

Extreme Programming and Rational Unified Process – Contrasts or Synonyms?

Per Runeson and Peter Greberg
Lund University, Sweden

per.runeson@telecom.lth.se

Abstract
The agile movement has received much attention in

software engineering recently. Established methodologies
try to surf on the wave and present their methodologies as
being agile, among those Rational Unified Process
(RUP). In order to evaluate the statements we evaluate
the RUP against eXtreme Programming (XP) to find out
to what extent they are similar end where they are
different. We use a qualitative approach, utilizing a
framework for comparison.

We conclude from the analysis that the origin and
business concepts of the two – commercial for RUP and
freeware for XP – is a main source of the differences.
RUP is a top-down solution and XP is a bottom-up
approach. Which of the two is really best in different
situations has to be investigated in new empirical studies.

1 Introduction
The agile movement has appeared the last years as an

alternative direction for software engineering [1]. Among
the agile methodologies, eXtreme Programming (XP) is
the most well known [2]. In the current agile boom, many
established software engineering methodologies try to
present themselves as being agile. The Rational Unified
Processes (RUP) [16] is among those, providing “plug-
ins” to RUP for eXtreme Programming1. Thereby they
offer a downsized version of RUP, which is stated to be
lightweight, agile style.

Both methodologies share some common
characteristics; they are iterative, customer-oriented and
role-based. RUP is generally not considered agile; rather
it is criticized for being too extensive and heavyweight
[21]. RUP comprises 80 artifacts while XP only stresses
the code. RUP has 40 roles while XP has five.

Theses issues lead us to the main research question in
this paper: Do RUP and XP match together? Are they
synonyms, or are they contrasts? IBM states in a white
paper that they do [11] but what does a less dependent
analysis tell? Our approach to investigate the question is
framework analysis. Using a modified version of a

1 http://www-
106.ibm.com/developerworks/rational/library/4156.html

standard question framework, we investigate similarities
and differences between RUP and XP.

The paper is outlined as follows. Section 2 presents
RUP and XP briefly, as well as the research methodology.
Section 3 comprises the framework used in the analysis
and Section 4 contains the analysis as such. Finally, in
Section 5 we present the conclusions of the study.

2 Background

2.1 Rational Unified Process
Rational Unified Process (RUP) is a development

methodology, developed and marketed by Rational
Software, by now owned by IBM. The first release came
in 1998 and was a result of cooperation between Grady
Booch, James Rumbaugh and Ivar Jacobson [12]. RUP is
a general methodology that needs tailoring to specific
organizations’ and projects’ needs.

The core values of RUP are [16]
• Use case driven design
• Process tailoring
• Tool support

The process is use case driven, and the use cases
constitute the basis for other elements in the development
process. The practical work in RUP consists of the
following main items:
• Develop software iteratively
• Manage requirements
• Use a component-based architecture
• Model the software visually
• Verify the software quality continuously
• Manage software change

The RUP methodology is presented using four primary
modeling elements:
• Roles – who is doing what
• Artifacts – what is produced
• Activities – how the work is conducted
• Workflows – when a task is conducted

To manage a software project, some kind of a project
management model is needed, mostly of a stage-gate type
[5]. This is integrated into RUP, in terms of four phases:
inception, elaboration, construction, and transition. A
summary of the RUP is shown in Figure 1.

Figure 1. Rational Unified Process

2.2 Extreme programming
Extreme Programming (XP) is a lightweight

development methodology, which stresses teamwork,
communication, feedback, simplicity and problem solving
[2]. XP consists of a set of software development
practices, packaged into wholeness by Kent Beck and
Ward Cunningham. Its roots are in the object-oriented
community, specifically among SmallTalk programmers.

XP is built on four values:
• Communication
• Feedback
• Simplicity
• Courage

Through communication within and outside the
project, it is ensured that the right product is developed.
Quick and frequent feedback provides abilities to correct
the direction of the project. Simplicity means building the
right product, not a product for possible future needs.
Courage is needed to maintain openness and
communication.

To implement the values, 12 practices are defined
which are used in an XP project:
• Planning Game

Quickly determine the scope of the next release by
combining business priorities and technical estimates.
As reality overtakes the plan, update the plan.

• Small Releases
Put a simple system into production quickly, and then
release new versions on a very short cycle.

• Metaphor
Guide all development with a simple shared story of
how the whole system works.

• Simple Design
The system should be designed as simply as possible
at any given moment. Extra complexity is removed as
soon as it is discovered.

• Testing
Programmers continually write unit tests, which must
run flawlessly for development to continue.
Customers write tests demonstrating that features are
finished.

• Refactoring
Programmers restructure the system without changing
its behavior to remove duplication, improve
communication, simplify, or add flexibility.

• Pair Programming
All production code, i.e. code that is actually used in
the final product, is written with two programmers at
one machine.

• Collective Ownership
Anyone can change any code anywhere at any time.

• Continuous Integration
Integrate and build the system many times a day,
every time a task is implemented.

• 40-hour Week
Work no more than 40 hours a week as a rule. Never
work overtime a second week in a row.

• On-site Customer
Include a real, live user on the team, available full-
time to answer questions.

• Coding Standard
Programmers write all code in accordance with a set
of rules emphasizing communication through code.

The practices are intertwined, as illustrated in Figure 2.

Figure 2. Dependencies between the 12 practices.

XP has four basic activities, coding, testing, listening

and designing, which are conducted by five major roles,
programmer, customer, tester, tracker, and coach.

Iteration is a key concept in XP. The time constant in
the different iterations range from seconds to months, see
Figure 1.

Workflows
Business Modeling

Requirements
Analysis & Design

Implementation
Test

Deployment
Configuration &

Change Mgmt
Project Management

Environment

Iterations

On-Site Customer
Planning Game

Metaphor 40 Hour Week

Refactoring
Simple Design

Testing
Short Releases

Pair Programming

Coding Standards

Continuous Integration Collective Ownership

Figure 3. Planning/feedback loops in XP.

2.3 Framework analysis
Comparing two methodologies requires some form of

empirical studies. Using a quantitative approach [22][18]
would require the setup of two parallel projects in an
experiment, or launching a case study to investigate
certain aspects of one or another of the methodologies. As
a lower cost alternative a qualitative approach using
frameworks [7] is launched to achieve a first indication of
similarities and differences between the methodologies.

A framework provides a simple and structured means
for comparisons in a qualitative context. The framework
consists of a set of general questions, which are extended
with domain-specific questions, in an iterative flexible
design fashion.

Frameworks have been developed for software
engineering by Lindland et al [17] and used by
Kitchenham et al to evaluate novel tools [15].

3 Framework
The framework used is a combination of two

established frameworks, Zachman’s and Checkland’s [7].
Zachman’s framework consists of the six categories

what, how, where, who, when and why. Checkland’s
framework is called CATWOE and has six other
categories:
• Client: the stakeholder of the activity
• Actor: the person conducting the task
• Transformation: changes taking place
• World view: what is the outside view of the

phenomenon
• Owner: the sponsor of the activity
• Environment: the wider context in which the activity

takes place.
Zachman’s framework is stronger regarding functions

and processes (how, when) while Checkland’s framework
is richer on the individuals (client, actor, owner). We

combine the frameworks into one in order to utilize the
strengths of both, see Table 1.

Table 1. Combined framework

Zachman Checkland
What? Transformation
Why? World view
When and Where? Environment
How?
Who? Client, Actor, Owner

This combined framework is used as a starting point

and is iteratively extended with domain-specific questions
on RUP and XP, resulting in the framework with
questions, presented in Table 2.

Table 2. Framework and tailored questions

Framework Questions
What?
(Transformation)

Which underlying philosophy is the
basis for XP and RUP?
Which types of projects are RUP and
XP suitable for?

Why?
(World view)

Which are the technical pros and cons
for XP and RUP?
Which are the financial pros and cons
for XP and RUP?
Which are the social pros and cons for
XP and RUP?

When and
Where?
(Environment)

Which are the time dimensions of
RUP and XP?
Which are the geographical
dimensions of RUP and XP?

How? Which is the extent and complexity of
RUP and XP?
How is the development methodology
organized in RUP and XP?
Which types of tool support exist for
RUP and XP?

Who? (Client,
Actor, Owner)

What characterized the individual
developers using RUP and XP?
What characterized the organizations
using RUP and XP?

These questions are used to analyze the two

development methodologies, which is presented in the
next section. The scope of the study is a comparison based
on the documentation of the two methods. It is limited to
the information gained from the documentation.
Evaluating the dynamics of each of the method would
require empirical studies in real projects, which has to
follow after a framework-based study like this.

Release plan

Iteration plan

Acceptance test

Stand Up Meeting

Pair Negotiation

Unit Test

Pair Programming

Code

Month

Week

Days

One

Hours

Minute

Second

4 Analysis

4.1 What?
We begin with the history of the methodologies, and

then move towards the underlying philosophies and the
project types, for which the methodologies are suitable.

RUP is created by the well-known triple, Jacobson-
Booch-Rumbaugh, launched in its first version 1998.
Jacobson began the development of the use-case based
approach at Ericsson in the 1980’s. RUP has evolved in
conjunction with the Unified Modeling Language (UML)
[8]. RUP is based on the originators’ and others practical
experience from software engineering, and has evolved
further during the years, as well as the UML language.
RUP is designed for large product development projects.
Even though books are published on the methodology, the
main distribution channel is though purchasing of licenses
for the tool support for the RUP methodology, offered by
Rational Software, which now is owned by IBM.

XP has its origins in practical applications in projects
during the 1990’s. Beck and Cunningham have packaged
their experiences into XP, originally from a project at
Chrysler. It is a lightweight method for small to medium
sized software development teams. XP is intended to meet
the demands of a context with unclear and volatile
requirements. There is nothing commercial in the
methodology; instead there is a set of people – a
community – who evolve and develop tool support
(freeware and shareware) to support XP development
projects.

The origin of RUP and XP are similar. They are both
based on experience from software engineering. Both are
evolved during the same decade, although RUP has its
roots earlier.

There are two different underlying philosophies behind
RUP and XP. RUP takes to a large extent a technical
management perspective while XP focuses on the
development staff. RUP is designed to support large
projects, while XP is originally designed for small to
medium sized projects, for which type of projects several
experience reports are published, see e.g. [9][13][19]. The
distribution of the methodologies is different; RUP is
commercial and XP is freeware.

4.2 Why?
We analyze advantages and disadvantages for the two

methods from three perspectives, technical, financial and
social points of view.

4.2.1 Technical perspective

On the technical side, RUP provides the organization a
large package of development tools and documents. It is
delivered online via the web, and updated in new releases.
It can be tailored and extended to suit the individual

organization’s needs. One major sales argument for RUP
is the integrated tool-suite.

XP on the other hand strives towards simplicity. It is
not connected to specific tools but lets the user choose
which tools to use. Tools are developed in the XP
community, which support specific practices, e.g. Junit for
the testing practice.

RUP is a large collection of processes, artifacts and
roles. This must be scaled down for most projects except
for the very largest ones. XP starts in the other direction,
with a minimal core of values and practices, which has to
be scaled up to fit larger contexts.

4.2.2 Financial perspective

The financial issues are different in the distribution and
support of the methodologies, since RUP is a commercial
product and XP is freeware. The financial power behind
RUP is used for marketing giving more visibility to RUP.
Rational Software is owned by IBM, which has good
reputation in the software industry. RUP provides
continuous updates, which enables the users being up to
date regarding development methodologies.

On the other hand, why should one pay for something
that can be achieved for free? Effort must be spent on
tailoring RUP, why should an organization then pay for it
as well? [10] XP offers the freeware solution, which is
financially advantageous, but may cause social reactions.

4.2.3 Social perspective

The social aspects of RUP and XP are also related to
the commercial versus freeware discussion. Larger
software development companies are used to buying
software licenses, and hence buying licenses for
methodology is quite natural. The freeware principle
behind XP is met with skepticism. Can something that is
for free be good? The situation is very much like the open
source situation. Free software is offered from the open
source community and software is licensed from
commercial companies, e.g. the Linux operating system
versus Microsoft Windows.

The choice is of course primarily technical and
financial, but there is a significant social aspect. Smaller
organizations and technical staff show a tendency to be
more in favor of the freeware/open source approach, while
large organization and management are in favor of the
license approach. The good reputation and financial
strength behind RUP are management arguments, while
on the technical level, people know that both approaches
need tailoring and hard work – hence they choose the
method which is cheapest, least complex, and puts the
technical work in focus!

4.3 When and Where?
Regarding the time dimension, RUP is organized in

four sequential phases, inception, elaboration,
construction and transition. Theses four phases constitute
one development cycle, producing one release of the
software. Within each phase, there are a number of
iterations, and the four phases have their main focus on
different activities, although all activities are run in
parallel, see Figure 1. Inception stresses business and
requirements, elaboration is design-focused, construction,
is mainly implementation and test and transition has its
main focus on deployment and change.

XP has its main focus on the produced code,
independently of the time aspect. In the beginning of a
project, the focus is on the product core, and later on
features, but it is a code focus all the time. The design
evolves as the software evolves. The simplicity value and
the simple design practice emphasize that the design shall
be as simple as possible for the current needs, not for
future possible needs. Design and analysis activities are
not concentrated to the beginning of the project, but
intertwined with the development in the planning activity.

Both RUP and XP stress short iterations, although
iterations in XP are even shorter than in RUP. In XP,
iterations range from seconds in the pair programming
activity, via days in the stand-up meetings to months in a
release plan, see Figure 1. The iterations in RUP are less
frequent, in the magnitude of weeks or months.

Both methods strive towards short lead-time and
efficient use of resources. The XP principle of developing
only what is absolutely necessary, indicates that XP will
be the most efficient method. On the other hand, only
empirical studies will provide sufficient answers to the
question.

The geographic dimensions are not explicitly
addressed in either methodology, but are present
implicitly in both. RUP originates from a context of large
distributed development projects, and its approach with
artefact-based communication is intended to support this
kind of geographical situation. The philosophy behind XP
is based on direct, oral communication, both internally in
the project and externally towards customers, hence
requiring a limited geographical distribution. In practice,
XP teams must be located in the very same room to gain
the most benefits of the methodology. Even being located
at different floors in a building has caused communication
problems [14].

4.4 How?
This section deals with the technical content of the two

methodologies. We analyze the extent of the
methodologies, the organization of the methodologies and
the tools support. Regarding the organization, we analyze
common aspects, and try to find similarities and

differences between the two. The analyzed aspects are
flexibility, project drivers, customer relation, releases and
technical work.

4.4.1 Extent
RUP consists of a large collection of documents, role

descriptions, activities etc. RUP stresses the need for
tailoring to a specific organization, which in most projects
equals downsizing of the methodology. RUP is considered
and criticized for being “heavy-weight” [21].

XP is very lightweight, both in its presentation and in
the practical application. Everything that is provided to
start using XP in a project is covered in each of the
sequence of books published on the theme [2][3][4][6].

An indication of the difference in extent of the two
methods is illustrated in Table 3, where all the roles of an
XP project are presented, with their counterparts in RUP,
constituting a small subset of the RUP roles. In total, RUP
comprises more than 80 major artifacts, 150 activities and
40 roles [16].

Table 3. XP roles and their counterparts in RUP

Team XP roles RUP roles
Customer Requirements specifier

System analyst
Project manager

Tracker

Customer
team

Tester Test analyst
Tester
Test system administrator

Programmer Implementer
Designer
Integrator
System administrator

Development
team

Coach

In summary, RUP is a much more extensive

methodology than XP, for good and for bad.

4.4.2 Flexibility
Both methodologies stress the word flexibility. In

RUP, it means primarily tailoring to different needs in
different contexts and its focus on iterations. In XP
flexibility means continuous changes based on the
feedback loops. The short feedback loops require
continuous actions. The 12 practices can be implemented
differently in different projects. The values are the stable
core of XP, while everything else may change.

4.4.3 Project drivers

RUP is use case driven, i.e. descriptions of use of the
system are implemented, and continuously integrated and
tested. XP applies test-driven design, i.e. test case are
derived and implemented before the code is written. XP

has user stories to guide what to implement. These user
stories are less extensive descriptions, compared to the
RUP use cases, where the complete scenario for the
interaction between the user and the system is defined.

Regarding planning, both methodologies agree on that
a complete project cannot be planned in detail. RUP
proclaims continuous changes in the plans, while XP
advocates planning only the very near future in detail.

4.4.4 Customer relation

Regarding the customer relation both methodologies
stress the importance of a close relation to the customer,
but still this issue is very different.

XP assumes the customer be involved in person in the
team to ”answer questions, resolve conflicts and set small-
scale priorities” [2]. This is later turned into “an XP
project is controlled by an assigned person, defining
requirements, setting priorities and answering questions
from the programmers”. RUP is more flexible on the
implementation of the customer relation. It is not always
possible or even feasible that the customer is present in
person.

4.4.5 Releases

RUP defines a release to be “a stable, executable
version of a product and its necessary artifacts” [16],
while XP defines it to be “ a set of user stories creating a
business value” [4]. The XP practice small releases and
the RUP item develop software iteratively are very
similar, assuming that a release can be both internal and
external.

4.4.6 Technical work

XP involves two controversial practices, collective
ownership and refactoring, which are tightly connected.
They are also highly dependent on the continuous
integration and testing practices, which constitute the
quality assurance mechanisms. In RUP, which originates
from larger systems, different project members are
responsible for different subsystems.

4.4.7 Tools

The RUP process as such is guided by a tool, and there
are suitable tools for e.g. modeling that interface smoothly
with the methodology. As the methodology is so
extensive, this is absolutely necessary, to guide the user.
This is also a part of the commercial success of RUP.

XP does not proclaim any specific tools. There are
tools offered by the community, e.g. Junit, but any kind of
CASE tools and project management tools can be used in
XP. However, it is worth noticing, that in its original
form, whiteboards, paper cards and pens are the most
mentioned tools in XP.

4.5 Who?
What characterizes the developers and organizations

using RUP and XP respectively? XP focuses on the
individual developer, empowering the technical level in
the organization. It is based on direct communication
between stakeholders, and requires courage, as openness
and honesty are important. This requires the staff and
organizations acknowledge and maintain these kinds of
characteristics and values. It requires team workers
solving problems in teams, and not feeling discomfort for
peer reviews.

RUP does not focus on the individual developer, but
emphasizes the roles, which are tailored to specific
projects. It prescribes documentation, which puts demands
on the staff to be motivated to spend effort on preparing
and maintaining the artifacts.

The origin of the methods are different, RUP originates
from large projects and organizations, and XP from the
small. This fact permeates the methodologies as such, as
well as its advocates and critics. RUP is a top-down
methodology, advocated by management while XP is a
bottom-up methodology, advocated by the technical staff.

5 Conclusions
In this paper, we have analyzed the similarities and

differences between RUP and XP methodologies, based
on a framework. Although many keywords and key values
are the same, the two methodologies are quite different.
Common values are user/customer involvement,
iterations, continuous testing and flexibility. The
implementation of these values are however very
different. RUP offers an extensive process description,
comprising artefacts, roles, activities, integrated tool-
suites etc. XP on the contrary stresses values and
principles, rather than prescriptive instructions, and
focuses freedom and simplicity. The distribution channels
are different, RUP being a commercial product by a large
company, and XP is freeware, maintained by a community
of volunteers.

We conclude from this analysis that the two in many
aspects are in contrast. The situation is very similar to the
Windows vs. Linux case. One is commercial, the other is
freeware. One tends to be advocated by managers, the
other by engineers. Still both are operating systems for
personal computers. It is important to be aware of this
social aspect in the selection of RUP or XP. Which of the
two is best suited for certain types of projects needs to be
further investigated in empirical studies.

6 References
[1] Agile Manifesto, http://www.agilemanifesto.org/ last

visited 04-08-20

[2] Beck, K., Extreme Programming Explained –
Embrace Change, Addison-Wesley, 2000.

[3] Beck, K. and Fowler, M. Planning Extreme
Programming, Addison-Wesley, 2000.

[4] Chromatic, Extreme Programming Pocket Guide,
O’Reilly, 2003.

[5] Cooper, R. G., Winning at new products, Perseus
Publishing, 3rd edition 2003.

[6] Crispin, L. and House, T., Testing Extreme
Programming, Addison-Wesley, 2003.

[7] Feller, J. and Fitzgerald, B., “A Framework Analysis
of the Open Source Software Development
Paradigm”, Proceedings of the 21st International
Conference on Information Systems (ICIS), ACM, pp.
58-69, 2000.

[8] Fowler, M. and Scott, K., UML Distilled. A Brief
Guide to the Standard Object Modeling Language,
Addison-Wesley, 2nd edition 1999.

[9] Fraser, S., Beck, K., Cunningham, W., Crocker, R.,
Fowler, M., Rising, L., and Williams, L., “Hacker or
hero? - extreme programming today (panel session)”,
Proceedings of the conference on Object-oriented
programming, systems, languages, and applications
(Addendum) pp. 5- 7, 2000.

[10] Henderson-Sellers, B., Due, R., Graham, I. and
Collins, G., “Third Generation OO Processes: A
critique of RUP and OPEN from a Project
Management Perspective”, Proceedings. Seventh
Asia-Pacific Software Engineering Conference, pp.
428-435, 2000.

[11] IBM (Smith, J.), A Comparison of the IBM Rational
Unified Process and eXtreme Programming,
http://www3.software.ibm.com/ibmdl/pub/software/ra
tional/web/whitepapers/2003/TP167.pdf

[12] Jacobson, I., Booch G. and Rumbaugh, J, The Unified
Software Development Process, Addison-Wesley,
1999.

[13] Karlström, D., “Introducing Extreme Programming -
An Experience Report”, Proceedings Third
International Conference on eXtreme Programming
and Agile Processes in Software Engineering, 2002.

[14] Karlström, D. and Runeson, P., “Integrating Agile
Software Development into Stage-Gate Managed
Product Development”, technical report CODEN :
LUTEDX (TETS-7203) / 1-34 / (2004) & local 16,
2004.

[15] Kitchenham, B., Linkman, S., and Linkman, S.,
“Evaluating Novel Software Engineering Tools”,
Proceedings The 7th International Conference on
Empirical Assessment in Software Engineering
(EASE 2003), Keele University, Staffordshire, UK,
pp. 233-247, 2003.

[16] Kruchten, P., The Rational Unified Process – An
Introduction, Addison-Wesley 2nd edition, 2000.

[17] Lindland O. I., Sindre, G. and Sølvberg, A.,
“Understanding in Conceptual Modeling”, IEEE
Software, March, pp. 42-48, 1994.

[18] Robson, C., Real World Research, Blackwell
Publishers, Oxford, 2nd edition, 2002

[19] Schuh, P., “Recovery, Redemption, and Extreme
Programming”, IEEE Software December, pp. 34-41,
2001.

[20] Scott, K., The Unified Process Explained, Pearson
Education, 2001.

[21] Tallungs, P, “Se upp med RUP-mupparna!”,
http://computersweden.idg.se/ArticlePages/dynamic.a
sp?404;http://computersweden.idg.se/ArticlePages/20
0304/09/20030409165354_CS491/20030409165354_
CS491.dbp.asp, last visited 2004-08-20.

[22] Wohlin, C., Runeson, Höst, M., Ohlsson, M. C.,
Regnell, B. and Wesslén, A., Experimentation in
Software Engineering: An Introduction, Kluwer
Academic Publisher, USA, 2000.

