Lund University Bachelor Thesis
Lund Institute of Technology
Department of Communication System 2001-09-19

Software re-engineering

from function-oriented to object-oriented

Tutor Authors
Thomas Olsson Jonas Gyllenspetz
Steffan Tajti

Abstract

Thisreport is a Bachelor thesis at Lund Institute of Technology, conducted by Jonas
Gyllenspetz and Steffan Tajti at Timelox AB in Landskrona, Sweden.

The report examines problems with old software programs that, for several reasons, need to
be updated. When updating the software, it is possible to rewrite the entire program, or take
advantage of the obsolete one.

In this thesis the possibilities to take benefits from of an existing program, when developing a
new, is performed as a case study. The case study is performed with a process divided into
severa phases.

The result of the case study shows, if programming languages differ considerably in structure
and inbuilt function, the main benefit taken from an obsolete program is examining its
functionality.

In the case study the new program was not implemented, why no comparisons regarding
source code amount, effectiveness, and maintainability have been made.

Contents

1

INTRODUGCTIONottt ettt et e st tesessesbesessesbeseesesbeneasesbenensesbeneesessesteneasensenees 6
1.1, OBJIECTIVES OF THE THESIS ..uiiitteiteeiteeetessseesssesssessssessseesssessnsessssesssessssessnsessssessnsessssessnsessnsessnsessnsens 7
1.2. PROGRAMMING LANGUAGES AND ENVIRONMENTScoutriiuirtireeserteseesesteseesesseseesessessesessessesessessesessessenesses 7
1.3, OVERVIEW OF THE THESIS...ttteutrttrtetestereesestessesessessesessessesessessesessessesessessenessessenessessesessessensssessensssessenesses 7

THE CONCEPT OF SOFTWARE RE-ENGINEERING.......ccooiiiiierineie s 9
2.1. INTRODUCTION TO SOFTWARE RE-ENGINEERING......cctrteueruerteeesesteeesessesssessessssessensesessessesessessesessessenees 9
2.2, SOFTWARE RE-ENGINEERING PROCESS.csueuertertesestessenessessesessessensssessensesessensesessensesessensesessensenessessenes 11

2.2.1. Preliminary inVeNtory @nalYSiScccvieeeeieeriere s seeeeeeesee e sreeeesee e saeste e e e aenaeseseens 11

2.2.2. [Tor=To LS B K= oo TSSO 11

2.23. APPLICALTION ANAIYSIS. ...ttt ettt eae e e e e e tesbesbeeaeene e e eneeee 12

2.2.4. Production standardiSation.............cceeii e e s 12

2.25. DESIGN FECOVETYeeeiteeteeeeee ettt ettt et et e e eesbesbe e st ese e e anteaeeeeeebesaeeaeeneansesseasesbesaeereeneanseseens 13
2.3. ACTIVITIESIN SOFTWARE RE-ENGINEERING PROCESSccuutiitttesteeessteesseeessseassnssssessssesssessssesssessssnesns 13

2.3.1L SOUPCE COUE CONVEISION........viiuieiteeitiesteesteeteereeteesteesteesteetessesaeesaeesseaseenbeensesasesseesaeesaeesseensesnns 13

2.3.2. Program StruCture improVEMENTccveiereresesteseeiee st e et seeseesaesse e sresresseeseesaessessesrens 14

2.3.3. Program mMOAUIAIISAtIONcieeeerierese s et e et st e e saeseeseestesnesreennenaeneens 15

2.34. D - W o= aTo 0= AT T RS 15

2.35. R Y= S X = a0 T 0T= = 1T SRS 16
2.4, SUPPORTING TECHNOLOGY ...ecueitireeresteseesestessesessessasessessenessessensesessensesessensesessensesessensesessessesessessensssessenes 17
2.5, SUMMARY ..oitiiitie ettt stte et e teeete e e teeeatee e beeaaseeateeabee e beeeasee e tee e se e e bee e Re e et et e ReeeaReeeneeentaeenneeeaneeennaeeans 18

DEFINITION OF THE CASE STUDY ..ottt sesessessesessenes 19
3.1, INTRODUCTION .eeiiutitiiteeetesasteeestesassesasesassesasesasesasessssasasesasesansessssssansessssesansessssssessessssesensessssesensenssns 19
R I O - N = o AV = USROS 19
3.3, THE COMPANY ..oiiiutitiitteetesestteateeesteeesee e teeasseeassaeasee e beeanseeateeeaseeesseeeaseeesseeanseeesaeeseeetaeenneeaseeensnnnsns 19

3.3.1. Printer used iN ProQUCTIONciiiie ettt et s ae e e e e e 19

3.3.2. RS (L To TS Y =2 SRS 19

3.3.3. Desired re-engineered system from TIMEIOX......cveeeieierenise e 20
3 S IV 1 = 1 T o TS 20

3.4.1. First phase: Preliminary inventory analySiS........coceceveverereereneseseesresseeseessessessessessesssssssseens 20

34.2. Second phase: ENCAPSUIALION.ccveieriere ettt sne e enaeseenes 21

3.4.3. Third phase: Application @nNalYSIS........ccccviiiieieiirise e sre e 21

34.4. Fourth phase: Production standardiSationcoccoeieeeeienie e 21

3.45. Fifth pPhase: DESIGN FECOVETY ..ottt ettt sttt ee e e besee st e s neeneeeeneeseeseeas 21
3.5, PROGRAM LANGUAGES IN CASE STUDYuttiittteitreesteeessseasseeesseessssssssessssessssessssesssessssessssessssessnsessssessns 21

35.1. TSRS 22

3.5.2 VISUBI BASIC.....c.veeieiie ettt ettt s sttt sbe et e st e eaeesbeesbeesteesbesneesaeesaeesreanseentenns 22

3.5.3. Differences between C and Visual BaSIC.........cocccieeieiiiciii ettt 22

IMPLEMENTATION OF THE CASE STUDY ..ottt 24
A1, FILE DESCRIPTION ..cttteutstiseesestessesessessesessessesessessesessessensssessessesessensesessensesessensenessensesessessenessensenessessenens 24
4.2, IMODULE DIAGRAM ...oueiuiitiieuestintesessessesessessesessessesessessenessessensesessensesessensesessensenessensesessensenessensenessessenens 24
4.3. ANALYSISOF THE EXISTING SYSTEM ..eeueiuirienerteseeneesesseneesessessesessessesessessenessessensssessensesessensesessensesessessens 25

4.3.1. Reduction of remaiNiNg fillES.........coeii i snen 26

4.3.2. Investigation of remaiNiNg fllES.........coe it e 26
4.4, DEVELOPMENT OF THE NEW DESIGN ...oiutteiteeiuteeiiteestesssessssesassessssesassesssesessessnsesessessssesesssssssssesssesssnees 27

44.1. L 1Y [0 TT=To =T o SRRSO 28

442. INCOrporation Of @ datADASE.coiie ettt 28

ANALY SISOF THE CASE STUDY ..ottt sttt sttt steses e saesessesassastesaesessesessessessssessenens 29
5. 1. ANALYSISOFACTIVITIES AND PHASES USEDccuueeiuuieitteesteeesiseesseeessseesssessssesssssesssessssessssessssesssessssnssns 29
5.2, ANALYSISOFACTIVITIES AND PHASES NOT USED.....ccutrueuertereenestersenessessesessessensssessesesessensesessensesessensenes 30
5.3, EXPERIENCES......uettttittrtetestestetestestesesteseesesseseesestessesessessesessesseseaaesses e e b e s es e b e se e s e e bt et eneebe st eneebenbeneeneneeneens 30

CONCLUSIONSAND SUMMARY ettt sttt st sttt sttt sttt sttt 32

6.1. THE CONCEPT OF SOFTWARE RE-ENGINEERINGccctiitiitirtesteeieeeeressesressessesseeeesseseesseseesnesseensensessenseses 32

7.

10.

11

12.

13.

14.

15.

6.2. FROM FUNCTION-ORIENTED TO OBJECT-ORIENTED....0uuttiiiiiiiitreriieeeeeiisssseeesesssesssseresesssessssssssesssesssnnes 32

6.3, THE CASE STUDY ...uoiiitiiiiitisrieieeitess e sttt sbe st st a e se e sr et sb e b st sa e e n e s besr e e b e e et e b e e e e n e s b e an e resaesre e e e e s 33
6.4, MEETING THE OBJIECTIVESeeteutueeeueuereretsesessesesssesesesesesesesessssssesssssssssessssssenesssssasesasnssasnssssesesssnssenes 33
REFERENCES.......c oottt et bt e h et e et s e e b e s b eh e e bt et e e e st abeeneese e e enne e 34
APPENDIX A - GLOSSARY .ottt sttt s b e e b bt s e s e e snese e re b sneebesaeeneennennes 35
APPENDIX B —MODULE DIAGRAM ...ttt st 36
APPENDIX C - FILE DESCRIPTIONciiiiiiiiitisesii ettt s sre e sn e nnesne e 37
APPENDIX D - FUNCTIONAL REQUIREMENTSFROM TIMELOX ..o 38
APPENDIX E - CATEGORIESOF ARTICLE NUMBERoooiiiiiiiie et 39
APPENDIX F —UML DIAGRAMS ...ttt st e e e see e ne e sae e 40
APPENDIX G —SOURCE CODE EXAMPLE ...ttt e 42
APPENDIX H —REQUIREMENTS SPECIFICATION......iioiiiitieteeeeie et 43

Preface

Thisreport is the result of the Bachelor thesis that completes our Bachelor of Science degree
in Software Engineering at Lund Institute of Technology. The work has been conducted at
Timelox AB in Landskrona, Sweden.

We would like to thank everyone who has helped us during our thesis. Especially our tutor
Ph.D. Student Thomas Olsson (Department of Communication Systems at Lund University)
for his feedback and support.

We would aso like to thank our supervisor Martin Kjallman and Magnus Persson at
Timelox AB.

Jonas Gyllenspetz Steffan Tajti

1. Introduction

In many companies, worldwide, there exist old software systems that still provide
essential business services [1]. These kinds of systems are called legacy systems. The
maintenance of legacy systems provides three notable problems[1].

» The systems have often been modified severa times by different programmers.

» Themodifications are often made over alarge period of time, maybe 10 to 20
years.

* Inmany cases thereisalack of documentation of the systems.

Consequently, it isimpossible that neither a single person nor a company have a complete
understanding of the system. When these problems with the system reach a point in time,
when it istoo expensive or too complicated to maintain, the system must be re-
implemented [1, 3, 4].

There are three options to choose from when re-implementing legacy systems.

» Thefirst one, sometimes called “cold turkey” [5], isto develop anew system
from scratch and reject the existing one [1, 5].

» The second oneisto organise and reconstruct the existing system without
changing the functionality. These work procedures are called
software re-engineering [1,3,5,6,7].

* Thethird option isto reconstruct the existing system in small incremental steps,
whileitisstill inproduction. This option is sometimes called “ chicken little” [5].

The second alternative is preferred, because it has two key advantages compared to
developing an entirely new system. The advantages are reduced risks and costs[1, 3, 5].

Approaches to software re-engineering and the use of them are investigated. The
knowledge is applied on an existing legacy system, developed in afunction-oriented
programming language, which encodes magnetic cards.

1.1. Objectivesof thethesis
There are two objectives of the thesis.

» Thefirst objectiveisto provide knowledge on to what extent it is possible to reuse
source code in a re-engineering process.

» The second objective is how to obtain an understanding of the difficulties
involved, when the existing system is written in afunction-oriented programming
language and the new system is written in an object-oriented programming
language.

To meet the objectives and get sufficient knowledge, aliterature study and a case study is
performed. The case study is divided into three parts; background, objectives and method.
The usage of CASE-toolsin the case study (see section 2.4 Supporting technology) is
rejected. A requirements specification and an architectural design of a suggested new
system are created. The new system is not implemented.

1.2. Programming languages and environments

The system, written in the function-oriented language C, with MS-DOS environment, is
still in working order at the company Timelox AB. The system’s functionality isto handle
different algorithms, which are encoded as hexadecimal strings on magnetic cards. In
addition to that, the system handles text strings, which are printed on magnetic cards. The
system will be re-written in the object-oriented programming language Visual Basic or
C++ in order to work in MS Windows9x/Me environment. The main purpose for re-
engineering the system is to make it more maintainable. The new system will have the
same features as the existing. The new system is not implemented in this thesis.
Programming languages and environments are more carefully described in section 3.3
(Company) and 3.5 (Program languages in case study).

1.3. Overview of thethesis
The thesisis divided into five parts.

» Chapter 2 consists of an overview of the concept of software re-engineering. In
this chapter an approach to software re-engineering is performed. This approach
includes a process with five key phases. In the phases of the processit is possible
to incorporate, one or more, of five activities. These activities are also described
in this chapter. Furthermore, chapter 2 includes a presentation of supporting
technology in software re-engineering.

* Inchapter 3 the case study definition is presented. A survey over the company and
the company’ s hardware and software is performed. A method based on the
approach to software re-engineering in chapter 2 is also handled in this chapter.
Finally, chapter 3 presents the programming languages involved in the case study.

The implementation of the case study is described in chapter 4. The method in
chapter 3 isfollowed. The different sections in the chapter are file description,
module diagram, evaluation of existing system and development of the new
design.

Chapter 5 presents the case study’ s analysis. In this chapter, recommendations for
improvements are discussed. A diagram, which shows what phases and activities
included in the case study, is presented.

Finally in chapter 6, conclusions and summary are presented.

2. The concept of softwarere-engineering

2.1. Introduction to softwarere-engineering

Changing software systems, without changing their functionality, is called software re-
engineering [1]. The difference between software re-engineering and ordinary software
engineering isthat earlier developed systems are used as input in the re-engineering
process (see Figure 1).

There are two essential advantages with re-engineering compared to developing new

software. The advantages are reduced risk (there are often problems with development,
staffing, and specification in new software) and reduced costs (the cost of re-engineering
is often significantly less than the costs of developing new software) [1].

-
Existing software I Understanding and | Re-engineered
system | transformation | System

Figure 1. Softwarere-engineering

Software changes are mainly made for making the systems more maintainable in order to
extend lifetime and to reduce maintenance costs. Sometimes software changes are
necessary due to new requirements, which was not included in the original system. The
new requirements are for example; changes in operating system environments or the need
for implementing new functionalities. Other desirable improvements are time constraint,
productivity and quality [3, 6].

The existing system can be used for creating software specifications in order to get overall

comprehensibility for new development. It can also be used for translating a system’s
programming language (for example from C++ to Java). The amount of source code used
depends of the input quality and the expected outcome [6, §].

Another interesting issue is that more and more people are involved in changing software
(for instance enhancements as software re-engineering). Figure 2 shows the extrapolation
for the number of programmers (worldwide) working on new projects, enhancements, and
repairs[7]. Inthe 1990’s, only three out of seven programmers were working with new
projects. The forecast predicts that in the 2020"s only athird of all programmers will be
working with new projects.

Due to increasing requirements for maintenance and improvement, the area of software re-
engineering is gradually becoming more important.

Y ear New projects Enhancements Repairs Total
1950 90 3 7 100
1960 8 500 500 1 000 10 000
1970 65 000 15 000 20 000 100 000
1980 1 200 000 600 000 200 000 2 000 000
1990 3000 000 3000 000 1 000 000 7 000 000
2000 4000 000 4 500 000 1 500 000 10 000 000
2010 5000 000 7 000 000 2000 000 14 000 000
2020 7 000 000 11 000 000 3000 000 21 000 000

Figure 2. Programmersinvolved in different software activities.

10

2.2. Softwarere-engineering process

To obtain a better understanding, when starting the software re-engineering process, the
existing system has to be carefully analysed. Once an organisation understands the
concepts and the factors that influence the change of a software system, it becomes
possible to harness the direction of the development. The technique for re-engineering the
software is to establish aprocess[3, 5, 7]. In the process, several phases are possible to
identify. Typical phases are system inventory, strategy determination, impact analysis,
detailed planning and conversion [7].

One approach to re-engineering is to comprise the process into five key phases [3];
preliminary inventory analysis, encapsulation, application analysis, production
standardization, and design recovery.

2.2.1. Preliminary inventory analysis

Before re-engineering begins, a preliminary inventory analysis of the existing system
is performed. Thisis done to determine the overall scope of the re-engineering effort.
Thisfirst phase is areduced version of the next two phases in the process, the
encapsulation and the application analysis. In this phase it is not necessary to develop
adetailed inventory of the system’ s components. The main objective is to determine
the limitation of what to do in the process. The requirements specification for the new
system is aso created in this phase [3].

2.2.2. Encapsulation

Encapsulation is essential to re-engineering because it ensures that all system
components are identified. An accurate component inventory must be devel oped
before the analysisin the next phase is performed [3].

This phase is conducted to identify all possible componentsin the system and also to
find components that are not a part of the system. When defining the components, it is
possible to use software tools, to make an automated analysis. It is recommended to
use it with amanual analysis. This approach is recommended, in order to find
misplaced system components that are not found with automated analysis tools. Using
a combination of both manual and automated analyses provides the most accurate
inventory in the least amount of time[3].

The main objective in this phase is to ensure that all system components are identified.

When the inventory is performed, it is possible to ignore the components, which are
not important to re-engineer [3].

11

2.2.3. Application analysis

When the application analysisis performed, there are two attributes to takein
consideration.

- Ability to support the system’ s functional requirements
- System design and use of technology

Evaluation of these two attributes in the analysis provides insight about what is
important to improve in the system’ s re-engineering process. For example, a system
that adequately supports the needs of the user but operates with obsolete technology is
more valuable than one that provides little or no functional support to the user, but
operates with all the latest technology.

The main objective in this phase is to provide a better understanding of functional
fulfilment and how to improve the technical quality of the system [3].

2.2.4. Production standardisation

Production standardisation transforms an existing system into one that performs better,
iseasier and more cost effective to maintain and operate. It is possible to approach the
existing system from two directions simultaneously, functional and technical. A
functiona knowledge of the system is required to identify and document the attributes
that are supported by the system. The technical aspect of this approach provides
detailed knowledge of the processing within the system and the information necessary
to improve the maintainability and performance of the system [3].

When the re-engineering effort is completed in this phase, the system is expected to be
more cost effective to maintain and operate. The system is also expected to better react
to internal and external forces. For example, it is easier to incorporate new
components in the system, when the technical and functional aspects of the system are
improved.

The main objective of production standardisation isto improve the existing system

after years of changes performed by different programmers using different
programming styles and techniques [3].

12

2.2.5. Design recovery

The final phase in this approach to re-engineering is design recovery. Design recovery
captures elements of the current system design, with the possibility to incorporate
these elements into a CA SE tool (see section 2.4 Supporting technology). This phase
provides the ability to accurately document the functional and technical aspects of the
existing system [3, 6].

The documentation produced from this phase provides insight into several functional
purpose of the system.

- The main components of the system.

- The technology used to provide system functionality.
- The applications that use the system.

- The interface to other system.

- The architecture of the system.

2.3. Activitiesin softwar e re-engineering process

In every phase in the software re-engineering processit is possible to incorporate
activities. There are five activities, which are explained and investigated. The activities
described here are: source code conversion, program structure improvement, program
modul arisation, data re-engineering, and reverse engineering [1].

2.3.1. Source code conversion

Source code conversion is the simplest form of software re-engineering [1]. This
activity is used when it is possible to convert a program written in one programming
language to another. Thisistypically done when the programming language in some
way is obsolete. Reasons for source code conversion may be lack of skilled staff for
maintenance and support or hardware platform updates. Automatic conversion is
feasible, but in many casesthisisimpossible becauseit is very difficult to make a
complete automatic conversion A reason why automatic conversion isimpossibleis
the lack of corresponding constructs between languages[1, 8].

Source code conversion can be separated into two different categories, source code
translation and source code transformation [9]. Source code trandation is used when
conversion is made between different programming languages such as COBOL to C.
When conversion is made in the same programming language, between different
versions or dialects, thisis called source code transformation. Transformation can aso
be difficult because the same syntax can have different behaviour in different dialects
(see example below). Thisis known as the homonym problem and exists for instance
in different dialects of COBOL [8]. An example where the same syntax has different
outcome in different dialects though the language is the same.

13

PIC A X(5) RIGHT JUSTI FI ED VALUE * HELLO .
DI SPLAY A

The code above gives with the OV/VS COBOL compiler the expected resuilt,
displaying theword * HELLO’ right justified. But using the COBOL/370 compiler the
same word has atrailing space and is left justified.

2.3.2. Program structure improvement

The previous need to optimise memory use, due to computer hardware limitations, is
one of the reasons why many computer programs have complex structures.
Consequently, these computer programs are problematical to understand [1]. Another
reason for insufficient structured programs are programmers having limited
understandings and skills in software development [4]. Therefore, program structure
improvements are performed, with the aim to make the programs easier to understand
and maintain.

Source code may consist of unstructured control logic, cryptic variable names, or
complex conditions[4]. For example, conditional statements including negation
expressions can be made more understandable excluding this (“not”, “!1=", etc,
depending on language). In any case, excluding negations, not always mean that the
code becomes easier to understand.

Furthermore, source code can exist without being reached, as developers do not dare
to remove code they are uncertain about. This kind of code is hard to discover without
making an extensive analysis[1].

Program structure improvement can be made automatically. The automatic analysis
may generate a diagram, which shows the flow through the program. Simplification
and transformation techniques can be applied to the generated diagram without
changing its semantics. With this technique, unreachable code isidentified and can be
removed. Once simplifications are completed, a new program is generated. This
automatic analysis may not work properly if the program is written in a non-standard
language dialect. [1]

Problems with automatic program restructuring are amongst other things, losses of in-

line comments and documentation in the program. However, thisis often not
significant, since these are often out of date or of no importance after restructuring [1].

14

2.3.3. Program modularisation

Program modularisation is the process of re-organising a program so that related
program parts are collected together in modules or objects. For example, functions
handling the interface are put in a separate module. By collecting similar partsit is
easier to find redundancy and to formul ate a better overview of the program. Program
modularisation is performed manually by inspecting the code. Different tools can help
with browsing and visualisation, but to automate the processis virtually impossible[1].

Program modularisation is done to simplify maintenance and to improve
understanding of the program, to enhance cohesion within parts, and to minimise
coupling.

Several different types of modules may be created during the program modularisation
process [3]. These include:

« Dataabstractions: Abstract data types where data structures and associated
operations are grouped.

» Hardware modules: All functions required interfacing with a hardware unit as
for example a printer.

* Functional modules: Modules containing functions which carry out closely
related tasks as for example calculations or graphics.

* Process support modules: Modules where the functions support a business
process or process fragment. This might in abank system be the part of the
program that handles the functionality required when redrawing cash from
automates.

2.3.4. Datare-engineering

Datare-engineering is the process of analysing and re-organising data structures (and
sometimes even data values) in a system in order to make the system more
understandable [1]. This activity may be a part of the process of migrating from afile-
based system to a DBM S-based system (see Appendix A - Glossary) or changing from
one DBM S to another. Changes in the software may affect the data storage, data
format, or the data values [4]. The objective with data re-engineering is to establish a
manageabl e data environment.

15

2.3.5. Reverse engineering

Reverse engineering is the opposite of the expression forward engineering. Forward
engineering is often mentioned as the process of moving from high-level abstract
specifications to detailed low-level specifications for implementation [6, 7]. The
primary purpose for reverse engineering a software system is to increase the overall
comprehensibility of the system for both maintenance and new development [4, 6].

Reverse engineering can be used when deriving a systems design and specification
from its source code [6]. The process does not necessarily move from source code to
specification. Variations in the process depend on available input and expected output.
In some situations the source code might not be available and the only input is the
executablefile.

When starting the reverse engineering process, it is possible to make an automated
analysis by using tools for program understanding. Thisis, however, not enough to re-
create the system specification. Engineers also need to make manual annotations[3].
The annotations and the information collected by the automated analysis, are stored in
a system information store. This storage is used for generating documents of various
types such as program and data structure diagrams.

After the system design documentation is generated, it is still possible to add more
information to the information store. Thisis done in order to re-create the system
specification. This procedure usually involves further manual annotation of the
system structure.

The different stepsin reverse- and forward engineering can simplified be categorised
into four parts[9].

* Objectives
The objectives express the purpose or need for the software. This can be more
general, for example company business goals.

* Regquirements
The requirements describe the software system for achieving the objectives. The
formulation of requirementsis part of any software process, but there can be major
differences in what this activity isto include.

» Specification
The specification (design) describes the software system in an explicit way, with
understanding of how the system works and interacts with the surroundings.

* Implementation
Implementation is the step where the system is implemented according to the
specification.

16

A software process including these steps, usually in this order, is called forward
engineering. Reverse engineering include one or more of the same steps but in the
opposite order (see Figure 3).

Theinitial level, when using reverse engineering, depends on the quality of the
available documentation. Furthermore, there is not always a need for recovering the
objectives. After completing the reverse engineering process, the outcome is applied
on the new system.

Existing system New system

Objectives : Objectives :
E’ cooTTTTTTTTTTTTTTTTTS E
g | | Reguirements T Requirements LB
£ Different levelsdependingon &« _ __ __ ________________ i %
g’ available input and expected output. S
8 T P B~
g | | Specification > | Specification ! g
x |\ —m/—mWmWMWM M M ™8 tmmmmmmsmmmsmmmememees ! L

| mplementation Sorcecode vansion. | |Mplementation

Figure 3. Rever se engineering compar ed to forward engineering.

2.4. Supporting technology

It isvery laborious and difficult to change software [3, 8, 10]. Programmers are frequently
hesitant and sometimes even resistant to re-engineering the program even if they are
convinced that it will improve the system and reduce the maintenance costs. Their
arguments are: it will take too long time, it isimpossible to meet the objectivesand it is
too difficult to make the change [3].

Assistance in this dilemmais to apply a supporting technology named computer-aided
software engineering (CASE) [6]. Reverse engineering is rapidly becoming a recognised
and important component of future use of CASE-tools [6]. CASE by definitionisa
technology that applies an automated engineering-like discipline for the specification of
computer software system design, software devel opment, testing, maintenance, and also
project management [3]. CASE provides an opportunity for re-engineering.

17

For example, CASE-tools can be used for analysing software. They can include facilities
such as diagram tools, prototyping facilities, an audit or checking facility to guarantee
completeness, arepository to store data flow diagrams, data entity relations and reports
and alink to other repositories [3]. The outputs are functional requirements, data
structures, database or dataset designs, and report definitions. Other CASE-tools can be
used to create UML diagrams from source code and also to make new source code from
UML diagrams[1].

With CASE-toolsit is possible to improve the quality in the re-engineering process. This
is performed with reuse of design elements and through reverse engineering. Furthermore,
together with manual analysis of the source code, CA SE-tools enhance productivity and
provide a high-quality system [3].

2.5 Summary

The objective of software re-engineering is to reorganise and modify existing software
systems in order to make them more maintainable. This is made without changing the
origina functionality. Modification might change the source code completely (different
language) or cause minor changes as for instance minor program structure improvements.

Modifications are often performed to improve the system structure and to make it easier to
understand. Reasons for re-engineering a system instead of starting from scratch are
expected cost reduction and lesser risks.

A process comprised in five key phases is one approach to software re-engineering. These
phases are called preliminary inventory analysis, encapsulation, application analysis,
production standardization, and design recovery.

In the process’ s phases one or more activities are performed. They describe what is
actually done with the software. The activities are; source code conversion (changing
language or dialect), program structure improvement (improving the structure), program
modularisation (gathering parts that are related in modules), data re-engineering (re-
organising data structures), and reverse engineering (create representations of the system
at ahigher level of abstraction).

A supporting technology, in re-engineering process, is to use automated tools as CASE.

The use of CASE-tools does not exclude manual analysis of the source code being
changed.

18

3. Definition of the case study

3.1. Introduction

This chapter describes the primary objectives and method of the case study. It aso
includes an introduction to Timelox AB, the company where the case study is performed.
Furthermore, a description of the existing system (to be re-engineered) and the desired
new system is performed. The systems software languages and differences between them
are a'so described.

3.2. Objectives

The primary objective of the case study is to acquire deeper knowledge concerning the
existing system and to find code and significant algorithms to re-implement in the new
system. The existing system’ s function-oriented structure is examined and evaluated in
order to design anew structure in an object-oriented manner. This results in important
information, where significant files are found and examined, and in addition, irrelevant
filesremoved (described in chapter 4).

3.3. Thecompany

The company where the case study is performed is Timelox AB. They develop,
manufacture, and market electronic locking systems where magnetic cards and smart
cards are used as keys. Hotels, municipalities, county councils and other public services
are amongst their customers. Magnetic cards used by guests and empl oyees are encoded
and printed by card encoders at hotels and companies.

3.3.1. Printer used in production

In Timelox’ s production a printer called Protechno is used. Protechno prints text and
encodes magnetic cards. These cards are special cards used by operators and
administrators. They are for instance used for initiating locking systems or for
unlocking doors in case of emergency. Every locking system is delivered with a
unique set of operator cards.

3.3.2. Existing system

The existing system used today, to control Protechno, is obsolete and difficult to
maintain. This results in heavy maintenance costs, which makes the system expensive.
In addition, it isimpossible to add source code to the system, because of the complex
program structure.

19

There are 149 different ways to encode and print text on magnetic cards. The different
ways are represented as article numbers in the source code. Every article number
describes one way to encode and print text on the magnetic card. The codes are in
some cases clearly stated in the source code but some of the codes have complex
algorithms and randomised characters. When cal culating these algorithms, datafrom a
datafileisused. The data used from the datafile isin some cases changed and
rewritten.

The system has been modified several times during fifteen years of usage and
approximately ten programmers have been involved in the modifications. The
documentation of the system isinadequate. Therefore, there is no programmer at
Timelox that has a complete understanding of the system.

The system iswritten in C and runs on Microsoft-DOS.

3.3.3. Desired re-engineered system from Timelox

Timelox has decided to develop new modern software that, besides the opportunity to
use multiple printers, will have the same functionality as the existing. A new printer
called Fargo has been purchased. Initialy this new printer will be used together with
the new developed software.

The new re-engineered system will be written in Visual Basic and will be running on
the Microsoft Windows 9x/Me platform.

3.4. Method

To meet the objectives in the case study, a method based on the approach to software re-
engineering in section 2.2 (Software re-engineering process) is used.

3.4.1. First phase: Preliminary inventory analysis

Before re-engineering begins, a preliminary inventory analysis (see section 2.2.1) of
the existing system is performed.

Thefirst step isto obtain a broader understanding of the existing system. Informal
interviews with the employees in the production are made. A demonstration of the
existing system is also given. Asthe interviews are informal, without predefined
guestions, thisis not documented. The main purpose is to determine a better initial
start point.

The first activity used, when making the existing system’s preliminary inventory
analysis, is reverse engineering (see section 2.3.5). The source code, with some useful
but mostly cryptic annotations, is used as input when starting the activity. Theresult is
that a requirements specification is written.

20

3.4.2. Second phase: Encapsulation

The next phase is encapsulation (see section 2.2.2). The activity used is program
modularisation (see section 2.3.3). The objective in this phase is to identify all system
components. This is made by a more careful examination of the existing source code,
than made in the preliminary inventory analysis. The result of this phaseis amodule
diagram, which shows how the function-oriented system is constructed.

It is possible to ignore some components, because they are not significant for the
system and do not need to be analysed in the next phase.

3.4.3. Third phase: Application analysis

Application analysis (see section 2.2.3) is the third phase and the activities used are
program structure improvement (see section 2.3.2) and data re-engineering (see
section 2.3.5). In this phase important files are even more carefully examined than
earlier phases. Important data are collected and stored in a database. Files of no
interest for further re-engineering are ignored and removed.

3.4.4. Fourth phase: Production standardisation

The production standardisation phase (see section 2.2.4) isignored in the case study.
The reason for thisis that the new system is developed in an object-oriented manner
and it is hard to apply on the existing system. Furthermore, it is not enough to improve
the system with production standardisation.

3.4.5. Fifth phase: Design recovery

The last phase is design recovery (see section 2.2.5). Two UML diagrams, use case
diagram and class diagram, are made manually to get a better design for the new
system. Reverse engineering (see section 2.3.5) is the activity used in this phase. In
this phase the existing system is documented properly in both technical and functional

aspects.

3.5. Program languagesin case study

The existing system in the case study is written in the programming language C and runs
in Microsoft-DOS environment. The new program is to be devel oped in the programming
language Visual Basic and will run in a Microsoft Windows 9x/Me environment. The
class diagrams and the use case models for the new design is developed in Unified Model
Language (UML).

21

351.C

C isaprogramming language from the 1970s. It is afunction oriented language,
meaning that the program is structured by define and call functions. Program flow is
controlled using loops, if-statements, and function calls. C allows a precise control of
input and output data. This precise control is possible by the use of indirect addressing
(pointers) [12].

If no requirements specification exists and there is a need to get a better understanding
of aprogram, it is possible to make a module diagram. Modules do not exist in C but
can be simulated by collecting parts of the source code that are logically connected.
Even if programs not are developed in such manner, it is possible to create module
diagrams manually. The module diagram includes different files and the connection
between them.

There are two types of filesin C, which are of special interest in the case study’s
module diagram, source code files and header files. The source code file includes
functions for the program. The header-file is an include file, which contains
declarations of functions for input and output. When including a header filein a
source codefile, all information stored in the header file is available for the source
codefile.

3.5.2. Visual Basic

Visual Basic is an object-oriented programming language [11]. Interfaces are created
by drawing controls, such as text boxes and command buttons, on a form. Properties
for the form and controls are set by values as captions, colour, and size. Afterwards the
code for the controls is written.

3.5.3. Differences between C and Visual Basic

Visual Basic is quite different from C. The main difference is the code structure,
where C-applications are written in a function-oriented manner and Visual Basic-
applications are written in an object-oriented manner [11]. Furthermore, Visual Basic
uses different modules. A program may consist of a single module (for the specific
application) but functions and methods may also be collected in separate modules for
future use in other applications or for getting a better overview (see section 2.3.3
Program modularisation).

It is possible to write a Visual Basic application function-oriented, but it is not
possible to write a C application object-oriented. Another key differenceisthe
development environment in Visual Basic, which generates the code for the graphical
interface.

Other differences between the languages are declaration of data types and their

behavior. Variable names are similar but when, for example, working with strings,
declarations in C are made by using arrays (see Figure 4). Furthermore, there are

22

boolean variablesin Visual Basic for the logical values of true and false. Thisvariable
does not existin C.

Visual Basic example of data type declarations

Dima as | nteger
- Integer between — 32 768 to 32 767.

Dmb as String
- String up to 65000 characters.

C example of the same data type declar ations

int a;
-Integer between — 32 768 to 32 767.

char b[50];
- String up to 50 characters (using charactersin an array).

Figure4. Differencesin data type declarations

Other examples of differences, besides semantics, are statements and comparisons that
differ in syntax. The if-statement shown in figure 5 shows differences in how
comparisons are made and how statements are ended. Differencesin comparisons for
testing equal values differ intheuse of “=="in Cand “=" in Visual Basic. The use of
“=" both for comparisons and assignment in Visual Basic can cause confusion when
comparing the two languages. Another example when comparing values that differ is
theuseof “ <>" inVisua Basicand® !="in C.

Visual Basic example of an if-statement

| f a=b Then
a=17
b =5
End If

C example of the same if-statement

i f (a==b){
a=17
b

5
}

Figure5. If-statement syntax differences

23

4. Implementation of the case study

The implementation of the case study is performed with the process described in 2.2
(Software re-engineering process) and the method described in 3.4 (Method).

The implementation includes an overview of the existing system with file descriptions and
module diagrams. Further analysis of the existing system, with elimination of files and
investigation of remaining files, is also included. Finally, the development of the new design
is handled and the explanations of UML diagrams are made.

4.1. Filedescription

To obtain agood overview of the existing system a preliminary inventory analysis (see
2.2.1) is performed.

The existing system has a very complex structure and therefore very difficult to maintain.
The structure is complex, mainly because of continuous source code addition. Because of
it’s structure, without database handling and general methods or functions, it is necessary
to add new source code every time the company wants to add a new card for coding and
printing. In addition it isimpossible to add more source code to the program, because if
more code is added it becomes virtually impossible to compile.

The system consists of 51 files. There are 15 source code files (approximately 15 000
lines of code, including comments), 16 header files, 2 text filesand 1 datafile. The
remaining 17 files are of two kinds, those used when making the system and those
generated by compilation.

After achieving agood overview of the system arequirement specification iswritten (see
Appendix H).

4.2. Modulediagram

After the preliminary inventory analysisis performed and the requirement specification is
written, a more detailed investigation of thefilesisrequired. Thisis performed with the
encapsulation phase (see 2.2.2). This phase ensures that all components in the existing
system are identified. Furthermore, to find components that not are a part of the system.

As apart of the encapsulation phase, selection of files of importanceisin the first attempt
concentrated on source code files, header files, data files and text files. Files used when
making the system and those generated by compile are not included in further analysis.
Left for evaluation, after the first reduction, are 34 files. The entire file description is
found in Appendix C.

To obtain an understanding of how the files are connected to each other, a module
diagram [12] (which includes the header and source code files) is used. Using amodule
diagram is made because it is a good way to get an understanding of programs with
complex structures[12]. The entire module diagram is found in Appendix B.

24

A moduleis a separate part of the program. Itstask isto handle data that are |ogical
connected [12]. For example, one module handles the graphical presentation and another
handles the mathematical standard functions.

In general, every module consists of 2 parts, the module specification and the module
body (see Figure 6). However, in some specific cases the module consists of either the
module specification or the module body.

The specification in the module diagram is the header file, explaining how the moduleis
constructed. It consists of declarations and definitions of functions and variables from the
source code file. The body in the module diagram is the source code file. It includes
definitions of internal and external functions and variables. These are declared in their
own modul e specification.

#include <time.h>
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>

e . | Printh ;
! Mewyioh ! ! | declaration Iq:—' Specification
1 1 1 1
i | declaration, definition | — | .
| ’ : : Print.c i
1 1 1
) . H i o Module
' Menyio.c ! i | #include print.h H
i | #include“menyio.h” : i | #includetimebash i
i | #include“printxt.h” ! 1 | #includemenyio.h ' Bod
| | #include*menyloch’ ! , Z! ”C: uge g” ’;gjaﬁl-’;] 4¢— y
I | #include“prnio.h” ! ! Include datadecl. !
: #include * menyprot.h’ , : #include <stdio.h> :
1
| ! | '
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 6. An example of modules and the connection between them

4.3. Analysisof the existing system

When choosing an approach for further analysis of the existing system, considerations are
taken to the ability to support the functional requirements of the new system (see
Appendix D). An application analysisis performed (see 2.2.3). This approach is chosen to
find and eliminate files, which are of no interest compared to the functional requirements
and the new systems programming language. The reduction of source code is also made
for making the source code easier to comprehend. Investigating unfamiliar source code
deeper, without any type of tool is considered to take too much time. Furthermore, it could
even be awaste of time if the source code is found to be of no appraisal use.

At this stage, overall understanding of how to provide functional fulfilment and how to
improve the technical quality of the source code are the primarily goals. All source codeis
briefly examined and reduction decisions are made after overall comprehension. Making
quick decisionsis not considered to be arisk, because rejected source code will aways be
reachable after reduction. When making the examination, discovering that programming

25

styles differ considerably, confirms that several programmers have been involved in
development and maintenance.

4.3.1. Reduction of remaining files

Application analysis has two attributes to take in consideration; ability to support the
system’ s functional requirements and system design and use of technology. These two
attributes provide insight, in what to improve in the system’ s re-engineering process.
To obtain this, further analysisis performed to identify all components in the source
code. After this, irrelevant files are excluded for several reasons.

* Files, describing the interface in the existing system are not significant,
because the interface in the new program isto be developed in Visual Basic.
The source code could help when creating asimilar interface as the existing,
but thisis not a requirement and therefore not included. Thisleadsto
considerable reduction of files.

* Files, including the code for communication between the existing system and
the old printer, are written in a complex manner. Because of the complex
structure and that the old printer is not used in the new system, files related to
the printer are excluded.

* One of the two text files describing the system is out of date and therefore
excluded, due to many following updates of the system. The other text file
describes how to register a new article number in the existing system and is
also of no use. Hence, both are reduced and are not taken in further
investigation.

* Therearetwo filesthat not are incorporated in the program. Thesefiles are
most likely files used during earlier development and therefore excluded. They
are called A.c and New.c. The names and contents indicate that they are some
sorts of test files.

After the reduction of files, only 4 files remain.

4.3.2. Investigation of remaining files

One of theremaining 4 filesis adatafile, used to store information between printing
occasions. Information stored in this datafile, isfor example, number of cards
produced for a specific article number.

The other three files describe which article numbers are used in the system,
information about the way they encode cards, and the printed text on the cards. The
three filesinclude 149 article numbers (see Appendix E). Almost every article number
refersto aparticular card to be printed. A few of the article numbers refer to sets of
cards. A set article number refers to other article numbers. Article numbers referring to
single cards have information about; 25 hexadecimal character code, the coercivity
(see Appendix A — Glossary), the text printed on the card, what type of card to insert

26

into the printer, at which track (see Appendix A — Glossary) to encode the card, and
additional information. The additional information is special information regarding the
specific card (see Appendix G for a source code example).

To collect and store al information the data re-engineering activity (see 2.3.4) is used.
The information is stored in a database and used when the new program will be
developed. The database handler used is Microsoft Access as it works together with
Visual Basic.

The article numbers differ in type of magnetic encoding (see Appendix A — Glossary)
and text printing. To be able to get an overview of them, they are divided into different
categories (see Appendix E). Three main categories of article numbers are discovered;
cards with fixed code and text printing, cards with text printing only, and finally, cards
with variable encoding and text printing.

The main part of the article numbers are represented as separate functions in the
source code, which resultsin alarge amount of similar code at several locationsin the
program.

The article numbers, that handle cards with variable encoding (different encoding at
different coding occasions), have complex algorithms and these article numbers need
to use adatafile to store and retrieve information. The datafile aso handles the
enumeration for certain article numbers. The enumeration consists of the sequence
number (totally printed cards), print number (the number printed on the card) and code
number (the number encoded on the magnetic strip).

4.4. Development of the new design

When starting developing the new design there are alot of issues to take into
consideration. The approach is to make a design recovery (see 2.2.5) of the existing
system. The functional requirements from Timelox (see Appendix D) and the
requirements specification (see Appendix H) have to be taken in account when making the
design recovery.

When the design recovery is made, design issues for the new design are taken into
consideration. Some of the issues are; how the new design has to be effective, simple,
easy to maintain, object oriented and organised. UML is used to design the new system.

The documentation produced from the design recovery phase provides information about;

main components of the system, technology used to provide system functionality, other
applications that use the system and interface to other system.

27

4.4.1. UML diagrams

To get a better understanding of how to design the program, UML diagrams (see
Appendix F) are created [2, 13].

In the UML use case model, two actors are identified, the administrator and the user.
The administrator has authority to add, remove or make updates in the database, which
is connected to the system. The database stores all relevant data from the existing
system. The user gets information about card or card sets and print and encode cards,
but the user has no authority to add, remove or make updates in the database.

In the UML class diagram a design model is described. This model iswell structured
compared to the module diagram (see Appendix B) that describes the existing system.

4.4.2. Incorporation of a database

To get an understanding over the entire article numbers, program structure
improvements (see 2.3.2) and data re-engineering (see 2.3.4) are used.

A database is used to store information about the article numbers. The information
about the article numbersis collected from the source code and from the datafile.

In thisway, it becomes easier and more effective to obtain and store information.
Other advantages are that the information is more structured and it is easier to get an
overview over the contents of the system. Furthermore it becomes easier to make
general functions connected to the database instead of separate functions for each
article number. This reduces the need for changing the source code, when adding a
new article number in the system.

28

5. Analysis of the case study

To show results and knowledge of the case study an analysis of the study is performed. In
addition, recommendations for improvements are discussed. The method used to re-
engineer the system (see 3.4 Method) is divided into different phases (see 2.2.1 — 2.2.5)
and activities (see 2.3.1 — 2.3.5). Several of these phases and activities were taken into
consideration. Furthermore, a diagram (see Figure 7) is presented. This diagram shows the
phases and activities included in the case study.

5.1. Analysisof activities and phases used

In the first phase of the re-engineering process, preliminary inventory analysis (see 2.2.1),
amanual reverse engineering (2.3.5) is performed. Thisis performed when deriving the
systems design and specification from its source code and reorganising its structure.

The documentation about the existing system turned out to be inferior. There are
approximately 15000 lines of source code in the existing system but only 5 pages of
documentation. Thisisthe reason why the reverse engineering activity was very time-
consuming.

The next phase, encapsulation (see 2.2.2), is also time-consuming due to the lack of
documentation. The activity in this phase is program modularisation (see 2.3.3).
Difficulties are to understand how the source code’ s modules are connected to each other.
Furthermore, inexperience about syntax and construction of the function-oriented
language C makes this activity time-consuming.

In the application analysis, (see 2.2.3) two activities, program structure improvement (see
2.3.2) and data re-engineering (see 2.3.4) is performed. These two activities highly
increase the understanding of the existing system, due to a better system overview.

The last phase performed is design recovery (see 2.2.5). The approach using CA SE-tools
in this phase is rgjected after discussions with responsible personnel at Timelox AB. The
reasons are; it will take too much time and effort to get an understanding of a new
application. In addition, it is not financially motivated to buy a CASE-tool that will be
used for just one special occasion. Earlier studies also show that it is difficult to find a
suitable CASE-tool, due to the various forms of source code [10].

29

5.2. Analysisof activities and phases not used

The production standardisation phase (see 2.2.4) isignored in the case study. The reason
isthat the new system is developed in an object-oriented manner and it is hard to apply on
the existing system

The activity, source code conversion (see 2.3.1) is not adequate because of the increased
possibilities provided by a more modern language as Visual Basic [1, 8]. The problems
are that the syntax and the semantic differ considerably; this makes it impossible to make
a code conversion between the programming languages [8].

Phases | Preliminary | Encagpsulation | Application | Production Design

inventory analysis dandardisation | recovery
Activities analysis
Source code
conversion

Program structure X
improvement
Program X
modularisation
Data re-engineering X

Reverse engineering X X

Figure 7. Phases and activitiesincluded in the case study.

5.3. Experiences

In the beginning of the case study much time was devoted to the documentation of the
existing system. The documentation turned out to be inferior, but some assistance was
taken when the specification and design for the new system was devel oped.

With insufficient or lack of documentation, the time spent to get knowledge of the system
increases. Thisresultsin higher costs. An experience report shows that producing the
necessary architectural documentation during the recovery project costs eight to twelve
times as much as producing the same set of documentation during the original
development project [10].

A recommendation, when starting up a case study, isto first make a survey of the existing
documentation, and if the documentation is inferior, not spend more time trying to
understand the existing documentation. The problem is to realise that the documentation is
inferior. It is not an easy decision to ignore the existing documentation and instead
concentrate at the existing source code. Thistype of decision is probably easier to take
with more knowledge and experience of similar case studies.

In case study the main focus was deriving how the cards were encoded and what was
printed on the cards. With an inferiorly documented existing system it is hard to form an
understanding of the system, without making a time demanding survey of the source code.

30

If asurvey of the source code is performed, it isimportant to get an overview over the
system and try to ignore irrelevant code, which are of no interest in the new system.
Source code of no interest is code, which handle the graphical interface, and code, which
communicate with I/O components. This code, in the new system, is handled by Visual
Basic.

When the new system isto be developed, it will be possible to decrease the amount of
source code. The reasons are that the existing system does not have a database and
generaly agorithmsin the source code for the article numbers.

31

6. Conclusions and summary

Software activities are predicted to move more towards maintenance and improvement,
rather than development of new software (see chapter 2). Maintenance and improvement
can, for several reasons, include changing the programming language, which makesiit
more difficult because of programming language differences. When changing
programming language, the wish is to take as much benefit as possible from existing
software code.

6.1. The concept of softwarere-engineering

Literature studies showed that thisis awell-investigated area. Several of the articles and
booksin the reference list have their own definitions of the concept re-engineering and
describe smaller areas (for example reverse engineering and code conversion) in different
ways. This makes it sometimes difficult trying to separate the different parts and place
them in their right surroundings; though the overall definition is similar. No unified work-
processes are found, but instead several recommendations of how to proceed in the
process.

The concept of re-engineering is not just about tranglating source code, but also about
more general program improvements. When changing software, these improvements are
incorporated in anatural way.

6.2. From function-oriented to object-oriented

In literature it is claimed to be complicated (even impossible) to make a conversion from a
function-oriented programming language to an object-oriented programming language
[1,4,7]. The main reason, for the difficulties between these conversionsis, besides
syntactic differences, the entirely different program structure.

Observations showed that the programming structure differed completely in Visual Basic
compared with C (see section 3.5.3). The results of these observations are, that it is
impossible to implement any of the source code from the existing system and transform it
to the new program.

It would be interesting though, to investigate the process when moving from C to C++ and
afterwards to Visual Basic. The reasons are that C++ isasimilar language to C regarding
syntax, data declarations etc., but differsin its semantic, because C++ is an object-
oriented language like Visual Basic.

Modern programming languages with supporting technology such as support for user
interface drawing and possibility to make easy connections to common database handlers
such as Microsoft Access has made it easier when updating software systems. Moving
from Visua Basic to C without a database handler would probably be much more
difficult. Besides handling the database, the graphical interface has to be dealt with.

32

6.3. Thecase study

Making a case study on an existing obsol ete system turned out to be a good way for
getting an overview of the difficulties with re-engineering (described in chapter 5). The
size of the system used in the case study was manageable without using analysing tools.
Not using any tool gave a sense of having good control of the process. If the existing
system would have been larger, the use of tools would most likely been necessary.

The module diagram (see Appendix B) created of the existing system is not used after it is
created, which might indicate that unnecessary work is made. Although, it isnot used in
further work the actual making of the module diagram provides information about the
existing system’ s structure.

The result of the case study shows that understanding the system is the main benefit in this
particular case. It is possible that certain algorithms can be trandated and used in the new
system. Most probably though, is that these algorithms not will be used as they are, but
instead used for getting information.

6.4. Meeting the objectives

Thefirst objective, in thisthesis, isto obtain knowledge to what extent it is possible to
reuse code. Due to the possibilities to ignore big parts of the code from the existing
system, it turned out, that understanding the existing system'’s functionality is the main
benefit when meeting this objective.

The code, possible to reuse, are data that are implemented in the database for the new
system and al so some specific algorithms, which explain, how card encoding works.
Consequently, instead of actual reuse of code, data collection and function descriptions
are benefits when meeting this objective.

The second objective, understanding difficulties when moving from a function oriented
programming language to an object-oriented language, could not actually be examined.
The reason is that large amount of code is excluded from the system.

Instead, other difficulties exposed are; identify important parts of the system, obtain an

overall picture of the unstructured system, and decide if the system documentation is
reliable.

33

7. References

[1] 1an Sommerville, Software Engineering, Addison-Wesley, Sixth edition, 2001,
ISBN 0-201-39815-X

[2] Perdita Stevens and Rob Pooley, Using UML, Software engineering with objects and
components, Addison-Wesley, 2000, ISBN 0-201-64860-1

[3] Howard Wilbert Miller, Legacy Software Systems, Digital Press, 1998,
ISBN 1-55558-54195-1

[4] Linda Wills and Philip Newcomb, Reverse Engineering, Kluwer academic publishers,
1996, ISBN 0-7923-9756-8

[5] Mats R. Gustafsson and Lars-Ake Johansson, Metodik for reverse engineering/
reengineering - ett eftersatt omrade, Svenska institutet for systemutveckling,
Rapport nr 17, Oktober 1994

[6] Elliot J. Chikofsky and James H. Cross |1, Reverse Engineering and Design Recovery:
A Taxonomy, Auburn University, USA, 1990

[7] Arie van Deursen, Paul Klint, and Chris Verhoef, Research Issues in the Renovation of
Legacy Systems, In J-P Finance, Fundamental Approachesto Software Engineering,
FASE99, LNCS, pp 1-23, Springer-Verlag, 1999

[8] Andrey.A Terekhov and ChrisVerhoef, The Realities of Language Conversion, Faculty
of Mathematics and Mechanics, St. Petersburg State University, Russia, 2000

[9] Alfs T. Berztiss, Reverse engineering, Re-engineering, and Concurrent Engineering of
Software, Department of Computer Science, University of Pittsburgh, 1995,
ISSN 1101-8529

[10] L. Bratthall and P. Runeson, Architectural Design Recovery of a Family of Embedded
Software Systems - An Experience Report, Proceedings First Working Conference on
Software Architecture (WICSA1), San Antonio, Texas, USA, pp. 3-14, February 1999

[11] Eric Winemiller, David Jung, Pierre Boutquin, John Harrington, Bill Heyman, Ryan
Groom, Todd Bright and Bill Potter, Visual Basic 5 Super Bible set, Waite Group Press,
1997, ISBN 1-57169-111-1

[12] UIf Bilting and Jan Skansholm, Véagen till C, Studentlitteratur, Second edition, 1990,
ISBN 91-44-26732-0

[13] Terry Quatrani, Visual Modeling with Rational Rose 2000 and UML, Addison-
Wesley, Second edition, 2000, ISBN 0-201-69961-3

8. Appendix A - Glossary

Coercivity

DBMS

Magnetic encoding

Track

A technical term used to designate how strong a magnetic
field must be to affect data encoded on a magnetic stripe.
Coercivity is measured in Oersteds (Oe).

A more precise definition is; the intensity of the magnetic
field needed to reduce the magnetization of aferromagnetic
material to zero after it has reached saturation.

Short for “ Database Management System”. A DBMSisa
computerised record-keeping system that stores, maintains
and provides access to information.

Magnetic stripe cards have been in existence since the early
70's. Magnetic stripe technology is widely used throughout
the world and remains the dominant technology for
transaction processing and access control. The stripe consists
of tree different tracks, where one or more are encoded with
high or low coercivity.

There are tree tracks on a magnetic stripe, which can be
encoded. These are defined by 1SO Standards regarding for
instance location, character data size, and bit recording
density. Bit Recording Density, BPI (Bits per Inch) default
ISO Standard selections are 210 BPI for track 1 and 3 and 75
BPI for track 2.

35

9¢

artnfunc

Protechno.c arnga? artnge6, artngse
: - Pemmmmce—————, Y , et
h 1 Artnga7.c 1 1 Artn866.c, Artn856.c 1 1
! yproth 1 1 1 1 |
#indlude imebash 1 #indlude "artnfunch’ 1| #induderantfunch’ +
#indudemenyioh 1 #include "cardsupp.h" I #include "cardsupp.h* +
#incude artncoodh | #include "carddef " ' I #include "carddef.h" H
fnclucocardsipph | #indlude timebash’ L | H
include pri #include " dataded i
1 1
#indude <sdioh> : #indude "menyioh” | : | ——————
#indude "menyprot.h" #indude "timebash" carddef.h
! #indlude "printdat " ! ! #include "printdat.h* L
| [1 T
rint
p I — h I — \ [——
r Printh 1
! 1
: declarations 1 |
1 F " SGoGen — ~—~-°—° 1
! Printc 1 1 Bloxsoh 1 Y timebas
! ! ! definitions dediarations ! rETTTTT T T T TS 1
1 #include printh I | 1 U Timebash !
! T 1 1 1
| e D ' ' I
N el L 1| sindudebioxsion ! 1 1
, #indude <scio.> + ! #indude <sidio.h> ! ' Timebasc !
1 " 1 1 #indude <systypesh> 1 1 1
: 1 1 #indude <systimeb.h> 1 I sindude"timeht 1 printxt
1 1 1 1 #include <sidio.h> !
| [| 1 !
| .
! : printxth 1
____snmcod._____l 1 1
H Artnocodh h loxce 1 !
1 | 1 I [A—————
H 1 | menyio menyloc
Artnocod.c : 1 definitions declarations I Fr—————— - - N
! h H ! Menvioh h
31233§Z33$'§§£ E: : : Loxcec : d definitionsdedarations :
! 1
#include"cardsupp v | loxcelt |
| #indlude"loxceh 1 y
#indude <stcio.> , | Yindude"menyprot ! Menvioc ,
, 1 #include "menyioh" M| 1 #include "menyioh” !
e e m 2 1 :‘"d“g“dﬂdﬁ*‘; I 1 #include "printxth” 1 prmio
iy I include <stdiol I 1 #include "menyloc.h” 1
———————————— - ! I I #include "prnioh” I T
dsupp.h 1 [1 1 #include "menyprot.h" T . |
Cardsupp! N | D I N ot | #indude <timeh> T 1 et |
1 | printdat \ #include <dosh> | | aretions 1
1 dedlarations [m——s==————— | #include <string.h> I [
I , Printdath H #indude <scio.> h
H » 1 >| #include <malloch> H
I 1
: #mduge”cadwp;; h | | Printdat.c : 1 1 [mmmmmm———————
#indude "menyioh” | | |
" " T Artdata.c
1 #indlude "menyprot. 1 #include” printdat b ! ' H
I #include " dataded! h" T \ neuce primca ! | H
1 #indlude <timeh> T | Yindlude <Sdiolo] 1 #indlude"arttypeh :
| #indlude <sdlibh> | #include <string.h> 1 | #indlude <sdio.n> M
H #indlude <sio.n> 1 H | \ #indude <malloch> H
1
! 1 LI ! !
1 [-
\ 1
e mm - - 1
' Arttypeh I
r-- e i '
1

)

! declarations ' 1

wieadeiq IMpoy\ — g xipuaddy g

Sour ce code files

Protechn.c

Print.c
Artnocod.c
Cardsupp.c

Artn847.c

Artn856.c
Artn866.c

Bloxio.c
Loxce.c
Printdat.c
Timebas.c
Menyio.c
Artdata.c
A.c
New.c

Header files

Artnfunc.h
Arttype.h
Artnocod.h
Print.h
Cardsupp.h
Menyprot.h
Datadecl.h
Bloxio.h
Loxce.h
Printdat.h
Timebas.h
Menyio.h
Carddef.h
Printxt.h
Menyloc.h
Prnio.h

Text files

Manual.txt
Program.txt

Datafile

Artno.dat

10.Appendix C - File description

Main module with head menu and calls to functions according to what is
chosen in the menu

Function for card printing

Function for card encoding and card printing according to article number
Definition of functions, which are used in Artn847.c, Artn856.c and
Artn866.c

Definition of functions for article number 847xxx, with fixed and
variable code

Definition of functions for article number 856xxx

Definition of functions for article number 866xxx, with fixed and
variable code

Functions that communicate with the kernel

Functions that communicate with the kernel

Functions that communicate with the Protechno printer

Functions that handle time delays and show time on screen

Functions that handle input and output from menus

Functions that handle the communications with Artno.dat

Functions that not are incorporated in the program

Functions that not are incorporated in the program

Declarations of functions from Artn847.c and Artn866.c
Declarations of functions from Artdata.c

Declarations of functions from Artnocod.c

Declarations of functions from Print.c

Declarations of functions from Cardsupp.c

Declarations of functions from Menyio.c

Definitions of constant values, which are used in the program
Definitions and declarations of functions from Bloxio.c
Definitions and declarations of functions from Loxce.c
Declarations of functions from Printdat.c

Definitions and declarations from Timebas.c

Definitions and declarations from Menyio.c

Declarations of constant values for text

Declarations for menu texts and information about every article number
Definitions of digit buffers

Declarations of functions from Menyio.c

A manual how the menusin the program works
A short description about the file structure in the program

File for storing changes between coding and printing

37

11.Appendix D - Functional requirements from Timelox

It shall be possible to feed an article number for an individual card or a set of cardsinto
the new application. The user of the application shall get information if the card uses high
or low coercivity.

The application shall run against some kind of text file or database, which contains all
information about the stored article number. Every article number holds information about
the text to be printed on the card, the code to be printed on the magnetic strip, the cards
coercivity and the card type. Every card set has an article number, which refers to the
specific cards in the set.

The application shall be able to encode the magnetic cards in two different ways. Either
with the same code regardless of the numbers of cards or cards consisting of numbersin
segquence and/or randomised numbers. In the case with numbers in sequence the number
should be read from the database/text file and rewritten and saved with its new valuein
the database/text file. Finally there are some cards, which are encoded with more complex
algorithms.

There shall be afunction in the application that makes it possible to print optional text in
optional positions on the card.

38

12. Appendix E — Categories of article number

FIXED
FIXED-SET-DEPENDENT

PRINT
PRINT-DEPENDENT
PRINT-SET

PRINT-SET- DEPENDENT

VARIABLE

VARIABLE- DEPENDENT

VARIABLE- DEPENDENT-NOPRINT
VARIABLE- INTEGRATED

VARIABLE- NODAT

VARIABLE -SET-DEPENDENT
VARIABLE- SET-DEPENDENT-IDENTICAL
VARIABLE- SET-TWO

VARIABLE- TRACK?2

SUM

Description of main and sub categories

FIXED Main category, handles article number with fixed code

PRINT Main category, handles article number with text printing
VARIABLE Main category, handles article number with variable encoding

SET Sub category, handles set of cards

DEPENDENT Sub category, dependent of other article numbers

NOPRINT Sub category, encodes the card but does not handles text printing
INTEGRATED Sub category, an article number that is integrated into another article number
IDENTICAL Sub category, an article number that handles identical cardsin a set
TWO Sub category, handles two cards with variable code

TRACK?2 Sub category, handles cards encoded on track 2

39

Quantity

87
2
89

20

24

W N O N P NN O

w
»

149

13.Appendix F —UML diagrams
Unified Model Language (UML)

When investigating how a program is constructed, it is important to get an
understanding of the design and architecture of the entire system. One approach isto
use Unified Model Language (UML) [2]. UML is adiagram-based design language. In
UML it is possible to construct different models of design, becauseit isinconceivable
to capture everything about the design in asingle type of diagram. Two types of UML
diagrams used in the case study are:

* The use case model describing the required system from the users point of view.
* Theclassmodel describing the elements of the system and their relationships.

UML use casediagram

=

Encode card

Get information
about acard

User

Add card

=

Remove card

Administrator
Update card

40

UML classdiagram

Article number

*

1 Fargo
Data base ! L7 Printer |<F+—
—E Other i Frame
1 1 0.* Box
Application <> GUI <>——"— Component |<1—
Button
1
L Label
Actor = Input
[A] [A]
Administrator User Keyboard Mouse
Classes
Database Handles all information about the article numbers
Printer Prints text on the card and encode the magnetic strip
Fargo The specific printer used
Other Possible to use other printers
GUI Handles the graphical user interface.
Components Super class for the componentsin GUI
Application Starts and executes the program
Actor Super class for User and Administrator
User Uses the program. Has no authority to make changes in the
database.
Administrator Administrate the program and the database.
Input Super class for Keyboard and Mouse
Keyboard Handles the input when the user types on the keyboard
Mouse Handles the input when the user uses the mouse

41

14. Appendix G — Sour ce code example

Example of an article number in the existing system’ s source code:

/***

* Name: fno_847501

* Function: Cenerates an "Energency 0"

* Input: I nt nunber.

* CQutput: Int ready (errorcode).

* Uses: screen_handl er, di spl ay_nunber _of _cards (CARDSUPP.C),
* card_ wite (LOXCE C),

*

printer f. (PRI NTDAT.C) and

int fno_847501 (int nunber)

int index = 0, ready = CARDCODI NG_OK, no_of _cards,

no_of cards = screen_handl er (TEXT_847501, &nunber,

whi l e (index < numnber)

functions from MENYI O C

**/

di spl ay_nunber _of _cards (nunber-index);

if (fnobusy())
return ready;
del ete_bitmap();
set _horizontal ();
sel ect _character(02);

for (radindex = 0; radindex < rad;

line_feed();

send_t ext (" EMERGENCY- 0", kol) ;
send_text (" 847 501 ", kol);

ready = card_wite ("E0039BA500100002546000000", CARDLENGTH, 0); ¢

if (fnobusy())
return ready;

if (ready == CARDCODI NG OK)

r adi ndex,

radi ndex++)

-]

Thisiswhat will be printed on the card.

{
proprint();
del ay(6);
i ndex++;

}

el se

{

reset _printer
del ay(10);

}
} /* while */
return(ready);

42

OF

Thisiswhat will be encoded
on the card.

15.Appendix H — Requirements specification
Kravspecifikation
1. Funktionella krav

Generellt

1.1 Korten ska skrivas ut pa en skrivare.

Anvandaren

1.2 Anvandaren ska genom inmatning kunna ange ett artikelnummer for ett enskilt kort i
programmet.

1.3 Anvandaren ska genom inmatning kunna ange ett artikelnummer for ett set av kort i
programmet.

1.4 Anvandaren ska genom artikelnumret fainformation om vilka slags kort som ska laddasii
skrivaren.

1.5 Anvandaren ska genom en fraga fran programmet ange hur manga kort som skall
tillverkas.

1.6 Anvandaren ska genom en fraga fran programmet ange hur manga set av kort som skall
tillverkas.

1.7 Anvandaren ska kunnatrycka valfri text pa valfri position pa kortet.
Programmet

1.8 Programmet ska hamta information via en databas eller en textfil.
1.9 Programmet ska skicka information till en databas eller en textfil.

1.10 Programmet ska kunna koda magnetkort med fast kod d.v.s. koden som skaligga pa
korten & samma oavsett hur manga kort som ska kodas.

1.11 Programmet ska kunna koda kort som innehaller |6Gpnummer.

1.12 Programmet ska kunna koda kort som innehaller slumptal.

1.13 Programmet ska kunna koda kort som innehdller |6pnummer och slumptal.
1.14 Programmet ska kunna koda kort med komplicerade algoritmer.

1.15 Programmet ska kunna hantera plastkort med hog koercivitet och plastkort med 13g
koercivitet.

43

1.16 Varje artikelnummer ska besta av 6 siffror.

1.17 Programmet ska rékna upp eller ner |6pnummer per artikelnummer i specificerad
algoritm.

Administrator

1.18 Administratéren ska kunna andra, ta bort och laggatill artikelnummer i databasen.
Databasen/Textfilen

1.19 Databasen eller textfilen skalagra all information per artikelnummer

1.20 For varje kort ska det finnas information pa databasen eller textfilen om vilken text som
skatryckas pakortet.

1.21 For varje kort ska det finnas information pa databasen eller textfilen om var texten ska
tryckas pa kortet.

1.22 For varje kort ska det finnas information pa databasen eller textfilen om vilken kod som
skal&ggas pa magnetremsan.

1.23 For varje kort ska det finnas information pa databasen eller textfilen om kortet skavara
med hog dller 1&g koercitivitet.

1.24 For varje set av kort ska det finnas information pa databasen eller textfilen om vilka
artikelnummer som ingdr i setet.

1.25 For varje kort med |6pnummer ska aktuellt nummer lagrasi databasen.

2. Ickefunktionella krav

2.1 Programmet ska skrivasi Visual Basic

2.2 Programmet ska vara objektorienterat

2.3 Programmet ska vara utvecklat for Microsoft Windows plattform
2.4 Programmet ska vara enkelt att underhalla.

2.5 Programmet ska vara enkelt att bygga ut.

2.6 Programmet ska kunna anslutas till en annan skrivare utan stérre modifieringar.

