CODEN: LUTEDX(TETS-5375)/1-98/(1999) & local 35

Reverse engineering
PLEX-C code to SDL10 code

Martin Berg
Dep. of Communication Systems
Lund Institute of Technology

Tutors:
Magnus C. Ohlsson (Dep. of Communication Systems, LTH Lund)
Jorgen Palm (Ericsson Radio Systems AB, Hassleholm)
Henrik Cosmo (Ericsson Radio Systems AB, Hassleholm)

Page i Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Abstract

V/,
~

| ___4
_
v

Abstract

The telecom business is one of the fastest growing markets today. Many companies are
fighting over the market shares and to be at the top of it, the companies have to make their
product developments more efficient and with higher quality. Increasing one of these com-
ponents will probably decrease the other. This can be avoided by using the reverse engi-
neering technology. It can be applied on a system to increase the quality, shorten the
development time, or both. In this thesis we discuss different ways to increase quality and
shorten the development time, by applying reverse engineering. One solution can be a soft-
ware programming language change, and the new language may describe the system at a
higher level of abstraction. It is that solution we have focused on in our work. Parts in Eric-
sson’s GSM system is converted from their old programming language PLEX-C to the
graphical programming language SDL10. The purpose is to develop features in the SDL10
environment in the future, which will both increase the quality and shorten the develop-
ment time. Conversion between two programming languages is not an easy task. The dif-
ferences between the two languages address some problems. These problems and
solutions to them are discussed and presented in this thesis.

Reverse engineering PLEX-C code to SDL10 code Page iii
Martin Berg 1999

\\ /'

—

qll

Abstract

Page iv Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Table of Contents

Table of Contents

CHAPTER 1 INTRODUCTION

.. 1
OVEIVIEBW ..ttt e et e e e et e e e e e e eaa e raaaes 1
(O 1T 1LY o 2
Organizationouciiieiiieiiiie e 3
Reading guidelinescccoiiiiiiiiiiiiii e 3
CHAPTER 2 PROBLEM STATEMENT oottt 5
Backgroundcccooiiiiiiiiiiiiiieceeee e 5
Problems ... 5
CHAPTER 3 RELATED WORKouteiiiieeie e 7
Reverse engiNEeringuuuuueciiiiiiieeeeeeeeeeeeeeeeseeennnnae s 7
121 g To Lo £ 8
Related aCtiVILIESuoiiviiiiiieieeee e 9
RedoCUMENTAtION........ceeieiieeieeeeeee e e 10
DESIGN FECOVEIY....civieii e ee e et e et e e e e eanns 10
RESITUCTUNING ... eee et e 10
RE-ENGINEEIING .. cceuiiiieii e 11
TOO0IS et 11
(O] 1 41071 L= £ 11
Restructurers and beautifietS.........ooveveevieiiiiiiniieieeenns, 12
=10 1T =1 0] £ T 12
ParalliZerS.....c.oeiieei e 12
(O N = (o To | = 12
Reverse engineering PLEX-C code to SDL10 code Page v

Martin Berg 1999

Table of Contents

Balance between reverse and forward engineering 13
Practical use of reverse engineeringccccceeeeeeeeeeeeneene, 15
Year 2000 problem 15
Data reverse engineering [P8].........cccovvveiiiiiiiiniennnns 15
Data conversion [P7)......oo i, 16
PL/X = G [PB] ettt 16
SDL REVEISE [16]cuuciiniiiiiiieeeie e ee e 17
KOMPIEX [I8] crneiiiiiiie et 17
S 21O 1 N [19
CHAPTER 4 PLEX-C ..o, 21
HISTOTY . 21
V=T £7 (0] £ F TP 21
)1 (=] 1 o PPN 22
R r= 1L =1 o 22
CHAPTER 5 SDL oo, 25
DESCIIPLION ..o 25
[111 (0] Y/ 25
BENETILS .. 26
TelelogiC TaU ..oooiiieiiiiiee e 26
SDLEOOI vttt 28
The SDL languageccooviieiiiiiiiieeeeeeiii e 28
(O] 4] 00T =T o] £ 28
The layout Of SDL........oiiiiiiiiie e 31
SDLI0 oot 31
M S C e 32
CHAPTER 6 COMPARISONS- SDLVSPLEX-Cccooeiii 35
SIMIIANTES .ovviiiiiie e 35
DIffEBrENCES ..o 36
Conclusions for similarities and differences 38
CHAPTER 7 REVERSEPLEX-CCODE ... 39
BIOCK diVISION .oevviiiiiiieie e 40
Reverse tool UNSUPPOITuiieiiiiiiiiee et 41
Automatic generated Codeoovveiiiiiiiiiiiiiiiee e 41
TIME €SHIMALION ...cvvniiiiie e 42
Reverse tool IN our WOorkcccoouieeiiiiiiiiiiiieecceeeeeeeee 42
PrODIEMS. .. et 43

Page vi

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Table of Contents

CHAPTER 8 CONCLUSIONSooiiiiieciiccte ettt 47
DIffErENCES ..covviii e 48
FULUIE e 48
CHAPTER 9 ACKNOWLEDGEMENTS. ...ttt iitieectiee e evee et e 51
CHAPTER 10 REFERENCES........cii ittt 53
Public Resources [PX] ...cccoooeeeiiiiiiiieeeciee e 53
Internet SiteS [WX] ...cooveviiiiieeieeie e 54
Internal Ericsson documents [IX]cevvvevveiiiinniennniininnnn. 54
APPENDIX A GSM/BSC ..o, 57
HISTOIY oo 57
Techniques and restrictionscccccciviiiiiiieieneeieeeenn. 57
SETUCTUIE et eeees 58
B S e 59
Function explanationscccccceriiiiiiiiiiiiiiee 61
= To Lo TP 61
[FoT a0 (oY= P 62
Signalling connection Setup...........ccuuvrveeiirieiineeennnnnn. 62
ASSIGNMENT. ...t 63
Resource level SUPEervisSion............ovevveieieiiineieiii e, 63
Cipher mode control..........cccoeveiiiiiiiiiicce e 63
Classmark distribution............cccooeviiiiiiiiiiinics 63
Transfer of BSS transparent messages.........ccoeeeeun.en. 63
Short message service (SMS).......cccuiviiiiiiiiiiiiiieeennnnnn. 63
CoNNECtioN release.......ccuvuviiiiiii e 64
Traffic event measurement in radio network............... 64
APPENDIX B ABBREVIATIONS ...oooiiiiiittiiieee et 65
APPENDIX C CONVERSION PROCESS......c..ccoitieiitieeeiieeeiee e 69
Time eStMatiONScovviiiiii e e 70
ACHIVITIES .o 70
PreparationS.........oocui e 71
CoNVErt SIgNAIS......ccvuiiiiiiiee e 75
Reverse PLEX-C COOE.......cvviviiiiiiiiieeieeeie e 79
Add and COIMECE......cuiiiiiii e 82
(@1 o T o 85
Generate analyzed PLEX-C code.........cccceeevuveiiniennnnnns 86
2T T (o =T S 88
Process evaluation...........c.oeveuiiieinieiineiin e 90
Reverse engineering PLEX-C code to SDL10 code Page vii

Martin Berg 1999

Table of Contents

Page viii Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Introduction

(nlroduclion

77 Overview
The telocommmivation company Telefonakltiobolaget
I Eriosson has reached fzw with their AXE
exchange, (¢ is installed for tolophone services
ol wwer the worll and is sttt wnder a/we/p//wfrf,

Introduction

1.1 Overview

The telecommunication compariglefonaktiebolaget LM Ericssdms reached far with

their AXE exchange. It is installed for telephone services all over the world and is still
under development. When Ericsson decided to go into the wireless telecommunication
area, they built their platforms (NMT, GSM, etc.) based on the AXE system. Of course,
modifications were made, but the main concept of AXE was still there [I1].

It has gone many years since the AXE system was born, and they use the same program-
ming language. When a system is maintained, it gets larger and larger formatting. Mainte-
nance will be harder and the source code in the system can get confusing. Confused means
that the flow in code is hard to follow and it is difficult to understand the functionality. Dif-
ferent methods exist to solve the problem, but since the programming language that Erics-
son uses when developing services in their systems has its origin in the 1970’s, a
programming language change may increase quality. By increasing the quality we mean
lesser defects in both released and under development systems. Today “clean-ups” (rewrit-
ing code to remove the confusing part) has to be made after that about two or three projects
have modified existing code. This is expensive, both in time and money.

Ericsson has found a programming language that they want to investigate for further use in
new projects, SDL (Specification and Description Language). SDL has many benefits
compared to their old language that they use today, PLEX-C (Programming Language for
EXchanges, C-version). PLEX-C is a real-time programming language that Ericsson self
has developed. It looks a little like Pascal, but the differences are many. SDL is graphical,
with other words one “draws” the programs with help from a tool. The graphical interface
makes the source code more understandable and easier to overview. Other benefits are

Reverse engineering PLEX-C code to SDL10 code Page 1
Martin Berg 1999

Introduction

shorter development time and thereby lower development cost. The quality will be
increased due to a more structured and formal development model, i.e. no manual coding
and testing at higher level of abstraction earlier in the development process. Ericsson also
has some parts that are designed in the programming language C, and in SDL both PLEX-
C and C code can be represented at the same time (SDL is platform independent). More
benefits are described in section 5.3.

Changing programming language is not easily done. PLEX-C and SDL does not have the
same level of abstraction, i.e. SDL is a high-level programming language and PLEX-C is a
low-level language. This is not the only reason for the complexity, differences in variable
formats, signalling and not to forget the real time requirements. Time critical functions can

in PLEX-C be written in the assembler language that PLEX-C code is compiled to, ASA,
for optimizing the specific function. This must also be converted correctly. (Assembler is a
programming language that is hardware dependent, i.e. each assembler statement corre-
sponds to a single machine instruction.)

Converting from one abstraction level up to a higher is cattagrse engineeringrhe

reverse engineering area is large and increases fast. Much research effort is put here
because, among others, many systems were developed during the 1970’'s and the designers
did not think about the millennium change 25 years ahead. Reverse engineering can be
used to solve problems related to the year 2000 problem (see section 3.6.1). Other things
that reverse engineering is used for are clean-ups and maintaining systems. Ericsson uses
clean-ups on their systems today, but since they cost more and more (the systems grow)
and the fact that Ericsson uses an old programming language, make the profit for changing
language higher.

1.2 Our work

If Ericsson changes their programming language, they cannot manually convert all old
source code into SDL, it would take too long time and cost to much. Instead this has to be
done automatically with help fromraverse toal To see if the reverse tool is feasible, the
SDL code is compiled back to PLEX-C code and there tested with the same test rules that
is used for normal development in PLEX-C (see figure 1). Defects found here can have
their origin either from the reverse tool or from the compiler (SDL to PLEX-C). Since the
compiler is tested before, and there are test possibilities at SDL level, separation of the two
kinds of defects will not be difficult. Defects from the compiler are not of interest for our
work.

Even though that the reverse tool is working correctly, it is no guarantee that all parts in the
system can be converted. If this is the case, these parts have to be converted manually. The
parts that are impossible to convert automatically and why, are of interest for our work.

We have in our work focused on the consequences of the differences between the two lan-
guages (PLEX-C and SDL), i.e. what is difficult to convert and why. Since the differences
are not represented in one single block, two blocks with different purpose have been con-
verted.

Page 2

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Introduction

~~~~~~
~
ey
.
“

,
;
A {
. :
—|—High i |SDL 10 )
]
Our work
........ \ .
- "‘)’ \ \ “.Tomorrow
T i . 5 .,
8 '
s Today} N,
% » |PLEX-C PLEX-C
2 \\ \ \
s, \\: ‘\‘
., . ‘V H
“ ASA Y\ ASA | :
\
—— Low . y . . '

.,
.
..
~.
~ G
------

S
-,
.
~~~~~
........

Figure 1. Our work in the software development

1.3 Organization

In chapter 2the questions that our work discusses are st&lbdpter 3 briefly describes
reverse engineering and other related work. Projects similar to our work are described too.
In chapter 4 and5 the two programming languages PLEX-C and SDL10 are described. It
is between these two languages transformations are dhrepter 6 describes and dis-
cusses the similarities and differences between PLEX-C and SDL. It is the differences that
are of interest for our workChapter 7 describes the tool that we have used in our work,
and the major problems that we found when reverse engineericalpter 8 our conclu-

sions are stated, and future work is discus§#thpter 9 is acknowledgments arahapter

10is references.

Appendix A describes an overview of Ericsson’s implementation of the GSM system,
CMEZ20. Our work is tested deep down in this system and exactly where is also described
here. Inappendix B abbreviations found in this thesis are describAgpendix C
describes a process for how to make a conversion project.

1.4 Reading guidelines

Depending on your knowledge of the different subjects in our work, not all chapters are
necessary to read, or not of interest for you. The reader must be familiar with the substance
of chapter 6 to understand some parts in chapter 7 though, and the process script in appen-
dix C is written on the basis that the reader has knowledge about Ericsson’s development
process and terms belonging to it.

Reverse engineering PLEX-C code to SDL10 code Page 3
Martin Berg 1999

i

Introduction

1.4.1 Designer

The designer is the person who's interest is executing the process described in appendix C.
Interesting parts for him/her may be chapter 3 for some background knowledge of reverse
engineering and what different types of conversions that have been done before, chapter 4
and 5 if he/she has limited knowledge of the programming languages (PLEX-C and SDL),
and chapter 6 and 7 to understand the problems that may occur while executing process.

1.4.2 Test engineer

The tester is a person that test the interrelationships between blocks. To write good test
cases he/she could be interested in reading the following chapters. Chapter 3 for back-
ground knowledge about reverse engineering and what that involves, chapter 5 if the tester
does not have knowledge of the SDL environment (he/she is probably well familiar with
PLEX-C and does not need to read chapter 4), chapter 6 and 7 may be interesting because
of their description of the differences between the two languages and problems that may
occur when executing a conversion.

1.4.3 Reverse tool purchaser

If the reader only is interested in the reverse tool evaluation, chapter 2, 6 and 7 could be
useful reading. Lack of knowledge within the programming languages, chapter 4 and 5

may also be interesting reading. By reading these chapters, he/she will understand why we
executed our work and gain knowledge about executing a programming language change
process.

1.4.4 Quality manager

A quality manager may be interested in chapter 2 to understand why our work was exe-

cuted, chapter 3 to gain knowledge about reverse engineering, chapter 4 and 5 to under-
stand the two programming languages, chapter 6 and 7 to gain knowledge about the
problems that a conversion brings, and finally chapter 8 to achieve our conclusion about

reverse engineering source code.

Page 4 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Problem statement

Problem statement

2.1 Background

Today PLEX-C is used as programming language when developing and maintaining parts
in Ericsson's CME 20 system (Ericsson’s implementation of the GSM standard, see
Appendix A). The language is old and today there are several other languages that fulfil
Ericsson’s requirements. One of them is SDL. SDL has many benefits towards PLEX-C,
and they are described in section 5.3.

Changing programming language is not an easy task. There are many differences between
the two languages that must be considered. The conversion is not made for the whole sys-
tem at one time, instead parts called blocks are converted one at a time. Blocks can be
divided into different categories depending on their task. To convert a block, a conversion
tool, that handles most of the problems, will be used. But some questions still remain.

2.2 Problems

These questions are discussed and answered in this thesis:

1. Isit possible to apply reverse engineering on PLEX-C blocks?
The tool that we will use for the conversion, does it work properly, or has it defects? If
there are defects, how do they affect the conversion?

2. Ifitis possible, on what type of blocks can we apply reverse engineering?
Since the blocks can be divided into different categories depending on their task
(described in section 7.1), maybe all blocks not are convertible. If there is a difference
in convertibility, what are the reasons for this?

Reverse engineering PLEX-C code to SDL10 code Page 5
Martin Berg 1999

"™~

Problem statement

3. How long time will it take to convert a special block?
Is it difficult to convert a block, and how automized is it? Are there differences between

different kinds of blocks, or is the converting time just depending on the size of the
block?

4. How is the reverse engineering applied to blocks?
This question will be answered with a process script that explains step by step how to

do when converting blocks from PLEX-C to SDL.

Notice that the conversion is only done block by block and how they are connected to each
other is not a part of our work.

Reverse engineering PLEX-C code to SDL10 code

Page 6
Martin Berg 1999

Related Work

Related Work

3.1 Reverse engineering

When developing everything from small programs to large systems, the development proc-
ess can be divided into different phases. A process may consist of the phases requirements,
design, implementation and test (see figure 2). This is a natural order for development of
anything, because first one thinks of the products overhead functions, and later on more
and more on detailed specifications of how the functionality will be implemented. This is
calledforward engineeringi.e. go from a high level of abstraction to a lower level.

A

—} High

Requirements

Design

Implementation

Abstraction level

Test

—— Low

Figure 2. Forward and reverse engineering

The opposite to forward engineeringre/erse engineeringrhe purpose of reverse engi-
neering can simply be described as taking a product apart to learn how it works, or in other
words, study a system and make a specification of it at a higher level of abstraction. One

Reverse engineering PLEX-C code to SDL10 code Page 7
Martin Berg 1999

Related Work

(N

o

example is making a design-document from C code. Reverse engineering is a term that
refers to an analysis process which is done with help from methods and tools that investi-
gate the system, its components, and their interrelationsRipgram understandingr
program comprehensioare two other terms for reverse engineering that say more about
what it is.

The origin of the term reverse engineering comes from the hardware technology, where it
was used, among others, to duplicate other companies hardware products. Now this has
shifted to software since it has become a larger part of whole systems with both hardware
and software. In [P12] M. G. Rekoff defined reverse engineering (denoted to hardware
technology) as

“the process of developing a set of specifications for a complex hardware sys-
tem by an orderly examination of specimens of that system.”

Five years later Chikofsky and Cross wrote [P4]:

“Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their inter-relationships, and to create represen-
tations of the system in another form at higher levels of abstraction.”

The two definitions above say exactly the same thing, but about different domains. This
shows how close the domains are and similar methods can thereby be used when reverse
engineering in the software world as in the hardware. In the hardware world reverse engi-
neering is traditionally used to duplicate systems, while in the software world it is used to
raise the abstraction level. Our work is within the software domain.

There are many reasons to use reverse engineering, and some may be [P11]:
* Improve the quality of one’s own products.
* Analyze competitors’ products to achieve knowledge of some of their secrets.
* Discover hidden defects in a newly developed product.

* Gain basic understanding of a system and its structure.

3.2 Methods

Reverse engineering can be seen as a set of methods and tools. The methods describe how
reverse engineering should be done and the tools do it. Figure 3 shows an overview of the
reverse engineering process. Information is retrieved from the source code by parsing and
scanning it. The information is stored in a database in an organised way. Compiling the
source code may also provide valuable information. The information is hidden in the
object code and the cross reference tables (both from compiler), and is also stored in the
database. Together, all information in the database describes the source code, and a new
document can be produced. The document can present the information, or describe the
source code, as the user likes, for example the description can be textual, flow charts, dia-

Page 8

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(N

o

grams, etc. The important thing is that it describes the source code at a higher level of
abstraction, which makes it to a design document.

Related Work

In figure 3, the dashed lines corresponds to “information from” and not raw data, which
the normal lines represent.

Source Code

Y

Design
Document

Figure 3. Reverse Engineering - The process and abstraction differences

A method corresponds to how the source code is investigated (parser, scanner, compiler),
how the information achieved by the investigation shall be presented, the database struc-
ture (object oriented or not), and how the database should be investigated to produce
desired design documents [P11].

The simplest method is light examination of hardware. The engineer investigating the
product may not even know that he is reverse engineering. During the investigation he
builds models of the product and how it works. The models may be notes, diagrams, or just
mental images and plans. This method, as many of hardware corresponding methods, have
no tool support. Tools are simpler to develop and implement in the software domain, and
therefore the methods there are more sophisticated.

3.3 Related activities

Put reverse and forward engineering together, and add some purpose for applying them,
then four activities can be stated. Except for purposes, the differences are denoted to the
size of the reverse respectively forward engineering part. For example, the reverse part can
be so small that the designer can hold the information in his head, or as large as several
design documents. Since the differences between the activities are more on the purpose
plan rather than practical, it is hard to make sharp lines between them. Chikofsky and
Cross have described the activities in [P11].

Reverse engineering PLEX-C code to SDL10 code Page 9
Martin Berg 1999

Related Work

(N

o

3.3.1 Redocumentation

Redocumentation is the simplest and oldest form of reverse engineering, and can also be
described as a weak form of restructuring (see below). The difference, towards reverse
engineering, is that redocumentation does not change the abstraction level, instead it pro-
duces new representations of the system considering other point of views.

The intention with redocumentation is to improve the comprehension of a system and cre-
ate additional views that were not created in the original forward engineering process.
Redocumentation tools present facts about a system in another form, but without migrat-
ing between development phases. Examples of redocumentation togisetyeprinters
(displays a code listing in an improved forntiagram generatorgcreates charts from
code by reflecting control flow, code structure or data structure)ceoss reference gen-
erators(produces index over the variable use in the program).

3.3.2 Design recovery

When reverse engineering, only the system itself is input to the process, but by adding
existing design documentation, personal experience and knowledge about the problem and
application domains to the input, fully describing documents at higher level of abstraction
can be produced. This is called design recovery. The intense is to reproduce information
required for a person to fully understand what the system does, how it does it, why it does
it, etc.

3.3.3 Restructuring

Restructuring can be seen as a more advanced form of redocumentation or a special form
of reengineering. The latter when reengineering without adding new functionality. The dif-
ference compared to redocumentation is how the redocumented, or restructured system is
presented, and if the new version is presented in a different way according to its origin, the
activity is restructuring. The new version is usually at the same level of abstraction as the
origin, and the semantic behaviour and the functionality is the same, i.e. no new function-
ality or changes are provided when restructuring. If SDL and PLEX-C had been on the
same level of abstraction, our work would be about restructuring instead of reverse engi-
neering, but since SDL has a higher level of abstraction than PLEX-C, reverse engineering
is the right terminology for our work.

Restructuring is done to improve a systems structure and make it more understandable.
Often the term is used as a synonym for reproducing a program from an unstructured form
to a more structured form (code-to-code). This may be transformation from “spaghetti
code” (lots of goto statements) to more structured code with less goto statements. But the
term has a broader meaning, for example data normalization, which is a data-to-data
restructuring transformation and is done to improve the logical data model in the design
process.

Page 10

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(N

o

Restructuring can also be performed without knowledge of a systems structural form and
without understanding its meaning. An example of this is a conversion of a series of if
statements into a case statement, or vice versa.

Related Work

3.3.4 Re-engineering

Reengineering is restructuring with functionality changes implemented. Actually it is a
combination of forward and reversed engineering. First, reverse engineering is applied to
gain more knowledge of the system and make design documents. New functionality and
changes to the existing can then be applied. Finally, forward engineering is used and the
system is re-implemented with the new/changed functionality.

3.4 Tools

Reverse engineering methods are constantly developed to be applied on systems for differ-
ent reasons. To make it as easy as possible for the engineer, corresponding tools are devel-
oped as help and guidance, or to do parts of the reverse process. As with methods, tools
can handle one or several parts shown in figure 3, often several. Actually it is only one of
the parts that is developed as a single tool, the compiler. A reason can be that its origin is
not within the reverse engineering domain, but in the forward engineering.

As with the methods, many different tools for different purposes have been developed. The
compiler tool is the only tool that corresponds to a single symbol in figure 3, and the other
may correspond to several symbols including dashed lines.

More information about the tools described here can be found in [P9], and more informa-
tion about CASE tools can be found in [P11].

3.4.1 Compilers

This tool is the most used reverse engineering tool today. There are several reasons for
this. Compilers must understand the source program well enough so the compilation not
change the programs functionality, if the compiler has an optimize function, it must under-
stand the source program even better. Optimizing changes are larger and more complex
than normal compiling. Some compilers can also understand what type of faults that the
designer has introduced in the code and may also suggest solutions, some generates cross
reference tables, warnings of portability problems (problems according to different target
machines) and not initiated variables that may cause errors. Most of the compilers also
have a debugging function. To support all this, the compiler must know the source pro-
gram very well.

Reverse engineering PLEX-C code to SDL10 code Page 11
Martin Berg 1999

Related Work

(N

o

3.4.2 Restructurers and beautifiers

The purpose of using restructurers and beautifiers is to improve the comprehensibility of a
system. These techniques are used on older programs or programs written in an old ver-
sion of a software programming language that maybe not have constructs that exists today,
for example the while loop construct does not exist in early versions of Fortran [P11] and
are implemented with goto statements. By restructuring the program so it is implemented
in a later version of Fortran, the goto statements are replaced. Goto statements are today
“forbidden” and recognized as “spaghetti programming”. By replacing them, the program
gets more understandable.

Beautifiers are a little more complex than restructurers since they also know the coding
standard, i.e. layout rules, that the user wants. This can for example be indentation, brack-
eting conventions for compound statements, spaces in expressions etc. Beautifiers are used
when standardizing the layout within large systems that have had small amounts of main-
tenance, and/or numerous of designers that works with different coding standards.

3.4.3 Translators

Translators are tools that convert source code from one software programming language to
another, for example the PLEX2SDL reverse tool. If the languages are at the same level of
abstraction (optimizing) the most common is that the new code is less readable, but if the
new language is at a higher level of abstraction and the conversion is successful, the tool
can produce a more understandable and modular program.

3.4.4 Parallizers

Parallizers are applied on programs that will be run on parallel computer systems. They
make the code more effective by, among others, replace loops with single statements that
simultaneously work on several elements in an array. The result is smaller and more reada-
ble source code which is specialized for a certain hardware.

3.4.5 CASE tools

As with compilers, CASE tools were first developed to support developers within the for-
ward engineering domain. CASE is the abbreviationGomputer-Aided Software Engi-
neering and represents a set of products, services and technologies for software
development. CASE is for software engineers what CAD (Computer-Aided Design) is for
constructors (e.g. ship-, space-, aircraft-constructers). The reason for developing such a
tool is based on that not much effort were put in documentation and designing in the early
years of 1970’s. Software systems were growing fast and more control over their develop-
ment were desired and concurrently the faults had to decrease since they were the most
cost inefficient part in the development phase. This concluded in that more and more effort
were put earlier in projects. Methods saying how to run software development projects
were “invented” and tools helping designers follow the methods were also produced

Page 12

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(N

o

(CASE tools). Since then CASE tools are getting more and more efficient and gets more
and more functionality.

Related Work

At the beginning of the 1990's, it was discovered that CASE could be used when maintain-
ing systems, and thereby also when reverse engineering systems.

A CASE tool consists of a graphical editor, consistency checkers and may also have a code
generator. The graphical editor is used to present the high level design graphically and not
textual. The consistency checker is used to test the system and the code generator can pro-
duce the code, or at least a part of it.

CASE tools that have the ability to reverse engineer systems can in most cases produce the
graphical pictures of the high level design automatically. These pictures can represent dif-
ferent diagrams depending of what knowledge one wants about the system. Since this is a
topic in great research, more diagram types and further analysis will come in the future.
Some types of diagrams can be:

e Structure chart
This diagram is the most common today and shows the subprograms and how they
are connected to each other.

e Data flow diagram
This diagram shows the major software modules and data allocation, and how data
and control information flows among them.

e Entity relationship diagram
This diagram describes major external sources, data and modules that uses them.

3.5 Balance between reverse and forward engineering

It is expensive to reverse engineer a system, but it is also expensive not to do it. The main-
tenance cost is increasing as the system gets older, because the maintainers must under-
stand the system to be able to maintain it. This means that ideally a defined balance
between forward and reverse engineering has to be found. van den Brand et. al. has taken a
closer look at program development regarding forward and reverse engineering [P3].
Figure 4 shows different phases of the life cycle for a software systandf are a meas-

ure for the reverse respectively forward engineering effoshows the classical life cycle

andb the desired life cycle of software systems.

Reverse engineering PLEX-C code to SDL10 code Page 13
Martin Berg 1999

Related Work

<

~«——Creation —» «— maintenance —» <«——legacy ——
1+ - - = = -~ —_
' I
[I "

for SIS
@ For e

creation maintenance ———
+14
f-r ANNNANADDDADN
VV V VUV VUV VVVUVVY
f+r time
14

Figure 4. Differences betweanclassical and. harmonic software engineering

Creation

a. Only forward engineering is used in this phase, which is the classical way when devel-

oping software systems.

b. Reverse engineering is used directly at the start of the development, combined with for-
ward engineering, to influence the design. This could for example be to study the impact of
different implementation alternatives. One can say that this is a reverse engineering driven
software development.

Maintenance

a. To keep the system running small amounts of maintenance is needed, and the amount
will increase. The forward engineering is interrupted by larger and larger reverse engineer-

ing periods.

b. As in classical software engineering, maintenance is needed in the harmonic software

engineering to keep the system running. The knowledge about the system is kept up to date
with reverse engineering, and maintenance is done with the forward engineering.

Legacy

a. When the reverse engineering takes to much time, the maintenance is hard to keep up.
The maintainers are working more on understanding the system instead of maintaining it.

b. The reason of harmonic software engineering is to skip this phase, and thereby have a
product with lesser defects and longer lifetime.

By using the facts that van den Brand et. al discusses in [P3], better systems that are easier
to maintain will be produced. Reverse engineering will also be a larger part in software
engineering in the future.

Page 14

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Related Work

3.6 Practical use of reverse engineering

Many reasons why reverse engineering should be applied on a system exists and in this
section both reasons for reverse engineering a system and reverse engineering projects are
described. A strong connection exists to related activities described in section 3.3.

3.6.1 Year 2000 problem

In many computer systems, only two numerals are used two define a certain year, e.g. 87
for 1987, and some of these systems uses this numerals to count a difference between two
years. This is no problem as long as the numerals represent years within the same century.
Let us say that you want to calculate someone’s age. You know the year of birth, 1946,
which is represented as 46 in the computer system. To calculate the person’s age, 46 is
subtracted from today’s year. The age will be 99 - 46 = 53 years. Next year (2000) the
equation will be 00 - 46 = -46, which is an incorrect answer. In some systems negative
numbers cannot be stored and a failure will occur. If so the user of the system is alerted
and can correct input data or calculate the data himself. But if a wrong value is stored and
used in further calculations, final output data will be corrupt and that is not always discov-
ered by the user. Other faults that may occur can be wrong decisions made by the compu-
ter system which will conclude in for example that railroadpoints are set wrong (how and

if the year is involved in railroadpoints or not, is not a part of this thesis).

The year 2000 problem is complicated. It is hard to find and can be found in many sys-
tems. Many companies put major resources to solve this problem. By using reverse engi-
neering to raise the abstraction level of a system, knowledge about what parts that may be
affected by the millennium change can be achieved. These parts can then be re-designed so
they can manage the problem. But the largest problem is the cost in money, personnel and
especially time, it has to be solved before the turn of the year 1999 - 2000.

3.6.2 Data reverse engineering [P8]

The reason for applying reverse engineering at systems to solve their year 2000 problem is
done because one wants to get data about the data inside the system. This retrieved data is
called metadata (see section 3.6.3). The metadata is not only used to solve the year 2000
problem.

Today, with rougher competitions between companies, each company must achieve as
much valuable information as they can from data that they already have. This data can be
statistics over customers etc. The problem is that many companies have lots of data, but
they do not know that these data holds valuable information for them. Example of such
data can be what, when and how much customers buy, if the customer pays with a credit
card, etc. The data can be stored in different ways, for example locked in systems whose
designers retired long time ago, in applications that were produced as a temporary fix, but
have been in use ever since or even as data that the organization does not know that it has.

Reverse engineering PLEX-C code to SDL10 code Page 15
Martin Berg 1999

Related Work

(N

o

Organizations need to have the right data and it is important that they also know what it
has, were to find it and most of all know what it means. To retrieve the valuable informa-
tion from the data, one can apply reverse engineering and collect metadata. The metadata
helps the organization to understand it's data.

3.6.3 Data conversion [P7]

The departments of Personnel and Training (DP&T) and Accounts (DOA) at the Com-
monwealth in Virginia wanted to replace their existing payroll and personnel information
systems because they had become inefficient, too expensive to operate and maintain, and
the management were concerned about keeping the staff up to date with the technical
knowledge of the databases. The system consisted of two large databases and software to
manage them. The databases were not integrated, which the departments wanted so they
could merge payroll and personnel records. A new system consisting of three modules
from PeopleSoftwas decided to replace the old one. PeopleSoft's modules are build spe-
cially for server - client applications and should be tailored to fit each organizations need.
This is what the departments wanted. The problem was to move the data from the old data-
bases to the new ones. It was a large amount of data to move. A tool that could convert the
data had to be developed. To know how to convert the data, more information about the
databases, both old and new ones, were needed. This information (data about data) is
calledmetadata To get the metadata reverse engineering were used. To manage all meta-
data that this project produced, a new database and handling procedured bealléta-

data Access TodlTheMAT) was developed. It uses Microsoft Access with both automated
and manual procedures. The metadata were later on used to map corresponding informa-
tion in the two systems (the old and new).

This restructuring project ended successful and the conclusions were that it was not so
expensive as expected to use metadata for developing data conversion tools and the meta-
data itself can be maintained easily with tools. Some metadata can be maintained by using
a CASE tool (see section 3.4), especially if such a tool were used when developing the sys-
tem. Metadata that easy can be created and maintained can be a valuable asset.

3.6.4 PL/IX - C++ [P6]

Reverse engineering, or rather restructuring, is a useful activity when changing software
language. In a project funded by IBM and project members from universities of Waterloo,

Victoria and Toronto, PL/IX (pronounced PL nine) source code should be converted to

C++ code using reverse engineering. PL/IX is a programming language that IBM uses and
to simplify maintenance and make further development of the system easier, IBM wants to
change software language. From the Universities point of view the project was an experi-
ment to see how hard it is to make a software language converting tool.

To compare and to be able to map constructs (if, for, etc. statements) and structures (varia-
ble types) between the two languages an abstract syntax tree (AST) were produced with
help from a custom built PL/IX parser and linker (compare with compiling). Defined con-

Page 16

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(N

¢

O

Related Work

structs and structures were sorted into different domains. If one construct or structure in
PL/IX did not have a corresponding item in C++, a new one had to manually be added to
the domain library.

In the first half of the project the converting was manually performed and in the second
half a semi automatic tool was used. When the project was finished, the tool still was semi
automatic and some parts had to be converted manually. The conclusions from this project
was that it is possible to develop tools that decrease the manual effort in a software lan-
guage change.

3.6.5 SDL Reverse [14]

When Ericsson choosed to investigate the possibility to change software language in their
GSM system from PLEX-C to SDL10 they soon realized that it was impossible to change
all source code manually. A conversion tool was required. A project started to develop
such a toolSDL ReverseUnfortunately the inexperience, the bad estimations and mostly
the fact that the task actually is hard to manage made the project fail. Instead another com-
pany took over the development of theéverse todl They are now almost finished with

it and it is this tool that we have used in our work.

This project’s purpose was to develop a tool which reverse engineers a system. The project
itself is about forward engineering, but inside the produced tool the activity can be classi-
fied as either reverse engineering or re-engineering, depending on the point of view. The
tool reverse engineers the system to achieve information about it and then implements the
information in another software language. The information is at a higher level of abstrac-
tion than the new implementation, and forward engineering is used. Merging the processes
concludes in re-engineering. But from another point of view where the tool is seen as a
black box performing the transformation, the activity is reverse engineering.

3.6.6 KomPlex [I5]

Our work is not the only project that have tested the reverse tool, the KomPlex project, fin-
ished in the summer of 1999 at Ericsson’s department in Aachen, Germany, has also tested
it. The project’s purpose was to evaluate and test the reverse tool and see what kind of
blocks that could be converted, but also to evaluate if Ericsson should continue with
reverse projects and thereby make a software programming language change. Problems
with the tool was reported during the project to the producer, and some of them were fixed
during the project.

The project was intended to convert eight blocks but they tried out 21 blocks where 16
were successfully converted and 5 failed for different reasons. A conversion is successful
when it passes a test that tests at least 80% of the code. The failure reasons can be unim-
plemented support in the reverse tool for some kind of constructs in PLEX-C. A connec-
tion can be seen if the blocks are divided into groups. The division is made on basis of the

Reverse engineering PLEX-C code to SDL10 code Page 17

Martin

Berg 1999

Related Work

(N

o

blocks’ tasks since the structure of a block depends on its task (see section 7.1). The cate-
gories are:

¢ Traffic blocks
* Message handler blocks
¢ Database blocks

¢ Command blocks

To analyse and see if successfully converted blocks can be accepted in the system, more
aspects than testing the code has to be done. Measurements of the new code size (hnumber
of lines), the data storage size (e.i. the variables total space) and effectiveness (execution
time) were done. On the basis of these measurements the following conclusions have been
reached.

Traffic blocksseemed to manage best. The regenerated code size and data storage, and exe-
cution time were all within the 10% characteristic limit. The regenerated codelNtesa

sage handler blockscreased with 17% which not is acceptable. The execution time is
just above the limit (11%). The reverse tool will be updated to handle this problata-

base blocksvere also slightly above the limit, but optimizations in the SDL2PLEX gener-
ator will solve this problem in the future. The block category that was hardest to manage
wereCommand block€Only one block were possible to convert successfully but the same
tendencies could be seen in the unsuccessfully converted blocks. The data storage
increased with over 100% and regenerated code size became 50% larger. Although these
blocks are small compared to other blocks and they are not so time critical, also updated
reverse tool to decrease these figures will make it possible to convert this blocks in the
future.

The conclusion from this is that after updates to both the reverse tool and the SDL2PLEX
generator mostly all blocks will be able to convert.

Also a small formula for estimating how long time it will take to convert a block has been
produced. It considerates only the number of PLEX-C statements to convert though. This
formula is tested within our work.

The members of the project had different experience, some PLEX, some SDL and some
both. This composition of people with different knowledge appeared as a good prerequi-
site when running such a project.

The KomPlex project has answered most of the problems that our work is bringing up, but
the structures inside different blocks at different departments within Ericsson are not the
same and therefore cannot all results from one project just be copied to another. Of course
some considerations of the results will be made, but own experience at the departments are
needed. The KomPlex project was also larger with both more personnel, more time and
more blocks to convert than our work.

Page 18

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(N

o

3.6.7 SPOT [I6]

Related Work

To get some experience of converting PLEX-C blocks to SDL10 at Ericsson’s department
in Hassleholm, the SPOT project started in December 1997. The task was to convert a
block into SDL10. The reason was to evaluate if a software language change could
increase quality and decrease lead time for future projects. Also the SDL2PLEX code gen-
erator was evaluated according to capacity, memory size (data storage) and readability (the
regenerated PLEX-C code must be readable for a human). Since the reverse tool did not
exist at that time, the conversion was made manually. The conclusions were that all in the
project thought that a software language change will shorten lead time and increase qual-
ity. The overall impression of SDL10 was good and that it was easy to use. The
SDL2PLEX code generator on the other hand did not satisfy the expectations. Lots of
improvements had to be made and a list of needed improvements were produced.

The differences between this project and KomPlex are small, both converted PLEX blocks
to SDL10, but this project did it manually. Since a higher level of abstraction than the des-
tination implementation were reached during the project, it should be classified as reengi-
neering.

Reverse engineering PLEX-C code to SDL10 code Page 19
Martin Berg 1999

<

Related Work

Page 20 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

PLEX-C

4.1 History

The high-level programming language PLEX (Programming Language for EXchanges)
was developed for Ericsson, by Ericsson in the 1970’s, and later extended in 1983. The
reason why Ericsson developed a new programming language of their own is simple - no
other languages that fulfilled Ericsson’s requirements existed. It had to be a high-level,
real-time language with very strict requirements regarding real-time performance. The
structure should be modular and the modules should communicate with different signals.
All this is implemented in PLEX. PLEX is only used for telephony purposes, but it exists

in thousands of exchanges all over the world, and it is also used by thousands of designers.
PLEX is a company specific programming language, i.e. only one company uses the lan-
guage in development, and that makes is hard to find documents describing the language.
More information can be found in [I3].

4.2 \ersions

PLEX exists in different versions, PLEX-M and PLEX-C. PLEX-C is used when program-
ming the processor in AXE 10, and since CME 20 is built on the AXE 10 switch technol-
ogy, PLEX-C is used when developing services here. PLEX-M is used when programming
a special part in the AXE 10 system called EMRP, which controls the subscriber stage.
PLEX-M is an 8-bit version of PLEX-C, which is a 16 or 32 bit programming language,
depending on what processor the target system (exchange) has.

Reverse engineering PLEX-C code to SDL10 code Page 21
Martin Berg 1999

PLEX-C

4.3 System

The code itself has similarities with Pascal, but the differences are many. The major differ-
ences are:

e only one variable type (a group of bits) which can have different properties
» (different jump statements

* negative numbers cannot exists

* pointers are in reality circular array indexes and not memory addresses

* itis a real-time language, means that the order of execution is not predictable before
execution

e communication between blocks are handled by signals

4.3.1 Standard

Many designers are involved when a product is developed, and with new releases, changes
in the source code will be made. For that reason design rules exists. The design rules tells
the designer how to implement the program so that other designers easily can make
changes. When programming PLEX code, one must comply with a “PLEX standard”. For

a system written in PLEX, five different kinds of documents have to exist and all of them
have a common part, an ID sector at the end of the document. This ID sector contains
information about the document, e.g. document number, author, responsibilities, version
etc. The documents are:

e SPI - Source Program Information
e SPL - Source Parameter List

e PL - Parameter List

e SS -Signal Survey

* SD - Signal Description

SPI - Source Program Information

This document contains the source code. It is here the designer writes or changes the exe-
cutable statements. It can be PLEX-C code but also ASA assembler code. ASA is used
when time critical functions have to be implemented.

The SPI document consists of different sectors. The firstdedare sectoin which all
declarations are stated. The next sector isptogram sectgrwhich can in itself be two
sectors, one for PLEX-C code and one for ASA assembler code. The thirddatheec-

tor, in which initial values are assigned to some variables declared in the declare sector.
Also statements to specify the order of the variables in the data store are here. The last sec-
tor is thelD sectorwhich is described above.

Page 22

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

PLEX-C

SPL - Source Parameter List
This document contains the default parameter values for all data in the PL document (see
below).

PL - Parameter List

The products that Ericsson develops will be released in many different countries and cer-
tain data has to be adapted to the local market. This can for example be tone-types, print-
outs in the local language, charging parameters, etc. These market dependent data should
be included in this document to avoid frequent modifications of the source code in SPI.

SS - Signal Survey

The signals that a block sends and receives are listed in a Signal Survey document. Each
block has its own SS document.

SD - Signal Description

There is one SD document for each signal. The SD document contains a description of the
signal, information about the signal’s purpose, type and data. All SD’s are stored in a sig-
nal-handling library.

All these documents together form a PLEX-C program. A PLEX-C program example (not
all documents, only the SPI) is shown here. The program calculates the difference between
a received value and a max value (set in the data sector).

DOCUMENT PROGEXAMPLE;
DECLARE;

VARIABLE CNUMBER (16) 4 DS;
VARIABLE CNUM 4 DS;
VARIABLE CMAX 4 DS;

END DECLARE;

PROGRAM; PLEX;

ENTER MYSIGNAL WITH CNUM; ! RECIEVE SIGNAL !

CNUMBER =8 - 31; I CNUMBER = 65513 (NO NEGATIV NUMBERS) !
DO SuM; ! CALL SUBROUTINE SUM'!

SEND YOURSIGNAL WITH CNUMBER; ! SEND SIGNAL !

EXIT; I SET PROGEXAMPLE IDLE !

END PROGRAM;

PROGRAM SUM; ASA210C; I ASA SECTOR, SUBPROGRAM !

RS WR1-CNUM,; ! STORE CNUM VALUE IN REGISTER WR1!

RS ARO-CMAX; I STORE CMAX VALUE IN REGISTER ARO'!

AR WR1-ARO; I CALCULATES ARO - WR1 AND STORE ANSWER IN WR1 !
WS CNUMBER-WR1 I STORE WR1 VALUE IN CNUMBER VARIABLE !

END PROGRAM;

DATA;

SIZE OF CMAX = 10;
END DATA,;
END DOCUMENT;

ID PROGEXAMPLE TYPE DOCUMENT;
CLA 19055;

REV C;

DAT 99-04-19;

Reverse engineering PLEX-C code to SDL10 code Page 23
Martin Berg 1999

PLEX-C

DES ERA/LVA/DX MBER,;
RES ERA/LVA/DC;

APP ERA/LVA/DC,;

END ID;

Page 24 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

SDL

SDL

5.1 Description

SDL is the abbreviation foBpecification and Description Languade is a high-level,
object-oriented and graphical language, which is intended for developing complex, real-
time and communication systems. Examples are cellular and DECT phones, exchanges,
radio systems, and train-control systems [W1]. A program written in SDL can be pre-
sented in two ways, either graphical or textual. The most common way is the graphical
because of its benefits (see section 5.3).

5.2 History

In 1972 a study group within the telecommunication union CCITT (now called ITU-T)
began to research on a specification language that the telecom industry could use. In 1976
SDL got standardized by ITU-T, as standard Z.100. Every fourth year a new version is
released. The modifications in summary are [P2]:

e SDL-76 First standardized version. It only had recommendations on how process
graph symbols should be drawn.

* SDL-80 The block conception is introduced and the PR-form (textual representation)
becomes a part of the language.

* SDL-84 Additional concepts are introduced, among others the concept of abstract data
types.
e SDL-88 Only minor changes.

e SDL-92 SDL becomes object-oriented.

Reverse engineering PLEX-C code to SDL10 code Page 25
Martin Berg 1999

SDL

* SDL-96 Minor changes, e.g. external procedures

5.3 Benefits

The benefits that SDL has compared to other programming languages such as C/C++ and
PLEX are many. Some of them are [W1][P2]:

* Graphical user interface. The graphical interface makes the software easier to under-
stand, even for a non-technician. One can easy get a clear picture of how the system is
built up by different parts, and how they communicate.

e Easy to useDesigning a SDL program is done graphically with help from a tool. The
SDL code can then be translated into executable code without any manual “line” cod-
ing, as in C++ programming. This makes the development time shorter and increases
the quality.

* Documentation. Since SDL is graphical, the program itself becomes a document that
is easy to read and shows how the system is implemented.

¢ Test and maintenanceThe fact that SDL has a rich grammar which describes behav-
iour, makes it possible to build simulation tools for SDL systems and validate formal
characteristic (e.g. to avoid deadlock). This means that defects can be found very early
in the development process.

* Design and implementation independentSDL is independent of the design para-
digm, i.e. if it is function oriented (PLEX-C) or object oriented (C++). SDL is also
independent of the implementation language, which means that SDL code can be com-
piled to any language one want, e.g. C, java.

5.4 Telelogic Tau

In our work we have used a toolkit for SDL development, and it is the Swedish company
Telelogic ABthat have produced (and now improves) it. The toolkit is calleleélogic Tayl
hereafter referred to as Tau. Tau is an SDT (SDL Development Tool), and for that reason
Tau sometimes are referred to as SDT, i.e. SDT and Tau means the same thing. With Tau it
is possible to build SDL applications, test them, simulate live performance, debug SDL
programs, make test files etc. Many companies, for example Telia, Siemens Defence, Atlas
Copco, Alcatel, Ericsson, IBM, Intel and Nokia use Tau in their development [P2]. Tau is a
set of several tools connected to each other as shown in figure 5.

Page 26

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

SDL

sDL om State Chart | | (H)MSC | | Text pe——
Editor | | Editor Editor Editor Editor mu

. Code

Viewers Link Validator TTCN Link
Manager

Figure 5. Telelogic Tau

Organizer

The Organizer is the central tool in Tau. When starting, the Organizer is appearing. It
shows all components in the system and how they are connected. One can compare the
Organizer with an advanced file manager.

Editors

Tau has several editors for different purposes. The most used editors &BlthEditor

and theMSC Editor With these editors SDL and HSDL (High-level SDL) respectively
MSC and HMSC (High-level MSC) can be edited. Other editorsTane Editor State
Chart EditorandOM Editor. State Charts show an overview of the states in an SDL pro-
gram, and OM (Object Model) concerns objects in high-level design.

Analyzer / Code Generator

The Analyzerchecks SDL systems for errors, such as unconnected symbols, undeclared
variables, type conflicts, etc., and t@®de Generatomakes executable code. The code
can be C code, PLEX-C code, or compiled code ready to run, for instance in the simulator
or the validator.

Validator / Simulator

With these tools a system can be tested. The difference between them is thatatidhe

tor MSC'’s are compared with the SDL code to see if their flows correspond to each other,
and theSimulatorsimulates the program and a test engineer can send in any signal with
parameters and check what he gets back. Of course both validation and simulation can be
automated.

Viewers

The Type Viewershows objects and their inheritance, fieverage Vieweshows how
much of the code that was covered by a certain test (with validator or simulator), and the
Cross Reference Viewer used to locate definitions and all references to them.

Reverse engineering PLEX-C code to SDL10 code Page 27
Martin Berg 1999

SDL

Utilities
An example of a utility is thePreference Managewhere all settings for Tau can be
adjusted.

Link Manager

This tool handles links between different objects in the system, where objects may be text
fragments in text documents or graphical symbols in for example SDL and MSC dia-
grams.

TTCN link

TTCN (Tree and Tabular Combined Notation) is a standardized test language that makes it
possible to test the system with same test files in different environments, aid @i

link is what it says, a TTCN link.

5.5 SDLtool

Since PLEX-C and SDL does not support the same things (more in section 5.7), Tau has
been adapted to fit Ericsson’s need for development, and that tool is &letbol The
differences is that some local tools that help the designer with the differences between
SDL and PLEX-C has been added, and some functionality, e.g. object orientation, is
removed due to the fact that PLEX-C does not support them. A new code generator has
also been added, a PLEX-C generator. It converts SDL code to PLEX-C code, and is fur-
ther referred to as the PLEX-C generator, or SDL2PLEX. SDLtool is built on Tau, and
new versions of Tau also make new versions of SDLtool.

5.6 The SDL language

An SDL system consists of seveeattended finite state machin@gs=SM) that run in par-

allel [P5]. The EFSM is an extended concept of tinite state maching=SM). The FSM
consists of a set of states with the possibility to receive signals. The signal that is received
sets the next state. No variables are allowed and that makes the FSM good for small prob-
lems only. Some functions, such as counting, will bring a need of many states. Therefore
the FSM concept was extended to the EFSM. In this machine variables are allowed. The
EFSM’s, or processes, communicate with signals and runs independently.

5.6.1 Components

The following components are embedded in an SDL system [P2]:

e Structure System, block, process, and procedure hierarchy

e Communication Signals with optional parameters and routes (channels)
e Behaviour Processes

e Data Abstract data types (ADT)

Page 28

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

SDL

* Inheritance Describing relations and specialization

Structure
An SDL system is divided into four hierarchical levels (see figure 6).

System

Block

Processes

Procedure

Procedure

Figure 6. SDL system

* Proceduresmay be recursively implemented and they can both be local to their proc-
ess or global, depending on their scope.

* Processe$n SDL have its own separate memory space and is defined as a nested hier-
archical state machine.

* Blocksare a set of processes and other blocks grouped together.

* The systemis where all blocks are connected to each other and to the environment.

Communication

The communications inside an SDL system, between the processes, are made with signals.
They are asynchronous, i.e. the order of their execution cannot in advance be stated.
Remote procedure calls can be seen as synchronous signals, i.e. correspond to goto state-
ments or subroutine calls. Both signal types can carry parameters to the receiver. It is not
only SDL processes that can send and receive signals but also hardware (called environ-
ment in Tau) or non SDL applications. This is for instance necessary when using timers.
An SDL process can set timers, and when the timer expires, a timer signal is sent to the
process. The timer can also be mapped to an operating system timer or a hardware timer,
which makes it possible to simulate time in SDL models, before the target system is avail-
able [W2].

The idea of SDL's clear signal interfaces between different parts in a system simplifies
large team development and ensures consistency between the parts. But signals and proc-
esses cannot be prioritized, priority does not exist in SDL.

Reverse engineering PLEX-C code to SDL10 code Page 29
Martin Berg 1999

SDL

Behaviour

Processes can be created at system start and at run time. They can also be terminated at
any time. More than one instance of a process can exist, and all instances have their own
identification number PId, so signals can be sent to special instances of a process.

Data

Data can be described in two ways, abstract data types (ADT) and abstract syntax notation
one (ASN.1). ASN.1 enables sharing of data between languages. ADT has no specified
data structure, instead a set of values, operations and equations are specified. Standard var-
iables are also available, such as integer (numbers without decimals), real (numbers with
decimals), boolean (true or false), time, charstring (text), PId (process identification), etc.

Type declarations (the part where the programmer declares which variables he/she will use
and what kind of types they are) can be placed any were. It can be either inside the system
close to their context, at system level, or even outside the system in packages, which
makes it possible to share declarations with other systems.

Inheritance

In object oriented languages one of the major benefits is that new objects can be created by
adding new or changing properties to existing objects (specialization). This can of course
be done in SDL, but since SDL10 is not object oriented (see section 5.7), this is not
explained here.

Page 30

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

SDL

5.6.2 The layout of SDL

To understand the graphical user interface of SDL and how easy it is to understand,
figure 7 shows an example of an SDL process.

Process MyProcess 1(2)

[""""'TL* DCL
l : Count Integer;
1
- ButtonPregs
Count :=
1 - Count
NotAIIowe> ReleaseCc%
‘ Idle ’ ‘ Idle ’

The process is “resting” in thelle state, waiting for the signa@uttonPress to arrive to
the process. When the signal arrives, a local variadalegt , is set to a value. In this case it
is oscillating between 0 and 1 every time the signal arrives. Then the valuedirat
holds is checked, if it is 1 the signatleaseCoke is sent, otherwise, i€ount is 0, the sig-
nal NotAllowed is sent. After any of the signals are sent, the process goeside itstate.

Figure 7. SDL Process

Where the signals are sent cannot be seen in this figure. It is the overlaying block views
that show that, and block views will not be shown here.

5.7 SDL10

SDL10is an adapted version of the standardized SDL language, made for fitting Ericsson’s
need. All functionality that PLEX-C gives must also be supported by SDL, and with both
limitations and extensions towards SDL, SDL10 fulfils their requirements. Tau supports

Reverse engineering PLEX-C code to SDL10 code Page 31
Martin Berg 1999

SDL

SDL, and SDLtool supports SDL10. Differences between PLEX-C and SDL are described
in section 6.2.

The extensions are implemented in SDL as directives, i.e. direct commands to the
SDL2PLEX compiler. The disadvantage of this is that it will be harder to test the systems

behaviour at SDL level. Directives are written as comments in SDL, and begin with a key-

word (called directive). The directives can have parameters as well. Examples of exten-
sions are ASA subprograms, external code, ID sector, signal priority and temporary
variables.

Limitations are functionality in SDL that are not supported in SDL10. An example of a
limitation is the object-oriented concept and thereby also specialization.

5.8 MSC

In real time systems the different processes performs tasks and like all programs they need
input data to make decisions (otherwise the developer should know the result of the pro-
gram execution). A process retrieves data from other processes or components, such as the
environment, and it is carried on signals. Signals, or events, must happen in a specified
order, e.g. it should not start to ring in a phone before the caller has finished the dialling.
An MSC (Message Sequence Chart) shows chronological sequences of messages, or sig-
nals, sent between components and their environment. MSC is like SDL standardized by
ITU-T, Z.120 [P2].

An MSC is useful for describing the dynamic behaviour of a system. The graphical pres-
entation shows complex behaviours clear and it is easy to understand. Even non-technician
people can understand MSC's.

In Tau, test files for SDL systems can be generated from MSC’s. An MSC does not
describe the complete behaviour of a system though, rather one execution trace. On the
other hand several MSC's can describe the system more detailed [P2].

Page 32

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

SDL

MSC myMSC

sigl

[data]

Figure 8. MSC

Figure 8 shows an MSC. The rectangles at the top with text inside are different processes
or components in the system. When they are at the top it means that they are already
started and are running when the events that this MSC shows begin to happen. The grey
boxes at the bottom means that the components not are terminated here and will be run-
ning after the events that this MSC shows. The dotted line marks creation of instances dur-
ing run time in SDL. Procesa? is created by processl, and then terminated, showed

with a large cross. The arrows in an MSC represent events, which is signals in SDL. The

text above an arrow is the name of the signal and the text below, inside the brackets are the
data sent along with the signal [P2].

Reverse engineering PLEX-C code to SDL10 code Page 33
Martin Berg 1999

SDL

Page 34 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Comparisons - SDL vs PLEX-C

Y]

Comparisons - SDL vs PLEX-C

There are both differences and similarities between SDL and PLEX-C. The similarities are
the reasons for choosing SDL instead of any other programming language. The differences
are the major problems for our work. To have a successful programming language change,
we must find solutions for all the problems that the differences bring.

6.1 Similarities

Realtime
Both PLEX-C and SDL are realtime languages, and use signals to communicate between
different parts in the system.

Development

Development in SDL, or actually in the SDL environment, is similar as in the PLEX-C
environment. The tools are different of course, but their purpose are the same. Figure 9
shows the corresponding documents between SDL and PLEX-C. Dashed lines represents
automatic steps. Note the differences in the abstraction levels.

* First MSC’'s / Sequence diagrams are produced. They both show interaction between
blocks, i.e. signals sent and received within certain functions, but sequence diagrams
explains a little bit more than MSC’s and have therefore a lower level of abstraction.

* The next step is generation of SDL code respectively flow charts. They both describes
what should be done between the signalcommunication described in the MSC's /
sequence diagrams. Since the “what to do” part is implemented with statements in SDL
and with explaining sentences in flow charts, there is a difference in abstraction level.

Reverse engineering PLEX-C code to SDL10 code Page 35
Martin Berg 1999

Comparisons - SDL vs PLEX-C

* Inthe last step PLEX-C code will be generated. In the SDL environment this is auto-
matic, but in the PLEX-C environment this is a manual step and done with help from
flow charts.

PLEX-C Development SDL Development

— High
MSC

Sequence Diagram

v

Abstraction level

Flow Chart
l SDL
1. v
ow
PLEX-C PLEX-C

Figure 9. SDL vs. PLEX-C environment development

6.2 Differences

Variables

In PLEX-C the variables are a set of bits stored in the memory in different ways. SDL has
a numerous of different types, and their scope can be either global or local. A local SDL
variable is comparable to a temporary PLEX-C variable. There are also differences
between their timer variables (a variable that periodically is increased).

Typing

SDL is a hard typed language, i.e. assignments and comparisons of two variables must
have the exact same type, or must be converted so the types on both sides the equal sign
respectively the assign sign are the same. In PLEX-C there is no typing at all. 16 bits struc-
tured variables can be assigned 16 bits pure and unstructured variables, even eight bits var-
iables can be both compared with and assigned 16 bits variables’ values and vice verca.
This is not possible in SDL.

Object orientation

One benefit with SDL is that it is object oriented. This benefit is no argument for changing
programming language from PLEX-C to SDL since PLEX-C is not object oriented, and
this feature cannot be used.

System overview

The SDL environment consist of several tools, e.g. SDL editor, MSC editor, Simulator,
Analyzator, log window, code generators, etc. which are integrated and connected to each
other within an Organizer. The close relationships between the tools makes the system
overview clearer than in PLEX-C development. In the PLEX-C environment, similar tools
are used in development, but the close integration and connections between them that
SDLtool supports does not exist. This is no disadvantage for a programming language

Page 36 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

(7
y

) Comparisons - SDL vs PLEX-C

change though, rather a benefit that not affects the difficulties for converting from PLEX-C
to SDL.

Start/restart, forlopp handling and size alteration

Ericsson has some functionality that handles special cases that can occur in the system.
The start/restartfunction is used when the system is started or restarted after a fault has
occurred in the systenforlopp handlingis a function that kills just that process that has
stopped for any reason. The benefit is that all other processes can continue as before. Each
process has its own database over connected MS’s with data that is relevant for the proc-
ess. Sometimes the size of these databases needs to be changed andiitésalteration
function that handles that. These functions cannot be found in SDL, but PLEX-C has
them.

Abstraction level

As mentioned before, SDL has a higher abstraction level than PLEX-C. In this case the
differences in abstraction level is mostly noticed in the presentation of the source code, i.e.
the flow through the program is more obvious in SDL than in PLEX-C. But it is also
noticed in the way the different programming languages presents a system in. PLEX-C is
not a multitasking programming language (a method to make several programs run paral-
lel), i.e. only one part of the code can be executed at a time and the multitasking has to be
considered by the designer, or with other words, the designer decides when his program
shall release the processor so other programs can execute. A program in this case is one
block. At SDL level, processes (the corresponding to programs) runs parallel, i.e. multi-
tasking. Every block has onglock procesghat handles common functionality for the
block, and may also have numerousimdividual processesand each of them handles a
single subscriber in the system (individual). In PLEX-C the subscribers’ data are stored in
a large database that is constructed like a record in Pascal, or a structure in C. Actually the
record, or structure is a large two dimensional matrix were each row corresponds to a cer-
tain individual. The individuals are reached with a pointer that says what individual should
be handled.

PLEX-C SDL 10

Block Block
Block
_ Process
Individual 1

Individual 2
Individual 3
Individual 4

Fdividual Indivi;iual -
ndividuatn Process 1/ dividual

Process 2
Individual Indivi&:al
Process 3 Process n

Figure 10. Individuals in PLEX-C and SDL

Pointer

Reverse engineering PLEX-C code to SDL10 code Page 37
Martin Berg 1999

Comparisons - SDL vs PLEX-C

6.3 Conclusions for similarities and differences

The differences cannot be so extensive that it is impossible to convert from PLEX-C to
SDL and the similarities must overcome the differences. The realtime similarities are very
good and makes it possible to do the language change, but the abstraction level differences
makes it hard, actually very hard. The designers have to reassess and attack the problems
in a different way.

Page 38

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Reverse PLEX-C code

Reverse PLEX-C code

Previously in this thesis references taewverse toolhas been presented, but no deeper
explanation about it was provided. The history of the reverse tool's development can be
found in section 3.6 and since it still is under development, new versions are released con-

tinuously. The tool is developed by Telelogic and integrated inside SDLtool as a menu
choice.

Source Code

Compiler
(-]
o
-
£ [oaame)
Q
= V\ Manual
SDL Code

Figure 11. The reverse tool within the reverse process

Figure 11 shows where in the reverse engineering process, described by figure 3, the
reverse tool is. Dashed lines are work made by the reverse tool and straight lines are man-
ual work. The reverse tool is mostly interested in the compiled source code, and the source

Reverse engineering PLEX-C code to SDL10 code Page 39
Martin Berg 1999

4

Reverse PLEX-C code %

code itself is only used to achieve comments in the code. The tool produces two things, the
uncompleted SDL code, and a log that describes what was not converted and has to be
done manually.

As described previously, the reverse tool cannot convert all code automatically. There are
two reasons for this, first the tool does not support all PLEX-C constructs, for example
linked lists, and second some parts are generated by the SDL2PLEX generator and does
not need to be implemented in SDL. The second part is recognized as automatic generated
code and more about that below.

7.1 Block division

When converting blocks with the reverse tool, the percentage PLEX statements converted
may vary much. The reason is that the tool does not support all constructs, and in different
blocks different constructs are used. Comparing a block’s construct with its purpose shows
a strong connection, and for that reason blocks can be divided into four categories depend-
ing of their purpose. The categories were briefly discussed in section 3.6.6 and also in [I5].

Traffic blocks

These blocks handles traffic related jobs, for example handovers and assignments. The
percentage of automatic converted statements is high (75% - 95%) (result from [I5] and
own experience), since they are the easiest blocks to convert.

Command blocks

An exchange operator can from a terminal adjust the exchange’s behaviour by commands.
These commands are handled dymmand blocksThese blocks are, compared to other
kinds of blocks, relatively small.

Database blocks
These blocks works as databases and stores information, for example about subscribers,
cells etc.

Message handler blocks

The nodes in an GSM network, i.e. BSC, MSC, BTS, etc., are communicating with stand-
ardized messageblessage handler bloclnverts data retrieved within these messages
to the data format used internally in the node.

The reason for traffic blocks being the most successful blocks to convert is that the reverse
tool is mostly tested on these kinds of blocks, and for that reason most of the trouble
reports to the developer is from converting such blocks.

7.2 Reverse tool unsupport

Since the reverse tool is under development, new versions with more support for uncov-
ered constructs will be implemented in the future. The purpose of this section is to show

Page 40

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

4

% Reverse PLEX-C code

the reverse tool’'s support and unsupport at the time when our work were made. There can
exist more unsupported constructs not described here though. The reason for this is that we
had not the ability to convert sufficient number of blocks, or different kinds of blocks.

As described in section 3.6.6, the success for converting blocks depends on the kind of the
block. The reason is that the reverse tool supports some constructs more or less. For exam-
ple the reason for low converting percentage when converting command blocks derives
from how the state is set in the PLEX code. This differ between command blocks and traf-
fic blocks.

Other general constructs not covered by the reverse tool are:
e Linked lists - will be supported in later versions

* Several starting points within a process also supported in later versions.

* Forlopp statements inside the individual processinstead of the right subroutine
call, a comment with the untreated linenumber in the PLEX code, is put in the SDL
code.

* Timers - hard to convert correct, sometimes the reverse tool recognizes timers and
sometimes not.

* Individual pointer - In SDL10 half the PId value corresponds to the individual pointer
in PLEX-C. Converting between these may sometimes be difficult for the reverse tool.

7.3 Automatic generated code

Some of the statements that not are converted, are automatic generated and need not to be
converted into SDL code, but to get the automatic generated code correct, directives to the
PLEX generator must be set. There exists scripts that helps the designer to find out these
directives. Automatic generated code concerns:

e Size alteration - change number of individual processes, or change the size of a
vector during execution.

e Scanning individuals- a procedure to find out if an individual has got any time out
in their timers.

* Forlopp - statements for forlopp initiation.

e Start/ Restart - when the system is started / restarted some general procedures are
run.

7.4 Time estimation

It is important to have knowledge about how long time a conversion will take since the
project leaders must plan how much effort every conversion needs, i.e. staff, costs, time,
etc. The KomPlex project [I5] presents formulas for estimating conversion times, but since

Reverse engineering PLEX-C code to SDL10 code Page 41
Martin Berg 1999

4

Reverse PLEX-C code %

this is confidential information and intended to be used by Ericsson personnel only, we
cannot present the formulas or information about them here.

7.5 Reverse tool in our work

We have converted two blocks inside the BSC from PLEX-C to SDL10 (for further infor-
mation about BSC, see appendix A). The first block can be classified as a traffic block and
the second as a message handler block. Both blocks have about 1100 PLEX-C statements
each. The first bloclgMAsshandles a part of the functi@ssignment in serving cetind

the second blockRMHAIUL handles the communication from the CPR blockgroup to its
environment. The conversion of these blocks were successful due to the high percentage
converted number, in fact almost all code that could not be automatically generated were
converted. The percentage converted number will never be 100% because the automatic
generated code will never be converted, and such code exists in all blocks. Even if we
ignores that, the converted code (the SDL code) is not fully correct. The code and the type
definitions are converted, so are the signals, but not the types on signal parameters. They
have to be corrected, irrespective of the percentage converted figure. There may also occur
other problems due to unsupported constructs by the reverse tool.

Reverse Data

Block Type % coverage # statements # signals # states
RMASS Traffic 89,0 % 1162 79 14
RMHAIUL Message Handle 90,9 % 1106 80 3

RMASS

The unconverted statements were all related to automatic generated code (implemented
with directives in SDL), except for some forlopp subroutine calls. Problem one was dis-
covered when converting this block.

RMHAIUL

As in RMASS, the unconverted statements were all related to automatic code, except for
some forlopp subroutine calls. Problem two and three were discovered when converting
this block. When converting this block, we also made time estimations according to the
formulas presented by the KomPlex project [I5]. The estimated total conversion time
became 43.1 hours, and the actual conversion time became 42.8 hours. This may look like
manipulated figures, but they are not. Remember though, that the KomPlex project [I5]
also has tested the formulas with good results, so they can be seen as acceptable.

7.5.1 Problems

Even if the reverse tool converted 90% of the source code, we had three major problems in
the conversions. The first problem regards abstraction level differences, the second typing

Page 42

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

4

% Reverse PLEX-C code

differences between SDL10 and PLEX-C, and the third regarded variables used by several
processes. The reverse tool should know about these problems and reconstruct these parts.

Problem 1

Figure 10 describes the difference in how individuals are represented in PLEX-C and
SDL10. It is these differences that make our first problem. In many blocks inside block-
group CPR, individuals are mapped, i.e. same individuals has the same value on its indi-
vidual pointer in different blocks. This is a benefit since the individuals does not have to be
allocated in all blocks. Instead all individuals are allocated in one block and then mapped
to the same place in all other blocks. This problem is common within almost all traffic
blocks. Itis recognized when the initiation signal is sent to an individual process instead of
to the block process, where the allocation would occur and a new individual process
should be created. This means that no individuals can be created in runtime.

Solution 1.1

One solution could be sending the initiation signal to the blockprocess and there create a
new individual process. But one can never decide what Pld value a created process should
have, and for that reason the mapping between blocks will be corrupt. Irstesignals

have to be sent to the blockprocess and there mapped to correct individuals, which means
that all input signals are duplicated as internal signals. This is not a good solution.
Figure 12 shows how two signals, signal 1 and signal 4, are sent to the block process. The
blockprocess uses the map table to find what individual the signals are intended for, and
bypasses the signals to correct process. In this case the external individuals (towards this
block) 1 and 4 are mapped as internal individuals 3 respectively 2.

BLOCK
BlockProcess
Signal 1
Table
Signal 4 Y
Indivia;al
Process 2
o Indivi;lual
Individual
@ Process 3
Figure 12. Signal mapping
Solution 1.2

If one could create processes with predefined Pld values, the problem should be solved
directly. This solution is not a pure code solution, instead Telelogic has to redesign Tau to
include this feature. That is more a political problem and probably not easy to fulfil.

Reverse engineering PLEX-C code to SDL10 code Page 43
Martin Berg 1999

4

Reverse PLEX-C code %

Solution 1.3

Individuals that are idle (in state IDLE in PLEX-C) should not exists in SDL10, but be cre-
ated when an initiation signal is received. It is the block-process that receives this signal
and creates a new individual process. Later when the individual is finished with its work
and would go idle in PLEX-C, the individual process in SDL10 is terminated. This is how

it is meant to implement blocks in SDL10. Suppose instead that all individual processes
exists all time and goes to an idle state when idle instead of terminating. This means that
the initiation signal can be sent to the individual process that corresponds to the mapped
individual that sent the signal, and the mapped structure between blocks is taken care of
and this solution may solve this problem. We used this solution in our work with good
results.

Problem 2

The second problem is about typing differences. In PLEX-C a variable is seen as a set of
bits. The variables can be structured or not. Assignments and comparisons between struc-
tured and unstructured variables are permitted, and also assignments/comparisons between
variables of different sizes, e.g. eight bits variable compared with a 16 bits variable, are
permitted. The easy typing has both benefits and disadvantages. One disadvantage is that
variables with different structures can be assigned to or tested against each other without
warnings and error messages when compiling. But this can be a benefit too since variables
with different structures may have the same meaning, and that is very common in PLEX-
C. In SDL10, on the other hand, typing is strong, very strong. Variables that are assigned
or compared with each other must be declared as the exact same type. This is a problem
when converting code from PLEX-C to SDL10.

ocT2 ocT1
myvar: ([[[I[[][]T]]]]
QUAD4 | QUAD3 | QUAD2 | QUAD1
myvaroct2: [[[[[[[[[[[][[[]]
myvar.ocT1.Quapz: | [[|[[|[[[[[[[[]]

Figure 13. Variable structures

Variables in PLEX-C are often structured. The most common size is 16 bits. This word (16
bits) is divided into two bytes calledcTiandocT2 These bytes are also divided into two
pieces eachQuUAD1and QUAD2respectivelyQUAD3and QUAD4 The QUADvariables (the
divided structures can be seen as single variables too) has the size of four bits. Sometimes
even a smaller division is made. That is similar to the quad division, but not handled here.
A structured variable can be accessed at different levels, as 16 bits, eight bits, or four bits.
It is important that substructures, or variables within the same structure not are named

Page 44

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

4

% Reverse PLEX-C code

equal since that is not permitted in PLEX-C. This could for example&b3andQuUAD4
named a®UAD1andQUAD2In the structure above (figure 13).

In PLEX-C, assignments between variables of different sizes are permitted too. The rules
that controls this is shown in figure 14. This should never be used in design though, since
the possibility for misunderstanding. In figure 14 both variables are declared as 16 bits
structures as described in figure 13.

MyVar1.0CT2 = MyVar2

LTI LT T e
w

Figure 14. Variable assignments with different sized variables

This “type problem” is not only local to the block, but also global. Let us say that you have
converted two or more blocks and wants to simulate their behaviour in Tau. Then you have
to connect the blocks to each other with predefined signals. The signals are converted
together with the block that uses the signals, and if two blocks uses the same signal (they
do if they communicate with each other), two different declarations of that signal will
occur. The differences between them will be the type declarations of the signal parameters.

Solution 2

Unfortunately the reverse tool is not much help. Instead it might even make it worse. The
problem for the reverse tool is to identify the structure of variables in the code, and if there
is a slightly difference, new structures at SDL-level is produced. This is a problem when
comparing and assigning variables in SDL, which will theoretical have the same structure,
but are declared as different types. Instead, we wrote our own structures to the latter con-
verted block (this block has lots of structures and was hardest to convert types within).
Also operators to convert between a structure and integer, were produced (written in C++).

In conclusion, the solution to this problem is quite easy. When signals are converted the
structures used in the signal parameters are also converted. These structures are later used
to declare most of the variables in the converted block. The variables that cannot be
declared as these types retains the type declaration that the reverse tool set. This does not
only solve type conflicts with signal parameters, but also the problem that the reverse tool
has when converting structures.

Problem 3
In PLEX-C variables can be declared differently.

* Temporary - These variables loses their value when getting out of scope, i.e. when
changing state, calling subroutines, etc.

Reverse engineering PLEX-C code to SDL10 code Page 45
Martin Berg 1999

4

Reverse PLEX-C code %

e Common store -These variables remember their value even if the state is changed
or a subroutine is called. They are technically declared outside both the blockproc-
ess and the individual process.

* In records - Variables belonging to a certain individual are stored in a record (a
kind of a vector). These variables corresponds to variables described in the individ-
ual process.

In some blocks the common stored variables are accessed and set by both the blockprocess
and the individual process. The reverse tool solves this by declaring the variables in both
process types, and for that reason one variable at PLEX-C level becomes two different var-
iables with absolutely no connection between each other at all. This is not correct, since in
the PLEX-C source code just one variable is used by both processes.

Solution 3

In SDL, variables must be declared within a process and they are not accessible outside
that process [P5]. One can declare a variableasaledthough, which makes the variable
readable for other processes, but they cannot store any value in it. To store values in other
processes variables ramote proceduranust be implemented. Remote procedures are
implemented in the blockprocess and can be accessed by other processes. By applying the
value to store as an inparameter to the remote procedure, it can store the value to the local
variable in the blockprocess.

Page 46

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conclusions

Conclusions

Our work shows that it is possible to convert blocks inside the BSC from PLEX-C to
SDL10, with assistance from the reverse tool. The tool reduces the conversion time
towards manual conversion with approximately 40% [15]. Problems that occur when con-
verting source code have mostly its origin within the differences between the two pro-
gramming languages, and can seldom be derived from either the reverse tool or the
SDL2PLEX generator. The greatest differences that we have discovered within our work
were about typing level (strong or easy), representation-, and variable- differences.

The first difference convey in problems for converting certain assignments and compari-
sons from PLEX-C to SDL10. PLEX-C is easy typing and SDL10 is strong, which means
that some assignments / comparisons stated in PLEX-C code are not allowed in SDL10.
The representation difference derives from how individuals are represented in the two pro-
gramming languages. Sometimes individuals are “mapped” in PLEX-C, but in SDL10 the
individuals should be “created”. When creating a process in SDL10 one cannot decide
what reference number it should have, which theoretical is done in PLEX-C. The last dif-
ference is about variables. In PLEX-€®mmon storedariables, i.e. variables declared
outside all “processes”, can be used. In SDL10 variables must be declared inside a process
and belong to such one.

Unfortunately the revers tool does not support these differences and cannot convert these
parts correctly, or even not convert them at all. With some manual effort, as adding and
correcting to the converted block (described in appendix C), its functionality will be the
same in both languages.

Some blocks are easier than others to convert, i.e. the reverse tool converts larger parts cor-
rect and SDLtool and the SDL2PLEX generator supports some PLEX-C functionality

Reverse engineering PLEX-C code to SDL10 code Page 47
Martin Berg 1999

Conclusions

more than others. Since the reverse tool is mostly tested on traffic blocks, these are the best
supported blocks from both the reverse tool, SDLtool, and the SDL2PLEX generator. But
with further adjustments to these three products, they will support conversion of the other
block categories as well as for traffic blocks.

KomPlex [I5] presented formulas for time estimations when converting a block. They have
been tested once, and since no other tests have been made we cannot say whether they are
good formulas, or not. Since the type of block to convert affects how much the reverse tool
converts, this should be a factor in the first formula.

Our work has also resulted in a process for how to convert a block. The script has only
been tested once though, but the intention is to update the script each time it has been used.

We consider our work as successful, and recommend usage of the reverse tool. The prob-
lems that still exist (not have been found yet) will probably be easy to solve. With more
usage of the tools (reverse tool, SDLtool, and SDL2PLEX generator), they will gain more
quality.

8.1 Differences

Our work is unique in the way that no other project with same intentions that we had has
been launched at Ericsson before. KomPlex [15] had similar intentions, but focused on the
connections and interactions between blocks at SDL-level. If a block was hard to convert,
they skipped it and took another block. In our work, we have looked for problems when

converting blocks, and tried to find solutions.

Blocks have been converted before though, but either without the reverse tool (manually)
[16], or with different intentions.

8.2 Future work

Our work has just been concentrated on reverse engineering PLEX-C code to SDL10 code.
The reverse tool aiding the conversion has some lacks that must be provided to a conver-
sion project manually. By using the reverse tool and thereby finding these lacks and report
them to the developing company Telelogic, the tool will gain quality and manage to make
better conversions considered efficiency, correctness and coverage. Most of the tests on the
reverse tool have been done with traffical blocks. By testing other kinds of blocks more
knowledge of differences between the two languages will be gained. This knowledge can
be used to apply solutions to the problems that the differences make.

When developing products of the size which Ericsson does, it is important to have well
defined processes for the development. Ericsson has that. Since SDL and PLEX-C are not
at the same level of abstraction, Ericsson needs to make adjustments to their processes if
they change their programming language. Processes for source code conversions must be
developed too. Similar tools to the ones used today in the development process exist in

Page 48

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conclusions

Tau, but Ericsson does not have enough knowledge about all benefits and how to use the
tools in the best way.

Reverse engineering PLEX-C code to SDL10 code Page 49
Martin Berg 1999

Conclusions

Page 50 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Acknowledgements

Acknowledgements

First of all | would like to thank my family, Maria Holmqvist and Casper Berg, for all sup-
port.

| would also like to thank Anders Dellien, Magnus Persson and Dirk Auchter at Telelogic,
who has helped me with my SDL systems when | got stuck, and Chris Verhoef at the Uni-
versity of Amsterdam who has helped me with reverse engineering research.

Huge thanks to my tutors, Magnus C. Ohlsson at the Department of Communication Sys-
tems, Lund, and Jérgen Palm and Henrik Cosmo at Ericsson Radio Systems AB for mak-
ing this MS thesis possible to manage.

Lots of thanks to the people who has read and complained at my work and helped me dis-
cussing different kinds of troubles, Tommy Nordgren, Tom Nilsson, Linh Trang and
Markus Berg.

And last | would like to thank the radio shoRippi Rull, which has made my work effort
to slow down almost every monday to thursday 3 pm to 4 pm.

Thanks all!

Reverse engineering PLEX-C code to SDL10 code Page 51
Martin Berg 1999

Acknowledgements I @

Page 52 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

References

References

10.1 Public Resources [Px]

[P1]

[P2]

[P3]

[P4]

[PS]

[P6]

[P7]

Ericsson Telecom AB, Telia AB
“ Att forsta telekommunikation 2”
Studentlitteratur, Lund 1998
ISBN 91-44-37811-4

Telelogic AB
“Introduction to SDL and SDT”
rev 3.2, 1997

Mark van den Brand, Paul Klint, Chris Verhoef
“Core Technologies for System Renovation”
Technical report, University of Amsterdam.
Available at:http://adam.wins.uva.nl/~x/reverse.html

E.J. Chikofsky and J.H. Cross
“Reverse engineering and design recovery: A taxonomy”
IEEE Software, 7(1):13-17, 1990

Ferenc Belina, Dieter Hogrefe, Amardeo Sarma
“SDL with applications from protocol specefication”
Prentice Hall, Great Britain 1991, ISBN 0-13-785890-6

K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Mueller, J. Mylopoulos
“Code migration through transformations: An experience report”
Technical report, University of Waterloo Dept. of Electrical Eng.

Peter Aiken, Ojelanki K. Ngwenyama, Lewis Broome
“Reverse-Engineering New Systems for Smooth Implementation”
IEEE Software, March / April 1999

Reverse engineering PLEX-C code to SDL10 code Page 53
Martin Berg 1999

References

[P8] Peter Aiken
“Data Revere Engineering: Slaying the legacy dragon”
chapter* The necessity of Data Reverse Engineeringtitten by E.J. Chikofsky
McGraw-Hill Companies, USA 1995
ISBN: 0-07-000748-9

[P9] Spencer Rugaber
“Program comprehension”
Technical report, Georgia Institute of Technology, 1995
Available at:http://www.cc.gatech.edu/reverse/repository/encyc.ps

[P10] Jean-Marc DeBaud, Spencer Rugaber
“A software Re-engineering method using domain models”
Technical report, Georgia Institute of Technology
Available at: http://www.cc.gatech.edu/reverse/repository/domain-based-
RE.ps

[P11] John J. Marciniak (Editor in chief),
“Encyclopedia of Software Engineering”,
USA, 1994,
ISBN: 0471-54004-8

[P12] M.G. Rekoff,
“On Reverse Engineering”,
IEEE Transactions on Systems Man and Cybernetics, SMC-15(2), 1985

10.2 Internet Sites [WX]

[W1] Web addressyww.telelogic.se/solution/language/sdl.asp
Telelogic AB

[W2] Web addressvww.webproforum.com/telelogicl/index.html
Telelogic AB

10.3 Internal Ericsson documents [IX]

[I11] Ericsson Radio Systems AB
“CME 20 System Survey Training Document EN/LZT 120 226 R5B”
Stockholm 1996

[12] Lecture by Birgitta Strandberg, Ericsson Radio Systems AB
Hassleholm May 13, 1999

[I3] Ericsson Telecom AB
“PLEX-C1”
Stockholm 1996

[14] Conny Johansson
“Root cause analysis of SDL Reverse”
Ericsson document number 1/0363-4/FCP 105 9017 Rev A

[I5] Barbara Reisner
“Final report for: SDL Reverse prototype (KomPlex)”
Ericsson document number 0363-FCPW 101 34 Rev A

Page 54

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

References

[16]

[17]

(18]

[19]

Tomas Kostenius
“Final report for: SPOT (SDL10 PilOT)”
Ericsson document number EPK/DG-98:051 Rev A

Stefan Persson
“Problem med for madnga FORLOPPs-releaser i APZEmu’n”
Ericsson document number EPK/DX - 98:080

Telelogic AB
“Plex to SDL 1.0 User's Manuél
Id: SMO99-XPR-20 version 1.1

Anna Wetekam
“MSC / SDL10 Layout Guidelines”
Ericsson document number 8/000 21-FCK 114 2004 Uen Rev A

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Page 55

References

Page 56 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

GSM/BSC

GSM /BSC

The GSM system is large and no deeper explanation of the system is done here, except for
one part, the BSC (Base Station Controller). The reason for this is that it is on blocks, or
small parts inside the BSC that reversed engineering will be applied.

A.1 History

GSM (Global System for Mobile communication) was “created” in 1982, as a proposal to
specify a common European telecommunication system. It took many years to decide
what techniques that should be used, for example should it be a digital or an analog sys-
tem, and what access method should be used. Not until July 1, 1991 complete GSM sys-
tems were running all over Europe. All the planning and discussing conducted in that
many operators started at the same time and a very large potential market could open. That
is one reason for the popularity of the system and the fact that the number of subscribers
has grown fast (and still does).

Since the start the GSM standard and all existing systems have been under development.
New services, both for operators and subscribers have been implemented. Also, the num-
bers of subscribers are increasing which affects the load on the system, and therefore the
system needs to be upgraded.

A.2 Techniques and restrictions

GSM is a digital mobile phone system, that uses the TDMA (Time Division Multiple
Access) technique as access method. The TDMA technique has several advantages
towards the broadband alternative FDMA (Frequency Division Multiple Access). It splits

Reverse engineering PLEX-C code to SDL10 code Page 57
Martin Berg 1999

>

&

GSM/BSC U

the time into several time slots (GSM has 8 time slots) and uses each time slot as one chan-
nel, which means several channels per frequency. In FDMA each channel get its own fre-
quency, but instead the bandwidth is higher. Many channels, that TDMA gives, were
chosen instead of the high bandwidth (compared to TDMA) in FDMA (see figure 15). The
time slots in TDMA are separated by a little gap cakipehrd periodto avoid that the time

slots will overlap each other. This is necessary because that the subscribers are moving
during transmission and the fact that the signals take a little time to move from the sub-
scriber to the base station [P1].

The low bandwidth that TDMA gives trespasses on the data transmission rate and on the
sound quality. A technique that is based on how the human speech organ is build solves the
sound problem and reduces the need of a high band width. If a subscriber wants a higher
data communication rate, several time slots can be connected to the same subscriber, i.e.
mobile station (MS), but both the operator and the MS must support this feature. It will
also cost more for the subscriber than a usual phone call [P1].

TDMA
Fi: |o|1]|2]|3]a|5[6[7|0o|1]2]|3]a]5]6[7[0]1]
F2: ([o]|1]|2]|3]|4a|[5[6]|7]0|1]|2|[3[4a]5]6]|7]0]1]
F3: [o|1]|2]|3]|4a|[5[6]|7]0|1]|2|[3[4a]5]6]|7]0]1]
FDMA

F1: | Channel 0
F2: | Channel 1
F3: | Channel 2

Figure 15. Differences between TDMA and FDMA

The bandwidth in an ordinary stationary phone is 64 kbit/sec, and that is only for the
speech. In a GSM phone only 13 kbit/sec are available, and here must signalling be
included. When transferring data from and to an MS, the highest bandwidth is 9.6 kbit/sec
[P1].

A.3 Structure

The overhead design of GSM is divided into two major parts, the Switching System (SS)
and the Base Station System (BSS). These parts contain each several units that have its
own purpose. Figure 16 shows the structure of CME 20, Ericsson’s implementation of the
GSM standard [I11].

Page 58

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

N= GSM/BSC
CME 20 ss
Other telephone
and data networks] @
—{emsc|-—{HLR| [EIR]

SS - Switching System
AUC - Authentication Center | GIWU |—| MSC / VLR |
MXE - Message Center
MIN - Mobile Intelligent Node
GMSC - Gateway MSC BSS
HLR - Home Location Register
EIR - Equipment Identity Register BSC

GIWU - GSM Interworking Unit

MSC - Mobile Service Switching Center
VLR - Visitor Location Register m
0SS - Operation And Support System

BSS - Base Station System
BSC - Base Station Controller 7

RBS - Radio Base Station
MS - Mobile Station

Call connections and —‘
information tr issi
MSs

Information tr

Figure 16. CME 20 system [I1]

As one can see, there are many parts in the CME 20 system. For our purpose, only the BSS
part, and particular the BSC, is of any interest, because it is deep inside the BSC where the
code to be converted (with reverse engineering) can be found.

In simple terms the SS part connects an MS to either another MS, or terminal, in the same
net, or another phone (stationary or cellular), terminal or server, in another net.

The units inside the SS part that are connected with dashed lines are servers that holds
information about which MS’s that are connected to the system right now, and where they
are. There is also a database in which the system can check if a certain MS are not stolen
or in another way not permissible to use the network [I1].

The OSS unit contains functions to overview the network, and the MXE unit contains
functions for SMS services, voice and fax mail, and cell broadcast. The MIN unit handles
the intelligent network services in CME 20 [I1].

A.4 BSC

The BSC is located in the BSS part. Its purpose is to handle all the radio-based functions in
the system. The BSC controls underlying RBS’s (Radio Base Station, called BTS in the
GSM standard) and the BSC in CME 20 can handle many RBS’s. This feature reduces the
traffic between BSC’s and MSC'’s, but it brings a need of a powerful and complex BSC
[11].

Reverse engineering PLEX-C code to SDL10 code Page 59
Martin Berg 1999

>

&

GSM/BSC U

A BSC makes lots of things. Over a million of calls per day are handled and distributed by
a single BSC. The basic functions, that a BSC has, are [I1]:

* Radio network management

* Radio network performance monitoring

e QOperation, maintenance and administration of RBS
e Speech coding and rate adaptation

* Transmission management towards RBS

* Handling of the radio resources during MS connection

The BSC itself is divided into subsystems and these are shown in figure 17.

| ccs-7 || Res || LHs |

|RTS | [ROS | [Gss | | TAS|

APT El

| APZ |

Figure 17. Subsystems inside BSC

Some of the subsystems are divided into blockgroups, and in the subsystem RCS we have
a blockgroup called CPR. It is inside this blockgroup where the blocks to be converted can
be found.

Figure 18 will show in another way where the interesting blocks can be found in the CME
20 system.

Page 60

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

GSM/BSC

(CME 20)
BSS
BSC
APT <
]
RCS &3
v | 8
YHHE
- -
e | S EIRIE|E
ook || = o | £ |85 |2
u:gu
bioek] HEIEIE
2] ~|n
_ J

Figure 18. Block hierarchy inside CME 20

The functions handled by these blocks are among others paging, signalling connection
setup, assignment, handover, resource level supervision, cipher mode control, classmark
distribution, transfer of BSS transparent messages, short message service (SMS), connec-
tion release and traffic event measurement in radio network [I2].

A.5 Function explanations

The functions were explained by [12].

A.5.1 Paging

In the stationary telephone network all telephones, or terminals, are connected to a fixed
point. The network knows all the time where this specific terminal is. If we want to move
the terminal, the connection point will be changed, but this rarely happens during a phone
call. In a cordless network, like GSM, there is no fixed connection point for an MS. When
someone calls an MS the network has to ask the specific phone where it is. This is called
paging. Paging is costfull, because if the network has no idea were the MS is located, it has
to page its hole supplying area. This would break down the network in a few seconds.
Instead all MS’s has to register themselves when they are turned on or when they change
location area. A location area consists of a number of cells. They can be under the same
BSC or under different BSC’s, but they have to be under the same MSC. The MS must also

deregister when it is turned off, so the paging procedure does not load the net too much
[P1].

The paging function is used when the GMSC wants to know exactly where a specific MS
is located, for example when someone from another network is calling the MS. But since

Reverse engineering PLEX-C code to SDL10 code Page 61
Martin Berg 1999

>

GSM /BSC

the MS is located in a location area, the paging is done just there, and only if the network
is not highly loaded [P1].

A.5.2 Handover

Handling handovers is a major part in the BSC. The handover concept means that an MS
change its communication channel to the system in some way. This is done to maintain
good radio transmission quality, save calls from being disconnected or blocked, or regulate
the load on the system. Handovers can be within the same cell or between two cells [I2]. A
cell is a small geographical area with a set of frequencies [P1]. One antenna often repre-
sents one cell.

Three different cases of handovers can occur [I12].

1. Intra BSC, Inter Cell handover. Handover between two cells controlled by the same
BSC.

2. Inter BSC handover. Handover between two cells controlled by two different BSC:s.

3. Intra BSC, Intra cell handover. Handover inside the same cell.

The last item can be little strange. Why making a handover inside a cell? Suppose that the
frequency that the communication are held over, are reflected (by buildings etc.) in a

strange way, and the receiving condition gets poor. By changing frequency (and also time
slot) the receiving condition can be improved.

|Bsc| |Bsc|

Figure 19. Different handover cases

Figure 19 shows the three handover cases. The second case can occur in many ways, both
under the same MSC and under different MSC’s. It is the BSC who decides whether a
handover will be done or not, based on, for example receiving conditions [I1].

A.5.3 Signalling connection setup

When a connection is going to be established between an MS and the GSM net, signalling
is done over a common channel. To release this channel to other new connections, a new

Page 62 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

GSM/BSC

channel has to be allocated. This function handles the transfer from a common signalling
channel to an allocated channel.

A.5.4 Assignment

To set up a phone call much signalling is needed in the beginning. The phone number is
one small part of all the data that has to be exchanged before the phone-call is totally set
up so the subscriber can start to talk. When all signalling is done, the connection will be
transferred from a signalling channel to a traffic channel and that is done by the assign-
ment function.

A.5.5 Resource level supervision

If some connections require more than one time slot (e.g. data transfer), but not enough
time slots are available, this function tries continuously to upgrade these connections to the
required amount of time slots, i.e. when a time slot is released from another connection, it
is allocated by this connection.

A.5.6 Cipher mode control

Data sent between an MS and the GSM net is always encrypted. This function selects and
sets an encryption alternative that is both permitted by the MSC and supported by the MS.

A.5.7 Classmark distribution

This function retrieves information from the MS about its capabilities. It can be RF power,
ciphering algorithms and multislot class.

A.5.8 Transfer of BSS transparent messages

With this function data is sent transparent through the BSS, i.e. a kind of direct contact
between the MS and the MSC. This is used for instance to send the dial tone or noise. The
noise is sent in convenient purpose. When the person that the subscriber of the MS is talk-
ing to is quiet, no sound is sent to the MS, but to ensure the MS subscriber that the connec-
tion still exists, noise is sent to the MS.

A.5.9 Short message service (SMS)

Short messages are text messages (up to 160 characters) that can be sent from and received
by an MS. A special server, the MXE unit, handles and distributes these messages and they
are sent transparently between the MS and the MXE.

Reverse engineering PLEX-C code to SDL10 code Page 63
Martin Berg 1999

GSM /BSC

A.5.10 Connection release

A connection can end in many ways, and can happen for instance when a phone-call is
ended, the MS is handovered to an BSC external cell, hardware faults occurs or the MS is
considered lost (too far away from any antenna). This functions handles this and releases
all occupied resources e.g. channels.

A.5.11 Traffic event measurement in radio network

This function is the statistical part in the system. It counts different events in the system
such as assignment attempts, dropped connections and handovers. With help from this data
the status of the system can be defined, and if necessary, adjustments can be done.

Page 64 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Abbreviations

Abbreviations

Abbreviations

Acronym Explanation

ADT Abstract Data Type

ASA AXE 10 processor assembler language

ASN.1 Abstract Syntax Notation one

AST Abstract Syntax Tree

AXE Ericsson’s well famous exchange
BSC Base Station Controller

BSS Base Station System

BTS Base Transceiver Station

CAD Computer Aided Design

CASE Computer Aided Software Engineering

CCITT ITU-T's old abbreviation

CME 20 Ericsson’s implementation of the GSM standard

CPR Connection PRocess, a blockgroup inside the RCS subsystem in CME 20
DECT Digital Enhanced Cordless Telecommunications
Reverse engineering PLEX-C code to SDL10 code Page 65

Martin Berg 1999

Abbreviations

Abbreviations
Acronym Explanation
DOA Department of Accounts
DP&T Department of Personnel & Training
EFSM Extended Finite State Machine
FDMA Frequency Division Multiple Access
FSM Finite State Machine
GMSC Gateway Mobile service Switching Centre
GSM Global System for Mobile communication
HMSC High level MSC
HSDL High level SDL
ITU-T International Telecommunication Union - Telecommunications Standardizat
Sector
MIN Mobile Intelligent Node
MS Mobile Station
MSC Message Sequence Chart (in SDL environment)
MSC Mobile service Switching Centre (in CME 20 System)
MXE Message Centre
NMT Nordic Mobile Telephony
0SS Operation and Support System
Pld Process Id
PL Parameter List
PL/IX Programming language developed by IBM
PLEX-C Programming Language for EXchanges, C-version
PLEX-M Programming Language for EXchanges, M-version
PLEX2SDL | Reverses PLEX-C code to SDL10 code (same as reverse tool)
RBS Radio Base Station
RCS RadioControl System, a subsystem inside the BSC in CME 20

Reverse tool

Reverses PLEX-C code to SDL10 code (same as PLEX2SDL)

on

Page 66

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Abbreviations

Abbreviations
Acronym Explanation
SD Signal Description
SDL Specification and Description Language
SDL10 Adaption of SDL to fit Ericsson’s needs
SDL2PLEX | PLEX-C code generator in Tau (generates PLEX-C code from SDL10 codeg)
SDLtool Adaption of SDT to fit Ericsson’s needs
SDT SDL Design Tool
SMS Short Message Service
SPI Source Program Information
SPL Source Parameter List
SPOT SDL PIlOT
SS Signal Survey (in PLEX-C documentation)
SS Switching System (in CME 20 System)
Tau Telelogic’s development environment for SDL
TDMA Time Division Multiple Access
TheMAT | The Metadata Access Tool
TTCN Tree and Tabular Combined Notation
Reverse engineering PLEX-C code to SDL10 code Page 67

Martin Berg 1999

Abbreviations

Page 68 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

Conversion process

Converting source code from PLEX-C to SDL10 is not difficult, but there are many steps
to perform before a complete and validated SDL10 implementation of the origin PLEX-C
code exists. This process helps a designer execute a conversion. The reverse tool
(PLEX2SDL) is used to do the major part, but it can neither convert all statements in the
source code, nor evaluate what parts that should be in different processes.

The process is written on the basis that the reader is familiar with the SDL environment
and the differences between PLEX-C and SDL10. It describes “one block at a time” con-
version, but if several blocks should be converted, the process should be executed once per
block. The process is divided into different phases for different tasks. Each phase is
described with an activity flow that shows step by step how to do.

To make the process evaluation phase valuable, it is important to take notes about the proc-
ess during the conversion.

Some steps that should be included in the process is excluded since they were never exe-
cuted in our work. These steps handles document handling and some document producing
(according to Ericsson’s development process), but they should be similar as within Erics-
son’s normal development process.

In the process théesigneris the person who executes the conversion process, and the
main projectis a project concerning several blocks to be converted.

Reverse engineering PLEX-C code to SDL10 code Page 69
Martin Berg 1999

Conversion process

C.1 Time estimations

The KomPlex project in Aachen [I5] resulted in formulas for calculating the total time for
a conversion of a block. Since this is confidential information and intended to be used by
Ericsson personnel only, the formulas are not presented here but can be retrieved in [15].

C.2 Activities

The process is divided into eight phases as figure 20 describes. Each phase is divided into
a number of steps, or activities that should be performed. Besides the activities, the pur-
pose, hints, comments and input / output denoted to the phase is described too.

(Preparations)

I
(Convert Signals)

I

(Reverse PLEX-C Code)
I

(Add & Correct)
I

(Clean Up)

I
C Generate PLEX-C Code)

I
C Basic Test)

C Process Evaluation)

Figure 20. Phases in conversion script

Page 70

Reverse engineering PLEX-C code to SDL10 code

Martin Berg 1999

Conversion process

C.2.1 Preparations

Purpose

This phase is intended to prepare and setup a single block conversion project.

Input
e The block that will be converted.
¢ File GeneralRoutines.sun
* File PlexTypes.sun
¢ File commandRoutines.sun
¢ File [blockname].ssurv
¢ File [blockname].param
* File [blockname].program

e File [blockname]_ETI.script (may be named different)

Output

* A UNIX directory structure with necessary documents in place.

Reverse engineering PLEX-C code to SDL10 code Page 71
Martin Berg 1999

Conversion process

Activities

Preparations

1 —1 Setup Environment

|

2 — Fetch Documents

|

3 —1 Check Validity

|

4 — Analyze Source Code
|

5 1 Test And Adapt ETI

|

6 —1 Copy Files

|

7 —1 Arrange SDLtool Organizer

onvert Signals

1. Setup environment

A UNIX directory structure must be created. The structure is defined by the main project,
but how the structure is built up does not affect this process except for the following excep-
tions:

* An empty directorysignals , must exist in the directory where the SDLtool associ-
ated files are stored, egadt files.

* The fetched files (described below) and their analyzed outcome must be stored in
the same directory.

The directory structure shown in figure 21 is a proposal, and we refer to this structure in
this process. Note that the structure is for one block only, and each new block that will be
converted must have its own directory structure.

Page 72

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

* CNT

m | target | | *_CAA107 |

Figure 21. Directory structure for a reverse project

The asterisk (*) should be replaced with the blockname. When the directory structure is
created, three files must be copied into it. They are stored in the SDLtool installation direc-
tory, but must be copied into this project directory, since updates of these files may affect
the project. Often these files are already copied to the main project and these files can be
linked from there. The files are:

® GeneralRoutines.sun
® PlexTypes.sun
¢ CommandRoutines.sun
These files are called packages, and holds procedures and type-definitions that makes the
conversion easier. A copy of them or a link to them shall exist itbth&lder.
2. Fetch documents
Get all documents related to the block that will be converted. The documents are

® [blockname].ssurv

® [blockname].param

® [blockname].program

* [blockname]_ETI.script (may be named different)
and should be stored in thecAA107/src folder.

3. Check validity

To avoid that time are spend on a block that is impossible to convert, an analysis of the
block, by the designer, should be done to evaluate the block’s complexity. Since inconvert-
ible parts are hard to find, very good knowledge of both SDL10 and PLEX-C, and knowl-
edge of the differences between the two languages is necessary. Help from block
responsible and well experienced PLEX-C designers could be valuable in this step. Incon-
vertible parts may be implemented as inline expressions (PLEX-C statements inside the
SDL10 code), but this is not desirable since this code cannot be tested in SDLtool. A re-
design is then preferable, but takes longer time. If an inconvertible block is converted, the
designer will be notified of the inconvertible parts during the process.

Reverse engineering PLEX-C code to SDL10 code Page 73
Martin Berg 1999

Conversion process

4. Analyze source code

The[blockname].anapgm file is needed by the reverse tool and is retrieved by analyzing
the fetched files except the ETI (described above), in the order stated above. Errors that
have risen during analyze must be fixed before continuing. Warnings are not necessary to
correct, but some of them may need to be corrected in the converted code (at SDL level).
5. Test and adapt ETI

To test the converted block, when the conversion is finished (basic test), a correct ETI
script is needed. Test the ETI and if needed, correct either the ETI or the source code
(depending on fault) so that all test cases pass their criteria. Probably the ETI is correct,
but one problem forces the designer to adapt the ETI. The problem denotes failure with the
emulator and forlopp signals. This is solved by importing a block (MFM) to the dump and
make changes in the ETI. The changes concern forlopp signals. The document [I7]
describes this problem in more detail.

6. Copy files

To test the system after conversion, the files in step four and five are needed. Copy the fol-
lowing files from the_caA107/src directory to thearget directory:
® [blockname].ssurv
¢ [blockname].param
¢ [blockname].anapar
* [blockname]_ETlI.script (may be named different)
7. Arrange SDLtool Organizer
The environment in SDLtool's organizer must also be configured. The steps to do this are:

e Start with an empty document.

¢ Set the directories and mark the buttonRetative file names
Source Directory is the same as where the system will be saved, i.esdilsec
directory.
Target directory is were PLEX-C generated code should be stored, e.i. the direc-
tory namedarget

* Add two new chapter§ource FilesandGenerated PLEX-C

* Import [blockname].program and plockname].ssurv files from the* CcAA107/
src directory under th&ource fileshapter.

e Save the system with an appropriate name, sugibeégame].sdt

Hints and comments
To understand the source code easier, the origloal Chartis useful.

Page 74 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

C.2.2 Convert signals

Purpose

The signals used by the block must be converted into SDL signals. Much effort from the
designer is needed and a fault introduced here will strongly affect the implementation at
SDL level. For that reason the effort in this phase will be reflected in the total process time.
The most important part is thegnals.data file which holds information about all sig-
nals in the main project. It says what parameters in the PLEX-C signal thaeatkéng
individual, sending blockreferenand/orreceiving individual More about these concepts

in section Activities.

Input
® [blockname].program
® [blockname].ssurv
* signals.data

* signal descriptions

Output
* signal package

¢ data insignals.data

Reverse engineering PLEX-C code to SDL10 code Page 75
Martin Berg 1999

Conversion process

Activities

Convert Signalls

1 I—1 Produce A List Of Interesting Signals
|

2 —1Signal Data

|

3 1 Save Signal data

|

4 I—1 Generate Signal Package

Revegrse PLEX-C Gode

1. Produce a list of interesting signals

All signals in the signal survey are not of interest at SDL level and do not need to be con-
verted. The reason is that some parts in the source code are automatically generated and do
not exist in SDL. These parts aBtart/RestartSize Alteratiorand Scanning individuals

The affected signals are:

* STTOR/STTORRY

* SETFS/SETFSEND

* GIVEFS/GIVEFSEND

* CONTFS/CONTFSEND
* CONTINUEB / CONTINUEC
* CLSCAN{n}/ CLTIMEO

Remove these signals and all dummy signals (document number is dummy) from the sig-
nal survey imported in the Organizer. Make a copy of that signal survey, nasie it
nals.data , remove all signals’ document numbers and store the new file iadthe:

directory. This file should include the remaining signal names on one line each and use this
file when performing the following step.

2. Signal Data

For each signal, find out what parameters in the signal th&ersding IndividualSl),
Sending BlockreferencésSB) andReceiving IndividualRI). When doing this part, the
focus should be on the block that will be converted. A parameter can only be one of the

Page 76 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

types RI, Sl or SB. RI and Sl parameters are often catleskr which often the first
parameter in the signal description. The parameter is Rl if the signal is received by the
block and Sl if the block sends the signal. If the signal is both received and sent by the
block, the parameter should be RI. Signals that have an Rl parameter will be sent to the
individual process in SDL, and signals without RI will be sent to the block process. Signal
descriptions and comments in the source code often tells if a parameter is SB.

Any exact rules for what parameters that are Sl, Rl and SB does not exist, but the designer
must know the block well and if necessary make some “trail and error”.

The parameter information is stored as numbers after the signal's name #igthe
nals.data file. The syntax is

<signal name>rb s

wheresignal name is the name of the signal,is the parameter number that is Rlis the
parameter number that is SB agts the parameter number that is Sl. If a type does not
exist in the signal, the corresponding or s is set to 0. An example:

RMGETTARGDAT 100
RMGETTARGDATACK 00 1
RMGETTRANSMRES 02 1

This means that the first parameter in #@GETTARGDAgiIgnal is Rl and Sl in the other
two signals. Parameter 2 is SB in tRREGETTRANSMRB®&nal. The zeros mean that there is
no parameter of that type.

Do this step for all signals left in the signal survey.

3. Save signal data irsignals.data
It is not necessary to update the globighals.data file that stores data about all signals
ever converted. To avoid that unnecessary effort is put on signal conversions, i.e. retrieving
signal data for one signal several times, an update is recommended. The permission rights
to the globakignals.data file is decided by the main project.
4. Generate signal package

* Mark the imported and modified signal survey in the Organizer.

¢ Select menteverse -> Generate SignalPackage

If no errors were found, a signal package nanpgektkname]signals occurs in the
Organizer, but if the generation was unsuccessful some files have to be removed before a
new package can be generated. The affected files have the ecitlingsd sun.

Unfortunately the place where the corresponding package file is stored in the directory
structure is incorrect. Do the following steps to correct that:

* Remove the package form the Organizer

Reverse engineering PLEX-C code to SDL10 code Page 77
Martin Berg 1999

Conversion process

* Move the filelblockname]signals.sun from thesrc directory to theib directory
(both under thedl directory) since all packagesygn files) shall be stored in here.

* Import the moved file under chap@bL Block Design.
The package will appear again but it is now stored in the correct directory.

Hints and comments

When performing step two, some signals may already be examined and data about them
are already stored in thgnals.data file. Parameter data for these signals are not neces-
sary to purchase, but since the data have been retrieved from another point of view, the
data can be incorrect and has to be changed. It is recommended to examine all signals left
in the signal survey and compare double signals.

Page 78

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

C.2.3 Reverse PLEX-C code

Purpose

In this phase the reverse tool (PLEX2SDL) will be used to partly convert source PLEX-C
code to SDL10 code.

Input
The following files:

¢ [blockname].program
¢ [blockname].anapgm

® signals.data

Output
* An SDL block that partly describes the origin PLEX-C block.

¢ file [blockname].cov

Activities

Revegrse PLEX-C Gode

1 — Convert SPI

|

2 — Move Packages
|

3 — Type Package

|

4 1 Signallists

Add & Correct

1. Convert SPI
¢ Mark the[blockname].program file in the Organizer.

* Select menreverse -> PLEX-C to SDL

Reverse engineering PLEX-C code to SDL10 code Page 79
Martin Berg 1999

Conversion process

The system will be busy for a while and meantime its status will be presented in the log
window. After a couple of minutes (depending on the block’s size) the automatic conver-
sion process is done and errors and warnings may be presented in the log window. If errors
occur they must be corrected before the block can be correctly converted. No SDL code is
generated. The designer should be aware of the warnings and if possible correct them, but
it is not necessary before continuing the process. If this step is re-executed, some files have
to be removed first. Type the following command inddarc directory:

rm -i *.ssy *.sbk *.spr *.spd

In the file [blockname].cov unconverted statements and statistics are presented. This file
is used to manually convert the untreated statements. These statements are/tuéded
spots

2. Move packages

In the Organizer lots of symbols will appear. The new packages are incorrectly stored in
the directory structure and have to be moved. Remove the packiaggses andGen-
eralRoutines from the Organizer and delete corresponding files instiierc folder

(the files are linked). Import the removed packages fromithefolder in the Organizer
under the same chapter as they were before they were removed.

3. Type package

In the block, structured variables will receive values from signal parameters, and due to
that the signal parameters must also have the same structure. That is the reason for moving
out type definitions to a separate package. It is suggested to use a “standard type defini-
tion”, an already defined type package that is standardized to avoid type conflicts between
blocks, especially the signal parameters must have some “standard” structure which is
defined by the signal coordinator.

The signal package must also be referenced by the block.

* Add a new package to the system and cgildtkname]types
* In the type definitions for the block, cut all except the synonym definitions.
e Add the cut definitions in a new text box inside the previously added package.

* Add areference to theextypes package in the new package by typioge plex-
types; in thepackage referencgymbol.

* Add a reference to the new package in both the signal package and in the system
level layout, by typin@JSE [blocknamel]types;

* Add a reference to thBlockname]signals package in the system level layout.
4. Signallists

Hopefully the reverse tool will construct all signallists, but sometimes it won't (an error
reported to Telelogic). Check if all signallists (four) exists in the system level. If not, they
have to be made manually by checking where each signal is going, i.e. to/from individual

Page 80

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

or block process. Both thegnals.data file and thesignal surveyare helpful here. Sig-

nals witho 0 0 in thesignals.data file goes to/from the blockprocess, and most of the
others goes to/from the individual process. The signal survey is used to see the direction of
the signals.

Reverse engineering PLEX-C code to SDL10 code Page 81
Martin Berg 1999

Conversion process

C.2.4 Add and correct

Purpose

The parts that the reverse tool did not convert have to be converted manually. Most of these
whitespots are easy to convert, and some of the untreated statements are automatic gener-
ated by the PLEX-C generat@D(2PLEX).

There will also be type conflicts that has to be resolved.

Input
* Partly correct converted SDL block.

Output
* More correct SDL block

Activities
1 I—1 General Whitespots
|
2 — Timers
|
3 1 Type Conflicts
|
4 —1 Sending Of Signals
|
5 —1 Analyze SDL Code
|
6 I Correct Errors

Clean Up

Page 82 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

1. General Whitespots

The code that were not converted into SDL are called whitespots. These whitespots are
mostly automatic generated code which needs directives to be correct. The reverse tool’s
work instruction [I8] page 62 and forward, describes how to recover whitespots. The steps
in the work instruction are related to most of the untreated statements described in the
.cov file. Some whitespots may be:

e Size Alteration - except for the steps in the reverse manual, check if there is a

seizé of an individual or the individuals are mapped between blocks. If the latter,
the individual processes are not created dynamically, but are started directly and for
that reason the number of processes at start, and the maximum of processes are set
to the value that theAxdirective has.

* Process start / creation as described for size alteration, it is not always necessary
to create individual processes. If the individuals not are created, they must never be
terminated, instead they should jump toithe state.

* Timers - for more information in addition to the reverse manual (see below).

* Forlopp handling - Often comments in the SDL code says what should be imple-
mented.

» Start/ restart - Global start / restart procedures are already constructed, but for the
individuals they have to be made manually.

2. Timers

The automatic generated code facanning Individualsre only generated ifimersare

used. For that reason timers on PLEX-C level must be converted to SDL timers. The timer
variable at PLEX-C level is often calledMER (or similar). All statements (in SDL) where

this variable is set to a value (use search in SDL editor) have to be replaced with the SDL
timer instructionseT or RESET Beware of that type conflicts may occur, but this problem is
solved by using the subproced@avertToDuration

When a timer expires, a signal is sent to the process. The signal is called the same name as
the timer. In PLEX-C timeout signals are often calleseouT{n} . Either the timers must

be named after these signals, or the receptions of the timeout signals must be changed to
the timers name. Which one of these the designer choose does not affect the system at all.

The timer functionality is implemented in PLEX as a variable which increases periodi-
cally. The value of the variable may never be zero (it is used in divisions), and for that rea-
son its initial value is one and it is periodically increased with the value two. Remember
that PLEX-C variables are positive and cyclic, FEFF,g, + 1lpex = 0000 . The timer
functionality which the SDL2PLEX generator implements works different. Instead of
increasing with the value two, the value one is used. To avoid division with zero, a condi-
tion is setup before each increase, and if the valwEs, ., it is changed to one, other-

1. Seize an individual means allocate resources for it.

Reverse engineering PLEX-C code to SDL10 code Page 83
Martin Berg 1999

Conversion process

wise an increase is performed. This means that it will take two times longer until the
timers expires. This problem is solved by changing the assignments of the timer length
variables to their half values. These variables are assigned in the beginning of the program
(start transition of block process) and are used when setting timers in the code.

3. Sending of signals

This step concerns only sending of signals with a specified receiver, i.e. a send signal sym-
bol with theto keyword. The reverse tool has difficulties to convert the receiver correct,
wrong or unassigned variables are used. This fault is not found by neither the SDL ana-
lyzator nor the PLEX-C generator, but maybe in Basic test, i.e. the fault may not even be
found within this process.

* Look up all sending of signals with the keyword and check if the receiver is cor-
rect (correct and assigned variable).

4. Type conflicts
Between signal parameters and variables, type conflicts will occur, because all signal
parameters are declared 16 . This is easy to solve with help of the analyzer. This is
explained further in step 6.
5. Analyze SDL code

* Mark the system and sele&tnerate -> Analyze

* SelectSyntactic analysjsSemantic analysigandCheck output semantics

* Presd-ull Analyze.
6. Correct Errors / Warnings
Errors highlighted when analyzing the system must be corrected before continuing. Take
notice about the warnings, and if possible correct them too.

When converting signal parameter types, the structure of a parameter should be similar to
the structure defined by the signal description. Variables in the block that have some con-
nection to a signal parameter should have that signal parameter’s structure, and if that is
impossible, macros for converting between structures must be implemented.

When some (or all) errors / warnings are corrected, go back to step 5 to analyze the sys-
tem.

Hints and comments

After first analyze, use the Analyze quick button.

Page 84 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

C.2.5 Clean Up

Purpose
This phase intense is to clean up unused variables and make the code more readable.

Input
¢ Fully analyzed and corrected SDL block

Output
* Cleaned up SDL block

Activities
Clean Up
1 1 Clean Up Unused Variables
2 I—1Clean Up SDL Code

Gengrate PLEX-C Code

1. Clean up unused variables
* Mark the system and sele&tnerate -> Analyze
* Select same options as in phase 4 step 5, but alsoGhkxk unused definitions
* Presdull Analyze.

Warnings reported on thglextypes and GeneralRoutines ~ packages, and on unused
start/restart procedures shall be ignored, but all other warnings should be fixed. Since all
errors were fixed in the previous phase, non should be reported here.

2. Clean up SDL code

This step is optional, but should be used to make the code easier to follow and understand.

* Go through all pages in the SDL code and make layout improvements described in
[19].

Reverse engineering PLEX-C code to SDL10 code Page 85
Martin Berg 1999

Conversion process

C.2.6 Generate analyzed PLEX-C code

Purpose

In this phase analyzed PLEX-C code will be produced, and also an adjusted and analyzed
signal survey. Note thatll referred files are stored in the target directory

Input
e analyzed SDL block
» original signal survey
» original parameter filegaram)

* analyzed parameter filefapar)

Output
* Analyzed PLEX-C code
* adjusted signal survey

e analyzed signal survey
Activities

Gengrate PLEX-C Code

1 —1 Adjust Signal Survey
2 1 Generate PLEX-C Code
3 —] Analyze Generated Code

1. Adjust signal survey

* Replace signalsONTINUEGAaNndCONTINUEEIN the signal survey with:
CONTINUECSAE 71168 /155 14 - ANT 292 01

* Analyze the signal survey

Page 86 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

2. Generate PLEX-C code

* In SDLtool: Mark the system and seleGenerate -> Make . The Make window
appears.

* Make sure thaf\nalyze and generate codeselected, antMakefileandCompile &
Link is deselected.

* SelectpLEX as Code generatoand make sure that tharget directoryis correct
according to phase 1. Click ¢ull Make

» If errors occur, correct them and restart from phase 4 step 5, otherwise continue.
* Import the generated code under @enerated Codehapter.
* Remove SDT references.

* Break lines longer than 112 characters in the generated code (otherwise the analyzer
will dead lock).

3. Analyze generated code
* Analyze the generated PLEX-C code (willingly with the compile option)

* Found errors shall be corrected in the SDL code, and then restart from phase 4 step
5.

Hints and comments
Lines longer than 112 characters are oftRANSFORIgtatements.

Reverse engineering PLEX-C code to SDL10 code Page 87
Martin Berg 1999

Conversion process

C.2.7 Basic Test

Purpose

Adapt the ETI to the generated PLEX-C code, and check that the conversion process not
implemented any faults.

Input
e ETI script that is OK towards the origin source code

Output
e SDL block fully PLEX-C basic tested
e Adapted ETI

Activities
1 —1 Generate Dump
|
2 1 Adapt ETI
|
3 —{Run Basic Test

Pr

pcess Evaluation

1. Generate dump
Generate a dump of the source code as in usual PLEX-C development. Remember that if
the MFM block was needed before, it is still needed (forlopp problems with emulator).
2. Adapt ETI
Variables have changed names with the conversion. This must be changed in the ETI.
Some of the affected variables are

¢ CINDUM-> CXGEN[process name]NUM

* COWNREF-> CXGENOWNREF

® STATE-> XGEN[process name]STATE

Page 88 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

Conversion process

¢ OCCUPATIONFLAG-> XGEN[process name]STATENOTIDLE

® CCLOCK-> CXGENCLOCK

® CSCANNING-> CXGENCLOCKPERIOD

* CPREPNUM-> CXGENMSMTAPDATAPREPNUM

* FLCONNFIDTASK-> XGENTASKDATAFLCONNFID

* CFLSTATUS-> XGENTASKDATAFLSTATUS
Note that the old variable name may differ. Rest of the affected variable names have to be
found out manually by “trail and error”.

If the ETI enumerates the states, the order of them is important. Check in the generated
PLEX-C code where the states are enumerated, the same order must be used in the ETI.

When checking timers, their names are the same as in the SDL environment.
More adaptation hints are described in [18], page 142 and forward.

3. Run Basic Test

Run basic test as in usual PLEX-C development. Errors found may have its origin either in
the SDL code or in the ETI. If the latter, correct the ETI and restart this step, otherwise
correct the fault at SDL level and restart from phase 4 step 5.

Note that some errors can not be corrected though. It is errors according to the automatic
generated code. In this caBeuble Reportsnust be written and delivered to Telelogic.

4. Hints and comments

To find errors that was found in basic test, one can simulate the block in the SDL environ-
ment. If you choose to simulate in the SDL environment, and if individuals are created
during start up, don't forget to temporary change the number of individuals to a few, other-
wise the system will be very slow.

Reverse engineering PLEX-C code to SDL10 code Page 89
Martin Berg 1999

Conversion process

C.2.8 Process evaluation

Purpose
Evaluate and improve this process.

Input

e Experience of this process.

Output

* Improved process.

Activities

pcess Evaluation

1 — Write Report

Pr

2 1 Deliver Report

1. Write report

Write a report on basis of collected comments and experience from an execution of this
process.

2. Deliver report

Send the report to the process owner so he/she can update the process.

Hints and comments

Make notes while running the script.

Page 90 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999

	Reverse engineering PLEX-C code to SDL10 code
	Martin Berg Dep. of Communication Systems Lund Institute of Technology
	Abstract
	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 Problem statement 5
	Chapter 3 Related Work 7
	Chapter 4 PLEX-C 21
	Chapter 5 SDL 25
	Chapter 6 Comparisons - SDL vs PLEX-C 35
	Chapter 7 Reverse PLEX-C code 39
	Chapter 8 Conclusions 47
	Chapter 9 Acknowledgements 51
	Chapter 10 References 53
	Appendix A GSM / BSC 57
	Appendix B Abbreviations 65
	Appendix C Conversion process 69

	Introduction
	1.1 Overview
	1.2 Our work
	Figure 1. Our work in the software development

	1.3 Organization
	1.4 Reading guidelines
	1.4.1 Designer
	1.4.2 Test engineer
	1.4.3 Reverse tool purchaser
	1.4.4 Quality manager

	Problem statement
	2.1 Background
	2.2 Problems
	1. Is it possible to apply reverse engineering on PLEX-C blocks? The tool that we will use for th...
	2. If it is possible, on what type of blocks can we apply reverse engineering? Since the blocks c...
	3. How long time will it take to convert a special block? Is it difficult to convert a block, and...
	4. How is the reverse engineering applied to blocks? This question will be answered with a proces...

	Related Work
	3.1 Reverse engineering
	Figure 2. Forward and reverse engineering

	3.2 Methods
	Figure 3. Reverse Engineering - The process and abstraction differences

	3.3 Related activities
	3.3.1 Redocumentation
	3.3.2 Design recovery
	3.3.3 Restructuring
	3.3.4 Re-engineering

	3.4 Tools
	3.4.1 Compilers
	3.4.2 Restructurers and beautifiers
	3.4.3 Translators
	3.4.4 Parallizers
	3.4.5 CASE tools

	3.5 Balance between reverse and forward engineering
	Figure 4. Differences between a. classical and b. harmonic software engineering

	3.6 Practical use of reverse engineering
	3.6.1 Year 2000 problem
	3.6.2 Data reverse engineering [P8]
	3.6.3 Data conversion [P7]
	3.6.4 PL/IX - C++ [P6]
	3.6.5 SDL Reverse [I4]
	3.6.6 KomPlex [I5]
	3.6.7 SPOT [I6]

	PLEX-C
	4.1 History
	4.2 Versions
	4.3 System
	4.3.1 Standard

	SDL
	5.1 Description
	5.2 History
	5.3 Benefits
	5.4 Telelogic Tau
	Figure 5. Telelogic Tau

	5.5 SDLtool
	5.6 The SDL language
	5.6.1 Components
	Figure 6. SDL system

	5.6.2 The layout of SDL
	Figure 7. SDL Process

	5.7 SDL10
	5.8 MSC
	Figure 8. MSC

	Comparisons - SDL vs PLEX-C
	6.1 Similarities
	Figure 9. SDL vs. PLEX-C environment development

	6.2 Differences
	Figure 10. Individuals in PLEX-C and SDL

	6.3 Conclusions for similarities and differences

	Reverse PLEX-C code
	Figure 11. The reverse tool within the reverse process
	7.1 Block division
	7.2 Reverse tool unsupport
	7.3 Automatic generated code
	7.4 Time estimation
	7.5 Reverse tool in our work
	Reverse Data
	7.5.1 Problems
	Figure 12. Signal mapping
	Figure 13. Variable structures
	Figure 14. Variable assignments with different sized variables

	Conclusions
	8.1 Differences
	8.2 Future work

	Acknowledgements
	References
	10.1 Public Resources [Px]
	[P1] Ericsson Telecom AB, Telia AB “Att förstå telekommunikation 2” Studentlitteratur, Lund 1998 ...
	[P2] Telelogic AB “Introduction to SDL and SDT” rev 3.2, 1997
	[P3] Mark van den Brand, Paul Klint, Chris Verhoef “Core Technologies for System Renovation” Tech...
	[P4] E.J. Chikofsky and J.H. Cross “Reverse engineering and design recovery: A taxonomy” IEEE Sof...
	[P5] Ferenc Belina, Dieter Hogrefe, Amardeo Sarma “SDL with applications from protocol speceficat...
	[P6] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Mueller, J. Mylopoulos “Code migration t...
	[P7] Peter Aiken, Ojelanki K. Ngwenyama, Lewis Broome “Reverse-Engineering New Systems for Smooth...
	[P8] Peter Aiken “Data Revere Engineering: Slaying the legacy dragon” chapter “ The necessity of ...
	[P9] Spencer Rugaber “Program comprehension” Technical report, Georgia Institute of Technology, 1...
	[P10] Jean-Marc DeBaud, Spencer Rugaber “A software Re-engineering method using domain models” Te...
	[P11] John J. Marciniak (Editor in chief), “Encyclopedia of Software Engineering”, USA, 1994, ISB...
	[P12] M.G. Rekoff, “On Reverse Engineering”, IEEE Transactions on Systems Man and Cybernetics, SM...

	10.2 Internet Sites [Wx]
	[W1] Web address: www.telelogic.se/solution/language/sdl.asp Telelogic AB
	[W2] Web address: www.webproforum.com/telelogic1/index.html Telelogic AB

	10.3 Internal Ericsson documents [Ix]
	[I1] Ericsson Radio Systems AB “CME 20 System Survey Training Document EN/LZT 120 226 R5B” Stockh...
	[I2] Lecture by Birgitta Strandberg, Ericsson Radio Systems AB Hässleholm May 13, 1999
	[I3] Ericsson Telecom AB “PLEX-C1” Stockholm 1996
	[I4] Conny Johansson “Root cause analysis of SDL Reverse” Ericsson document number 1/0363-4/FCP 1...
	[I5] Barbara Reisner “Final report for: SDL Reverse prototype (KomPlex)” Ericsson document number...
	[I6] Tomas Kostenius “Final report for: SPOT (SDL10 PilOT)” Ericsson document number EPK/DG-98:05...
	[I7] Stefan Persson “Problem med för många FORLOPPs-releaser i APZEmu’n” Ericsson document number...
	[I8] Telelogic AB “Plex to SDL 1.0 User’s Manual” Id: SMO99-XPR-20 version 1.1
	[I9] Anna Wetekam “MSC / SDL10 Layout Guidelines” Ericsson document number 8/000 21-FCK 114 2004 ...

	GSM / BSC
	A.1 History
	A.2 Techniques and restrictions
	Figure 15. Differences between TDMA and FDMA

	A.3 Structure
	Figure 16. CME 20 system [I1]

	A.4 BSC
	Figure 17. Subsystems inside BSC
	Figure 18. Block hierarchy inside CME 20

	A.5 Function explanations
	A.5.1 Paging
	A.5.2 Handover
	1. Intra BSC, Inter Cell handover. Handover between two cells controlled by the same BSC.
	2. Inter BSC handover. Handover between two cells controlled by two different BSC:s.
	3. Intra BSC, Intra cell handover. Handover inside the same cell.
	Figure 19. Different handover cases

	A.5.3 Signalling connection setup
	A.5.4 Assignment
	A.5.5 Resource level supervision
	A.5.6 Cipher mode control
	A.5.7 Classmark distribution
	A.5.8 Transfer of BSS transparent messages
	A.5.9 Short message service (SMS)
	A.5.10 Connection release
	A.5.11 Traffic event measurement in radio network

	Abbreviations
	Abbreviations

	Conversion process
	C.1 Time estimations
	C.2 Activities
	Figure 20. Phases in conversion script
	C.2.1 Preparations
	Purpose
	Input
	Output
	Activities
	1. Setup environment
	Figure 21. Directory structure for a reverse project

	2. Fetch documents
	3. Check validity
	4. Analyze source code
	5. Test and adapt ETI
	6. Copy files
	7. Arrange SDLtool Organizer

	Hints and comments

	C.2.2 Convert signals
	Purpose
	Input
	Output
	Activities
	1. Produce a list of interesting signals
	2. Signal Data
	3. Save signal data in signals.data
	4. Generate signal package

	Hints and comments

	C.2.3 Reverse PLEX-C code
	Purpose
	Input
	Output
	Activities
	1. Convert SPI
	2. Move packages
	3. Type package
	4. Signallists

	C.2.4 Add and correct
	Purpose
	Input
	Output
	Activities
	1. General Whitespots
	2. Timers
	3. Sending of signals
	4. Type conflicts
	5. Analyze SDL code
	6. Correct Errors / Warnings

	Hints and comments

	C.2.5 Clean Up
	Purpose
	Input
	Output
	Activities
	1. Clean up unused variables
	2. Clean up SDL code

	C.2.6 Generate analyzed PLEX-C code
	Purpose
	Input
	Output
	Activities
	1. Adjust signal survey
	2. Generate PLEX-C code
	3. Analyze generated code

	Hints and comments

	C.2.7 Basic Test
	Purpose
	Input
	Output
	Activities
	1. Generate dump
	2. Adapt ETI
	3. Run Basic Test
	4. Hints and comments

	C.2.8 Process evaluation
	Purpose
	Input
	Output
	Activities
	1. Write report
	2. Deliver report

	Hints and comments

