
CODEN: LUTEDX(TETS-5375)/1-98/(1999) & local 35
Reverse engineering
PLEX-C code to SDL10 code

Martin Berg
Dep. of Communication Systems

Lund Institute of Technology
Tutors:
Magnus C. Ohlsson (Dep. of Communication Systems, LTH Lund)

Jörgen Palm (Ericsson Radio Systems AB, Hässleholm)
Henrik Cosmo (Ericsson Radio Systems AB, Hässleholm)



Page ii
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Abstract

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
i

Abstract

s are
their

com-
engi-

n the
y and
a soft-
m at a
ric-
the

DL10
lop-
e dif-
s and
The telecom business is one of the fastest growing markets today. Many companie
fighting over the market shares and to be at the top of it, the companies have to make
product developments more efficient and with higher quality. Increasing one of these
ponents will probably decrease the other. This can be avoided by using the reverse
neering technology. It can be applied on a system to increase the quality, shorte
development time, or both. In this thesis we discuss different ways to increase qualit
shorten the development time, by applying reverse engineering. One solution can be
ware programming language change, and the new language may describe the syste
higher level of abstraction. It is that solution we have focused on in our work. Parts in E
sson’s GSM system is converted from their old programming language PLEX-C to
graphical programming language SDL10. The purpose is to develop features in the S
environment in the future, which will both increase the quality and shorten the deve
ment time. Conversion between two programming languages is not an easy task. Th
ferences between the two languages address some problems. These problem
solutions to them are discussed and presented in this thesis.
Page iii



Abstract

Page iv
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Table of Contents

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
ii
Table of Contents
3

5

7
8

CHAPTER 1 INTRODUCTION .................................................................. 1
Overview ........................................................................... 1
Our work ........................................................................... 2
Organization ..................................................................... 3
Reading guidelines ............................................................

CHAPTER 2 PROBLEM STATEMENT ..................................................... 5
Background ....................................................................... 5
Problems ...........................................................................

CHAPTER 3 RELATED WORK ................................................................ 7
Reverse engineering ..........................................................
Methods ............................................................................
Related activities ............................................................... 9

Redocumentation.......................................................... 10
Design recovery............................................................ 10
Restructuring................................................................ 10
Re-engineering............................................................. 11

Tools ............................................................................... 11
Compilers .................................................................... 11
Restructurers and beautifiers.......................................... 12
Translators................................................................... 12
Parallizers.................................................................... 12
CASE tools.................................................................. 12
Page v



Table of Contents

Page vi

3
5

1
2

6

8

1
1

Balance between reverse and forward engineering .........1
Practical use of reverse engineering ................................1

Year 2000 problem.......................................................15
Data reverse engineering [P8]........................................15
Data conversion [P7].....................................................16
PL/IX - C++ [P6] ..........................................................16
SDL Reverse [I6]..........................................................17
KomPlex [I8] ................................................................17
SPOT [I9].....................................................................19

CHAPTER 4 PLEX-C .............................................................................21
History .............................................................................21
Versions ..........................................................................2
System .............................................................................2

Standard.......................................................................22

CHAPTER 5 SDL ....................................................................................25
Description ......................................................................25
History .............................................................................25
Benefits ...........................................................................2
Telelogic Tau ..................................................................26
SDLtool ...........................................................................28
The SDL language ..........................................................2

Components.................................................................28
The layout of SDL........................................................31

SDL10 .............................................................................31
MSC ................................................................................32

CHAPTER 6 COMPARISONS- SDL VS PLEX-C ..............................35
Similarities ......................................................................35
Differences ......................................................................36
Conclusions for similarities and differences ...................38

CHAPTER 7 REVERSEPLEX-C CODE ...............................................39
Block division .................................................................40
Reverse tool unsupport ....................................................4
Automatic generated code ...............................................4
Time estimation ...............................................................42
Reverse tool in our work .................................................42

Problems......................................................................43
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Table of Contents

Reve
Marti

8

7
8
9

CHAPTER 8 CONCLUSIONS .................................................................. 47
Differences ...................................................................... 48
Future .............................................................................. 4

CHAPTER 9 ACKNOWLEDGEMENTS................................................... 51

CHAPTER 10 REFERENCES..................................................................... 53
Public Resources [Px] ..................................................... 53
Internet Sites [Wx] .......................................................... 54
Internal Ericsson documents [Ix] .................................... 54

APPENDIX A GSM / BSC ...................................................................... 57
History ............................................................................ 57
Techniques and restrictions ............................................ 5
Structure .......................................................................... 5
BSC ................................................................................. 5
Function explanations ..................................................... 61

Paging.......................................................................... 61
Handover..................................................................... 62
Signalling connection setup........................................... 62
Assignment.................................................................. 63
Resource level supervision............................................ 63
Cipher mode control..................................................... 63
Classmark distribution.................................................. 63
Transfer of BSS transparent messages............................ 63
Short message service (SMS)........................................ 63
Connection release........................................................ 64
Traffic event measurement in radio network................... 64

APPENDIX B ABBREVIATIONS .............................................................. 65

APPENDIX C CONVERSION PROCESS................................................... 69
Time estimations ............................................................. 70
Activities ......................................................................... 70

Preparations................................................................. 71
Convert signals............................................................. 75
Reverse PLEX-C code.................................................. 79
Add and correct............................................................ 82
Clean Up...................................................................... 85
Generate analyzed PLEX-C code................................... 86
Basic Test.................................................................... 88
Process evaluation........................................................ 90
rse engineering PLEX-C code to SDL10 code Page vii
n Berg 1999



Table of Contents

Page viii
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Introduction

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
1

Introduction
still
ation
rse,

gram-
inte-
means
if-
Erics-
’s, a

mean
rewrit-
ojects

se in
efits
e for
self
ical,

ace
fits are
1.1  Overview

The telecommunication companyTelefonaktiebolaget LM Ericssonhas reached far with
their AXE exchange. It is installed for telephone services all over the world and is
under development. When Ericsson decided to go into the wireless telecommunic
area, they built their platforms (NMT, GSM, etc.) based on the AXE system. Of cou
modifications were made, but the main concept of AXE was still there [I1].

It has gone many years since the AXE system was born, and they use the same pro
ming language. When a system is maintained, it gets larger and larger formatting. Ma
nance will be harder and the source code in the system can get confusing. Confused
that the flow in code is hard to follow and it is difficult to understand the functionality. D
ferent methods exist to solve the problem, but since the programming language that
son uses when developing services in their systems has its origin in the 1970
programming language change may increase quality. By increasing the quality we
lesser defects in both released and under development systems. Today “clean-ups” (
ing code to remove the confusing part) has to be made after that about two or three pr
have modified existing code. This is expensive, both in time and money.

Ericsson has found a programming language that they want to investigate for further u
new projects, SDL (Specification and Description Language). SDL has many ben
compared to their old language that they use today, PLEX-C (Programming Languag
EXchanges, C-version). PLEX-C is a real-time programming language that Ericsson
has developed. It looks a little like Pascal, but the differences are many. SDL is graph
with other words one “draws” the programs with help from a tool. The graphical interf
makes the source code more understandable and easier to overview. Other bene
Page 1



Introduction

Page 2

l be
oding
n also
LEX-
More

e the
is a

able
can
SA,
is a

t corre-

t here
signers
an be
things
n uses
grow)
nging

ll old
to be
e
s that
have
the
e two
ur

n the
lly. The
rk.

o lan-
ces
con-
shorter development time and thereby lower development cost. The quality wil
increased due to a more structured and formal development model, i.e. no manual c
and testing at higher level of abstraction earlier in the development process. Ericsso
has some parts that are designed in the programming language C, and in SDL both P
C and C code can be represented at the same time (SDL is platform independent).
benefits are described in section 5.3.

Changing programming language is not easily done. PLEX-C and SDL does not hav
same level of abstraction, i.e. SDL is a high-level programming language and PLEX-C
low-level language. This is not the only reason for the complexity, differences in vari
formats, signalling and not to forget the real time requirements. Time critical functions
in PLEX-C be written in the assembler language that PLEX-C code is compiled to, A
for optimizing the specific function. This must also be converted correctly. (Assembler
programming language that is hardware dependent, i.e. each assembler statemen
sponds to a single machine instruction.)

Converting from one abstraction level up to a higher is calledreverse engineering. The
reverse engineering area is large and increases fast. Much research effort is pu
because, among others, many systems were developed during the 1970’s and the de
did not think about the millennium change 25 years ahead. Reverse engineering c
used to solve problems related to the year 2000 problem (see section 3.6.1). Other
that reverse engineering is used for are clean-ups and maintaining systems. Ericsso
clean-ups on their systems today, but since they cost more and more (the systems
and the fact that Ericsson uses an old programming language, make the profit for cha
language higher.

1.2  Our work

If Ericsson changes their programming language, they cannot manually convert a
source code into SDL, it would take too long time and cost to much. Instead this has
done automatically with help from areverse tool. To see if the reverse tool is feasible, th
SDL code is compiled back to PLEX-C code and there tested with the same test rule
is used for normal development in PLEX-C (see figure 1). Defects found here can
their origin either from the reverse tool or from the compiler (SDL to PLEX-C). Since
compiler is tested before, and there are test possibilities at SDL level, separation of th
kinds of defects will not be difficult. Defects from the compiler are not of interest for o
work.

Even though that the reverse tool is working correctly, it is no guarantee that all parts i
system can be converted. If this is the case, these parts have to be converted manua
parts that are impossible to convert automatically and why, are of interest for our wo

We have in our work focused on the consequences of the differences between the tw
guages (PLEX-C and SDL), i.e. what is difficult to convert and why. Since the differen
are not represented in one single block, two blocks with different purpose have been
verted.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Introduction

Reve
Marti

d too.
d. It

s that
k,

em,
ribed

are
tance
appen-
ment
1.3  Organization

In chapter 2 the questions that our work discusses are stated.Chapter 3 briefly describes
reverse engineering and other related work. Projects similar to our work are describe
In chapter 4 and5 the two programming languages PLEX-C and SDL10 are describe
is between these two languages transformations are done.Chapter 6 describes and dis-
cusses the similarities and differences between PLEX-C and SDL. It is the difference
are of interest for our work.Chapter 7 describes the tool that we have used in our wor
and the major problems that we found when reverse engineering. Inchapter 8our conclu-
sions are stated, and future work is discussed.Chapter 9 is acknowledgments andchapter
10 is references.

Appendix A describes an overview of Ericsson’s implementation of the GSM syst
CME20. Our work is tested deep down in this system and exactly where is also desc
here. In appendix B abbreviations found in this thesis are described.Appendix C
describes a process for how to make a conversion project.

1.4  Reading guidelines

Depending on your knowledge of the different subjects in our work, not all chapters
necessary to read, or not of interest for you. The reader must be familiar with the subs
of chapter 6 to understand some parts in chapter 7 though, and the process script in
dix C is written on the basis that the reader has knowledge about Ericsson’s develop
process and terms belonging to it.

Figure 1. Our work in the software development
rse engineering PLEX-C code to SDL10 code Page 3
n Berg 1999



Introduction

Page 4

dix C.
verse
pter 4
DL),
cess.

d test
back-
tester
with
cause

t may

ld be
nd 5
hy we
hange

exe-
under-
t the
bout
1.4.1  Designer

The designer is the person who’s interest is executing the process described in appen
Interesting parts for him/her may be chapter 3 for some background knowledge of re
engineering and what different types of conversions that have been done before, cha
and 5 if he/she has limited knowledge of the programming languages (PLEX-C and S
and chapter 6 and 7 to understand the problems that may occur while executing pro

1.4.2  Test engineer

The tester is a person that test the interrelationships between blocks. To write goo
cases he/she could be interested in reading the following chapters. Chapter 3 for
ground knowledge about reverse engineering and what that involves, chapter 5 if the
does not have knowledge of the SDL environment (he/she is probably well familiar
PLEX-C and does not need to read chapter 4), chapter 6 and 7 may be interesting be
of their description of the differences between the two languages and problems tha
occur when executing a conversion.

1.4.3  Reverse tool purchaser

If the reader only is interested in the reverse tool evaluation, chapter 2, 6 and 7 cou
useful reading. Lack of knowledge within the programming languages, chapter 4 a
may also be interesting reading. By reading these chapters, he/she will understand w
executed our work and gain knowledge about executing a programming language c
process.

1.4.4  Quality manager

A quality manager may be interested in chapter 2 to understand why our work was
cuted, chapter 3 to gain knowledge about reverse engineering, chapter 4 and 5 to
stand the two programming languages, chapter 6 and 7 to gain knowledge abou
problems that a conversion brings, and finally chapter 8 to achieve our conclusion a
reverse engineering source code.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Problem statement

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
2

Problem statement
parts
see
fulfil

X-C,

tween
e sys-
an be
rsion
.

? If

task
nce
2.1  Background

Today PLEX-C is used as programming language when developing and maintaining
in Ericsson’s CME 20 system (Ericsson’s implementation of the GSM standard,
Appendix A). The language is old and today there are several other languages that
Ericsson’s requirements. One of them is SDL. SDL has many benefits towards PLE
and they are described in section 5.3.

Changing programming language is not an easy task. There are many differences be
the two languages that must be considered. The conversion is not made for the whol
tem at one time, instead parts called blocks are converted one at a time. Blocks c
divided into different categories depending on their task. To convert a block, a conve
tool, that handles most of the problems, will be used. But some questions still remain

2.2  Problems

These questions are discussed and answered in this thesis:

1. Is it possible to apply reverse engineering on PLEX-C blocks?
The tool that we will use for the conversion, does it work properly, or has it defects
there are defects, how do they affect the conversion?

2. If it is possible, on what type of blocks can we apply reverse engineering?
Since the blocks can be divided into different categories depending on their
(described in section 7.1), maybe all blocks not are convertible. If there is a differe
in convertibility, what are the reasons for this?
Page 5



Problem statement

Page 6

een
the

w to

each
3. How long time will it take to convert a special block?
Is it difficult to convert a block, and how automized is it? Are there differences betw
different kinds of blocks, or is the converting time just depending on the size of
block?

4. How is the reverse engineering applied to blocks?
This question will be answered with a process script that explains step by step ho
do when converting blocks from PLEX-C to SDL.

Notice that the conversion is only done block by block and how they are connected to
other is not a part of our work.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
3

Related Work
proc-
ments,
nt of
more

is is

-
other
. One
3.1  Reverse engineering

When developing everything from small programs to large systems, the development
ess can be divided into different phases. A process may consist of the phases require
design, implementation and test (see figure 2). This is a natural order for developme
anything, because first one thinks of the products overhead functions, and later on
and more on detailed specifications of how the functionality will be implemented. Th
calledforward engineering, i.e. go from a high level of abstraction to a lower level.

The opposite to forward engineering isreverse engineering. The purpose of reverse engi
neering can simply be described as taking a product apart to learn how it works, or in
words, study a system and make a specification of it at a higher level of abstraction

Figure 2. Forward and reverse engineering
Page 7



Related Work

Page 8

that
vesti-

out

ere it
is has
ware
ware

This
everse
engi-
d to

ibe how
of the
g and
g the
the

in the
a new

be the
s, dia-
example is making a design-document from C code. Reverse engineering is a term
refers to an analysis process which is done with help from methods and tools that in
gate the system, its components, and their interrelationships.Program understandingor
program comprehensionare two other terms for reverse engineering that say more ab
what it is.

The origin of the term reverse engineering comes from the hardware technology, wh
was used, among others, to duplicate other companies hardware products. Now th
shifted to software since it has become a larger part of whole systems with both hard
and software. In [P12] M. G. Rekoff defined reverse engineering (denoted to hard
technology) as

“the process of developing a set of specifications for a complex hardware sys-
tem by an orderly examination of specimens of that system.”

Five years later Chikofsky and Cross wrote [P4]:

“Reverse engineering is the process of analyzing a subject system to identify
the system’s components and their inter-relationships, and to create represen-
tations of the system in another form at higher levels of abstraction.”

The two definitions above say exactly the same thing, but about different domains.
shows how close the domains are and similar methods can thereby be used when r
engineering in the software world as in the hardware. In the hardware world reverse
neering is traditionally used to duplicate systems, while in the software world it is use
raise the abstraction level. Our work is within the software domain.

There are many reasons to use reverse engineering, and some may be [P11]:

• Improve the quality of one’s own products.

• Analyze competitors’ products to achieve knowledge of some of their secrets.

• Discover hidden defects in a newly developed product.

• Gain basic understanding of a system and its structure.

3.2  Methods

Reverse engineering can be seen as a set of methods and tools. The methods descr
reverse engineering should be done and the tools do it. Figure 3 shows an overview
reverse engineering process. Information is retrieved from the source code by parsin
scanning it. The information is stored in a database in an organised way. Compilin
source code may also provide valuable information. The information is hidden in
object code and the cross reference tables (both from compiler), and is also stored
database. Together, all information in the database describes the source code, and
document can be produced. The document can present the information, or descri
source code, as the user likes, for example the description can be textual, flow chart
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

el of

hich

piler),
struc-
duce

the
n he
r just
, have

, and

them,
to the
rt can

everal
rpose
and
grams, etc. The important thing is that it describes the source code at a higher lev
abstraction, which makes it to a design document.

In figure 3, the dashed lines corresponds to “information from” and not raw data, w
the normal lines represent.

A method corresponds to how the source code is investigated (parser, scanner, com
how the information achieved by the investigation shall be presented, the database
ture (object oriented or not), and how the database should be investigated to pro
desired design documents [P11].

The simplest method is light examination of hardware. The engineer investigating
product may not even know that he is reverse engineering. During the investigatio
builds models of the product and how it works. The models may be notes, diagrams, o
mental images and plans. This method, as many of hardware corresponding methods
no tool support. Tools are simpler to develop and implement in the software domain
therefore the methods there are more sophisticated.

3.3  Related activities

Put reverse and forward engineering together, and add some purpose for applying
then four activities can be stated. Except for purposes, the differences are denoted
size of the reverse respectively forward engineering part. For example, the reverse pa
be so small that the designer can hold the information in his head, or as large as s
design documents. Since the differences between the activities are more on the pu
plan rather than practical, it is hard to make sharp lines between them. Chikofsky
Cross have described the activities in [P11].

Figure 3. Reverse Engineering - The process and abstraction differences
rse engineering PLEX-C code to SDL10 code Page 9
n Berg 1999



Related Work

Page 10

lso be
verse
it pro-

cre-
ess.

igrat-

dding
m and
tion
ation
does

l form
dif-
tem is
, the

s the
tion-
the

engi-
ering

dable.
form

hetti
ut the
-data
sign
3.3.1  Redocumentation

Redocumentation is the simplest and oldest form of reverse engineering, and can a
described as a weak form of restructuring (see below). The difference, towards re
engineering, is that redocumentation does not change the abstraction level, instead
duces new representations of the system considering other point of views.

The intention with redocumentation is to improve the comprehension of a system and
ate additional views that were not created in the original forward engineering proc
Redocumentation tools present facts about a system in another form, but without m
ing between development phases. Examples of redocumentation tools arepretty printers
(displays a code listing in an improved form),diagram generators(creates charts from
code by reflecting control flow, code structure or data structure), andcross reference gen-
erators (produces index over the variable use in the program).

3.3.2  Design recovery

When reverse engineering, only the system itself is input to the process, but by a
existing design documentation, personal experience and knowledge about the proble
application domains to the input, fully describing documents at higher level of abstrac
can be produced. This is called design recovery. The intense is to reproduce inform
required for a person to fully understand what the system does, how it does it, why it
it, etc.

3.3.3  Restructuring

Restructuring can be seen as a more advanced form of redocumentation or a specia
of reengineering. The latter when reengineering without adding new functionality. The
ference compared to redocumentation is how the redocumented, or restructured sys
presented, and if the new version is presented in a different way according to its origin
activity is restructuring. The new version is usually at the same level of abstraction a
origin, and the semantic behaviour and the functionality is the same, i.e. no new func
ality or changes are provided when restructuring. If SDL and PLEX-C had been on
same level of abstraction, our work would be about restructuring instead of reverse
neering, but since SDL has a higher level of abstraction than PLEX-C, reverse engine
is the right terminology for our work.

Restructuring is done to improve a systems structure and make it more understan
Often the term is used as a synonym for reproducing a program from an unstructured
to a more structured form (code-to-code). This may be transformation from “spag
code” (lots of goto statements) to more structured code with less goto statements. B
term has a broader meaning, for example data normalization, which is a data-to
restructuring transformation and is done to improve the logical data model in the de
process.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

and
of if

is a
ied to

and
d the

differ-
devel-

, tools
e of
gin is

. The
ther

rma-

ns for
n not
der-
mplex
t the
s cross
rget
also

pro-
Restructuring can also be performed without knowledge of a systems structural form
without understanding its meaning. An example of this is a conversion of a series
statements into a case statement, or vice versa.

3.3.4  Re-engineering

Reengineering is restructuring with functionality changes implemented. Actually it
combination of forward and reversed engineering. First, reverse engineering is appl
gain more knowledge of the system and make design documents. New functionality
changes to the existing can then be applied. Finally, forward engineering is used an
system is re-implemented with the new/changed functionality.

3.4  Tools

Reverse engineering methods are constantly developed to be applied on systems for
ent reasons. To make it as easy as possible for the engineer, corresponding tools are
oped as help and guidance, or to do parts of the reverse process. As with methods
can handle one or several parts shown in figure 3, often several. Actually it is only on
the parts that is developed as a single tool, the compiler. A reason can be that its ori
not within the reverse engineering domain, but in the forward engineering.

As with the methods, many different tools for different purposes have been developed
compiler tool is the only tool that corresponds to a single symbol in figure 3, and the o
may correspond to several symbols including dashed lines.

More information about the tools described here can be found in [P9], and more info
tion about CASE tools can be found in [P11].

3.4.1  Compilers

This tool is the most used reverse engineering tool today. There are several reaso
this. Compilers must understand the source program well enough so the compilatio
change the programs functionality, if the compiler has an optimize function, it must un
stand the source program even better. Optimizing changes are larger and more co
than normal compiling. Some compilers can also understand what type of faults tha
designer has introduced in the code and may also suggest solutions, some generate
reference tables, warnings of portability problems (problems according to different ta
machines) and not initiated variables that may cause errors. Most of the compilers
have a debugging function. To support all this, the compiler must know the source
gram very well.
rse engineering PLEX-C code to SDL10 code Page 11
n Berg 1999



Related Work

Page 12

y of a
ld ver-
today,
and
nted
today

ram

ding
rack-

re used
main-

age to
vel of
if the
e tool

They
ts that
eada-

for-

ware
for

uch a
early
elop-

most
effort
jects
uced
3.4.2  Restructurers and beautifiers

The purpose of using restructurers and beautifiers is to improve the comprehensibilit
system. These techniques are used on older programs or programs written in an o
sion of a software programming language that maybe not have constructs that exists
for example the while loop construct does not exist in early versions of Fortran [P11]
are implemented with goto statements. By restructuring the program so it is impleme
in a later version of Fortran, the goto statements are replaced. Goto statements are
“forbidden” and recognized as “spaghetti programming”. By replacing them, the prog
gets more understandable.

Beautifiers are a little more complex than restructurers since they also know the co
standard, i.e. layout rules, that the user wants. This can for example be indentation, b
eting conventions for compound statements, spaces in expressions etc. Beautifiers a
when standardizing the layout within large systems that have had small amounts of
tenance, and/or numerous of designers that works with different coding standards.

3.4.3  Translators

Translators are tools that convert source code from one software programming langu
another, for example the PLEX2SDL reverse tool. If the languages are at the same le
abstraction (optimizing) the most common is that the new code is less readable, but
new language is at a higher level of abstraction and the conversion is successful, th
can produce a more understandable and modular program.

3.4.4  Parallizers

Parallizers are applied on programs that will be run on parallel computer systems.
make the code more effective by, among others, replace loops with single statemen
simultaneously work on several elements in an array. The result is smaller and more r
ble source code which is specialized for a certain hardware.

3.4.5  CASE tools

As with compilers, CASE tools were first developed to support developers within the
ward engineering domain. CASE is the abbreviation forComputer-Aided Software Engi-
neering and represents a set of products, services and technologies for soft
development. CASE is for software engineers what CAD (Computer-Aided Design) is
constructors (e.g. ship-, space-, aircraft-constructers). The reason for developing s
tool is based on that not much effort were put in documentation and designing in the
years of 1970’s. Software systems were growing fast and more control over their dev
ment were desired and concurrently the faults had to decrease since they were the
cost inefficient part in the development phase. This concluded in that more and more
were put earlier in projects. Methods saying how to run software development pro
were “invented” and tools helping designers follow the methods were also prod
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

more

tain-

code
d not
an pro-

ce the
t dif-
is is a
ture.

they

data

em.

main-
under-

lance
aken a
[P3].
(CASE tools). Since then CASE tools are getting more and more efficient and gets
and more functionality.

At the beginning of the 1990’s, it was discovered that CASE could be used when main
ing systems, and thereby also when reverse engineering systems.

A CASE tool consists of a graphical editor, consistency checkers and may also have a
generator. The graphical editor is used to present the high level design graphically an
textual. The consistency checker is used to test the system and the code generator c
duce the code, or at least a part of it.

CASE tools that have the ability to reverse engineer systems can in most cases produ
graphical pictures of the high level design automatically. These pictures can represen
ferent diagrams depending of what knowledge one wants about the system. Since th
topic in great research, more diagram types and further analysis will come in the fu
Some types of diagrams can be:

• Structure chart
This diagram is the most common today and shows the subprograms and how
are connected to each other.

• Data flow diagram
This diagram shows the major software modules and data allocation, and how
and control information flows among them.

• Entity relationship diagram
This diagram describes major external sources, data and modules that uses th

3.5  Balance between reverse and forward engineering

It is expensive to reverse engineer a system, but it is also expensive not to do it. The
tenance cost is increasing as the system gets older, because the maintainers must
stand the system to be able to maintain it. This means that ideally a defined ba
between forward and reverse engineering has to be found. van den Brand et. al. has t
closer look at program development regarding forward and reverse engineering
Figure 4 shows different phases of the life cycle for a software system,r andf are a meas-
ure for the reverse respectively forward engineering effort.a shows the classical life cycle
andb the desired life cycle of software systems.
rse engineering PLEX-C code to SDL10 code Page 13
n Berg 1999



Related Work

Page 14

evel-

h for-
ct of
riven

mount
neer-

tware
o date

ep up.
ing it.
ave a

easier
are
Creation
a. Only forward engineering is used in this phase, which is the classical way when d
oping software systems.
b. Reverse engineering is used directly at the start of the development, combined wit
ward engineering, to influence the design. This could for example be to study the impa
different implementation alternatives. One can say that this is a reverse engineering d
software development.

Maintenance
a. To keep the system running small amounts of maintenance is needed, and the a
will increase. The forward engineering is interrupted by larger and larger reverse engi
ing periods.
b. As in classical software engineering, maintenance is needed in the harmonic sof
engineering to keep the system running. The knowledge about the system is kept up t
with reverse engineering, and maintenance is done with the forward engineering.

Legacy
a. When the reverse engineering takes to much time, the maintenance is hard to ke
The maintainers are working more on understanding the system instead of maintain
b. The reason of harmonic software engineering is to skip this phase, and thereby h
product with lesser defects and longer lifetime.

By using the facts that van den Brand et. al discusses in [P3], better systems that are
to maintain will be produced. Reverse engineering will also be a larger part in softw
engineering in the future.

f-r
f+r

+1

-1

creation maintenance legacy

timea

b

creation maintenance

f-r
f+r

+1

-1

time

Figure 4. Differences betweena. classical andb. harmonic software engineering
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

in this
cts are

.g. 87
en two
entury.
946,

, 46 is
) the
ative
erted

and
cov-
mpu-
and

sys-
engi-
ay be
ned so
el and

lem is
data is
r 2000

ve as
an be
a, but
such
credit
hose

x, but
t it has.
3.6  Practical use of reverse engineering

Many reasons why reverse engineering should be applied on a system exists and
section both reasons for reverse engineering a system and reverse engineering proje
described. A strong connection exists to related activities described in section 3.3.

3.6.1  Year 2000 problem

In many computer systems, only two numerals are used two define a certain year, e
for 1987, and some of these systems uses this numerals to count a difference betwe
years. This is no problem as long as the numerals represent years within the same c
Let us say that you want to calculate someone’s age. You know the year of birth, 1
which is represented as 46 in the computer system. To calculate the person’s age
subtracted from today’s year. The age will be 99 - 46 = 53 years. Next year (2000
equation will be 00 - 46 = -46, which is an incorrect answer. In some systems neg
numbers cannot be stored and a failure will occur. If so the user of the system is al
and can correct input data or calculate the data himself. But if a wrong value is stored
used in further calculations, final output data will be corrupt and that is not always dis
ered by the user. Other faults that may occur can be wrong decisions made by the co
ter system which will conclude in for example that railroadpoints are set wrong (how
if the year is involved in railroadpoints or not, is not a part of this thesis).

The year 2000 problem is complicated. It is hard to find and can be found in many
tems. Many companies put major resources to solve this problem. By using reverse
neering to raise the abstraction level of a system, knowledge about what parts that m
affected by the millennium change can be achieved. These parts can then be re-desig
they can manage the problem. But the largest problem is the cost in money, personn
especially time, it has to be solved before the turn of the year 1999 - 2000.

3.6.2  Data reverse engineering [P8]

The reason for applying reverse engineering at systems to solve their year 2000 prob
done because one wants to get data about the data inside the system. This retrieved
called metadata (see section 3.6.3). The metadata is not only used to solve the yea
problem.

Today, with rougher competitions between companies, each company must achie
much valuable information as they can from data that they already have. This data c
statistics over customers etc. The problem is that many companies have lots of dat
they do not know that these data holds valuable information for them. Example of
data can be what, when and how much customers buy, if the customer pays with a
card, etc. The data can be stored in different ways, for example locked in systems w
designers retired long time ago, in applications that were produced as a temporary fi
have been in use ever since or even as data that the organization does not know tha
rse engineering PLEX-C code to SDL10 code Page 15
n Berg 1999



Related Work

Page 16

hat it
ma-
tadata

om-
tion
in, and
hnical
ware to
so they
dules
spe-
eed.
data-
rt the
t the

ata) is
meta-

ted
forma-

ot so
meta-

using
e sys-

tware
rloo,
d to
s and
ts to
peri-

(varia-
d with
on-
Organizations need to have the right data and it is important that they also know w
has, were to find it and most of all know what it means. To retrieve the valuable infor
tion from the data, one can apply reverse engineering and collect metadata. The me
helps the organization to understand it’s data.

3.6.3  Data conversion [P7]

The departments of Personnel and Training (DP&T) and Accounts (DOA) at the C
monwealth in Virginia wanted to replace their existing payroll and personnel informa
systems because they had become inefficient, too expensive to operate and mainta
the management were concerned about keeping the staff up to date with the tec
knowledge of the databases. The system consisted of two large databases and soft
manage them. The databases were not integrated, which the departments wanted
could merge payroll and personnel records. A new system consisting of three mo
from PeopleSoft, was decided to replace the old one. PeopleSoft’s modules are build
cially for server - client applications and should be tailored to fit each organizations n
This is what the departments wanted. The problem was to move the data from the old
bases to the new ones. It was a large amount of data to move. A tool that could conve
data had to be developed. To know how to convert the data, more information abou
databases, both old and new ones, were needed. This information (data about d
calledmetadata. To get the metadata reverse engineering were used. To manage all
data that this project produced, a new database and handling procedures calledThe Meta-
data Access Tool(TheMAT) was developed. It uses Microsoft Access with both automa
and manual procedures. The metadata were later on used to map corresponding in
tion in the two systems (the old and new).

This restructuring project ended successful and the conclusions were that it was n
expensive as expected to use metadata for developing data conversion tools and the
data itself can be maintained easily with tools. Some metadata can be maintained by
a CASE tool (see section 3.4), especially if such a tool were used when developing th
tem. Metadata that easy can be created and maintained can be a valuable asset.

3.6.4  PL/IX - C++ [P6]

Reverse engineering, or rather restructuring, is a useful activity when changing sof
language. In a project funded by IBM and project members from universities of Wate
Victoria and Toronto, PL/IX (pronounced PL nine) source code should be converte
C++ code using reverse engineering. PL/IX is a programming language that IBM use
to simplify maintenance and make further development of the system easier, IBM wan
change software language. From the Universities point of view the project was an ex
ment to see how hard it is to make a software language converting tool.

To compare and to be able to map constructs (if, for, etc. statements) and structures
ble types) between the two languages an abstract syntax tree (AST) were produce
help from a custom built PL/IX parser and linker (compare with compiling). Defined c
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

re in
d to

ond
semi
roject

lan-

their
nge
elop
stly
com-

roject
assi-
. The
ts the
trac-
esses
as a

, fin-
tested
ind of
with
blems
fixed

e 16
ssful
unim-

nec-
f the
structs and structures were sorted into different domains. If one construct or structu
PL/IX did not have a corresponding item in C++, a new one had to manually be adde
the domain library.

In the first half of the project the converting was manually performed and in the sec
half a semi automatic tool was used. When the project was finished, the tool still was
automatic and some parts had to be converted manually. The conclusions from this p
was that it is possible to develop tools that decrease the manual effort in a software
guage change.

3.6.5  SDL Reverse [I4]

When Ericsson choosed to investigate the possibility to change software language in
GSM system from PLEX-C to SDL10 they soon realized that it was impossible to cha
all source code manually. A conversion tool was required. A project started to dev
such a tool,SDL Reverse. Unfortunately the inexperience, the bad estimations and mo
the fact that the task actually is hard to manage made the project fail. Instead another
pany took over the development of the “Reverse tool”. They are now almost finished with
it and it is this tool that we have used in our work.

This project’s purpose was to develop a tool which reverse engineers a system. The p
itself is about forward engineering, but inside the produced tool the activity can be cl
fied as either reverse engineering or re-engineering, depending on the point of view
tool reverse engineers the system to achieve information about it and then implemen
information in another software language. The information is at a higher level of abs
tion than the new implementation, and forward engineering is used. Merging the proc
concludes in re-engineering. But from another point of view where the tool is seen
black box performing the transformation, the activity is reverse engineering.

3.6.6  KomPlex [I5]

Our work is not the only project that have tested the reverse tool, the KomPlex project
ished in the summer of 1999 at Ericsson’s department in Aachen, Germany, has also
it. The project’s purpose was to evaluate and test the reverse tool and see what k
blocks that could be converted, but also to evaluate if Ericsson should continue
reverse projects and thereby make a software programming language change. Pro
with the tool was reported during the project to the producer, and some of them were
during the project.

The project was intended to convert eight blocks but they tried out 21 blocks wher
were successfully converted and 5 failed for different reasons. A conversion is succe
when it passes a test that tests at least 80% of the code. The failure reasons can be
plemented support in the reverse tool for some kind of constructs in PLEX-C. A con
tion can be seen if the blocks are divided into groups. The division is made on basis o
rse engineering PLEX-C code to SDL10 code Page 17
n Berg 1999



Related Work

Page 18

cate-

, more
number
cution

e been

nd exe-

is

er-
nage
me
torage

these
dated
n the

LEX

en
. This

some
equi-

, but
t the
ourse

nts are
and
blocks’ tasks since the structure of a block depends on its task (see section 7.1). The
gories are:

• Traffic blocks

• Message handler blocks

• Database blocks

• Command blocks

To analyse and see if successfully converted blocks can be accepted in the system
aspects than testing the code has to be done. Measurements of the new code size (
of lines), the data storage size (e.i. the variables total space) and effectiveness (exe
time) were done. On the basis of these measurements the following conclusions hav
reached.

Traffic blocksseemed to manage best. The regenerated code size and data storage, a
cution time were all within the 10% characteristic limit. The regenerated code fromMes-
sage handler blocksincreased with 17% which not is acceptable. The execution time
just above the limit (11%). The reverse tool will be updated to handle this problem.Data-
base blockswere also slightly above the limit, but optimizations in the SDL2PLEX gen
ator will solve this problem in the future. The block category that was hardest to ma
wereCommand blocks. Only one block were possible to convert successfully but the sa
tendencies could be seen in the unsuccessfully converted blocks. The data s
increased with over 100% and regenerated code size became 50% larger. Although
blocks are small compared to other blocks and they are not so time critical, also up
reverse tool to decrease these figures will make it possible to convert this blocks i
future.

The conclusion from this is that after updates to both the reverse tool and the SDL2P
generator mostly all blocks will be able to convert.

Also a small formula for estimating how long time it will take to convert a block has be
produced. It considerates only the number of PLEX-C statements to convert though
formula is tested within our work.

The members of the project had different experience, some PLEX, some SDL and
both. This composition of people with different knowledge appeared as a good prer
site when running such a project.

The KomPlex project has answered most of the problems that our work is bringing up
the structures inside different blocks at different departments within Ericsson are no
same and therefore cannot all results from one project just be copied to another. Of c
some considerations of the results will be made, but own experience at the departme
needed. The KomPlex project was also larger with both more personnel, more time
more blocks to convert than our work.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Related Work

Reve
Marti

ment
vert a
ould
gen-

ty (the
id not
in the
qual-
The
ts of

locks
des-
engi-
3.6.7  SPOT [I6]

To get some experience of converting PLEX-C blocks to SDL10 at Ericsson’s depart
in Hässleholm, the SPOT project started in December 1997. The task was to con
block into SDL10. The reason was to evaluate if a software language change c
increase quality and decrease lead time for future projects. Also the SDL2PLEX code
erator was evaluated according to capacity, memory size (data storage) and readabili
regenerated PLEX-C code must be readable for a human). Since the reverse tool d
exist at that time, the conversion was made manually. The conclusions were that all
project thought that a software language change will shorten lead time and increase
ity. The overall impression of SDL10 was good and that it was easy to use.
SDL2PLEX code generator on the other hand did not satisfy the expectations. Lo
improvements had to be made and a list of needed improvements were produced.

The differences between this project and KomPlex are small, both converted PLEX b
to SDL10, but this project did it manually. Since a higher level of abstraction than the
tination implementation were reached during the project, it should be classified as re
neering.
rse engineering PLEX-C code to SDL10 code Page 19
n Berg 1999



Related Work

Page 20
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



PLEX-C

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
4

PLEX-C
ges)
. The
- no

evel,
The
nals.
ists
gners.

lan-
uage.

m-
ol-

ming
tage.
ge,
4.1  History

The high-level programming language PLEX (Programming Language for EXchan
was developed for Ericsson, by Ericsson in the 1970’s, and later extended in 1983
reason why Ericsson developed a new programming language of their own is simple
other languages that fulfilled Ericsson’s requirements existed. It had to be a high-l
real-time language with very strict requirements regarding real-time performance.
structure should be modular and the modules should communicate with different sig
All this is implemented in PLEX. PLEX is only used for telephony purposes, but it ex
in thousands of exchanges all over the world, and it is also used by thousands of desi
PLEX is a company specific programming language, i.e. only one company uses the
guage in development, and that makes is hard to find documents describing the lang
More information can be found in [I3].

4.2  Versions

PLEX exists in different versions, PLEX-M and PLEX-C. PLEX-C is used when progra
ming the processor in AXE 10, and since CME 20 is built on the AXE 10 switch techn
ogy, PLEX-C is used when developing services here. PLEX-M is used when program
a special part in the AXE 10 system called EMRP, which controls the subscriber s
PLEX-M is an 8-bit version of PLEX-C, which is a 16 or 32 bit programming langua
depending on what processor the target system (exchange) has.
Page 21



PLEX-C

Page 22

iffer-

ore

anges
s tells
make
. For
em
tains
rsion

e exe-
used

ector.
st sec-
4.3  System

The code itself has similarities with Pascal, but the differences are many. The major d
ences are:

• only one variable type (a group of bits) which can have different properties

• different jump statements

• negative numbers cannot exists

• pointers are in reality circular array indexes and not memory addresses

• it is a real-time language, means that the order of execution is not predictable bef
execution

• communication between blocks are handled by signals

4.3.1  Standard

Many designers are involved when a product is developed, and with new releases, ch
in the source code will be made. For that reason design rules exists. The design rule
the designer how to implement the program so that other designers easily can
changes. When programming PLEX code, one must comply with a “PLEX standard”
a system written in PLEX, five different kinds of documents have to exist and all of th
have a common part, an ID sector at the end of the document. This ID sector con
information about the document, e.g. document number, author, responsibilities, ve
etc. The documents are:

• SPI - Source Program Information

• SPL - Source Parameter List

• PL - Parameter List

• SS - Signal Survey

• SD - Signal Description

SPI - Source Program Information
This document contains the source code. It is here the designer writes or changes th
cutable statements. It can be PLEX-C code but also ASA assembler code. ASA is
when time critical functions have to be implemented.

The SPI document consists of different sectors. The first is adeclare sectorin which all
declarations are stated. The next sector is theprogram sector, which can in itself be two
sectors, one for PLEX-C code and one for ASA assembler code. The third is thedata sec-
tor, in which initial values are assigned to some variables declared in the declare s
Also statements to specify the order of the variables in the data store are here. The la
tor is theID sector which is described above.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



PLEX-C

Reve
Marti

t (see

cer-
print-
should
PI.

. Each

of the
sig-

(not
tween
SPL - Source Parameter List
This document contains the default parameter values for all data in the PL documen
below).

PL - Parameter List
The products that Ericsson develops will be released in many different countries and
tain data has to be adapted to the local market. This can for example be tone-types,
outs in the local language, charging parameters, etc. These market dependent data
be included in this document to avoid frequent modifications of the source code in S

SS - Signal Survey
The signals that a block sends and receives are listed in a Signal Survey document
block has its own SS document.

SD - Signal Description
There is one SD document for each signal. The SD document contains a description
signal, information about the signal’s purpose, type and data. All SD’s are stored in a
nal-handling library.

All these documents together form a PLEX-C program. A PLEX-C program example
all documents, only the SPI) is shown here. The program calculates the difference be
a received value and a max value (set in the data sector).

DOCUMENT PROGEXAMPLE;
 DECLARE;
  VARIABLE CNUMBER (16) 4 DS;
  VARIABLE CNUM 4 DS;
  VARIABLE CMAX 4 DS;
 END DECLARE;

 PROGRAM;  PLEX;
  ENTER MYSIGNAL WITH CNUM;     ! RECIEVE SIGNAL !
  CNUMBER = 8 - 31;             ! CNUMBER = 65513 (NO NEGATIV NUMBERS) !
  DO SUM;                       ! CALL SUBROUTINE SUM !
  SEND YOURSIGNAL WITH CNUMBER; ! SEND SIGNAL !
  EXIT;                         ! SET PROGEXAMPLE IDLE !
 END PROGRAM;

 PROGRAM SUM; ASA210C;          ! ASA SECTOR, SUBPROGRAM !
  RS WR1-CNUM;                  ! STORE CNUM VALUE IN REGISTER WR1 !
  RS AR0-CMAX;                  ! STORE CMAX VALUE IN REGISTER AR0 !
  AR WR1-AR0;                   ! CALCULATES AR0 - WR1 AND STORE ANSWER IN WR1 !
  WS CNUMBER-WR1                ! STORE WR1 VALUE IN CNUMBER VARIABLE !
 END PROGRAM;

 DATA;
  SIZE OF CMAX = 10;
 END DATA;
END DOCUMENT;

ID PROGEXAMPLE TYPE DOCUMENT;
 CLA 19055;
 REV C;
 DAT 99-04-19;
rse engineering PLEX-C code to SDL10 code Page 23
n Berg 1999



PLEX-C

Page 24
 DES ERA/LVA/DX MBER;
 RES ERA/LVA/DC;
 APP ERA/LVA/DC;
END ID;
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



SDL

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
5

SDL
real-
nges,

pre-
hical

-T)
1976
n is

s

tion)

data
5.1  Description

SDL is the abbreviation forSpecification and Description Language. It is a high-level,
object-oriented and graphical language, which is intended for developing complex,
time and communication systems. Examples are cellular and DECT phones, excha
radio systems, and train-control systems [W1]. A program written in SDL can be
sented in two ways, either graphical or textual. The most common way is the grap
because of its benefits (see section 5.3).

5.2  History

In 1972 a study group within the telecommunication union CCITT (now called ITU
began to research on a specification language that the telecom industry could use. In
SDL got standardized by ITU-T, as standard Z.100. Every fourth year a new versio
released. The modifications in summary are [P2]:

• SDL-76 First standardized version. It only had recommendations on how proces
graph symbols should be drawn.

• SDL-80 The block conception is introduced and the PR-form (textual representa
becomes a part of the language.

• SDL-84 Additional concepts are introduced, among others the concept of abstract
types.

• SDL-88 Only minor changes.

• SDL-92 SDL becomes object-oriented.
Page 25



SDL

Page 26

+ and

er-
tem is

he
cod-
ses

hat

av-
al
early

 com-

any

ason
Tau it
SDL
, Atlas
is a
• SDL-96 Minor changes, e.g. external procedures

5.3  Benefits

The benefits that SDL has compared to other programming languages such as C/C+
PLEX are many. Some of them are [W1][P2]:

• Graphical user interface. The graphical interface makes the software easier to und
stand, even for a non-technician. One can easy get a clear picture of how the sys
built up by different parts, and how they communicate.

• Easy to use.Designing a SDL program is done graphically with help from a tool. T
SDL code can then be translated into executable code without any manual “line” 
ing, as in C++ programming. This makes the development time shorter and increa
the quality.

• Documentation. Since SDL is graphical, the program itself becomes a document t
is easy to read and shows how the system is implemented.

• Test and maintenance.The fact that SDL has a rich grammar which describes beh
iour, makes it possible to build simulation tools for SDL systems and validate form
characteristic (e.g. to avoid deadlock). This means that defects can be found very
in the development process.

• Design and implementation independent. SDL is independent of the design para-
digm, i.e. if it is function oriented (PLEX-C) or object oriented (C++). SDL is also
independent of the implementation language, which means that SDL code can be
piled to any language one want, e.g. C, java.

5.4  Telelogic Tau

In our work we have used a toolkit for SDL development, and it is the Swedish comp
Telelogic ABthat have produced (and now improves) it. The toolkit is calledTelelogic Tau,
hereafter referred to as Tau. Tau is an SDT (SDL Development Tool), and for that re
Tau sometimes are referred to as SDT, i.e. SDT and Tau means the same thing. With
is possible to build SDL applications, test them, simulate live performance, debug
programs, make test files etc. Many companies, for example Telia, Siemens Defence
Copco, Alcatel, Ericsson, IBM, Intel and Nokia use Tau in their development [P2]. Tau
set of several tools connected to each other as shown in figure 5.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



SDL

Reve
Marti

g. It
re the

ly

ro-

lared
e
lator

ther,
with
an be

d the
Organizer
The Organizer is the central tool in Tau. When starting, the Organizer is appearin
shows all components in the system and how they are connected. One can compa
Organizer with an advanced file manager.

Editors
Tau has several editors for different purposes. The most used editors are theSDL Editor
and theMSC Editor. With these editors SDL and HSDL (High-level SDL) respective
MSC and HMSC (High-level MSC) can be edited. Other editors areText Editor, State
Chart EditorandOM Editor. State Charts show an overview of the states in an SDL p
gram, and OM (Object Model) concerns objects in high-level design.

Analyzer / Code Generator
The Analyzerchecks SDL systems for errors, such as unconnected symbols, undec
variables, type conflicts, etc., and theCode Generatormakes executable code. The cod
can be C code, PLEX-C code, or compiled code ready to run, for instance in the simu
or the validator.

Validator / Simulator
With these tools a system can be tested. The difference between them is that in theValida-
tor MSC’s are compared with the SDL code to see if their flows correspond to each o
and theSimulatorsimulates the program and a test engineer can send in any signal
parameters and check what he gets back. Of course both validation and simulation c
automated.

Viewers
The Type Viewershows objects and their inheritance, theCoverage Viewershows how
much of the code that was covered by a certain test (with validator or simulator), an
Cross Reference Viewer is used to locate definitions and all references to them.

Figure 5. Telelogic Tau
rse engineering PLEX-C code to SDL10 code Page 27
n Berg 1999



SDL

Page 28

e text
dia-

kes it

u has

ween
n, is
r has

s fur-
and

eived
prob-
efore
. The
Utilities
An example of a utility is thePreference Managerwhere all settings for Tau can be
adjusted.

Link Manager
This tool handles links between different objects in the system, where objects may b
fragments in text documents or graphical symbols in for example SDL and MSC
grams.

TTCN link
TTCN (Tree and Tabular Combined Notation) is a standardized test language that ma
possible to test the system with same test files in different environments, and theTTCN
link is what it says, a TTCN link.

5.5  SDLtool

Since PLEX-C and SDL does not support the same things (more in section 5.7), Ta
been adapted to fit Ericsson’s need for development, and that tool is calledSDLtool. The
differences is that some local tools that help the designer with the differences bet
SDL and PLEX-C has been added, and some functionality, e.g. object orientatio
removed due to the fact that PLEX-C does not support them. A new code generato
also been added, a PLEX-C generator. It converts SDL code to PLEX-C code, and i
ther referred to as the PLEX-C generator, or SDL2PLEX. SDLtool is built on Tau,
new versions of Tau also make new versions of SDLtool.

5.6  The SDL language

An SDL system consists of severalextended finite state machines(EFSM) that run in par-
allel [P5]. The EFSM is an extended concept of thefinite state machine(FSM). The FSM
consists of a set of states with the possibility to receive signals. The signal that is rec
sets the next state. No variables are allowed and that makes the FSM good for small
lems only. Some functions, such as counting, will bring a need of many states. Ther
the FSM concept was extended to the EFSM. In this machine variables are allowed
EFSM’s, or processes, communicate with signals and runs independently.

5.6.1  Components

The following components are embedded in an SDL system [P2]:

• Structure System, block, process, and procedure hierarchy

• Communication Signals with optional parameters and routes (channels)

• Behaviour Processes

• Data Abstract data types (ADT)
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



SDL

Reve
Marti

oc-

 hier-

t.

ignals.
tated.
o state-
is not
viron-
ers.

o the
timer,
vail-

lifies
d proc-
• Inheritance Describing relations and specialization

Structure
An SDL system is divided into four hierarchical levels (see figure 6).

• Proceduresmay be recursively implemented and they can both be local to their pr
ess or global, depending on their scope.

• Processes in SDL have its own separate memory space and is defined as a nested
archical state machine.

• Blocks are a set of processes and other blocks grouped together.

• The system is where all blocks are connected to each other and to the environmen

Communication
The communications inside an SDL system, between the processes, are made with s
They are asynchronous, i.e. the order of their execution cannot in advance be s
Remote procedure calls can be seen as synchronous signals, i.e. correspond to got
ments or subroutine calls. Both signal types can carry parameters to the receiver. It
only SDL processes that can send and receive signals but also hardware (called en
ment in Tau) or non SDL applications. This is for instance necessary when using tim
An SDL process can set timers, and when the timer expires, a timer signal is sent t
process. The timer can also be mapped to an operating system timer or a hardware
which makes it possible to simulate time in SDL models, before the target system is a
able [W2].

The idea of SDL’s clear signal interfaces between different parts in a system simp
large team development and ensures consistency between the parts. But signals an
esses cannot be prioritized, priority does not exist in SDL.

Figure 6. SDL system
rse engineering PLEX-C code to SDL10 code Page 29
n Berg 1999



SDL

Page 30

ated at
ir own

tation
cified
ard var-
s with
, etc.

ill use
ystem
which

ted by
urse
not
Behaviour
Processes can be created at system start and at run time. They can also be termin
any time. More than one instance of a process can exist, and all instances have the
identification number PId, so signals can be sent to special instances of a process.

Data
Data can be described in two ways, abstract data types (ADT) and abstract syntax no
one (ASN.1). ASN.1 enables sharing of data between languages. ADT has no spe
data structure, instead a set of values, operations and equations are specified. Stand
iables are also available, such as integer (numbers without decimals), real (number
decimals), boolean (true or false), time, charstring (text), PId (process identification)

Type declarations (the part where the programmer declares which variables he/she w
and what kind of types they are) can be placed any were. It can be either inside the s
close to their context, at system level, or even outside the system in packages,
makes it possible to share declarations with other systems.

Inheritance
In object oriented languages one of the major benefits is that new objects can be crea
adding new or changing properties to existing objects (specialization). This can of co
be done in SDL, but since SDL10 is not object oriented (see section 5.7), this is
explained here.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



SDL

Reve
Marti

tand,

t

iews

son’s
oth
orts
5.6.2  The layout of SDL

To understand the graphical user interface of SDL and how easy it is to unders
figure 7 shows an example of an SDL process.

The process is “resting” in theIdle state, waiting for the signalButtonPress to arrive to
the process. When the signal arrives, a local variable,Count , is set to a value. In this case i
is oscillating between 0 and 1 every time the signal arrives. Then the value thatCount

holds is checked, if it is 1 the signalReleaseCoke is sent, otherwise, ifCount is 0, the sig-
nal NotAllowed is sent. After any of the signals are sent, the process goes to itsIdle state.

Where the signals are sent cannot be seen in this figure. It is the overlaying block v
that show that, and block views will not be shown here.

5.7  SDL10

SDL10is an adapted version of the standardized SDL language, made for fitting Erics
need. All functionality that PLEX-C gives must also be supported by SDL, and with b
limitations and extensions towards SDL, SDL10 fulfils their requirements. Tau supp

Process MyProcess 1(1)

DCL
Count Integer; Idle

ButtonPress

Count :=
1 - Count

Count

NotAllowed

Idle

ReleaseCoke

Idle

Idle

0 1

Figure 7. SDL Process
rse engineering PLEX-C code to SDL10 code Page 31
n Berg 1999



SDL

Page 32

ribed

the
ems
key-
xten-
rary

f a

need
pro-
as the

cified
lling.
or sig-

ed by

res-
nician

not
n the
SDL, and SDLtool supports SDL10. Differences between PLEX-C and SDL are desc
in section 6.2.

The extensions are implemented in SDL as directives, i.e. direct commands to
SDL2PLEX compiler. The disadvantage of this is that it will be harder to test the syst
behaviour at SDL level. Directives are written as comments in SDL, and begin with a
word (called directive). The directives can have parameters as well. Examples of e
sions are ASA subprograms, external code, ID sector, signal priority and tempo
variables.

Limitations are functionality in SDL that are not supported in SDL10. An example o
limitation is the object-oriented concept and thereby also specialization.

5.8  MSC

In real time systems the different processes performs tasks and like all programs they
input data to make decisions (otherwise the developer should know the result of the
gram execution). A process retrieves data from other processes or components, such
environment, and it is carried on signals. Signals, or events, must happen in a spe
order, e.g. it should not start to ring in a phone before the caller has finished the dia
An MSC (Message Sequence Chart) shows chronological sequences of messages,
nals, sent between components and their environment. MSC is like SDL standardiz
ITU-T, Z.120 [P2].

An MSC is useful for describing the dynamic behaviour of a system. The graphical p
entation shows complex behaviours clear and it is easy to understand. Even non-tech
people can understand MSC’s.

In Tau, test files for SDL systems can be generated from MSC’s. An MSC does
describe the complete behaviour of a system though, rather one execution trace. O
other hand several MSC’s can describe the system more detailed [P2].
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



SDL

Reve
Marti

esses
lready
e grey
e run-
s dur-

. The
re the
Figure 8 shows an MSC. The rectangles at the top with text inside are different proc
or components in the system. When they are at the top it means that they are a
started and are running when the events that this MSC shows begin to happen. Th
boxes at the bottom means that the components not are terminated here and will b
ning after the events that this MSC shows. The dotted line marks creation of instance
ing run time in SDL. Processa2 is created by processa1, and then terminated, showed
with a large cross. The arrows in an MSC represent events, which is signals in SDL
text above an arrow is the name of the signal and the text below, inside the brackets a
data sent along with the signal [P2].

MSC myMSC

environment a1

a2

b

sig1

 data

 data

sig2

 data

sig3

sig4

sig5

sig6

 data

sig8

 data

Figure 8. MSC
rse engineering PLEX-C code to SDL10 code Page 33
n Berg 1999



SDL

Page 34
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Comparisons - SDL vs PLEX-C

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
6

Comparisons - SDL vs PLEX-C

s are
ences
ange,

tween

-C
ure 9
esents

een
ams
n.

ribes

SDL
vel.
There are both differences and similarities between SDL and PLEX-C. The similaritie
the reasons for choosing SDL instead of any other programming language. The differ
are the major problems for our work. To have a successful programming language ch
we must find solutions for all the problems that the differences bring.

6.1  Similarities

Realtime
Both PLEX-C and SDL are realtime languages, and use signals to communicate be
different parts in the system.

Development
Development in SDL, or actually in the SDL environment, is similar as in the PLEX
environment. The tools are different of course, but their purpose are the same. Fig
shows the corresponding documents between SDL and PLEX-C. Dashed lines repr
automatic steps. Note the differences in the abstraction levels.

• First MSC’s / Sequence diagrams are produced. They both show interaction betw
blocks, i.e. signals sent and received within certain functions, but sequence diagr
explains a little bit more than MSC’s and have therefore a lower level of abstractio

• The next step is generation of SDL code respectively flow charts. They both desc
what should be done between the signalcommunication described in the MSC’s /
sequence diagrams. Since the “what to do” part is implemented with statements in
and with explaining sentences in flow charts, there is a difference in abstraction le
Page 35



Comparisons - SDL vs PLEX-C

Page 36

to-
om

has
SDL
nces

must
al sign
truc-

its var-
verca.

ging
and

tor,
each

ystem
ols

that
uage
• In the last step PLEX-C code will be generated. In the SDL environment this is au
matic, but in the PLEX-C environment this is a manual step and done with help fr
flow charts.

6.2  Differences

Variables
In PLEX-C the variables are a set of bits stored in the memory in different ways. SDL
a numerous of different types, and their scope can be either global or local. A local
variable is comparable to a temporary PLEX-C variable. There are also differe
between their timer variables (a variable that periodically is increased).

Typing
SDL is a hard typed language, i.e. assignments and comparisons of two variables
have the exact same type, or must be converted so the types on both sides the equ
respectively the assign sign are the same. In PLEX-C there is no typing at all. 16 bits s
tured variables can be assigned 16 bits pure and unstructured variables, even eight b
iables can be both compared with and assigned 16 bits variables’ values and vice
This is not possible in SDL.

Object orientation
One benefit with SDL is that it is object oriented. This benefit is no argument for chan
programming language from PLEX-C to SDL since PLEX-C is not object oriented,
this feature cannot be used.

System overview
The SDL environment consist of several tools, e.g. SDL editor, MSC editor, Simula
Analyzator, log window, code generators, etc. which are integrated and connected to
other within an Organizer. The close relationships between the tools makes the s
overview clearer than in PLEX-C development. In the PLEX-C environment, similar to
are used in development, but the close integration and connections between them
SDLtool supports does not exist. This is no disadvantage for a programming lang

Figure 9. SDL vs. PLEX-C environment development
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Comparisons - SDL vs PLEX-C

Reve
Marti

X-C

ystem.
has
s
. Each
proc-

has

e the
e, i.e.
lso
-C is

paral-
to be
gram
is one
ulti-

a
ed in
lly the
a cer-
ould
change though, rather a benefit that not affects the difficulties for converting from PLE
to SDL.

Start/restart, forlopp handling and size alteration
Ericsson has some functionality that handles special cases that can occur in the s
The start/restartfunction is used when the system is started or restarted after a fault
occurred in the system.Forlopp handlingis a function that kills just that process that ha
stopped for any reason. The benefit is that all other processes can continue as before
process has its own database over connected MS’s with data that is relevant for the
ess. Sometimes the size of these databases needs to be changed and it is thesize alteration
function that handles that. These functions cannot be found in SDL, but PLEX-C
them.

Abstraction level
As mentioned before, SDL has a higher abstraction level than PLEX-C. In this cas
differences in abstraction level is mostly noticed in the presentation of the source cod
the flow through the program is more obvious in SDL than in PLEX-C. But it is a
noticed in the way the different programming languages presents a system in. PLEX
not a multitasking programming language (a method to make several programs run
lel), i.e. only one part of the code can be executed at a time and the multitasking has
considered by the designer, or with other words, the designer decides when his pro
shall release the processor so other programs can execute. A program in this case
block. At SDL level, processes (the corresponding to programs) runs parallel, i.e. m
tasking. Every block has oneblock processthat handles common functionality for the
block, and may also have numerous ofindividual processes, and each of them handles
single subscriber in the system (individual). In PLEX-C the subscribers’ data are stor
a large database that is constructed like a record in Pascal, or a structure in C. Actua
record, or structure is a large two dimensional matrix were each row corresponds to
tain individual. The individuals are reached with a pointer that says what individual sh
be handled.

Figure 10. Individuals in PLEX-C and SDL
rse engineering PLEX-C code to SDL10 code Page 37
n Berg 1999



Comparisons - SDL vs PLEX-C

Page 38

C to
very

rences
oblems
6.3  Conclusions for similarities and differences

The differences cannot be so extensive that it is impossible to convert from PLEX-
SDL and the similarities must overcome the differences. The realtime similarities are
good and makes it possible to do the language change, but the abstraction level diffe
makes it hard, actually very hard. The designers have to reassess and attack the pr
in a different way.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Reverse PLEX-C code

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
7

Reverse PLEX-C code

er
n be
con-
enu

3, the
man-

ource
Previously in this thesis references to areverse toolhas been presented, but no deep
explanation about it was provided. The history of the reverse tool’s development ca
found in section 3.6 and since it still is under development, new versions are released
tinuously. The tool is developed by Telelogic and integrated inside SDLtool as a m
choice.

Figure 11 shows where in the reverse engineering process, described by figure
reverse tool is. Dashed lines are work made by the reverse tool and straight lines are
ual work. The reverse tool is mostly interested in the compiled source code, and the s

Figure 11. The reverse tool within the reverse process
Page 39



Reverse PLEX-C code

Page 40

s, the
to be

e are
ple
does

erated

erted
erent
hows
pend-
[I5].

s. The
] and

ands.
r

ribers,

and-
es

verse
uble

cov-
how
code itself is only used to achieve comments in the code. The tool produces two thing
uncompleted SDL code, and a log that describes what was not converted and has
done manually.

As described previously, the reverse tool cannot convert all code automatically. Ther
two reasons for this, first the tool does not support all PLEX-C constructs, for exam
linked lists, and second some parts are generated by the SDL2PLEX generator and
not need to be implemented in SDL. The second part is recognized as automatic gen
code and more about that below.

7.1  Block division

When converting blocks with the reverse tool, the percentage PLEX statements conv
may vary much. The reason is that the tool does not support all constructs, and in diff
blocks different constructs are used. Comparing a block’s construct with its purpose s
a strong connection, and for that reason blocks can be divided into four categories de
ing of their purpose. The categories were briefly discussed in section 3.6.6 and also in

Traffic blocks
These blocks handles traffic related jobs, for example handovers and assignment
percentage of automatic converted statements is high (75% - 95%) (result from [I5
own experience), since they are the easiest blocks to convert.

Command blocks
An exchange operator can from a terminal adjust the exchange’s behaviour by comm
These commands are handled bycommand blocks. These blocks are, compared to othe
kinds of blocks, relatively small.

Database blocks
These blocks works as databases and stores information, for example about subsc
cells etc.

Message handler blocks
The nodes in an GSM network, i.e. BSC, MSC, BTS, etc., are communicating with st
ardized messages.Message handler blocksconverts data retrieved within these messag
to the data format used internally in the node.

The reason for traffic blocks being the most successful blocks to convert is that the re
tool is mostly tested on these kinds of blocks, and for that reason most of the tro
reports to the developer is from converting such blocks.

7.2  Reverse tool unsupport

Since the reverse tool is under development, new versions with more support for un
ered constructs will be implemented in the future. The purpose of this section is to s
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Reverse PLEX-C code

Reve
Marti

e can
hat we

of the
exam-
rives
traf-

L

d

er
tool.

ot to be
to the
these

of a

ut

s are

the
time,
ince
the reverse tool’s support and unsupport at the time when our work were made. Ther
exist more unsupported constructs not described here though. The reason for this is t
had not the ability to convert sufficient number of blocks, or different kinds of blocks.

As described in section 3.6.6, the success for converting blocks depends on the kind
block. The reason is that the reverse tool supports some constructs more or less. For
ple the reason for low converting percentage when converting command blocks de
from how the state is set in the PLEX code. This differ between command blocks and
fic blocks.

Other general constructs not covered by the reverse tool are:

• Linked lists - will be supported in later versions

• Several starting points within a process - also supported in later versions.

• Forlopp statements inside the individual process - instead of the right subroutine
call, a comment with the untreated linenumber in the PLEX code, is put in the SD
code.

• Timers - hard to convert correct, sometimes the reverse tool recognizes timers an
sometimes not.

• Individual pointer - In SDL10 half the PId value corresponds to the individual point
in PLEX-C. Converting between these may sometimes be difficult for the reverse 

7.3  Automatic generated code

Some of the statements that not are converted, are automatic generated and need n
converted into SDL code, but to get the automatic generated code correct, directives
PLEX generator must be set. There exists scripts that helps the designer to find out
directives. Automatic generated code concerns:

• Size alteration - change number of individual processes, or change the size
vector during execution.

• Scanning individuals- a procedure to find out if an individual has got any time o
in their timers.

• Forlopp - statements for forlopp initiation.

• Start / Restart - when the system is started / restarted some general procedure
run.

7.4  Time estimation

It is important to have knowledge about how long time a conversion will take since
project leaders must plan how much effort every conversion needs, i.e. staff, costs,
etc. The KomPlex project [I5] presents formulas for estimating conversion times, but s
rse engineering PLEX-C code to SDL10 code Page 41
n Berg 1999



Reverse PLEX-C code

Page 42

, we

or-
k and
ments

its
ntage
were

omatic
if we
type

. They
occur

ented
dis-

pt for
rting
the

time
k like

t [I5]

ms in
typing
this is confidential information and intended to be used by Ericsson personnel only
cannot present the formulas or information about them here.

7.5  Reverse tool in our work

We have converted two blocks inside the BSC from PLEX-C to SDL10 (for further inf
mation about BSC, see appendix A). The first block can be classified as a traffic bloc
the second as a message handler block. Both blocks have about 1100 PLEX-C state
each. The first block,RMASS, handles a part of the functionassignment in serving cell, and
the second block,RMHAIUL, handles the communication from the CPR blockgroup to
environment. The conversion of these blocks were successful due to the high perce
converted number, in fact almost all code that could not be automatically generated
converted. The percentage converted number will never be 100% because the aut
generated code will never be converted, and such code exists in all blocks. Even
ignores that, the converted code (the SDL code) is not fully correct. The code and the
definitions are converted, so are the signals, but not the types on signal parameters
have to be corrected, irrespective of the percentage converted figure. There may also
other problems due to unsupported constructs by the reverse tool.

RMASS
The unconverted statements were all related to automatic generated code (implem
with directives in SDL), except for some forlopp subroutine calls. Problem one was
covered when converting this block.

RMHAIUL
As in RMASS, the unconverted statements were all related to automatic code, exce
some forlopp subroutine calls. Problem two and three were discovered when conve
this block. When converting this block, we also made time estimations according to
formulas presented by the KomPlex project [I5]. The estimated total conversion
became 43.1 hours, and the actual conversion time became 42.8 hours. This may loo
manipulated figures, but they are not. Remember though, that the KomPlex projec
also has tested the formulas with good results, so they can be seen as acceptable.

7.5.1  Problems

Even if the reverse tool converted 90% of the source code, we had three major proble
the conversions. The first problem regards abstraction level differences, the second

Reverse Data

Block Type % coverage # statements # signals # states

RMASS Traffic 89,0 % 1162 79 14

RMHAIUL Message Handler 90,9 % 1106 80 3
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Reverse PLEX-C code

Reve
Marti

everal
e parts.

and
ock-

indi-
o be
pped
ffic

ad of
cess

ate a
should

eans
tion.
. The

r, and
s this

olved
au to
differences between SDL10 and PLEX-C, and the third regarded variables used by s
processes. The reverse tool should know about these problems and reconstruct thes

Problem 1
Figure 10 describes the difference in how individuals are represented in PLEX-C
SDL10. It is these differences that make our first problem. In many blocks inside bl
group CPR, individuals are mapped, i.e. same individuals has the same value on its
vidual pointer in different blocks. This is a benefit since the individuals does not have t
allocated in all blocks. Instead all individuals are allocated in one block and then ma
to the same place in all other blocks. This problem is common within almost all tra
blocks. It is recognized when the initiation signal is sent to an individual process inste
to the block process, where the allocation would occur and a new individual pro
should be created. This means that no individuals can be created in runtime.

Solution 1.1
One solution could be sending the initiation signal to the blockprocess and there cre
new individual process. But one can never decide what PId value a created process
have, and for that reason the mapping between blocks will be corrupt. Insteadall signals
have to be sent to the blockprocess and there mapped to correct individuals, which m
that all input signals are duplicated as internal signals. This is not a good solu
Figure 12 shows how two signals, signal 1 and signal 4, are sent to the block process
blockprocess uses the map table to find what individual the signals are intended fo
bypasses the signals to correct process. In this case the external individuals (toward
block) 1 and 4 are mapped as internal individuals 3 respectively 2.

Solution 1.2
If one could create processes with predefined PId values, the problem should be s
directly. This solution is not a pure code solution, instead Telelogic has to redesign T
include this feature. That is more a political problem and probably not easy to fulfil.

Figure 12. Signal mapping
rse engineering PLEX-C code to SDL10 code Page 43
n Berg 1999



Reverse PLEX-C code

Page 44

re-
ignal
ork
ow
sses
s that
pped

are of
ood

set of
struc-

etween
, are
is that
ithout
iables
LEX-
igned
oblem

(16
o

etimes
here.
r bits.
amed
Solution 1.3
Individuals that are idle (in state IDLE in PLEX-C) should not exists in SDL10, but be c
ated when an initiation signal is received. It is the block-process that receives this s
and creates a new individual process. Later when the individual is finished with its w
and would go idle in PLEX-C, the individual process in SDL10 is terminated. This is h
it is meant to implement blocks in SDL10. Suppose instead that all individual proce
exists all time and goes to an idle state when idle instead of terminating. This mean
the initiation signal can be sent to the individual process that corresponds to the ma
individual that sent the signal, and the mapped structure between blocks is taken c
and this solution may solve this problem. We used this solution in our work with g
results.

Problem 2
The second problem is about typing differences. In PLEX-C a variable is seen as a
bits. The variables can be structured or not. Assignments and comparisons between
tured and unstructured variables are permitted, and also assignments/comparisons b
variables of different sizes, e.g. eight bits variable compared with a 16 bits variable
permitted. The easy typing has both benefits and disadvantages. One disadvantage
variables with different structures can be assigned to or tested against each other w
warnings and error messages when compiling. But this can be a benefit too since var
with different structures may have the same meaning, and that is very common in P
C. In SDL10, on the other hand, typing is strong, very strong. Variables that are ass
or compared with each other must be declared as the exact same type. This is a pr
when converting code from PLEX-C to SDL10.

Variables in PLEX-C are often structured. The most common size is 16 bits. This word
bits) is divided into two bytes calledOCT1andOCT2. These bytes are also divided into tw
pieces each,QUAD1and QUAD2respectivelyQUAD3and QUAD4. The QUADvariables (the
divided structures can be seen as single variables too) has the size of four bits. Som
even a smaller division is made. That is similar to the quad division, but not handled
A structured variable can be accessed at different levels, as 16 bits, eight bits, or fou
It is important that substructures, or variables within the same structure not are n

Figure 13. Variable structures
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Reverse PLEX-C code

Reve
Marti

rules
since

bits

ave
have
erted
(they

will
eters.

The
here
hen
ture,
r con-
thin).

++).

d the
ter used
ot be
oes not

tool

hen
equal since that is not permitted in PLEX-C. This could for example beQUAD3andQUAD4

named asQUAD1 andQUAD2 in the structure above (figure 13).

In PLEX-C, assignments between variables of different sizes are permitted too. The
that controls this is shown in figure 14. This should never be used in design though,
the possibility for misunderstanding. In figure 14 both variables are declared as 16
structures as described in figure 13.

This “type problem” is not only local to the block, but also global. Let us say that you h
converted two or more blocks and wants to simulate their behaviour in Tau. Then you
to connect the blocks to each other with predefined signals. The signals are conv
together with the block that uses the signals, and if two blocks uses the same signal
do if they communicate with each other), two different declarations of that signal
occur. The differences between them will be the type declarations of the signal param

Solution 2
Unfortunately the reverse tool is not much help. Instead it might even make it worse.
problem for the reverse tool is to identify the structure of variables in the code, and if t
is a slightly difference, new structures at SDL-level is produced. This is a problem w
comparing and assigning variables in SDL, which will theoretical have the same struc
but are declared as different types. Instead, we wrote our own structures to the latte
verted block (this block has lots of structures and was hardest to convert types wi
Also operators to convert between a structure and integer, were produced (written in C

In conclusion, the solution to this problem is quite easy. When signals are converte
structures used in the signal parameters are also converted. These structures are la
to declare most of the variables in the converted block. The variables that cann
declared as these types retains the type declaration that the reverse tool set. This d
only solve type conflicts with signal parameters, but also the problem that the reverse
has when converting structures.

Problem 3
In PLEX-C variables can be declared differently.

• Temporary - These variables loses their value when getting out of scope, i.e. w
changing state, calling subroutines, etc.

Figure 14. Variable assignments with different sized variables
rse engineering PLEX-C code to SDL10 code Page 45
n Berg 1999



Reverse PLEX-C code

Page 46

ged
roc-

(a
ivid-

rocess
both
t var-
ce in

utside

other
re
ing the
e local
• Common store -These variables remember their value even if the state is chan
or a subroutine is called. They are technically declared outside both the blockp
ess and the individual process.

• In records - Variables belonging to a certain individual are stored in a record
kind of a vector). These variables corresponds to variables described in the ind
ual process.

In some blocks the common stored variables are accessed and set by both the blockp
and the individual process. The reverse tool solves this by declaring the variables in
process types, and for that reason one variable at PLEX-C level becomes two differen
iables with absolutely no connection between each other at all. This is not correct, sin
the PLEX-C source code just one variable is used by both processes.

Solution 3
In SDL, variables must be declared within a process and they are not accessible o
that process [P5]. One can declare a variable asrevealedthough, which makes the variable
readable for other processes, but they cannot store any value in it. To store values in
processes variables aremote proceduremust be implemented. Remote procedures a
implemented in the blockprocess and can be accessed by other processes. By apply
value to store as an inparameter to the remote procedure, it can store the value to th
variable in the blockprocess.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conclusions

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
8

Conclusions

to

time
con-
pro-
r the
work

pari-
ans
L10.
pro-
the
cide

t dif-
d
rocess

these
and

the

rts cor-
ality
Our work shows that it is possible to convert blocks inside the BSC from PLEX-C
SDL10, with assistance from the reverse tool. The tool reduces the conversion
towards manual conversion with approximately 40% [I5]. Problems that occur when
verting source code have mostly its origin within the differences between the two
gramming languages, and can seldom be derived from either the reverse tool o
SDL2PLEX generator. The greatest differences that we have discovered within our
were about typing level (strong or easy), representation-, and variable- differences.

The first difference convey in problems for converting certain assignments and com
sons from PLEX-C to SDL10. PLEX-C is easy typing and SDL10 is strong, which me
that some assignments / comparisons stated in PLEX-C code are not allowed in SD
The representation difference derives from how individuals are represented in the two
gramming languages. Sometimes individuals are “mapped” in PLEX-C, but in SDL10
individuals should be “created”. When creating a process in SDL10 one cannot de
what reference number it should have, which theoretical is done in PLEX-C. The las
ference is about variables. In PLEX-Ccommon storedvariables, i.e. variables declare
outside all “processes”, can be used. In SDL10 variables must be declared inside a p
and belong to such one.

Unfortunately the revers tool does not support these differences and cannot convert
parts correctly, or even not convert them at all. With some manual effort, as adding
correcting to the converted block (described in appendix C), its functionality will be
same in both languages.

Some blocks are easier than others to convert, i.e. the reverse tool converts larger pa
rect and SDLtool and the SDL2PLEX generator supports some PLEX-C function
Page 47



Conclusions

Page 48

e best
. But
other

ave
they are
tool

only
n used.

prob-
ore
ore

has
n the
vert,
hen

ually)

code.
onver-
eport
ake
on the
ore
can

well
re not
sses if
ust be

xist in
more than others. Since the reverse tool is mostly tested on traffic blocks, these are th
supported blocks from both the reverse tool, SDLtool, and the SDL2PLEX generator
with further adjustments to these three products, they will support conversion of the
block categories as well as for traffic blocks.

KomPlex [I5] presented formulas for time estimations when converting a block. They h
been tested once, and since no other tests have been made we cannot say whether
good formulas, or not. Since the type of block to convert affects how much the reverse
converts, this should be a factor in the first formula.

Our work has also resulted in a process for how to convert a block. The script has
been tested once though, but the intention is to update the script each time it has bee

We consider our work as successful, and recommend usage of the reverse tool. The
lems that still exist (not have been found yet) will probably be easy to solve. With m
usage of the tools (reverse tool, SDLtool, and SDL2PLEX generator), they will gain m
quality.

8.1  Differences

Our work is unique in the way that no other project with same intentions that we had
been launched at Ericsson before. KomPlex [I5] had similar intentions, but focused o
connections and interactions between blocks at SDL-level. If a block was hard to con
they skipped it and took another block. In our work, we have looked for problems w
converting blocks, and tried to find solutions.

Blocks have been converted before though, but either without the reverse tool (man
[I6], or with different intentions.

8.2  Future work

Our work has just been concentrated on reverse engineering PLEX-C code to SDL10
The reverse tool aiding the conversion has some lacks that must be provided to a c
sion project manually. By using the reverse tool and thereby finding these lacks and r
them to the developing company Telelogic, the tool will gain quality and manage to m
better conversions considered efficiency, correctness and coverage. Most of the tests
reverse tool have been done with traffical blocks. By testing other kinds of blocks m
knowledge of differences between the two languages will be gained. This knowledge
be used to apply solutions to the problems that the differences make.

When developing products of the size which Ericsson does, it is important to have
defined processes for the development. Ericsson has that. Since SDL and PLEX-C a
at the same level of abstraction, Ericsson needs to make adjustments to their proce
they change their programming language. Processes for source code conversions m
developed too. Similar tools to the ones used today in the development process e
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conclusions

Reve
Marti

se the
Tau, but Ericsson does not have enough knowledge about all benefits and how to u
tools in the best way.
rse engineering PLEX-C code to SDL10 code Page 49
n Berg 1999



Conclusions

Page 50
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Acknowledgements

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
9

Acknowledgements

p-

gic,
Uni-

Sys-
mak-

e dis-
nd
First of all I would like to thank my family, Maria Holmqvist and Casper Berg, for all su
port.

I would also like to thank Anders Dellien, Magnus Persson and Dirk Auchter at Telelo
who has helped me with my SDL systems when I got stuck, and Chris Verhoef at the
versity of Amsterdam who has helped me with reverse engineering research.

Huge thanks to my tutors, Magnus C. Ohlsson at the Department of Communication
tems, Lund, and Jörgen Palm and Henrik Cosmo at Ericsson Radio Systems AB for
ing this MS thesis possible to manage.

Lots of thanks to the people who has read and complained at my work and helped m
cussing different kinds of troubles, Tommy Nordgren, Tom Nilsson, Linh Trang a
Markus Berg.

And last I would like to thank the radio showPippi Rull, which has made my work effort
to slow down almost every monday to thursday 3 pm to 4 pm.

Thanks all!
Page 51



Acknowledgements

Page 52
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



References

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
10
References
10.1  Public Resources [Px]
[P1] Ericsson Telecom AB, Telia AB

“ Att förstå telekommunikation 2”
Studentlitteratur, Lund 1998
ISBN 91-44-37811-4

[P2] Telelogic AB
“ Introduction to SDL and SDT”
rev 3.2, 1997

[P3] Mark van den Brand, Paul Klint, Chris Verhoef
“Core Technologies for System Renovation”
Technical report, University of Amsterdam.
Available at:http://adam.wins.uva.nl/~x/reverse.html

[P4] E.J. Chikofsky and J.H. Cross
“Reverse engineering and design recovery: A taxonomy”
IEEE Software, 7(1):13-17, 1990

[P5] Ferenc Belina, Dieter Hogrefe, Amardeo Sarma
“SDL with applications from protocol specefication”
Prentice Hall, Great Britain 1991, ISBN 0-13-785890-6

[P6] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Mueller, J. Mylopoulos
“Code migration through transformations: An experience report”
Technical report, University of Waterloo Dept. of Electrical Eng.

[P7] Peter Aiken, Ojelanki K. Ngwenyama, Lewis Broome
“ Reverse-Engineering New Systems for Smooth Implementation”
IEEE Software, March / April 1999
Page 53



References

Page 54
[P8] Peter Aiken
“Data Revere Engineering: Slaying the legacy dragon”
chapter“ The necessity of Data Reverse Engineering”written by E.J. Chikofsky
McGraw-Hill Companies, USA 1995
ISBN: 0-07-000748-9

[P9] Spencer Rugaber
“Program comprehension”
Technical report, Georgia Institute of Technology, 1995
Available at:http://www.cc.gatech.edu/reverse/repository/encyc.ps

[P10] Jean-Marc DeBaud, Spencer Rugaber
“A software Re-engineering method using domain models”
Technical report, Georgia Institute of Technology
Available at: http://www.cc.gatech.edu/reverse/repository/domain-based-
RE.ps

[P11] John J. Marciniak (Editor in chief),
“Encyclopedia of Software Engineering”,
USA, 1994,
ISBN: 0471-54004-8

[P12] M.G. Rekoff,
“On Reverse Engineering”,
IEEE Transactions on Systems Man and Cybernetics, SMC-15(2), 1985

10.2  Internet Sites [Wx]
[W1] Web address:www.telelogic.se/solution/language/sdl.asp

Telelogic AB

[W2] Web address:www.webproforum.com/telelogic1/index.html

Telelogic AB

10.3  Internal Ericsson documents [Ix]
[I1] Ericsson Radio Systems AB

“ CME 20 System Survey Training Document EN/LZT 120 226 R5B”
Stockholm 1996

[I2] Lecture by Birgitta Strandberg, Ericsson Radio Systems AB
Hässleholm May 13, 1999

[I3] Ericsson Telecom AB
“ PLEX-C1”
Stockholm 1996

[I4] Conny Johansson
“Root cause analysis of SDL Reverse”
Ericsson document number 1/0363-4/FCP 105 9017 Rev A

[I5] Barbara Reisner
“ Final report for: SDL Reverse prototype (KomPlex)”
Ericsson document number 0363-FCPW 101 34 Rev A
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



References

Reve
Marti
[I6] Tomas Kostenius
“ Final report for: SPOT (SDL10 PilOT)”
Ericsson document number EPK/DG-98:051 Rev A

[I7] Stefan Persson
“Problem med för många FORLOPPs-releaser i APZEmu’n”
Ericsson document number EPK/DX - 98:080

[I8] Telelogic AB
“ Plex to SDL 1.0 User’s Manual”
Id: SMO99-XPR-20 version 1.1

[I9] Anna Wetekam
“MSC / SDL10 Layout Guidelines”
Ericsson document number 8/000 21-FCK 114 2004 Uen Rev A
rse engineering PLEX-C code to SDL10 code Page 55
n Berg 1999



References

Page 56
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



GSM / BSC

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
A

GSM / BSC

ept for
s, or

al to
ecide

sys-
sys-

that
. That

ribers

pment.
num-
re the

le
ntages
lits
The GSM system is large and no deeper explanation of the system is done here, exc
one part, the BSC (Base Station Controller). The reason for this is that it is on block
small parts inside the BSC that reversed engineering will be applied.

A.1 History

GSM (Global System for Mobile communication) was “created” in 1982, as a propos
specify a common European telecommunication system. It took many years to d
what techniques that should be used, for example should it be a digital or an analog
tem, and what access method should be used. Not until July 1, 1991 complete GSM
tems were running all over Europe. All the planning and discussing conducted in
many operators started at the same time and a very large potential market could open
is one reason for the popularity of the system and the fact that the number of subsc
has grown fast (and still does).

Since the start the GSM standard and all existing systems have been under develo
New services, both for operators and subscribers have been implemented. Also, the
bers of subscribers are increasing which affects the load on the system, and therefo
system needs to be upgraded.

A.2 Techniques and restrictions

GSM is a digital mobile phone system, that uses the TDMA (Time Division Multip
Access) technique as access method. The TDMA technique has several adva
towards the broadband alternative FDMA (Frequency Division Multiple Access). It sp
Page 57



GSM / BSC

Page 58

chan-
n fre-
ere

The

oving
sub-

n the
es the
igher
er, i.e.
will

the
g be
t/sec

(SS)
ave its
f the
the time into several time slots (GSM has 8 time slots) and uses each time slot as one
nel, which means several channels per frequency. In FDMA each channel get its ow
quency, but instead the bandwidth is higher. Many channels, that TDMA gives, w
chosen instead of the high bandwidth (compared to TDMA) in FDMA (see figure 15).
time slots in TDMA are separated by a little gap calledguard period,to avoid that the time
slots will overlap each other. This is necessary because that the subscribers are m
during transmission and the fact that the signals take a little time to move from the
scriber to the base station [P1].

The low bandwidth that TDMA gives trespasses on the data transmission rate and o
sound quality. A technique that is based on how the human speech organ is build solv
sound problem and reduces the need of a high band width. If a subscriber wants a h
data communication rate, several time slots can be connected to the same subscrib
mobile station (MS), but both the operator and the MS must support this feature. It
also cost more for the subscriber than a usual phone call [P1].

The bandwidth in an ordinary stationary phone is 64 kbit/sec, and that is only for
speech. In a GSM phone only 13 kbit/sec are available, and here must signallin
included. When transferring data from and to an MS, the highest bandwidth is 9.6 kbi
[P1].

A.3 Structure

The overhead design of GSM is divided into two major parts, the Switching System
and the Base Station System (BSS). These parts contain each several units that h
own purpose. Figure 16 shows the structure of CME 20, Ericsson’s implementation o
GSM standard [I1].

Figure 15. Differences between TDMA and FDMA
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



GSM / BSC

Reve
Marti

e BSS
re the

same

holds
they
stolen

ains
dles

ns in
the

s the
SC
As one can see, there are many parts in the CME 20 system. For our purpose, only th
part, and particular the BSC, is of any interest, because it is deep inside the BSC whe
code to be converted (with reverse engineering) can be found.

In simple terms the SS part connects an MS to either another MS, or terminal, in the
net, or another phone (stationary or cellular), terminal or server, in another net.

The units inside the SS part that are connected with dashed lines are servers that
information about which MS’s that are connected to the system right now, and where
are. There is also a database in which the system can check if a certain MS are not
or in another way not permissible to use the network [I1].

The OSS unit contains functions to overview the network, and the MXE unit cont
functions for SMS services, voice and fax mail, and cell broadcast. The MIN unit han
the intelligent network services in CME 20 [I1].

A.4 BSC

The BSC is located in the BSS part. Its purpose is to handle all the radio-based functio
the system. The BSC controls underlying RBS’s (Radio Base Station, called BTS in
GSM standard) and the BSC in CME 20 can handle many RBS’s. This feature reduce
traffic between BSC’s and MSC’s, but it brings a need of a powerful and complex B
[I1].

Figure 16. CME 20 system [I1]
rse engineering PLEX-C code to SDL10 code Page 59
n Berg 1999



GSM / BSC

Page 60

d by

e have
can

ME
A BSC makes lots of things. Over a million of calls per day are handled and distribute
a single BSC. The basic functions, that a BSC has, are [I1]:

• Radio network management

• Radio network performance monitoring

• Operation, maintenance and administration of RBS

• Speech coding and rate adaptation

• Transmission management towards RBS

• Handling of the radio resources during MS connection

The BSC itself is divided into subsystems and these are shown in figure 17.

Some of the subsystems are divided into blockgroups, and in the subsystem RCS w
a blockgroup called CPR. It is inside this blockgroup where the blocks to be converted
be found.

Figure 18 will show in another way where the interesting blocks can be found in the C
20 system.

Figure 17. Subsystems inside BSC
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



GSM / BSC

Reve
Marti

ction
smark
onnec-

fixed
ove
hone
hen
alled
it has
nds.

hange
same
t also
much

MS
ince
The functions handled by these blocks are among others paging, signalling conne
setup, assignment, handover, resource level supervision, cipher mode control, clas
distribution, transfer of BSS transparent messages, short message service (SMS), c
tion release and traffic event measurement in radio network [I2].

A.5 Function explanations

The functions were explained by [I2].

A.5.1  Paging

In the stationary telephone network all telephones, or terminals, are connected to a
point. The network knows all the time where this specific terminal is. If we want to m
the terminal, the connection point will be changed, but this rarely happens during a p
call. In a cordless network, like GSM, there is no fixed connection point for an MS. W
someone calls an MS the network has to ask the specific phone where it is. This is c
paging. Paging is costfull, because if the network has no idea were the MS is located,
to page its hole supplying area. This would break down the network in a few seco
Instead all MS’s has to register themselves when they are turned on or when they c
location area. A location area consists of a number of cells. They can be under the
BSC or under different BSC’s, but they have to be under the same MSC. The MS mus
deregister when it is turned off, so the paging procedure does not load the net too
[P1].

The paging function is used when the GMSC wants to know exactly where a specific
is located, for example when someone from another network is calling the MS. But s

Figure 18. Block hierarchy inside CME 20
rse engineering PLEX-C code to SDL10 code Page 61
n Berg 1999



GSM / BSC

Page 62

work

n MS
intain
ulate

I2]. A
epre-

e

:s.

at the
in a
time

s, both
er a

alling
a new
the MS is located in a location area, the paging is done just there, and only if the net
is not highly loaded [P1].

A.5.2  Handover

Handling handovers is a major part in the BSC. The handover concept means that a
change its communication channel to the system in some way. This is done to ma
good radio transmission quality, save calls from being disconnected or blocked, or reg
the load on the system. Handovers can be within the same cell or between two cells [
cell is a small geographical area with a set of frequencies [P1]. One antenna often r
sents one cell.

Three different cases of handovers can occur [I2].

1. Intra BSC, Inter Cell handover. Handover between two cells controlled by the sam
BSC.

2. Inter BSC handover. Handover between two cells controlled by two different BSC

3. Intra BSC, Intra cell handover. Handover inside the same cell.

The last item can be little strange. Why making a handover inside a cell? Suppose th
frequency that the communication are held over, are reflected (by buildings etc.)
strange way, and the receiving condition gets poor. By changing frequency (and also
slot) the receiving condition can be improved.

Figure 19 shows the three handover cases. The second case can occur in many way
under the same MSC and under different MSC’s. It is the BSC who decides wheth
handover will be done or not, based on, for example receiving conditions [I1].

A.5.3  Signalling connection setup

When a connection is going to be established between an MS and the GSM net, sign
is done over a common channel. To release this channel to other new connections,

Figure 19. Different handover cases
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



GSM / BSC

Reve
Marti

alling

ber is
lly set
ill be
sign-

ough
to the
ion, it

ts and
e MS.

er,

ntact
. The

s talk-
nnec-

received
d they
channel has to be allocated. This function handles the transfer from a common sign
channel to an allocated channel.

A.5.4  Assignment

To set up a phone call much signalling is needed in the beginning. The phone num
one small part of all the data that has to be exchanged before the phone-call is tota
up so the subscriber can start to talk. When all signalling is done, the connection w
transferred from a signalling channel to a traffic channel and that is done by the as
ment function.

A.5.5  Resource level supervision

If some connections require more than one time slot (e.g. data transfer), but not en
time slots are available, this function tries continuously to upgrade these connections
required amount of time slots, i.e. when a time slot is released from another connect
is allocated by this connection.

A.5.6  Cipher mode control

Data sent between an MS and the GSM net is always encrypted. This function selec
sets an encryption alternative that is both permitted by the MSC and supported by th

A.5.7  Classmark distribution

This function retrieves information from the MS about its capabilities. It can be RF pow
ciphering algorithms and multislot class.

A.5.8  Transfer of BSS transparent messages

With this function data is sent transparent through the BSS, i.e. a kind of direct co
between the MS and the MSC. This is used for instance to send the dial tone or noise
noise is sent in convenient purpose. When the person that the subscriber of the MS i
ing to is quiet, no sound is sent to the MS, but to ensure the MS subscriber that the co
tion still exists, noise is sent to the MS.

A.5.9  Short message service (SMS)

Short messages are text messages (up to 160 characters) that can be sent from and
by an MS. A special server, the MXE unit, handles and distributes these messages an
are sent transparently between the MS and the MXE.
rse engineering PLEX-C code to SDL10 code Page 63
n Berg 1999



GSM / BSC

Page 64

call is
MS is
eases

stem
is data
.

A.5.10  Connection release

A connection can end in many ways, and can happen for instance when a phone-
ended, the MS is handovered to an BSC external cell, hardware faults occurs or the
considered lost (too far away from any antenna). This functions handles this and rel
all occupied resources e.g. channels.

A.5.11  Traffic event measurement in radio network

This function is the statistical part in the system. It counts different events in the sy
such as assignment attempts, dropped connections and handovers. With help from th
the status of the system can be defined, and if necessary, adjustments can be done
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Abbreviations

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
B

Abbreviations

Abbreviations

Acronym Explanation

ADT Abstract Data Type

ASA AXE 10 processor assembler language

ASN.1 Abstract Syntax Notation one

AST Abstract Syntax Tree

AXE Ericsson’s well famous exchange

BSC Base Station Controller

BSS Base Station System

BTS Base Transceiver Station

CAD Computer Aided Design

CASE Computer Aided Software Engineering

CCITT ITU-T’s old abbreviation

CME 20 Ericsson’s implementation of the GSM standard

CPR Connection PRocess, a blockgroup inside the RCS subsystem in CME 20

DECT Digital Enhanced Cordless Telecommunications
Page 65



Abbreviations

Page 66

n

DOA Department of Accounts

DP&T Department of Personnel & Training

EFSM Extended Finite State Machine

FDMA Frequency Division Multiple Access

FSM Finite State Machine

GMSC Gateway Mobile service Switching Centre

GSM Global System for Mobile communication

HMSC High level MSC

HSDL High level SDL

ITU-T International Telecommunication Union - Telecommunications Standardizatio
Sector

MIN Mobile Intelligent Node

MS Mobile Station

MSC Message Sequence Chart (in SDL environment)

MSC Mobile service Switching Centre (in CME 20 System)

MXE Message Centre

NMT Nordic Mobile Telephony

OSS Operation and Support System

PId Process Id

PL Parameter List

PL/IX Programming language developed by IBM

PLEX-C Programming Language for EXchanges, C-version

PLEX-M Programming Language for EXchanges, M-version

PLEX2SDL Reverses PLEX-C code to SDL10 code (same as reverse tool)

RBS Radio Base Station

RCS RadioControl System, a subsystem inside the BSC in CME 20

Reverse tool Reverses PLEX-C code to SDL10 code (same as PLEX2SDL)

Abbreviations

Acronym Explanation
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Abbreviations

Reve
Marti
SD Signal Description

SDL Specification and Description Language

SDL10 Adaption of SDL to fit Ericsson’s needs

SDL2PLEX PLEX-C code generator in Tau (generates PLEX-C code from SDL10 code)

SDLtool Adaption of SDT to fit Ericsson’s needs

SDT SDL Design Tool

SMS Short Message Service

SPI Source Program Information

SPL Source Parameter List

SPOT SDL PilOT

SS Signal Survey (in PLEX-C documentation)

SS Switching System (in CME 20 System)

Tau Telelogic’s development environment for SDL

TDMA Time Division Multiple Access

TheMAT The Metadata Access Tool

TTCN Tree and Tabular Combined Notation

Abbreviations

Acronym Explanation
rse engineering PLEX-C code to SDL10 code Page 67
n Berg 1999



Abbreviations

Page 68
 Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999
C

Conversion process

teps
X-C
e tool
the

ent
con-
ce per

se is

proc-

er exe-
ducing
rics-

the
Converting source code from PLEX-C to SDL10 is not difficult, but there are many s
to perform before a complete and validated SDL10 implementation of the origin PLE
code exists. This process helps a designer execute a conversion. The revers
(PLEX2SDL) is used to do the major part, but it can neither convert all statements in
source code, nor evaluate what parts that should be in different processes.

The process is written on the basis that the reader is familiar with the SDL environm
and the differences between PLEX-C and SDL10. It describes “one block at a time”
version, but if several blocks should be converted, the process should be executed on
block. The process is divided into different phases for different tasks. Each pha
described with an activity flow that shows step by step how to do.

To make the process evaluation phase valuable, it is important to take notes about the
ess during the conversion.

Some steps that should be included in the process is excluded since they were nev
cuted in our work. These steps handles document handling and some document pro
(according to Ericsson’s development process), but they should be similar as within E
son’s normal development process.

In the process thedesigneris the person who executes the conversion process, and
main project is a project concerning several blocks to be converted.
Page 69



Conversion process

Page 70

for
d by
 [I5].

d into
pur-
C.1 Time estimations

The KomPlex project in Aachen [I5] resulted in formulas for calculating the total time
a conversion of a block. Since this is confidential information and intended to be use
Ericsson personnel only, the formulas are not presented here but can be retrieved in

C.2 Activities

The process is divided into eight phases as figure 20 describes. Each phase is divide
a number of steps, or activities that should be performed. Besides the activities, the
pose, hints, comments and input / output denoted to the phase is described too.

Figure 20. Phases in conversion script
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti
C.2.1  Preparations

Purpose

This phase is intended to prepare and setup a single block conversion project.

Input

• The block that will be converted.

• File GeneralRoutines.sun

• File PlexTypes.sun

• File CommandRoutines.sun

• File [blockname].ssurv

• File [blockname].param

• File [blockname].program

• File [blockname]_ETI.script (may be named different)

Output

• A UNIX directory structure with necessary documents in place.
rse engineering PLEX-C code to SDL10 code Page 71
n Berg 1999



Conversion process

Page 72

ject,
cep-

i-

ed in

re in
ill be
Activities

1. Setup environment

A UNIX directory structure must be created. The structure is defined by the main pro
but how the structure is built up does not affect this process except for the following ex
tions:

• An empty directory,signals , must exist in the directory where the SDLtool assoc
ated files are stored, e.g.*.sdt  files.

• The fetched files (described below) and their analyzed outcome must be stor
the same directory.

The directory structure shown in figure 21 is a proposal, and we refer to this structu
this process. Note that the structure is for one block only, and each new block that w
converted must have its own directory structure.

Preparations

1 Setup Environment

2 Fetch Documents

3 Check Validity

4 Analyze Source Code

5 Test And Adapt ETI

6 Copy Files

7 Arrange SDLtool Organizer

Convert Signals
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

re is
irec-
ffect
an be

kes the

f the
vert-

owl-
block
ncon-
e the
A re-
, the
The asterisk (*) should be replaced with the blockname. When the directory structu
created, three files must be copied into it. They are stored in the SDLtool installation d
tory, but must be copied into this project directory, since updates of these files may a
the project. Often these files are already copied to the main project and these files c
linked from there. The files are:

• GeneralRoutines.sun

• PlexTypes.sun

• CommandRoutines.sun

These files are called packages, and holds procedures and type-definitions that ma
conversion easier. A copy of them or a link to them shall exist in thelib  folder.

2. Fetch documents

Get all documents related to the block that will be converted. The documents are

• [blockname].ssurv

• [blockname].param

• [blockname].program

• [blockname]_ETI.script  (may be named different)

and should be stored in the*_CAA107/src  folder.

3. Check validity

To avoid that time are spend on a block that is impossible to convert, an analysis o
block, by the designer, should be done to evaluate the block’s complexity. Since incon
ible parts are hard to find, very good knowledge of both SDL10 and PLEX-C, and kn
edge of the differences between the two languages is necessary. Help from
responsible and well experienced PLEX-C designers could be valuable in this step. I
vertible parts may be implemented as inline expressions (PLEX-C statements insid
SDL10 code), but this is not desirable since this code cannot be tested in SDLtool.
design is then preferable, but takes longer time. If an inconvertible block is converted
designer will be notified of the inconvertible parts during the process.

Figure 21. Directory structure for a reverse project
rse engineering PLEX-C code to SDL10 code Page 73
n Berg 1999



Conversion process

Page 74

ing
s that
ary to
evel).

t ETI
code
rrect,
th the
and
t [I7]

e fol-

is are:

rec-
4. Analyze source code

The [blockname].anapgm file is needed by the reverse tool and is retrieved by analyz
the fetched files except the ETI (described above), in the order stated above. Error
have risen during analyze must be fixed before continuing. Warnings are not necess
correct, but some of them may need to be corrected in the converted code (at SDL l

5. Test and adapt ETI

To test the converted block, when the conversion is finished (basic test), a correc
script is needed. Test the ETI and if needed, correct either the ETI or the source
(depending on fault) so that all test cases pass their criteria. Probably the ETI is co
but one problem forces the designer to adapt the ETI. The problem denotes failure wi
emulator and forlopp signals. This is solved by importing a block (MFM) to the dump
make changes in the ETI. The changes concern forlopp signals. The documen
describes this problem in more detail.

6. Copy files

To test the system after conversion, the files in step four and five are needed. Copy th
lowing files from the*_CAA107/src  directory to thetarget  directory:

• [blockname].ssurv

• [blockname].param

• [blockname].anapar

• [blockname]_ETI.script (may be named different)

7. Arrange SDLtool Organizer

The environment in SDLtool’s organizer must also be configured. The steps to do th

• Start with an empty document.

• Set the directories and mark the button forRelative file names.
Source Directory is the same as where the system will be saved, i.e. thesdl/src

directory.
Target directory is were PLEX-C generated code should be stored, e.i. the di
tory namedtarget .

• Add two new chapters,Source Files andGenerated PLEX-C.

• Import [blockname].program and [blockname].ssurv files from the*_CAA107/

src  directory under theSource files chapter.

• Save the system with an appropriate name, such as[blockname].sdt .

Hints and comments

To understand the source code easier, the originalFlow Chart is useful.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

the
on at
time.

s

C.2.2  Convert signals

Purpose

The signals used by the block must be converted into SDL signals. Much effort from
designer is needed and a fault introduced here will strongly affect the implementati
SDL level. For that reason the effort in this phase will be reflected in the total process
The most important part is thesignals.data file which holds information about all sig-
nals in the main project. It says what parameters in the PLEX-C signal that aresending
individual, sending blockreferenceand/orreceiving individual. More about these concept
in section Activities.

Input

• [blockname].program

• [blockname].ssurv

• signals.data

• signal descriptions

Output

• signal package

• data insignals.data
rse engineering PLEX-C code to SDL10 code Page 75
n Berg 1999



Conversion process

Page 76

con-
and do

e sig-

e this

f the
Activities

1. Produce a list of interesting signals

All signals in the signal survey are not of interest at SDL level and do not need to be
verted. The reason is that some parts in the source code are automatically generated
not exist in SDL. These parts areStart/Restart, Size AlterationandScanning individuals.
The affected signals are:

• STTOR / STTORRY

• SETFS / SETFSEND

• GIVEFS / GIVEFSEND

• CONTFS / CONTFSEND

• CONTINUEB / CONTINUEC

• CLSCAN{n} / CLTIME0

Remove these signals and all dummy signals (document number is dummy) from th
nal survey imported in the Organizer. Make a copy of that signal survey, name itsig-

nals.data , remove all signals’ document numbers and store the new file in thesdl/src

directory. This file should include the remaining signal names on one line each and us
file when performing the following step.

2. Signal Data

For each signal, find out what parameters in the signal that isSending Individual(SI),
Sending Blockreference(SB) andReceiving Individual(RI). When doing this part, the
focus should be on the block that will be converted. A parameter can only be one o

Convert Signals

1 Produce A List Of Interesting Signals

2 Signal Data

3 Save Signal data

4 Generate Signal Package

Reverse PLEX-C Code
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

y the
y the
to the
gnal

igner

ot

is

s
eving
rights

fore a

ctory
types RI, SI or SB. RI and SI parameters are often calledTASKP, which often the first
parameter in the signal description. The parameter is RI if the signal is received b
block and SI if the block sends the signal. If the signal is both received and sent b
block, the parameter should be RI. Signals that have an RI parameter will be sent
individual process in SDL, and signals without RI will be sent to the block process. Si
descriptions and comments in the source code often tells if a parameter is SB.

Any exact rules for what parameters that are SI, RI and SB does not exist, but the des
must know the block well and if necessary make some “trail and error”.

The parameter information is stored as numbers after the signal’s name in thesig-

nals.data  file. The syntax is

<signal name> r b s

wheresignal name is the name of the signal,r is the parameter number that is RI,b is the
parameter number that is SB ands is the parameter number that is SI. If a type does n
exist in the signal, the correspondingr , b or s is set to 0. An example:

RMGETTARGDAT 1 0 0
RMGETTARGDATACK 0 0 1
RMGETTRANSMRES 0 2 1

This means that the first parameter in theRMGETTARGDATsignal is RI and SI in the other
two signals. Parameter 2 is SB in theRMGETTRANSMRESsignal. The zeros mean that there
no parameter of that type.

Do this step for all signals left in the signal survey.

3. Save signal data insignals.data

It is not necessary to update the globalsignals.data file that stores data about all signal
ever converted. To avoid that unnecessary effort is put on signal conversions, i.e. retri
signal data for one signal several times, an update is recommended. The permission
to the globalsignals.data  file is decided by the main project.

4. Generate signal package

• Mark the imported and modified signal survey in the Organizer.

• Select menuReverse -> Generate SignalPackage .

If no errors were found, a signal package named[blockname]signals occurs in the
Organizer, but if the generation was unsuccessful some files have to be removed be
new package can be generated. The affected files have the endings.cif  and .sun .

Unfortunately the place where the corresponding package file is stored in the dire
structure is incorrect. Do the following steps to correct that:

• Remove the package form the Organizer
rse engineering PLEX-C code to SDL10 code Page 77
n Berg 1999



Conversion process

Page 78

.

t them
es-
w, the
als left
• Move the file[blockname]signals.sun from thesrc directory to thelib directory
(both under thesdl directory) since all packages (.sun files) shall be stored in here

• Import the moved file under chapterSDL Block Design.

The package will appear again but it is now stored in the correct directory.

Hints and comments

When performing step two, some signals may already be examined and data abou
are already stored in thesignals.data file. Parameter data for these signals are not nec
sary to purchase, but since the data have been retrieved from another point of vie
data can be incorrect and has to be changed. It is recommended to examine all sign
in the signal survey and compare double signals.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

X-C
C.2.3  Reverse PLEX-C code

Purpose

In this phase the reverse tool (PLEX2SDL) will be used to partly convert source PLE
code to SDL10 code.

Input

The following files:

• [blockname].program

• [blockname].anapgm

• signals.data

Output

• An SDL block that partly describes the origin PLEX-C block.

• file [blockname].cov

Activities

1. Convert SPI

• Mark the[blockname].program  file in the Organizer.

• Select menuReverse -> PLEX-C to SDL .

Reverse PLEX-C Code

1 Convert SPI

2 Move Packages

3 Type Package

4 Signallists

Add & Correct
rse engineering PLEX-C code to SDL10 code Page 79
n Berg 1999



Conversion process

Page 80

log
ver-
errors
de is

m, but
s have

file
d

ed in

ue to
oving

defini-
ween
ich is

stem

ror
hey
idual
The system will be busy for a while and meantime its status will be presented in the
window. After a couple of minutes (depending on the block’s size) the automatic con
sion process is done and errors and warnings may be presented in the log window. If
occur they must be corrected before the block can be correctly converted. No SDL co
generated. The designer should be aware of the warnings and if possible correct the
it is not necessary before continuing the process. If this step is re-executed, some file
to be removed first. Type the following command in thesdl/src  directory:

rm -i *.ssy *.sbk *.spr *.spd

In the file [blockname].cov unconverted statements and statistics are presented. This
is used to manually convert the untreated statements. These statements are callewhite
spots.

2. Move packages

In the Organizer lots of symbols will appear. The new packages are incorrectly stor
the directory structure and have to be moved. Remove the packagesplextypes andGen-

eralRoutines from the Organizer and delete corresponding files in thesdl/src folder
(the files are linked). Import the removed packages from thelib folder in the Organizer
under the same chapter as they were before they were removed.

3. Type package

In the block, structured variables will receive values from signal parameters, and d
that the signal parameters must also have the same structure. That is the reason for m
out type definitions to a separate package. It is suggested to use a “standard type
tion”, an already defined type package that is standardized to avoid type conflicts bet
blocks, especially the signal parameters must have some “standard” structure wh
defined by the signal coordinator.

The signal package must also be referenced by the block.

• Add a new package to the system and call it[blockname]types .

• In the type definitions for the block, cut all except the synonym definitions.

• Add the cut definitions in a new text box inside the previously added package.

• Add a reference to theplextypes package in the new package by typingUSE plex-

types;  in thepackage reference symbol.

• Add a reference to the new package in both the signal package and in the sy
level layout, by typingUSE [blockname]types; .

• Add a reference to the[blockname]signals  package in the system level layout.

4. Signallists

Hopefully the reverse tool will construct all signallists, but sometimes it won’t (an er
reported to Telelogic). Check if all signallists (four) exists in the system level. If not, t
have to be made manually by checking where each signal is going, i.e. to/from indiv
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

e
ion of
or block process. Both thesignals.data file and thesignal surveyare helpful here. Sig-
nals with0 0 0 in thesignals.data file goes to/from the blockprocess, and most of th
others goes to/from the individual process. The signal survey is used to see the direct
the signals.
rse engineering PLEX-C code to SDL10 code Page 81
n Berg 1999



Conversion process

Page 82

these
gener-
C.2.4  Add and correct

Purpose

The parts that the reverse tool did not convert have to be converted manually. Most of
whitespots are easy to convert, and some of the untreated statements are automatic
ated by the PLEX-C generator (SDL2PLEX).

There will also be type conflicts that has to be resolved.

Input

• Partly correct converted SDL block.

Output

• More correct SDL block

Activities

Sending Of Signals4

Add & Correct

1 General Whitespots

2 Timers

3 Type Conflicts

5 Analyze SDL Code

6 Correct Errors

Clean Up
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

ts are
tool’s
teps

in the

is a

ter,
d for
are set

ary
er be

le-

the

timer

SDL
is

me as

ged to
 at all.

odi-
rea-
ber

of
ndi-
1. General Whitespots

The code that were not converted into SDL are called whitespots. These whitespo
mostly automatic generated code which needs directives to be correct. The reverse
work instruction [I8] page 62 and forward, describes how to recover whitespots. The s
in the work instruction are related to most of the untreated statements described
.cov  file. Some whitespots may be:

• Size Alteration - except for the steps in the reverse manual, check if there

seize1 of an individual or the individuals are mapped between blocks. If the lat
the individual processes are not created dynamically, but are started directly an
that reason the number of processes at start, and the maximum of processes
to the value that theMAX directive has.

• Process start / creation- as described for size alteration, it is not always necess
to create individual processes. If the individuals not are created, they must nev
terminated, instead they should jump to theIDLE  state.

• Timers - for more information in addition to the reverse manual (see below).

• Forlopp handling - Often comments in the SDL code says what should be imp
mented.

• Start / restart - Global start / restart procedures are already constructed, but for
individuals they have to be made manually.

2. Timers

The automatic generated code forScanning Individualsare only generated ifTimersare
used. For that reason timers on PLEX-C level must be converted to SDL timers. The
variable at PLEX-C level is often calledTIMER (or similar). All statements (in SDL) where
this variable is set to a value (use search in SDL editor) have to be replaced with the
timer instructionSETor RESET. Beware of that type conflicts may occur, but this problem
solved by using the subprocedureConvertToDuration .

When a timer expires, a signal is sent to the process. The signal is called the same na
the timer. In PLEX-C timeout signals are often calledITIMEOUT{n} . Either the timers must
be named after these signals, or the receptions of the timeout signals must be chan
the timers name. Which one of these the designer choose does not affect the system

The timer functionality is implemented in PLEX as a variable which increases peri
cally. The value of the variable may never be zero (it is used in divisions), and for that
son its initial value is one and it is periodically increased with the value two. Remem
that PLEX-C variables are positive and cyclic, i.e.FFFFhex + 1hex = 0000 hex . The timer
functionality which the SDL2PLEX generator implements works different. Instead
increasing with the value two, the value one is used. To avoid division with zero, a co
tion is setup before each increase, and if the value isFFFFhex it is changed to one, other-

1. Seize an individual means allocate resources for it.
rse engineering PLEX-C code to SDL10 code Page 83
n Berg 1999



Conversion process

Page 84

the
ngth
gram

l sym-
ect,
ana-
n be

-

ignal
is

Take

ilar to
con-

hat is

e sys-
wise an increase is performed. This means that it will take two times longer until
timers expires. This problem is solved by changing the assignments of the timer le
variables to their half values. These variables are assigned in the beginning of the pro
(start transition of block process) and are used when setting timers in the code.

3. Sending of signals

This step concerns only sending of signals with a specified receiver, i.e. a send signa
bol with the to keyword. The reverse tool has difficulties to convert the receiver corr
wrong or unassigned variables are used. This fault is not found by neither the SDL
lyzator nor the PLEX-C generator, but maybe in Basic test, i.e. the fault may not eve
found within this process.

• Look up all sending of signals with theto keyword and check if the receiver is cor
rect (correct and assigned variable).

4. Type conflicts

Between signal parameters and variables, type conflicts will occur, because all s
parameters are declared asNat16 . This is easy to solve with help of the analyzer. This
explained further in step 6.

5. Analyze SDL code

• Mark the system and selectGenerate -> Analyze .

• SelectSyntactic analysis, Semantic analysis andCheck output semantics.

• PressFull Analyze.

6. Correct Errors / Warnings

Errors highlighted when analyzing the system must be corrected before continuing.
notice about the warnings, and if possible correct them too.

When converting signal parameter types, the structure of a parameter should be sim
the structure defined by the signal description. Variables in the block that have some
nection to a signal parameter should have that signal parameter’s structure, and if t
impossible, macros for converting between structures must be implemented.

When some (or all) errors / warnings are corrected, go back to step 5 to analyze th
tem.

Hints and comments

After first analyze, use the Analyze quick button.
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

le.

d
ce all

stand.

ed in
C.2.5  Clean Up

Purpose

This phase intense is to clean up unused variables and make the code more readab

Input

• Fully analyzed and corrected SDL block

Output

• Cleaned up SDL block

Activities

1. Clean up unused variables

• Mark the system and selectGenerate -> Analyze .

• Select same options as in phase 4 step 5, but also selectCheck unused definitions.

• PressFull Analyze.

Warnings reported on theplextypes and GeneralRoutines packages, and on unuse
start/restart procedures shall be ignored, but all other warnings should be fixed. Sin
errors were fixed in the previous phase, non should be reported here.

2. Clean up SDL code

This step is optional, but should be used to make the code easier to follow and under

• Go through all pages in the SDL code and make layout improvements describ
[I9].

Clean Up

1 Clean Up Unused Variables

2 Clean Up SDL Code

Generate PLEX-C Code
rse engineering PLEX-C code to SDL10 code Page 85
n Berg 1999



Conversion process

Page 86

lyzed
C.2.6  Generate analyzed PLEX-C code

Purpose

In this phase analyzed PLEX-C code will be produced, and also an adjusted and ana
signal survey. Note thatall referred files are stored in the target directory.

Input

• analyzed SDL block

• original signal survey

• original parameter file (.param )

• analyzed parameter file (.anapar )

Output

• Analyzed PLEX-C code

• adjusted signal survey

• analyzed signal survey

Activities

1. Adjust signal survey

• Replace signalsCONTINUEC andCONTINUEB in the signal survey with:
CONTINUECSAE   71168 / 155 14 - ANT 292 01

• Analyze the signal survey

Generate PLEX-C Code

1 Adjust Signal Survey

2 Generate PLEX-C Code

3 Analyze Generated Code

Basic Test
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

e.

alyzer

step
2. Generate PLEX-C code

• In SDLtool: Mark the system and selectGenerate -> Make . The Make window
appears.

• Make sure thatAnalyze and generate codeis selected, andMakefileandCompile &
Link is deselected.

• SelectPLEX as Code generatorand make sure that thetarget directoryis correct
according to phase 1. Click onFull Make.

• If errors occur, correct them and restart from phase 4 step 5, otherwise continu

• Import the generated code under theGenerated Code chapter.

• Remove SDT references.

• Break lines longer than 112 characters in the generated code (otherwise the an
will dead lock).

3. Analyze generated code

• Analyze the generated PLEX-C code (willingly with the compile option)

• Found errors shall be corrected in the SDL code, and then restart from phase 4
5.

Hints and comments

Lines longer than 112 characters are oftenTRANSFORM statements.
rse engineering PLEX-C code to SDL10 code Page 87
n Berg 1999



Conversion process

Page 88

ss not

that if
).

ETI.
C.2.7  Basic Test

Purpose

Adapt the ETI to the generated PLEX-C code, and check that the conversion proce
implemented any faults.

Input

• ETI script that is OK towards the origin source code

Output

• SDL block fully PLEX-C basic tested

• Adapted ETI

Activities

1. Generate dump

Generate a dump of the source code as in usual PLEX-C development. Remember
the MFM block was needed before, it is still needed (forlopp problems with emulator

2. Adapt ETI

Variables have changed names with the conversion. This must be changed in the
Some of the affected variables are

• CINDUM-> CXGEN[process name]NUM

• COWNREF-> CXGENOWNREF

• STATE-> XGEN[process name]STATE

Basic Test

1 Generate Dump

2 Adapt ETI

3 Run Basic Test

Process Evaluation
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999



Conversion process

Reve
Marti

to be

rated
 ETI.

er in
wise

matic

iron-
ated
her-
• OCCUPATIONFLAG-> XGEN[process name]STATENOTIDLE

• CCLOCK-> CXGENCLOCK

• CSCANNING-> CXGENCLOCKPERIOD

• CPREPNUM-> CXGENMSMTAPDATAPREPNUM

• FLCONNFIDTASK-> XGENTASKDATAFLCONNFID

• CFLSTATUS-> XGENTASKDATAFLSTATUS

Note that the old variable name may differ. Rest of the affected variable names have
found out manually by “trail and error”.

If the ETI enumerates the states, the order of them is important. Check in the gene
PLEX-C code where the states are enumerated, the same order must be used in the

When checking timers, their names are the same as in the SDL environment.

More adaptation hints are described in [I8], page 142 and forward.

3. Run Basic Test

Run basic test as in usual PLEX-C development. Errors found may have its origin eith
the SDL code or in the ETI. If the latter, correct the ETI and restart this step, other
correct the fault at SDL level and restart from phase 4 step 5.

Note that some errors can not be corrected though. It is errors according to the auto
generated code. In this caseTrouble Reports must be written and delivered to Telelogic.

4. Hints and comments

To find errors that was found in basic test, one can simulate the block in the SDL env
ment. If you choose to simulate in the SDL environment, and if individuals are cre
during start up, don’t forget to temporary change the number of individuals to a few, ot
wise the system will be very slow.
rse engineering PLEX-C code to SDL10 code Page 89
n Berg 1999



Conversion process

Page 90

f this
C.2.8  Process evaluation

Purpose

Evaluate and improve this process.

Input

• Experience of this process.

Output

• Improved process.

Activities

1. Write report

Write a report on basis of collected comments and experience from an execution o
process.

2. Deliver report

Send the report to the process owner so he/she can update the process.

Hints and comments

Make notes while running the script.

Process Evaluation

1 Write Report

2 Deliver Report

Ready...
Reverse engineering PLEX-C code to SDL10 code
Martin Berg 1999


	Reverse engineering PLEX-C code to SDL10 code
	Martin Berg Dep. of Communication Systems Lund Institute of Technology
	Abstract
	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 Problem statement 5
	Chapter 3 Related Work 7
	Chapter 4 PLEX-C 21
	Chapter 5 SDL 25
	Chapter 6 Comparisons - SDL vs PLEX-C 35
	Chapter 7 Reverse PLEX-C code 39
	Chapter 8 Conclusions 47
	Chapter 9 Acknowledgements 51
	Chapter 10 References 53
	Appendix A GSM / BSC 57
	Appendix B Abbreviations 65
	Appendix C Conversion process 69

	Introduction
	1.1 Overview
	1.2 Our work
	Figure 1. Our work in the software development

	1.3 Organization
	1.4 Reading guidelines
	1.4.1 Designer
	1.4.2 Test engineer
	1.4.3 Reverse tool purchaser
	1.4.4 Quality manager


	Problem statement
	2.1 Background
	2.2 Problems
	1. Is it possible to apply reverse engineering on PLEX-C blocks? The tool that we will use for th...
	2. If it is possible, on what type of blocks can we apply reverse engineering? Since the blocks c...
	3. How long time will it take to convert a special block? Is it difficult to convert a block, and...
	4. How is the reverse engineering applied to blocks? This question will be answered with a proces...


	Related Work
	3.1 Reverse engineering
	Figure 2. Forward and reverse engineering

	3.2 Methods
	Figure 3. Reverse Engineering - The process and abstraction differences

	3.3 Related activities
	3.3.1 Redocumentation
	3.3.2 Design recovery
	3.3.3 Restructuring
	3.3.4 Re-engineering

	3.4 Tools
	3.4.1 Compilers
	3.4.2 Restructurers and beautifiers
	3.4.3 Translators
	3.4.4 Parallizers
	3.4.5 CASE tools

	3.5 Balance between reverse and forward engineering
	Figure 4. Differences between a. classical and b. harmonic software engineering

	3.6 Practical use of reverse engineering
	3.6.1 Year 2000 problem
	3.6.2 Data reverse engineering [P8]
	3.6.3 Data conversion [P7]
	3.6.4 PL/IX - C++ [P6]
	3.6.5 SDL Reverse [I4]
	3.6.6 KomPlex [I5]
	3.6.7 SPOT [I6]


	PLEX-C
	4.1 History
	4.2 Versions
	4.3 System
	4.3.1 Standard


	SDL
	5.1 Description
	5.2 History
	5.3 Benefits
	5.4 Telelogic Tau
	Figure 5. Telelogic Tau

	5.5 SDLtool
	5.6 The SDL language
	5.6.1 Components
	Figure 6. SDL system

	5.6.2 The layout of SDL
	Figure 7. SDL Process


	5.7 SDL10
	5.8 MSC
	Figure 8. MSC


	Comparisons - SDL vs PLEX-C
	6.1 Similarities
	Figure 9. SDL vs. PLEX-C environment development

	6.2 Differences
	Figure 10. Individuals in PLEX-C and SDL

	6.3 Conclusions for similarities and differences

	Reverse PLEX-C code
	Figure 11. The reverse tool within the reverse process
	7.1 Block division
	7.2 Reverse tool unsupport
	7.3 Automatic generated code
	7.4 Time estimation
	7.5 Reverse tool in our work
	Reverse Data
	7.5.1 Problems
	Figure 12. Signal mapping
	Figure 13. Variable structures
	Figure 14. Variable assignments with different sized variables



	Conclusions
	8.1 Differences
	8.2 Future work

	Acknowledgements
	References
	10.1 Public Resources [Px]
	[P1] Ericsson Telecom AB, Telia AB “Att förstå telekommunikation 2” Studentlitteratur, Lund 1998 ...
	[P2] Telelogic AB “Introduction to SDL and SDT” rev 3.2, 1997
	[P3] Mark van den Brand, Paul Klint, Chris Verhoef “Core Technologies for System Renovation” Tech...
	[P4] E.J. Chikofsky and J.H. Cross “Reverse engineering and design recovery: A taxonomy” IEEE Sof...
	[P5] Ferenc Belina, Dieter Hogrefe, Amardeo Sarma “SDL with applications from protocol speceficat...
	[P6] K. Kontogiannis, J. Martin, K. Wong, R. Gregory, H. Mueller, J. Mylopoulos “Code migration t...
	[P7] Peter Aiken, Ojelanki K. Ngwenyama, Lewis Broome “Reverse-Engineering New Systems for Smooth...
	[P8] Peter Aiken “Data Revere Engineering: Slaying the legacy dragon” chapter “ The necessity of ...
	[P9] Spencer Rugaber “Program comprehension” Technical report, Georgia Institute of Technology, 1...
	[P10] Jean-Marc DeBaud, Spencer Rugaber “A software Re-engineering method using domain models” Te...
	[P11] John J. Marciniak (Editor in chief), “Encyclopedia of Software Engineering”, USA, 1994, ISB...
	[P12] M.G. Rekoff, “On Reverse Engineering”, IEEE Transactions on Systems Man and Cybernetics, SM...

	10.2 Internet Sites [Wx]
	[W1] Web address: www.telelogic.se/solution/language/sdl.asp Telelogic AB
	[W2] Web address: www.webproforum.com/telelogic1/index.html Telelogic AB

	10.3 Internal Ericsson documents [Ix]
	[I1] Ericsson Radio Systems AB “CME 20 System Survey Training Document EN/LZT 120 226 R5B” Stockh...
	[I2] Lecture by Birgitta Strandberg, Ericsson Radio Systems AB Hässleholm May 13, 1999
	[I3] Ericsson Telecom AB “PLEX-C1” Stockholm 1996
	[I4] Conny Johansson “Root cause analysis of SDL Reverse” Ericsson document number 1/0363-4/FCP 1...
	[I5] Barbara Reisner “Final report for: SDL Reverse prototype (KomPlex)” Ericsson document number...
	[I6] Tomas Kostenius “Final report for: SPOT (SDL10 PilOT)” Ericsson document number EPK/DG-98:05...
	[I7] Stefan Persson “Problem med för många FORLOPPs-releaser i APZEmu’n” Ericsson document number...
	[I8] Telelogic AB “Plex to SDL 1.0 User’s Manual” Id: SMO99-XPR-20 version 1.1
	[I9] Anna Wetekam “MSC / SDL10 Layout Guidelines” Ericsson document number 8/000 21-FCK 114 2004 ...


	GSM / BSC
	A.1 History
	A.2 Techniques and restrictions
	Figure 15. Differences between TDMA and FDMA

	A.3 Structure
	Figure 16. CME 20 system [I1]

	A.4 BSC
	Figure 17. Subsystems inside BSC
	Figure 18. Block hierarchy inside CME 20

	A.5 Function explanations
	A.5.1 Paging
	A.5.2 Handover
	1. Intra BSC, Inter Cell handover. Handover between two cells controlled by the same BSC.
	2. Inter BSC handover. Handover between two cells controlled by two different BSC:s.
	3. Intra BSC, Intra cell handover. Handover inside the same cell.
	Figure 19. Different handover cases


	A.5.3 Signalling connection setup
	A.5.4 Assignment
	A.5.5 Resource level supervision
	A.5.6 Cipher mode control
	A.5.7 Classmark distribution
	A.5.8 Transfer of BSS transparent messages
	A.5.9 Short message service (SMS)
	A.5.10 Connection release
	A.5.11 Traffic event measurement in radio network


	Abbreviations
	Abbreviations

	Conversion process
	C.1 Time estimations
	C.2 Activities
	Figure 20. Phases in conversion script
	C.2.1 Preparations
	Purpose
	Input
	Output
	Activities
	1. Setup environment
	Figure 21. Directory structure for a reverse project

	2. Fetch documents
	3. Check validity
	4. Analyze source code
	5. Test and adapt ETI
	6. Copy files
	7. Arrange SDLtool Organizer

	Hints and comments

	C.2.2 Convert signals
	Purpose
	Input
	Output
	Activities
	1. Produce a list of interesting signals
	2. Signal Data
	3. Save signal data in signals.data
	4. Generate signal package

	Hints and comments

	C.2.3 Reverse PLEX-C code
	Purpose
	Input
	Output
	Activities
	1. Convert SPI
	2. Move packages
	3. Type package
	4. Signallists


	C.2.4 Add and correct
	Purpose
	Input
	Output
	Activities
	1. General Whitespots
	2. Timers
	3. Sending of signals
	4. Type conflicts
	5. Analyze SDL code
	6. Correct Errors / Warnings

	Hints and comments

	C.2.5 Clean Up
	Purpose
	Input
	Output
	Activities
	1. Clean up unused variables
	2. Clean up SDL code


	C.2.6 Generate analyzed PLEX-C code
	Purpose
	Input
	Output
	Activities
	1. Adjust signal survey
	2. Generate PLEX-C code
	3. Analyze generated code

	Hints and comments

	C.2.7 Basic Test
	Purpose
	Input
	Output
	Activities
	1. Generate dump
	2. Adapt ETI
	3. Run Basic Test
	4. Hints and comments


	C.2.8 Process evaluation
	Purpose
	Input
	Output
	Activities
	1. Write report
	2. Deliver report

	Hints and comments






