M. (1998). Requirements Engineering in Small
and Medium Enterprises. Requirements Engineering, 3, 84–90.

Karlsson, J. & Ryan, K. (1997). A Cost-Value Approach for Prioritizing Requirements.
IEEE Software, 14(5). 67–74.

Karlsson, J., Wohlin, C., & Regnell, B. (1998, February). An Evaluation of Methods for
Prioritizing Software Requirements, Information and Software Technology, 39, 939–
947.

Kotonya, G., & Sommerville, I. (1996, January). Requirements Engineering with View-
points. Software Engineering Journal, 11, 5–18.

Lubars, M., Potts, C., & Richter, C. (1993). A Review of the State of the Practice in
Requirements Modeling. In Proceedings of IEEE International Symposium on Require-
ments Engineering (pp. 2–14). Los Alamitos, CA: IEEE Computer Society Press.

Moore, G. (1991). Crossing the Chasm. New York: Harper-Collins.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software. In Proceedings of IEEE International Symposium on
Requirements Engineering (pp. 128–130). Los Alamitos, CA: IEEE Computer Society
Press.

Regnell, B., Beremark, P., & Eklundh, O. (1998). A Market-Driven Requirements Engi-
neering Process – Results from an Industrial Process Improvement Programme.
Requirements Engineering, 3, 121–129.
0 Elicitation and Management of User Requirements in Market-Driven Software Development

7. References

Elicitation
Regnell, B., Höst, M., Natt och Dag, J., Beremark, P. & Hjelm, T. (2000). Visualization
of Agreement and Satisfaction in Distributed Prioritization of Market Requirements,
In A. L. Opdahl, K. Pohl, & M. Rossi (Eds.), Proceedings of the Sixth International
Workshop on Requirements Engineering: Foundation for Software Quality. Essen, Ger-
many: Essener Informatik Beiträge.

Saaty, T. L. (1980). The Analytical Hierarchy Process. New York: McGraw Hill.

Sawyer, P. (2000). Packaged Software: Challenges for RE. In Proceedings of Sixth Interna-
tional Workshop on Requirements Engineering: Foundation for Software Quality (pp.
137–142). Essen, Germany: Essener Informatik Beiträge.

Sawyer, P., Sommerville, I., & Kotonya, G. (1999). Improving Market-Driven RE Proc-
esses. In M. Oivo, & P. Kuvaja (Eds.), Proceedings of the International Conference on
Product Focused Software Process Improvement (pp. 222–236). Oulu, Finland: Technical
Research Centre of Finlad (VTT).

Siegel, S., & Castellan, N. J (1988). Nonparametric Statistics for the Behavioral Sciences
(2nd Ed.). New York: McGraw-Hill.

Yeh, A. (1992). Requirements Engineering Support Technique (REQUEST) – A Market
Driven Requirements Management Process, In Proceedings of the Second Symposium on
Assessment of Quality Software Development Tools (pp. 211–223), Los Alamitos, CA:
IEEE Computer Society Press.
 and Management of User Requirements in Market-Driven Software Development 121

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

12
Appendix A: Raw data from prioritization

Table 4. Raw data from prioritization of high-level feature groups.

Req. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A 0 0 0 20,000 0 7,250 0 0 30 10,000

B 20,000 0 5,000 1,000 0 7,250 0 0 15 5,000

C 20,000 10,000 8,000 5,000 0 8,000 0 0 0 20,000

D 5,000 0 20,000 3,000 0 15,000 7,000 0 0 5,000

E 5,000 30,000 7,000 0 0 0 7,000 0 0 5,000

F 0 0 0 1,000 0 2,500 0 0 0 5,000

G 5,000 0 0 1,000 0 0 0 0 0 2,500

H 5,000 20,000 0 5,000 0 4,000 3,000 20 15 10,000

I 0 0 0 20,000 0 1,000 0 0 0 0

J 0 0 0 15,000 20,000 2,000 7,000 0 0 2,500

K 0 0 15,000 5,000 0 12,500 7,000 20 10 5,000

L 0 0 15,000 5,000 0 7,000 7,000 20 0 5,000

M 20,000 20,000 15,000 0 0 4,000 3,000 0 20 5,000

N 0 0 0 0 0 1,000 0 20 0 0

O 0 0 0 2,000 0 2,500 3,000 20 0 2,500

P 20,000 0 15,000 17,000 30,000 23,000 14,000 0 10 2,500

Q 0 10,000 0 0 0 0 0 0 0 0

Z 0 10,000 0 0 50,000 3,000 42,000 0 0 7,500

Total 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100 100 92,500

Table 5. Raw data from prioritization of individual features.

Req. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A1 0 10,,00
0

3,000 3,000 0 800 0 200 0 1,250

A2 0 10,000 0 25,000 0 800 0 400 0 7,500

A3 0 0 0 20,000 0 400 0 0 0 1,250

A4 5,000 10,000 0 2,000 0 400 0 400 20 2,500

A5 0 0 0 1,000 0 0 0 0 0 0

A6 0 0 0 10,000 0 0 0 0 0 0

A7 0 10,000 0 14,000 0 1,400 1,200 200 0 2,500

A8 5,000 0 0 14,000 0 400 0 200 0 0

A9 0 0 4,000 11,000 0 400 0 0 0 2,500
2 Elicitation and Management of User Requirements in Market-Driven Software Development

 Appendix A: Raw data from prioritization

Elicitation
A10 0 0 0 0 0 1,400 0 100 0 2,500

A99 54,000 5,000 0 0 0 0 0 0 0 5,000

C1 10,000 0 6,000 0 0 1,800 0 0 10 10,000

C2 0 0 1,000 0 0 4,200 0 400 0 10,000

C3 0 0 4,000 0 0 400 0 500 0 0

C4 0 0 0 0 0 0 8,400 300 0 0

C99 0 0 16,000 0 0 0 0 0 0 12,500

D1 0 0 0 0 0 6,600 0 0 0 0

D2 5,000 0 8,000 0 0 5,400 0 400 20 2,500

D99 0 0 0 0 0 10,800 18,000 0 0 0

E1 2,000 0 0 0 0 0 0 0 0 0

E2 2,000 0 0 0 0 800 0 0 0 0

E3 2,000 10,000 3,000 0 0 1,800 0 300 0 0

E99 0 0 0 0 0 0 8,400 0 0 0

F1 0 0 1,000 0 0 0 0 200 0 2,500

F2 3,000 0 0 0 0 0 0 200 0 0

F3 0 0 1,000 0 0 0 0 0 0 1,250

F4 0 0 0 0 0 0 1,200 0 0 0

F99 0 0 4,000 0 20,000 2,600 1,200 0 0 0

H1 2,000 0 5,000 0 0 800 0 400 10 2,500

H2 0 0 3,000 0 0 400 0 400 0 2,500

H99 0 0 0 0 0 0 0 0 0 0

I1 0 0 0 0 0 0 0 0 0 0

I2 0 0 0 0 0 0 0 0 0 0

I99 0 0 0 0 0 0 0 0 0 0

J1 0 10,000 0 0 0 2,000 0 200 0 0

J2 2,000 0 0 0 0 2,800 0 200 0 5,000

J3 0 0 0 0 0 0 0 400 0 0

J99 0 0 0 0 30,000 0 19,200 0 0 0

K1 0 0 0 0 0 800 1,200 300 20 2,500

K2 0 0 0 0 0 1,400 1,200 300 0 2,500

K99 0 0 0 0 0 9,000 0 0 0 0

L1 4,000 0 3,000 0 5,000 1,800 1,200 300 0 5,000

L2 0 0 3,000 0 5,000 1,000 1,200 300 0 0

L3 0 0 0 0 0 0 0 300 0 2,500

L4 0 0 0 0 0 0 0 0 0 1,250

L5 0 0 5,000 0 0 1,800 0 200 0 0

Table 5. Raw data from prioritization of individual features.

Req. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
 and Management of User Requirements in Market-Driven Software Development 123

An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software

12
L6 0 5,000 0 0 0 0 0 100 0 1,250

L99 0 0 0 0 0 0 0 0 0 0

M1 0 0 0 0 0 0 0 50 10 0

M2 0 0 0 0 0 0 0 0 0 0

M3 0 5,000 2,000 0 0 400 0 100 0 0

M4 0 5,000 0 0 0 2,800 0 0 10 1,250

M99 0 5,000 8,000 0 5,000 600 0 0 0 0

N1 4,000 0 0 0 0 800 0 0 0 2,500

N2 0 0 2,000 0 0 0 0 200 0 0

N3 0 0 0 0 0 800 0 200 0 1,250

N4 0 0 0 0 0 1,400 0 300 0 0

N5 0 0 3,000 0 0 0 0 200 0 0

N6 0 0 0 0 0 0 4,000 0 0 0

N7 0 0 0 0 0 0 0 0 0 0

N99 0 0 5,000 0 0 0 18,000 0 0 0

O1 0 0 0 0 5,000 0 0 500 0 0

O2 0 5,000 0 0 0 1,000 0 0 0 0

O99 0 0 0 0 0 1,000 1,200 0 0 1,250

P1 0 0 0 0 0 6,000 4,000 300 0 0

P2 0 0 8,000 0 10,000 12,000 4,000 200 0 2,500

P3 0 0 0 0 10,000 2,400 4,000 50 0 0

P4 0 0 0 0 10,000 1,800 0 400 0 0

P99 0 0 0 0 0 6,000 2,400 0 0 0

Q1 0 10,000 2,000 0 0 400 0 300 0 0

Q2 0 0 0 0 0 0 0 0 0 0

Q3 0 0 0 0 0 400 0 0 0 2,500

Q99 0 0 0 0 0 0 0 0 0 0

Total 100,000 100,000 100,000 100,000 100,000 100,000 100,000 10,000 100 100,000

Table 5. Raw data from prioritization of individual features.

Req. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
4 Elicitation and Management of User Requirements in Market-Driven Software Development

Elicitation and Management of User Requirements in Market-Driven Software Development 125

126 Elicitation and Management of User Requirements in Market-Driven Software Development

IV
PAPER IV

A feasibility study of automated natural language
requirements analysis in market-driven development

Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson,
Joachim Karlsson

Requirements Engineering, 7, 20–33, 2002.
Elicitatio
Abstract

In market-driven software development there is a strong need for support
to handle congestion in the requirements engineering process, which may
occur as the demand for short time-to-market is combined with a rapid
arrival of new requirements from many different sources. Automated
analysis of the continuous flow of incoming requirements provides an
opportunity to increase the efficiency of the requirements engineering
process. This paper presents empirical evaluations of the benefit of
automated similarity analysis of textual requirements, where existing
information retrieval techniques are used to statistically measure
requirements similarity. The results show that automated analysis of
similarity among textual requirements is a promising technique that may
provide effective support in identifying relationships between
requirements.
n and Management of User Requirements in Market-Driven Software Development 127

A feasibility study of automated natural language requirements analysis in market-driven development

12
1. Introduction

1.1 Background

The market-driven development organisation faces many challenges that
differ from those found in organisations developing bespoke software.
Software is developed for a large market, rather than for a specific
customer, new versions are developed in a succession of releases, and there
is a high pressure on short time-to-market (Sawyer, Sommerville, &
Kotonya, 1999; Lubars, Potts, & Richer, 1993; Deifel, 1999).

To meet market demands it is important to have an effective and
efficient requirements engineering process. Special demands are set as
requirements arrive continuously at a high rate from many different
sources during the whole development process (Regnell, Beremark, &
Eklundh, 1998). As there is no single specific customer to negotiate with,
requirements must be invented within the developing organisation based
on foreseen end user needs (Potts, 1995). These invented requirements
may come from sources such as marketing, support, development, testing,
usability evaluations and technology forecasting, and are often collected
for storage in a database. The requirements engineering activities are then
focused on analysing and prioritizing the requirements in the database
and on maintaining the database for the future. In this study we have
focused on a large software developing company, Telelogic AB, that
develops a CASE tool for the worldwide telecommunications market.
Their development process is described in Regnell et al., and its main
properties are: 1. Releases are pipe-lined to enable a new release every
sixth month while each release takes 14 months to complete. 2.
Elicitation is continuously active and a requirement may be issued at any
time by an issuer that foresees a market need. 3. Each requirement is
stored in a database as an entity described in natural language. 4. Each
requirement has a life cycle progression through specific states. The
Telelogic development process has shown to have high resemblance to
another market-driven development process independently developed
and used at an Ericsson company (Carlshamre & Regnell, 2000).

Requirements are continuously collected through a web form and are
stored in a database for further analysis (Regnell et al., 1998). The
requirements are described in natural language and are of varying quality
and nature. Some requirements are brief ideas while others are detailed
8 Elicitation and Management of User Requirements in Market-Driven Software Development

1. Introduction

Elicitation
descriptions of new features with accompanying code. Many
requirements are short-worded and poorly written.

During the development of a release the requirements engineer (or
analyst) must handle the diverse and large set of requirements that is
available in the database and resolve ambiguities, find relationships,
eliminate duplicates, etc. As shown in a study of the Telelogic
requirements process (Höst, Regnell, Natt och Dag, Nedstam, & Nyberg,
2000), these activities are causing a congestion that may be avoided by
cutting down heavily on the number of elicited requirements or making
early and strict prioritization.

The trade-off between analysing only a subset of all the collected
requirements and not collecting that many requirements to give time for
proper analysis may be difficult to make. Extra information could be
extracted if all requirements are collected (for example, duplicates may
indicate that certain issues are more important than others). However,
trying to handle all incoming requirements may increase the risk of
relationships between requirements being overlooked or discovered too
late, which may cause problems in prioritization (Karlsson & Ryan, 1997)
and release planning (Carlshamre & Regnell, 2000).

Consequently, there is a wish to find requirements relations early,
without spending too much time on in-depth analysis. These
relationships should preferably be found even when specification quality
is low and even if requirements are short, poorly worded or misspelled.
One possible approach, investigated in this paper, is to assist the
requirements engineer through automated analysis of the textual
information in the requirements. This approach may help the
requirements engineer to handle the large set of requirements by
automatically finding and make suggestions on relationships between
requirements.

Two different automatic text-processing approaches may be used to aid
the requirements engineer in the situation described above: the statistical
approach or the linguistic approach. In this paper we focus on the
statistical approach, which originates from the work by H. P. Luhn (Luhn,
1957). There are several reasons that we choose to explore this approach:

1. The ideas have not, as we far as we know, been applied to analyse
the type of requirements that is collected in the situation we
describe (see further Section 1.2).
 and Management of User Requirements in Market-Driven Software Development 129

A feasibility study of automated natural language requirements analysis in market-driven development

13
2. The statistical approach has been thoroughly tried and examined
and has been found fairly successful for automatic text analysis (van
Rijsbergen, 1979).

3. The linguistic approach is still regarded as expensive to implement
and not always more effective than well-executed statistical
approaches (Mitra, Buckley, Singhal, & Cardie, 1997).

4. Before proceeding with more advanced methods, the statistical
approach may help reveal the nature of the requirements in a mar-
ket-driven organisation.

5. A baseline produced from empirical investigation using real indus-
try requirements is needed to compare against further improve-
ments.

The results of the presented work show that, for a particular set of
requirements, a simple similarity analyser that uses the statistical text-
processing approach identifies a large fraction of the requirements
duplicate pairs found by experts. The duplicates are important to find to
avoid doing the same job twice, assigning the same requirement to
different developers, or getting two solutions to the same problem. The
portion of requirement pairs incorrectly identified as duplicates is shown
to have little negative impact on the value of the method. Further effort
may thus be fruitful to assist the requirements engineer in handling the
large set of requirements found in a market-driven development
organisation.

1.2 Related work

The role of natural language processing in requirements engineering is
discussed in Ryan (1993), where the conclusion is drawn that natural
language-processing techniques must be realistic and effort has to be
made to identify where such techniques may be useful. It is argued that
the validation of requirements still has to be an informal, social process.
Thus, an automated system could or should not replace the human
requirements engineer. Such systems are still not feasible or cost-effective
to construct.

Various attempts have been made to use automated techniques to assist
the analysis of requirements written in natural language:
0 Elicitation and Management of User Requirements in Market-Driven Software Development

1. Introduction

Elicitation
1. Gervasi and Nuseibeh (2000) use lightweight formal methods (low
cost, partial analysis) to partially validate a syntactically correct
NASA Software Requirements Specification (SRS) document. A
glossary was manually produced from the SRS to aid the method.

2. Ambriola and Gervasi (1997) present a web-based environment
where Model–Action–Substitution rules and a domain- and sys-
tem-specific glossary are used to extract abstractions and build
models.

3. Rayson, Emmet, Garside, and Sawyer (2000) report on a project
called REVERE, where statistical and probabilistic natural lan-
guage-processing methods are used to assist the analysis of complex
and voluminous texts.

4. Park, Kim, Ko, and Seo (2000) present a system that uses a sliding
window model and a parser to support the analysis of requirements
using a similarity measuring technique.

5. Rolland and Proix (1992) present an environment that generates
conceptual specifications from problem space descriptions written
as sentences in natural language.

6. Osborne and MacNish (1996) describe an approach to resolve
ambiguities where only a controlled language is allowed when writ-
ing requirements in order to facilitate for a lexicon and grammar-
enabled parser.

7. Cybulski and Reed (1998) describe an elicitation method and a
supporting management tool that help in analysing and refining
requirements by using a parser, semantic networks, a domain-map-
ping thesaurus, and faceted classification schemes to allow proper
formalisation of requirements written in natural language.

8. Chen et al. (1994) present ideas where concepts in texts from elec-
tronic meetings are automatically classified by using automatic
indexing cluster analysis and hopfield net classification.

9. Landauer and Dumais (1997) present the Latent Semantic Analysis
(LSA) computational model for generation of a representation from
large corpora. The representation captures the similarity of mean-
ings of words and sets of words.
 and Management of User Requirements in Market-Driven Software Development 131

A feasibility study of automated natural language requirements analysis in market-driven development

13
Although relevant and promising for several areas and approaches in
requirements engineering, the above attempts do not address the situation
described in the previous section. The main concerns in the context of
this work are the following:

• Requirements are considered to be found in a separate document
that is to be analysed, quality assured and produced before imple-
mentation begins. This is not the situation in the market-driven
organisation where requirements arrive continuously and may, at
any time, affect previous, current and coming releases of the soft-
ware.

• The initial quality of the requirements is often considered to be
adequate for semantic parsing. This may not be the case when
requirements are collected from many different sources and stored
in a database.

• Real industrial requirements are not always used to validate the
methods or techniques presented. Accuracy and efficiency are not
always reported.

• The semantic nature of invented requirements may not share the
properties of regular corpora used in many linguistic approaches.

• Simple, robust methods can act as a baseline for better understand-
ing and further improvements and comparisons of techniques.

Several approaches seem promising but we believe that more effort
needs to be put into this field to reach consensus on which methods,
techniques, approaches and tools may be appropriate for different types of
developing organisations. In this paper we focus on the market-driven
organisation and do not present a new model or a full-featured approach.
Rather, the feasibility of using automated similarity analysis is empirically
investigated using real industrial requirements and a benchmark is
provided to which further effort may be compared.

1.3 Paper structure

The paper is structured as follows. In Section 2 the situation of
requirements similarity analysis in market-driven development is
described. Section 3 explains how automated similarity analysis of natural
language requirements may be performed. Section 4 presents a case study
2 Elicitation and Management of User Requirements in Market-Driven Software Development

2. Requirements similarity analysis

Elicitation
where actual requirements collected from industry have been analysed.
The case study explores the quality of a simple automatic similarity
analyser. In Section 5, further applications of automated support are
presented together with a small study using the analyser from Section 3 to
investigate if similar requirements also are interdependent. Section 6
identifies possible further work and improvements. In the final section the
results are discussed and conclusions presented.

2. Requirements similarity analysis

Requirements carry information on which decisions are based. This
information can be either explicit or implicit. The explicit information
constitutes all the written text, drawn charts and other artefacts that are
used as the basis for communicating requirements. The implicit
information consists of all the assumptions, rules, standards and the
domain knowledge possessed by the requirement issuers and the
requirements analyst. When natural language requirements arrive at a
rapid flow from many different issuers, a quick analysis is required to
guarantee requirements’ quality before they are used as a basis for further
decisions. Although the linguistic quality of the requirements may be low
it is often left unattended as the requirements make sense. Rather, the
information explicitly stated may not give sufficient decision support. For
this reason the requirements engineer uses implicit and explicit
information accompanied by personal skills to analyse the requirements
for completeness, ambiguity, similarity, etc. Completeness analysis is
performed to ensure that enough information is included in the
requirements to enable further refinement, such as setting priority,
estimating effort and deriving new requirements (see example
requirements in Figure 4). Ambiguity analysis is performed to identify the
risks of multiple interpretations among requirements. Similarity analysis
is discussed below.

If supplementary information is needed to accept the requirement, the
analyst may have to consult the issuer to make sure that the issuer and the
analyst share the same interpretation. Thus, the requirements engineer
acts to assure the quality of each requirement before allowing it to be
further refined in the continuous requirements engineering process
(Carlshamre & Regnell, 2000). The situation is illustrated in Figure 1,
where example activities have been identified in the quality gateway.
 and Management of User Requirements in Market-Driven Software Development 133

A feasibility study of automated natural language requirements analysis in market-driven development

13
The activities in the quality gateway are typically performed manually
as there are few supportive tools available. The activities are tedious and
time-consuming, but necessary in order to assure software quality and to
satisfy market needs. It would therefore be highly beneficial if some of
these tedious activities could be partly automated.

This paper focuses on similarity analysis, which is performed in order
to find requirements that may be merged, grouped, eliminated or linked.
For example, two similar requirements may be merged into one or may
simply be grouped together to make sure they are handled simultaneously
during development. A requirement may be similar to another to the
extent that it is regarded as a duplicate and thus eliminated. Furthermore,
two requirements may be similar in a certain aspect that establishes some
kind of interrelationship (such as dependencies between requirements and
requirement decompositions). The requirements engineer may also find it
desirable to split large requirements into two or more requirements,
which may become similar or related to each other and other
requirements in the database.

When the requirements engineer decides whether two requirements
are similar or not, it is with regard to the implications for further
development. Of course these decisions are made by humans, but
computer analysis of explicit information expressed in natural language
may supply the requirements engineer with information regarding
similarity to support these decisions.

Figure 1. Requirements Quality Gateway with three examples of quality assuring
activities.

Issuer

Quality Gateway

Completeness
Analysis

Ambiguity
Analysis

Similarity
Analysis

Requirements
Engineer

Candidate

Requirement

Request for

clarification

Approved

Requirement Requirements
Database
4 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Automated similarity measurement

Elicitation
3. Automated similarity measurement

Statistical approaches to automated similarity measurement are widely
used in information retrieval (IR), which is a well established discipline
concerned with automated storage and retrieval of documents written in
natural language (Frakes & Baeza-Yates, 1992). The presented work is
based on existing IR techniques applicable in the analysis of natural
language requirements. Figure 3 provides an overview of the steps in
similarity measurement, where a similarity metric SA,B is calculated for a
pair of textual requirements (A,B). The calculation of a similarity measure
(further described in Section 3.1) is made subsequent to a number of pre-
processing steps (elaborated in Section 3.2). The assessment of similarity
metrics is described in Section 3.3.

3.1 Similarity measures

In order to find relationships between requirements that may be merged,
grouped or eliminated, a quantification of the degree of association
between the requirements is needed. Several similarity measures are
available, but no comparative studies exist that give a definite answer to
which one to choose in this particular situation. In this paper we have
therefore used three simple and well-known similarity measures to
calculate the similarity between sentences: the Dice, Jaccard and cosine
coefficients (Salton, 1989). These measures all take the words in two
sentences and calculate the similarity based on how many words they have
in common. The coefficients are defined as follows, where A and B are
requirements:

SD
A B,

2 wordsA wordsB∩{ }
wordsA{ } wordsB{ }+

---=

SJ
A B,

wordsA wordsB∩{ }
wordsA{ } wordsB{ } wordsA wordsB∩{ }–+

---=

SC
A B,

wordsA wordsB∩{ }

wordsA{ } wordsB{ }
--=
 and Management of User Requirements in Market-Driven Software Development 135

A feasibility study of automated natural language requirements analysis in market-driven development

13
All three measures have the desired property of normalisation, which
imply that they give a value between 0 and 1 to indicate how similar a pair
of sentences are, where 0 means that the sentences have no words in
common and 1 means that the sentences are identical. The empirical
investigation reported in Section 4 applies these measures to textual
software requirements.

3.2 Preparing the source data

Before the similarity measure can be calculated the words of each sentence
have to be extracted. This is achieved through lexical analysis, which takes
an input stream of characters and converts it into a stream of words or
tokens. This immediately raises the question of what should count as a
word or token. For example, digits, hyphens, punctuation and letter case
bring some problems that have to be considered. It is not technically
difficult to solve these problems, but the chosen lexical analysis policy will
affect the similarity measure. For example, preserving letter case will
distinguish the words like ‘System’ and ‘SYSTEM’ and thus produce
lower similarity measures. How to choose the policy thus depends on
what type of data is to be analysed and the expected outcome.

Frequently occurring words like ‘a’, ‘the’, ‘of ’, etc., will inadequately
boost the similarity measures. These words, known as stop words, are
therefore filtered out before similarity calculation. Which words to
eliminate again depends on the type of data. It is reasonable to start out
with a known stop word list that has been derived from general text.

Another issue is the morphological variants of words, i.e. the word
forms. Words that are written in different forms usually carry the same
information and should thus be considered equal. Therefore, words
should be reduced to their ground form so that an automated word
matcher would report a positive match. The technique used to reduce
words to their ground form is called stemming and produces a stem from
a word. For example, both the words ‘replace’ and ‘replacement’ may
result in the stem ‘replac’ and consequently the words would be
considered equal. There are several ways to stem words, such as affix
removal, successor variety, table lock-up, and n-gram (Frakes & Baeza-
Yates, 1992). In this paper we have used an affix removal stemmer, the
Porter algorithm (Porter, 1980), which consists of a set of condition/
action rules. It is a compact algorithm that has been shown to give good
results in IR (Frakes & Baeza-Yates). The similarity measure may be
6 Elicitation and Management of User Requirements in Market-Driven Software Development

3. Automated similarity measurement

Elicitation
calculated by counting the number of stems produced from each
requirement and the number of stems the requirements has in common.
The common stems may be found using exact match or inexact match.
Exact match requires the stem to be exactly equal, whereas inexact match
calculates the similarity between the stems. Spelling errors may call for
inexact match but brings the difficulty of choosing a good algorithm and
a threshold level for match. The analyser used in this paper is designed to
require an exact match between stems. The low linguistic quality of the
requirements will of course affect the similarity measure. However, we
have chosen not to include spelling correction, as we are interested in the
performance of using a simple technique. It is also questionable if there is
time for manual pre-processing in industrial settings.

3.3 Assessing the quality of similarity measures

In order to evaluate the technique used to suggest similar requirements, a
notion of quality is needed. We have chosen to use a contingency table,
which defines a number of quality aspects in similarity measurement.
Assume that S(ri, rj) is a function that takes a pair of requirements and
gives a similarity measure between 0 and 1. In addition we select a
threshold value t, which acts as a selection criterion. If S(ri, rj) � t then
(ri, rj) is considered to be a suspected duplicate pair. Assume also that
there exists a set of pairs of requirements that are identified as actual
duplicate pairs. The similarity measure hence provides an approximation
of this set of actual duplicate pairs, and the quality of the estimation may
be defined according to Figure 2 (Salton, 1989).

The resulting pairs that have a similarity value above or equal to the
threshold level are regarded as duplicate pairs suggested by the analyser.
Matches between actual duplicate pairs and those suggested by the
analyser are denoted true positives. The actual duplicate pairs not
identified by the analyser are consequently denoted false negatives, i.e.
they were wrongly suggested as non-duplicate pairs. The analyser may
also suggest duplicate pairs that actually were non-duplicate pairs. These
are denoted false positives. The rest are denoted true negatives and
constitute all the requirement pairs that fell below the threshold level and
were correctly suggested as non-duplicate pairs. The accuracy of the
analyser is defined as the sum of the true negatives and the true positives
divided by the total number of possible requirement pairs and indicates
how well the actual duplicate pairs and non-duplicate pairs are identified.
 and Management of User Requirements in Market-Driven Software Development 137

A feasibility study of automated natural language requirements analysis in market-driven development

13
The total number of requirement pairs is calculated as A + B + C + D,
which is equal to (n·(n – 1))/2, when n is the number of requirements.

The contingency table will help reveal the performance of the method.
In order to evaluate the feasibility of the analyser, a deeper investigation of
the requirement pairs is needed. Taking any two identified pairs, they may
or may not involve the same particular requirements. For example, the
requirement pairs (A, F) and (C, F) share the requirement F. If the
analyser assigns similarity values above zero to each of these pairs and a
similarity value equal to zero to the pair (A, C) it would nevertheless be
interesting to look at the three involved requirements together. We denote
these preferred groupings of requirements as n-clusters, where n is the
number of requirements in the cluster. The two single pairs in the
previous example will thus form a 3-cluster. The cluster distribution can
be derived by calculating the transitive closure of a graph in which the
nodes correspond to requirements and edges correspond to pairs of
requirements (ri, rj) with S(ri, rj) � t. The sizes of the clusters and the
number of clusters reveal the usefulness of the automated similarity
analysis. It may be desirable to have many requirements grouped into n-
clusters where n is the greatest number of requirements that the
requirements analyst is capable of handling simultaneously. Example
cluster distributions are presented in Figure 6a-b.

4. Empirical investigation

In order to investigate the potential benefits of automated similarity
analysis, we have applied the similarity measures described in Section 3.1

Figure 2. Assessment scheme with contingency table

Below similarity
threshold

Above or equal to
similarity threshold

Total

Actual
non-duplicates

A
True negatives

B
False positives

A+B

Actual
duplicates

C
False negatives

D
True positives

C+D

Total A+C B+D A+B+C+D

True positives rate = D/(C+D)
False positives rate = B/(A+B)

Accuracy = (A+D)/(A+B+C+D)
8 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation
to real industrial requirements. The measures were used to see if
automated analysis can correctly determine if a certain requirement is a
duplicate of an already existing requirement.

For the investigation we have developed a computer program to
perform the tasks specified in Figure 3. The pre-processing steps are
handled by a lexical analyser, a stop word remover and a stemmer
(explained in Section 3). The stop list remover excludes words with low
discrimination value, and consists of 425 words derived from the Brown
corpus (Francis, & Kucera, 1982). For the stemming of words, the Porter
algorithm is applied (Porter, 1980). The similarity calculation produces a
list of requirement pairs along with a value for each pair representing the
similarity measure.

Telelogic, a large software developer, has allowed us restricted access to
a requirements database of 1,920 confidential requirements. Telelogic
develops software development tools for a wide market and handles
requirements arriving at a high rate from several different stakeholders
(about three requirements a day (Höst et al, 2000). The requirements are
submitted through a web interface and thereafter managed by
requirements engineers (Regnell et al., 1998).

In Figure 4, two examples of requirements from the database are
shown. Many of the attributes are set at different stages in the
requirements process, reflecting the refinement of the requirement from
submitted to implemented or rejected (Regnell et al., 1998). The stage is
represented by the ‘Status’ and the possible stages are shown in the
leftmost column in Table 1. The table also shows, in the second column,
the distribution of the 1,920 requirements over the different stages.

4.1 Preparations

When a requirements engineer analyses a requirement, the requirement is
checked on many different properties. Three related properties are

Figure 3. A functional view of automated similarity analysis between requirement A and
B, producing a measure SA,B ranging from 0 to 1.

Automated Similarity Analysis

Break into
words

Remove
stop words

Stem
words

Calculate
similarity

A

B

SA,B ∈ [0,1]
 and Management of User Requirements in Market-Driven Software Development 139

A feasibility study of automated natural language requirements analysis in market-driven development

14
Figure 4. Two example requirements denoted duplicates in the database. These two
requirements were also suggested as duplicates by the similarity calculator at the
0.75 threshold level using the cosine similarity measure.

RqId RQ97-059
Date Wed Apr 2 11:40:20 1997
Summary A file should support storing multiple diagrams
Why ObjectGeode has it. It's a powerful feature. It simplifies the dayly work with SDT.

Easier configuration management. Forcing one file for each procedure is silly.
Description The SDT “Data model'' should support storing multiple diagram on one file.
Dependency 4
Effort 1-2
Comment Prestudy needed
Reference http://info/develop/anti_og_package.htm
Customer All
Tool SDT SDL Editor
Level Slogan
Area Ergonomy
Submitter x
Priority 3: next release (3.3)
Keywords diagrams files multiple
Status Classified

RqId RQ96-270
Date
Summary Storing multiple diagrams on one file
Why It must be possible to store many diagrams on one file. SDT forces to have 1 diagram

per file. It's like forcing a C programmer to have not more than one function per
file... The problem becomes nasty when you work in larger projects, since adding a
procedure changes the system file (.sdt) and you end up in a mess having to "Com-
pare systems".

Description Allow the user to specify if a diagram should be appended to a file, rather than forc-
ing him to store each diagram on a file of its own.

Dependency 4
Effort 4
Comment This requirement has also been raised within the multiuser prestudy work,but no

deeper penetration has been made. To see all implications of it we should have at
least a one-day gathering with people from the Organizer, Editor and InfoServer
area, maybe ITEX?
Här behövs en mindre utredning, en "konferensdag" med förberedelser och upp-
följning. Deltagare behövs från editor- och organizergrupperna, backend behövs ej så
länge vi har kvar PR-gränssnittet till dessa.

Reference
Customer All
Tool Don't Know
Level Slogan
Area Editors
Submitter x
Priority 3
Keywords storage, diagrams, files, multi-user
Status Classified
0 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation
(1) whether or not it is regarded as a duplicate of another requirement
already in the database, (2) if it is possible to merge it with another
requirement and (3) if it should be split into two or more requirements
before further analysis. If a requirement has one of these properties, it is
assigned the ‘Duplicate’ status and an appropriate action is taken. When a
requirement is merged, all the information is added to the requirement it
is merged with. When a requirement is split, the information is
distributed over two or more new requirements. When a requirement is a
pure duplicate (property 1 above), no further action is taken with the
information.

As shown in Table 1, 130 of the 1,920 requirements were either
duplicates, merges or splits. In the analysis, only those that are ‘true’
duplicates are considered, since we know beforehand that merges and
splits will match partially and thus bias the result. When these were
removed, 101 requirements remained. The resulting set is shown in
column 3 of Table 1 (set Afull).

Some of the 101 duplicates involved more than one requirement. This
means that a requirement may be denoted a duplicate of two other
requirements. To resolve this we parsed every identified duplicate and
constructed a set of unique duplicate pairs. However, doing this creates a
set of duplicate pairs that may be related (which addresses the discussion
about clusters at the end of Section 3.3). Therefore, we calculated all these
relations and created new duplicate pairs to denote the relation. For
example, if requirement A initially was denoted a duplicate of
requirements B and C, and requirement D was denoted a duplicate of
requirement C, we would first create the duplicates pairs (A, B), (A, C)
and (D, C). Then we would add the pairs (B, C), (A, D) and (B, D) to
fully reflect all possible relations. This is acceptable since the duplicate
relation is transitive. That is, if both A and D are duplicates of C, then A
would also be a duplicate of D.

According to the requirements database manager, not all the
requirements having status New or Assigned had been analysed for
duplicates, and it was only certain that those having priority 1 had been
analysed. Therefore, we considered removing all requirements with status
‘New’ or ‘Assigned’, not having priority 1. After doing this we noticed
that some duplicate pairs referred to the removed requirements. Thus, we
decided to analyse two sets: one with all requirements and one with the
‘New’ and ‘Assigned’ requirements with priority not equal to 1 removed.
As the second set does not include all the requirements addressed in the
 and Management of User Requirements in Market-Driven Software Development 141

A feasibility study of automated natural language requirements analysis in market-driven development

14
duplicate pairs, those pairs were removed from the duplicates pair set. The
resulting number of requirements and duplicate pairs are shown in
column 4 in Table 1 (set Areduced).

The textual information used to represent each requirement was
collected from the ‘Summary’ field, which corresponds to a short
requirement title, and the ‘Description’ field, which corresponds to a
further explanation (see the examples in Figure 4). As these fields were
empty for a subset of the requirements, three different requirement sets
were prepared from each of sets Afull and Areduced. The first set comprised
all the requirements that had a non-empty ‘Summary’ field. The second
set comprised all the requirements that had a non-empty ‘Description’
field. The third set comprised all the requirements that had a non-empty
‘Summary’ field or a non-empty ‘Description’ field (NB. Not exclusive or.
Requirements having a non-empty ‘Summary’ field and a non-empty
‘Description’ field were included in the last set). In the analysis of the sets
using both fields, the two fields were treated as one. Table 2 shows the
number of requirements in each of the sets after the requirements with the
empty fields had been removed.

Table 1. Number of requirements in the database and in the different sets prepared
for analysis.

Status Original Afull Areduced

New 406 406 12

Assigned 428 428 31

Classified 601 601 601

Implemented 252 252 252

Rejected 103 103 103

Duplicates 130 101 90

Total 1,920 1,891 1,089

Duplicate pairs - 142 124

Table 2. Final sets prepared for the analysis.

Non-empty field

Bfull Breduced

Require-
ments

Duplicate
pairs

Require-
ments

Duplicate
pairs

Summary 1,830 142 1,085 124

Description 1,570 99 915 86

Summary or Description 1,887 142 1,088 124
2 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation and Management of User Require

Ta
bl

e
3.

 C
on

ti
ng

en
cy

 ta
bl

e
da

ta
 fo

r
th

e
su

m
m

ar
y

fie
ld

 in
 s

et
 B

fu
ll

us
in

g
th

e
co

si
ne

 s
im

ila
ri

ty
 m

ea
su

re
m

en
t.

0+
0.

12
5

0.
25

0.
37

5
0.

5
0.

62
5

0.
75

0.
87

5
1

Tr
ue

 p
os

it
iv

es
 (

D
)

11
4

11
4

10
5

80
62

47
42

31
30

Tr
ue

 n
eg

at
iv

es
 (

A
)

1,
57

8,
21

3
1,

57
8,

58
1

1,
62

8,
04

9
1,

66
6,

09
3

1,
67

0,
88

1
1,

67
2,

94
5

1,
67

3,
24

7
1,

67
3,

34
1

1,
67

3,
34

9

Fa
ls

e
po

si
ti

ve
s

(B
)

95
,1

80
94

,8
49

46
,5

55
8,

11
1

2,
86

4
49

9
14

6
52

44

Fa
ls

e
ne

ga
ti

ve
s

(C
)

28
28

35
61

80
93

10
0

11
1

11
2
 4.2 Results

The similarity calculator was run once for
each of the prepared requirements sets to
calculate the three similarity coefficients
described in Section 3.1. The quality was
assessed by producing contingency tables for
nine different threshold levels as explained in
Section 3.3. The threshold levels ranged from
0 to 1 with a 0.125 interval. All the possible
combinations resulted in 162 contingency
tables (3 measurements · 2 sets · 3 fields · 9
thresholds = 162 tables).

In Table 3, nine contingency tables are
shown for the analysis on the ‘Summary’ field
of set Bfull using the cosine similarity
measure. The number of possible unique
pair-wise comparisons, which is the same as
the total number of possible unique
requirement pairs, is denoted A + B + C + D
in the contingency table in Figure 2, and
corresponds to the sum of each column in
Table 3. The first row shows the number of
correctly identified duplicate pairs and
decreases as the threshold increases. Most
requirement pairs are, correctly, considered as
non-duplicate as shown in the second row.
Their number increases with the threshold
level. The third row shows how many
duplicate pairs the analyser identified that
actually were not identified as duplicate pairs
by the experts. Finally, in the fourth row are
all the actual duplicate pairs that the analyser
did not find.

The number of false positives and
negatives at threshold level 1 may raise some
questions. There may be false negatives
because requirements concerning exactly the
ments in Market-Driven Software Development 143

A feasibility study of automated natural language requirements analysis in market-driven development

14
Figure 5a. Similarity analysis performance using the summary field in set Bfull.

Figure 5b. Similarity analysis performance using the summary field in set Breduced.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine
4 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation
Figure 5c. Similarity analysis performance using the description field in set Bfull.

Figure 5d. Similarity analysis performance using the summary and description fields
in set Breduced.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e
Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine
 and Management of User Requirements in Market-Driven Software Development 145

A feasibility study of automated natural language requirements analysis in market-driven development

14
same issue may be worded differently. The reasons that there may be false
positives are several:

1. A requirement may be partially implemented and result in new
requirements. The implemented requirement and the new require-
ments may then have the same information in some textual
attributes. Since none of these requirements are marked as dupli-
cates in the database the automatic analyser may produce a false
positive.

2. The compared textual attributes may be wrong and misleading, not
reflecting the actual meaning of the requirement.

3. Two requirements may be highly related and concern the same issue
and have the same information in one textual attribute. Neverthe-
less, they do not have to be duplicates.

4. If all non-matching words in two requirements happen to be stop
words, and thus eliminated before the similarity calculation, the
reduced requirements may give a similarity measure of 1 but actu-
ally have different wordings.

The rate of true positives, the rate of false positives and the accuracy
(see Section 3.3) were plotted to compare the measurements and to see
which would generate the best result. In Figure 5a-b, four graphs are
shown to support the conclusions on:

• which measurements may be considered the best

• whether or not the requirements with status ‘New’ or ‘Assigned’ and
not priority 1 should be ignored

• which fields or combination of fields give the best results.

The graphs show that the rate of correctly identified duplicate pairs
(the true positives rate) decreases from 80% or 90% at threshold level 0+
to about 20% at threshold level 1. The lowest degree of similarity is found
when there is only one single word matching. Each measure will then give
a similarity value just above 0 and thus, using threshold level 0+, suggest
exactly the same set of duplicate pairs (every similarity measure but zero
between two requirements results in a suggested duplicate pair).
Correspondingly, the highest degree of similarity is found when all words
match. Each measure will then give a similarity measure of 1 and produce
6 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation
exactly the same set of duplicate pairs. Between these threshold levels the
curves differ slightly, which shows that the similarity measures perform
differently. The Dice and cosine similarity coefficients show no significant
difference, but the Jaccard coefficient performs slightly worse. Thus, for
this particular set of requirements, the Dice or cosine coefficient is
preferable.

The false positive rate is very low, decreasing from 5.69% down to
0.01%. The accuracy of the similarity analyser is as high as 94.3% at the
lowest threshold level and increases to near 100% at threshold level 1.
This curve suggests that the Jaccard coefficient is a better choice,
contradicting the choice based on the positives rate.

Looking at the two topmost graphs, which show the results from using
only the ‘Summary’ field, we can see that there is no considerable
difference between the results for set Bfull and Breduced. This implies that
either (1) there are ‘New’ and ‘Assigned’ requirements with lower
priorities that have been analysed and found to be duplicates, of which
some are identified by the program, or (2) the requirements have not been
analysed and few matches were found by the program. Alternative 1
seems more plausible and is also confirmed by the contingency table –
more duplicates are identified which must be related to the ‘New’ and
‘Assigned’ requirements with lower priorities.

The two leftmost graphs, showing the results from using the
‘Summary’ or the ‘Description’ fields respectively (from set Bfull), differ
on the low and high threshold levels. At threshold level 0+, the true
positives rates is as high as above 90% using a combination of the
‘Summary’ and the ‘Description’ fields. However, the false positives rate is
substantially higher and the true negatives rate has also dropped
significantly. The conclusion from this comparison is that using only the
‘Summary’ field gives more accurate answers. The reason for this is that
the ‘Description’ field contains too much noise that incorrectly boosts the
similarity measures.

Finally, the top left and the two bottommost graphs support the rather
evident: a combination of the ‘Summary’ and the ‘Description’ field
results in a combination of the results from using the ‘Summary’ and the
‘Description’ fields separately.

The high number of requirement pairs identified at threshold level 0+
in Table 3 may at first seem very discouraging. However, calculating the
cluster distribution of all the positives (true and false) as explained in
 and Management of User Requirements in Market-Driven Software Development 147

A feasibility study of automated natural language requirements analysis in market-driven development

14
Section 3.3 gives support to the following conclusions and the usefulness
of the result.

The cluster distributions for the Breduced set are shown in Figure 6a-b.
Each figure shows four graphs. The first three show the cluster
distribution using the cosine measure on the ‘Summary’ and the
‘Summary’ + ‘Description’ fields respectively. The last graph in each row
shows the cluster distribution for the actual duplicates found by the
experts.

The graphs show that with increasing threshold the number of clusters
of larger size decreases. For example, in Figure 6a at threshold level 0.375
there is one very large cluster involving 123 different requirements.

What is noteworthy about this is that the presented study is made on a
very large set of requirements but that in reality the requirements arrive
continuously, a few at a time. The similarity analysis can thus be made
incrementally on a smaller set of requirements, avoiding the need for

Figure 6a. Requirements cluster distribution for the Breduced set using the cosine
measure on the ‘Summary’ field. The three leftmost graphs show the
number of clusters of different sizes for various thresholds compared to the
actual cluster distribution on the right.

Figure 6b. Requirements cluster distribution for the Breduced set using the cosine
measure on the ‘Summary’ and the ‘Description’ fields. The three leftmost
graphs show the number of clusters of different sizes for various thresholds
compared to the actual cluster distribution on the right.

0 50 100 150
0

10

20

30

40

50

60

cluster size

cl

us
te

rs

0 10 20 30
0

10

20

30

40

50

60

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

cluster size

0 10 20 30 40 50
0

10

20

30

40

50

60

70

cluster size

cl

us
te

rs

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

cluster size
0 1 2 3 4 5

0

10

20

30

40

50

60

70

cluster size
0 1 2 3 4 5

0

10

20

30

40

50

60

70

cluster size
8 Elicitation and Management of User Requirements in Market-Driven Software Development

4. Empirical investigation

Elicitation
interpreting the results of similarity analysis of the entire set of
requirements at one time. The cluster distribution shows that if we
analyse one randomly selected requirement from the database (which may
represent a newly submitted requirement), the worst case would be that
the analyser suggests a cluster of 123 requirements to be identical (Figure
6a, leftmost graph). This is thus the maximum number of requirements
the requirement analyst must handle simultaneously. As the number may
seem too high for the lower thresholds, it is reasonable to suggest that too
large clusters may be ignored, as they are probably irrelevant.

Considering both performance and cluster distribution, we may also
conclude that the Dice and cosine measures are superior. The true
positives rate has already been shown to be higher, and the higher false
positives rate is compensated by the suggestion of analysing a group of
related requirements simultaneously, instead of checking each of the
several thousand possible duplicate pairs.

Another interesting issue is whether the automated analyser reveals
duplicate pairs that the experts missed. To explore this we let an expert
analyse the 75 false positives suggested when using the cosine
measurement on the ‘Summary’ field for set Bfull at threshold level 0.75.
Table 4 shows the surprising result from the analysis. It turned out that
37% of the suggested duplicate pairs were actually missed by the experts!
For that threshold level, the true positives rate would then increase from
26% (Figure 5b) to almost 40%, the already low false positives rate would
decrease, and the already high accuracy would increase. The analyst did
not regard two requirements in a pair as duplicate or similar if they were
to be implemented in different parts of the software. The table also shows
the additional relationships identified, which thus imply that only 21 of
the 75 pairs identified would be completely wrong.

The manual analysis also
indicated that the analyser might
have a problem when there are too
few words in the fields. One
suggestion would then be to use
the ‘Description’ field only when
the ‘Summary’ field has too few
words.

Furthermore, the threshold
value can be tuned based on the
requirements engineer’s

Table 4. Result of expert analysis of
the false positives for the set Bfull at
the threshold 0.75 using the cosine
measure on the summary field.

Relationship Count

Duplicate 28

Similar 13

Related 8

Part of 5

Not related 21
 and Management of User Requirements in Market-Driven Software Development 149

A feasibility study of automated natural language requirements analysis in market-driven development

15
consideration of the best trade-off between few false positives and many
true positives.

In summary, it may be concluded that:

1. The similarity analysis technique gives reasonably high accuracy
considering its simplicity.

2. For incremental analysis of requirements, given that related require-
ments are grouped into clusters, the Dice and cosine may be consid-
ered the superior measures.

3. A large explanatory field tends to give a worse result, as the discrim-
ination between requirements declines. However, if one field has
too few words it may be worth using other lengthy fields.

4. The grouping of suggested duplicate requirements into clusters
reduces the analysis burden considerably.

5. Further applications

There are numerous conceivable applications of automated similarity
analysis beyond identifying duplicates. The following briefly describes
some of these application areas, of which we have only evaluated one so
far.

5.1 Requirements interdependencies

Requirements interdependencies are important to identify and keep track
of for requirements prioritization and release planning purposes, as
interdependencies may govern what partitions of a particular set of
requirements are allowed from a functional perspective, or eligible from a
cost/value perspective. Carlshamre and Regnell (2000) describe a number
of salient interdependencies found in a study of empirical data The
relationship between similarity and interdependency is evident in the case
where we have two requirements R1 and R2, with the exact same
‘Summary’ field. This would be a true duplicate pair in the previous sense,
but it would also represent an OR interdependency, which imply that
either one of the requirements could be implemented. The existence of
common keywords may indicate other types of interdependencies as well.
For example, if there are several requirements that include the word
0 Elicitation and Management of User Requirements in Market-Driven Software Development

5. Further applications

Elicitation
‘sorting’, it may be wise to consider implementing these together to save
development resources, which would represent an interdependency
regarding cost of implementation.

To investigate whether the similarity measurement technique could be
used to support the identification of interdependencies in a set of
requirements, we applied the same analysis technique as described in
Section 3.1 to five different sets of 20 high-priority requirements,
previously studied manually by experts (for further information on the
results of the manual study, see Carlshamre, Sandahl, Lindvall, Regnell,
and Natt och Dag, 2001). Among the total of 100 requirements, there
were in total 155 pair-wise interdependencies manually identified by
experts from each of the five organisations.

Results. Each set of 20 requirement slogans were relieved of stop words
and reduced to stems, before being separately fed to the similarity
calculator using the cosine coefficient. The automatic analyser reported
70 similar pairs on a 0+ threshold (9, 18, 21, 10 and 12 pairs in each set
respectively), of which 25 were true positives. Table 5 shows the
frequencies of actual dependencies in relation to the similarity measure
using the assessment scheme presented in Table 1.

A chi-square test (Siegel & Catellan, 1988) gives a p-value less than
0.0001, which shows that the similarity measure varies significantly with
actual dependencies.

Thus, by checking for lexical similarity, this particular case
demonstrates that it is a promising technique to support the
interdependency identification process by automatic analysis. Although
the accuracy may not suffice for this technique to be used on its own,

Table 5. Contingency table for dependencies and similarities.

Similarity=0 Similarity>0 Total

Actual non-
dependencies

750 45 795

Actual
dependencies

130 25 155

Total 880 70 950
 and Management of User Requirements in Market-Driven Software Development 151

A feasibility study of automated natural language requirements analysis in market-driven development

15
automatic lexical analysis may be used in conjunction with other
techniques to reduce the effort of identifying interdependencies.

5.2 Requirements gathering

When a stakeholder is proposing a new requirement, it may be valuable to
know if a similar requirement has already been implemented and, if so, in
what release. If a similar requirement has not been implemented, it may
be desirable to know if a similar requirement has been proposed.

5.3 Strategic fit

A company may define key areas that are of specific importance for the
requirements work (e.g., usability, decision-making features or invoicing
capabilities). When such requirements are proposed, they can be
identified by a similarity analysis approach and thus more easily be given
the appropriate management attention.

5.4 Defect tracking

Companies with mature software products that have gone through series
of releases often have many defects to track and analyse. As new defects
are reported, a similarity analysis approach can aid testers to identify if
similar defects have been reported earlier.

5.5 Support Issues

Some companies allow their customers to get feedback on support issues
through their web sites. Similarity analysis approaches can help the
customer to enter questions in natural language and more easily analyse
the questions and find suitable answers.

6. Further improvements

There are a number of potential improvements that can be made to the
presented requirements similarity measurement method, including the
following suggestions to be evaluated in further research:
2 Elicitation and Management of User Requirements in Market-Driven Software Development

7. Conclusions

Elicitation
• Process issues such as when similarity analysis should be used, who
should perform the analysis and how the analysis is cost-efficient to
perform.

• How different ways of representing requirements affect the results.
Which representation is best suited for high precision in automatic
similarity analysis?

• Different attributes’ impact on similarities. Use of other attributes
may increase precision.

• Improve method accuracy. Examples include: the use of a domain-
specific stop list, a thesaurus with general synonym words, spelling
correction prior to the automated similarity analysis and by not dis-
criminating between words with a short editing distance.

• Smart algorithms: some words may be over-represented in the set of
false positives. Removing these words may improve the precision.
This is an example of where it may be possible to make the algo-
rithm self-adjustable based on human corrections.

• Evaluate linguistic methods that may provide more precise analysis
of natural language requirements on a semantic level. This may
include the use of ontologies or word nets.

• Ways of visualising the results from automated similarity analysis
and supporting the requirements engineer in the navigation among
related requirements.

In order to make these improvements and to make the methods more
general it is of course desirable to apply the methods to other requirement
sets from industry. Also, it is of great interest to compare different
approaches and combinations of approaches. The implementation cost
and computational effort needed for statistical methods, linguistic
methods and other computational models (such as the LSA approach in
Landauer & Dumas, 1997) are of much interest for applications aimed at
market-driven organisations.

7. Conclusions

Automated similarity analysis is a promising technique for supporting
requirements engineers to identify requirements duplicates and
 and Management of User Requirements in Market-Driven Software Development 153

A feasibility study of automated natural language requirements analysis in market-driven development

15
interdependencies. This conclusion is drawn on the basis of empirical
studies on industrial requirements. Automated analysis is, in the
particular cases of the presented investigations, able to identify as many as
80% of the actual duplicates and still only incorrectly classify about 6% of
all the possible requirement pairs.

When using automated similarity analysis for interdependency
identification, a significant correlation was found between similarity and
interdependency. The results show a correct classification of 16% of the
actual interdependencies.

We do not believe that the presented technique can replace human
judgement, but our results suggest that automated similarity analysis on a
syntactic level using information retrieval techniques may be effective in
pinpointing true duplicates and interdependencies. Further studies are
needed in order to increase the understanding of the benefits and limits of
automated analysis of natural language requirements (Ryan, 1993). It is
especially important to conduct further research in real situations, where
new requirements are continuously arriving from multiple sources, and
where requirements are analysed incrementally by a requirements
engineer with domain expertise. In these investigations it is also of
importance to consider the relationship between effort needed to put a
method to work in a market-driven company and the efficiency of the
method. Conducting real-world studies is a necessary means for valid
assessments of the benefits and costs of decision support systems in a
market-driven requirements engineering context.

Acknowledgements

This work is partly funded by the National Board of Industrial and
Technical Development (NUTEK), Sweden, within the REMARKS
project (Requirements Engineering for Market-Driven Software
Development) grant 1K1P-97-09690. A previous version of this paper
was published at the Seventh International Workshop on Requirements
Engineering: Foundations for Software Quality (REFSQ’2001). We
would like to direct warm thanks to Per Runeson, Martin Höst and
Thomas Olsson, all at the Department of Communication Systems,
Lund, for their valuable input and enthusiastic suggestions.
4 Elicitation and Management of User Requirements in Market-Driven Software Development

8. References

Elicitation
8. References
Ambriola, V., & Gervasi, V. (1997). Processing Natural Language Requirements. In Pro-

ceedings of the Twelfth International Conference on Automated Software Engineering (pp.
36–45), Los Alamitos, CA: IEEE Computer Society Press.

Carlshamre, P., & Regnell, B. (2000). Requirements Lifecycle Management and Release
Planning in Market-Driven Requirements Engineering Processes. In A. M. Tjoa, R. R.
Wagner, A. & Al-Zobaidie (Eds.), Proceedings of the 11th International Workshop on
Database and Expert Systems Applications Process (pp. 961–965). Los Alamitos, CA:
IEEE Computer Society Press.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., & Natt och Dag, J. (2001). An
Industrial Survey of Requirements Interdependencies in Software Product Release
Planning. In Proceedings of the Fifth IEEE International Symposium on Require-
ments Engineering (pp. 84–91). Los Alamitos, CA: IEEE Computer Society
Press.

Chen, H., Hsu, P., Orwig, R., Hoopes, L., & Nunamaker, J. F. (1994). Automatic Con-
cept Classification of Text from Electronic Meetings. Communications of the ACM,
37(10), 56–73.

Cybulski, J. L., & Reed, K. (1998). Computer Assisted Analysis and Refinement of
Informal Software Requirements Documents. Proceedings of the Fifth Asia-Pacific Soft-
ware Engineering Conference (pp. 128–135). Los Alamitos, CA: IEEE Computer Soci-
ety Press.

Deifel, B. (1999). A Process Model for Requirements Engineering of CCOTS. In Pro-
ceedings of Tenth International Workshop on Database and Expert Systems Applications
(pp. 316–320). Los Alamitos, CA: IEEE Computer Society Press.

Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval : Data Structures & Algo-
rithms. Engelwood Cliffs, NJ: Prentice-Hall.

Francis, W. N., & Kucera, H. (1982). Frequency Analysis of English Usage. New York:
Hougton Mifflin.

Gervasi, V., & Nuseibeh, B. (2000). Lightweight Validation of Natural Language
Requirements. In Proceedings of the Fourth IEEE International Conference on Require-
ments Engineering (pp. 140–148). Los Alamitos, CA: IEEE Computer Society Press.

Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., & Nyberg, C. (2001). Exploring
Bottlenecks in Market-Driven Requirements Management Processes with Discrete
Event Simulations. Journal of Systems and Software, 59, 323–332.

Karlsson, J. & Ryan, K. (1997). A Cost–Value Approach for Prioritizing Requirements.
IEEE Software, 14(5). 67–74.
 and Management of User Requirements in Market-Driven Software Development 155

A feasibility study of automated natural language requirements analysis in market-driven development

15
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The Latent
Semantic Analysis theory of the acquisition, induction, and representation of knowl-
edge. Psychological Review, 104, 211–240.

Lubars, M., Potts, C., & Richter, C. (1993). A Review of the State of the Practice in
Requirements Modeling. In Proceedings of IEEE International Symposium on Require-
ments Engineering (pp. 2–14). Los Alamitos, CA: IEEE Computer Society Press.

Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of
Literary Information. IBM Journal of Research and Development, 1, 309–317.

Mitra, M., Buckley, C., Singhal, A., & Cardie, C. (1997). An Analysis of Statistical and
Syntactic Phrases. In Proceedings of 5th International Conference on Computer-Assisted
Information Searching on Internet (pp. 200–214). Paris: Centre de Hautes Etudes Inter-
nationales d'Informatique Documentaires.

Moreno, A. M. (1997). Object-Oriented Analysis from Textual Specifications. In Pro-
ceedings of the 9th International Conference on Software Engineering and Knowledge
Engineering (pp. 48–55). Skoki, IL: Knowledge Systems Institute.

Osborne, M., & MacNish, C. K. (1996). Processing Natural Language Software
Requirement Specifications. In Proceedings of the Second IEEE International Conference
on Requirements Engineering (pp. 229–236). Los Alamitos, CA: IEEE Computer Soci-
ety Press.

Park, S., Kim, H., Ko, Y., & Seo, J. (2000). Implementation of an Efficient Require-
ments-Analysis Supporting System Using Similarity Measure Techniques. Information
and Software Technology, 42, 429–438.

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program, 14, 130–137.

Potts, C. (1995). Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software. In Proceedings of IEEE International Symposium on
Requirements Engineering (pp. 128–130). Los Alamitos, CA: IEEE Computer Society
Press.

Rayson, P., Emmet, L., Garside, R., & Sawyer, P. (2000). The REVERE Project: Experi-
ments with the application of probabilistic NLP to Systems Engineering. In Proceed-
ings of the Fifth International Conference on Applications of Natural Language to
Information Systems (pp. 288–300). New York: Springer-Verlag.

Regnell, B., Beremark, P., & Eklundh, O. (1998). A Market-Driven Requirements Engi-
neering Process – Results from an Industrial Process Improvement Programme.
Requirements Engineering, 3, 121–129.

Rolland, C., & Proix, C. (1992). A natural language approach for requirements engi-
neering. In P. Loucopoulos (Ed.), Lecture Notes in Computer Science, Vol. 653:
Advanced Information Systems Engineering, 10th International Conference (pp. 257–
277). Berlin: Springer-Verlag.
6 Elicitation and Management of User Requirements in Market-Driven Software Development

8. References

Elicitation
Ryan, K. (1993). The Role of Natural Language in Requirements Engineering. In Pro-
ceedings of IEEE International Symposium on Requirements Engineering (pp. 240–
242). Los Alamitos, CA: IEEE Computer Society Press.

Salton, G. (1989). Automatic Text Processing : The transformation, Analysis, and Retrieval
of Information by Computer. Reading, MA: Addison-Wesley.

Sawyer, P., Sommerville, I., & Kotonya, G. (1999). Improving Market-Driven RE Proc-
esses. In M. Oivo, & P. Kuvaja (Eds.), Proceedings of the International Conference on
Product Focused Software Process Improvement (pp. 222–236). Oulu, Finland: Technical
Research Centre of Finlad (VTT).

Siegel, S., & Castellan, N. J (1988). Nonparametric Statistics for the Behavioral Sciences
(2nd ed.). New York: McGraw-Hill.

van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). London: Butterworths.
 and Management of User Requirements in Market-Driven Software Development 157

15
8 Elicitation and Management of User Requirements in Market-Driven Software Development

Reports on Communication Systems

101 On Overload Control of SPC-systems
Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102 Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103 Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104 Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105 Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106 Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107 Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108 Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109 On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110 Enhancements of Communication Resources
Johan M. Karlsson, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1018- -SE+132P

111 On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112 Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113 Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114 End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

115 An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

116 Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

117 Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

118 On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

119 Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

120 Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

121 Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

122 On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

123 Network Oriented Load Control in Intelligent Networks Based on Optimal Decisions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

124 Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

125 Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

126 Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, Ph.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

127 Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128 Switch Performance and Mobility Aspects in ATM Networks
Daniel Sobirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

129 VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

130 On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

131 Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

132 Requirements Engineering with Use Cases – a Basis for Software Development
Björn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

133 Utilisation of Historical Data for Controlling and Improving Software Development
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

134 Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

135 Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1043- -SE+242P

136 Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

137 Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

138 On Fault Content Estimations Applied to Software Inspections and Testing
Håkan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

139 Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

140 Dynamic traffic Control in Multiservice Networks – Applications of Decision Models
Ulf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

141 ATM Networks Performance – Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142 Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

143 Controlling Fault-Prone Components for Software Evalution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

144 Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

145 Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

146 Elicitation and Management of User Requirements in Market-Driven Software Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

	Contact Information:
	Paper I: Exploring bottlenecks in market-driven requirements management processes with discrete e...
	Paper II: An industrial case study of usability engineering in market-driven packaged software de...
	Paper III: An industrial case study on distributed prioritisation in market-driven requirements e...
	Paper IV: A feasibility study of automated natural language requirements analysis in market-drive...
	Contents
	1. Research focus
	1.1 Requirements engineering
	Requirements engineering in market-driven software development

	1.2 Usability engineering
	System acceptability

	1.3 Process simulation
	Simulation models

	1.4 Natural language processing

	2. Research methodology
	2.1 Research questions
	2.2 Research methods
	2.3 Research classification
	2.4 Validity

	3. Research results
	3.1 Main contributions
	3.2 Threats to validity
	3.3 Summary of papers

	4. Further research and future plan
	4.1 Further research
	4.2 Future plan

	5. References
	Abstract
	1. Introduction
	2. The REPEAT process
	2.1 Elicitation.
	2.2 Selection.
	2.3 Change management during construction.
	2.4 Conclusion.

	3. The simulation model
	3.1 Structure of the model
	3.2 Parameter estimation
	3.3 Discrepancies between simulator and process
	3.4 Model implementation

	4. Results
	4.1 Case 1: No priorities
	4.2 Case 2: Actual situation
	4.3 Case 3: Increased capacity
	4.4 Case 4: Decreased work load

	5. Conclusions
	Acknowledgements
	6. References
	Abstract
	1. Introduction
	2. Research methodology
	2.1 The SUMI questionnaire
	2.2 The heuristic evaluation

	3. Results
	3.1 The SUMI questionnaire
	3.2 The heuristic evaluation

	4. Conclusions
	Acknowledgements
	5. References
	Abstract
	1. Introduction
	2. A distributed prioritization process
	3. Case study planning and operation
	4. Results from questionnaires
	5. Visualization of prioritization data
	6. Conclusions and further work
	Acknowledgements
	7. References
	Appendix A: Raw data from prioritization
	Abstract
	1. Introduction
	1.1 Background
	1.2 Related work
	1.3 Paper structure

	2. Requirements similarity analysis
	3. Automated similarity measurement
	3.1 Similarity measures
	3.2 Preparing the source data
	3.3 Assessing the quality of similarity measures

	4. Empirical investigation
	4.1 Preparations
	4.2 Results

	5. Further applications
	5.1 Requirements interdependencies
	5.2 Requirements gathering
	5.3 Strategic fit
	5.4 Defect tracking
	5.5 Support Issues

	6. Further improvements
	7. Conclusions
	Acknowledgements
	8. References

