
Software Acquisition - a guide
to areas of interest for the one-
shot acquirer

Dan Ekström

Department of Communication Systems

Abstract

Many companies and authorities of today see great opportunities in using
transaction-based software for information handling systems. During the
1990ies large companies and several authorities in Sweden have acquired such
software. Unfortunately, a number of acquisitions have resulted in cost over-
runs and delays. The projects are similar, and in many cases it could be fig-
ured out, by experts, where and why the projects took a wrong turn. In the last
ten years, the notorious capability maturity model, as well as other standards,
has been introduced to support the acquirer. Why does projects still fail?
Acquirers that make a one-shot acquisition for a small-scale information sys-
tem does not have the knowledge to comply with such comprehensive guide-
lines. Standards are hard to apply since they appear to be immense for
supporting acquisition of small-scale information systems. The standards
however do comprise areas that could be modified to fit into the area of small-
scale information systems.

The purpose of this thesis is to examine the area of software acquisition from
the perspective of a one-shot software acquirer, acquring a small-scale infor-
mation system.

The study first addressed a stakeholder of the thesis who recently finished an
acquisition project. An open interview was carried out to set the context of the
thesis. Literature known to support large acquisitions was analyzed with the
intension of finding parts that may apply to the inexperienced one-shot
acquirer. Then interviews with local authorities involved in acquisition
projects were performed, giving insight into real-world problems. The analy-
sis conclude in a recommendation for acquisition projects of small-scale infor-
mation systems realized as a checklist.

CHAPTER 1 Introduction 8
Background of research area 9

Software 9
Software Engineering 9
Software Acquisition 10

Problem 11
Background 11
Issues for investigation 12

Purpose 15
Scope 16
Target audience 17
Outline of the report 17

CHAPTER 2 Methodology 20
Techniques 21

Literature research 21
Interviews 21

Methods 22
Case studies 22
Classification 22
Quantifying of data 23
Comparison 23
Hypothesis and evaluation 23
Theories 24
Model 24

Practical methodology 24

CHAPTER 3 Related work 26
Standards for software acquisition 26
Software Acquisition Capability Maturity
Model 28

Description 28

Application of SA-CMM to small-scale
information system 31

Planning 31
Solicitation 33
Requirements development and management 33
Project management 34
Contract tracking and oversight 35
Evaluation 35
Transition to support 36
Summary 36

IEEE Recommended Practice for Software
Acquisition 36

Description 36
Application of the RPSA to small-scale information
systems 40

Planning 40
Implementing organization's process 41
Defining software requirements 42
Identifying potential suppliers 42
Preparing contract requirements 42
Evaluating proposals and selecting supplier 43
Managing supplier performance 43
Accepting the software 44
Using the software 44
Summary 44

CHAPTER 4 Software processes 46
The waterfall model 47
Evolutionary development 48
Incremental development 50
Spiral development 51
Extreme programming (XP) 53

Customer communication 53
Rational Unified Process (RUP) 55

Advantages for the customer 56
Requirements engineering 57

Scenarios 57
Coexistence with prototypes 58
Quality requirements 59

Verification and validation 59

CHAPTER 5 Current practice of software
acquisition 62
Communication 63

Lund 63
Malmö 64

Planning 65
Requirements 65
Verification and validation 68
Summary 68

CHAPTER 6 Guide to important areas for
acquiring small-scale information
systems 70
Strategies for acquisition 71
Planning for acquisition 72

Planning for prioritization 73
Planning for roles 74
Planning for quality objectives 74
Planning for payments 74

Requirements 75
Stakeholders 76
Requirements planning 76

Verification and validation 77
Maintenance 77

CHAPTER 7 Summary and further work 80
Practical methodology 80

Literature studies 80
Interviews 81
Result 82

Further work 82

CHAPTER 8 References 84

Appendix A Listing of interviews 88
Case study A 88

Description 88
Interview characterization 89
Interview 89

Case study B 96
Description 96
Interview characterization 97
Interview 97

CHAPTER 1 Introduction
Most companies and authorities of today see great opportunities in being repre-
sented on the Internet. During the 1990ies almost every major company and author-
ity in Sweden have acquired software for Internet presence. Even companies and
authorities that do not see the benefit of this feel an obligation to keep up with new
offerings of technology. Unfortunately, many procurements have resulted in cost
overruns and delays.

To stop acquiring software or continue in the same manner will not solve the
problems. Common sense says that suppliers of software improve, or vanish from
the market after making mistakes. The acquirer is often not interested in waiting for
suppliers to improve and neither to acquire software under experimental condi-
tions. Does it have to be this way? No, if the acquirer simply is aware of many of the
problems, this is a starting point for making more accurate decisions.

Standards that recommend best practice exist in the area of software acquisition.
They are hard to apply since they appear to be immense for supporting acquisition
of small-scale information systems. Acquirers that make a one-shot acquisition for a
small-scale information system does not have the knowledge to comply with stan-
dards. The standards do comprise areas that could be modified to fit into small-
scale information systems. The knowledge that the standards comprise should be
possible to be interpreted for a one-shot acquirer, if expressed with less abstraction.
8

Introduction

9

1.1 Background of research area

1.1.1 Software
The term software does not only comprise computer programs. This view is to
restrictive according to Sommerville [7]. From a wider perspective, software also
comprises associated documents and configuration data, which are needed to make
the software operate properly. Software often consists of several programs, configu-
ration files, system documentation and user documentation. Sometimes tutoring for
end-users is included in the price of the software.

According to Sommerville [7] software products can be of two types:
• Generic products These are stand-alone systems which are produced by a devel-

opment organization and sold on the open market to any customer who is able
to buy them. Sometimes they are referred to as shrink-wrapped software. Exam-
ples are database tools, word processors, drawing packages and project man-
agement tools.

• Customised products These systems are commissioned by a particular customer.
It is specially developed for that customer by a software contractor. Examples of
this type of software include control systems for electronic devices, systems
written to support a particular business process and air traffic control systems.
An important difference between these different types of software is that in the

generic products the requirements specification is controlled by the company,
which develops the software. In custom projects the specification is usually con-
trolled by the organization that is buying the software. The engineering discipline
used for development of software is briefly introduced below.

1.1.2 Software Engineering
Software Engineering is defined in Sommerville [7] as an engineering discipline,
which is concerned with all aspects of software development. From the early stages
of the system specification through to maintaining the system after it has gone into
use. In general, software engineers adopt a systematic and organized approach to
their work as this is often the most effective way to produce high-quality software.

The software should have certain attribute to meet the criteria of high-quality
software according to Sommerville in [7]:

Background of research area
• Maintainability Software should be written in such a way that it may evolve to
meet the changing needs of customers. This is a critical attribute because the
original need for the software changes as an inevitable consequence of a chang-
ing business environment.

• Dependability Software dependability has a range of characteristics, including
reliability, security and safety. Dependable software should not cause physical
or economic damage in the event of a system failure.

• Efficiency Software should not make wasteful use of system resources such as
memory and processor cycles. Efficiency therefore includes responsiveness,
processing time, memory utilization, etc.

• Usability Software must be usable, without undue effort, by the type of user for
whom it is designed. This means that it should have an appropriate user inter-
face and adequate documentation.

1.1.3 Software Acquisition
Acquisition of software is a complex discipline that may require knowledge of sev-
eral other disciplines.
• Requirements engineering The acquirer may want to elicit requirements opti-

mized for selection of the most appropriate supplier with the most appropriate
product. Requirements engineering could help to influence the product quality
by specifying quality requirements and work process requirements. It is used
for specification of features, business environment and end-user everyday tasks.

• Communication interfaces The discipline of interplay between a supplier and an
acquirer. The interface between the acquirer and supplier is present on several
levels of the acquisition. More or less communication is more or less expensive
for the acquirer, but may benefit to improve the users acceptance of the product.

• Verification and validation The acquirer must be able to verify and validate the
product. Validation is to see if the product contains the specified features. Verifi-
cation of the product is to see that the features works as defined in the specifica-
tion.
10

Introduction

11
1.2 Problem

1.2.1 Background
The examples below indicate that procurements often result in cost overruns,
delays or that the final product has poor correspondence with requirements.

A similar investigation reveals indicia for the same results in the United States.
The Standish Group [27] has investigated large, medium, and small companies
across major industry segments, e.g., banking, securities, manufacturing, retail,
wholesale, heath care, insurance, services, and local, state, and federal organiza-
tions. The total sample size was 365 respondents and represented 8,380 applica-
tions. The survey reveals that on the success side, the average is only 16.2% for
software projects that are completed on time and on budget. In the larger compa-
nies, the news is even worse: only 9% of their projects come in on time and on bud-
get. Even when these projects are completed, many of them has not fulfilled
specification requirements. Projects completed by the largest American companies
have only approximately 42% of the originally-proposed features and functions.
Smaller companies do much better. A total of 78.4% of their software projects will
get deployed with at least 74.2% of their original features and functions.

In 1998 the Swedish government carried out an inquiry about IT-development
in governmental departments [5]. The inquiry scoped 231 projects. More than half
of the 231 projects had been subject to serious problems with time plan or budget.
The investigation made it plain that if a project had problems with budget or time
plan, it was likely that the project would be affected by the same problems again. It
also revealed that problems are more extensive in projects where subcontractors are
used and in projects with large budgets.

The authority of Lund, a city in Sweden, have recently launched a new web site.
The request for bids on the job was launched during Spring 1999. 7 different alter-
natives, ranging from 264 000 SEK to 2 750 000 SEK, were offered from different
companies. The second cheapest was chosen, and recently, 4-5 months delayed, the
website was finally launched.

The Swedish national authority of superannuation, PPM, prepared and com-
pleted an acquisition of an administrative information system [4]. The information
system was built on a web based solution with the user interface encapsulated in a
web browser. After a year of development PPM requested a change of Swedish leg-
islature in order to make it possible for the supplier to complete its commitment. At
this point PPM had lost its faith in the supplier and started an inhouse development

Problem
project to expand the already existing information system with similar functional-
ity. Development continued in parallel until the inhouse project was released for
public use.

The problem domain has a worldwide range. Investigations in the United States
reveals similar figures as investigations i Sweden. The two last cases are only two of
several not so successful projects carried out in Sweden in the 90:ies.

1.2.2 Issues for investigation
The success of acquiring a small-scale information system is nothing to take for
granted. In fact the investigation about IT-development in governmental depart-
ments in [5] shows that projects with a small budget is less likely to succeed.

In [5] small projects are unique in the sense that they were all underestimated in
degree of difficulty and the resources for guaranteeing a quality product were
insufficient. In many projects resources allocated to planning were inadequate and
hence the projects planning were inferior. Many of the problems that the projects
experienced could have been solved in planning before start of the projects.

According to [5] the outcome in these cases are likely to depend on: the acquir-
ers are inexperienced, the qualitative resources allocated are insufficient due to
underestimation of difficulty to acquire software and little understanding of the
resources that the authority should dispose or which resources that the authority
should subcontract.

The conclusions in [5] where the same conclusions as in "Bättre ADB-projekt om
hur man undviker de vanligaste fällorna vid utveckling av ADB-system" (RRV
1994:31):

1. A flexible organization for the project should be created.

2. Areas of responsibilities should be defined.

3. Planning should be conducted with great accuracy.

4. A method of development should be chosen and followed throughout the
project.

5. The process of development should be evaluated for its ability to contribute to
quality.

6. Evolution of costs should be followed and controlled.
12

Introduction

13
7. The integration of the system in the organization should be planned in an early
stage.

FIGURE 1. Illustration of the seven conclusions above

Figure 1 illustrates the conclusions above. Paragraph one and two are tasks that
should be decided on in the planning phase. Paragraph three is the planning phase
containing paragraph one and two. Paragraph four and five concern the method
which the software projects uses and its proficiency to contribute to quality.
Involved in the project method is the follow-up of costs, this is paragraph six. The
last paragraph is the first step in the maintenance phase where the system is put
into use.

The investigation carried out by the Standish group reveals three major success
factors for projects that have been successful: user involvement, executive manage-
ment support and clear statement of requirements.

In the paragraphs 1-7 phases that may be relevant to investigate are not men-
tioned. However they give a good starting point for issues to be stressed. The issues
below should cover the proposed areas of improvement from [5] but also add issues
that cover the areas that exists between Planning and Maintenance in Figure 1.
1. Product or service - user involvement In the Lund case section 1.2.1 costs in the

winning bid where specified as if the web solution was a product that was going
to be delivered at a certain date, without no customer involvement. Neverthe-
less, customer involvement is necessary since the product has to be tweaked to
fit the context of each unique customer. Which tasks could the customer expect
to perform? A customer representative could mean many things. What kind of
personnel is relevant for which tasks? What are tacit costs of customer involve-
ment?

4 - 6. Method of development

3. Planning
- 1. Organization
- 2. Responsibilities

Maintenance
- 7. Integration of system?

4 - 6. Method of development

3. Planning
- 1. Organization
- 2. Responsibilities

Maintenance
- 7. Integration of system?

Problem
2. Communication In the PPM case and the Lund case Section 1.2.1 a lack of com-
munication seems to have caused many of the problems in the projects. Is it pos-
sible to make the customer fully aware in non-technical terms, with formal
communication, exactly what progress is made while designing the product? Is
some form of communication more useful than other when crossing the chasm
between developers and customers? This may depend of the method used to
develop the product?

3. Existing support for acquisitions Standards for acquisition exists. What are the
strengths and weaknesses with such standards [3, 9].

4. Requirements In Section 1.2.1 in the Lund case, evaluations of the system and
communication of functionality had no basis in documented requirements. Lit-
terature reveals that this is essential for evaluating software [16] and having a
common platform for communication [13]. This may have lead to co-operation
problems and confusion for both supplier and acquirer. Is it enough to define
requirements as use-cases or scenarios for evaluation of project progress and
functionality of the acquired product?

5. Non-existing support for acquisitions - a pragmatic approach for one-shot acquirers For
the one-shot acquirer a pragmatic guidance to acquisitions of software may help
to gain understanding of why it is hard to acquire software and what could be
done to reduce risk and concentrate effort on the right tasks. To produce such a
guidance would require to examine the existing support for acquisitions and to
distill the areas applicable to small-scale information systems. Further the areas
not covered in the paragraphs 1 - 7 above will need an investigation. This may
be performed by case studies and interviews. This pragmatic guidance is tightly
associated with the objectives of the acquisition. Is the object to get a product
that has covered all defined functionality, is delivered within budgeted cost or
within schedule? Often the acquirer would like to optimize for one of the three
options. Using the software acquisition guidance with different options may
perform this optimization.
14

Introduction

15
1.3 Purpose
Knowledge creates awareness and understanding. The buyer of software should be
able to see the consequences of its actions, hence being able to plan and take control
as far as possible.

FIGURE 2. Model of learning to improve one self

Figure 2 displays four states. The states are similar to the process of learning to
improve one self. In a state you can be aware/unaware and structured/unstructured.
In state one you have not reflected over present circumstances as problems and you
are not aware of any solutions either. In state two you define some of the circum-
stances as problems, but you are not aware of any solutions or countermeasures.
State three is representative for being an experimental stage where new routines to
handle problems are applied and evaluated. In the last state the knowledge and the
countermeasures are established. The established routines then become routine
tasks sliding into state one as continuum. All knowledge is not gained at once in
once state and therefore the process consist of parallel iterations.

In the problem description Section 1.2 we learn about cases, that to some degree,
reflect the current practice of acquisition in Sweden. On the analogy with the model
for learning and improvement, current status is somewhere between state one and
two, with awareness of the problems but without knowledge how to take counter-
measures. It is important to realize where we stand today, by using a structured
method to grasp the status of today in software acquisition. This makes it possible
to bring out areas that would benefit from improvement.

Unawareness Awareness

Unstructured
One Two

Structured
Four Three

Scope
This thesis intends to make a survey of current status and to identify areas that
would benefit from improvement. This reflects state two in the model. The survey
should conclude in suggestions to countermeasures, which also should be evalu-
ated by application on a case study. This is area is between state two and state three.
Hopefully readers will gain knowledge to experiment with, reflecting state three.

1.4 Scope
An acquisition is a cooperation between an acquirer and a supplier. The scope of
this thesis is limited to the acquirer with its interface towards the supplier. The
acquirer is characterized by:
• One-shot software acquisition Software acquisitions are not conducted on a regu-

lar basis. Software may only be acquired once every five years. No routines exist
for buying software.

• Experienced acquirer Other things than software is acquired at regular bases,
hence the acquirer is accustomed with acquisitions.

The procurement is limited to small-scale transaction based software systems.
The system is a custom made system where the requirements are controlled by the
organization that is buying the software. The software has the following character-
istics:
• Transaction-based
• Moderate numeric processing requirements
• Small database
• Relatively flexible time constraints
• Flexible, complex user interfaces
• Requirements and design driven by user interface - must match way of doing

business

These paragraphs characterize a small-scale information systems according to
[1].
16

Introduction

17
1.5 Target audience
The problem description and scope of the thesis is limited to the aspects of an expe-
rienced acquirer, which is not experienced with buying software. However the the-
sis is an academic work with the purpose to be included in my exam. The
discussion in the report is a mixture for the two purposes.

1.6 Outline of the report

FIGURE 3. Outline of report

• Chapter 1 is an introduction to the context of software acquisition. This includes
background, problem description, purpose and limitations.

• Chapter 2 describes methodology used in the thesis.

1. Introduction

2. Methodology

3. Related work 4. Software processes 5. Current practice

6. Guide to important areas for acquiring small-scale information systems

7. Summary and further work

8. References

1. Introduction

2. Methodology

3. Related work 4. Software processes 5. Current practice

6. Guide to important areas for acquiring small-scale information systems

7. Summary and further work

8. References

Outline of the report
• Chapter 3 identifies related work in the area. Standards for software acquisition
are described.

• Chapter 4 elaborates on software process since they affect the communication
interface, acquirer - supplier, during implementation. They also deal differently
with requirements implementation.

• Chapter 5 contains conclusion and recommendations from the interviews per-
formed.

• Chapter 6 contains a guide to areas of interest, built on the recommendations
from Chapter 3, 4 and 5.

• Chapter 7 Summary of the thesis and pointers to further work.
• Chapter 8 Contains references.
• Appendix A Listing of interviews.
18

Introduction

19

CHAPTER 2 Methodology
In this chapter scientific methods and techniques will be described. There is a differ-
ence between methods and techniques according to Brandt in [23]. The method of
working is about how the material is prepared. The scientific technique refers to
how the material is collected.

The simplest of all methods is the case were the phenomenon is described in a
running text. It is important that this method involves some kind of systematics.
The facts that are collected must be categorized and sorted in some specific order.
The material that is chosen to be described must fit into the context with the other
text. It is important to constantly make selections from the collected material so that
nothing irrelevant to the context is described. What is considered to be relevant
depends on the purpose of the text. The description must not only be relevant but
the contents must be genuine.
20

Methodology

21
2.1 Techniques

2.1.1 Literature research
Literature comprehends: books, articles, reports, essays etc. Literature searching
precedes literature studies. The studies are normally conducted at the library
through a computer or librarian. If relevant literature is found, checking the refer-
ences may be a fast way of finding further relevant literature.

2.1.2 Interviews
The form an interview may take ranges on a scale from open to structured. If the

interview is entirely open, it means that the questions are formed so that the inter-
viewee’s thoughts not are bound to a specific type of answer. The interviewee may
freely talk around the subject.

The interview may be entirely structured. The interviewer is already prepared
with questions and the respondent chose from alternative answers. The most struc-
tured interview is the inquiry. A summary of the two forms as in [24]:
• The open interview is used to reflect the information subjective. It is used for

understanding the information from the perspective of the interviewee. Focus is
on how the individual thinks, on what meaning the individual gives the phe-
nomenon. The interviewer chooses the subject but the interviewee lets the inter-
viewer understand which areas in the subject that are important. The
interviewee defines and limits the phenomenon. Hence different interviewee’s
may give different definitions of the phenomenon. This interview form makes it
difficult to draw conclusions about quantities.

• The structured interview makes it possible to obtain information about quantities.
In this form of interview the interviewer characterizes the phenomenon and
decided on its limits. The interviewer decides the context. The interviewer gets
the interviewee’s perspective on the phenomenon but is not interested in how
the interviewee relates it self to the phenomenon. The individual is not impor-
tant in the situation. The interviewer is looking for relations among concepts
rather than different meanings.

Methods
The questions do not decide the choice of interview form according to Merton
Robert in [26]. The design of the possibilities for answers chooses the interview
form.

2.2 Methods

2.2.1 Case studies
The purpose of a case study is to examine a small part of a lapse and let the case
represent phenomenon in some aspects. The advantage is that this gives the reader
a relatively clear picture of current status without having to describe the big scene.
The disadvantage is to know weather the case studies is representative for the phe-
nomenon or not, summarized in Brant Kjeld [23]. Hence conclusions drawn from
the study may be indicia. The case studies may help the writer to grasp the subject.
The writer may then gain experience in the topic by the case studies and they may
help the writer to identify important issues. Examples of case studies are the study
carried out by the Swedish government about acquisitions performed by local
authorities [5] and the study made by the Standish Group in governmental acquisi-
tions in the U.S. [27].

2.2.2 Classification
The classification must fill some logical requirements to be able to be used to ana-
lyze data and to be able to draw conclusions. The following requirements exists on
the classification of the data:
1. The classes must be reliable.

2. They should be genuine.

3. The classes could easily be applied on the material without a to big part of the
material ending up in a leftover class.

4. The classes should be mutual exclusive. The data should not fit into more than
one class.
22

Methodology

23
5. Emty classes should not exist. If empty classes exist, this is a sign of that the
original classification not are very useful.

2.2.3 Quantifying of data
If data is quantifiable it may be treated statistical. With software statistical analysis
may be applied. The quantitative data has a pedagogical advantage. The advantage
is that it is easy to present to the reader. It may be displayed in tables and diagrams.
It is easier to make comparisons with quantitative data analysis.

2.2.4 Comparison
This method compares phenomena with each other. The method is hard to apply
since comparisons not may be performed straight off. The comparison may become
invalid if some other variables also are included. Comparisons should be used care-
fully. Below are some considerations that should be made before using comparison
as a method:
• Use phenomena that are comparable.
• The phenomena should be generalized to fit the context and to be able to com-

pare.
• Similarities as well as dissimilarities should be described to display the whole

picture.

2.2.5 Hypothesis and evaluation
The hypothesis is an assumption. The researcher makes a qualified assumption
about certain circumstances. The assumption should be built on known facts to be
of value. The hypotheisis is normally used for explaining a phenomenon that the
researcher has studied. The researcher may try to prove the hypothesis to be correct
or to eliminating hypothesis by falsifying them.

Practical methodology
2.2.6 Theories
When forming a theory the researcher takes a starting point in known facts but
wants to explain some phenomenon that not could be understood. From the known
facts hypothesis are derived. With these hypothesis and other known hypothesis
new hypothesis are formed. They are held together with a net of derived hypothesis
and facts.

2.2.7 Model
When forming a model theories and hypothesis are used. But they must be used to
mirror reality. A complicated model is more likely to mirror reality. The level of
complexity of the model should mirror the utilization of the model.

2.3 Practical methodology
Initially literature studies of the context of acquisitions of software will take place.
These studies will lead to grasping the problem domain refining the problem
description and forming the scope of the thesis. The thesis will then contain deeper
understanding of the area summarizing the information given from the deeper lit-
erature studies.

By the deeper knowledge coming from the literature studies the ground is pre-
pared for interviews. The form of interview that will serve the purpose of examin-
ing current practice of software acquisition is described below.

The interviewer should mainly decided the context. This could be done for-
mally before the interview or by identifying new parts of the evolving context dur-
ing the interview. The organization of the interview should be restrained to
questions in certain areas, hence not following the interviewee’s thoughts. This
approach is taken since by the literature studies the frame of interest is set for the
thesis. The interviewee may give hints of new areas of interest during the interview
but they should then lie in the frame of interest defined by the literature studies.
Hence the interviewee then gives answers to what the interviewer finds to be mean-
ingful to the context.

To make the organization of the interviews a bit more open the interviewer
could lead the interviewee into the right area and then work with follow-up ques-
24

Methodology

25
tions. The analysis afterwards could show that several of the interviews were dis-
similar which shows the variety of qualities that the area possesses. If interviews
with similar theme turn out to be comparable it could be analyzed quantitatively.
But the open type of answers could limit the possibilities of a qualitative analysis of
the qualities of the phenomenon.

The interviews’s pupose are to be able to see the area with the eyes of a real-
work acquirer. This hopefully will reveal real-world problems. The case studies will
be used for pointing out unique problems in the eyes of the acquirer. If common
problems are found they will be treated in the chapter for conclusions. Finally the
chapter with areas of interest for the small-scale software acquierer will contain a
compilation of the indicia from standards and interviews to areas that needs
improvemen and why.

CHAPTER 3 Related work
3.1 Standards for software acquisition
Standards are important of several reasons according to Sommerville in [7]:
• They provide an encapsulation of most appropriate practice. The knowledge is

often only acquired after a great deal of trial and error. Building it into a stan-
dard avoids the repetition of past mistakes.

• They provide a framework around which the organization may implement it's
own best practice.

• Standards assist in continuity where work carried out by one person is taken up
and continued by another.

Several standards exist in the area of software acquisition. Two prominent stan-
dards are examined. The "Software Acquisition Capability Maturity Model (SA-
CMM)" [9] is developed by the Software Engineering Institute (SEI). It is known to
be used by large corporations with stringent requirements on quality of software.
Some of the frequent users of SA-CMM are known to be sponsors of SEI.

The other standard is [3] "Recommended Practice for Software Acquisition
(RPSA)". It is developed by the Institute of Electrical and Electronics Engineers
26

Related work

27
(IEEE). IEEE develops standards for public use to promote electrical technologies
and sciences.

The two standards has several common areas. The table below (Table 1) displays
key areas from the two standards. All key areas in the standards comprise almost
the same features. The comparison is between SA-CMM level 2, which is the repeat-
able level, together with RPSA.

The purpose of SA-CMM is to establish and improve the process which is used
to acquire software. The purpose of RPSA is to provide a general framework which
should be interpreted with basis in the own organization. The standards are ment to
address large acquisition projects in large organizations.

SA-CMM (Level 2)SA-CMM (Level 2)SA-CMM (Level 2)SA-CMM (Level 2) Common denominatorCommon denominatorCommon denominatorCommon denominator IEEE RPSAIEEE RPSAIEEE RPSAIEEE RPSA

Software Acquisition
Planning

Early budgetary action, schedule
determination, acquisition strategy
and risk indentification

1) Planning organizational
strategy

4) Identifying potential
suppliers

6) Evaluating proposals
and selecting the supplier
3) Determining the
software requirements
5) Preparing contract
requirements

Project management Manage schedule, cost and effiency

Contract tracking and
oversight

Ensures that the software activities
under contract are being performed
in accordance with contractual
requirements

7) Managing suppliers
performance

Evaluation
To dermine that the aquired software
product and services satisfy contract
requirements

8) Accepting the software

Transition to support

To provide for the transition of the
software products being acquired to
the eventual software support
organization

9) Using the software

Select a contractor who is best
capable of satisfying requirements of
the contract

Solicitation

Requirements
development and
management

Develop and maintain requirements

Software Acquisition Capability Maturity Model
TABLE 1. Common denominators for SA-CMM and RPSA

Table 1 shows the common denominators of SA-CMM and RPSA. These areas
are generically important for software acquisition as they comprise the entire pro-
cess step by step.

Below the reader is first introduced to each of the two standards. Then follows
after each of the standards, a section that emphasises what in the standards that
could be used for further work in adapting them to small-scale information sys-
tems.

3.2 Software Acquisition Capability
Maturity Model

3.2.1 Description
The Software Engineering Institute (SEI) of Carnegie Mellon University developed
the CMM of software process improvement during the late eighties and nineties [6].
The major sponsor has been the US Department of Defense (DoD). The main reason
for this was the need to get control over cost and quality of the software products
delivered by its contractors. The intellectual framework was first presented in the
work "Capability Maturity Model for Software, Version 1.1" [17].

The key words of CMM are maturity and capability. The basic assumption per-
meating the Capability Maturity Model is that software development organizations
with a structured way of doing their job will over time deliver software with higher
quality than less well structured organizations will. In CMM terminology this
means that a well-structured organization has better capabilities to deliver high
quality software. CMM offers a concept of:
• How an organization can get well structured.
• Where to start and how to control the organization evolution process?

In CMM terminology this would be expressed: how an organization gains
maturity. Maturity and capabilities are very central to the model. Another very cen-
tral concept is the Key Process Areas. The Key Process Areas are the building blocks
28

Related work

29
of each capability level. The levels of maturity are initial, repeatable, defined, man-
aged and optimizing.
• The initial level Represents an organization that has no stable environment and

great difficulties to make commitments according to when and how they are
doing what. If there was a plan it is abandoned when crises arise. Sometimes the
organization succeeds in its project but it does not have the capability to learn
from neither its successes nor shortcomings.

• The repeatable level The organization has learned to make plans based on experi-
ence of previous similar projects making it easier to make realistic project com-
mitments. The project management tracks project cost, schedule and product
functionality. The concept of controlled baselines is introduced. The relations to
customers and subcontractors are not so chaotic. The development process is
repeatable and the capability is said to be disciplined.

• Defined level The standard process for development and management in the
organization are documented. A software acquisition process group is estab-
lished and is responsible for the process activities. The project process is an
instance of the standard process and includes factors like readiness criteria, doc-
ument standards, verification mechanisms and activities completion criteria. At
this defined process level the project management has insight in process and
acquisition status on an almost real time basis. The capability of the acquisition
organization is now said to be standard and consistent.

• Managed level Level four is characterized by quantitative measures. The organi-
zation is able to sets quantitative quality goals and measure productivity and
process to compare between and across projects. The measures are stored in an
organization-wide databank. The projects are in full control of their acquisi-
tions. The quantitative variations fall within acceptable limits. The ability to
handle surprises since qualified risk management is established. The capability
at this managed level is quantifiable and predictable.

• On the optimizing level the development organization is established in a
dynamic continuous evolution mode. Process improvement is the natural state.
Thanks to the metrics assessed since level four the organization has gained the
ability to make cost-benefit analysis as decisional ground for process improve-
ments. The capability now is planned and controlled.

Software Acquisition Capability Maturity Model
Guidance to improvement in achieving higher maturity in acquiring software is
a characteristic of the SA-CMM. These levels of maturity are found in the SA-CMM.

The SA-CMM [9] has several areas in interest for the acquirer. The SA-CMM
contains the following key process areas on level two, the repeatable level:
• Solicitation The purpose of solicitation is to perform the activities necessary to

prepare for the evaluation of responses, conducting the evaluation, conducting
negotiations and awarding the contract.

• Requirements development and management The purpose is to establish a common
and unambiguous definition of software-related contractual requirements that
is understood by all parties involved. This key area of level two are divided into
two parts where one is the development of requirements and the other is man-
agement of the requirements for the duration of the acquisition. The develop-
ment involves decomposing system level requirements into software
requirements. Software requirements management involves establishing and
maintaining agreement among the participants. Baselining software require-
ments and control subsequent requirement changes.

• Project management This involves planning, organizing, staffing, directing, and
controlling project office activities. The purpose of this is to endure that the soft-
ware activities under the contract are being performed in accordance with the
contractual requirements and that evolving software will satisfy contractual
requirements.

• Transition for support The purpose of this activity is to provide for the transition
to the eventual software support organization.

• Acquisition management Risks should be identified as early as possible and the
acquisition strategy should be adjusted to manage those risks. Acquisition risk
management is a two-part process. First the software acquisition strategy identi-
fies the risks associated with the acquisition and the approach is planned based
on those risks.

• Training program The training program should develop skills and knowledge of
individuals so they can perform their software acquisition roles effectively and
efficiently.

Further reading in this area has recently emerged, as the CMM [6] and SA-
CMM [9] is integrated in [11], which is an early draft version of the CMM-Inte-
30

Related work

31
grated. This is an effort to merge the different branches of the CMM theories frame-
work.

3.3 Application of SA-CMM to small-scale
information system
The key process areas of the SA-CMM consist of goals, commitments, abilities and
activities.

The description in Section 3.2.1 is concerned with the key process areas on level
two. At this level, "The repeatable level", the project team is aware of supportive of
policies, regulations and standards that relates to the project and makes a dedicated
attempt to comply with them. The teams should be able to transfer successful prac-
tices from earlier project to new ones. This feature and several other features of level
two may be useful for the small-scale information system acquirer. The following
sections contain characteristics from each key process area that should be of value
for a one-shot software acquirer of a small-scale information system.

3.3.1 Planning
One of the goals with this key process area is that the plans should encompass the
total software acquisition effort. This is important for several reasons. The cases in
Section 1.2.1 the acquirers had much confidence in the competence of the suppliers.
This could lead to less desire for the acquirer to make plans for the project, since it
may be easier to give the responsibility to the supplier. If this is the case, true needs
and understanding of the own interest in the acquisition may be blurred in the con-
tact with the supplier.

The other goal is that the documents of planning are prepared early in the
acquisition process prior to actions that involves contractual software acquisition
efforts. One of the activities of this phase is that a strategy should be developed and
documented. The strategy should include:
• Objectives of the acquisition
• Project constraints, such as funding and schedules.
• Available and projected technologies

Application of SA-CMM to small-scale information system
• Software acquisition methods
• Potential contract types and terms
• End-user considerations
• Risk identification

Among the paragraphs above, risks identification is present in the strategy-
phase, opposed to other standards. Awareness of possible outcomes of the projects,
risks or not, is healthy and may contribute to planned countermeasures or unique
maneuvers. It is also important to commence a training program for the persons
involved in the project, for the reason that they should be able to identify anomalies.
Another important activity is that the planning is documented and maintained over
the life of the project. If documentation is poorly maintained to mirror the changes
in the project, then the project members most likely will not turn to the documenta-
tion for advice. This could be important since it lies in all parties’ interest that
project members for example keep the requirements specification current in mind.
The planning should involve these paragraphs:
• The software parts of the project

Risk identification
Management
Solicitation
Requirements development management
Evaluation and transition support

• The tasks to be performed
• The required resources including funding, staff, equipment and tools.
• Roles for project members
• Master schedule of acquisition milestones
• Measurement to determine the progress of the acquisition

Costs of lifecycle support should be included in the software acquisition plan-
ning documentation. This is important because maintaining software is very expen-
sive. It may cost as much as to four times developing a new system according to
Sommerville in [7].
32

Related work

33
Costs estimated for the software products and services being acquired should
be prepared and independently reviewed. It is important to review the costs of the
services part of the product since they may not be as obvious as the product price.

3.3.2 Solicitation
In the phase of solicitation genuine requirements are prepared and reviewed to be
of high quality.

An important commitment of solicitation is that a person exists that is responsi-
ble for the selection process and the selection decision. The goal of this key process
area is that a contractor who is qualified to satisfy the contract's requirements for
the project's software-related products and services is selected.

Several activities of importance for the small-scale information system acquirer
exist in the solicitation phase. A solicitation plan should be prepared. The plan
should contain the requirements of the software. Except for the requirements, other
software-related tasks should be documented. For example: evaluation tasks and
documentation tasks. Costs and schedule estimates from planning should be fur-
ther refined.

The project team should take action to ensure that all parts involved have a
mutual understanding of the project requirements. If the acquirer totaly agrees on
requirements internally before contracting the supplier, many risks of misunder-
standings are eliminated. The focus may then be set on introducing the supplier to
the domain. The requirements should be reviewed to reflect the real needs of the
organization. It is expensive to find out that the software specified not fills the need
of the users.

3.3.3 Requirements development and management
The goals of this key process area are:
• To maintain and develop requirements in conjunction with stakeholders.
• Baselines for requirements should be established and managed.
• Keep contractual requirements unambiguous

Application of SA-CMM to small-scale information system
It may be important to create a common platform to work from if sub-projects
use the same requirements as basis. The list below describes important activities for
this key process area:
• To identify groups and intergroup communication associated with require-

ments development.
• Define procedures on how to work with requirements development.
• Define procedures for requirements management and baseline establishment.
• Documents procedures for how to handle impact analysis, when requirements

affect each other.
• Keep a documented tractability between the status of software and the require-

ments.
These paragraphs make sure that requirements are not lost track of during the

project. It is essential to know which requirements are implemented as working fea-
tures and that the supplier receives uniform feedback on requirements even if sev-
eral end-users are verifying the same requirement. This mapping of requirements
communication paths is also good for keeping track of the requirements that is elic-
ited during the project. It may be hard to assess effects of the new requirements
being added adhoc during the project. If kept track of they may be added in the
next iteration or the next project.

3.3.4 Project management
The goals are to manage problems, costs, schedule and objectives. The project team
should perform its activities according to a management plan. The plan could con-
tains these paragraphs:
• Project objectives, purpose, scope and duration
• Project team structure, roles and responsibilities
• Acquisition strategy
• Project performance, cost and schedule baselines
• Coordination and communication
• Risk identification and tracking
• Software engineering approach
34

Related work

35
• Software support requirements
• Security policy and requirements
• Corrective action reporting procedures
• The extent of the end user involvement in the acquisition

The above paragraphs are similar to the ones defined in Section 3.3.1, planning. The
project should be managed to fulfill the project plan. The project management plan
is an action plan for use on the project planning. The two plans could probably be
combined if the project is small and no confusion could arise.

3.3.5 Contract tracking and oversight
The main objective with contract tracking and oversight is to see that the software
product and services satisfy contractual requirements. The software engineering
effort should comply with the contract requirements. A plan for the execution of the
tracking should exist. It should contain identification of groups, assigned responsi-
bilities, intergroup coordination and the extent of end user involvement. The project
team should also review the suppliers' software planning documents. Changes by
the supplier in the suppliers' software planning documents should be coordinated
in with the acquirer.

3.3.6 Evaluation
The objective of this key process area is to be able to provide an objective basis to
support decisions for accepting the software products and services. The acquirer
should have a written policy for managing the evaluation of the acquired software
products and services. The projects evaluation requirements should develop during
the lifetime of the project. This goal may be hard achieve at a late stage in the project
as many of the features has become matters of course. Since new ideas have arised
during the project it might be hard to accept the product in its standard edition. The
planned evaluations should however be performed prior the acceptance for opera-
tional use.

IEEE Recommended Practice for Software Acquisition
3.3.7 Transition to support
The goal is for the software support organization to have the adequate capacity to
be able to give support. For example there should not be any loss in continuity of
the support if it is transferred between organizations.

3.3.8 Summary
The SA-CMM has a comprehensive view of the whole process of software acquisi-
tion from creating strategies to transition to support. However it would need modi-
fication to fit into the context described in Chapter 1. The sections above emphasize
parts of the SA-CMM that would apply well even to acquisition of small-scale infor-
mation system. Even if the sections of requirements engineering, and monitoring
the project progress are important to the acquirer, the SA-CMM are not very
detailed in these areas. These areas should be exemplified to be of real use for the
acquirer.

3.4 IEEE Recommended Practice for
Software Acquisition

3.4.1 Description

This standard [3] is developed by IEEE1 and was released in 1998. IEEE objectives
with the standard are to:
• Promote consistency within organizations in acquiring third-party software

from software suppliers.
• Provide useful practices on including quality considerations during acquisition

planning.

1. The Institute of Electrical and Electronics Engineers, Inc., helps advance global prosperity by promoting the
engineering process of creating, developing, integrating, sharing, and applying knowledge about electrical
and information technologies and sciences.
36

Related work

37
• Provide useful practices on evaluating and qualifying supplier capabilities to
meet user requirements.

• Provide useful practices on evaluating and qualifying supplier software.
• Assist individuals or organizations judging the quality of supplier software for

referral to end-users.

The software acquisition lifecycle represents the period of time that begins with
the decision to acquire a software product and it ends when the product no longer
is used. The lifecycle represents a framework for acquisitions. It comprises five
phases. The boundaries of the phases are defined as milestones for documents or
important actions to be carried out. The output from one phase acts as input for
another. The phases are illustrated below in Table 2.

TABLE 2. Phases in software acquisition according to IEEE

The RPSA defines nine steps that should be accomplished, see Table 2. These
steps should assure that products with potential for high quality gain maximum
support from the acquisition process. The result expected should be a high-quality,

PhasePhasePhasePhase

Phases Phases Phases Phases
initiation initiation initiation initiation
milestonemilestonemilestonemilestone

Phases Phases Phases Phases
completion completion completion completion
milestonemilestonemilestonemilestone Steps in software acquisition processSteps in software acquisition processSteps in software acquisition processSteps in software acquisition process

1) Planning organizational strategy

2) Implementing organization's process

3) Determining the software requirements

4) Identify potential suppliers

5) Preparing contract requirements
6) Evaluating proposals and selecting the
supplier

Product
implementation

Contract is
signed

Receive the
software
product 7) Managing supplier performance

Product
requirements

Software
product is
received

Accept the
product

8) Accepting the software

Follow-on
Software
product is
accepted

Product is no
longer in use

9) Using the software

Planning
Idea is
developed

Release the
RFP

Contracting
Request For
Proposal is
released

Sign the
contract

IEEE Recommended Practice for Software Acquisition
well-documented product. Quality attributes such as on-time delivery and cost-
effectiveness are left for implementation by the reader. Table 2 shows
phases, milestones and steps in each phase to accomplish.

The steps in the practice are intended for software that is bought with a basic set
of functionality with possibilities to build on or software components that are com-
pletely finished. The steps are less suitable for software that needs to be built from
scratch.
38

Related work

39
FIGURE 4. Steps for acquiring software

1. Planning Organizational Strategies

2. Implementing Organizational
Requirements

3. Determine the Software
Requirements

3. Identify Potential Suppliers 5. Preparing Contract Requirements

6. Evaluating Proposals and Selecting
the Supplier

7. Managing Supplier Performance

8. Accepting the Software

9. Using the Software

Contract
Negotiated

Meets
Requireme

nts

Assess User Satisfaction

Organization’s Objectives

Evaluate
Supplier
Performance

Evaluate
Contracting
Practices

Acquirer’s
Deliverables

Alternate
Suppliers

1. Planning Organizational Strategies

2. Implementing Organizational
Requirements

3. Determine the Software
Requirements

3. Identify Potential Suppliers 5. Preparing Contract Requirements

6. Evaluating Proposals and Selecting
the Supplier

7. Managing Supplier Performance

8. Accepting the Software

9. Using the Software

Contract
Negotiated

Meets
Requireme

nts

Assess User Satisfaction

Organization’s Objectives

Evaluate
Supplier
Performance

Evaluate
Contracting
Practices

Acquirer’s
Deliverables

Alternate
Suppliers

Application of the RPSA to small-scale information systems
Step one in Figure 4 is Planning organizational strategies Review acquirer’s objec-
tives and develop a strategy for acquiring software.

Implementing organization’s process Establish a software acquisition process that
fits the needs of the organization for obtaining a quality product.

Determining the software requirements Define the software being acquired and
prepare quality and maintenance plans for accepting the software.

Identifying potential suppliers Select potential candidates who will provide docu-
mentation for their software, demonstrate their software and provide formal pro-
posals. Failure to perform any of these actions is basis to rejected a potential
supplier.

Preparing contract requirements Describe the quality of the work to be done in
terms of acceptable performance and acceptance criteria and prepare contract pro-
visions that tie payments to deliverables.

Evaluating proposals and selecting supplier Evaluate supplier proposals, select a
qualified supplier and negotiate the contract.

Managing the supplier performance Monitoring supplier’s progress to ensure all
milestones are met and to approve work segments. Provide all acquirer deliverables
to the supplier when required.

Accepting the software Testing should be performed as well as establishing a pro-
cess that ensures that all the discrepancies have been corrected and that all accep-
tance criteria have been satisfied.

Using the software Conduct a follow-up analysis of the software acquisition con-
tract to evaluate contracting practices, record the lessons learnt and evaluate user
satisfaction with the product. Retain supplier performance data.

3.5 Application of the RPSA to small-scale
information systems

3.5.1 Planning
The planning process is initiated by developing a scope for the planning process,
forming a planning group and identifying the qualities a software product must
possess to achieve the organizations objectives.
40

Related work

41
IEEE suggests that the quality characteristics of the software should be deter-
mined before determining strategies for the acquisition. This is on the contrary with
[20] "Quality Requirements for Software Acquisition" which reports that quality
requirements should be measurable on the software product developed and hence
they cannot be determined before you know what product to acquire.

The elicitation, weighting and specification of objectives should make the plan-
ning group aware of the comprehensive functionality and complexity of the small-
scale information system that is needed to support the objectives.

IEEE provides a checklist [3] to assist in determining strategies. The strategy
areas that IEEE elaborates on are the following: training of personnel, documenta-
tion, testing and maintenance. A general practice for handling suppliers may be
documented to achieve consistency in contracting with suppliers.

The acquirer should determine to what extent the supplier's organization is
involved in producing a high-quality product. RPSA further reads that responsibil-
ities should be determined for the acquirer and for the supplier already in the plan-
ning phase. But the RPSA does not give substance to the importance of
contemplating how the own organization may contribute to the delivery of a high
quality product. This should be sorted out before determining responsibilities for
both parties.

3.5.2 Implementing organization's process
IEEE provides a general process for acquisition [3]. The organization should derive
the most suitable process from the framework that IEEE provides. The process
includes definition of the following steps: planning, implementing of process in
organization, software requirements, identifying potential suppliers, preparing
contract requirements, evaluating proposals, managing supplier performance,
accepting and using software. In reference to the composition of the organizational
specific process the acquirer should prepare contracting practices and assign
responsibility for success.
• Responsibility for success includes specifying technical performance and qual-

ity requirements.
• Managing supplier performance under the contract.
• Assessing supplier performance during the period of the contract.
• Evaluating and accepting the product.

Application of the RPSA to small-scale information systems
3.5.3 Defining software requirements
The objective of defining the software being acquired is to obtain realistic assess-
ment of size, scope and cost of the effort of developing the software from the sup-
plier. If the software is defined really well, the accuracy of the suppliers' estimates
increases.

The criteria for evaluation of suppliers should be specified. Specifying them
before finding suppliers elicits the true needs and expectations. The obligations of
acquirer and supplier should be established. Plans should be developed to evaluate
and accept software and services. Contingency plans should be developed for use
in the event that the supplier fails to satisfy requirements and the contract is termi-
nated.

Requirements definition in this stage serves the purpose of obtaining realistic
assessments of size, scope and cost of the development effort from the supplier. The
software, deliverables and software support should be described as completely as
possible. Research indicates that the acquirer has much to gain in defining function-
ality in form of scenarios [13].

3.5.4 Identifying potential suppliers
This should be done using the software requirements. Information about supplier
may be obtained from sources as trade publications, consultants, suppliers and user
groups. A potential supplier should demonstrate its products. The acquirer may
benefit from an evaluation of the products from current users.

3.5.5 Preparing contract requirements
These requirements should state which obligations the acquirer and supplier
respectively have towards each other.
• Define what constitutes satisfactory performance by the supplier, who is autho-

rized to change in the contract, specify contract means for monitoring and iden-
tifying performance as well as functional specifications.

• Determine how payment is to be made.
• Determine what countermeasures the acquirer may use to constrain damage

due to suppliers' inability to meet schedule or budget.
42

Related work

43
These requirements are important tools for the acquirer when it comes to spur-
ring the supplier to not lose pace and to make sure that the project is easy to grasp.
The definition of milestones could be combined with part payments. At the mile-
stones, performance may be measured. For example as the number of requirements
implemented and tested.

3.5.6 Evaluating proposals and selecting supplier
The evaluation criteria established should be used to review suppliers' responsive-
ness to the software requirements, deliverables and software support requirements,
all described in the request for proposal.

It is a good idea to visit suppliers' facilities and evaluate factors such as financial
position, technical capability, experience and quality practices. Then select a worthy
supplier and negotiate the contract.

3.5.7 Managing supplier performance
The evaluation criteria established should be used to review suppliers' responsive-
ness to the software requirements and deliverables. The RPSA has not much to say
when it comes to defining the criteria for monitoring of supplier's progress.

However progress in a software project can be made tangible. If the acquirer is
concerned with optimizing for product functionality it is important to make the
process of the development visible for the acquirer. If the supplier and the acquirer
interpret the specified functionality differently, it is discovered early. The represen-
tation of software in the life cycle of the acquisition varies. Software is generally rep-
resented as scenarios, requirements, high-level design and low-level design. The
progress monitoring is indeed dependent of the process used to develop the soft-
ware. It is hence important to know which outputs to demand from the supplier.
• Managers should create an environment that supports the supplier's efforts.
• An individual should be appointed to deal with the supplier on all aspects of

the contract.
• An open line of communication should be maintained with the supplier.

The acquirer should also monitor the supplier's progress to ensure that all mile-
stones are met and to approve work segments:

Application of the RPSA to small-scale information systems
• Use measures of reliability and quality specified in the contract to evaluate the
supplier’s work.

• Provide means for regular and continuous feedback on supplier performance.

All of the paragraphs need to be derived with examples to make them useful for
the acquirer of a small-scale information system. They are important but hard to
exemplify since they could vary a lot depending on the process used to develop the
software.

3.5.8 Accepting the software
The software should be evaluated and tested compared to the acceptance criteria.
The purpose of the test should be to detect discrepancies between existing and
required conditions. The final acceptance test should involve field testing results.

3.5.9 Using the software
The acquirer should evaluate itself as a part of the acquisition process. Practices
may be identified as weak and with need to be changed. Did any practice produce
particular good results? Evaluate user satisfaction and record actual amount of
maintenance.

3.5.10 Summary
The nine steps in the RPSA framework are generic and should apply to an acquisi-
tion of a small-scale information system if a special instruction was derived. How-
ever, each step involves choosing from many possibilities. The layman should
appreciate fewer options to choose from. The paragraphs below describes what has
to be modified:
• The standard is very comprehensive and could be used by very large companies

without problems. On the contrary, a small company could not use it without
modifications.

• The standards are hard to interpret. The reader must be experienced in the area
of software engineering to understand reasons for certain procedures in the
standard.
44

Related work

45
• IEEE focuses on the delivery of a high-quality, well-documented product [3].
On-time delivery and cost-effectiveness are left to be improved through the
application of quality principles.

• Even though focus is on the delivery of a high-quality product the text and
checklists in this area are not elaborate enough for an inexperienced acquirer.

• It states what is needed, not why, neither is any further information on how to
implement the necessary features given.

• It is not specific in the area of monitoring progress. The one-shot acquirer needs
more information than just the fact that the project should be monitored.

CHAPTER 4 Software processes
A process is a set of activities and associated results, which leads to the production
of a software product [7]. The steps may vary but some fundamental activities are
always represented:
• Software Requirements Specification The functionality of the software and con-

straints on its operation.
• Software Design and Implementation The software that meets the specification
• Software Testing Validation of software to ensure it does what the customer

wants.
• Software Maintenance The software must evolve to maintain useful.

The acquirer's primary interest except for knowing about the process is the out-
put of each step and what is demanded from the acquirer to make the process work.
Which demands should the acquirer have on process and product deliverables? It
depends among other things on the purpose of the acquisition.

This chapter will present common types of software process models. Then two
instances of the abstract software process models are presented. The two phases of a
process model: requirements engineering and verification and validation will be
explained in depth.
46

Software processes

47
4.1 The waterfall model
The model reflects good engineering practice. The waterfall model takes the four
basic process activities and represents them as separate process phases. When a
stage is completed the next one is adressed. The model maps into the following
steps:

FIGURE 5. Waterfall model phases, see [7]

The phases in Figure 5 is described below:
• Requirements definition The goals are established and system constraints are

composed in consultation with system users. The output from this phase should
be a detailed system specification.

• System and software design In this phase the requirements are transformed into
fundamental software abstractions and their relationships. The output is a high-
level design document.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Evolutionary development
• Implementation and unit testing The high-level design is realized as a program
units. These units are verified to meet its specification.

• Integration and system testing The units are integrated and verified to function as
a complete system according to the requirements. This phase's output is the
delivery of the complete system.

• Operation and maintenance The system is installed and put into practical use.

The aim should be to make things right the first time. The process does not allow
iteration of the steps in the model. A phase cannot commence before documents in
the current phase are satisfactory. The result of each phase is one or more docu-
ments that are frozen in its current condition. Problems are worked around or left
for later resolution. The process is well suited for large projects with well known
requirements. However, it is inflexible and it locks the projects into the distinct
stages with baselines. This makes it hard to respond to changed customer require-
ments.

4.2 Evolutionary development
This model’s basic thought is to commence with an initial prototype and refine it
until the adequate system has been developed. This is illustrated in Figure 6. This is
performed by exploratory development or throwaway prototyping.
48

Software processes

49
FIGURE 6. Evolutionary model concepts, see [7]

Exploratory development starts with the well known requirements and the
developer works close to the customer to explore requirements. The purpose with
the prototype is to deliver a working system.

Throw-away prototyping concentrates on the requirements that are poorly
understood and experiments to understand them. Some requirements may not
need to be modeled since they are understood.

The customer may expect the following advantages when acquiring software
developed with this process approach:
• With this model the immediate needs of the customer is met.
• The development is rapid since it is not cost effective to produce documents that

reflect every version of the system.
• Since the specification is developed incrementally users develop better under-

standability of the problem and this is immediately reflected in the require-
ments specification.
The following disadvantages should be considered:

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Concurrent
activities

Incremental development
• The architecture is specialized on the current version of the program. This
means that it is expensive to maintain and to add features. This makes the sys-
tem poorly structured.

• The development is rapid and it is not cost effective to produce deliverables that
reflects every version of the system. The progress of the project using this pro-
cess model is not visible. It is hard to measure progress and to keep track of the
development.
This process is suited for small projects or parts of larger systems according to

[7]. An implementation of this model is eXtreme Programming in Section 4.5.

4.3 Incremental development
This fashion of development combines features of the waterfall model with features
of the evolutionary development model. An advantage with the waterfall model is
that it is a simple management model and its separation of design and implementa-
tion leads to robust systems that are amenable to change. The evolutionary
approach allows requirements and design decisions to be delayed but also leads to
software that may be poorly structured.

FIGURE 7. Steps of incremental development, see [7]

 Figure 7 illustrated the steps of incremental development. The steps are
described below:

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system
50

Software processes

51
• Define outline requirements Requirements are defined in outline for the system.
Details are defined later when the system is partitioned into increments.

• Assign requirements to increments The system is partitioned into increments.
Requirements for each increment are defined in detail.

• Design system architecture Requirements that are common for all parts of the sys-
tem lay the foundation for the design.

• Develop system increment Increments that are prioritized by the customer are
developed first.

• Validate increment Increments are verified to comply with requirements.
• Integrate increment The increments are integrated into the architecture to form

the system.
• Validate system The increments are validated to function as a complete system.

The customer does not have to wait until the entire system is delivered to gain
from its functionality. The customer may use the early increments as a form of pro-
totypes and gain experience that helps to form requirements for the remaining of
the system. The risk of the project to fail reduces since certain functionality will be
delivered. The highest priority services are delivered first, which is good because
this means that they receive the most testing. It is difficult to identify the parts of the
code that affect all increment so architecture may suffer from this approach.

4.4 Spiral development
This model was originally proposed by Boehm in 1988, see [12]. The spiral develop-
ment process is represented as a spiral rather than as a sequence of activities with
backtracking. Each loop in the spiral represents a phase in the process. The phases
in the process are not fixed, loops in the spiral are chosen depending on what is
required. This process model considers risks opposed to other process models.
Risks are explicitly assessed and resolved throughout the process in each iteration.

Spiral development
FIGURE 8. Boehm’s spiral model of the software process (copyright 1988 IEEE)

• In the objective setting specific objectives for the phase are identified.
• In risk assessment and reduction risks are assessed and activities put in place to

reduce the key risks
• In development and validation a development model for the system is chosen

which can be any of the generic models
• In planning the project is reviewed and the next phase of the spiral is planned

An implementation of this process model is the Rational Unified Process
described in Section 4.6.

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW
52

Software processes

53
4.5 Extreme programming (XP)
eXtreme Programming (XP) is a software development discipline developed by
Kent Beck in 1996 [8]. This discipline uses the evolutionary fashion described in Sec-
tion 4.2.

4.5.1 Customer communication
XP aims to keep a high level of communication through unit testing, pair program-
ming and task estimation. The on-site customer decides what will be built and in
what order. The effect of testing, paring and estimating is that programmers, cus-
tomers and managers have to communicate.

A customer representative is recommended to be available for programmers
ready to answer questions about the system. This makes for faster development of
the system and helps programmers to understand the problem domain. It is of
course expensive for the customer to make employees available for this activity. The
gain is that the system may be released faster and needs less tuning once deployed.

Extreme programming puts greats pressure on the customer. Extreme program-
ming suggests the customer to write stories1 about daily tasks to programmers. The
stories quality should increase as the programmer gives fast feedback to the cus-
tomer on what information is considered to be important to the programmer.
Understanding the customer problem domain is delegated to the customer in the
sense that the customer should find the relevant information to provide to the pro-
grammer. This implies that the customer should have advanced technical skills to
be able to elicit the relevant information.

This way of working means that the customer is able to understand the tasks
that the programmer is working with. When developing a transaction based small-
scale information system, programmers have to program an architectural frame-
work. Having the framework as a common base to work on the supplier is able to
implement features for the customer. Having an acquirer representative working
with developers for understanding these parts of the system does not bring any-
thing to developers or the acquirer. The customer being available for early support
to programmers does not guarantee quality.

1. Stories are descriptions of task that the customer performs. The purpose of a story should be to describe the
task in a manner that a developer could elicit the necessary information to implement the corresponding func-
tionality in the system.

Extreme programming (XP)
It is also essential that the customer representative is the right person to answer
the specific questions about the scenarios that the programmers are implementing.
Sometimes questions involve strategic decisions that cannot be settled by the cus-
tomer representative. This may not be obvious when the customer representative
authorizes certain actions. This may lead to much slower development, as manage-
ment must review decisions anyway. Organizational schemes with communication
paths should be established. Authorities for decisions should also be established
and distributed. This makes sure that the right people makes the right decisions and
that developers knows who to contact for which decisions.

When working in small cycles misunderstandings are solved relatively fast.
However if this collaboration is going to work it is important that the right repre-
sentatives are used for communication. Extreme programming [8] defines that the
best customers are:

the ones that are going to use the system being developed but also have a certain perspective on the
problem to solve.

Users that are going to provide input to the system may not have the compre-
hensive picture and organizational domain knowledge. Hence representatives in
the form of domain experts and users have to be utilized in different contexts.
Domain experts' skills may be more adequate to determine if requirements are rele-
vant and user skills may be used for testing look and feel of the system. Require-
ments that affect the architecture of the system are not likely to be decided on by the
programmer, rather by the system expert leading to an economic decision taken by
acquirer and supplier management. Representatives from acquirer and supplier are
illustrated in Figure 9.

FIGURE 9. Representatives from acquirer and supplier

Manager
System expert
Developer

Manager
Domain expert
User

Acquirer Supplier

Manager
System expert
Developer

Manager
Domain expert
User

Manager
System expert
Developer

Manager
Domain expert
User

Acquirer Supplier
54

Software processes

55
Further Extreme programming requires the customer to learn how to write func-
tional test cases. The effort versus gain of delegating this task to the customer
should carefully be considered. The approach of extreme programming its original
form may not be cost effective for the acquirer defined in Section 1.4.

4.6 Rational Unified Process (RUP)
The rational unified process is an implementation of the spiral model in Section 5.4.
The rational unified process are described in [28] as a process product, developed
and maintained by Rational Software.

The RUP emphasizes the adoption of certain best practices, as a way to reduce
the risk inherent in the development of new software. These best practices are:
• Develop iteratively
• Manage requirements
• Use component-based architectures
• Model visually
• Continuously verify quality
• Control change

The Rational Unified Process weaves these best practices into the definitions of:
• Roles as sets of activities performed and artifacts owned
• Disciplines for focusing areas of software engineering effort such as require-

ments, design, implementation, and test.
• Activities are definitions of the way artifacts are produced and evaluated
• Artifacts are the work products used, produced or modified in the performance

of activities

The RUP is an iterative process that identifies four phases of any software devel-
opment project. Over time, the project goes through inception, elaboration, con-
struction, and transition phases. Each phase contains one or more iterations in

Rational Unified Process (RUP)
which you produce an executable, but possibly incomplete, system. During every
iteration, you perform activities from several disciplines in varying levels of detail.

4.6.1 Advantages for the customer
With an iterative development approach it is easier to handle change of require-
ments. Requirements are likely to change during the project as needs become
clearer as businesses change. With incremental development the system is built pro-
gressively. This eliminates the risk with integration at the end of the project. This
risk is divided into smaller risks.

The customer decides in outline the services that are going to be provided by
the system. They also decide on the most important and least important features.
The system is now partitioned into subsets containing certain features. The require-
ments are defined in detail for the increment delivered first. The increments should
be able to be put into service as soon they are delivered. Advantages are:
• Customer does not have to wait until the entire system is delivered to gain from

its functionality.
• Customer may use the early increments as a form of prototypes and gain experi-

ence that helps to form requirements for later projects.
• The risk of the project to fail reduces since certain functionality will be deliv-

ered. They problems may be specific for a certain service.
• The highest priority services are delivered first. This means that they receive the

most testing since they are the basis.

Iterative development opens the possibility for management to make tactical
changes to the product. Short iterations make it easy to plan and estimate usage of
resources. Another advantage with incremental development is that tasks that have
to wait for the system to become complete could start early. Activities such as docu-
mentation and testing could commence as increments are being covered. The cus-
tomer hence has a tested and documented prototype available all the time.

It is on the contrary difficult to map the functionality to properly sized incre-
ments. It is also difficult to identify the requirements that affect all increments since
the requirements of the increments are not defined until the increments are going to
be implemented.
56

Software processes

57
4.7 Requirements engineering
It is important to know about requirements engineering since requirements may be
used to select supplier, communication in project, measure supplier progress, to
verify and validate functionality and so on. A requirements technique that per-
vades industrial practice is scenarios.

4.7.1 Scenarios
Although scenarios are widely used in the industry, studies on their practical rele-
vance are rare. Surveys are mostly broad or draw their conclusions from a single
project. The European Esprit project Crews are seeking a deeper understanding by
comprehensive and expressive studies on the practical relevance of research tech-
niques reported in Weidenhaupt et al. [13]. The study involved 15 European
projects to learn how scenarios produced and utilised. They also identified benefits
and problems associated with usage in industrial settings.

Scenarios are descriptions of tasks that users perform in their ordinary work.
They are described from the perspective of the user. The scenarios do not have to
include any interaction with a computer. They help the developers to understand
the user domain and user tasks. The information in a scenario is easily provided by
the end-users that are involved in the scenario.

One of the problems in Section 1.2.1 in the Lund case was that the acquirer had
problems adapting to the technical jargon of the supplier. Scenarios may be used to
concretize abstract models. Abstract models used by a developer may be hard to
understand for the acquirer representative. The acquirer representative prefers to
talk about concrete models rather than abstract models [13]. The other way around
the business process to be supported may be hard to make out for the developers. In
[13] comprehensive studies indicates that scenarios may be used for making it eas-
ier for the supplier and acquirer understand each other.

Scenarios promote interaction between supplier and acquirer. Scenarios require
specific domain information that only domain experts can provide. Developers
should use the language of the problem domain if helping to write scenarios. This is
vital to establish good communication with non-technical experts. This is also the
result of a case study performed by [14]. In [14] scenarios are recommended for use
during acquisitions, since these types of requirements did not favor one supplier
over another and helped to elicit other important requirements. In [14] the follow-
ing advantages for the customer are mentioned:

Requirements engineering
• They may improve the understanding of the domain, omitting the need for a lot
of detailed requirements.

• They make it easier to avoid premature design.
• They may easily include a lot of complexity and variants.
• Users find them easy to understand and validate.
• In some products they are sufficient precise to serve as requirements, in other

they are excellent explanations of why various requirements are needed.

In [19] "Deriving Goals from a Use-Case Based Requirements Specification" sce-
narios are also proposed to be used by software engineers to gather and validate
requirements.

Scenarios are not use-cases. Use cases are another style of expressing require-
This style the developers may want to use to express the requirements of the prod-
uct. These define how the system or application works. The use case defines actors,
a brief description, and pre-conditions, the main flow, alternate and sub-flows and
exception flows. The use cases may not be from a users perspective but may come
in contact with flows in the software that has no contact with a user. These are
therefore harder to validate for the user.

4.7.2 Coexistence with prototypes
Prototyping varies from simple paper-based user interface to a comprehensive sys-
tem. Paper-based prototypes may be as useful as comprehensive systems, this is
indicated in [22]. Prototyping serves not only as concretizing scenarios but also to
verify the scenarios them selves. Scenarios may serve as to validate the initial proto-
types and indirectly to verify the requirements specification.

Recent research in [18] "Preventing Requirements Defects" indicates that the
number of usability defects may be reduced by 70% percent if scenarios are used in
conjunction with early usability testing. Prototypes may be used in the initial stage
for evaluation of suppliers or in the development process to concretize or comple-
ment scenario requirements. In [18] "Preventing Requirements Defects" scenarios
are stressed as an important technique since it is useful for identifying the tasks to
be used in usability tests. This apprehension is also adapted by [19] "Deriving Goals
from a Use-Case Based Requirements Specification", they report that scenarios are
used in HCI to improved communication between end-users and developers for
58

Software processes

59
designing user interfaces, task modeling, prototyping and supporting the specifica-
tion of user interfaces.

4.7.3 Quality requirements
In order to satisfy the quality objectives, requirements may be developed to build
confidence in that the quality objectives are met. In some cases quality objectives
may not be available for measurements until some maintenance has been per-
formed on the product. Requirements may then be set on the development process
used to fulfill the quality requirements. If the functionality of the product is impor-
tant and may need further specification after selection of supplier, the acquirer
should require that users a involved to a high degree in the development of the
functional specification. Requirements on prototyping may also be helpful. Further
if the acquisition objectives are accuracy of the output of the software, for example
specific calculations, requirements on the testing of this functionality may be help-
ful.

Except for requirements on the process used to develop the product, require-
ments may be set on monitoring of the process to see how effectively the process is
applied. Anther need for project monitoring requirements are that they are related
to the stability of functional requirements. If functional requirements often change
then it is necessary to require that communication processes between supplier and
acquirer are strengthened, this is implied in [20]. If process visibility is important
requirements may be set on traceability between phases, such as indicators of how
many of the requirements are working features of the product. In testing demands
may be on how many tests cases are passed, number of defects corrected and found.

Requirements could also be set on the acceptance of the product. Those could be
set on the efficiency, usability, reliability, maintainability, interoperability, etc. But
requirements could also concern traceability requirements that could be important
for example when transferring knowledge in the acquiring organization.

4.8 Verification and validation
This testing requires a real user to interact with the end product by executing. The
goal is to adjust the interface of the program to the users style of work, instead of

Verification and validation
adapting the users to the program. The users are recommeded to be involved as
early as possible by Edward Kit in [21]. This kind of evaluations should be focused
on the presentation of the program rather that its functionality.

Usability characteristics which can be tested include the following:
• Accessibility
• Responsiveness
• Efficiency
• Comprehensibility
60

Software processes

61

CHAPTER 5 Current practice of
software acquisition
In order to find problems with the current practice of software acquisition two
projects are investigated. The projects are acquisitions of small-scale information
systems. Both projects were performed by the local authorities Lund and Malmö.
Interviews with the project managers from both projects were performed, they are
listed in Appendix A.

The interviews reveal several problem areas. The areas that problems are found
in are:
• Communication
• Planning
• Requirements
• Verification and validation

These areas are explained in more detail below.
62

Current practice of software acquisition

63
5.1 Communication
The two projects used for the study are dissimilar in the way communication

with the supplier has taken place. The Malmö project has had intensive communi-
cation between end-users and developers, giving feedback on new releases on regu-
lar bases. This is opposed to the Lund case where project communication has been
very intensive between the managers. The contact between developers and end-
users has been rare.

5.1.1 Lund

FIGURE 10. Communication in the Lund case

Acquirer
Management

Supplier
Management

Domain experts
End-users

Department

Domain experts
End-users

Department

Domain experts
End-users

Department

Senior developer
Developer

Department

Senior developer
Developer

Department

Senior developer
Developer

Department

Acquirer
Management

Supplier
Management

Domain experts
End-users

Department
Domain experts

End-users

Department

Domain experts
End-users

Department
Domain experts

End-users

Department

Domain experts
End-users

Department
Domain experts

End-users

Department

Senior developer
Developer

Department
Senior developer

Developer

Department

Senior developer
Developer

Department
Senior developer

Developer

Department

Senior developer
Developer

Department
Senior developer

Developer

Department

Communication
As displayed in Figure 10 almost all communication was directed trough the
managers who had daily contact during the project. Meetings seldom took place
between the department personnel and the developers. At meetings communica-
tion was problematic, since the acquirer and supplier had little previous experience
of each others domains. The management experienced that the communication with
the supplier was excellent.

5.1.2 Malmö

FIGURE 11. Communication in the Malmö case

The intensive end-user involvement that the Malmö case had made sure that the
product was tweaked to the context by the future users. The communication is pre-

Acquirer
Management

Supplier
Management

Domain experts
End-users

Department

Domain experts
End-users

Department

Domain experts
End-users

Department

Senior developer
Developer

Department

Senior developer
Developer

Department

Senior developer
Developer

Department

Acquirer
Management

Supplier
Management

Domain experts
End-users

Department
Domain experts

End-users

Department

Domain experts
End-users

Department
Domain experts

End-users

Department

Domain experts
End-users

Department
Domain experts

End-users

Department

Senior developer
Developer

Department
Senior developer

Developer

Department

Senior developer
Developer

Department
Senior developer

Developer

Department

Senior developer
Developer

Department
Senior developer

Developer

Department
64

Current practice of software acquisition

65
sented in Figure 11. This type of communication promoted the acceptance of the
product. It was expensive to let the end-users off from their regular tasks to work on
the project. Neither of the projects has considered the cost of end-user involvement
in addition to the price of the product acquired. This could be really useful if the
costs/savings of introduction of an information system in an organization should be
calculated.

Even though the projects have had dissimilar communication, both acquirers
experience that the relation has been very good with the supplier. The Malmö
project has had thoroughly end-user involvement and the Lund project had not.
However both projects were more expensive than planned for and has gone beyond
the planned deployment date.

5.2 Planning
Neither of the projects had a time plan that related to the complexity of the soft-

ware. The projects compiled the time plan related to stakeholders interests in releas-
ing the information systems to the public. Neither of the interviewees are able to
motivate the estimations in their time plans. The time plans do not seem to have any
correspondence with the complexity of the requirements of the system. When the
time plan is created from the acquirer’s business point of view, the requirements
should be reviewed by the supplier with suggestions of the time it takes for imple-
mentation. Then prioritization of requirements will most likely take place as the
business planning probably does not correlate with the time for implementation of
requirements.

5.3 Requirements
The two acquisitions also have in common that the managers have experienced

an "uncontrollable stream of requirements during the project". Requirements that
were elicited until the time for the selection of supplier were not enough when the
projects started.

Requirements
FIGURE 12. End users realizes the potential of the system at a late stage

New requirements cropped up as soon as the projects began. The suppliers had
from the beginning of the projects an increased workload compared to the work-
load that was planned for. After a few meetings the business perspective of the time
plan had not changed but the requirements were not prioritized and the workload
was increased. In the Lund project, even two years later, new requirements are elic-
ited by users that realize the potential of the information system. This phenomenon
is illustrated in Figure 12. The angles of inclination in Figure 12 are fictitious.

The time plan for one of the projects was regularly updated. Since a stream of
new requirements existed, the time plan followed the project instead of the other
way around. The total time for requirements implementation increased continu-
ously at meetings with the customer.

Nr. of requirements

Time
Selection of supplier

Implementation starts

End-users realize
potential of system

Nr. of requirements

Time
Selection of supplier

Implementation starts

End-users realize
potential of system
66

Current practice of software acquisition

67
The project also experienced that the supplier was slow to fix problems after
evaluations. This probably depended on the fact that the supplier had a lot more
workload than expected from the start. Little time was left to work with the quality
of the features since new features always waited to be implemented.

FIGURE 13. Quality of a feature does not scale linear if an even effort of work is performed

Quality of features does not start to evolve just as the features are implemented
but after a while of working with it, Sommerville [7]. This is pointed out in Figure
13.

The new requirements were sometimes, but not always documented in the
projects. During the projects, managers could not say if 200 or 300 new require-
ments had been elicited from the project start. The Lund case did have an overview
of requirements that the Malmö case did not have, since everything passed through
the managers in the Lund case. In the Malmö case requirements could more easily

Quality

Effort

Quality

Effort

Verification and validation
be passed on to a developer without knowledge of management or being properly
documented at meetings.

5.4 Verification and validation
The evaluations of the software product were conducted in different manners.

The Lund case was evaluated during a month’s trial period when intensive bug
reporting and correctives actions were taken. The Malmö project performed evalua-
tions of the software with the end users. This promoted the acceptance of the soft-
ware but also generated a lot of overhead communication. E.g. three tests might
give three different results if performed in three different departments. The involve-
ment of the end-user however is not a bad idea if the results of the tests are agreed
on before contact with the supplier.

Suppose that the supplier generates an easy to follow manual for test-cases
intended to be used by the end-users. The tests are already tested to work. The end-
users test them again and then get a look and feel of the interface of the software.
The end-users will probably have opinions on the interface. Except for the tweaking
of the interface this promotes quality since the tests are run several times with the
real end-users. This type of testing is also a way for the supplier to show the cus-
tomer that the software is working as agreed on. The test cases, if written as in a
tutorial manner, could easily be transformed into manuals.

5.5 Summary
The two projects described above are used for identifying problem areas in software
acquisitions. The organizations both acquire small-scale information systems. They
have similar organizations since they both are Swedish local authorities. The two
projects are therefore utilized for showing the variety of problems areas that may
exist, rather than for comparisons. The problem areas lie in the phases of planning,
requirements elicitation and management, and verification and validation. Both
projects would benefit from experienced management with knowledge in these
areas. The projects would also benefit from educating the end users to understand
68

Current practice of software acquisition

69
the demands of this kind of projects. The improvement areas are the basis for the
recommendations in Chapter 6 were they are used in conjunction with standards
from Chapter 3.

CHAPTER 6 Guide to important areas for
acquiring small-scale
information systems
As described in the introduction, acquisition projects often fail. The projects are not
unique but similar, and in many cases it could be figured out by software engineers
where and why the projects took a wrong turn. Why does projects still fail even 20
years after the notorious CMM was introduced?

Such comprehensive guidelines were never compiled with the acquirer charac-
terized in this thesis in mind. Even though support exists for projects today, it is cer-
tainly not easy to make use of. Therefore a pragmatic guidance to important areas
may help the one-shot inexperienced acquirer.

The examination of standards in conjunction with interviews is used to guide
the software acquirer to areas of importance when contemplating improvement of
the acquisition process. The purpose is not to present an as complete list as possible,
but to exemplify countermeasures for several of the problems discovered in the
standards and the interviews and addressed in the standards.

The areas that are identified to be problems areas should management put effort
into controlling:
• Strategies and planning
• Requirements elicitation and management
• Verification and validation
• Maintenance
70

Guide to important areas for acquiring small-scale information systems

71
The standards in Chapter 3 have recommendations for each of the areas above.
Below the recommendations from the standards are described. These recommenda-
tions may be enough for handling the problem areas in Chapter 5.

6.1 Strategies for acquisition
The strategies should permeate the acquisition from the beginning to the end. The
strategies give the acquirer a basis for making decisions throughout the project. The
strategies should also form the boundaries of the software requirements specifica-
tion. The purpose of the software acquisition should be clear for all persons
involved since it is likely that stakeholders of the software may have conflicting
views of the purpose of the software acquisition. A prioritization among stakehold-
ers’ objectives considering time, cost and functionality should solve this. Then the
criteria for success should be determined. The criteria should consist of the most
important objectives since all objectives may not be met.

The strategies are proposed to be documented as follows, according to SA-
CMM [6]:
• Definition of objectives of the acquisition.
• Definition of project constraints, such as funding and schedules.
• Definition of software acquisition methods.
• Definition of potential contract types and terms.
• Definition of risk identification.

In Chapter 5 it was described that the different departments had different
requirements on the software. Making strategies and prioritizing the objectives of
the acquisition could solve this conflicting view of what the software should per-
form.

The area of risk identification is important for all acquisition projects. It may be
hard for the one-shot acquirer to predict some of the common risks. Below are some
common risks. Recommendations for avoiding the risks may be found in Depart-
ment of Defense’s "Guidelines for successful acquisition and management of soft-

Planning for acquisition
ware-intensive systems" [29]. Management should know how to prevent these risks
by defining possible countermeasures:
• Definition of countermeasures to the risk of unrealistic estimates of cost, sched-

ule or size.
• Definition of countermeasures to the risk of cost of development exceeds any

benefits the system may offer during its useful life.
• Definition of countermeasures to the risk of schedule is out of control.
• Definition of countermeasures to the risk that the software system does not per-

form as originally intended or thus fails to meet requirements.
• Definition of countermeasures to the risk of a software product that is so poorly

constructed or complex, that it is too costly or impossible to upgrade or main-
tain.

• Definition of countermeasures to the risk of the project adheres to suppliers’
problems and poor practices.

• Definition of countermeasures to the risk of requirements being out of the man-
agement’s control.

• Definition of countermeasures to the risk of an unreliable product where quality
levels are poor to marginal.

• Definition of countermeasures to the risk of buying a product that is very hard
to use.

6.2 Planning for acquisition
When the strategies are thought of, an idea of the characteristics of the software
should evolve. Information from stakeholders can be obtained e.g. by question-
naires or by interviews. The contemplation of the characteristics of the software will
help to form the requirements. According to SA-CMM [6] the project plan should
contain these paragraphs:
• Definition of problem statements.
• Definition of solution statements (definition of success).
72

Guide to important areas for acquiring small-scale information systems

73
• Definition of quality objectives.
• Definition of prioritization of needs.
• Definition of roles for project members.
• Definition of the project scope.
• The software parts of the project should also be defined and included in the doc-

ument:
Risk identification.
Management.
Solicitation.
Requirements development management.
Evaluation and transition support.

• Definition of the tasks to be performed.
• Definition of the required resources including funding, staff, equipment and

tools.
• Definition of how change should be managed (requirements elicited during the

project etc.).
• Definition of master schedule of acquisition milestones.
• Definition of measurement to determine the progress of the acquisition.

The planning document is comprehensive and as described in SA-CMM [6] the
reason for this is that the costs of the acquisition do not end as the supplier is
selected or as the software is fully developed but when the software product are
replaced or no longer used.

In Chapter 5 one of the projects did not have criteria for knowing when to stop
developing the software. They did not have a strong defined solution statement.

6.2.1 Planning for prioritization
Both projects in Chapter 5 did have problems with a growing list of require-

ments during the entire projects. When this is the case, prioritization must be done.
In a report by the Standish Group International [27] it is claimed that in many cases,
20% of a project's features will provide 80% of user benefits. Therefore when the
project is slow or costs too much, it is good to know what to focus on.

Planning for acquisition
6.2.2 Planning for roles
In the Malmö project in Chapter 5 the management felt that the end-users had

poorly defined project roles. Definition of roles for project members is very impor-
tant so the project members know which authorities they have. They can then be
certain of what actions they may take in different situations. In projects were con-
tact between developers and end-user is tight definition of roles is important. These
paragraphs should be dealt with according to Standish Group International in [27]:
• Definition of everyone’s roles.
• Definition of the type of users that should be involved.
• Definition of schedules for user involvement.
• Definition of how user involvement could be promoted.

6.2.3 Planning for quality objectives
The projects in Malmö and Lund did not express any thoughts about the qualities of
the software. Neither did they use quality as a term related to the functionality of
the software. Below are some of the quality objectives from SA-CMM [6] that an
acquirer should think about:
• Definition of usable documentation.
• Definition of adequate resources for the software support organization.
• Definition of the warranty of the software product.
• Definition of the software process capabilities.
• Definition of the life cycle costs and schedule estimates for the software.
• Definition of how the quality objectives should be verified. E.g. by a demonstra-

tion, user survey, test, documentation review.
• Definition of responsibilities for making the evaluation.

6.2.4 Planning for payments
The projects in Chapter 5 had good co-operation with the suppliers. This is not
always the case and payments could be used as penalties for poor performance. It
74

Guide to important areas for acquiring small-scale information systems

75
may also be used as a spur. The acquirer should plan for the payments as a part of
the projects milestones. Below some paragraphs are presented that would be help-
ful when contemplating payments, from SA-CMM [3] and RPSA [7]:
• Definition of the minimum amount to be paid before the quality of the sup-

plier’s work is demonstrated.
• Definition of deliverables, such as documents at milestones or test results, that

verifies the product so that payments are made in relation to measurable
achievements.

• Definitions of which requirements are the most important so that payment may
be reduced if these are not met. Be prepared to take out the prioritizations of the
requirements to decide if it could be neglected to a lower price to be able to
move on.

• Definition of what a complete software product consists of. Except for reducing
the price at certain milestones, be prepared to reduce the price at the end of the
acquisition for the completeness of the product.

Be prepared to give the supplier feedback on its performance.

6.3 Requirements
In Chapter 5, new requirements were introduced during the entire projects and in
the Lund case even after the project was closed. Therefore it is important to elicit the
real need for acquiring new software. When interviewing users of an existing infor-
mation system their objectives to acquisition of the new system may reflect func-
tionality and routines used by the already existing software information system, as
in the Malmö case. It is therefore important for the investigators to find the real
objectives and needs. This is not always the need expressed by users.

It is hard to meet all stakeholders needs and prioritization is needed to meet the
most important ones and to scale the objectives to a rational level for the acquisi-
tion. Prioritizing between stakeholders' objectives considering time, cost and value
of the new functionality provided. Then determine the final objectives.

Requirements
6.3.1 Stakeholders
Stakeholders are any person or organization that has an interest in the result of the
acquisition. It could be essential to be able to answer the questions whether a per-
son or organization will be affected by the acquisition or not. For example for the
purpose of integration with other information systems as in the Malmö case in
Chapter 5. Common issues regarding stakeholder are addressed in "Software
Acquisition: A Comparison of DoD and Commercial Practices" [1].

It is hard to meet all stakeholders needs and prioritization is needed to meet the
most important needs and to scale the objectives to a rational level for the acquisi-
tion.

6.3.2 Requirements planning
To avoid misunderstandings between supplier and acquirer it may be a good idea
to create a mutual understanding of the requirements before an agreement is
signed. In Chapter 5, in the Malmö case an agreement was reached before the sup-
plier realized much work it had agreed to perform to a certain price. This may affect
the project in a negative way. When the mutual understanding exists, the require-
ments may be baselined to make sure that appreciations of the implementation time
are built on the baselined requirements as a starting-point. A requirements plan
should typically contain, according to SA-CMM [9]:
• Definition of the software technical requirements:

Functional requirements or use cases or scenarios
External interfaces
Performance requirements
Quality attributes (reliability, security, maintainability, usability, etc. se below in the checklist)

• Definition of the tasks that should be performed:
Evaluation tasks
Support tasks
Documentation tasks
Life cycle planning tasks

• The document should also contain the contract documentation:
Specifications
Test plans
76

Guide to important areas for acquiring small-scale information systems

77
Procedures and reports
Configuration management plan

 The configuration management should at least define how new requirements
are documented, compiled into baseline and who is responsible for approving new
requirements. This had been useful in both projects in Chapter 5 even if the require-
ments were documented in one of them it could be done in a more formal way. This
making the new requirements documents easy to read for all parties.

6.4 Verification and validation
The evaluations of software worked quite well in the projects in Chapter 5. Below
are recommendations for further improvement. If evaluations are performed by the
end-users, they should be documented in evaluation plans containing these para-
graphs, as in SA-CMM [6]:
• Definition of the purpose of the plan.
• Definition of the design of the test protocols.
• Definition of communication and responsibilities.
• Definition of a framework for how to carry out tests.

6.5 Maintenance
Maintenance was not contemplated at all in the projects in Chapter 5. It should be
since the acquirers do not buy software very often. Maintenance could be as much
more expensive than development according to Sommerville [7]. If the software
acquired is built for being in use the next five years, maintenance calculations
should be part of the picture. The software should include documentation so that
the acquiring organization has a possibility of managing maintenance. Presented

Maintenance
below are paragraphs supported by RPSA [3] that would be helpful when transition
to maintenance is performed:
• Definition of who will provide the software support.
• Definition of personnel responsible for the maintenance/support of documenta-

tion during the acquisition project so the knowledge could be passed on.
• Definition of who owns the code after development.
• Definition of what is included in the support of the system.
• Definition of how correction actions will be performed and by who.
• Definition of who will perform modifications of the software.
• Definition of who will make updates of user documentation.
78

Guide to important areas for acquiring small-scale information systems

79

CHAPTER 7 Summary and further
work
7.1 Practical methodology
This chapter is a summary of the thesis. It also contains pointers to further work.

7.1.1 Literature studies
The focus was initially to understand the disciplines involved in a software acquisi-
tion. Literature studies did not reveal much, as the area is poorly documented.

To understand which disciplines are interesting to investigate, several local
authorities were contacted. The authorities that were contacted had recently per-
formed acquisitions. An open interview with Malmö kommun gave a jargon and a
context to work with. This lead to better understanding of the standards SA-CMM
and RPSA and also to be able to sift other literature. The literature study revealed
several issues:
• The standards for software acquisition are not written with the acquirer defined

in this thesis in mind. However they comprise useful knowledge of the area.
Their usage are foremost a checklists for what has to be done. Standards com-
prise what should be done, but not why and how it should be done. Since for-
mality varies in organizations it might be more important to tell why the tasks
80

Summary and further work

81
should be performed than how. If the reader is familiar with the "why" and the
resulting document, then the "how" still may be excluded since it is likely to
vary anyway.

• No silver bullet exists among software process models for the customer. The
supplier should be responsible for controlling and knowing this area. Is it
important to know what demands that the software process model has on the
acquirer. More communications will cost time and effort and it will require
skilled staff to communicate with the supplier. On the other hand, software
acceptance may be higher and most of the problems are solved and no surprises
wait at introduction in the organization. Less communication may lead to a
higher acceptance threshold in the organization and a lot of user testing waits. If
evolutionary development is used, documentation could not be expected to be
of high quality. On the other hand the project will move really fast. Incremental
style minimizes risks in the area of software delivery and delays. Detailed
requirements decisions but architecture may suffer and may lead to high main-
tenance costs. Inputs and feedback to the processes and the supplier should be
an easy task for a non-technical acquirer. Requirements may take the form of
scenarios to make it easier for the acquirer and the feedback from the acquirer
should be structured and uniform to make it easier for the supplier.

7.1.2 Interviews
Focused interviews were then performed. The first interviewee was with a con-

sultant and a person working for Malmö kommun. Then an interview with person-
nel at Lund kommun was performed. Other interviews were also performed, e.g.
with Kävlinge kommun, however these have not been used since they did not
match the profile of the acquirer in this thesis. The Lund and Malmö project was
then used to describe issues in software acquisition projects.

The interviews gave a picture of what practice is used today by experienced
acquirer’s. The interviews were too few to be able to see any indicia at all. The sum-
mary of the interviews rather focus on showing a diversity of problems. The prob-
lems exists in these areas:
• Communication
• Planning

Further work
• Requirements
• Verification and validation

The problems in these areas are also addressed in the standards in Chapter 3.
Recommendations from the standards are used to exemplify a structured way of
working with the areas above.

7.1.3 Result
In Chapter 1.2.2 "Issues for investigation" seven paragraphs from "ADB-Projekt"

[5] were suggested to be investigated with additional five paragraphs derived from
the Standish Group investigation [27]. Paragraphs one to seven are all addressed in
the SA-CMM and the RPSA as paragraphs in several planning documents. Hence it
is important to know about them and to control them. If they are the success factors
that all projects could contribute from, this thesis could not answer, since no evalua-
tions has been done.

The paragraphs from Chapter 1.2.2 that are left unanswered are:
• The implementation of non-existing support for acquisitions. No recommenda-

tions for the most appropriate practice are described.
• The wish for being able of optimizing for costs, schedule or functionality is left

for further work.
Chapter 5 contains an examination of problem areas. These are used in Chapter

6 with suggestions to improvements from the standards. The reader of this thesis
should now be able to contribute to the purpose of increased knowledge of the area
of software acquisition to be able to improve one self, as described in Section 1.3
(Figure 2). The reader should know about some areas of improvement and might
have ideas on what to improve.

7.2 Further work
For this thesis, more work could be done in these areas:
82

Summary and further work

83
• The guide to areas of interest for the small-scale information systems acquirer
may be evaluated in acquisition projects to see if the areas described are the
most appropriate to improve.

• The guide to areas of interest for improving the acquisition process may be
expanded to discover several areas of improvement not mentioned in this the-
sis.

• The empirical investigations are quite limited in this thesis. They may be
expanded to comprehend more projects.

• If a quantitative approach is taken, the projects examined could be used for
identifying ingredients in successful projects.

• Another area of interest to examine is the specified costs and the actual costs of
an acquisition.

CHAPTER 8 References
[1] Software Acquisition: A Comparison of DoD and Commercial Practices, (CMU/
SEI-94-SR-9), October 1994

[2] IEEE, Std 610-1990

[3] IEEE, Std 1062-1998 "Recommended Practice for Software Acquisition"

[4] Premiepensionsmyndigheten Pressmeddelande http://www.ppm.nu/nonbfiles/
pdf/284.pdf

[5] Undall Björn, "IT-utvecklingen inom staten 1999", ISBN 9174983946

[6] Software Engineering Institute, “Software Acquisition Capability Maturity
Model (SA-CMMsm) Version 1.01”, 1996

[7] Sommerville I., "Software Engineering 6th edition", Addison-Wesley Publishing
Company, ISBN 0-201-39815-X, 2000

[8] Beck Kent, "eXtreme Programming eXplained", ISBN 0-201-61641-6, 2000

[9]

[10] Humphrey Watts S, “Discipline for Software Engineering”, Addison-Wesley
Publishing Company, 0-201-54610-8,1995
84

References

85
[11] Software Engineering Institute, “CMMI SM for Systems Engineering/Software
Engineering/Integrated Product and Process Development/Acquisition, Version
1.02d”

[12] Boehm B. W., "A spiral development of software development and enhance-
ment", IEEE Computer Issue 5,1988

[13] Weidenhaupt Klaus et al., "Scenarios in system development: current practice",
IEEE software March/April, 1998

[14] Lauesen, Sören, "Software Requirements - Styles and techiques", Samfundslit-
teratur, ISBN 87-593-0794-3,2000

[15] Björnsson Örjan, "Kvalitetsrevision 1-4 för Malmö Stad av BUV-projektet", 2000

[16]

[17] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V., “Capability Maturity Model
for Software, Version 1.1”, CMU/SEI 93-TR-24, Software Engineering Institute, ISBN
0-201-54664-7, Feb 1993

[18] Lauesen Soren, Vinter Otto, "Preventing Requirements Defects: An Experiment
in Process Improvement", Requirements Engineering Journal 6:37-50 Springer-Ver-
lag, 2001

[19] Antón Annie, Carter Ryan, Dagnio Aldo, Dempster John, Siege Devon, "Deriv-
ing Goals from a Use-Case Based Requirements Specification", Requirements Eng
6:63-73 Springer-Verlag, 2001

[20] Robert Philippe, "Quality Requirements for Software Acquisition", IEEE, 1997

[21] Kit Edward, "Software testing in the real world: improving the process, Addi-
son-Wesley, ISBN 0-201-87756-2, 1995

[22] Grady Helen, "Web Site Design: A Case Study in Usability Testing Using Paper
Prototypes, 2000

[23] Brandt Kjeld, "Vetenskaplig metod", Studentlitteratur, ISBN 91-44-36612-4,
1993, 1996

[24] Lantz Annika, "Intervjumetodik", Studentlitteratur, ISBN 91-44-38131-X, 1993

[25] DePoy Elizabeth, Gitlin N. Laura, "Introduction to research", Mosby, ISBN 0-
8016-6284-2, 1998

[26] Merton Robert, Fiske Marjorie, Kendall Patricia, "The focused interview", Free
Press, ISBN 0-02-920985-4, 1990

[27] Standish Group International Inc., "The CHAOS study", http://standish-
group.com/visitor/chaos.htm, 1995

[28] Kruchten, Philippe, "Rational Unified Process", Addison-Wesley, ISBN 0-201-
70710-1, 2000

[29] Department of the air force - Software technology support center, "Guideline
for Successful acquisition and management of software-intensive systems", May
2000
86

References

87

Appendix A Listing of interviews
Below follows listings of the interviews performed at the local authorities Lund and
Malmö.

A.1 Case study A

A.1.1 Description
Malmö is a city in Sweden with 250 thousand habitants. Malmö has an IT division
dedicated to acquisition of software and in some cases maintenance of software.
The division is funded by the city budget and is an interface for the city towards
suppliers of software.

Recently the IT division acquired software for administration of school districts
and transfer of students between various schools. The administrative information
support was a web based three-layer application with a database in the bottom. The
acquisition started in autumn 1998 and was transfered into maintenance august
2001. The project was budgeted to 7,4 milijon. When finished it had costed 8,9 mil-
jons.
88

Listing of interviews

89
A.1.2 Interview characterization
Two interviews with employees at Malmö stad are performed. The first interview
was an open interview following the respondent's thoughts, delimiting the subject
to the interest of the interviewer. The interviewee was a full-time employee in the
project management. I have chosen not to display this interview. The purpose of the
interview was to gain understanding of the problem domain.

The basis for the seconds interview is the issues in Chapter 1.2.2. The second
interview was with a third party software project quality inspector. The interviewee
has had a clear insight in the project on all levels. The interviewee was an employee
in the project working as a software engineering project expert trying to improve
quality in the project.

A.1.3 Interview
What did the criteria for selection of supplier look like?

The applications were acquired with requirements describing short scenarios
exemplifying the wanted functionality. Criteria for selection of the most appropri-
ate supplier were established. The criteria were of various importance’s for the
acquirer. These criteria may be read below:
• Application correspondence with requirements 40%
• Technical platform 35%
• System requirements

Technical environment

• The company 15%
Suitability of supplier
Project model, organization, resources and competence
Time plans
Control and follow-up
Quality assurance
References

• Investment 10%
Price
Maintenance / Support

Case study A
License price

A final date for the project completion was also set. No further information
between start and completion was set at this stadium. However it was a request
from the acquirer that the supplier assesses the effort of developing the desired
functionality.

Why did you select the supplier/bid that you did?
The supplier chosen had a price that was outstandingly low in comparison with

the others. The supplier made it clear that it was a favor for the city. In return the
company hoped for cooperation with the city in future projects.

Did you have an alternative plan if none of the suppliers/bids seemed to be ade-
quate?

The alternative to the acquisition was to prolong the existing contract of the old
mainframe system, until further replacement was arranged.

Was planning performed as thoroughly as needed?
No, we could have planned in more detail in the project, especially to help peo-

ple responsible in the subprojects. We chose not to do this because the co-operation
with the supplier starts first after we have selected a bid. Further planning was then
performed.

When the supplier was selected, what plans did you update?
When the supplier was chosen we had to decide on a project process that was

going to be used for interaction and communication. This involved the major part of
the planning. One might say that we delegated some of the planning decisions onto
meetings further ahead. This meant that the supplier could be involved to a higher
degree in decisions that we needed help with.

What would have changed the project if the plan had been more accurate?
Not much, the initial plan did not reach a long way ahead in time and was

quickly a thing of the past. The updates of it was not conducted on regular basis.

How was the organization for the project formed?
The project has had one full-time employee, the other 40 persons involved in the

project has worked with the project in addition to the ordinary tasks at work.
90

Listing of interviews

91
The project involved many departments of the city and representatives from
each department were involved in the project. Each department had a responsible
person. The end users of the acquired software worked in the departments.

Each department in the city has a technical person for the administration of
technical information system issues.

The method of working, also decided on in planning, how did it work?
We chose a model for working closely with the supplier that is called extreme

programming1. End-users work in tight co-operation with suppliers when evaluat-
ing the product. At meetings new functionality is elicited in co-operation with sup-
plier and end-users.

Did you have any plans on sanctions if the supplier was contracted but nothing
happened from the supplier's side?

The sanctions are specified in the in the acquisition foundation in the form of
penalties. The deal with the supplier is arranged as part payments. The complete
amount for the system was divided into two equal parts. The first part was divided
into four part payments. These payments were fixed at part deliveries of the system.

How were requirements elicited?
Representatives from the departments affected by the acquisition were present

at the initial brainstorming meeting. The scenarios we came up with were business
oriented. They displayed tasks that we perform today with the current system,
however not connected to the old system.

We did not want to overlook any of the possibilities that such a program could
provide so we made a survey of similar programs on the market. This resulted in a
more stringent requirements specification.

Our strategy was to have close co-operation with the supplier and having the
users to evaluate the program as often as new functionality had been added.

Do you consider the requirements to have covered the desired functionality of
the system?

At first, the basic functionality in the system corresponded very well with the
requirements specification. This was evaluated at each department involved in the
project. But since nothing was defined concerning the user interface in the require-

1. This refers to the development method described in Chapter 5.4

Case study A
ments specification, the departments had diverse opinions on the functionality of
the user interface.

We also noticed in an early stage of the project that the interfaces towards other
systems were insufficiently specified. We had left this part entirely out from the
requirements.

Another thing that we left out was the description on how data should be pro-
cessed in the program. The data is for example used for economic calculations. The
output of the program, when data was processed, should be passed on to the exter-
nal project "Ny ekonomimodul". Nothing of this was specified.

Did the requirements specification function as a common basis for communica-
tion when users met with developers?

Responsibility has been delegated from the project management to the various
departments, where developers meet with local users. The synchronization
between departments has not functioned in a satisfactory manner. The additions to
the requirements specification that meetings with developers generated, has been
engrossed in meeting minutes. The minutes should be available in electronic form
for all personnel involved in the project. However the protocols was not given the
priority that they needed. Thus not functioning as reliable communication between
departments. Hence the departments have not had a fixed configuration of the sys-
tem to proceed from. What the basic system functionality comprised was a rather
floating concept.

Many of the users in the departments have been badly prepared at meetings
with developers. The users have not studied up on the scenarios, the requirements
specification and the minutes. The effect of this was that developers and users
waisted much time on deciding on things that already were decided on. Users
ignored the requirements when it did not favour their decisions on functionality.

Since various opinions of the basic functionality and the user interface existed,
do you think that this could have been straightened out by having a clear goal or
requirements reflecting the goal already established before the meetings?

Disagreement has been for example on what basic screens should look like, for
example address-information and how to handle these. This could have eliminated
by specifying this better or by gathering the personnel and show prototypes until
agreement was met. We did not have any routines for solving this kind of disagree-
ment.
92

Listing of interviews

93
Was the requirements specification updated as the requirements changed? For
example when the users conducted tests with the developers in parallel in the
various departments, was the requirements specification updated to reflect these
changes?

As mentioned earlier an electronic file sharing system supported this. The
changes were documented as protocols from meetings involving developers and
end-users. The changes were documented but with a delay. To counteract the delay
we sat a deadline for the minutes to the next day. This rule was seldom followed.

Why?
Except for writing the minutes, users had their ordinary tasks to perform. Of

cause they where compensated for the project involvement, but their normal
amount of work could not be reduced.

How was the evaluation of the system conducted?
End-users in the departments received a beta program to perform the test on.

The tests were documented in relation the requirements specification and the result
of the program. We had routines so that each department could document the result
in a uniform manner.

When we did the first test we discovered that the period for testing the program
was too tight for the users. They did not manage to test all the functionality at the
time fixed. The planning and instructions for the realization was not explicit
enough. The protocols generated were of varying quality and to some extent impre-
cise and vague. This probably depended on that the instructions were indistinct.

In some departments, the persons testing the system had limited experience
with Windows. These users never worked with this environment before. They
needed extra time to learn about basic functionality of the graphical user interface.
The had quite limited understanding of the possibilities with graphical user inter-
faces since they had only experience with command line interfaces.

Meeting with the suppliers' developers took place after the evaluations. In these
meetings if often turned out that users took functionality for granted. This means
that this functionality not was communicated to the supplier. The meetings could
sometimes be somewhat of a brake-block since a lot of new requirements were gen-
erated. This lead to that the supplier was slow on fixing the problems with the cur-
rent version of the program. Instead the supplier worked with new the
functionality. The new requirements and the functionality taken for granted have
lead to delays.

Case study A
When we read some of the test records, it was clear that users tried to form the
new system into the shape of the old. We thought that this was a pity since the old
system probably not was the optimal solution for these information-handling rou-
tines.

How was the responsiveness from the supplier after the evaluations?
The number of remarks/faults in the test records tended to increase without ear-

lier remarks being dealt with. The supplier did not report if remarks/faults where
dealt with or not in new versions of the program. This made the users more con-
fused when performing tests. We also thought that the time between a meeting and
the possibility to see results was too long. It neither favored the time plan nor the
quality.

Were decisions in meeting documented in a satisfactory manner?
Writing minutes while meetings are in progress has not worked really well. The

issues that have been overlooked are: decisions, time for completion of a task and
the responsible for activities has not been appointed. List of activities that was
going to work as a programme was not created.

Which roles in respective organization were present at the evaluations?
At the evaluation of the program, the end-users and developers where present.

At the meeting where the entire projects was followed up, the project management
from both supplier and acquirer was present.

Were these the right representatives from the organization to be present?
Yes, we think so. The responsible persons in the departments were the ones that

decided on who was going to be present at the meetings. It was defined in their role
that they had the responsibility to see to that the right competence was present at
meetings. In some cases the right representatives might not have been present to
bring the most to the purpose of the meeting. This might be in the eye of the
beholder since it was up to the responsible person in the department to decide on
that.

Has the incremental approach of working been satisfactory?
The functionality that we elicited at meetings was not divided into increments,

that were going to be delivered at a set time.
94

Listing of interviews

95
May I call it evaluation cycles ending with a meeting between developer and
user? How were these cycles planned, and how did they work out?

We have talked about some of the benefits and some of the drawbacks earlier.
Users are now using a system that is directly tinged by their close involvement with
developers, this makes them motivated for using it. The cycles were not planned in
detail. The functionality that was proposed for the next version was not scheduled,
it was built in gradually.

When did it end?
It ended after the summer-brake. When everybody came back we felt that it was

enough of new requirements. We had to start finishing off the system.

Were the costs of disposal of employees considered when making plans for costs?
No, it was not. In our case we concentrated on the cheap price given by the sup-

plier for such a complex system. Even if users were involved to a high degree we
felt that it was an expense that we could spare. Maybe if suppliers had been more
expensive we would have considered cutting costs that involved users.

Were art of employees for disposal given any thought?
No. The persons involved most of the time was project management and end-

users.

When the employees are on loan to the supplier for requirements elicitation, test-
ing etc. are they relived from their ordinary task of duty?

It exists from the Malmö city point of view a number of critical time periods
when the project members can not perform any work in the project since their ordi-
nary tasks takes a higher priority.

The project members who work in the project are sanctioned. Their work in the
ordinary organization remains and the project management has sensed that the
project come in second hand several times. The lack of a project plan with a sched-
ule makes it a lot harder for the project members to plan their ordinary work and
the work in the project.

What were the actual costs of disposal of the personnel during the project?
The project had one full-time employee and about 40 persons working with the

project and with other tasks as well. We do not have any figures of the time that
they have disposed to the project.

Case study B
Was the employees responsibility and authority established?
Yes, in an early stage in the project.
The project member’s power of initiative has been weak. Seldom contact with

the supplier has been made on their own initiative. The responsible persons in the
departments have been badly prepared on meetings. Their part of the projects in the
departments are not pushed enough. This may depend on the insecurity of what
authorities and responsibilities they had.

In turn it is also hard to assert oneself against the corresponding part at the sup-
plier. It may also be a reaction of the supplier mentality when meeting with the
users. The mentality had been: "don’t worry" and "laissez-faire". The project man-
agement had wished for more pressure on the departments from the supplier.

Were responsibilities for the introduction of the program established?
We had in good time chosen persons to be super-users or normal users. At an early
stage users was introduced to the system. It gave the users a chance of understand-
ing how the system was going to affect them. Many users showed that they had
commitment to the project, probably because they understood what happened and
that they got the chance of being involved from the start. When the system was
launched it gained acceptance and users had motivation for using it.

A.2 Case study B

A.2.1 Description
In 1998 Lund kommun acquired a web site. The purpose was to reach one step fur-
ther to the 24 hour availability of community services. The database and tools
would give the give the personnel in the departments an easily managed tool for
publishing information with a consistent layout on the web site.

The acquisition bid that was accepted to a cost at 386000 SEK as a one-time fee.
The annual maintenance fee was specified to 72000 SEK. The feasability study
before the acquisiton took about five month and the project took about 9 month to
complete. The project budget was crossed and the project was 3 months late.

The interview below is with the project manager responsible for the acquisition.
The interview was tape recorded to maintain the uniqueness of the dialog.
96

Listing of interviews

97
A.2.2 Interview characterization
This interview was more open than the one from Malmö displayed above. The
questions were not asked in a particular order. The interviewee talked freely around
the subject as follow-up questions were asked.

A.2.3 Interview
You acquired the web site that Lunds kommun use today in 98. What was the
purpose of the acquisition?

We had a web site earlier, but with that website, people were working manually.
There existed no comprehensive control over the old web site. There was no person
that delegated responsibility. Persons in the departments added any material to the
web site without checking with others if this was legitimate. In addition to this the
departments were segregated. One of the sides embraced technology. This group
that was interested in technology was also very competitive against other depart-
ments. They wanted to control the information flow. The other side was hindered
by the technology or not interested. Imagine that ten of the departments are really
interested, five are not very interested and five are not interested at all. In all depart-
ments exist people that do not have time, interest or adequate knowledge to be a
part of this information flow to the public.

The technique that we acquired was supposed to work as basis to form unifor-
mity in the departments. Everyone should be able to add information without
extensive experience of some obscure computer tool. We wanted to acquire a data-
base tool that all information was stored in. The layout of the information should be
uniform without any individual contributions in the departments. The graphical
form was supposed to be uniform as well as the navigation of the web site….eh, a
throughout thought of way to publish information. We also wanted that people not
should have to learn to publish information more than absolutely necessary. We did
not like that people should have to go through a weeks training just to publish some
documents.

Did you think that you covered all these aspects in the request for proposal?
Er, yes. (Paus). All of the suppliers that answered to the request for proposal

had tools to provide us the desired functionality. We did our request for proposal in
1998 and it is 2001 now.

It might be hard to remember all the details.

Case study B
In that time 98, it did not exist many tools ready for use to fulfil our needs.

It did not exist many tools of this kind in 98.
There were a few tools that suited us. It was hard to choose between the tools.

Each tool had some features that were extra attractive.

Was it hard to choose between the different tools?
I think that there are two aspects when you perform an acquisition. You want to

follow the right procedure for choosing the right supplier. This part is the part that
controls the acquisition. In the meaning that you have to chose on the criteria that
you have elicited and included in the request for proposal. The other factor is if you
think that the tools that you acquire are good or bad tools. Among those who
returned bids on our request for proposal, was in line with our requirements speci-
fication.

Was it hard chose from the criteria that you had elicited? Could you choose the
bid that you wanted from the criteria? Those criteria may be hard to elicit and
form in an understandable manner especially as it is technology that you
acquire?

Now, afterwards if I could do the acquisition again… err, I think that in this
kind of branch that technology is… err, It is seldom that you have a chance to test
the tools that you acquire. There are many things to make out afterwards when you
have tested a tool. We would have liked to create our requirements specification
under supervision of a corporation. Hardly any company demonstrated prototypes
of their products. We did not find any company that offered this kind of service, the
companies are afraid to reveal secret information to other companies. In a situation
where an agreement not is reached, the companies are very hard to get help from.

Not very helpful when the contract is not signed, huh?
No, exactly. They give the illusion that everything is going to be solved when

the contract is signed.

I what to know about how you think the planning was performed. As you said
before, if you could perform planning again, what would you think about extra
much?

We could hardly have planned any better then we did. We used wish lists from
the departments when we performed planning for the project. These wish lists
formed our requirements specification. We had scoured the market for products
98

Listing of interviews

99
before we made the request for proposal and we had our old website that we had
worked with for a long time.

Did you have a time plan also, except for the requirements?
Err, yes, we had an informal time plan. We wanted to keep this plan for our

selves because these things are so sensitive. What I think is spooky is peoples expec-
tations, experienced and prejudices. This is all in a psychological plan.

So you experienced a pressure from people?
Yes, this IT-thing in general, it is required to be fast and you should be able to

cope with any technical problems that you not are prepared for at all. In larger orga-
nizations, as in our organization, with 20 departments and 2500 workstations.
(pause)… It is the all these users expectations that resist all the time. It is not possi-
ble for all of these users to come with their own opinions and expectations.

Ok, so who took their party in the communication with the supplier?
We had two people from the IT department, one person and myself, who repre-

sented the users. We also had an additional reference group. In this group a person
from each department was represented. This was the same people that made the list
of whishes for the requirements specification. This list of what people wanted and
hoped for, took almost half a year to collect. It then took three months to compile
the requirements specification that should be included in the request for proposal.
We did several company visits during this time. Then it took tree months to evalu-
ate the bids and select the supplier.

The people who met with the supplier, how often did they meet?
You mean the reference group?

Yes, the reference group.
With the potential suppliers, only the four of us were in direct contact.

After you had made you selection how did you communicate with the supplier?
We promptly had a grand meeting with the supplier.

What was the purpose of these meetings, how often were they held, how did the
co-operation with the supplier work out? Do you experience that you had good
contact with the supplier?

Case study B
Immediately when we had selected the supplier I phoned them and arranged a
meeting the next day. We had to sign the treaties. At this meeting we made a first
preliminary time plan.

You made a time plan together with the supplier?
Yes, of cause. We have contract for about fourteen days and then we have a

grand meeting.

What does it mean to have a grand meeting? Who is represented from your side
at the grand meetings?

With a grand meeting, I mean that the representatives from the departments
also are present. It is important that they receive this kind of direct information.

(In chorus)
Who did you meet from the suppliers side?
Yes, that I felt. In this branch people switch jobs very often. That I think is very dis-
turbing in the communication with the supplier.

Ok, so this has been disturbing in the communication with the supplier?
Yes, for a customer this might be disturbing. But this phenomenon is not unique

for us, it applies to all companies. So, that is something that you have to live with,
otherwise it worked very well…and when we had the time plan we wanted to pub-
lish the new website in half a year.

Why did you set half a year as the limit for the development of the web site?
Because… in our own experience we know that it is not very good to delayed

thing over long periods of time. Our organization is so large so things may be delay
for a very long time. Then it might be delayed for a whole year. During this time
techniques used in the product might grow old. People in the organization may feel
that nothing happens in the project. That is why we had the grand meeting so that
people in the organization feel that something happens in the project. The initial
meeting should have the effect of a take-off.

You contacted at the grand meetings. During these meetings and at the meetings
how could you measure the performance of the project?

We had regular contact. As a project manager I had almost daily contact with
the supplier's project manager via the phone. Behind the project manager stood a
web team with 4 -5 responsible persons.
100

Listing of interviews

101
Ok, so the web team met with people from the departments?
No…

(A sketch of the organization is drawn)
Lena starts to explain that the most intensive communication is running in the
management. The phone rings, I turn of the recorder.

The interviewee is back from a few phone calls and I ask again about the commu-
nication between the web team and the end-users. How the organization was
built around the project. Did you ever considered the costs of the involvement of
the end-users? They have a regular job to attend to as well as the project…

Haha, no, we did not. We considered the costs for me as a project management.

Why did you not consider the costs of user involvement?
Because these calculations are very hard to perform. These calculations are not

very relevant without adding another dimensions to the project. To have some use
of calculations of these type you have to calculate the cost savings after the web site
is published. For example a person might get ten phone calls a day about questions
that after the web site is published someone can use a web browser to view. As we
did not want to calculate the time that people use sitting in the phone answering
questions doing their regular job.

Why did you not considered to calculate this?
The quantities for these calculations are too complex to ever calculate and

maybe even to interpret.

I have some additional questions that we came in touch with earlier. Did you
have an alternate plan if a supplier was not adequate when you received the
bids?

(Pause) We would have waited for maybe half a year or so and made a new
acquisition.

Was the method of working with the supplier decided on in planning?
What do you mean?

I, mean if you had divided the project into phases with milestones that the mem-
bers in the organization could follow?

Case study B
Oh, yes, we had several milestones in the project. Often they were set in con-
junction with the grand meetings.

Was it clear to you what these milestones were and what should have been done
at each milestone?

Yes, myself I had good idea of what was going to happen and where we were in
the project all the time. Maybe if a person came late in the project it would take a
month or so to work their way into the project.

Changing personnel might not only be a problem for the supplier, but also for
you? For example if you had quit, it would have been a great loss for Lund…?

Yes, but the supplier personnel are very different from ours. Those working for
the supplier are young people trying to make careers and often get other more
attractive bids from other companies. In our organization we have a high average
age, people has loans on their houses and they do not plan to make careers, so that
is not a problem for us.

Were these discrepancies a problem when the supplier met with your organiza-
tion?

Both yes and no. I know all the people in the departments and I had prepared
them for this. Since I met the supplier at first, I had to accept the fact that I could not
use their language at all, with all the fancy IT expressions that they use. In the
departments that were least interested in technology I had paid visits and made
jokes about the situation. This cleared the air at meetings with the supplier. We had
adjusted to be aware of this discrepancy and we had laughs after the meetings if
anything was misunderstood.

I see, how were the evaluations of the product conducted, at the meetings that
you mentioned above maybe?

What do you mean?

You did have an acceptance of the product at the end, but how did you evaluate
during the project?

We had a checklist of features that the old website comprised that was going to
be transferred to the new one. When this was done the project was going towards
the end. The only problem was that the list grew all the time with functionality that
we did not know existed but still we was forced to have. I had a hard time to keep
that list to contain the most important functionality.
102

Listing of interviews

103
You optimized the project to contain less functionality to be able to complete in
time?

Err, no, we had the list that was gong to be transferred from the old website to
the new, this takes time.

But if you imagine that you would like to optimize for example functionality,
cost or time, which was what I meant…

Well, we had a very hard schedule to keep. The employees that had to work
over from the different departments often controlled if I was present at my office at
that late hours. They bought hot dogs outside my window and often asked to see if
I wanted one to see if I was at my office. They even used the intern mailing system
to see if I was online when they were. I was glad that I could work late hours all the
time when they were.

That have to be a tough role to wear, as a project manager I mean.
(Silence)

Ok, I have some more questions to wrap the interview up… so, for example to
transfer the knowledge of this project to the next, how do you perform such a
thing?

(Long pause)

Do you talk to each other?
Of cause…

Interrupted by interviewer by the question: Do you for example write down what
has happened during the project to be able to communicate it amongst the project
members?

Yes I always took minutes at meeting that I sent out in the organization.

Allright, do you think that the product when finished covered the functionality
that you were looking for?

We still work on the list (2001) that developed during the project. Now for
example we have interactive form on the web for public users to fill out. We are
working against the goal to be a 24-hour government. I must say yes to answer you
question, we were happy with the product when it was finished.

Case study B
The end-users, did they immediately start to work with the product? Were they as
satisfied as you?

(pause) Yes, I think so. Today (2001) all the users have realized the potential of
the web site.

So, how did it work when you accepted the product?
We had a month to evaluate it. So, we had a period when the users used it as for

real.

Did you not have any problems when it came to use?
Oh, yes, all the problems were reported to me. The supplier's manager and

myself sat in close contact to investigate what were real problems and what were
supposed to be in that way.

How did the supplier respond to problems that arise?
They were very forthcoming and issues were solved fast.

That was all for my part. I just want to congratulate to a successful acquisition!
104

Listing of interviews

105

	Software Acquisition - a guide to areas of interest for the one- shot acquirer
	Dan Ekström

	Abstract
	CHAPTER 1 Introduction
	1.1 Background of research area
	1.1.1 Software
	1.1.2 Software Engineering
	1.1.3 Software Acquisition

	1.2 Problem
	1.2.1 Background
	1.2.2 Issues for investigation
	1. A flexible organization for the project should be created.
	2. Areas of responsibilities should be defined.
	3. Planning should be conducted with great accuracy.
	4. A method of development should be chosen and followed throughout the project.
	5. The process of development should be evaluated for its ability to contribute to quality.
	6. Evolution of costs should be followed and controlled.
	7. The integration of the system in the organization should be planned in an early stage.
	FIGURE 1.� Illustration of the seven conclusions above
	1. Product or service - user involvement In the Lund case section 1.2.1 costs in the winning bid ...
	2. Communication In the PPM case and the Lund case Section 1.2.1 a lack of communication seems to...
	3. Existing support for acquisitions Standards for acquisition exists. What are the strengths and...
	4. Requirements In Section 1.2.1 in the Lund case, evaluations of the system and communication of...
	5. Non-existing support for acquisitions - a pragmatic approach for one-shot acquirers For the on...

	1.3 Purpose
	FIGURE 2.� Model of learning to improve one self

	1.4 Scope
	1.5 Target audience
	1.6 Outline of the report
	FIGURE 3.� Outline of report

	CHAPTER 2 Methodology
	2.1 Techniques
	2.1.1 Literature research
	2.1.2 Interviews

	2.2 Methods
	2.2.1 Case studies
	2.2.2 Classification
	1. The classes must be reliable.
	2. They should be genuine.
	3. The classes could easily be applied on the material without a to big part of the material endi...
	4. The classes should be mutual exclusive. The data should not fit into more than one class.
	5. Emty classes should not exist. If empty classes exist, this is a sign of that the original cla...

	2.2.3 Quantifying of data
	2.2.4 Comparison
	2.2.5 Hypothesis and evaluation
	2.2.6 Theories
	2.2.7 Model

	2.3 Practical methodology

	CHAPTER 3 Related work
	3.1 Standards for software acquisition
	TABLE 1. Common denominators for SA-CMM and RPSA

	3.2 Software Acquisition Capability Maturity Model
	3.2.1 Description

	3.3 Application of SA-CMM to small-scale information system
	3.3.1 Planning
	3.3.2 Solicitation
	3.3.3 Requirements development and management
	3.3.4 Project management
	3.3.5 Contract tracking and oversight
	3.3.6 Evaluation
	3.3.7 Transition to support
	3.3.8 Summary

	3.4 IEEE Recommended Practice for Software Acquisition
	3.4.1 Description
	TABLE 2. Phases in software acquisition according to IEEE
	FIGURE 4.� Steps for acquiring software

	3.5 Application of the RPSA to small-scale information systems
	3.5.1 Planning
	3.5.2 Implementing organization's process
	3.5.3 Defining software requirements
	3.5.4 Identifying potential suppliers
	3.5.5 Preparing contract requirements
	3.5.6 Evaluating proposals and selecting supplier
	3.5.7 Managing supplier performance
	3.5.8 Accepting the software
	3.5.9 Using the software
	3.5.10 Summary

	CHAPTER 4 Software processes
	4.1 The waterfall model
	FIGURE 5.� Waterfall model phases, see [7]

	4.2 Evolutionary development
	FIGURE 6.� Evolutionary model concepts, see [7]

	4.3 Incremental development
	FIGURE 7.� Steps of incremental development, see [7]

	4.4 Spiral development
	FIGURE 8.� Boehm’s spiral model of the software process (copyright 1988 IEEE)

	4.5 Extreme programming (XP)
	4.5.1 Customer communication
	FIGURE 9.� Representatives from acquirer and supplier

	4.6 Rational Unified Process (RUP)
	4.6.1 Advantages for the customer

	4.7 Requirements engineering
	4.7.1 Scenarios
	4.7.2 Coexistence with prototypes
	4.7.3 Quality requirements

	4.8 Verification and validation

	CHAPTER 5 Current practice of software acquisition
	5.1 Communication
	5.1.1 Lund
	FIGURE 10.� Communication in the Lund case

	5.1.2 Malmö
	FIGURE 11.� Communication in the Malmö case

	5.2 Planning
	5.3 Requirements
	FIGURE 12.� End users realizes the potential of the system at a late stage
	FIGURE 13.� Quality of a feature does not scale linear if an even effort of work is performed

	5.4 Verification and validation
	5.5 Summary

	CHAPTER 6 Guide to important areas for acquiring small-scale information systems
	6.1 Strategies for acquisition
	6.2 Planning for acquisition
	6.2.1 Planning for prioritization
	6.2.2 Planning for roles
	6.2.3 Planning for quality objectives
	6.2.4 Planning for payments

	6.3 Requirements
	6.3.1 Stakeholders
	6.3.2 Requirements planning

	6.4 Verification and validation
	6.5 Maintenance

	CHAPTER 7 Summary and further work
	7.1 Practical methodology
	7.1.1 Literature studies
	7.1.2 Interviews
	7.1.3 Result

	7.2 Further work

	CHAPTER 8 References
	[1] Software Acquisition: A Comparison of DoD and Commercial Practices, (CMU/ SEI-94-SR-9), Octob...
	[2] IEEE, Std 610-1990
	[3] IEEE, Std 1062-1998 "Recommended Practice for Software Acquisition"
	[4] Premiepensionsmyndigheten Pressmeddelande http://www.ppm.nu/nonbfiles/ pdf/284.pdf
	[5] Undall Björn, "IT-utvecklingen inom staten 1999", ISBN 9174983946
	[6] Software Engineering Institute, “Software Acquisition Capability Maturity Model (SA-CMMsm) Ve...
	[7] Sommerville I., "Software Engineering 6th edition", Addison-Wesley Publishing Company, ISBN 0...
	[8] Beck Kent, "eXtreme Programming eXplained", ISBN 0-201-61641-6, 2000
	[9]
	[10] Humphrey Watts S, “Discipline for Software Engineering”, Addison-Wesley Publishing Company, ...
	[11] Software Engineering Institute, “CMMI SM for Systems Engineering/Software Engineering/Integr...
	[12] Boehm B. W., "A spiral development of software development and enhancement", IEEE Computer I...
	[13] Weidenhaupt Klaus et al., "Scenarios in system development: current practice", IEEE software...
	[14] Lauesen, Sören, "Software Requirements - Styles and techiques", Samfundslitteratur, ISBN 87-...
	[15] Björnsson Örjan, "Kvalitetsrevision 1-4 för Malmö Stad av BUV-projektet", 2000
	[16]
	[17] Paulk M.C., Curtis B., Chrissis M.B., Weber C.V., “Capability Maturity Model for Software, V...
	[18] Lauesen Soren, Vinter Otto, "Preventing Requirements Defects: An Experiment in Process Impro...
	[19] Antón Annie, Carter Ryan, Dagnio Aldo, Dempster John, Siege Devon, "Deriving Goals from a Us...
	[20] Robert Philippe, "Quality Requirements for Software Acquisition", IEEE, 1997
	[21] Kit Edward, "Software testing in the real world: improving the process, Addison-Wesley, ISBN...
	[22] Grady Helen, "Web Site Design: A Case Study in Usability Testing Using Paper Prototypes, 2000
	[23] Brandt Kjeld, "Vetenskaplig metod", Studentlitteratur, ISBN 91-44-36612-4, 1993, 1996
	[24] Lantz Annika, "Intervjumetodik", Studentlitteratur, ISBN 91-44-38131-X, 1993
	[25] DePoy Elizabeth, Gitlin N. Laura, "Introduction to research", Mosby, ISBN 0- 8016-6284-2, 1998
	[26] Merton Robert, Fiske Marjorie, Kendall Patricia, "The focused interview", Free Press, ISBN 0...
	[27] Standish Group International Inc., "The CHAOS study", http://standishgroup.com/visitor/chaos...
	[28] Kruchten, Philippe, "Rational Unified Process", Addison-Wesley, ISBN 0-201- 70710-1, 2000
	[29] Department of the air force - Software technology support center, "Guideline for Successful ...

	Appendix A Listing of interviews
	A.1 Case study A
	A.1.1 Description
	A.1.2 Interview characterization
	A.1.3 Interview

	A.2 Case study B
	A.2.1 Description
	A.2.2 Interview characterization
	A.2.3 Interview

