

Lund University Bachelor Thesis
Lund Institute of Technology
Department of Communication System 2001-09-19

Software re-engineering
from function-oriented to object-oriented

Tutor Authors
Thomas Olsson Jonas Gyllenspetz
 Steffan Tajti

Abstract

This report is a Bachelor thesis at Lund Institute of Technology, conducted by Jonas
Gyllenspetz and Steffan Tajti at Timelox AB in Landskrona, Sweden.

The report examines problems with old software programs that, for several reasons, need to
be updated. When updating the software, it is possible to rewrite the entire program, or take
advantage of the obsolete one.

In this thesis the possibilities to take benefits from of an existing program, when developing a
new, is performed as a case study. The case study is performed with a process divided into
several phases.

The result of the case study shows, if programming languages differ considerably in structure
and inbuilt function, the main benefit taken from an obsolete program is examining its
functionality.

In the case study the new program was not implemented, why no comparisons regarding
source code amount, effectiveness, and maintainability have been made.

Contents

1. INTRODUCTION.. 6
1.1. OBJECTIVES OF THE THESIS ... 7
1.2. PROGRAMMING LANGUAGES AND ENVIRONMENTS ... 7
1.3. OVERVIEW OF THE THESIS... 7

2. THE CONCEPT OF SOFTWARE RE-ENGINEERING.. 9
2.1. INTRODUCTION TO SOFTWARE RE-ENGINEERING... 9
2.2. SOFTWARE RE-ENGINEERING PROCESS.. 11

2.2.1. Preliminary inventory analysis ... 11
2.2.2. Encapsulation.. 11
2.2.3. Application analysis .. 12
2.2.4. Production standardisation... 12
2.2.5. Design recovery... 13

2.3. ACTIVITIES IN SOFTWARE RE-ENGINEERING PROCESS ... 13
2.3.1. Source code conversion... 13
2.3.2. Program structure improvement ... 14
2.3.3. Program modularisation ... 15
2.3.4. Data re-engineering .. 15
2.3.5. Reverse engineering .. 16

2.4. SUPPORTING TECHNOLOGY ... 17
2.5. SUMMARY... 18

3. DEFINITION OF THE CASE STUDY ... 19
3.1. INTRODUCTION ... 19
3.2. OBJECTIVES .. 19
3.3. THE COMPANY .. 19

3.3.1. Printer used in production .. 19
3.3.2. Existing system .. 19
3.3.3. Desired re-engineered system from Timelox ... 20

3.4. METHOD ... 20
3.4.1. First phase: Preliminary inventory analysis ... 20
3.4.2. Second phase: Encapsulation.. 21
3.4.3. Third phase: Application analysis... 21
3.4.4. Fourth phase: Production standardisation ... 21
3.4.5. Fifth phase: Design recovery .. 21

3.5. PROGRAM LANGUAGES IN CASE STUDY ... 21
3.5.1. C.. 22
3.5.2. Visual Basic... 22
3.5.3. Differences between C and Visual Basic... 22

4. IMPLEMENTATION OF THE CASE STUDY ... 24
4.1. FILE DESCRIPTION ... 24
4.2. MODULE DIAGRAM ... 24
4.3. ANALYSIS OF THE EXISTING SYSTEM... 25

4.3.1. Reduction of remaining files.. 26
4.3.2. Investigation of remaining files... 26

4.4. DEVELOPMENT OF THE NEW DESIGN ... 27
4.4.1. UML diagrams .. 28
4.4.2. Incorporation of a database .. 28

5. ANALYSIS OF THE CASE STUDY ... 29
5.1. ANALYSIS OF ACTIVITIES AND PHASES USED ... 29
5.2. ANALYSIS OF ACTIVITIES AND PHASES NOT USED.. 30
5.3. EXPERIENCES .. 30

6. CONCLUSIONS AND SUMMARY .. 32
6.1. THE CONCEPT OF SOFTWARE RE-ENGINEERING ... 32

6.2. FROM FUNCTION-ORIENTED TO OBJECT-ORIENTED.. 32
6.3. THE CASE STUDY... 33
6.4. MEETING THE OBJECTIVES .. 33

7. REFERENCES... 34

8. APPENDIX A - GLOSSARY.. 35

9. APPENDIX B – MODULE DIAGRAM .. 36

10. APPENDIX C - FILE DESCRIPTION.. 37

11. APPENDIX D - FUNCTIONAL REQUIREMENTS FROM TIMELOX .. 38

12. APPENDIX E – CATEGORIES OF ARTICLE NUMBER .. 39

13. APPENDIX F – UML DIAGRAMS ... 40

14. APPENDIX G – SOURCE CODE EXAMPLE... 42

15. APPENDIX H – REQUIREMENTS SPECIFICATION.. 43

Preface

This report is the result of the Bachelor thesis that completes our Bachelor of Science degree
in Software Engineering at Lund Institute of Technology. The work has been conducted at
Timelox AB in Landskrona, Sweden.

We would like to thank everyone who has helped us during our thesis. Especially our tutor
Ph.D. Student Thomas Olsson (Department of Communication Systems at Lund University)
for his feedback and support.

We would also like to thank our supervisor Martin Kjällman and Magnus Persson at
Timelox AB.

______________________ ________________________
Jonas Gyllenspetz Steffan Tajti

6

1. Introduction

In many companies, worldwide, there exist old software systems that still provide
essential business services [1]. These kinds of systems are called legacy systems. The
maintenance of legacy systems provides three notable problems [1].

• The systems have often been modified several times by different programmers.

• The modifications are often made over a large period of time, maybe 10 to 20
years.

• In many cases there is a lack of documentation of the systems.

Consequently, it is impossible that neither a single person nor a company have a complete
understanding of the system. When these problems with the system reach a point in time,
when it is too expensive or too complicated to maintain, the system must be re-
implemented [1, 3, 4].

There are three options to choose from when re-implementing legacy systems.

• The first one, sometimes called “cold turkey” [5], is to develop a new system
from scratch and reject the existing one [1, 5].

• The second one is to organise and reconstruct the existing system without

changing the functionality. These work�procedures are called
software re-engineering [1,3,5,6,7].

• The third option is to reconstruct the existing system in small incremental steps,

while it is still in production. This option is sometimes called “chicken little” [5].

The second alternative is preferred, because it has two key advantages compared to
developing an entirely new system. The advantages are reduced risks and costs [1, 3, 5].

Approaches to software re-engineering and the use of them are investigated. The
knowledge is applied on an existing legacy system, developed in a function-oriented
programming language, which encodes magnetic cards.

7

1.1. Objectives of the thesis

There are two objectives of the thesis.

• The first objective is to provide knowledge on to what extent it is possible to reuse
source code in a re-engineering process.

• The second objective is how to obtain an understanding of the difficulties

involved, when the existing system is written in a function-oriented programming
language and the new system is written in an object-oriented programming
language.

To meet the objectives and get sufficient knowledge, a literature study and a case study is
performed. The case study is divided into three parts; background, objectives and method.
The usage of CASE-tools in the case study (see section 2.4 Supporting technology) is
rejected. A requirements specification and an architectural design of a suggested new
system are created. The new system is not implemented.

1.2. Programming languages and environments

The system, written in the function-oriented language C, with MS-DOS environment, is
still in working order at the company Timelox AB. The system’s functionality is to handle
different algorithms, which are encoded as hexadecimal strings on magnetic cards. In
addition to that, the system handles text strings, which are printed on magnetic cards. The
system will be re-written in the object-oriented programming language Visual Basic or
C++ in order to work in MS Windows9x/Me environment. The main purpose for re-
engineering the system is to make it more maintainable. The new system will have the
same features as the existing. The new system is not implemented in this thesis.
Programming languages and environments are more carefully described in section 3.3
(Company) and 3.5 (Program languages in case study).

1.3. Overview of the thesis

The thesis is divided into five parts.

• Chapter 2 consists of an overview of the concept of software re-engineering. In
this chapter an approach to software re-engineering is performed. This approach
includes a process with five key phases. In the phases of the process it is possible
to incorporate, one or more, of five activities. These activities are also described
in this chapter. Furthermore, chapter 2 includes a presentation of supporting
technology in software re-engineering.

• In chapter 3 the case study definition is presented. A survey over the company and

the company’s hardware and software is performed. A method based on the
approach to software re-engineering in chapter 2 is also handled in this chapter.
Finally, chapter 3 presents the programming languages involved in the case study.

8

• The implementation of the case study is described in chapter 4. The method in

chapter 3 is followed. The different sections in the chapter are file description,
module diagram, evaluation of existing system and development of the new
design.

• Chapter 5 presents the case study’s analysis. In this chapter, recommendations for

improvements are discussed. A diagram, which shows what phases and activities
included in the case study, is presented.

• Finally in chapter 6, conclusions and summary are presented.

9

2. The concept of software re-engineering

2.1. Introduction to software re-engineering

Changing software systems, without changing their functionality, is called software re-
engineering [1]. The difference between software re-engineering and ordinary software
engineering is that earlier developed systems are used as input in the re-engineering
process (see Figure 1).

There are two essential advantages with re-engineering compared to developing new
software. The advantages are reduced risk (there are often problems with development,
staffing, and specification in new software) and reduced costs (the cost of re-engineering
is often significantly less than the costs of developing new software) [1].

Software changes are mainly made for making the systems more maintainable in order to
extend lifetime and to reduce maintenance costs. Sometimes software changes are
necessary due to new requirements, which was not included in the original system. The
new requirements are for example; changes in operating system environments or the need
for implementing new functionalities. Other desirable improvements are time constraint,
productivity and quality [3, 6].

The existing system can be used for creating software specifications in order to get overall
comprehensibility for new development. It can also be used for translating a system’s
programming language (for example from C++ to Java). The amount of source code used
depends of the input quality and the expected outcome [6, 8].

Existing software
system

Understanding and
transformation

Re-engineered
system

Figure 1. Software re-engineering

10

Another interesting issue is that more and more people are involved in changing software
(for instance enhancements as software re-engineering). Figure 2 shows the extrapolation
for the number of programmers (worldwide) working on new projects, enhancements, and
repairs [7]. In the 1990’s, only three out of seven programmers were working with new
projects. The forecast predicts that in the 2020´s only a third of all programmers will be
working with new projects.

Due to increasing requirements for maintenance and improvement, the area of software re-
engineering is gradually becoming more important.

Year New projects Enhancements Repairs Total
1950 90 3 7 100
1960 8 500 500 1 000 10 000
1970 65 000 15 000 20 000 100 000
1980 1 200 000 600 000 200 000 2 000 000
1990 3 000 000 3 000 000 1 000 000 7 000 000
2000 4 000 000 4 500 000 1 500 000 10 000 000
2010 5 000 000 7 000 000 2 000 000 14 000 000
2020 7 000 000 11 000 000 3 000 000 21 000 000

Figure 2. Programmers involved in different software activities.

11

2.2. Software re-engineering process

To obtain a better understanding, when starting the software re-engineering process, the
existing system has to be carefully analysed. Once an organisation understands the
concepts and the factors that influence the change of a software system, it becomes
possible to harness the direction of the development. The technique for re-engineering the
software is to establish a process [3, 5, 7]. In the process, several phases are possible to
identify. Typical phases are system inventory, strategy determination, impact analysis,
detailed planning and conversion [7].

One approach to re-engineering is to comprise the process into five key phases [3];
preliminary inventory analysis, encapsulation, application analysis, production
standardization, and design recovery.

2.2.1. Preliminary inventory analysis

Before re-engineering begins, a preliminary inventory analysis of the existing system
is performed. This is done to determine the overall scope of the re-engineering effort.
This first phase is a reduced version of the next two phases in the process, the
encapsulation and the application analysis. In this phase it is not necessary to develop
a detailed inventory of the system’s components. The main objective is to determine
the limitation of what to do in the process. The requirements specification for the new
system is also created in this phase [3].

2.2.2. Encapsulation

Encapsulation is essential to re-engineering because it ensures that all system
components are identified. An accurate component inventory must be developed
before the analysis in the next phase is performed [3].

This phase is conducted to identify all possible components in the system and also to
find components that are not a part of the system. When defining the components, it is
possible to use software tools, to make an automated analysis. It is recommended to
use it with a manual analysis. This approach is recommended, in order to find
misplaced system components that are not found with automated analysis tools. Using
a combination of both manual and automated analyses provides the most accurate
inventory in the least amount of time [3].

The main objective in this phase is to ensure that all system components are identified.
When the inventory is performed, it is possible to ignore the components, which are
not important to re-engineer [3].

12

2.2.3. Application analysis

When the application analysis is performed, there are two attributes to take in
consideration.

- Ability to support the system’s functional requirements
- System design and use of technology

Evaluation of these two attributes in the analysis provides insight about what is
important to improve in the system’s re-engineering process. For example, a system
that adequately supports the needs of the user but operates with obsolete technology is
more valuable than one that provides little or no functional support to the user, but
operates with all the latest technology.

The main objective in this phase is to provide a better understanding of functional
fulfilment and how to improve the technical quality of the system [3].

2.2.4. Production standardisation

Production standardisation transforms an existing system into one that performs better,
is easier and more cost effective to maintain and operate. It is possible to approach the
existing system from two directions simultaneously, functional and technical. A
functional knowledge of the system is required to identify and document the attributes
that are supported by the system. The technical aspect of this approach provides
detailed knowledge of the processing within the system and the information necessary
to improve the maintainability and performance of the system [3].

When the re-engineering effort is completed in this phase, the system is expected to be
more cost effective to maintain and operate. The system is also expected to better react
to internal and external forces. For example, it is easier to incorporate new
components in the system, when the technical and functional aspects of the system are
improved.

The main objective of production standardisation is to improve the existing system
after years of changes performed by different programmers using different
programming styles and techniques [3].

13

2.2.5. Design recovery

The final phase in this approach to re-engineering is design recovery. Design recovery
captures elements of the current system design, with the possibility to incorporate
these elements into a CASE tool (see section 2.4 Supporting technology). This phase
provides the ability to accurately document the functional and technical aspects of the
existing system [3, 6].

The documentation produced from this phase provides insight into several functional
purpose of the system.

- The main components of the system.
- The technology used to provide system functionality.
- The applications that use the system.
- The interface to other system.
- The architecture of the system.

2.3. Activities in software re-engineering process

In every phase in the software re-engineering process it is possible to incorporate
activities. There are five activities, which are explained and investigated. The activities
described here are: source code conversion, program structure improvement, program
modularisation, data re-engineering, and reverse engineering [1].

2.3.1. Source code conversion

Source code conversion is the simplest form of software re-engineering [1]. This
activity is used when it is possible to convert a program written in one programming
language to another. This is typically done when the programming language in some
way is obsolete. Reasons for source code conversion may be lack of skilled staff for
maintenance and support or hardware platform updates. Automatic conversion is
feasible, but in many cases this is impossible because it is very difficult to make a
complete automatic conversion A reason why automatic conversion is impossible is
the lack of corresponding constructs between languages [1, 8].

Source code conversion can be separated into two different categories, source code
translation and source code transformation [9]. Source code translation is used when
conversion is made between different programming languages such as COBOL to C.
When conversion is made in the same programming language, between different
versions or dialects, this is called source code transformation. Transformation can also
be difficult because the same syntax can have different behaviour in different dialects
(see example below). This is known as the homonym problem and exists for instance
in different dialects of COBOL [8]. An example where the same syntax has different
outcome in different dialects though the language is the same.

14

PIC A X(5) RIGHT JUSTIFIED VALUE ‘HELLO’.
DISPLAY A.

The code above gives with the OV/VS COBOL compiler the expected result,
displaying the word ‘ HELLO’ right justified. But using the COBOL/370 compiler the
same word has a trailing space and is left justified.

2.3.2. Program structure improvement

The previous need to optimise memory use, due to computer hardware limitations, is
one of the reasons why many computer programs have complex structures.
Consequently, these computer programs are problematical to understand [1]. Another
reason for insufficient structured programs are programmers having limited
understandings and skills in software development [4]. Therefore, program structure
improvements are performed, with the aim to make the programs easier to understand
and maintain.

Source code may consist of unstructured control logic, cryptic variable names, or
complex conditions [4]. For example, conditional statements including negation
expressions can be made more understandable excluding this (“not”, “!=”, etc,
depending on language). In any case, excluding negations, not always mean that the
code becomes easier to understand.

Furthermore, source code can exist without being reached, as developers do not dare
to remove code they are uncertain about. This kind of code is hard to discover without
making an extensive analysis [1].

Program structure improvement can be made automatically. The automatic analysis
may generate a diagram, which shows the flow through the program. Simplification
and transformation techniques can be applied to the generated diagram without
changing its semantics. With this technique, unreachable code is identified and can be
removed. Once simplifications are completed, a new program is generated. This
automatic analysis may not work properly if the program is written in a non-standard
language dialect. [1]

Problems with automatic program restructuring are amongst other things, losses of in-
line comments and documentation in the program. However, this is often not
significant, since these are often out of date or of no importance after restructuring [1].

15

2.3.3. Program modularisation

Program modularisation is the process of re-organising a program so that related
program parts are collected together in modules or objects. For example, functions
handling the interface are put in a separate module. By collecting similar parts it is
easier to find redundancy and to formulate a better overview of the program. Program
modularisation is performed manually by inspecting the code. Different tools can help
with browsing and visualisation, but to automate the process is virtually impossible [1].

Program modularisation is done to simplify maintenance and to improve
understanding of the program, to enhance cohesion within parts, and to minimise
coupling.

Several different types of modules may be created during the program modularisation
process [3]. These include:

• Data abstractions: Abstract data types where data structures and associated

operations are grouped.

• Hardware modules: All functions required interfacing with a hardware unit as
for example a printer.

• Functional modules: Modules containing functions which carry out closely

related tasks as for example calculations or graphics.

• Process support modules: Modules where the functions support a business

process or process fragment. This might in a bank system be the part of the
program that handles the functionality required when redrawing cash from
automates.

2.3.4. Data re-engineering

Data re-engineering is the process of analysing and re-organising data structures (and
sometimes even data values) in a system in order to make the system more
understandable [1]. This activity may be a part of the process of migrating from a file-
based system to a DBMS-based system (see Appendix A - Glossary) or changing from
one DBMS to another. Changes in the software may affect the data storage, data
format, or the data values [4]. The objective with data re-engineering is to establish a
manageable data environment.

16

2.3.5. Reverse engineering

Reverse engineering is the opposite of the expression forward engineering. Forward
engineering is often mentioned as the process of moving from high-level abstract
specifications to detailed low-level specifications for implementation [6, 7]. The
primary purpose for reverse engineering a software system is to increase the overall
comprehensibility of the system for both maintenance and new development [4, 6].

Reverse engineering can be used when deriving a systems design and specification
from its source code [6]. The process does not necessarily move from source code to
specification. Variations in the process depend on available input and expected output.
In some situations the source code might not be available and the only input is the
executable file.

When starting the reverse engineering process, it is possible to make an automated
analysis by using tools for program understanding. This is, however, not enough to re-
create the system specification. Engineers also need to make manual annotations [3].
The annotations and the information collected by the automated analysis, are stored in
a system information store. This storage is used for generating documents of various
types such as program and data structure diagrams.

After the system design documentation is generated, it is still possible to add more
information to the information store. This is done in order to re-create the system
specification. This procedure usually involves further manual annotation of the
system structure.

The different steps in reverse- and forward engineering can simplified be categorised
into four parts [9].

• Objectives

The objectives express the purpose or need for the software. This can be more
general, for example company business goals.

• Requirements

The requirements describe the software system for achieving the objectives. The
formulation of requirements is part of any software process, but there can be major
differences in what this activity is to include.

• Specification

The specification (design) describes the software system in an explicit way, with
understanding of how the system works and interacts with the surroundings.

• Implementation

Implementation is the step where the system is implemented according to the
specification.

17

A software process including these steps, usually in this order, is called forward
engineering. Reverse engineering include one or more of the same steps but in the
opposite order (see Figure 3).

The initial level, when using reverse engineering, depends on the quality of the
available documentation. Furthermore, there is not always a need for recovering the
objectives. After completing the reverse engineering process, the outcome is applied
on the new system.

Figure 3. Reverse engineering compared to forward engineering.

2.4. Supporting technology

It is very laborious and difficult to change software [3, 8, 10]. Programmers are frequently
hesitant and sometimes even resistant to re-engineering the program even if they are
convinced that it will improve the system and reduce the maintenance costs. Their
arguments are: it will take too long time, it is impossible to meet the objectives and it is
too difficult to make the change [3].

Assistance in this dilemma is to apply a supporting technology named computer-aided
software engineering (CASE) [6]. Reverse engineering is rapidly becoming a recognised
and important component of future use of CASE-tools [6]. CASE by definition is a
technology that applies an automated engineering-like discipline for the specification of
computer software system design, software development, testing, maintenance, and also
project management [3]. CASE provides an opportunity for re-engineering.

Objectives Objectives

Implementation Implementation

Existing system

R
ev

er
se

 e
ng

in
ee

rin
g

New system

Fo
rw

ar
d

en
gi

ne
er

in
g

Source code translation

Different levels depending on
 available input and expected output.

Specification Specification

Requirements Requirements

18

For example, CASE-tools can be used for analysing software. They can include facilities
such as diagram tools, prototyping facilities, an audit or checking facility to guarantee
completeness, a repository to store data flow diagrams, data entity relations and reports
and a link to other repositories [3]. The outputs are functional requirements, data
structures, database or dataset designs, and report definitions. Other CASE-tools can be
used to create UML diagrams from source code and also to make new source code from
UML diagrams [1].

With CASE-tools it is possible to improve the quality in the re-engineering process. This
is performed with reuse of design elements and through reverse engineering. Furthermore,
together with manual analysis of the source code, CASE-tools enhance productivity and
provide a high-quality system [3].

2.5. Summary

The objective of software re-engineering is to reorganise and modify existing software
systems in order to make them more maintainable. This is made without changing the
original functionality. Modification might change the source code completely (different
language) or cause minor changes as for instance minor program structure improvements.

Modifications are often performed to improve the system structure and to make it easier to
understand. Reasons for re-engineering a system instead of starting from scratch are
expected cost reduction and lesser risks.

A process comprised in five key phases is one approach to software re-engineering. These
phases are called preliminary inventory analysis, encapsulation, application analysis,
production standardization, and design recovery.

In the process’s phases one or more activities are performed. They describe what is
actually done with the software. The activities are; source code conversion (changing
language or dialect), program structure improvement (improving the structure), program
modularisation (gathering parts that are related in modules), data re-engineering (re-
organising data structures), and reverse engineering (create representations of the system
at a higher level of abstraction).

A supporting technology, in re-engineering process, is to use automated tools as CASE.
The use of CASE-tools does not exclude manual analysis of the source code being
changed.

19

3. Definition of the case study

3.1. Introduction

This chapter describes the primary objectives and method of the case study. It also
includes an introduction to Timelox AB, the company where the case study is performed.
Furthermore, a description of the existing system (to be re-engineered) and the desired
new system is performed. The systems software languages and differences between them
are also described.

3.2. Objectives

The primary objective of the case study is to acquire deeper knowledge concerning the
existing system and to find code and significant algorithms to re-implement in the new
system. The existing system’s function-oriented structure is examined and evaluated in
order to design a new structure in an object-oriented manner. This results in important
information, where significant files are found and examined, and in addition, irrelevant
files removed (described in chapter 4).

3.3. The company

The company where the case study is performed is Timelox AB. They develop,
manufacture, and market electronic locking systems where magnetic cards and smart
cards are used as keys. Hotels, municipalities, county�councils�and other public services
are amongst their customers. Magnetic cards used by guests and employees are encoded
and printed by card encoders at hotels and companies.

3.3.1. Printer used in production

In Timelox’s production a printer called Protechno is used. Protechno prints text and
encodes magnetic cards. These cards are special cards used by operators and
administrators. They are for instance used for initiating locking systems or for
unlocking doors in case of emergency. Every locking system is delivered with a
unique set of operator cards.

3.3.2. Existing system

The existing system used today, to control Protechno, is obsolete and difficult to
maintain. This results in heavy maintenance costs, which makes the system expensive.
In addition, it is impossible to add source code to the system, because of the complex
program structure.

20

There are 149 different ways to encode and print text on magnetic cards. The different
ways are represented as article numbers in the source code. Every article number
describes one way to encode and print text on the magnetic card. The codes are in
some cases clearly stated in the source code but some of the codes have complex
algorithms and randomised characters. When calculating these algorithms, data from a
data file is used. The data used from the data file is in some cases changed and
rewritten.

The system has been modified several times during fifteen years of usage and
approximately ten programmers have been involved in the modifications. The
documentation of the system is inadequate. Therefore, there is no programmer at
Timelox that has a complete understanding of the system.

The system is written in C and runs on Microsoft-DOS.

3.3.3. Desired re-engineered system from Timelox

Timelox has decided to develop new modern software that, besides the opportunity to
use multiple printers, will have the same functionality as the existing. A new printer
called Fargo has been purchased. Initially this new printer will be used together with
the new developed software.

The new re-engineered system will be written in Visual Basic and will be running on
the Microsoft Windows 9x/Me platform.

3.4. Method

To meet the objectives in the case study, a method based on the approach to software re-
engineering in section 2.2 (Software re-engineering process) is used.

3.4.1. First phase: Preliminary inventory analysis

Before re-engineering begins, a preliminary inventory analysis (see section 2.2.1) of
the existing system is performed.

The first step is to obtain a broader understanding of the existing system. Informal
interviews with the employees in the production are made. A demonstration of the
existing system is also given. As the interviews are informal, without predefined
questions, this is not documented. The main purpose is to determine a better initial
start point.

The first activity used, when making the existing system’s preliminary inventory
analysis, is reverse engineering (see section 2.3.5). The source code, with some useful
but mostly cryptic annotations, is used as input when starting the activity. The result is
that a requirements specification is written.

21

3.4.2. Second phase: Encapsulation

The next phase is encapsulation (see section 2.2.2). The activity used is program
modularisation (see section 2.3.3). The objective in this phase is to identify all system
components. This is made by a more careful examination of the existing source code,
than made in the preliminary inventory analysis. The result of this phase is a module
diagram, which shows how the function-oriented system is constructed.

It is possible to ignore some components, because they are not significant for the
system and do not need to be analysed in the next phase.

3.4.3. Third phase: Application analysis

Application analysis (see section 2.2.3) is the third phase and the activities used are
program structure improvement (see section 2.3.2) and data re-engineering (see
section 2.3.5). In this phase important files are even more carefully examined than
earlier phases. Important data are collected and stored in a database. Files of no
interest for further re-engineering are ignored and removed.

3.4.4. Fourth phase: Production standardisation

The production standardisation phase (see section 2.2.4) is ignored in the case study.
The reason for this is that the new system is developed in an object-oriented manner
and it is hard to apply on the existing system. Furthermore, it is not enough to improve
the system with production standardisation.

3.4.5. Fifth phase: Design recovery

The last phase is design recovery (see section 2.2.5). Two UML diagrams, use case
diagram and class diagram, are made manually to get a better design for the new
system. Reverse engineering (see section 2.3.5) is the activity used in this phase. In
this phase the existing system is documented properly in both technical and functional
aspects.

3.5. Program languages in case study

The existing system in the case study is written in the programming language C and runs
in Microsoft-DOS environment. The new program is to be developed in the programming
language Visual Basic and will run in a Microsoft Windows 9x/Me environment. The
class diagrams and the use case models for the new design is developed in Unified Model
Language (UML).

22

3.5.1. C

C is a programming language from the 1970s. It is a function oriented language,
meaning that the program is structured by define and call functions. Program flow is
controlled using loops, if-statements, and function calls. C allows a precise control of
input and output data. This precise control is possible by the use of indirect addressing
(pointers) [12].

If no requirements specification exists and there is a need to get a better understanding
of a program, it is possible to make a module diagram. Modules do not exist in C but
can be simulated by collecting parts of the source code that are logically connected.
Even if programs not are developed in such manner, it is possible to create module
diagrams manually. The module diagram includes different files and the connection
between them.

There are two types of files in C, which are of special interest in the case study’s
module diagram, source code files and header files. The source code file includes
functions for the program. The header-file is an include file, which contains
declarations of functions for input and output. When including a header file in a
source code file, all information stored in the header file is available for the source
code file.

3.5.2. Visual Basic

Visual Basic is an object-oriented programming language [11]. Interfaces are created
by drawing controls, such as text boxes and command buttons, on a form. Properties
for the form and controls are set by values as captions, colour, and size. Afterwards the
code for the controls is written.

3.5.3. Differences between C and Visual Basic

Visual Basic is quite different from C. The main difference is the code structure,
where C-applications are written in a function-oriented manner and Visual Basic-
applications are written in an object-oriented manner [11]. Furthermore, Visual Basic
uses different modules. A program may consist of a single module (for the specific
application) but functions and methods may also be collected in separate modules for
future use in other applications or for getting a better overview (see section 2.3.3
Program modularisation).

It is possible to write a Visual Basic application function-oriented, but it is not
possible to write a C application object-oriented. Another key difference is the
development environment in Visual Basic, which generates the code for the graphical
interface.

Other differences between the languages are declaration of data types and their
behavior. Variable names are similar but when, for example, working with strings,
declarations in C are made by using arrays (see Figure 4). Furthermore, there are

23

boolean variables in Visual Basic for the logical values of true and false. This variable
does not exist in C.

Figure 4. Differences in data type declarations

Other examples of differences, besides semantics, are statements and comparisons that
differ in syntax. The if-statement shown in figure 5 shows differences in how
comparisons are made and how statements are ended. Differences in comparisons for
testing equal values differ in the use of “= =” in C and “=” in Visual Basic. The use of
“=” both for comparisons and assignment in Visual Basic can cause confusion when
comparing the two languages. Another example when comparing values that differ is
the use of “ < > ” in Visual Basic and “ != ” in C.

Figure 5. If-statement syntax differences

Visual Basic example of an if-statement

If a=b Then
 a = 7
 b = 5
End If

C example of the same if-statement

if (a==b){
 a = 7
 b = 5
}

Visual Basic example of data type declarations

Dim a as Integer
- Integer between – 32 768 to 32 767.

Dim b as String
- String up to 65000 characters.

C example of the same data type declarations

int a;
-Integer between – 32 768 to 32 767.

char b[50];
- String up to 50 characters (using characters in an array).

24

4. Implementation of the case study

The implementation of the case study is performed with the process described in 2.2
(Software re-engineering process) and the method described in 3.4 (Method).

The implementation includes an overview of the existing system with file descriptions and
module diagrams. Further analysis of the existing system, with elimination of files and
investigation of remaining files, is also included. Finally, the development of the new design
is handled and the explanations of UML diagrams are made.

4.1. File description

To obtain a good overview of the existing system a preliminary inventory analysis (see
2.2.1) is performed.

The existing system has a very complex structure and therefore very difficult to maintain.
The structure is complex, mainly because of continuous source code addition. Because of
it’s structure, without database handling and general methods or functions, it is necessary
to add new source code every time the company wants to add a new card for coding and
printing. In addition it is impossible to add more source code to the program, because if
more code is added it becomes virtually impossible to compile.

The system consists of 51 files. There are 15 source code files (approximately 15 000
lines of code, including comments), 16 header files, 2 text files and 1 data file. The
remaining 17 files are of two kinds, those used when making the system and those
generated by compilation.

After achieving a good overview of the system a requirement specification is written (see
Appendix H).

4.2. Module diagram

After the preliminary inventory analysis is performed and the requirement specification is
written, a more detailed investigation of the files is required. This is performed with the
encapsulation phase (see 2.2.2). This phase ensures that all components in the existing
system are identified. Furthermore, to find components that not are a part of the system.

As a part of the encapsulation phase, selection of files of importance is in the first attempt
concentrated on source code files, header files, data files and text files. Files used when
making the system and those generated by compile are not included in further analysis.
Left for evaluation, after the first reduction, are 34 files. The entire file description is
found in Appendix C.

To obtain an understanding of how the files are connected to each other, a module
diagram [12] (which includes the header and source code files) is used. Using a module
diagram is made because it is a good way to get an understanding of programs with
complex structures [12]. The entire module diagram is found in Appendix B.

25

A module is a separate part of the program. Its task is to handle data that are logical
connected [12]. For example, one module handles the graphical presentation and another
handles the mathematical standard functions.

In general, every module consists of 2 parts, the module specification and the module
body (see Figure 6). However, in some specific cases the module consists of either the
module specification or the module body.

The specification in the module diagram is the header file, explaining how the module is
constructed. It consists of declarations and definitions of functions and variables from the
source code file. The body in the module diagram is the source code file. It includes
definitions of internal and external functions and variables. These are declared in their
own module specification.

Figure 6. An example of modules and the connection between them

4.3. Analysis of the existing system

When choosing an approach for further analysis of the existing system, considerations are
taken to the ability to support the functional requirements of the new system (see
Appendix D). An application analysis is performed (see 2.2.3). This approach is chosen to
find and eliminate files, which are of no interest compared to the functional requirements
and the new systems programming language. The reduction of source code is also made
for making the source code easier to comprehend. Investigating unfamiliar source code
deeper, without any type of tool is considered to take too much time. Furthermore, it could
even be a waste of time if the source code is found to be of no appraisal use.

At this stage, overall understanding of how to provide functional fulfilment and how to
improve the technical quality of the source code are the primarily goals. All source code is
briefly examined and reduction decisions are made after overall comprehension. Making
quick decisions is not considered to be a risk, because rejected source code will always be
reachable after reduction. When making the examination, discovering that programming

Print.h

Print.c

#include print.h
#include timebas.h
#include menyio.h
#include printdat.h
#include datadecl.h
#include <stdio.h>

declaration Specification

Module

Body

Menyio.c

#include “menyio.h”
#include “printxt.h”
#include “menyloc.h”
#include “prnio.h”
#include “menyprot.h”
#include <time.h>
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>

declaration, definition

Menyio.h

26

styles differ considerably, confirms that several programmers have been involved in
development and maintenance.

4.3.1. Reduction of remaining files

Application analysis has two attributes to take in consideration; ability to support the
system’s functional requirements and system design and use of technology. These two
attributes provide insight, in what to improve in the system’s re-engineering process.
To obtain this, further analysis is performed to identify all components in the source
code. After this, irrelevant files are excluded for several reasons.

• Files, describing the interface in the existing system are not significant,
because the interface in the new program is to be developed in Visual Basic.
The source code could help when creating a similar interface as the existing,
but this is not a requirement and therefore not included. This leads to
considerable reduction of files.

• Files, including the code for communication between the existing system and

the old printer, are written in a complex manner. Because of the complex
structure and that the old printer is not used in the new system, files related to
the printer are excluded.

• One of the two text files describing the system is out of date and therefore

excluded, due to many following updates of the system. The other text file
describes how to register a new article number in the existing system and is
also of no use. Hence, both are reduced and are not taken in further
investigation.

• There are two files that not are incorporated in the program. These files are

most likely files used during earlier development and therefore excluded. They
are called A.c and New.c. The names and contents indicate that they are some
sorts of test files.

After the reduction of files, only 4 files remain.

4.3.2. Investigation of remaining files

One of the remaining 4 files is a data file, used to store information between printing
occasions. Information stored in this data file, is for example, number of cards
produced for a specific article number.

The other three files describe which article numbers are used in the system,
information about the way they encode cards, and the printed text on the cards. The
three files include 149 article numbers (see Appendix E). Almost every article number
refers to a particular card to be printed. A few of the article numbers refer to sets of
cards. A set article number refers to other article numbers. Article numbers referring to
single cards have information about; 25 hexadecimal character code, the coercivity
(see Appendix A – Glossary), the text printed on the card, what type of card to insert

27

into the printer, at which track (see Appendix A – Glossary) to encode the card, and
additional information. The additional information is special information regarding the
specific card (see Appendix G for a source code example).

To collect and store all information the data re-engineering activity (see 2.3.4) is used.
The information is stored in a database and used when the new program will be
developed. The database handler used is Microsoft Access as it works together with
Visual Basic.

The article numbers differ in type of magnetic encoding (see Appendix A – Glossary)
and text printing. To be able to get an overview of them, they are divided into different
categories (see Appendix E). Three main categories of article numbers are discovered;
cards with fixed code and text printing, cards with text printing only, and finally, cards
with variable encoding and text printing.

The main part of the article numbers are represented as separate functions in the
source code, which results in a large amount of similar code at several locations in the
program.

The article numbers, that handle cards with variable encoding (different encoding at
different coding occasions), have complex algorithms and these article numbers need
to use a data file to store and retrieve information. The data file also handles the
enumeration for certain article numbers. The enumeration consists of the sequence
number (totally printed cards), print number (the number printed on the card) and code
number (the number encoded on the magnetic strip).

4.4. Development of the new design

When starting developing the new design there are a lot of issues to take into
consideration. The approach is to make a design recovery (see 2.2.5) of the existing
system. The functional requirements from Timelox (see Appendix D) and the
requirements specification (see Appendix H) have to be taken in account when making the
design recovery.

When the design recovery is made, design issues for the new design are taken into
consideration. Some of the issues are; how the new design has to be effective, simple,
easy to maintain, object oriented and organised. UML is used to design the new system.

The documentation produced from the design recovery phase provides information about;
main components of the system, technology used to provide system functionality, other
applications that use the system and interface to other system.

28

4.4.1. UML diagrams

To get a better understanding of how to design the program, UML diagrams (see
Appendix F) are created [2, 13].

In the UML use case model, two actors are identified, the administrator and the user.
The administrator has authority to add, remove or make updates in the database, which
is connected to the system. The database stores all relevant data from the existing
system. The user gets information about card or card sets and print and encode cards,
but the user has no authority to add, remove or make updates in the database.

In the UML class diagram a design model is described. This model is well structured
compared to the module diagram (see Appendix B) that describes the existing system.

4.4.2. Incorporation of a database

To get an understanding over the entire article numbers, program structure
improvements (see 2.3.2) and data re-engineering (see 2.3.4) are used.

A database is used to store information about the article numbers. The information
about the article numbers is collected from the source code and from the data file.

In this way, it becomes easier and more effective to obtain and store information.
Other advantages are that the information is more structured and it is easier to get an
overview over the contents of the system. Furthermore it becomes easier to make
general functions connected to the database instead of separate functions for each
article number. This reduces the need for changing the source code, when adding a
new article number in the system.

29

5. Analysis of the case study

To show results and knowledge of the case study an analysis of the study is performed. In
addition, recommendations for improvements are discussed. The method used to re-
engineer the system (see 3.4 Method) is divided into different phases (see 2.2.1 – 2.2.5)
and activities (see 2.3.1 – 2.3.5). Several of these phases and activities were taken into
consideration. Furthermore, a diagram (see Figure 7) is presented. This diagram shows the
phases and activities included in the case study.

5.1. Analysis of activities and phases used

In the first phase of the re-engineering process, preliminary inventory analysis (see 2.2.1),
a manual reverse engineering (2.3.5) is performed. This is performed when deriving the
systems design and specification from its source code and reorganising its structure.

The documentation about the existing system turned out to be inferior. There are
approximately 15000 lines of source code in the existing system but only 5 pages of
documentation. This is the reason why the reverse engineering activity was very time-
consuming.

The next phase, encapsulation (see 2.2.2), is also time-consuming due to the lack of
documentation. The activity in this phase is program modularisation (see 2.3.3).
Difficulties are to understand how the source code’s modules are connected to each other.
Furthermore, inexperience about syntax and construction of the function-oriented
language C makes this activity time-consuming.

In the application analysis, (see 2.2.3) two activities, program structure improvement (see
2.3.2) and data re-engineering (see 2.3.4) is performed. These two activities highly
increase the understanding of the existing system, due to a better system overview.

The last phase performed is design recovery (see 2.2.5). The approach using CASE-tools
in this phase is rejected after discussions with responsible personnel at Timelox AB. The
reasons are; it will take too much time and effort to get an understanding of a new
application. In addition, it is not financially motivated to buy a CASE-tool that will be
used for just one special occasion. Earlier studies also show that it is difficult to find a
suitable CASE-tool, due to the various forms of source code [10].

30

5.2. Analysis of activities and phases not used

The production standardisation phase (see 2.2.4) is ignored in the case study. The reason
is that the new system is developed in an object-oriented manner and it is hard to apply on
the existing system

The activity, source code conversion (see 2.3.1) is not adequate because of the increased
possibilities provided by a more modern language as Visual Basic [1, 8]. The problems
are that the syntax and the semantic differ considerably; this makes it impossible to make
a code conversion between the programming languages [8].

Figure 7. Phases and activities included in the case study.

5.3. Experiences

In the beginning of the case study much time was devoted to the documentation of the
existing system. The documentation turned out to be inferior, but some assistance was
taken when the specification and design for the new system was developed.

With insufficient or lack of documentation, the time spent to get knowledge of the system
increases. This results in higher costs. An experience report shows that producing the
necessary architectural documentation during the recovery project costs eight to twelve
times as much as producing the same set of documentation during the original
development project [10].

A recommendation, when starting up a case study, is to first make a survey of the existing
documentation, and if the documentation is inferior, not spend more time trying to
understand the existing documentation. The problem is to realise that the documentation is
inferior. It is not an easy decision to ignore the existing documentation and instead
concentrate at the existing source code. This type of decision is probably easier to take
with more knowledge and experience of similar case studies.

In case study the main focus was deriving how the cards were encoded and what was
printed on the cards. With an inferiorly documented existing system it is hard to form an
understanding of the system, without making a time demanding survey of the source code.

 Phases

Activities

Preliminary
inventory
analysis

Encapsulation Application
analysis

Production
standardisation

Design
recovery

Source code
conversion

Program structure
improvement

 X
Program
modularisation

 X
Data re-engineering

 X
Reverse engineering X X

31

If a survey of the source code is performed, it is important to get an overview over the
system and try to ignore irrelevant code, which are of no interest in the new system.
Source code of no interest is code, which handle the graphical interface, and code, which
communicate with I/O components. This code, in the new system, is handled by Visual
Basic.

When the new system is to be developed, it will be possible to decrease the amount of
source code. The reasons are that the existing system does not have a database and
generally algorithms in the source code for the article numbers.

32

6. Conclusions and summary

Software activities are predicted to move more towards maintenance and improvement,
rather than development of new software (see chapter 2). Maintenance and improvement
can, for several reasons, include changing the programming language, which makes it
more difficult because of programming language differences. When changing
programming language, the wish is to take as much benefit as possible from existing
software code.

6.1. The concept of software re-engineering

Literature studies showed that this is a well-investigated area. Several of the articles and
books in the reference list have their own definitions of the concept re-engineering and
describe smaller areas (for example reverse engineering and code conversion) in different
ways. This makes it sometimes difficult trying to separate the different parts and place
them in their right surroundings; though the overall definition is similar. No unified work-
processes are found, but instead several recommendations of how to proceed in the
process.

The concept of re-engineering is not just about translating source code, but also about
more general program improvements. When changing software, these improvements are
incorporated in a natural way.

6.2. From function-oriented to object-oriented

In literature it is claimed to be complicated (even impossible) to make a conversion from a
function-oriented programming language to an object-oriented programming language
[1,4,7]. The main reason, for the difficulties between these conversions is, besides
syntactic differences, the entirely different program structure.

Observations showed that the programming structure differed completely in Visual Basic
compared with C (see section 3.5.3). The results of these observations are, that it is
impossible to implement any of the source code from the existing system and transform it
to the new program.

It would be interesting though, to investigate the process when moving from C to C++ and
afterwards to Visual Basic. The reasons are that C++ is a similar language to C regarding
syntax, data declarations etc., but differs in its semantic, because C++ is an object-
oriented language like Visual Basic.

Modern programming languages with supporting technology such as support for user
interface drawing and possibility to make easy connections to common database handlers
such as Microsoft Access has made it easier when updating software systems. Moving
from Visual Basic to C without a database handler would probably be much more
difficult. Besides handling the database, the graphical interface has to be dealt with.

33

6.3. The case study

Making a case study on an existing obsolete system turned out to be a good way for
getting an overview of the difficulties with re-engineering (described in chapter 5). The
size of the system used in the case study was manageable without using analysing tools.
Not using any tool gave a sense of having good control of the process. If the existing
system would have been larger, the use of tools would most likely been necessary.

The module diagram (see Appendix B) created of the existing system is not used after it is
created, which might indicate that unnecessary work is made. Although, it is not used in
further work the actual making of the module diagram provides information about the
existing system’s structure.

The result of the case study shows that understanding the system is the main benefit in this
particular case. It is possible that certain algorithms can be translated and used in the new
system. Most probably though, is that these algorithms not will be used as they are, but
instead used for getting information.

6.4. Meeting the objectives

The first objective, in this thesis, is to obtain knowledge to what extent it is possible to
reuse code. Due to the possibilities to ignore big parts of the code from the existing
system, it turned out, that understanding the existing system’s functionality is the main
benefit when meeting this objective.

The code, possible to reuse, are data that are implemented in the database for the new
system and also some specific algorithms, which explain, how card encoding works.
Consequently, instead of actual reuse of code, data collection and function descriptions
are benefits when meeting this objective.

The second objective, understanding difficulties when moving from a function oriented
programming language to an object-oriented language, could not actually be examined.
The reason is that large amount of code is excluded from the system.

Instead, other difficulties exposed are; identify important parts of the system, obtain an
overall picture of the unstructured system, and decide if the system documentation is
reliable.

34

7. References

[1] Ian Sommerville, Software Engineering, Addison-Wesley, Sixth edition, 2001,
ISBN 0-201-39815-X

[2] Perdita Stevens and Rob Pooley, Using UML, Software engineering with objects and
components, Addison-Wesley, 2000, ISBN 0-201-64860-1

[3] Howard Wilbert Miller, Legacy Software Systems, Digital Press, 1998,
ISBN 1-55558-54195-1

[4] Linda Wills and Philip Newcomb, Reverse Engineering, Kluwer academic publishers,
1996, ISBN 0-7923-9756-8

[5] Mats R. Gustafsson and Lars-Åke Johansson, Metodik för reverse engineering/
reengineering - ett eftersatt område, Svenska institutet för systemutveckling,
Rapport nr 17, Oktober 1994

[6] Elliot J. Chikofsky and James H. Cross II, Reverse Engineering and Design Recovery:
A Taxonomy, Auburn University, USA, 1990

[7] Arie van Deursen, Paul Klint, and Chris Verhoef, Research Issues in the Renovation of
Legacy Systems, In J-P Finance, Fundamental Approaches to Software Engineering,
FASE99, LNCS, pp 1-23, Springer-Verlag, 1999

[8] Andrey.A Terekhov and ChrisVerhoef, The Realities of Language Conversion, Faculty
of Mathematics and Mechanics, St. Petersburg State University, Russia, 2000

[9] Alfs T. Berztiss, Reverse engineering, Re-engineering, and Concurrent Engineering of
Software, Department of Computer Science, University of Pittsburgh, 1995,
ISSN 1101-8529

[10] L. Bratthall and P. Runeson, Architectural Design Recovery of a Family of Embedded
Software Systems - An Experience Report, Proceedings First Working Conference on
Software Architecture (WICSA1), San Antonio, Texas, USA, pp. 3-14, February 1999

[11] Eric Winemiller, David Jung, Pierre Boutquin, John Harrington, Bill Heyman, Ryan
Groom, Todd Bright and Bill Potter, Visual Basic 5 Super Bible set, Waite Group Press,
1997, ISBN 1-57169-111-1

[12] Ulf Bilting and Jan Skansholm, Vägen till C, Studentlitteratur, Second edition, 1990,
ISBN 91-44-26732-0

[13] Terry Quatrani, Visual Modeling with Rational Rose 2000 and UML, Addison-
Wesley, Second edition, 2000, ISBN 0-201-69961-3

35

8. Appendix A - Glossary

Coercivity A technical term used to designate how strong a magnetic
field must be to affect data encoded on a magnetic stripe.
Coercivity is measured in Oersteds (Oe).

A more precise definition is; the intensity of the magnetic
field needed to reduce the magnetization of a ferromagnetic
material to zero after it has reached saturation.

DBMS Short for “Database Management System”. A DBMS is a

computerised record-keeping system that stores, maintains
and provides access to information.

Magnetic encoding Magnetic stripe cards have been in existence since the early

70's. Magnetic stripe technology is widely used throughout
the world and remains the dominant technology for
transaction processing and access control. The stripe consists
of tree different tracks, where one or more are encoded with
high or low coercivity.

Track There are tree tracks on a magnetic stripe, which can be

encoded. These are defined by ISO Standards regarding for
instance location, character data size, and bit recording
density. Bit Recording Density, BPI (Bits per Inch) default
ISO Standard selections are 210 BPI for track 1 and 3 and 75
BPI for track 2.

36

9. Appendix B – Module Diagram

Artnocod.h

declarations
artnfunc.h

Artn866.c, Artn856.c

 printdat

Printdat.c
#include "printdat.h"
#include menyio.h"
#include <stdio.h>
#include <string.h>

declarations
Printdat.h

 loxce
Loxce.h

Loxce.c
#include "loxce.h"
#include "menyprot.h"
#include "menyio.h"
#include <dos.h>
#include <stdio.h>

definitions,declarations

 cardsupp
Cardsupp.h

Cardsupp.c

#include "cardsupp.h"
#include "menyio.h"
#include "menyprot.h"
#include ”datadecl.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

declarations

#include datadecl.h
#include menyprot.h
#include timebas.h
#include menyio.h
#include artnocod.h
#include cardsupp.h
#include print.h
#include <stdio.h>

Protechno.c

 print

Print.c

#include print.h
#include timebas.h
#include menyio.h
#include printdat.h
#include datadecl.h
#include <stdio.h>

declarations
Print.h

artnocod

Artnocod.c
#include "artnfunc.h"
#include "datadecl.h"
#include "cardsupp.h"
#include <stdio.h>

 menyio

Menyio.c
#include "menyio.h"
#include "printxt.h"
#include "menyloc.h"
#include "prnio.h"
#include "menyprot.h"
#include <time.h>
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>

definitions,declarations
Menyio.h

#include "bloxsio.h"
#include <stdio.h>
#include <sys\types.h>
#include <sys\timeb.h>

definitions,declarations
Bloxsio.h

 artn847
Artn847.c

#include "artnfunc.h"
#include "cardsupp.h"
#include "carddef.h"
#include "timebas.h"
#include "datadecl.h"
#include "menyio.h"
#include "menyprot.h"
#include "printdat.h"

 artn866, artn856

#include "artnfunc.h"
#include "cardsupp.h"
#include "carddef.h"
#include "datadecl.h"
#include "menyprot.h"
#include "menyio.h"
#include "timebas.h"
#include "printdat.h"

 timebas

Timebas.c
#include "time.h"
#include <stdio.h>

Timebas.h

declarations
Menyprot.h

definitions,declarations

definitions
datadecl.h

definitions
carddef.h

definitions
menyloc.h

declarations
printxt.h

 datadecl

declarations
prnio.h

 prnio

 printxt

artnfunc

 artdata
Artdata.c

#include "arttype.h"
#include <stdio.h>
#include <malloc.h>

Arttype.h

declarations

a
 A.c

new
 New.c

menyloc

37

10. Appendix C - File description

Source code files

Protechn.c Main module with head menu and calls to functions according to what is

chosen in the menu
Print.c Function for card printing
Artnocod.c Function for card encoding and card printing according to article number
Cardsupp.c Definition of functions, which are used in Artn847.c, Artn856.c and

Artn866.c
Artn847.c Definition of functions for article number 847xxx, with fixed and

variable code
Artn856.c Definition of functions for article number 856xxx
Artn866.c Definition of functions for article number 866xxx, with fixed and

variable code
Bloxio.c Functions that communicate with the kernel
Loxce.c Functions that communicate with the kernel
Printdat.c Functions that communicate with the Protechno printer
Timebas.c Functions that handle time delays and show time on screen
Menyio.c Functions that handle input and output from menus
Artdata.c Functions that handle the communications with Artno.dat
A.c Functions that not are incorporated in the program
New.c Functions that not are incorporated in the program

Header files

Artnfunc.h Declarations of functions from Artn847.c and Artn866.c
Arttype.h Declarations of functions from Artdata.c
Artnocod.h Declarations of functions from Artnocod.c
Print.h Declarations of functions from Print.c
Cardsupp.h Declarations of functions from Cardsupp.c
Menyprot.h Declarations of functions from Menyio.c
Datadecl.h Definitions of constant values, which are used in the program
Bloxio.h Definitions and declarations of functions from Bloxio.c
Loxce.h Definitions and declarations of functions from Loxce.c
Printdat.h Declarations of functions from Printdat.c
Timebas.h Definitions and declarations from Timebas.c
Menyio.h Definitions and declarations from Menyio.c
Carddef.h Declarations of constant values for text
Printxt.h Declarations for menu texts and information about every article number
Menyloc.h Definitions of digit buffers
Prnio.h Declarations of functions from Menyio.c

Text files

Manual.txt A manual how the menus in the program works
Program.txt A short description about the file structure in the program

Data file

Artno.dat File for storing changes between coding and printing

38

11. Appendix D - Functional requirements from Timelox

It shall be possible to feed an article number for an individual card or a set of cards into
the new application. The user of the application shall get information if the card uses high
or low coercivity.

The application shall run against some kind of text file or database, which contains all
information about the stored article number. Every article number holds information about
the text to be printed on the card, the code to be printed on the magnetic strip, the cards
coercivity and the card type. Every card set has an article number, which refers to the
specific cards in the set.

The application shall be able to encode the magnetic cards in two different ways. Either
with the same code regardless of the numbers of cards or cards consisting of numbers in
sequence and/or randomised numbers. In the case with numbers in sequence the number
should be read from the database/text file and rewritten and saved with its new value in
the database/text file. Finally there are some cards, which are encoded with more complex
algorithms.

There shall be a function in the application that makes it possible to print optional text in
optional positions on the card.

39

12. Appendix E – Categories of article number

 Quantity

FIXED 87
FIXED-SET-DEPENDENT 2

 89

PRINT 20

PRINT-DEPENDENT 2

PRINT-SET 1

PRINT-SET- DEPENDENT 1

 24

VARIABLE 8

VARIABLE- DEPENDENT 6

VARIABLE- DEPENDENT-NOPRINT 2

VARIABLE- INTEGRATED 2

VARIABLE- NODAT 1

VARIABLE -SET-DEPENDENT 7

VARIABLE- SET-DEPENDENT-IDENTICAL 5

VARIABLE- SET-TWO 2

VARIABLE- TRACK2 3

 36

SUM 149

Description of main and sub categories

FIXED Main category, handles article number with fixed code

PRINT Main category, handles article number with text printing

VARIABLE Main category, handles article number with variable encoding

SET Sub category, handles set of cards

DEPENDENT Sub category, dependent of other article numbers

NOPRINT Sub category, encodes the card but does not handles text printing

INTEGRATED Sub category, an article number that is integrated into another article number

IDENTICAL Sub category, an article number that handles identical cards in a set

TWO Sub category, handles two cards with variable code

TRACK2 Sub category, handles cards encoded on track 2

40

13. Appendix F – UML diagrams

Unified Model Language (UML)

When investigating how a program is constructed, it is important to get an
understanding of the design and architecture of the entire system. One approach is to
use Unified Model Language (UML) [2]. UML is a diagram-based design language. In
UML it is possible to construct different models of design, because it is inconceivable
to capture everything about the design in a single type of diagram. Two types of UML
diagrams used in the case study are:

• The use case model describing the required system from the users point of view.
• The class model describing the elements of the system and their relationships.

 UML use case diagram

Update card

Add card

Remove card

Get information
about a card

Encode card

Print card

User

Administrator

41

UML class diagram

Classes

Database Handles all information about the article numbers

Printer Prints text on the card and encode the magnetic strip

Fargo The specific printer used

Other Possible to use other printers

GUI Handles the graphical user interface.

Components Super class for the components in GUI

Application Starts and executes the program

Actor Super class for User and Administrator

User Uses the program. Has no authority to make changes in the

database.

Administrator Administrate the program and the database.

Input Super class for Keyboard and Mouse

Keyboard Handles the input when the user types on the keyboard

Mouse Handles the input when the user uses the mouse

Article number

Data base Printer

Fargo

Other

GUI Application

Actor

Administrator

Input

User Keyboard Mouse

Component

Label

Button

Box

Frame

0..*

1..*

1..*

1

1

1

1

1..*
 1

42

14. Appendix G – Source code example

Example of an article number in the existing system’s source code:

/***
* Name: fno_847501
* Function: Generates an "Emergency 0"
* Input: Int number.
* Output: Int ready (errorcode).
* Uses: screen_handler,display_number_of_cards (CARDSUPP.C),
* card_write (LOXCE.C),
* printer f. (PRINTDAT.C) and functions from MENYIO.C.
**/
int fno_847501 (int number)
{
 int index = 0, ready = CARDCODING_OK, no_of_cards, radindex, rad = 14, kol = 3;

 no_of_cards = screen_handler (TEXT_847501, &number, 847501);

 while (index < number)
 {
 display_number_of_cards (number-index);

 if (fnobusy())
 return ready;
 delete_bitmap();
 set_horizontal();
 select_character(02);
 for (radindex = 0; radindex < rad; radindex++)
 line_feed();

 send_text("EMERGENCY-0",kol);
 send_text(" 847 501 ",kol);

ready = card_write ("E0039BA500100002546000000",CARDLENGTH, 0);
if (fnobusy())
 return ready;
 if (ready == CARDCODING_OK)
 {
 proprint();
 delay(6);
 index++;
 }
 else
 {
 reset_printer ();
 delay(10);
 }
 } /* while */
 return(ready);
}

This is what will be printed on the card.

This is what will be encoded
on the card.

43

15. Appendix H – Requirements specification

Kravspecifikation

1. Funktionella krav

Generellt

1.1 Korten ska skrivas ut på en skrivare.

Användaren

1.2 Användaren ska genom inmatning kunna ange ett artikelnummer för ett enskilt kort i

programmet.

1.3 Användaren ska genom inmatning kunna ange ett artikelnummer för ett set av kort i

programmet.

1.4 Användaren ska genom artikelnumret få information om vilka slags kort som ska laddas i

skrivaren.

1.5 Användaren ska genom en fråga från programmet ange hur många kort som skall

tillverkas.

1.6 Användaren ska genom en fråga från programmet ange hur många set av kort som skall

tillverkas.

1.7 Användaren ska kunna trycka valfri text på valfri position på kortet.

Programmet

1.8 Programmet ska hämta information via en databas eller en textfil.

1.9 Programmet ska skicka information till en databas eller en textfil.

1.10 Programmet ska kunna koda magnetkort med fast kod d.v.s. koden som ska ligga på

korten är samma oavsett hur många kort som ska kodas.

1.11 Programmet ska kunna koda kort som innehåller löpnummer.

1.12 Programmet ska kunna koda kort som innehåller slumptal.

1.13 Programmet ska kunna koda kort som innehåller löpnummer och slumptal.

1.14 Programmet ska kunna koda kort med komplicerade algoritmer.

1.15 Programmet ska kunna hantera plastkort med hög koercivitet och plastkort med låg

koercivitet.

44

1.16 Varje artikelnummer ska bestå av 6 siffror.

1.17 Programmet ska räkna upp eller ner löpnummer per artikelnummer i specificerad

algoritm.

Administratör

1.18 Administratören ska kunna ändra, ta bort och lägga till artikelnummer i databasen.

Databasen/Textfilen

1.19 Databasen eller textfilen ska lagra all information per artikelnummer

1.20 För varje kort ska det finnas information på databasen eller textfilen om vilken text som

ska tryckas på kortet.

1.21 För varje kort ska det finnas information på databasen eller textfilen om var texten ska

tryckas på kortet.

1.22 För varje kort ska det finnas information på databasen eller textfilen om vilken kod som

ska läggas på magnetremsan.

1.23 För varje kort ska det finnas information på databasen eller textfilen om kortet ska vara

med hög eller låg koercitivitet.

1.24 För varje set av kort ska det finnas information på databasen eller textfilen om vilka

artikelnummer som ingår i setet.

1.25 För varje kort med löpnummer ska aktuellt nummer lagras i databasen.

2. Icke funktionella krav

2.1 Programmet ska skrivas i Visual Basic

2.2 Programmet ska vara objektorienterat

2.3 Programmet ska vara utvecklat för Microsoft Windows plattform

2.4 Programmet ska vara enkelt att underhålla.

2.5 Programmet ska vara enkelt att bygga ut.

2.6 Programmet ska kunna anslutas till en annan skrivare utan större modifieringar.

