
CODEN: LUTEDX (TETS-5423)/1-40/(2001) & local 7
Functional testing of GUI
based software without using

the GUI

Master Thesis by

Nima Davoudi-Kia
Alijan Momeni

Performed at Telelogic AB
Supervisors

Tomas Lundh
Jan Docekal

Department of Communication Systems at Lund Institute of Technology
Supervisor

Per Runeson

March 2001

Lund University, Sweden

Abstract

Today’s software systems usually feature Graphical User Interfaces (GUI). Tools,
which help programmers quickly create applications with the GUI, have dramati-
cally improved programmer productivity, which in turn has increased the pressure
on testers. This software must be thoroughly tested before each new release.

Today’s GUI testing is mostly done manually, which is costly and time consuming.
It would be desirable to fully automate this testing process. By having an auto-
mated testing process, it would be possible to significantly reduce the time and
manpower needed for testing.

In this master thesis, an introduction of testing issues and the effects of automated
testing on testing process is given. Different kinds of testing tools and the internal
experience of automated testing of GUI:s are also discussed in this thesis.

This master thesis focuses on how an application with a GUI can be tested and
steered without involving the GUI. The goal is also to investigate how automated
regression test should be performed so that the effort of keeping the tests up to date
is minimized when the functionality of the application changes.

The attempt of testing the GUI without using the GUI, was partly succeeded. This
kind of automated testing is strongly depended on the structure of the product
being tested. The test object in this thesis was structured in a way, which made the
testing method difficult and time consuming.

At the end of this master thesis, a case study is given to show different kinds of
obstacles, which can rise during the testing process.

Acknowledgements

We would like to take this opportunity to thank our supervisors, Per Runeson at the
department of the communication system at Lund Institute of Technology and Jan
Docekal at Telelogic Technologies Malmö AB for their help and support through-
out this master thesis.

Thanks also to Tomas Lundh, the originator of this master thesis, and Patrik
Rosenqvist for their guidance during the first steps of our work.

Last but not least, we would like to thank Niclas Bauer, Engin Zufer and all the
other employees at Telelogic who helped us with various questions.

Malmö, March 2001

Nima Davoudi-Kia and Alijan Momeni

V

VI

Table of Contents
Chapter 1 Introduction .1
1.1 Purpose .1
1.2 Method and Main result .1

Chapter 2 Background. .3
2.1 What is software testing? .3
2.2 Verification and Validation .4

2.2.1 The testing process .4
2.2.2 Fundamental testing strategies .5
2.2.3 Cost of testing .6

2.3 Software Engineering Environments .7
2.3.1 Test Environment .8

Chapter 3 Test Process at Telelogic. .9
3.1 Introduction .9
3.2 The development process at Telelogic .9

3.2.1 Requirement Engineering ProcEss At Telelogic (REPEAT) 10
3.2.2 Implementation Process .12
3.2.3 Telelogic Tau Testing .13

3.3 Conclusions .14

Chapter 4 Automated testing. .15
4.1 Introduction .15
4.2 Computer-Aided Software Testing (CAST) Tools .16

4.2.1 Introduction .16
4.2.2 The tool selection .18

4.3 Automated testing of GUI-based software by using GUI at Telelogic 19
4.3.1 The Telelogic Tau Tool Selection .19
4.3.2 Test Tool Selection .20
4.3.3 Creation of automated test cases .21
4.3.4 Metrics .21
4.3.5 Conclusions .23

Chapter 5 Automated testing of GUI-based software without using GUI .25
5.1 Introduction .25
5.2 Telelogic Library Overview .25
5.3 Choice of the test object .27

5.3.1 Menus .27
5.3.2 Dialog .27
5.3.3 Drawing area .29

5.4 Case Study .30
5.4.1 Introduction .30
5.4.2 Planning .30
5.4.3 Execution .31
5.4.4 Results .33

Chapter 6 Conclusion. .35
6.1 Testing Implementation on design .35
6.2 Suggestions and Future investigation .36

References .39

VIII

1 Introduction

1.1 Purpose

Manual testing of GUI(Graphical User Interface)-based software is labor-intensive
and not well liked by software testers [Fewster & Graham, 99]. However GUI:s
wide range of possibilities for user interaction and the number of control elements
(buttons, pull-down menus, tool bars, etc.) have made it popular and useful among
today’s software systems.Therefore the GUI is target for automation and several
tools for computer-based testing of the GUI are already commercially available.

This master thesis is intended to investigate test process performance, automated
testing and testing of the GUI-based software at Telelogic, which is the supplier of
software development tools for real-time applications.

Many companies have tried to automate the GUI, but testers usually revert to man-
ual testing, because it is easier to maintain the manual test cases. At Telelogic there
has been an investigation about how to automate testing of the GUI-based software
by using the GUI [Rosenquist & Bruck, 98]. This investigation is not enough
because a large amount of maintanence effort is required every time the software is
changed. More details concerning this issue are given later in this master thesis.

1.2 Method and Main result

Several investigations, concerning automated testing of GUI-based software by
using the GUI, have been done and a wide variety of tools for computer-aided test-
ing of the GUI have been developed. But all these approaches require a large main-
tenance effort of test cases every time the software is changed or updated.

The main idea behind this master thesis is to investigate the possibility of reducing
the maintenance effort by trying to automate testing of GUI-based software with-
out using the GUI. Because it is a new area, in which no serious investigations have
been done, no tools are developed or available for this purpose.

2 1 Introduction
At the beginning, it was intended to find a common interface where it should be
possible to capture signals between two communicating units, i.e. an arbitrary GUI
and the related program code. These signals would, on a later opportunity, be used
as input for running the test automatically. This attempt failed because GUI and
program were two overlapping units and such an interface was missing.

Another possibility to achieve this goal was to invoke a desired function by writing
single instructions into the program code, and compare the outcomes with the input
to analyze the result of the automated testing.

This approach was, to some extent, successfully performed but had also some dis-
advantages, which are discussed later.

Chapter 2 focuses on software testing in general, verification, validation and soft-
ware engineering environment.

In chapter 3, test and development process at Telelogic is described. Some
improvement proposal are also given at the end of this chapter.

Automated testing in general, computer-aided software testing tools and automated
testing of GUI-based software by using the GUI are taken up in chapter 4. This
chapter is ended by a description of the investigation done in this area including the
related conclusions.

Chapter 5 gives a highlight to automated testing of GUI-based software without
using the GUI. The performed task is described by the means of a case study with
associated results.

At last, in chapter 6, some conclusions concerning test implementation on design
are drawn followed by suggestions and future investigations.

2 Background

2.1 What is software testing?

Testing is a process of planning, preparation and measuring, aimed at assessing the
characteristics of an information system and demonstrating the difference between
the actual and the required status. Activities such as planning and preparation
emphasize the fact that testing should not be regarded as a process that only begins
when the object to be tested is delivered [Koomen & Pol, 99]. Of course a test

case1 can not be executed before the software has been developed, but it can be
designed based on a requirements specification.

According to [Fewster & Graham, 99], the quality of a test case can be described
by the following attributes, i.e. how good it is:

• Effectiveness Shows the detection ability of a test case to find defects.

• Exemplariness An exemplary test case should test more than one
thing so that the total number of test cases required should be reduced.
It should also pinpoint the found errors if the test tests several things.

• Cost considerations How economical a test case is to perform, ana-
lyse and debug; and how evolvable it is, i.e. how much maintenance
effort is required on the test case each time the software changes.

A well designed test case requires that these attributes must be balanced one
against another. For example, a high measure on the exemplariness which cost a lot
to perform, analyse, debug and may require a lot of maintenance, can result in low
measure on the economic and evolvable scales [Fewster & Graham, 99].

1.Test case: A set of a tests performed in a sequence and related to a test objective.

4 2 Background
2.2 Verification and Validation

Verification and validation ensures that software confirms to its specification1 and
fulfils the need of the customer. Validation makes sure that the system has imple-
mented all the requirements, so that each system function can be traced back to a
particular requirement in the specification. Verification ensures that each function
works correctly. That is, validation makes sure that the developer is building the
right product according to the specification, and verification checks the quality of
the implementation.

Verification and validation can be divided into two types of techniques for system
checking and analyzing, namely: static and dynamic techniques.

• Static techniques These techniques are related to the analysis and
checking of the system representations such as the requirements docu-
ment, design diagrams and program source code. These techniques can
be used in all stages.

• Dynamic techniques These techniques can only be used when a proto-
type or an executable program is available and involve exercising an
implementation.

2.2.1 The testing process

In developing a large system, the testing process involves several stages.These
stages, described in [Koomen & Pol, 99], [Pfleeger, 98] and [Binder, 99] are:

• Unit testing Individual components are tested to ensure that they oper-
ate correctly. Unit testing is done in a controlled environment when-
ever possible, so that the test team can feed a predetermined set of data
to the component being tested and observe what output actions and
data are produced.

• Integration testing After unit testing, the next step is to ensure that the
interfaces among the components are defined and handled properly.
Integration testing is the process of verifying that the system compo-
nents work together as described in the system and program design
specifications.

• System testing Before handing over the system to the customer, it is
tested by developers or an independent test team in a controlled envi-

1.Test case specification is a document which contains a description of test cases and require-

ments specification is a document which contains a description of something the system is ca-

pable of doing in order to fulfil the system’s purpose.

2.2 Verification and Validation 5
ronment, that should demonstrate that the developed system or subsys-
tem meets the requirements set in the requirements specification.

• Acceptance testing This is the process of comparing the end product
to the current needs of its end users.The system is tested with data sup-
plied by the system procurer rather than simulated test data. It is usu-
ally performed by the customer or end user, where the system is
checked against the customer’s requirements description.

• Finally the accepted system is installed in the environment in which it
will be used; a final installation test is run to make sure that the sys-
tem still functions as it should.

• Regression test This kind of test involves executing a predefined bat-
tery of tests against successive builds of an application to verify that
bugs are being fixed and features / functions that were working in the
previous build have not been broken. Regression testing is an essential
part of testing, but is very repetitive and can become tedious when
manually executed build after build after build. This kind of testing
which is becoming more important have to be done throughout the
development cycle, as illustrated in Figure 2.1.

Figure 2.1 Testing process

All these phases should be performed as often as possible. The relation between
the regression test and other types of above mentioned tests are illustrated in Figure
2.1. The arrows from the top of the boxes indicate the normal sequence of testing
while the arrows returning to the previous box indicate that previous testing stages
may have to be repeated, i.e. regression test.

Regression test may also lead to edit existing test cases or create new test cases.

2.2.2 Fundamental testing strategies

Test specification techniques can be divided into two groups: white-box and black-
box techniques.

• White-box These testing techniques are based on the program code,
the program descriptions, or the technical design. Knowledge of the
internal structure of the system plays an important role.

6 2 Background
• Black-box These testing techniques are based on the functional speci-
fication and quality requirements. In black-box testing techniques the
system is viewed as it will be in actual use. Black-box testing is done
without any internal knowledge of the product.

2.2.3 Cost of testing

Software goes through a cycle of development stages. A product is imagined, cre-
ated, evaluated, fixed, put to serious use and found wanted. The full business, from
initial thinking to final use, is called the product’s life cycle. According to [Kaner
ed al, 99] the product’s life cycle involves many stages, but it can be summarized in
five basic stages as: Planning, Design, Coding and Documentation, Testing and
Fixing, Post-Release Maintenance and Enhancement.

The relative costs of each stage, according to [Kaner ed al, 99], can be summa-
rized, as follows:

The tables above shows that maintenance is the main cost component of software.
Testing is the second most expensive activity accounting for 45% (15/33) of the
cost of initial development of a product. Testing also accounts for much of the
maintenance cost, since code changes during maintenance have to be tested too.

Testing, finding and fixing errors in programs can be done at any stages in the life
cycle and can be estimated from 40% to 80% of the total development cost. How-
ever the cost of finding and fixing errors increases dramatically as development
progresses. Figure 2.2 shows that the later an error is found, the more it costs to fix.

Table 2.1: Cost of each stages in percentage of total and Development costs

Stages total
costs

development
costs

Requirement Analysis 3% 9%

Specification 3% 9%

Design 5% 15%

Coding 7% 21%

Testing 15% 45%

Table 2.2: Operation and maintenance cost in Production phase

Operation and Maintenance 67%

2.3 Software Engineering Environments 7
Figure 2.2 Cost of finding and fixing software errors according to [Kaner ed al, 99]

Changing a requirements document before the code has been written will cost less
than changing it after the code has been written, since the code must be rewritten.
Defect fixing are much cheaper when programmers find their own faults. They do
not have to explain the defect for anyone else, and there will not be any communi-
cation cost. Fixing a defect before releasing a program is also cheaper than sending
new disks, or even a technician, to each customer.

2.3 Software Engineering Environments

A software engineering environment (SEE) is a set of hardware and software tools,
which can act in combination in an integrated way to provide support for the whole
of the software process from initial specification through to testing and system
delivery.

The SEE may be considered as a set of services, which are used by the facilities,
which provide end-user support. Services may be provided by the platform on
which the SEE is executing or by an environment framework.

The platform on which an SEE runs is called its host system. In some cases, the
software developed using SEE will run on the same platform but, in many cases, it
will be delivered for some target system, which may have a completely different
architecture and operating system. According to [Sommerville, 95] host-target
development is necessary for the following reasons:

8 2 Background
• In some cases, the application software under development may be for
a machine with no software development facilities. This is most likely
in the case of real-time systems for special-purpose computers. These
computers may not even have an operating system but only a simple
real-time executive.

• The target machine may be application-oriented and not well suited to
supporting software engineering environments, e.g. game consoles.

• The target machine may be in use and dedicated to running a particular
application and this must be given priority over software development.

According to [Whittaker, 00] testers must identify and simulate the interfaces,
which a software system uses and enumerate the inputs, which can cross each
interface. There are four different interfaces, which can be described as follow.

• Human interfaces These interfaces are communication links between
people and software. Most prominent is the GUI but older designs like
the command line interface and menu-driven interface are still in use.

• Software interfaces These interfaces are about how software uses an
operating system, database, or runtime library. These application pro-
vide services, which are modelled as test inputs. Testers should check
not only the expected but also the unexpected services.

• File system interfaces These kind of interfaces exist whenever soft-
ware reads or writes data to external files. Developers must write lots
of error-checking code to determine if the file contains appropriate data
and formatting. Testers must build or generate files with content, which
is both legal and illegal, and files, which contain a variety of text and
formatting.

• Communication interfaces These interfaces allow direct access to
physical devices and require a communication control. To test such
software, testers must be able to generate both valid and invalid proto-
col streams. Testers must gather and submit to the software under test
many different combinations of commands and data, in the proper
packet format.

Testers must understand the user interaction that falls outside the control of the
software under test, since the consequences can be serious if the software is not
prepared to cover such exceptional cases. Each application’s unique environment
can result in a significant number of user interactions to test.

3 Test Process at Telelogic

3.1 Introduction

Telelogic, with more than 1300 employees, is a supplier of software development
solutions for real-time applications. Based on dedicated, standardized languages
and notations, Telelogic’s tools, Telelogic Tau (consisting of the UML Suite, the
SDL Suite, the TTCN Suite, SCADE and Logiscope) and ObjectGeode can
provied an effective solution in the field of integrated analysis, design, implemen-
tation, testing and debugging of real time software systems.

Editors, related to the suites above, can be classified as graphical and text editors.
The graphical editors, which all have very similar graphical interface, are used to
create and edit diagrams according to their corresponding graphical notation. The
Text Editor differs from the graphical editors and is used to create and edit text
documents.

Testing is a vital part of all software and hardware development but it is often
regarded as a necessary evil: it is considered as a difficult and uncontrollable proc-
ess, which takes too much time and money. Unfortunately, in many cases this opin-
ion is justified with regard to the fact that testing accounts for between 25 and 50%
of the total budget [Koomen & Pol, 99]. At Telelogic, the test time is estimated to
be about 20% of the total development (calendar) time [Rosenquist & Bruck, 98].

Testing at Telelogic, to a great degree focused on the functionality of the product,
is performed by testers and developers. Therefore planning of a successful test
process and keeping the release date requires an insight into the development proc-
ess. That is the reason why we first begin with a concise description of the develop-
ment process at Telelogic.

The test object, Telelogic Tau, is an integration of in-house developed COTS
(Commercial Off-The-Shelf) components for the development of real-time soft-
ware and all tests are run on Unix and Windows platforms.

10 3 Test Process at Telelogic
3.2 The development process at Telelogic

Telelogic delivers two releases of their product per year. The product with its com-
ponents is evolved in releases, with each release including new and improved fea-
tures that should ensure that the vendor stays ahead of its competitors. This goal is
reached by using a six months long development process, which based on [Rosen-
quist & Bruck, 98] and [Regnell ed al, 98] is described below.

3.2.1 Requirement Engineering ProcEss At Telelogic (REPEAT)

REPEAT is a specific industrial Requirement Engineering (RE) process which
manages requirements throughout a release cycle. The actors involved in REPEAT
are:

• ReQuirements Management Group (RQMG) This group manages
requirements and make decisions on which requirement to implement.
RQMG includes department and projects managers.

• Issuer Any employee at Telelogic, usually from marketing & sales or
customer support, who submits a requirement to the management
group RQMG can act as an issuer.

• Requirements Team This team analyses and specifies a set of require-
ments and consists of persons participating in implementation, testing,
marketing & sales and customer support.

• Construction Team A group of developers who design and implement
a set of requirements.

• Test Team A team that is responsible for the system and release
test.This team consists of project-hired students and the release man-
ager.

• Expert A person, typically a developer, who is assigned to analyse a
specific requirement

• Acceptance Group This group, consisting of department and project
managers, decides on the releasability of the product.

• ReQuirements Data Base (RQDB) All requirements are stored in this
in-house-built database system which has a web-interface that can be
accessed by Telelogic employees from a multi-continent intranet.

REPEAT is divided into five overlapping phases:

• Collection This phase, which lasts six months is made by an issuer that
fills in a web-form and submits the requirement for storage in the data
base(RQDB). New requirements can be accepted into an ongoing
requirement process at any time. Requirements are described using
natural language and has a summary name, an explanation of why the

3.2 The development process at Telelogic 11
requirement is needed and an initial priority provided by issuer. The
priority, i.e. an assessment made by issuer, is on a scale from one to
three as shown in Table 3.1.

When a new requirement has arrived, the management group(RQMG) first reads it
to see if it is detailed enough; if not it is returned to the issuer for more detail.

• Classification In this phase, management group(RQMG) assigns a
requirement (with clarified description) to an expert who classifies the
requirement by providing it with a rough estimation of its cost, i.e. how
long time it would take to implement, and impact, i.e. how many com-
ponent that need to be changed. The estimation should take less than
30 minutes, otherwise the expert should recommend the management
group(RQMG) to initiate a pre-study where the requirement can be
decomposed into smaller requirements that is easier to classify. The
expert also reconsiders the priority and may recommend management
group(RQMG) to change it. Both cost and impact are given on a scale
from one to five as illustrated in Table 3.2.

• Specification The goals in this phase are: to select which requirements
to implement in the current release, to specify the selected require-
ments in more detail and finally to validate the Requirements Docu-
ment (RD) as an output of this phase. RD consists of a selected-list, a
detailed specification of all selected documents, and a not-selected-list

Table 3.1: Levels of priority

Level Priority

1 Allow to impact on-going construction.

2 Incorporated in the current release planning.

3 Postponed to later release.

Table 3.2: Cost and impact levels

Level Cost Impact

1 Less than 1 day One component

2 Less than 5 days A few components

3 Less than 5 weeks Less than half of all components

4 Less than 3 months More than half of all components

5 More than 3 months Nearly all components

12 3 Test Process at Telelogic
including the requirements that are postponed to the next release. The
selected-list is, according to the selection-rule, divided into a must-list,
with 70% of the total resources (i.e. a 30% risk buffer dealing with
optimistic effort estimations) and a wish-list with 60% of the total
resources. RQMG has the responsibility of sorting the selected require-
ments into priority order using the priority, cost, impact and effort esti-
mations.

• Change As mentioned above, new requirements can be accepted into
an ongoing requirement process at any time. If incoming requirements
with high priority are suggested to impact the current development
process, RQMG may decide to introduce this into the must-list. But
these actions often alter the selection-rule and thereby cause project
delay. To avoid such problems, RQMG has the possibility to de-select a
set of requirements amounting to the same effort as the new require-
ments and put them into wish-list.

• Verification In this phase, the implemented requirements in the
selected-list are compared with the requirement specification using a
requirements-based testing method. Development teams also inform
which requirements have been implemented, possible changes to the
requirements and known risks. When the implementation is correct
with respect to RD, the new release is delivered to marketing & sales
and the implemented requirements enter the applied state.

3.2.2 Implementation Process

When the specification phase is completed, the construction team has to put the
idea and the requirements into practice. Now we are ready to enter a new phase,
which is called implementation phase. This phase affects mostly the construction
and test team. A short description about what construction and test team do fol-
lows:

• Construction team They have the responsibility to design and imple-

ment the requirements until code stop1. After the code stop, no new
functionality will be added. Every four weeks the construction team
should deliver a report, which is called status report. In this report they
should inform the managers if they are compliant with the time plan.
They should also state which resources have been used and if there
exists any possible risk regarding the construction and time plan.

• Test team Test teams work begins with updating the test specifications
(test cases in different documents) for the new functionality. They
should also correct errors in the test specifications. Test teams also per-

1.A fixed date beyond which no new functionality should be added.

3.2 The development process at Telelogic 13
form system and acceptance test, which are described in the forthcom-
ing subsection

3.2.3 Telelogic Tau Testing

The testing of Telelogic Tau is divided into three stages: unit, system and release
test. How these three testing levels are performed, is discussed in more detail
below. Before discussing the performance of these three testing stages in more
details, it would be a good idea to give a short description about handling of found
defects throughout the test process.

During system and release test all found defects are reported by anyone. All defec-
treports are stored in a web-based database. This database is the formal communi-
cation channel between testers and developers. There are several issues that should
be sent with the defect report. These issues are Platform, Version, Tool, Summary
name and the Severity of the defect, which can be minor, non-critical, critical or
catastrophic.

Statistics about found defects are collected at the end of every week. The statistics
are classified by severity of the number of found defects and the number of defects
that are left to correct. These statistics are presented graphically and are available
for all employees.

• Unit test Unit test is usually performed by developers to verify that
new implemented functions are working, as required. Test data from
old defects will be used for a more regressive testing. As mentioned,
test team updates the test specification and in some cases writes new
test cases during this period.

• System test This period begins when there is less than one month left

to code stop1. During this period the test teams will run through the test
specifications. Most of this testing is done manually by project hired
students. However, there are parts of Telelogic Tau, with text-based
user-interfaces, i.e. the Simulator, Validator, Analyzer, Code Generator
and TTCN Link, which are mostly tested automatically by using batch-
scripts and file comparators. These interfaces will be tested by data
files, which contain errors that should be detected and data files, which
have supported identification of defects in earlier versions.

When defects are reported, at first they will get the status Assigned.
When the developers have solved the defect they will change the status
to Solved. They will also run through parts of unit testing that has to do
with the defect. Developers can also change the status of a defect to
More info or No action in case they need more information or if some
one else has reported the same defect. When the status of a report
changes to Solved the defect reporter should verify it. Now the status

1.A fixed date beyond which no new functionality should be added.

14 3 Test Process at Telelogic
of the report will change to Verified or Not Verified. Developers should
also report new found defects during solving other defects.

• Release or Acceptance test At Telelogic the acceptance test is called
release test. The verification of the solved defects continues in this
stage. The verified defects are tested again and if they are corrected
they will be closed. The test team also performs regression testing dur-
ing system and acceptance test. Regression testing is performed by
running free tests either by following some parts of the test specifica-
tion or by testing generally the important parts of the tool. During the
acceptance test the developers are not allowed to solve any defects
without the project manager’s permission. In this way the risk of add-
ing new defects is reduced. At the end of this stage, all defects with the
severity catastrophic or critical should be solved. The acceptance group
decides if the product is ready for release or not. This decision is based
on remaining defects in the database. After burning the product on the
CD, the test team performs an installation test to make sure that prod-
uct performs as it is required. After installation testing, the test team
updates the test specification again.

3.3 Conclusions

Even when a system is developed with an egoless approach, developers sometimes
have difficulty removing their personal feelings from the testing process.Thus, an
independent test team is often used to test a system [Pfleeger, 98]. At Telelogic,
this demand is mostly fulfilled by the Test Team, which mainly consists of project-
hired students, who are inexperienced. The benefit with this approach is the fact
that an inexperienced tester is more disposed and objective to question functional-
ity, program behaviour and find more defects. Found defects are stored in the
defect database, which provides a defect tracking system. These defects can be
used to make conclusions about testing and program quality.

As stated in [Rosenquist & Bruck, 98], testing GUI-applications or regression tests
during a long period makes the tester unattentive. Therefore it is a good idea to
automate those test cases. On the other hand, automation of the testing process is
not only desirable, but in fact is a necessity given the demands of the current mar-
ket.

4 Automated testing

This chapter is a review of Computer-Aided Software Testing (CAST) Tools and
describes automated testing of GUI-based software by using GUI according to
[Rosenquist & Bruck, 98].

Chapter 5 is focused on automated testing of the software without using GUI.

4.1 Introduction

“Automated testing” means automating the running of tests currently in use by
using a suitable test tool. The most efficient use and purpose of automated test
tools is to automate regression testing. This means that you must have or develop a
database of detailed test cases which are repeatable, and this suite of tests is run
every time there is a change to the application to ensure that the change does not
produce unintended consequences.

Automating test affects only how economic and evolvable they are. Once imple-
mented, an automated test is generally much more economic. In addition, the ben-
efits, among others, concerning automated testing are: regression tests are run often
and quickly, better use of resources, testing attributes, e.g. Graphical User Interface

(GUI), which are not always easy to verify manually1 [Fewster & Graham, 99].

Despite these benefits, test automation has its limitations. Automated testing does
not replace the need for manual testing because there will always be some testing
that is much easier to do manually or is very expensive to automate. Test automa-
tion does not improve effectiveness and may limit software development. And test
tools has no imagination, i.e. a tool is only a software. A test tool can only obedi-
ently follow instructions but a human tester can also use his or her creativity and

1.A GUI object may trigger some event that does not produce any immediate output. A test ex-
ecution tool may be able to check that the event has been triggered, which would not be possible
to check without using a tool.

16 4 Automated testing
imagination to improve the tests as they are performed, either by deviating from
the plan or preferably by noting additional things to test afterwards.

As noted above, manual testing of a Graphical User Interface (GUI) is difficult and
time-consuming, but its wide range of possibilities for user interaction and the
number of control elements (buttons, pull-down menus, tool bars, etc.) made it
popular and useful among today’s software systems. Therefore GUI is target for
automation and several tools for computer-based testing of GUI are already com-
mercially available.

4.2 Computer-Aided Software Testing (CAST)
Tools

4.2.1 Introduction

A tool is an instrument or automated system for accomplishing something in a bet-
ter way. This “better way” can mean that the tool makes us more accurate, more
efficient, or more productive or that it can enhances the quality of the resulting
product [Pfleeger, 98]. Within the automated testing area there are several kinds of
Computer-Aided Software Testing (CAST) tools, which depending on the activi-
ties the tool is associated, can be divided into different classes. These classes
according to [Kit, 95] are:

Tools for reviews and inspections

These tools assist in performing reviews, walk-throughs and inspections of require-
ments, functional design and code. The types of tools required for support of
reviews and inspections are [Kit, 95]:

• Complexity analysis tools These tools help to identify high risk, com-
plex areas. The cyclomatic complexity metric is based on the number
of decisions in a program, which is important to testers, because it pro-
vides an indication of the amount of testing necessary to practically
avoid defects.

• Code comprehension tools This kind of tool help us to understand
unfamiliar code. It can be used to identify areas that should receive
special attention, such as areas to inspect.

• Syntax and semantic analysis tools These tools perform extensive
error checking to find errors that a compiler would miss. These tools
are language dependent and can analyse code, maintain a list of errors,
and provide build information.

Tools for test planning

4.2 Computer-Aided Software Testing (CAST) Tools 17
A test plan provides the foundation for the entire testing process and it defines
resources and schedule of testing activities. The types of tools required for test
planning are:

• Templates for test plan documentation

• Test schedule and staffing estimates

• Complexity analyzer

Tools that identify complex areas can also be used to locate areas that should
impact planning for additional tests based on basic risk management. The biggest
help usually comes from IEEE/ANSI Standard for Software Test Documentation,
which describes the purpose, outline, and content of the test plan. Even if test-plan-
ning tools don’t eliminate the need to think there are still many companies, which
have found it useful to simply have someone enter the outline for the test plan.

Tools for test design and development

After test planning we will enter into a new process which is called test design
process. In this process all test approaches in the test plan will be more detailed.
The test design process identifies and prioritizes the associated test cases. Test
development is the process of translating the test design into specific test cases. It
should be mentioned that even in this stage there is not a lot of help from the test
tools, specially, mental process of the test design. The types of tools required for
test design and development are:

• Test data generator tools This kind of tools automates the generation
of test data based on a user-defined format. These tools are useful when
large quantities of test input data are needed.

• Requirements-based test design tools These tools are for those who
desire disciplined approach, is used to design test cases to make sure
that the implemented system meets the formally specified requirements
document.

Two other tools in this area are Capture/playback and Coverage analysis tools. A
detailed description about these tools is given in section for test execution and eval-
uation tools.

Test execution and evaluation tools

Test execution and evaluation is the process of executing test cases and evaluating
the result. These tools can be used to automate the running of selected test cases for
execution and measuring the effectiveness of the effort. Automated test execution
tools are essential for handling the very large number of test cases that must be run
to test a system thoroughly. The types of tools required for test execution and eval-
uation are:

18 4 Automated testing
• Capture/playback These tools capture test input, data and actions
including keystrokes and mouse activities and are able to perform an
automatic replay, so that the tests can easily be repeated at a later time.
This frees the tester from having to manually re-run tests over and over
again. Discrepancies are reported to the team, and the captured data
help the team trace the discrepancy back to its root cause. The problem
in using capture/playback tool is that certain stability is required to
automate these tests. A keyword in a well-automated test is good main-
tainability. It should be possible to adjust an automated test with rela-
tively little effort for a changed application and recorded test cases are
in general not easily maintained. The other problem with this tool is
that it is very expensive and time-consuming to use.

• Coverage analysis tools These tools measure which parts of a product
under test have in fact been executed and which parts have not been
covered and therefore need more tests. The measurement can be car-
ried out at a module level or at a subsystem level. For keeping track of
the coverage information, these kinds of code run the source code into
a preprocessor. The fact that the new source is bigger than the old one
leads to growing size of our object module. However, even structural
test coverage of 100% does not guarantee that testing was complete.

• Memory testing tools This tool’s ability is to detect memory prob-
lems. Errors can be identified before they become evident in produc-
tion and can cause serious problems. Memory testing tools tend to be
language and platform specific. The tools in this category are usually
easy to use and reasonably priced.

• Simulators tools Simulator tools simulate the operation of the envi-
ronment of the system to be tested. It is used to test software which is
too expensive, dangerous, or even impossible to test in the real environ-
ment, for example testing the control software of an airplane or a
nuclear reactor. These are the only practical method for testing when
software interfaces with uncontrollable or unavailable hardware
devices.

• Performance tools Performance tools determine the performance
capabilities of the system. These tools make it possible to create, con-
trol, and analyze the performance testing of client/server applications.

4.2.2 The tool selection

For making automated testing cost-effective or improving the quality of the soft-
ware product, special attention should be paid to the choice of test tools that best fit

4.3 Automated testing of GUI-based software by using the GUI 19
the testing requirements, because of the fact that the test case execution in auto-
mated testing may involve starting the test tool. Following selection criteria, which
are derived from discussing the experiences of [Fewster & Graham, 99], [Pfleeger,
98] and [Rosenquist & Bruck, 98] should be taken into account when choosing a
test tool.

• Compatibility Choose a test tool that will enable you to automate test-
ing in your organisation, e.g. the tool must support the platforms avail-
able in the organisation. There are also a number of requirements,
which must be identified first, so that there is something to evaluate the
candidate tools against. The test tool must have all the critical features
needed especially for test result validation and for managing the test
data and scripts. It should also support facilities to set up test cases as
e.g. creating directories or removing files.

• Maintainability An important aspect to investigate is how easy it will
be to maintain the test case in proportion to software changes. Mainte-
nance effort can be reduced not only by means of a well-defined proc-
ess but also by the test tool functionality, e.g. some tools may be less
susceptible to your frequent types of software change than others,
which will make the basic script editing easier.

• Learnability - Usability It should not take a long time to master the
tool. This criterion can be more or less important depending on the way
in which the tool is used in the organisation. For example, if a certain
group in the organisation will continuously use the testing tool, it will
not be an important disadvantage if it takes some time for the tool to be
mastered. The tool should be easy to use or its features should not be
cumbersome and difficult. Documentation, scripting language and the
interface of the testing tool are the factors that can affect this criterion.

• Reliability - Continuity Make sure that the tool works without failure
because it can sometimes happen that the tool is not well-tested by the
vendors. The tool should not interrupt the test execution for every
detected minor discrepancy.

4.3 Automated testing of GUI-based software by
using the GUI

Creating test cases for automated testing, in this case with GUI, requires a test tool
and a test object, which in this case is Telelogic Tau. The way of selecting these
tools, creating test cases and collecting metrics as an outcome from the automated
testing are summarised below.

In this section we will concentrate on [Rosenquist & Bruck, 98], which is the only
reference available concerning automated testing of software with GUI at Telel-
ogic.

20 4 Automated testing
4.3.1 Test Tool Selection

The MSC editor (version 3.4) was chosen as the test object. The best test execution
tools for GUI’s seemed to be capture/playback tools since the goal of the investiga-
tion was to focus on GUI test problems. In order to choose a good capture/play-
back tool, three kinds of these tools have been compared with each other. These
tools are TestWorks from Software Research Inc., Vermont Creative Software’s
HighTest and Mercury Interactive, Inc.’s WinRunner/XRunner.

Before choosing one of these tools, some tests have been created on Microsoft
Notepad. While creating the tests and executing them with the aid of the test tools,
some considerations had been taken into account, namely: the platform support,
test case preparation, maintainability, error recovery, test management, debugging,
learning curve and reliability/usability. The results of evaluation of the test tools
are summarized below.

The functionality provided by TestWorks was very limited and Mouse-movement
could not be ignored. One of the other problems with this tool was that it was not
well documented.

HighTest was well documented and the functionality was much better than the
TestWorks, but the major problem with HighTest was that error reports were not
easy to analyse and it could not support the UNIX platform.

The best alternative was WinRunner/XRunner, which provided an extensive func-
tionality and was well documented. WinRunner/XRunner’s error reports made it
easier to analyse and locate errors; and it also supported all required platforms.
This tool was the most suitable choice for Telelogic but it was also the most expen-
sive one among these tools.

4.3.2 Creation of automated test cases

While trying to create the test cases for version 3.4 of the MSC editor in Telelogic
Tau by means of WinRunner, some problems were raised. The first problem was
encountered when creating the test cases that would check that menu items are
selectable or hazed according to the current state of the editor. These test cases did
not work as intended and the reason for this was not provided by [Rosenquist &
Bruck, 98].

Another problem that occurred when creating tests for the menu item. For doing
update of a single table easier, instead of editing a number of test cases when the
keybindings were changed, the capacity of WinRunner was intended to be used to
store information (in this case the keybinding and short-cuts of menu items) in a
table. That was impossible using library functions for entering key stroke provided
by WinRunner and therefore keybinding tests were added to the test cases for the
menu items created subsequently without using a table.

By the time more and more test script code were entered by hand instead of captur-
ing most actions. This has the advantage of test cases becoming more flexible and

4.3 Automated testing of GUI-based software by using the GUI 21
that it is possible to create test cases not only for program behaviour that works at
the time, but also for scenarios that do not work on the current version of the appli-
cation.

Furthermore test cases were not created for the pop-up menus in the editor. It
would probably take some time to create the function needed to access pop-up
menu items because there was no support for this in WinRunner at the time.

4.3.3 Metrics

Metrics collected, while managing the case study, were time to create, run and
update test cases; and also the number of found defects. The corresponding metrics
for manual testing had already been collected before the case study was initiated.

• Time

The estimated time is shown in Table 4.1.

It should be noted that creating automated test cases for version
3.4 was based on the existing test specification for manual
testing. But on the other hand testers were not used to work with
a test tool, therefore it took extra time to create the automated
test cases.

It is more difficult to evaluate the outcome of automated test
cases than the manual one. The running time for automated test
cases concerns almost test tool run time whereas automated tests
require only a few minutes in order to be started. The time to
update manual test cases for version 3.5 was estimated since the
test specification was completely restructured. The updating time
for automated test cases could possibly be less than 9 hours if the
test cases were designed differently.

Table 4.1 shows that the maintenance effort is much lower than
the cost of creating new test cases. Because of MSC editor’s
instability, the running time had increased for automated test

Table 4.1: Time spent on various tasks

automated tests
(man-hours)

manual tests
(man-hours)

creating tests for v 3.4 100 -

running tests on v 3.4 1 6

updating test for v 3.5 9 ca 8

running tests on v 3.5 4 4

22 4 Automated testing
cases and decreased for manual test cases, since automated test
cases had to be started one by one, instead of being executed in
one sequence.

Another problem was that it took longer time to run automated
test cases if defects were detected, but in manual testing it was
easier to skip actions that could not be performed.

• Number of found defects

One of the most interesting issues when automating tests is a
comparison of the found defects between automated and manual
tests. During manual testing of version 3.4 of the MSC editor, 30
defects were found but only 7 of those defects was expected to be
detected by automated test cases. The rest of the defects had to
do with the integration with other tools or defects, which were
not covered by automated test cases. Of those expected 7 defects
only 3 defects were detected, but 6 other defects, which were not
expected, had also been found by automated test cases. The
number of found defects can be summarized in the Table 4.2.

The reason of why those 7 defects were not detected might be
that the test cases were not carefully created or they were not as
thorough as they could be.

Those defects which were detected by automated and not by
manual test cases were mostly minor defects, such as
inconsistent titles of message boxes or the title bar of the editor
window sometimes not being updated properly, but it should be
mentioned that this kinds of defects are almost impossible to
detect by manual test cases.

4.3.4 Conclusions

Below, the fact that introducing test automation make it possible to improve the
current testing process is described with respect to the outcome from [Rosenquist
& Bruck, 98].

Table 4.2: Number of found defects

total number of defects found during testing v 3.4 30

number of defects found during testing v 3.4 that might
be found by the automated test cases

7

number of known defects found by automated test cases 3

number of new defects found by automated test cases 6

4.3 Automated testing of GUI-based software by using the GUI 23
• Automated tests are executed (six times) faster than manual tests can
be performed, so that more time can be spent on the remaining manual
tests.

• It was not proved that the cost-advantages with automated testing can
be shown already after second regression test since the introduction of
test automation was based on test cases for manual testing. But from
Telelogic’s point of view, the automation effort will repay itself at least
by the end of the second project if regression tests are performed on
each new build during the test phase.

• Calculations based on the time to create and run tests versus the
number of found defects will lead to the conclusion that manual tests
find defects with less effort than automated tests. But according to
[Rosenquist & Bruck, 98], the time to update and run test cases versus
the number of defects would be a better measure, since the time to cre-
ate test cases becomes less significant with every test run and update;
and in consequence, the relationship between the number of defects
and automated or manual testing is the opposite.

24 4 Automated testing

5 Automated testing of GUI-
based software without
using the GUI

5.1 Introduction

As it was described in chapter 4, an investigation concerning automating testing of
GUI-based software with using the GUI has been done. The main problem with
this kind of test approach is the large amount of maintenance effort every time the
software is changed. Another problem is that the size of drawing area changes
every time the product is started. It makes the testing of drawing area difficult.

To avoid the above mentioned problems, this chapter is intended to investigate the
possibility of automated testing of GUI-based software without using the GUI, i.e.
by means of program codes. It is also desirable to determine: requirements that the
test object must fulfil and to find out possible techniques to perform the test auto-
mation.

5.2 Telelogic Library Overview

To perform this task, a detailed knowledge about the relations between different
editors and the structure of the library with included Directories was needed.

The Telelogic Library Overview is distributed over several directories and subli-
braries. This structure has evolved over a number of years. The library is an inte-
gral part of Telelogic Tau and can be divided in four different layers. The
frameworks represent both an infrastructure and a common code base that allows
maintaining and developing certain aspects of the software in very controlled
ways. Table 5.1 shows the structure of the Telelogic library.

26 5 Automated testing of GUI-based software without using the GUI
- The first library, which is called Bases library is partly a repository
for all C code, without regard to logical position within the frame-
work. This library is also the foundation C++ library, which is
intended to contain foundation classes, non-graphical OS independ-
ent abstraction layer, and general framework classes that only con-
tains mechanism, instead of containing adoptions to the needs of
particular tools in Telelogic Tau. This library needs to be stable and
well documented.

- The second library, called Application library, contains module,
functions and classes that implement application-level functionality.
The reason of putting code in this library is that more than one
application needs to access it. This library is also intended to pro-
vide an OS-independent abstraction layer to graphical program-
ming.

- The third library, Framework library, provides support for writing
editor applications, i.e. the framework supplies methods implement-
ing the standard menu options the user expects to find in the menu
bar in an editor. It makes these menus very easy to implement, since
it provides callbacks for all the common menu items. This library is
common for all editors except the SDL editor.

- The fourth library, which is called Editor library, contains the spe-
cific codes for the desired editor. All codes that are not common for
other editors will be placed in this library, for example the content
of an editor like menus or symbols. This library is of great impor-
tance for this master thesis because it is target for the test implemen-
tation.

In order to understand how these libraries interact with each other an example is
given. This example also shows the course of event when doing a menu choice.

By choosing a menu, a function in the Application sublibrary is activated. This
function invokes WinMenuChoice function in the Framework sublibrary. Win-
MenuChoice finds out the page related to the editor in which the menu was
selected and invokes the function MenuChoice(window*, menuItem) in the editor

Table 5.1: Telelogic Library Overview

Library May Use

Bases ---

Application Bases

Framework Bases and Application

Editor Bases, Application and Framework

5.3 Choice of the test object 27
sublibrary. This example will be described in more details in the Case Study later
in this chapter.

5.3 Choice of the test object

For selecting an appropriate test object from Telelogic Tau, it was preferred that the
test object should have a simple structure with few menus, which should make it
easier to get started and trace the possible obstacles.

Among editors in Telelogic Tau, two probable candidates for this purpose were
Message Sequence Chart Editor (MSCE) and High-level Message Sequence Chart
Editor (HMSCE). The HMSCE was more suitable because its program code was
more familiar to us.

After choosing the HMSCE as test object, the next step is to give a short descrip-
tion and investigate the functionality of Menus, Dialogs and Drawing areas in
HMSCE.

5.3.1 Menus

There are three kinds of menus, which are described below.

• Pulldown menus These menus are activated from a menu bar in an
application window and allow the user to choose some actions to be
performed. In most cases the application itself creates the desired
number of menus in the menu bar. As a menu is created, the applica-
tion supplies it with a unique integer number, which can be used to
identify the menu in other calls and callback.

• Popup menus Popup menus are very similar to the pulldown menus.
The menus can be defined for a drawing area and will appear when the
right mouse button is pressed. The user has the possibility to choose a
desired submenu among other submenus in a popup menu.

• Option Menus These kinds of menus are used to let the user select
among a finite set of values, as an alternative to using a radio group or
a text area. The user can select a new value in the menu, which will
replace the previous value when the menu is unposted.

If no history has been set for an option menu, the first item in the menu
is the default current item.

5.3.2 Dialogs

A dialog box provides an exchange of information or dialog between the user and
the application. In general there are two kinds of dialogs, i.e. Modal and Modeless

28 5 Automated testing of GUI-based software without using the GUI
dialogs. A Modal dialog locks the underlying window until the user first handles
the dialog, whereas a Modeless dialog does not lock the underlying window.

From a testing point of view dialogs can be categorized as setting/option and mes-
sage dialogs. These dialogs may be either Modal or Modeless.

• Setting/option dialogs These dialogs can be divided in two different
groups. In the first group, it is possible to choose the desired number of
toggle, radio or ordinary (OK, Cancel, etc.) buttons. Figure 5.1 shows
Window Option dialog of this group.

Figure 5.1 Window Options dialog.

The other group of setting/option dialog is almost as the same as the
first kind. But the difference is that in this group the buttons are fixed,
i.e. it is not possible to change the number of existing buttons. Figure
5.2 shows Print Setup dialog, which belongs to this group of setting/
option dialogs.

Figure 5.2 Print Setup dialog.

• Message dialogs These dialogs can actually be classified as two differ-
ent types of dialogs, but from a testing point of view they can be con-
sidered as one type of dialog. Message dialogs are fixed in advance and
often pops up to inform the user that something has been changed or
wrongly done. Message dialogs have usually only one button and the
user does not have any choice than confirming the content of the mes-
sage. Figure 5.3 shows Help About of this kind of dialogs.

5.3 Choice of the test object 29
Figure 5.3 HelpAbout.

There are also message dialogs with several buttons, but they are still
fixed dialogs, which informs something is changed and the user has the
possibility to accept or regret the changes. Warning dialog, in Figure
5.4, pops up when the user chooses to revert a diagram.

Figure 5.4 Revert Diagram dialog.

5.3.3 Drawing area

When handling an object in a drawing area, it is important to investigate the effect
of invoking a function on the object. A well designed test case, aimed for auto-
mated testing of drawing area in an editor, should enable the tester to capture all
these invoke-actions, which would be used as input for running automated testing.

Meeting this demand requires that the test case should mainly cover some signifi-
cant operations. These operations may, among others, be: add, move, remove, cre-
ate and copy an object. Figure 5.5 shows the drawing area of a HMSE.

30 5 Automated testing of GUI-based software without using the GUI
Figure 5.5 Drawing area of HMSCE.

5.4 Case Study

5.4.1 Introduction

The objectives of this master thesis are to investigate how test automation of GUI-
based software can improve the test process, what kind of obstacles exists in the
current product that makes the automation difficult and how these obstacles can be
removed in future products.

In order to understand how test automation works and how the possible obstacles
can be detected, a test case has been implemented. The preparation, execution and
the result of test implementation will be discussed in this section.

5.4 Case Study 31
5.4.2 Planning

Before getting a good start in software testing, a detailed knowledge about the soft-
ware in question and its functionality is of great importance. So the first step was to
investigate the structure of the Telelogic library, as shown in Table 5.1, and the
interfaces between the sublibraries.

The idea behind this investigation was to find an interface, where it shuold be pos-
sible to capture all the signals, with which the Graphical User Interface (GUI) and
program logic communicate with each other, as shown in Figure 5.6.

Figure 5.6 The desired relation between GUI and Program Logic.

These signals should, on later occasions, be used when testing Menus, Dialogs and
Drawing areas.

During further studies of Telelogic library, it was found that the GUI and the pro-
gram code were two overlapping units, see Figure 5.7, so that the desired interface
did not exist.

Figure 5.7 The real structure between GUI and Program Logic at Tele-
logic.

The lack of the interface mentioned above made it impossible to manipulate and
steer all components by the means of just one interface. So, that was obvious that
the Menus, Dialogs and Drawing areas had to be tested separately.

32 5 Automated testing of GUI-based software without using the GUI
5.4.3 Execution

For capturing signals there are many different tools, among which capture/play-
back are considered to be the most suitable tools in this connection. These tools are
mostly intended to test GUI-based software by using the GUI while the task was to
perform the testing without using the GUI and therefore these tools could not con-
tribute to the performance of the task. Another approach was writing and putting

macros1 into a relevant part of the program code.

As it is seen from Table 5.1, the Telelogic library can be divided into four subli-
braries. The goal was to write and put macros into the Application sublibrary con-
taining program codes, which are common for all types of editors. The advantage
was that it would be possible to test and steer an arbitrary editor from just one
interface, but it was found that this approach was time-consuming because not only
the program codes would be written on both Unix and Windows operating systems
but also for a simple invoke-action you have to change many other programs in this
sublibrary.

To avoid this complexity, the Framework sublibrary seemed to be a better alterna-
tive than the Application library. In this sublibrary there is a function called Win-
MenuChoice, with which you can invoke another function in an desired editor in
the Editor sublibrary. Invoking editors from this sublibrary requires, apart from
writing macros, lots of changes in the existing program codes.

To reduce the work and time needed, it was decided to choose the Editor sublibrary
as a test platform, where the macros would be implemented to steer and manipulate
an desired editor.

This sublibrary contains all kinds of editors, among others HMSC editor. By the
reason of simplicity, menus were chosen as the test object. In this editor there is a
function called MenuChoice(window*, menuItem), which performs the choice of
menu. With the aid of macros the HMSCPage class including MenuChoice(win-
dow*, menuItem) function, was redefined as Original HMSCPage class. Further-
more, to be able adding a macro to the MenuChoice(window*, menuItem)
function, a new HMSCPage class, which inherited all functions from the previous
class, was created. Figure 5.8 illustrates the relation between the classes.

1.A single instruction in programming language that results in a series of instructions in machine

language.

5.4 Case Study 33
Figure 5.8 General structure of creating a new class for capturing call-
backs.

During the test implementation, more than one window could be opened simulta-
neously. Hence it is important that the both menu and the activated window, in
which the menu was selected, are pointed out in the form of two unique integer
numbers.

By invoking the MenuChoice(window*, menuItem) function, the identity of the
menu was provided by menuItem parameter.

The window parameter, a pointer, could just return an address related to the current
window and this address was changed every time the program was started. But
from automated testing point of view, the identity of the activated window was
important. For solving this problem, some modifications were done in a list in the
Framework library so that the list was able to find out the identity of number.

The two unique integer numbers were captured and printed by the fprintf() func-
tion. The appearance of the saved data, which were intended to be input to a replay
function, is shown in Figure 5.9.

Figure 5.9 The captured data of menu choices.

34 5 Automated testing of GUI-based software without using the GUI
To replay the captured data, a program was written in the Editor library. With the
aid of the function fscanf() the input file was read. At the same time, the identity of
the window was identified by a pointer, which was created for this purpose.

In order to start the replaying function an extra menu choice, Playback menu, was
added to a menu list. By choosing the Playback menu, the saved data above was
replayed and stored in another file, which was compared with the input to check
the correctness of the result.

5.4.4 Results

The comparison between the input and output files of the capture/playback func-
tions clearly showed that automated testing of menu choice was possible but it is
far from being recommended as a testing technique for the current product.
Although the idea of this master thesis was to investigate testing of menus, dialogs
and drawing areas but for the lack of time and obstacles, concerning the structure
of the current, it was not easy to make a test implementation for dialogs and the
drawing area. The obstacles mentioned above and the disadvantage of this kind of
testing are discussed in the chapter 6 Conclusions.

6 Conclusions

6.1 Testing Implementation on design

In this chapter some motivation regarding decisions made in this master thesis and
the conclusion that has been drawn are presented.

As it was mentioned in chapter 5, only menu choices were tested and test imple-
mentation for dialogs and drawing areas was not done. The callbacks from menu
choices were captured and replayed by macros. Using the same method for dialogs
and drawing areas is also possible but with regard to the structure of the existing
product, it is too difficult and time consuming.

From a testing point of view there are three types of dialogs, i.e. two setting/
options and one message dialog. Because of the absence of a common interface for
the dialogs, the dialog classes belonging to these three kinds of dialogs would be
tested separately. This means that the callbacks can not be captured by a simple
macro and there will be lots of changes, which in turn will affect several files.

When it comes to drawing areas, in addition to the testing problems of dialogs,
there are other issues, which should also be taken into account; that is the size of
the drawing windows and the usability of captured callbacks.

The major problem is that the size of the page is usually changed every time the
product is started or when opening a window while other windows are opened. It
can result in a difference between the symbol’s previous, in the form of captured
callbacks, and current position so that the captured callbacks can not be used as
inputs to a playback function for running the test automatically. It is also interest-
ing to find out the way in which the moved symbol can affect the drawing area by
scrolling the page.

The usability of callbacks means if the captured callbacks, when invoking a func-
tion, can directly be used by a replay function for automated testing or must be pre-
pared in advance for this purpose.

36 6 Conclusions
A common problem is platform dependency of some actions, e.g. for some kinds
of dialogs, the test must be implemented on both Unix and Windows platforms.

Another problem is the maintainability of the old test data. If a menu is added or
removed in the next product the old captured data is useless, because the new menu
items are not as the same as the items in the previous product. This maintenance
problem can be solved by keeping track of the all menu items, which is not a good
idea when lots of menu items are involved. This problem can also be solved by per-
forming the test manually at the first time.

It is obvious that these kinds of test implementation demand lots of time and
should be implemented by experienced programmer and performed by experienced
testers with a good knowledge of the system and library overview.

It is also very difficult or maybe impossible to test the GUI without using the GUI
in the current product at Telelogic.

6.2 Suggestions and Future investigation

Testing of GUI:s can be done in several ways depending on the structure of the
GUI and the program logic. There are many software programmer, which are inter-
ested to automate the testing of the GUI-based product without using the GUI, but
there has not been any investigation in this area. This kind of testing can be diffi-
cult, especially when it involves a drawing area.

The idea to capture the callbacks is problematic, due to the non-existent common
interface in the current product. To be able to test the GUI-based software without
using the GUI, a first step could be to separate the GUI from the program logic as it
is shown in Figure 6.1.

Figure 6.1 The desired relation between GUI and Program Logic.

This separation should give the desired interface, i.e. the common interface. With
regard to the structure of the current product, it is a good idea to create this inter-
face in the application library. This approach can make the testing of menu and
some dialogs much easier.

6.2 Suggestions and Future investigation 37
The common interface makes it possible to capture all data that can be used as the
input for a replaying function. The replaying function can be script written code,
which activate the applications by using the captured data. Correctness of the result
can then be controlled through comparing the input to and the output from the
replay function, Figure 6.2 shows the desired system from a testing point of view.

Figure 6.2 A desired system from testing point of view.

Using the captured signals, through the suggested interface, as input to a replaying
function for testing of the drawing areas requires a lot of changes in the structure of
the current product.

Another idea may be to write more code in the program logic and make GUI:s size
smaller as it is, as shown in Figure 6.3.

Figure 6.3 An overview from a structure of a big Program Logic and
small GUI.

38 6 Conclusions
However, the approaches mentioned above are intended to minimize the amount of
the work with the GUI during automated testing of the GUI-based software. The
benefit is that it would be much easier to test the program logic than the GUI
[Beck,99].

References

[Fewster & Graham, 99] Mark Fewster & Dorothy Graham, “Software Test Auto-
mation”, Addison-Wesley, 1999.

[Koomen & Pol, 99] Tim Koomen & Martin Pol, “Test Process Improve-
ment”, Addison-Wesley, 1999.

[Pfleeger, 98] Shari Lawrence Pfleeger, “Software Engineering”,
Practice Hall, Inc., 1998.

[Binder, 99] Robert V. Binder, “Testing Object-Oriented System”,
Addison-Wesley, 1999.

[Sommerville, 95] Ian Sommerville, “Software Engineering”, Addison-
Wesley, fifth edition, 1995.

[Rosenquist & Bruck, 98] Patrik Rosenquist & Kristina Adelswärd Bruck, Master
Thesis: ”Automated Testing Of Software With GUI”,
1998.

[Kit, 95] Edward Kit, “Software Testing (in the real word)”, Add-
ison-Wesley, 1995.

[Regnell ed al, 98] Björn Regnell, Per Beremark, Ola Eklundh, “Require-
ments Engineering For Packaged Software”, 3(2): 121-
129, 1998.

[Whittaker, 00] James A. Whittaker, “What Is Software Testing? And
why Is It So Hard?”, 70-79, IEEE Software January/
February 2000.

[Kaner ed al, 99] Gem Kaner, Jack Falk, Hung Quoc Nguyen, “Testing
Computer Software”, John Wiley & Sons,inc , second
Edition, 1999.

40 References
[Beck, 99] Kent Beck, “extreme programming”, Addison-Wesley,
1999.

	Functional testing of GUI based software without using the GUI
	Master Thesis by
	Nima Davoudi-Kia
	Alijan Momeni
	Performed at Telelogic AB
	Supervisors
	Tomas Lundh
	Jan Docekal
	Department of Communication Systems at Lund Institute of Technology
	Supervisor
	Per Runeson
	March 2001
	Lund University, Sweden
	Abstract
	Today’s software systems usually feature Graphical User Interfaces (GUI). Tools, which help progr...
	Today’s GUI testing is mostly done manually, which is costly and time consuming. It would be desi...
	In this master thesis, an introduction of testing issues and the effects of automated testing on ...
	This master thesis focuses on how an application with a GUI can be tested and steered without inv...
	The attempt of testing the GUI without using the GUI, was partly succeeded. This kind of automate...
	At the end of this master thesis, a case study is given to show different kinds of obstacles, whi...
	Acknowledgements
	We would like to take this opportunity to thank our supervisors, Per Runeson at the department of...
	Thanks also to Tomas Lundh, the originator of this master thesis, and Patrik Rosenqvist for their...
	Last but not least, we would like to thank Niclas Bauer, Engin Zufer and all the other employees ...
	Malmö, March 2001
	Nima Davoudi-Kia and Alijan Momeni

	1 Introduction
	1.1 Purpose
	Manual testing of GUI(Graphical User Interface)-based software is labor-intensive and not well li...
	This master thesis is intended to investigate test process performance, automated testing and tes...
	Many companies have tried to automate the GUI, but testers usually revert to manual testing, beca...

	1.2 Method and Main result
	Several investigations, concerning automated testing of GUI-based software by using the GUI, have...
	The main idea behind this master thesis is to investigate the possibility of reducing the mainten...
	At the beginning, it was intended to find a common interface where it should be possible to captu...
	Another possibility to achieve this goal was to invoke a desired function by writing single instr...
	This approach was, to some extent, successfully performed but had also some disadvantages, which ...
	Chapter 2 focuses on software testing in general, verification, validation and software engineeri...
	In chapter 3, test and development process at Telelogic is described. Some improvement proposal a...
	Automated testing in general, computer-aided software testing tools and automated testing of GUI-...
	Chapter 5 gives a highlight to automated testing of GUI-based software without using the GUI. The...
	At last, in chapter 6, some conclusions concerning test implementation on design are drawn follow...

	2 Background
	2.1 What is software testing?
	Testing is a process of planning, preparation and measuring, aimed at assessing the characteristi...
	According to [Fewster & Graham, 99], the quality of a test case can be described by the following...
	A well designed test case requires that these attributes must be balanced one against another. Fo...

	2.2 Verification and Validation
	Verification and validation ensures that software confirms to its specification and fulfils the n...
	Verification and validation can be divided into two types of techniques for system checking and a...
	2.2.1 The testing process
	In developing a large system, the testing process involves several stages.These stages, described...
	Figure 2.1 Testing process
	All these phases should be performed as often as possible. The relation between the regression te...
	Regression test may also lead to edit existing test cases or create new test cases.

	2.2.2 Fundamental testing strategies
	Test specification techniques can be divided into two groups: white-box and black- box techniques.

	2.2.3 Cost of testing
	Software goes through a cycle of development stages. A product is imagined, created, evaluated, f...
	The relative costs of each stage, according to [Kaner ed al, 99], can be summarized, as follows:
	Table 2.1: Cost of each stages in percentage of total and Development costs
	Table 2.2: Operation and maintenance cost in Production phase

	The tables above shows that maintenance is the main cost component of software. Testing is the se...
	Testing, finding and fixing errors in programs can be done at any stages in the life cycle and ca...
	Figure 2.2 Cost of finding and fixing software errors according to [Kaner ed al, 99]
	Changing a requirements document before the code has been written will cost less than changing it...

	2.3 Software Engineering Environments
	A software engineering environment (SEE) is a set of hardware and software tools, which can act i...
	The SEE may be considered as a set of services, which are used by the facilities, which provide e...
	The platform on which an SEE runs is called its host system. In some cases, the software develope...
	According to [Whittaker, 00] testers must identify and simulate the interfaces, which a software ...
	Testers must understand the user interaction that falls outside the control of the software under...

	3 Test Process at Telelogic
	3.1 Introduction
	Telelogic, with more than 1300 employees, is a supplier of software development solutions for rea...
	Editors, related to the suites above, can be classified as graphical and text editors. The graphi...
	Testing is a vital part of all software and hardware development but it is often regarded as a ne...
	Testing at Telelogic, to a great degree focused on the functionality of the product, is performed...
	The test object, Telelogic Tau, is an integration of in-house developed COTS (Commercial Off-The-...

	3.2 The development process at Telelogic
	Telelogic delivers two releases of their product per year. The product with its components is evo...
	3.2.1 Requirement Engineering ProcEss At Telelogic (REPEAT)
	REPEAT is a specific industrial Requirement Engineering (RE) process which manages requirements t...
	REPEAT is divided into five overlapping phases:
	Table 3.1: Levels of priority

	When a new requirement has arrived, the management group(RQMG) first reads it to see if it is det...
	Table 3.2: Cost and impact levels

	3.2.2 Implementation Process
	When the specification phase is completed, the construction team has to put the idea and the requ...

	3.2.3 Telelogic Tau Testing
	The testing of Telelogic Tau is divided into three stages: unit, system and release test. How the...
	During system and release test all found defects are reported by anyone. All defectreports are st...
	Statistics about found defects are collected at the end of every week. The statistics are classif...

	3.3 Conclusions
	Even when a system is developed with an egoless approach, developers sometimes have difficulty re...
	As stated in [Rosenquist & Bruck, 98], testing GUI-applications or regression tests during a long...

	4 Automated testing
	This chapter is a review of Computer-Aided Software Testing (CAST) Tools and describes automated ...
	Chapter 5 is focused on automated testing of the software without using GUI.
	4.1 Introduction
	“Automated testing” means automating the running of tests currently in use by using a suitable te...
	Automating test affects only how economic and evolvable they are. Once implemented, an automated ...
	Despite these benefits, test automation has its limitations. Automated testing does not replace t...
	As noted above, manual testing of a Graphical User Interface (GUI) is difficult and time-consumin...

	4.2 Computer-Aided Software Testing (CAST) Tools
	4.2.1 Introduction
	A tool is an instrument or automated system for accomplishing something in a better way. This “be...
	Tools for reviews and inspections
	These tools assist in performing reviews, walk-throughs and inspections of requirements, function...
	Tools for test planning
	A test plan provides the foundation for the entire testing process and it defines resources and s...
	Tools that identify complex areas can also be used to locate areas that should impact planning fo...
	Tools for test design and development
	After test planning we will enter into a new process which is called test design process. In this...
	Two other tools in this area are Capture/playback and Coverage analysis tools. A detailed descrip...
	Test execution and evaluation tools
	Test execution and evaluation is the process of executing test cases and evaluating the result. T...

	4.2.2 The tool selection
	For making automated testing cost-effective or improving the quality of the software product, spe...

	4.3 Automated testing of GUI-based software by using the GUI
	Creating test cases for automated testing, in this case with GUI, requires a test tool and a test...
	In this section we will concentrate on [Rosenquist & Bruck, 98], which is the only reference avai...
	4.3.1 Test Tool Selection
	The MSC editor (version 3.4) was chosen as the test object. The best test execution tools for GUI...
	Before choosing one of these tools, some tests have been created on Microsoft Notepad. While crea...
	The functionality provided by TestWorks was very limited and Mouse-movement could not be ignored....
	HighTest was well documented and the functionality was much better than the TestWorks, but the ma...
	The best alternative was WinRunner/XRunner, which provided an extensive functionality and was wel...

	4.3.2 Creation of automated test cases
	While trying to create the test cases for version 3.4 of the MSC editor in Telelogic Tau by means...
	Another problem that occurred when creating tests for the menu item. For doing update of a single...
	By the time more and more test script code were entered by hand instead of capturing most actions...
	Furthermore test cases were not created for the pop-up menus in the editor. It would probably tak...

	4.3.3 Metrics
	Metrics collected, while managing the case study, were time to create, run and update test cases;...
	Table 4.1: Time spent on various tasks
	Table 4.2: Number of found defects

	4.3.4 Conclusions
	Below, the fact that introducing test automation make it possible to improve the current testing ...

	5 Automated testing of GUI- based software without using the GUI
	5.1 Introduction
	As it was described in chapter 4, an investigation concerning automating testing of GUI-based sof...
	To avoid the above mentioned problems, this chapter is intended to investigate the possibility of...

	5.2 Telelogic Library Overview
	To perform this task, a detailed knowledge about the relations between different editors and the ...
	The Telelogic Library Overview is distributed over several directories and sublibraries. This str...
	Table 5.1: Telelogic Library Overview

	In order to understand how these libraries interact with each other an example is given. This exa...
	By choosing a menu, a function in the Application sublibrary is activated. This function invokes ...

	5.3 Choice of the test object
	For selecting an appropriate test object from Telelogic Tau, it was preferred that the test objec...
	Among editors in Telelogic Tau, two probable candidates for this purpose were Message Sequence Ch...
	After choosing the HMSCE as test object, the next step is to give a short description and investi...
	5.3.1 Menus
	There are three kinds of menus, which are described below.

	5.3.2 Dialogs
	A dialog box provides an exchange of information or dialog between the user and the application. ...
	From a testing point of view dialogs can be categorized as setting/option and message dialogs. Th...

	5.3.3 Drawing area
	When handling an object in a drawing area, it is important to investigate the effect of invoking ...
	Meeting this demand requires that the test case should mainly cover some significant operations. ...

	5.4 Case Study
	5.4.1 Introduction
	The objectives of this master thesis are to investigate how test automation of GUI- based softwar...
	In order to understand how test automation works and how the possible obstacles can be detected, ...

	5.4.2 Planning
	Before getting a good start in software testing, a detailed knowledge about the software in quest...
	The idea behind this investigation was to find an interface, where it shuold be possible to captu...
	These signals should, on later occasions, be used when testing Menus, Dialogs and Drawing areas.
	During further studies of Telelogic library, it was found that the GUI and the program code were ...
	The lack of the interface mentioned above made it impossible to manipulate and steer all componen...

	5.4.3 Execution
	For capturing signals there are many different tools, among which capture/playback are considered...
	As it is seen from Table 5.1, the Telelogic library can be divided into four sublibraries. The go...
	To avoid this complexity, the Framework sublibrary seemed to be a better alternative than the App...
	To reduce the work and time needed, it was decided to choose the Editor sublibrary as a test plat...
	This sublibrary contains all kinds of editors, among others HMSC editor. By the reason of simplic...
	During the test implementation, more than one window could be opened simultaneously. Hence it is ...
	By invoking the MenuChoice(window*, menuItem) function, the identity of the menu was provided by ...
	The window parameter, a pointer, could just return an address related to the current window and t...
	The two unique integer numbers were captured and printed by the fprintf() function. The appearanc...
	To replay the captured data, a program was written in the Editor library. With the aid of the fun...
	In order to start the replaying function an extra menu choice, Playback menu, was added to a menu...

	5.4.4 Results
	The comparison between the input and output files of the capture/playback functions clearly showe...

	6 Conclusions
	6.1 Testing Implementation on design
	In this chapter some motivation regarding decisions made in this master thesis and the conclusion...
	As it was mentioned in chapter 5, only menu choices were tested and test implementation for dialo...
	From a testing point of view there are three types of dialogs, i.e. two setting/ options and one ...
	When it comes to drawing areas, in addition to the testing problems of dialogs, there are other i...
	The major problem is that the size of the page is usually changed every time the product is start...
	The usability of callbacks means if the captured callbacks, when invoking a function, can directl...
	A common problem is platform dependency of some actions, e.g. for some kinds of dialogs, the test...
	Another problem is the maintainability of the old test data. If a menu is added or removed in the...
	It is obvious that these kinds of test implementation demand lots of time and should be implement...
	It is also very difficult or maybe impossible to test the GUI without using the GUI in the curren...

	6.2 Suggestions and Future investigation
	Testing of GUI:s can be done in several ways depending on the structure of the GUI and the progra...
	The idea to capture the callbacks is problematic, due to the non-existent common interface in the...
	This separation should give the desired interface, i.e. the common interface. With regard to the ...
	The common interface makes it possible to capture all data that can be used as the input for a re...
	Using the captured signals, through the suggested interface, as input to a replaying function for...
	Another idea may be to write more code in the program logic and make GUI:s size smaller as it is,...
	However, the approaches mentioned above are intended to minimize the amount of the work with the ...

	References

