

Simulation of Market-Driven Requirements Engineer-

ing Processes

Master thesis at Lund University
Faculty of Engineering
Department of Computer Science
Author: Christofer Tingström
Supervisor: Martin Höst
Karlshamn 2008-02-21

Abstract
Market-Driven Requirements Engineering (MDRE) is more and more used in the
software industry. MDRE differs to the traditional Requirements Engineering as no
specific customer does exist. The producer of the software is interested in releasing a
product to the open market and there are several aspects to consider. One of the major
challenges in MDRE is the time to market parameter. The trade off between the re-
lease date and the features in the product is difficult to determine. The producer wants
the most important features for the customer to be included in the product and as
early as possible. The producer would like to optimize the MDRE process and due to
that also optimising the time to market parameter. Simulation modelling is a good
technique to investigate and measure the impact of the new processes.

The objective of this thesis is to design, model and develop a framework for MDRE
processes. The purpose of the framework is to be possible to model a MDRE process.
In addition, it should also be possible to simulate the model and obtain measurements
of the models. One of the major challenges of the thesis has been to model the frame-
work with the right level of abstraction. In addition, the framework should be easily
extendable to fit another software process. The framework should also be able to im-
plement the REPEAT and RSQ model.

The methodology of the thesis can be divided into three parts. The first part of the
methodology was the literature study where the domain knowledge of Market-Driven
Requirements Engineering and simulation models was gained. Secondly, an evolu-
tionary development approach was used to model, design and develop the framework.
Finally, the framework was validated and verified. The validation and verification
was carried out by develop the REPEAT and RSQ model. Then the measurements of
the models were compared with already published results.

The framework was developed with the objectives in mind and the framework was
divided into three different layers. The first layer was the simulation layer which con-
tains components for any simulation model. The second layer was specific for soft-
ware processes and the third layer was specific for Market-Driven Requirements En-
gineering. It was found out during the thesis that the REPEAT and RSQ model could
be implemented with the framework. The REPEAT model required more effort than
the RSQ model due to the reason that the REPEAT model was more complex. The
REPEAT model could be implemented when an additional layer was developed and
added.

 - 2 -

Acknowledgements
My warmest thanks go to my supervisor Martin Höst for his inspiring guidance and
support of this thesis. I also would like to thank Björn Regnell which introduced me
to the Market-Driven Requirements Engineering field and his support and advice dur-
ing the thesis.

 - 3 -

Contents:

1. Introduction..- 5 -
1.1 Background ... - 5 -
1.2 Purpose and Scope .. - 7 -
1.3 Target Group... - 7 -
1.4 Glossary ... - 7 -
1.5 Outline of the Thesis ... - 8 -

2 Objectives and Methods ...- 9 -
2.1 Objectives... - 9 -
2.2 Methodology .. - 9 -

3 Theoretical Background and Related Work ...- 11 -
3.1 Software Requirements Engineering... - 11 -
3.2 Market-Driven Requirements Engineering.. - 13 -
3.3 Software Process Simulation Modelling.. - 18 -

4 Framework and Simulation models ..- 23 -
4.1 Introduction... - 23 -
4.2 Framework .. - 23 -
4.3 RSQ model ... - 29 -
4.4 REPEAT process... - 31 -
4.5 REPEAT Simulation Model ... - 33 -

5 Results...- 35 -
5.1 Introduction... - 35 -
5.2 Implementation of the Simulation Models.. - 35 -
5.3 Verification and Validation.. - 38 -

6 Conclusions ..- 45 -

Reference..- 47 -

Appendix A ...- 49 -

 - 4 -

1. Introduction

1.1 Background
Software engineering is not an old discipline, actually only a decade ago it was not
considered as an engineering discipline [19]. Software engineering is complex and
differs from other engineering disciplines.

A classic example is to compare a software project with constructing a bridge. Firstly,
bridges have been built for centuries and the processes are very stable and have been
verified over a long period of time. However, there are few other significant differ-
ences. The bridge is more concrete artefact than a software artefact. A late new re-
quirement for a bridge is easier to estimate the time required to complete compare to
add a new function to the software product. In the software product case the estimated
time required depends on the flexibility of the architecture and can be more difficult
to measure. Furthermore it is difficult to fully understand the impact of a new re-
quirement on the architecture before implementation is in progress.

In addition estimating the completeness of the bridge is easier than for the software
product. In general you can visually see how far you have reached in building a
bridge in contrast to software, where the developers see the number of requirements
implemented. However, these are not reliable to use to estimate the amount of time to
finish the product.

In every engineering discipline a process is essential and benefits the organization
instead of using an ad-hoc process. In software engineering several software proc-
esses are used, e.g. the waterfall model, the incremental model and the evolutionary
model [20].

Today in the software engineering industry Requirements Engineering (RE) is a topic
that is widely discussed. Requirements engineering is normally one of the first stages
in a software process and is the foundation of the project. The tasks that have to be
carried out in RE are to elicit requirements, prioritise the requirements, write a speci-
fication and validate the requirements [9]. The elicitation process is to find and for-
mulate requirements. There are different techniques, which are described in 3.1.1.
The validation of the specification is important as the specification shall reflect the
customer’s expectation. In addition to this the developer shall understand it and the
stakeholders shall receive what they expect. There are a few quality criteria the speci-
fication shall fulfil, described in 3.1.2. The specification is the output in the RE stage
and will serve as an input to the designers and developers of the software. It has come
to attention that the amount of time spent on Requirements Engineering can save time
and money later in the development process [20].

Market-Driven Requirements Engineering (MDRE) is an interesting topic which is
different compared to the traditional Requirements Engineering. MDRE is to develop

 - 5 -

software for an open market. In MDRE there is no customer compared to bespoken
development and due to that there is no feedback to receive from the customer. One
major challenge is to optimize the time to market parameter [7]. It can be the differ-
ence between success and disaster to release the software at the open market at the
right time. The time to market parameter can in best case generate large revenue for
the company and add additional market shares.

In addition, the success of the developing organisations depends on several measure-
ments [4] as customer satisfaction, product reviews and the effort from the marketing
department. These measurements can in best case generate increasing market shares
and large revenues. The customer satisfaction and the product reviews are in general
connected to the product quality and the features of the product. Due to that another
important and difficult challenge is to be able to select and prioritise the right set of
requirements for the product. Furthermore it is difficult for the producer to know
which requirements customers are interested in as well as which requirements gener-
ate the most possible customer satisfaction. The producer is normally performing a
market analysis to establish which needs the customer has or can be interested in. The
results of the analysis-stage together with new possibilities from new technology es-
tablish a good platform to elicit requirements.

The producer is also interested in the effort required for a requirement and which
value the requirement has in the end to the potential customer. In the best case a pro-
ducer would like to select the requirements which has low effort but generates a high
value for the customer. The more effort that is required for a requirement the more
resources and funding the requirement require. However, to be able to select the right
requirements in an early stage in the MDRE process has shown to be difficult [14].
The producer cannot receive any feedback on the value of a requirement until the
product has been on the market for a longer period. The effort is usual difficult to es-
timate and cannot be determined until the construction of the requirement is com-
pleted.

The uncertainties to implement the correct requirements cause the producer to rely on
their MDRE process and their resources, skills and experience. There exists a few
metrics which can be useful. The producer can, for example, measure product quality
and decision quality. The process itself is important for the producer and it is impor-
tant to be able to allocate the resources in the best way to generate high product and
decision quality.

There are several ways to improve the process e.g. through pilot studies and con-
trolled experiments [22]. However, these methods require many resources. Further-
more there is a less expensive solution in terms of funding and effort and that is the
use of simulation modelling. Simulation models reduce the risk of implementing
processes which will not improve the process quality. In MDRE simulation models
are interesting as the research field is new. Simulation models can be a good idea to
demonstrate the strength with MDRE process for stakeholders which have doubts
about new MDRE processes. In addition, a process which is not improving the quality

 - 6 -

can be of great risk especially in a large organisation with many people and this can
in the worst case cause serious problem which will deteriorate the process.

Simulation modelling is cost effective in terms of effort and resources compared to
controlled experiments and pilot studies. However, it does require resources and ef-
fort and can be complex and difficult. The idea with this thesis and its belonging
framework was to establish a platform for simulation modelling of MDRE processes.
One of the keys in software development is to reuse code and the goal of the frame-
work is that it will be used instead of simulation models created from scratch.

The disadvantage with simulation models is that it might be problematic to present an
accurate picture of the reality. Simulation models are based on a set of assumptions
which are important to consider before a transition from simulation model to the real
process.

1.2 Purpose and Scope
The purpose of this master thesis is to create a framework for modelling of Market-
driven Requirements Engineering processes. In addition these models should also be
possible to simulate. Hence is should be possible to model any MDRE process and
then simulate the process by using the components in the framework and if necessary
extend it with special components that easily are integrated in the framework. The
usability and support of MDRE framework is tested by implementing two models, the
RSQ model [17] and the REPEAT model [15]. The purpose is also to establish a good
platform for MDRE processes. In addition it should be flexible, and easily extended.

The framework and the simulation are very close connected with each other and a dis-
tinct line between the two is not possible to set. The simulation model is close to the
MDRE modelling and a few MDRE model components contain simulation model
components.

The scope of this master thesis is to develop a framework and the models created
from the framework should be possible to simulate. Input data as well as output data
from the framework shall be easy to configure. The framework shall also establish a
good platform which can be extended to fit other use cases and thereby it should be
possible to model an arbitrary MDRE process.

1.3 Target Group
The principal target group of the thesis consists of senior students with knowledge in
development processes in software engineering, researchers from the Departments of
Computer Science, Faculty of Engineering, Lund University and other researchers in
software engineering.

1.4 Glossary
Bespoken development Traditional software development with a

customer

 - 7 -

MDRE Market-Driven Requirements Engineering
MTTM Mean time to Market
REPEAT Requirements Engineering ProcEss At Telelogic
RSQ Requirements Selection Quality
Stakeholders Groups or individuals which have an interest or are

affected bye the project
UML Unified Modelling Language
User The user of the framework

1.5 Outline of the Thesis
Chapter 1 is a background chapter, including introduction, scope and purpose of the
framework, target group, glossary and outline of the thesis. The purpose of the chap-
ter is to give the reader and introduction to MDRE and simulation modelling.

Chapter 2 is a description of the methodology that has been used in this thesis. In ad-
dition the objectives of the framework are also presented here.

Chapter 3 contains the theoretical background of this thesis as well as related work.
The focus will be on MDRE and simulation modelling. Requirements Engineering is
also presented.

Chapter 4 presents the framework and the simulation models. The modelled, designed
and implemented framework will be presented. A UML diagram will be displayed as
well as the details of each component in the framework. In addition, the theory of
each simulation model will also be presented.

Chapter 5 presents the results of the implemented simulation models. The verification
as well as the validation of the RSQ model and the REPEAT model will be presented.

Chapter 6 presents the conclusion for the work of this thesis. It also describes a few
design issues. Finally, the chapter raises question for future modelling of other soft-
ware processes and extension of the framework.

 - 8 -

2 Objectives and Methods

2.1 Objectives
This thesis has been investigated around three questions:

Q1: Which level of abstraction shall the framework have?
This question is difficult and important. The abstraction level determines several is-
sues in the framework. Firstly, if the abstraction level is high the user might find it
impossible to create a simulation model with reasonable assumptions. However, if the
abstraction level is low the user might find it difficult to create a simulation model, as
there are many details to consider. The abstraction of the framework is a trade-off be-
tween the levels of assumptions for a simulation model.

Q2: Which architecture shall the framework have to fit general software processes?
The framework is used for MDRE process. However, the idea was not to model it ex-
plicit for MDRE process. Hence, other software processes should be able to model
with reasonable extension. The idea was to have different layers in the framework to
fit other processes, e.g. a test process.

Q3: Can the REPEAT model and RSQ model be implemented with help of the
framework and the simulator engine?
The initial thought with Q3 is to gain knowledge of the flexibility and ease of use
with the framework. The REPEAT model [15] and RSQ model [17] is described later
in this thesis. If these models are possible to implement, the framework can be con-
sidered to be useful for simulation models.

2.2 Methodology
This master thesis has been carried out with three different methods.

The first part of the methodology was the literature studies [6]. The literature study is
essential to gain domain knowledge for the thesis. The literature was focusing on two
fields, simulation modelling and market-driven requirements engineering. The major
part of the literature was research papers.

The second part of the methodology was the evolutionary development approach [6]
of the framework. The first task is the initial specification. The specification contains
the requirements of the framework. The implementation of the specification is the
modelling, design and development of the framework.

Table 1 shows the task that has to be carried out in each step. In Table 1, the input to
each step and the output after the task has been completed are also displayed.

Task Input to Task Output from task
1. Initial Specification Initial ideas Initial specification of the

framework

 - 9 -

2. Feedback from Supervi-
sor

Specification Changed specification ac-
cording to the feedback
from supervisor

3. Implement the specifi-
cation

Specification Implemented model

4.Feedback from model Implemented model Changed specification ac-
cording to feedback from
the model itself.

5. Return to point 2.
6. Obtain a framework Implemented model Framework
Table 1. Evolutionary development iteration.

When the thesis subject was determined the specification was not completed. The
specification has evolved for each one of the iterations.

The three first steps are self explained. The 4th step has been giving feedback in sev-
eral ways. The implementation gave feedback either from use case, test cases or ob-
servations of the behaviour of the executed simulator. The test cases tested each
method. The use cases verified that the different components were integrated. The
execution was necessary to evaluate and verify the framework.

There have been two sources to gain knowledge and information for a new specifica-
tion. The first one is the prototype itself which has generated new idea for the frame-
work during the previous implementation. Secondly, the supervisor has been very
useful with extensive feedback on the prototype.

The third part of the methodology is to validate the result, in this thesis the frame-
work. It is important to validate that the framework suits its purpose, to model a
MDRE process and then simulate the model. The framework has several purposes,
see 1.2 and to validate these purposes the RSQ and the REPEAT models have been
modelled and execute. Furthermore the above mentioned models also need to be vali-
dated. The validation of the RSQ and the REPEAT models are to use a known set of
input data which generates a known set of output data [6]. The simulation model is
the executed and the output data is compared with the known output data. The input
data and output data has been collected in different publications.

 - 10 -

3 Theoretical Background and Related Work

3.1 Software Requirements Engineering
Requirements engineering is one of the first stages in the software development proc-
ess. Requirements engineering is an important process as the requirements obtained
will be the foundation for the software project and it is essential that the customer and
the developers understand each other. In worst case, if the developers and customer
do not understand each other, the customer will obtain a product that he does not want
and neither can use as it is not suited for his task.

Requirements engineering is normally a process which contains a few stages e.g.
elicitation, specification and validation which are presented below.

3.1.1 Elicitation
The objective of elicitation is to find and formulate requirements. An elicitation starts
with elicit the goal for the system, then present work and present problems.

Several possible solutions of handle the details of the system are investigated and fi-
nally transforming the issues and possibilities into requirements.

Elicitation can be a problematic process with several difficult issues, involving sev-
eral stakeholders with different and conflicting interests. There is also a general resis-
tance to changes. One of the major problems is that the stakeholders cannot express
what they need in their software. Another issue is when the stakeholder specifies a
solution instead of a demand. A few examples of elicitation techniques [9] which can
be good to gain requirements are stakeholder analysis, interviewing, observation,
brainstorming and prototyping. Of course, there exist several other techniques and
which one to use depends on the specific case.

The requirements that are generated are normally classified into four different types
[9]. The first type is the data requirements. This requirements focus on what data
should the system input and output and what data shall the system store internally.
The second requirements are the functional ones. These describe which functions the
system has. Furthermore the quality requirements are also known as the non-
functional requirements which describe how well the system performs its intended
functions. Finally, there are the managerial requirements. These requirements are in
an area between requirements and contractual issues e.g. the price, when to pay and
legal responsibility.

3.1.2 Specification and validation
A specification is the document that contains the requirements. The specification may
work as a contract between the customer and the developers. The specification is nor-
mally what a software developer use as foundation for their development of the soft-
ware. A good specification fulfils the following quality criteria [9]:

• Correct: Each requirement is correct and reflects a need.

 - 11 -

• Complete: All necessary requirements are included
• Unambiguous: All parties agree on meaning.
• Consistent: All parts match in the sense that they do not conflict.
• Modifiable Easy to change, maintaining consistency.
• Verifiable: Possible to see whether requirement is met.
• Importance: Each requirement should state its priority.
• Stability: Each requirement should state its expected frequency of

changes.
• Traceable: A requirements is traceable if you can see where it comes from

and where they are used in design and code.

There are a few methods to use validate the specification [9], e.g. check specification
in isolation and check against surroundings. When a specifications is checked in iso-
lation no other sources are consulted than the specification itself. The check against
surroundings is the contradiction and other sources are consulted. This means in prac-
tice that customer, users and developers makes the checks [9].

Firstly, to validate the specification in isolation there are a few techniques. The con-
tents check is one and the purpose is to see if everything is in the specification. A
typical specification normally contains the following [9]

• Introduction
• System goals
• Data requirements
• Functional requirements
• Handling of special cases
• Quality requirements (non-functional requirements)
• Other deliverables
• Glossary

In addition a structure check can be a good technique to see if the pattern is correct. A
good pattern for a requirement [9] is if there is a number or ID, the requirement is
verifiable and the purpose is stated. There should also be examples of ways to meet
the requirement and plain-text explanations of diagrams. The importance and stability
should be stated and rather cross references than duplicate information. It should also
be indexed and an electronic version should be available

The other technique in isolation is the consistency check. The purpose is to look for
missing parts or inconsistence.

The second method is to validate the specification with its surrounding. There exist
several techniques [9]. A review is one and goal-requirements tracing is another. In
goal-requirements tracing checks are done. Are all the goals and critical issues are
covered by requirements? Also are all requirements justified by meaningfully pur-
poses? Furthermore is risk assessments, how risky are the specification to fulfil for
the developer? Can the deliver the expected outcome?

 - 12 -

3.2 Market-Driven Requirements Engineering
Market-driven incremental product development is becoming increasingly common-
place in software industry [4]. Incremental product development is planned and exe-
cuted with the goal of delivering an optimal subset of requirements in a certain re-
lease [4]. Due to market-driven development has increased, MDRE has also in-
creased.

The MDRE process is different from traditional requirements engineering. The major
difference is the stakeholding and schedule constraints [7] as well as managing the
constant flow of new requirements [7]. There exist no customers or no defined set of
users, only potential customers and users. Traditional Requirements Engineering as-
sumes a customer which is ordering the product and is responsible for the financial.
In MDRE the major stakeholder is the developing organisation and they decide which
requirements shall be included in the next release.

According to [7] there exist a several challenges in MDRE. However, the challenges
are not only of technical nature, there are also social and organisation challenges.
Firstly, the organisational challenges are co-ordination and that the communication is
enforced. Secondly, the social challenges are how the development department and
the market department are communicating and how to encourage people to improve
requirements engineering in the organisation. Finally, there are also technical issues
as release planning, techniques for requirements prioritisation and effort estimation as
well as requirements traceability and inter-independency problems. In addition, chal-
lenges of the simple techniques all so exist as writing understandable requirements.
The problem is that many people with different backgrounds commit requirements to
the product e.g. developers, users, marketing analysts and customers. They use differ-
ent languages and notations.

In any MDRE process there are several keys to success. Firstly, it is important to im-
plement requirements that are of high value to the customer. Furthermore competition
and price of product are also important. In MDRE there is always a pressure on the
time-to-market for the product. The major challenge and key to success in MDRE and
the goal of the company is to deliver the right product at the right time [7].

The MDRE process characteristics are elicitation, specification and validation, release
planning, process quality and managing the constant flow of new requirements. These
characteristics will be more described in the sections below.

3.2.1 Elicitation
The elicitation in MDRE is different to the traditional elicitation with custom specific
software. In the MDRE case there are no customers, only potential customers. Hence
the customer does not provide any requirements. Instead requirements can be elicited
from opportunities provided by new technology. The developers are also inventing
requirements [14] which can be based on strategic business objectives. The domain
knowledge and product vision are essential for the developers to be able to invent re-
quirements.

 - 13 -

Furthermore a good opportunity to elicit requirements is to collaborate with key cus-
tomers. Market analysis is also important which helps the producers to understand
how the customers rate certain requirements as well as to understand their selection
process.

3.2.2 Specification and Validation
The specification differs from the traditional specification; the language is less formal
and natural language is used [16]. During the elicitation phase a significant number of
requirements are elicited, hence the prioritisation is essential and a key element in the
MDRE process. The validation needs to fulfil the same criteria as the validation in
3.1.2.

3.2.3 Release Planning
Release planning is another key in MDRE. An important issue is the strategic deci-
sion of what to deliver and when [4]. Release planning involves prioritization and
cost estimation. It is important for a release that the estimations are accurate due to
under-estimation of effort required for implementing a requirements can cause heavy
delays which may cause lost of market shares to competitors and revenues. However,
over estimation will cause less requirements to be implemented and this can have the
similar effect as under estimation. The release planning tries to estimate the develop-
ment efforts and expected revenues and the priorities for the end user. It is of major
interest for the developer to frequently deliver new releases with improved function-
alities. Firstly, keep the existing customer and as well gain new customer from the
competitors.

3.2.4 Process Quality
It is always important in any process to measure the quality of the process and con-
stantly try to improve the process. There are a few key issues [6] concerning process
quality and the improvement.

The first one is the effect of the improvement of the process. What will the organisa-
tions gain with the new improvement of the process? Will the quality of the process
improve and can the improvement enable new things which were not possible before?
Furthermore the costs of the improvement of the process are always essential and the
benefits of the improved process quality need to match the cost of the improvement,
the costs can be educating the employees, investing in new technology. Over a longer
time period the organisations need to generate positive revenue and the purpose of the
improvement of the process is in general to increase the profit. The usability is also
important; the users of the process need to easily understand the improvement and
easily do their tasks. In improvements of the process and to increase quality, it is in-
teresting how much of the process can be completely automatic and without involve-
ment of the employees. The last one is the acceptance of the new improved process
from the employees in the organisation. In general people are reluctant to accept new
methods of doing their work and it is important that the employee accept the im-
provements.

 - 14 -

In MDRE processes the process quality is related to the quality of the artefact that is
produced from the process. Hence it would be possible to measure the quality of the
artefact and thereby receive the process quality. A good approach is to measure the
decision quality. A good model to use is the alpha/beta model [17]. The alpha/beta
model has divided the decision into four cases. The alpha requirement is a require-
ment that idle is selected as it is a high quality requirement, meaning providing a high
value for the customer at a low effort. The beta requirement is the “unwanted” re-
quirements which should not be selected. These requirements provide low value to
the customer to a high effort.

 Decision

Selected Rejected

Should be se-
lected(α)

A
Correct
selection ratio

B
Incorrect
selection ratio

Re
qu

ir
em

en
ts

 Q
ua

lit
y

Should not be se-
lected(β)

C
Incorrect
selection ratio

D
Correct
selection ratio

Table 2. Alpha/beta model.

This model enables a few possible metrics.

Product Quality
CA

AQP +
=

Decision Quality
DCBA

DAQD +++
+

=

Golden Grain Ratio
DCBA

AG
+++

=

The product quality is the share of alpha requirements that are implemented. The de-
cision quality represents the share of correct decision (A and D) in relation to the total
number of decisions. The golden grain ratio is the share of correct selected require-
ments divided with all selected and rejected requirements.

The major problem with this model is that it is very difficult to define a requirement
as an alpha or beta requirement. Normally this can only be determined when the
product has been on the open market for a longer period and a market analysis has
been conducted.

 - 15 -

In addition there exists another possibility to analyse the decision. It includes two pa-
rameters, effort and value. An idle situation any producer would like to prioritize all
requirements with low effort and high values.

Value/Effort

Effort

Va
lu

e

Figure 1. Value/Effort diagram.

In the Figure 1 is an example of the value/effort diagram. It is the producer that de-
termines which requirements to implement. In a value/effort diagram it is most inter-
esting to focus on the requirement in the top left corner and the producer shall avoid
the requirements in the right bottom corner. In this sample there are three require-
ments which require low effort and have high values. These three requirements are of
interest to the producer and further analysis is of interest

Furthermore there exists a problem with the value/effort diagram and it is not possible
to have the actual value and effort at the decision stage. The value will normally be
known to the producer after a longer period at the market. The effort will firstly be
known after the construction phase. The possibility the decision maker has, is to esti-
mate a value and an effort. This can cause problem as the estimations will contain er-
rors which can cause the wrong requirements to be implemented. This is shown in
Figure 2.

 - 16 -

Value/Effort

Effort

Va
lu

e Estimated

Actual

Figure 2. Value/Effort with estimated and actual value and effort.

It should also be known that value and effort does not always depend only on the re-
quirements itself, but also its relations to other requirements

3.2.5 Managing the constant flow of new Requirements
In MDRE the product is normally not finished with the first release. It is normal that
the first release will be followed of new releases in contrast to bespoken development.
In addition a constant flow of requirements needs to be handled. An issue is to be able
to manage the requirements in the best possible way. It is important to record new
ideas from e.g. developers, customers, marketing department and users.

A repository for storing the requirements can be a good idea, where high value and
low effort requirements can be selected and implemented in the next release. The se-
lected requirements will be the foundation of the next release.

The model RAM [4] is another approach which instead of using one repository where
all the requirements are stored, the RAM model has multiple levels of abstraction:
There is the product level (goal), feature level, function level and component level
requirements. The advantage is that it is easier to compare requirements as they are
homogenous regarding the abstraction level [4]. The organisation using the RAM
model is working with requirements market-driven and product oriented instead of
being project oriented. The requirements are the basis for product development [4]

 - 17 -

3.3 Software Process Simulation Modelling

3.3.1 Introduction to Simulation Modelling
Simulation modelling and analysing is a topic which has become popular [2]. The
simulation and analysing technique is used to improve or investigate process per-
formance. The technique is very cost-effective compared to carrying out controlled
experiment and pilot studies. Simulation modelling requires less allocation of re-
sources compared to the other mentioned techniques. This results in that simulation
modelling and analysing is used in projects in several manufacturing and service sec-
tors [2].

Simulation modelling and analysing is the process of creating a mathematical model
of physical systems and then execute experiments on the model. Simulation models
are analysed and serves as support for process or resource decisions.

The purposes of simulations are many [2]:

• Gaining insight into the operation of the system
• Developing operating or resource policies to improve system performance
• Testing new concepts and/or systems before implementation.
• Gaining information without disturbing the actual system.

Gaining insight into system when operating can be useful when the system is com-
plex and the interaction between the components can be dynamic. An analysis con-
ducted on a static and isolated system will be problematic or even impossible.

A system already exists and is running. The system may be improved if another re-
source allocation or different priorities are used. The outcome of the improvement
can be developing new operating or resource polices

Testing new concepts can be the purpose for several reasons. A system might not ex-
ist and what impact will the system do on its environment. Hence, can a new system
easily interact with other systems and processes and will the system deteriorate or
improve the existing systems and process, then simulation modelling and analysing is
a good method. The cost of modelling a system is very small compared to a capital
investment.

Finally, simulations models can be the only method to gain information with a system
which should not be disturbed. A few systems are very sensitive to any operation or
resource change to analyse the system. A classical example is an airport security
checkpoint.

3.3.2 Advantages of Simulation Modelling
There are several advantages of simulation modelling [2]. The mathematical models
are executed on computers; hence the experiments can be conducted on compressed
time. This is a major advantage as some systems can take months to complete but
with help of the computer and simulation models the results can be obtained faster.

 - 18 -

This gives the opportunities to experiment with different configurations in a reason-
able time.

In addition, simulation models can easily be demonstrated, a few simulation software
packages allow the user to dynamically animate the model which can increase the un-
derstanding of the model.

3.3.3 Disadvantages of Simulation Modelling
Although simulation modelling is useful there are disadvantages [2]. The disadvan-
tages are not directly associated with the modelling and analysing of the system.

Firstly, a simulation model cannot give accurate output data if the input data is incor-
rect. It does not matter how good the simulation model is if the input data is incorrect.
This seems very reasonable although it is a common source of error of the simulator
modelling [2]. Many practitioners easily accept historic data with dubious quality and
they are hoping on saving time on data collection. This might be the reason that many
developers of simulation models rather develop the mathematical model than collect-
ing quality input data. Furthermore there is often a lack of measurement data for
proper model calibration [13].

Secondly, simulation models cannot provide simple answers to complex problems. In
fact, a complex problem is more likely to require complex answers. It can be useful to
simplify the system and by that save time and develop a model in a reasonable time.
However, simplifications of the system are always essential to analyse. Ignoring a
critical element of the system will cause the output data of the simulation model to be
less reliable. The complexity of process can be difficult to model and can also be
costly if the model shall adequately represent the actual behaviour of the process [13].

Furthermore a simulation model itself is not the answer to the problems. The simula-
tor can never solve a problem, it can only show possible solution and the reliability of
the solutions depends on the accuracy of the mathematical model and the input data.

3.3.4 Classifications of Simulations Models
Simulation models can be classified in several ways. The two main models is either
the physical or the mathematical model. The physical model would be in real time
and with real resources to conduct a controlled experiment. This might take long time
but can give more accurate results as it does not require as many assumptions as the
mathematical model. The physical model can be either dynamic or static. The dy-
namic is studied over a period of time and in the static model the time is fixed.

The mathematical model is described with help of equations and mathematical rea-
sons. The mathematical model can be divided into static and dynamic. The static also
known as the Monte Carlo model is analysed at a specific point of time with the time
as a fixed variable. The Monte Carlo model can be either numeric or analytic.

 - 19 -

The dynamic model is studied without having the time as a fixed variable. The dy-
namic model is either analytic or numerical. The analytic model is mainly used for
optimization and is a model which you can mathematical solve. The numeric model is
a model which cannot be solved and is executed to gain results.

Models

Dynamic

Physical Mathematical

Static

Numeric

Static Dynamic

Analytic Numeric

Continuous

Simulation

Discrete

Figure 3. General classification scheme of simulation models [11].

In addition there exists another difference between the simulation models, if the
model is deterministic or stochastic. The deterministic simulator contains no random
variables. A known set of input generate a known set of output. The contradiction is a
simulator which contains random variables and a known set of input generate a sto-
chastic output.

The simulator model is also either discrete or continuous. The discrete model is only
changed at discrete points of time and the continuous model is changed continuously.
The difference is illustrated in Figure 4.

 - 20 -

N
um

be
r o

f C
us

to
m

er
s

Continuous model time variable
H

ea
d

of
 w

at
er

Discrete model time variable

Figure 4. Difference between the discrete and the continuous simulation models
[11].

The framework developed in this thesis has been simulated on a computer with a dis-
crete, dynamic and stochastic queuing network model of MDRE processes. The queu-
ing network enables the user of the framework to measure performance in the queu-
ing network. A queuing network is described with the help of servers that take care of
jobs and queues belonging to the servers. A simple queuing model is shown in Figure
5.

Figure 5. A simple queuing system [11].

Queue ServerCalling
population

Arrival
Rate

Queuing
policy

 - 21 -

The queuing network [8] has a population where the jobs to the servers are arriving
from. If the server is idle the jobs enter the server and leave the server after the ser-
vice time, hence when the server is done with the job. If the server is busy the job en-
ters the queue and the queue is working as a first in first out (FIFO) queue in my case
but it can be any queuing policy. When a job is finished, the server determines where
the job shall be sent. This simple queuing network model can easily be analytical
solved. However, when the queuing network tends to be more complex the simulation
models are the only method to gain results from the queuing model.

 - 22 -

4 Framework and Simulation models

4.1 Introduction
The purpose of this chapter is to present the framework which has been developed. In
addition the simulation models will also be presented. The initial idea with the frame-
work is that it should be easy to use, flexible and extendable. The purposes with im-
plementing the simulation models are not execute them with different input data and
analyse the output data. These analyses are already collected in previous work [5] and
[18].The implementation of the simulation models, with the help of the framework
has been conducted in order to gain knowledge of the flexibility and extendibility of
the framework and its usability. The results will be presented in chapter 5.

4.2 Framework
The framework has been divided into three different layers, Simulator layer, Software
Process layer and Requirements Engineering layer.

Figure 6. The different layers in the framework.

Simulator

Software Process

Requirements Engineering

Each layer contains a few components and the purposes of the components will be
presented below as well the interaction between the different layers.

 - 23 -

The Simulator layer contains the components DataHandler, Event,
EventList, Global, Process and SampleFile. The simulator layer contains
components for any kind of simulation model. This layer is not specific for software
engineering processes. The purpose of the components is to be a foundation for simu-
lation models.

• DataHandler
o Controls which output data will be produced.
o The user can customize output data by inherit and override this class.
o DataHandler is only called when an Event is leaving the system

or when measurement in the Stage component is conducted.
o It is not possible to override the DataHandler and expect to be able

to control all possible measurement on the queuing network. The solu-
tion is in that case is to also override the measurement method in the
Stage component in the Software Process layer.

• Event
o The message sent between the different Processes.
o The Event component always contains an Assignment if it is not a

measure Event.
o Each Event contains a type attribute and this attribute can be of three

different types. The two first types contain an Assignment. These
types tell whether an Event has arrived or has departed. The last type
is measure which is performing the implemented measurements.

• EventList
o The EventList is storing an Event in a linked list. The Event is

sorted according to their departure time.
o The most important methods are addEvent and getFirst. The

second method returns an Event with the lowest departure time
• Global

o Handle global variables as time and type.
o The seed is also set here for the different distribution.
o A few rules apply to set the seed and due to that the seed has a set and

get methods.
• Process

o Process is an interface and the purpose of the Process is to be the
phase where an Event is handled and possibly modified.

o The Process is implemented both by the JobGenerator and the
Stage in the next layer.

• SampleFile
o The SampleFile samples the output data.
o There is only one parameter to consider for the SampleFile except

the input file and the output file. The parameter to consider is the sam-
ple interval.

 - 24 -

o This interval is exponential distributed to prevent any unexpected pat-
tern to exist in the sampled data.

The Software Process layer contains the components Assignment, Frame-
workException, JobGenerator, Resource, Rule, RuleBase and
Stage. This layer is specific for software process simulation models.

• Assignment
o An Assignment is a task, can be a requirement, a design job etc.
o An Assignment is always attached to an Event. However, an

Event can exist without an assignment.
o The Assignment was created as a base for all possible jobs in a soft-

ware process.
• FrameworkException

o The FrameworkException is thrown from the framework at sev-
eral occasions.

o The initial idea was to build an Exception tree. However, there is only
FrameworkException and it is only containing an error message.

• JobGenerator
o The JobGenerator is the foundation for generating a job. The

JobGenerator implements the Process interface.
• Resource

o The Resource is the component which represents the servers in the
queuing network.

o The Resource work as a base class and is further extended in the RE
layer by the Engineer component.

o The Resource contains attributes as availability and id.
• Rule

o The Rule is an interface which is used if the problem to determine the
next Process for an Event is complex.

• RuleBase
o The RuleBase is an abstract base class which implements several

methods of the Rule interface.
• Stage

o The Stage implements the interface Process.
o In the framework the Stage is a central component. Firstly, it is im-

portant for the modelling of a MDRE process. In addition the major
part of the simulation is done here.

o The Stage is also closed connected with a Rule, if that exists.

The RE layer contains the components Engineer, REGlobal, Requirement
and the RequirementGenerator. An Engineer is a subclass to Resource.
This layer is specific for Requirements Engineering simulation models.

 - 25 -

• Engineer
o The Engineer has four different skills. There is one skill for every

type of Requirement. The skills are initiated at the creation of the
Engineer and are not changed during the simulation.

• REGlobal
o This component contains configuration data for the different distribu-

tions in the components Engineer and Requirement.
o The lowest, highest and median value for the attributes effort and

value in the Requirement component and skills in the Engineer
component is stored here. There component contains default values if
the user of the framework does not set any values.

• Requirement
o The Requirement is a subclass to Assignment. The Require-

ment component is created from the RequirementGenerator.
The Requirement will be assigned an effort and a value. In addition
the type of the Requirement is also set when it is created.

• RequirementGenerator
o The RequirementGenerator is a subclass of the JobGenera-

tor. The purpose of this component is to generate Requirements
to the simulation model.

An overview of the Framework is presented in the UML diagram below.

 - 26 -

Figure 7. The UML diagram of the developed framework.

The thought is that these components should be enough to create a simulation model
for MDRE processes. In addition a package SSJ [21] is used for generate exponential,
triangular and uniform distributions. This package also contains several other compo-
nents.

 - 27 -

The Stage component can also be set with either one common queue for the servers
or that each server has their own queue. This enables the user of the Framework to
model n M/M/1 queuing network or one M/M/m queuing network. Of course, the ar-
rival and service process depends on how the arrival rate and service time is imple-
mented.

Furthermore the difference between the DataHandler and a measurement Event
is important to clarify. The DataHandler is responsible for both writing data to a
file and handle data. However, the handleData method is only called when an
Event has no further destination. It can be because the Requirement has been
implemented or the Requirement has not been selected. The measurement Event
is used and handled by the measureEvent method in the Stage component. The
measurement there depends how the method is implemented but in the standard com-
ponent the amount of jobs in the system is measured and then the DataHandler is
called to write the data to a file.

In addition, the service time in Stage is always received from the Rule if a Rule
exists. The service time can depend on the Resource so the service time method
has both an Event as well as a Resource as input parameters. When a queuing
network is created the setNextStage method should always be set in the Stage
component. There is a similar method in the Rule. However, this method is only
used for measurement and should never be set by the user of the framework.

The framework which is best overviewed in the UML diagram in figure 7 contains
several assumptions and the thought below is to clarify the assumptions as well to ar-
gue for the assumptions. The first assumption is concerning the Requirement
which contains several attributes as estimated effort/value and actual effort/value.
These attributes should be well understood from the chapter Process Quality. The at-
tribute isAlpha should also be understood from the same chapter. There is also a type
attribute. A requirement can be of different types, firstly the classification functional
or quality requirement [9]. In addition, a requirement can be focusing on e.g. network
architecture, user interface etc. The assumption in this framework is to divided the
Requirement into four different types; A, B, C and D. The main purpose of doing
this relates to another component the Engineer component. An Engineer can
have skills in different areas, hence an Engineer has different skills for the differ-
ent types of requirements; A, B, C and D. This is an easy way to model that engineers
have different special competences in different fields. The skills of an Engineer are
generated from a triangular distribution. There are already standard values for the
skills. However, these values are possible to modify.

In addition an Engineer is never improving his skills during the project. This might
not be realistic in reality and it would be more reasonable that the Engineer con-
tinuously is improving the skills, i.e. learning. In addition no split of requirements,
merges or change request are implemented. However, splits, change request and
merges should be possible to implement in the rules. This has not been implemented

 - 28 -

as simulation models below do not require any of these tasks. The design and imple-
mentation of the framework does not see any of these tasks as an Assignment
which would require a particular component. It should be implementation in a Rule.

4.3 RSQ model
The Requirements Selection Quality (RSQ) model is an analytical model and is a
model for requirements selection process. The typical way of storing requirements is
to use a repository where all requirements are stored. When the requirement arrives, it
is evaluated based on the estimated value and effort [17]. In order to prevent the proc-
ess from being overloaded [7] it can be a good idea to introduce a screening stage.
The purpose of the screening stage is to assess the requirement in a fast way and de-
termine if the requirements should be evaluated. The evaluation stage includes re-
quirements analysis, specification, validation and prioritisation [17]. Figure 8 shows a
simplification of the requirements selection process.

Screening Evaluation Construction

Repository

Figure 8. Simplification of a requirements selection process [17].

The screening activity is preventing the requirements to reach the evaluation stage.
The screening is based on product profile and business strategy [17]. In the evaluation
stage the effort and the value are estimated and in the construction stage the require-
ments are constructed and integrated in the product.

A refined requirements selection process is shown in Figure 9.

 - 29 -

Accepted

Constructed

Planned

Late rejected

Early rejected

Issued

Figure 9. A state model of requirements refinement [17].

The model in Figure 9 is a state-based model for the requirement. An arriving re-
quirement receives the status issued and is either early rejected or accepted in the
screening stage. The requirement continues to evaluation stage and is either planned
for construction or late rejected. If a requirement is planned then the producer is esti-
mating that the requirement has a good potential value for the customer to a reason-
able effort. When the requirement has received the state constructed, the requirement
is completed by the construction activity. All requirements states are stored in the re-
pository and the changes in the requirements states imply an update of the repository
[17].

In Figure 10, a queuing network model is presented. The model is based on the re-
finements of Figure 9. The model has three stages, screening, evaluation and con-
struction. Each stage is modelled as number of servers and each server has its own
queue, which gives that each queue is M/M/1 [8]. M/M/1 queues are good for calcu-
lating analytical. The arrival rate is assumed to be Poisson process and all the service
rates are exponentially distributed. In every stage a server represents one employee
and the queue to the server is the work repository. All servers have the same service
rate, to simplify calculations. The service rate is the mean time for one engineer to do
the work at that stage. The work is randomly divided among the servers, with equal
probabilities.

 - 30 -

The simplification of the model does not take different skills of engineering into con-
sideration. In addition, a requirement which has been removed the process can never
re-enter the process. Furthermore decomposition of requirements is neither consid-
ered. The model does not real complex requirements selection process. The purpose
of the model is to get a model which it is possible to obtain analytical results. The fol-
lowing aspects have not been considered [17]; deadline and budget restriction, com-
petition between requirements analysis and construction resources, disposed require-
ments during construction, dependencies between requirements, requirements de-
composition into sub-requirements, etc.

Elicitation

1-peβ 1-pcβ

1-pcα1-peα

Screening Evaluation Construction

peα

peβ pcβ

pcα

Release

μs

λα

λβ

μe μc

Figure 10. A queuing network model of the requirements selection process [17].

4.4 REPEAT process
The REPEAT process is similar to the RSQ process. They are similar in elicitation
and both have analysing or evaluation phase. The RSQ model is a simpler model as it
only has one release and no deadline. The REPEAT process manages requirements
continuously. The REPEAT process is carried out in several iterations and three itera-
tions are always carried out in parallel. The REPEAT process produce two released
per year. The duration of each instance of the process is fourteen months. When the
iteration is finished a product release is delivered. The REPEAT process includes the
following stages; elicitation, selection, change management and construction and fi-
nally conclusion

4.4.1 Elicitation
The elicitation stage is conducted in order to collect and classify the requirements.
The collection of requirements are submitted by stakeholders and stored in a data-
base. The requirements are described in natural language and a summary is provided
by the issuer. The issuer is also giving the requirement an initial priority. The purpose
of the priority is to suggest in which release the requirement should be implemented

 - 31 -

in. The priority is a subjective measure reflecting the view of the issuer. The priorities
are measured on a scale with three levels shown in the Table 3.

Priority Semantics
1 The requirement is allowed to impact on-going construction of the previ-

ous release.
2 The requirement is incorporated in the current release planning.
3 The requirement is postponed to a later release
Table 3. The scale of the priority [5].

4.4.2 Selection
The selection stage has three primary goals [5].

• select which requirements to implement in the current release
• specify the selected requirements in more detail
• validate the requirements

In this stage the output is a requirements document. The document contains a selected
list and a non-selected list. All requirements on the selected-list are specified in detail
and the effort in estimated hours. The non-selected list contains all requirements
which are postponed to the next release. The selected requirements are divided into
two lists, a must list and a wish list. The total effort of the must list is estimated to
allocate 70% of the available effort. The wish list is estimated to allocate 60% of the
available effort. If the estimations are correct the must list will be implemented and
half the wish list will be implemented. The estimations may not be correct and
thereby all requirements on the wish list are specified.

4.4.3 Change management during construction
The change management is carried out in parallel with the design, implementation
and testing of the requirements and handles changes in priorities of the requirements.
This stage contains two sub stages, one before code stop and one after code stop.
When the code stop stage is entered no implementation is done and the focus is on
testing. However, if a requirement with high priority is issued this requirement may
be allowed to affect the ongoing construction [5]. The must and wish list will be af-
fected by this late arrival of requirement as the list must be rearranged so that the new
and more important requirements can be incorporated.

4.4.4 Conclusion
The final report is written in this stage and metrics are collected. The final report in-
cludes the lesson learned in this iteration of the REPEAT process. The metrics may
act as decision support when allocating resources.

 - 32 -

4.5 REPEAT Simulation Model
The simulation model [5] is based on the REPEAT process, described above. The
simulator model is a queuing network and is implemented using discrete event simu-
lator. The simulation model contains three stages; elicitation, selection and construc-
tion. Figure 11 presents the simulator.

Previous
Release ConstructElicit Select

Current
Release Construct Elicit Select

Next
Release ConstructElicit Select

Incoming
Requirements

R
el

ea
se

Not
Selected Not

Completed
Prio 3

Prio 1

Figure 11. Simulation Model [5].

The requirements are entering the simulator from the environment. The requirements
must pass the three stages to be included in a release. The conclusion stage, men-
tioned in 4.4.4 was not included in the model as it is independent from the other
stages [5]. The stages are modelled as processes with a queue of incoming require-
ments and a pool of servers which represents the employees. The arrival of require-
ments is modelled as a Poisson process and the elicitation stage is an M/G/m queue
and the two other stages are G/G/m stages. The queue is a FIFO (First In First Out).
Furthermore each release has its own resources.

When a new instance is created, a number of servers in each stage are created. When
the elicitation is in progress, selection stage is idle and is waiting for the elicitation to
start. The construction stage is idle during elicitation and selection stage and is wait-
ing for the selection stage to finish. The employee represented in the simulation

 - 33 -

model is the same as represented in the previous release. This is simple approach to
represent that the employee divided their time between different activities

4.5.1 Elicitation
In the elicitation the priority is set. If the priority is one (high) and the previous selec-
tion stage is still in progress the requirement is sent to previous selection stage. If the
previous selection stage is no longer in progress the requirement is sent to selection
stage of the current release. If the requirement receives three (low), the requirement is
sent to selection stage in the next release. In any other cases the requirement is sent to
selection stage in the current release.

4.5.2 Selection
During the selection stage the time a requirement will spend in construction is esti-
mated. The selection stage is creating a must and a wish list. The must list is allocat-
ing 70% of the effort and the wish list is allocating 60% of the effort. The require-
ment which is selected for the any of the two lists is transferred to the construction
stage of the current release. The other requirements excluded from the two lists are
sent to the next selection stage.

4.5.3 Construction
The requirements arriving in the construction stage is constructed until the deadline is
reached. Before a requirement is constructed the actual effort is calculated for the re-
quirement. If it is not possible to complete the construction of a requirement before
the deadline the requirement is sent to the next selection stage. Hence requirements
are either 100% completed or 0 % completed. Not all requirements in the must list
and half the requirements (70% and 60%) in the wish list is created as planned in the
selections stage, due to that the estimation of effort contains a parameter controlled
error.

4.5.4 Simplifications
In this simulation model there are two significant simplifications [5]. The first simpli-
fication concerns the use of employees. In the reality there is one pool of employee
containing a number of developers. These developers work in all the stages for all the
releases. The simulation model has one pool of servers for every stage of every re-
lease. To adjust this, the servers of every stage are idle when the stage is inactive. Ac-
cording to [5] this gives and adequate accuracy.

The second simplification was concerning how the must and wish list is created. In
this simulation model the first incoming requirements are put in the lists. There is no
consideration concerning priorities. This means that priority one from a later release
rarely is selected due to late arrival and the lists are already full.

In addition the serving time of the construction stage was also modified [5]. The
maximum serving time was changed from 170 to 91 days and the most common ser-
vice time was changed from 19 to 45 to produce the same workload. Otherwise the
largest job would never be implemented according to the simulation parameters, see

 - 34 -

5.3.2 for further details concerning the simulation parameters. Another simplification
is that the simulation model never rejects a requirement and this is done at a small
extent in the real process [5]. However, these requirements are rejected very rarely so
it is not likely that it affects the validity of the results.

5 Results

5.1 Introduction
This chapter focuses on the implementation of the simulation models with help of the
framework. The results of the implementation will be presented in the following sec-
tions. In addition, the simulation models also need to be verified and validated. The
verification answers the question, is the model correct implemented? The validation
answers the question is the model correct? The difference between the two questions
might not be completely clear. The verification state if the model meets the require-
ments. The validation is if the requirements are correct interpretation of the actual
process [9].

5.2 Implementation of the Simulation Models
The implementation of the simulation models differed in the level of difficulty. The
RSQ model was not as complex as the REPEAT model and thereby the implementa-
tion was less complicated. The RSQ model could be implemented with the compo-
nents in the framework. The elicitation was done by using the RequirementGen-
erator and the three stages; screening, evaluation and construction all use the
Stage component. The major differences between these three stages was the service
rate, number of servers, minor tasks as estimation of value and effort and of course
how it is determined if the requirement will be chosen for the next stage. A specific
Rule for each Stage was developed with the specific characteristic as mentioned
above, see figure 14 for the rules which where implemented. In addition the
DataHandler component was extended to gain the data which will be used for
validation. The Figure 12 presents an Event arriving to a Stage, in this case the
Screening Stage. The verification and validation will be presented in the next sec-
tion.

 - 35 -

:Simulator Engine :Screening

getFirst()

:EventList

treatEvent(e1)

add(e1)

getFirst()

treatEvent(e1)

add(e1)

:ScreeningRule

nextStage(e1)

:Engineer

isAvailable()

Event e1

true

Event e1

Evaluation

getServiceTime(e1, resource)

serviceTime

Figure 12. An Event arrives to the Screening Stage.

The REPEAT model was more complex as described in section 4.5 and the imple-
mentation was of course more complex. The first compatibility issue with the frame-
work was that the simulation model produces n releases. Where will the new releases
be created and when? In addition three releases were running simultaneous and re-
quirement would not be sent the next stage until the previous stage was finished. In
addition the requirements could be sent between the different releases. The RSQ
model was an n M/M/1 [8] queuing network and the REPEAT model was an M/M/m
[8] and G/G/m [8] queuing network. The major difference between M/M/M, G/G/M
and M/M/1 queues were that the two first queues had one queue for all the servers
and the n M/M/1 queues had a separate queue for each server and this cause differ-
ences in the effect of the process. The utilisation of the M/M/M and G/G/M queues
was higher than for n M/M/1. However, this would not cause problem with the frame-
work as the Stage component could be parameter controlled for one queue or a spe-
cific queue for each one of the servers.

The REPEAT model required an extension of the framework; an additional layer was
added to the framework especially developed to fit the REPEAT model, see figure 13
for the REPEAT model specific architecture. The REPEAT layer contained two com-
ponents, RepeatStage and RepeatHelp. Firstly, the stage was extended with a
stage adapted completely for the REPEAT model, the RepeatStage. The arrival
was different as a RepeatStage only exists for a limited period of time. The depar-
ture was also different when it checks for next job to perform and in addition the

 - 36 -

measurement was different when it was essential to measure different Repeat-
Stages in different release versions.

The REPEAT model also needs the possibility to push a requirement to the next re-
lease if it was not possible to finish the requirement in that stage and the REPEAT
model should be able to create new releases when one was finished so three releases
always were simultaneous running. A second component which creates new releases
and contains important data as the length of elicitation, selection and construction was
also created, the REPEATHelp. In addition new rules were also created. However,
the framework always assumes new rules were created as that was a design decision.
The DataHandler was not necessary to extend as the interesting data was not
when a requirement had left the system in the validation. The validation was focusing
on the number of requirements in the selection stage.

Figure 13. UML diagram of the REPEAT layer and the rules.

 - 37 -

Figure 14. UML Diagram of RSQ rules.

5.3 Verification and Validation

5.3.1 RSQ
The verification of the RSQ is done with help of Little’s law [8], which is N=λt. This
means that the number of customer in the system (N) is equal to the arrival rate of
customer to the system (λ) multiply the time the customer spends in the system (t).
The arrival rate is given as input data to the model and was compared with the meas-
ured number of customers and the time spent in the system. The tables below will
show the measured data.

The verification was used with the following data. The screening and evaluation stage
accepted 80% of the alpha requirements and 20% of the beta requirements. The
golden grain was set to 10%. The service rate in the screening, evaluation and con-
struction stage was 10 requirements / unit. The test was first done with one server in
each stage and then with two and three server per stage. The data for the average time
in system and the average number of customer in the system was sampled with help
of an exponential distribution with a mean of hundred. So in average every hundred
point was taken for the measurement. The reason why samplings is done with expo-
nential distribution and not just take every hundred point is to avoid a pattern in the
data. The sampled data was also checked against autocorrelation and no autocorrela-
tion was found.

 - 38 -

λ 1 5 10
N 0.15334 0.766698 1.599247
t 0.147116 0.151851 0.159134
Estimated N 1.042301 5.048999 10.04967
% error 4.23 0.98 0.497
Table 4. Verification of RSQ with one server in each stage.

λ 1 5 10
N 0.131021 0.67341 1.373796
T 0.131624 0.136359 0.137018
Estimated N 0.995423 4.938508 10.0264
% error -1.2298 -0.264 0.264
Table 5. Verification of RSQ with two servers in each stage.

λ 1 5 10
N 0.127639 0.68618 1.383877
T 0.144207 0.135729 0.137032
Estimated N 0.885113 5.055524 10.09892
% error -11.4887 1.11 0.989
Table 6. Verification of RSQ with three servers in each stage.

The verification results are in general good; see Table 4, Table 5 and Table 6. The
only result that differs severe from the rest is in Table 6 with a λ of one. An extension
of the time the simulation model is running would maybe improve the results. How-
ever, the author wanted the time to be same in all tests. Another interesting pattern is
that the percentage error is lower for a higher lambda. This might be a low λ fewer
requirements are arriving in the system compared to the measure time. The measure-
ment is done very frequently. Furthermore it is preferred to keep the measurement
interval constant for all measurement. The measurement interval should not be tested
with different interval to receive a good result. Seven of the nine requirements have
an estimation error lower than two percent. I think with the rest of the result a conclu-
sion can be that the verification of the RSQ model is correct.

The validation was carried out by adapting the model to input data in an article [17].
The articles output data has been calculated analytical for the RSQ model. In addition
the input data estimated after a survey with stakeholders from the industry. The input
data is presented in Table 7 and Table 8.

λ G ms me mc μs μe μc
3 req /
day

10% 1 2 20 4 req /
day

2 req /
day

0.05 req
/ day

Table 7. Parameter used for RSQ, same in all tests.

 - 39 -

Probability Case

RANDOM
Case
LOW

Case
HIGH

Case
IDEAL

peα 0.5 0.6 0.7 1
peβ 0.5 0.4 0.3 0
pcα 0.5 0.8 0.9 1
pcβ 0.5 0.2 0.1 0
Table 8. The four cases in the RSQ test.

The most interesting measurement of the model was the Mean time to market pa-
rameter (MTTM) and below is the formula for calculating MTTM.

CES TTTMTTM ++=

X

X

X
XX

C

CmT
λ

−
×=

1

1

SSS mC μ×=

EEE mC μ×=

CCC mC μ×=

The T is representing the time in the different stages; screening, evaluation and con-
struction. The C is the total capacity in each stage, the number of server m multiplied
with average service rate μ.

 Case

RANDOM
Case
LOW

CASE
HIGH

Case
IDEAL

Analytical
MTTM

81.8 33.0 29.1 30.1

Est. MTTM 82.067 33.872 28.869 29.548
% error 0.326 2.64 -0.794 -1.83
Table 9. Results of validation.

The simulation model was executed for a longer period as it was seen in the begin-
ning that the result improved with the length of period. The results are good as all of
them are approximately in the interval -2 % to +3%. Furthermore the results were

 - 40 -

checked against autocorrelation for the estimations and no autocorrelation could be
found.

5.3.2 REPEAT
The verification of the REPEAT model caused minor problems and a simpler version
was created to verify it. The simplification only including the release 1, 2, and 3 and
no new release was created. In addition a requirement left the stage immediately and
did not wait till next stage was ready. The verification was carried out with help of
Little’s law [8] as it was presented in the RSQ model. The result is presented in Table
10.

Λ 0.01 0.1 0.5
N 0.020 0.164 1.29
T 2.14 1.73 2.48
Estimated N 0.0097 0.095 0.522
% error -2.07 -4.95 4.54
Table 10. Verification of the REPEAT model.

The verification of the REPEAT model is as mentioned a little more difficult, as this
process easily can be instable. The result is in general good; see Table 10, with a low
percentage error, approximately interval -5% to +5 %. However, to obtain these re-
sults the simulation was executed for a long period of time. The N and t are also ob-
tained with the same method as is mentioned with the RSQ model. The N and t are
sampled with a mean of hundred with the λ 0.01. The two other could not be sampled
with such a low mean without autocorrelation existed. The mean was extended to
every thousand point. The sample points is as previous exponential distributed over
the mean. The first measure with the lowest λ has a lower estimation error and the
reason is the sampled mean is lower than the two others. In addition to obtain a simi-
lar result the two others would need the same amount of sampled points. However,
the author preferred to run the simulator with the same period of time for all the cases
instead of trying to obtain the same amount of sampling points.

The validation was carried out with the parameter [5] in Table 11.
Parameter Case 1 Case 2 Case 3
Time between two Con-
secutive release start-ups 126 126 126
Time from start of release
to start of selection stage 126 126 126
Time from start of release
to start of construction
stage 168 168 168
Length of construction
stage 126 126 126
Mean time between tow
consecutive requirements 0.33 0.33 1.8

 - 41 -

Number of servers in the
elicitation stage 30 30 30
Elicitation time per re-
quirement (0.010,0.031,0.062 (0.010,0.031,0.062 (0.010,0.031,0.062)
Number of servers in the
selection stage 30 30 30
Selection time pre re-
quirements (1,2,10) (1,2,10) (1,2,10)
Number of servers in the
construction stage 30 30 30
Construction time per re-
quirement (1,45,90) (1,45,90) (1,45,90)
Fraction of requirement
of priority 1 0% 10% 10%
Fraction of requirement
of priority 3 0% 25% 25%
Table 11. Validation of the REPEAT model.

The unit of the parameters in Table 11 is days and the service times for elicitation,
selection and construction are triangular distributed.

Figure 15. Number of requirements in the selection stage.

Figure 15 shows the number of requirements the selection stage in the implemented
REPEAT model, which is the first case in Table 11. The first visible conclusion is
that the process is overloaded and that is correct according to the article [5] where the
validated data are collected. In addition the first release should have approximately
400 requirements and in Figure 15 this is similar n. Then the 5th release should have
approximately 1600 requirement which also is similar in the Figure 15. However,
there is one remark comparing to article of validation. The curves in Figure 15 of

 - 42 -

every release are immediately zero when a new release start and this is not the case in
the article of validation. The reason is that in this implemented version all require-
ments are immediately transferred to the next selection when the end time is reached
for the selection stage in the current release.

Figure 16. Number of Requirements in the selection stage.

In Figure 16 the result is presented of the second case from Table 11. The process is
still overloaded, when prioritisation is introduced. The number of requirements in the
selection stage is similar to the one in case 1, also according to the article [5].

Figure 17. Number of Requirements in the selection stage

In the last case, case 3 the arrival rate has been changed from 3 requirements per day
to 1.8 requirements per day. The result is shown in Figure 17. The process is obvi-
ously stable as there is no constant increase in the selection stage. According to the

 - 43 -

article approximately 80 requirements are in the selection stage and that is similar in
Figure 17.

The RSQ model and the REPEAT model required different amount of effort to im-
plement. The RSQ model was easier than the REPEAT model and also went faster to
implement. The main reason was that the RSQ model is less complicated than the
REPEAT model. The framework components were useful in both implementations.
The basic components could be used to implement the RSQ model, only a rule for
each stage was necessary to develop. The REPEAT model was more complex and
required an extension of the Stage component. The correction of the both models or
if it is more likely to implement more correct models with the framework is difficult
to determine. However the basic components which was used for each model had
been tested so probably it is likely to do less errors when line of code for the imple-
mentation decrease. The main logic for the RSQ and the REPEAT models are in the
Stage and RepeatStage component. In the framework these two components are
the most complex and most difficult to implement.

In addition it might have been interesting when another user would implement a
model with the help of the framework and evaluate the framework and test the usabil-
ity and ease of use. The framework has not been tested on any user and the author has
tried to model and design a framework which should be ease of use.

 - 44 -

6 Conclusions
This thesis presents a framework which use discrete event simulation in order to
model an MDRE process. The framework shall be on a balanced abstraction level.
The modelling of a MDRE framework is difficult as the abstraction level is difficult
to determining. The implemented simulation models have been guiding in terms of
abstraction and in addition the literature study has also served as input data. It is es-
sential to find the right level of abstraction as it should not be too low and detailed.
The user of the framework shall be able to model an MDRE process without the need
to implement all details of the process in the model and have all input data available.
In addition a high level of abstraction will cause the user to not be able to gain any
relevant output. However, if any MDRE process can be modelled with help of the
framework it will valuable for the user.

The framework should also be flexible and extensible and if the level of abstraction is
not suited for the user the framework can be extended to fit the user’s abstraction
level. The flexibility was tested with help of implementing two simulation models.
The RSQ model was not complex and could easily be implemented. The REPEAT
model was more difficult and required an additional layer. However, with the extra
layer the REPEAT modelled was also implemented

The architecture of the framework was one objective. It should be possible to easily
extend to model and simulate other software processes. The idea of the framework
was to develop it with several layers. The several layers solution should make it eas-
ily extendable, not only for MDRE processes. The first layer contains simulation
model components. The second layer is the software process layers. This layer and
the simulation model layer would be useful to use if someone would want to imple-
ment another software process e.g. a test process or a framework for test processes.
The JobGeneator could be extended to generate test jobs. The Assignment
would also be needed to extend to TestJob and maybe Resource also would be ex-
tended to have special test skills.

Furthermore the framework was then validated with help of implemented simulation
models. The simulation models input data and expected output data was obtained
from published articles. The first article [17] which validated the RSQ model the out-
put data was analytical obtained with realistic parameters obtained after a survey with
the industry. The REPEAT process had been modelled in the other article [5] and the
output data from the implemented model was compared with the output data from the
article. The simulation model is implemented as queuing network and then the
framework was verified with help of Little’s law. The verification error of the RSQ
model was between -1.2% to +4.2% if the worst point is excluded and the REPEAT
model was between -5% to +5%. The second result is not low but it is not likely that a
fault is in the framework as both errors from the two models are low. The RSQ and
REPEAT model implemented by the framework is considered to be verified and vali-
dated according to chapter 5.

 - 45 -

In addition there is one design issue that is interesting to discuss and it concerns the
design decision to use rules. The idea behind the framework is to use rules at anytime
when the decision to move to next stage is more complex than only push it to the next
stage. However, there is theoretical another design which could be used and that is to
extend the Stage for each specific case. Hence the analytical model RSQ would
have three unique stages, one screening stage, one evaluation stage and one construc-
tion stage. This approach has not been used but it should be possible to inherit Stage
and override the nextStage method. Which approach is preferable depends on the
user of the framework. However, no investigation has been conducted with the sec-
ond approach and the author favours the design with the rule approach.

Finally, further work is to extend the framework. One issue which could be interest-
ing is the skills of an Engineer. It is likely in any MDRE process that an Engi-
neer will improve their skills the further they work in a process and there is actually
an interesting idea in [10]. The idea is that each Engineer has a certain skill, a max
skill and an experience. The time it takes to complete a task is based on the skill and
the experience. In addition the skill is increasing during the process and the max skill
is the highest possible skill an engineer can obtain and this is different from Engi-
neer to Engineer.

In addition, further work could also be to extend the framework to fit another soft-
ware process instead of a MDRE process, e.g. a test process. The architecture has
been considering this and has tried to make it as flexible as possible during the devel-
opment of the framework and the first two layers should be possible to use. In addi-
tion if the framework will be extended with a different layer or additional components
in any of the layers it would also be a good idea to maybe extend the Exception com-
ponent and maybe build an exception tree.

 - 46 -

Reference
[1] Banks, J., Carson, J. S., & Nelson, B., 1996. Discrete-Event System Simula-

tion (2nd ed.), Prentice-Hall.
[2] Chung, C. A., 2004, Simulation Modelling Handbook, A Practical Approach.

CRC Press.
[3] Gordon, G., 1969. System Simulation, Prentice-Hall.
[4] Gorschek, T., Wohlin, C., 2005. Requirements Abstraction Model Require-

ments Engineering Journal, Vol. 11, No. 1, pp. 79-101, 2006.
[5] Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., Nyberg, C., 2001. Ex-

ploring bottlenecks in market-driven requirements management processes
with discrete event simulation. The journal of System and Software 59, pp.
323-332.

[6] Höst, M., Regnell, B., Runesson, P., 2006. Att genomföra examensarbete.
Studentlitteratur.

[7] Karlsson, L., Dahlstedt, Å. G., Regnell, B., Natt och Dag, J., Persson, A.,
2007. Requirements engineering challenges in market-driven software devel-
opment - An interview study with practitioners. Information and Software
technology 49 (6), pp. 588-604.

[8] Körner, U., 2003. Köteori. Studentlitteratur.
[9] Lauesen, S., 2002. Software Requirements Styles and techniques, Addison-

Wesley.
[10] Melis, M., Turnu, I., Cau, A., Concas, G., 2006. Evaluating the Impact of

Test-First Programming and Pair Programming through Software Process
Simulation. Wiley InterScience

[11] Natt och Dag, J, 2002. Elicitation and Management of User Requirements in
Market-Driven Software Development, Licentiate Thesis, Department of
Communication Systems, Lund Institute of Technology.

[12] Pedgen, C.D., R.E. Shannon and R.P. Sadowski, 1995. Introduction to simu-
lation Using SIMAN, 2nd Ed., New York McGraw-Hill.

[13] Pfhal, D., 2006. A Software Process Simulation Model Kit in Support of Em-
pirical Research. Proceedings of the 5th ACM-IEEE International Symposium
on Empirical Software Engineering. Volume II: Short Papers and Posters

[14] Potts, C., 1995. Invented Requirements and Imagined Customers: Require-
ments Engineering for Off-the-Shelf Software, Proceeding of the Second
IEEE International Symposium on Requirements Engineering (RE’95),
pp.128-130.

[15] Regnell, B., Beremark, P., Eklundh, O., 1998. A market-driven requirements
engineering process – results from an industrial process improvement pro-
gramme. Journal of Requirements Engineering 3 (2), pp.121-129.

[16] Regnell, B., Brinkkemper, S., 2005. Market-Driven Requirements Engineer-
ing for Software Products, Chapter in Engineering and Managing Software
Requirements, pp. 287-304.

[17] Regnell, B., Karlsson, L., Höst, M., 2003. An Analytical Model for Require-
ments Selection Quality Evaluation in Product Software Development.

 - 47 -

[18] Regnell, B., Ljungquist, B., Thelin, T., Karlsson, L., 2004. Investigation of
Requirements Selection Quality in Market-Driven Software Processes using
Open Source Discrete Event Simulation Framework.

[19] Shaw, M., 2002. What makes good research in Software Engineering? Paper
presented at the Fifth European Joint Conferences on Theory and Practice of
Software, Grenoble, France.

[20] Sommerville, I., 2001. Software Engineering, 6th Edition, Pearson Education.
[21] SSJ: Stochastic Simulation in Java.

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
[22] Wohlin, C., Runesson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.,

2000. Experimentation in Software Engineering – An Introduction. Kluwer
Academic Publishers, Dordrecht.

 - 48 -

http://www.iro.umontreal.ca/%7Esimardr/ssj/indexe.html

Appendix A

 - 49 -

getSkillB
public double getSkillB()

getSkillC
public double getSkillC()

getSkillD
public double getSkillD()

Class REGlobal
java.lang.Object

|
+--se.lth.re.REGlobal

< Fields > < Constructors >

public class REGlobal
extends java.lang.Object

This class contains global variables for the RE layer. The RE layer use this variables as input data for the
different distribution which are used to generate data.

Author:
Christofer Tingström

Fields

engineerSkillHigh
public static int engineerSkillHigh

The highest possible value of an Engineer's skill

engineerSkillLow
public static int engineerSkillLow

The lowest possible value of an Engineer's skill

engineerSkillMean
public static int engineerSkillMean

The mean value of an Engineer's skill

requirementEffortHigh
public static int requirementEffortHigh

The highest possible value for Effort in a Requirement.

requirementEffortLow
public static int requirementEffortLow

The lowest possible value for Effort in a Requirement.

requirementEffortMean
public static int requirementEffortMean

The mean value for Effort in a Requirement.

requirementValueHigh
public static int requirementValueHigh

The highest possible value for Value in a Requirement.

requirementValueLow
public static int requirementValueLow

The lowest possible value for Value in a Requirement.

requirementValueMean
public static int requirementValueMean

The mean value for Value in a Requirement.

Constructors

REGlobal
public REGlobal()

Class Requirement
java.lang.Object

|
+--Assignment

|
+--se.lth.re.Requirement

< Constructors > < Methods >

public class Requirement
extends Assignment

This class represent a Requirement which has several attributes. The Requirement extends the
Assignment. A Requirement is generated in the RequirementGenerator.

Author:
Christofer Tingström

Constructors

Requirement
public Requirement(double actualEffort,

double actualValue,
java.lang.String type)

The default constructor where the effort, value and type is set. An id is also set for the
Requirement.

Methods

getActualEffort
public double getActualEffort()

getActualValue
public double getActualValue()

getEstimatedEffort
public double getEstimatedEffort()

getEstimatedValue
public double getEstimatedValue()

getPriortity
public int getPriortity()

getType
public java.lang.String getType()

isAlpha
public boolean isAlpha()

isConstructed
public boolean isConstructed()

isSplit
public boolean isSplit()

setActualEffort
public void setActualEffort(double actualEffort)

setActualValue
public void setActualValue(double actualValue)

setAlpha
public void setAlpha(boolean isAlpha)

setConstructed
public void setConstructed(boolean constructed)

setEstimatedEffort
public void setEstimatedEffort(double estimatedEffort)

setEstimatedValue
public void setEstimatedValue(double estimatedValue)

setPriortity
public void setPriortity(int priortity)

setSplit
public void setSplit(boolean split)

setType
public void setType(java.lang.String type)

Class RequirementGenerator
java.lang.Object

|
+--Process

|
+--JobGenerator

|
+--se.lth.re.RequirementGenerator

< Constructors > < Methods >

public class RequirementGenerator
extends JobGenerator

This class is frequently generating new Requirements. An RequirementGenerator object is created with a
belonging lambda which is the number of requirement created per time unit. Each time when an
Requirement is generated it is included in an Event which is inserted into the EventList, with a specific
departure time. It is also possible to specify the probability of the type attribute belonging to a
Requirement. The golden grain can also be set.

Author:
Christofer Tingström

Constructors

RequirementGenerator
public RequirementGenerator(double lambda)

Constructs a RequirementGenerator job and the mean of the arrival intensity is attached.

Methods

setGoldenGrain
public void setGoldenGrain(double goldenGrainProb)

setNextStage
public void setNextStage(Process nextStage)

setTypeProbability
public void setTypeProbability(double typeAprob,

double typeBprob,
double typeCprob,
double typeDprob)

toString
public java.lang.String toString()

Overrides:

toString in class Process

treatEvent
public void treatEvent(Event e)

This class has an Event as input parameter and the destination of the event is set to the next
stage in the process and the type attribute of the Event is changed to arrival. In addition a new
Event with a belonging Requirement is created and the destination is set to this object with an
exponential generated departure time. This Event will later be treated and then changed as the
previous Event.

Parameters:

e - The Event which should be treated.

Overrides:

treatEvent in class Process

Class RepeatHelp
java.lang.Object

|
+--se.lth.repeat.RepeatHelp

< Fields > < Constructors > < Methods >

public class RepeatHelp
extends java.lang.Object

This class is a help class to RepeatStage, the purpose is to continuously create new releases and it also
contains four global variables. The variables is the current JobGenerator, and the length of elicitation,
selection and construction of the REPEAT process.

Author:
Christofer Tingström

Fields

constructionTime
public static int constructionTime

The length of the construction stage time in the REPEAT process. This is used both when new
releases are created and as well as long as a construction object will be active.

currentJobGenerator
public static JobGenerator currentJobGenerator

The current JobGenerator. This is the JobGenerator that is generating Job. It is accessed several
times to change the next stage attribute.

elicitationTime
public static int elicitationTime

The length of the elicitation stage time in the REPEAT process. This is used both when new
releases are created and as well as long as an elicitation object will be active.

releasesMap
public static java.util.HashMap releasesMap

The HashMap contains all id and Stages that have been created. The id is the key.

selectionTime
public static int selectionTime

The length of the selection stage time in the REPEAT process. This is used both when new
releases are created and as well as long as a selection object will be active.

Constructors

RepeatHelp
public RepeatHelp()

Methods

createNewRelease
public static void createNewRelease(int releaseID)

The method creates a new release. As three releases always are running simultaneous the next
release will be the release id plus three

Parameters:

releaseID - the release which is used to create new released with the correct id.

Class RepeatStage
java.lang.Object

|
+--Process

|
+--Stage

|
+--se.lth.repeat.RepeatStage

< Constructors > < Methods >

public class RepeatStage
extends Stage

The RepeatStage is an extension of the Stage component. This class override a few methods in the
Stage class to suit the REPEAT process. The REPEAT process is special as an RepeatStage object only
exist for a limited period of time. In addition three releases are simultaneous running.

Author:
Christofer Tingström

Constructors

RepeatStage
public RepeatStage(java.lang.String ID,

Rule rule,
se.lth.swprocess.Resource[] resources,
boolean firstStage,
int endTime,
DataHandler dataHandler)

Creates a RepeatStage object and the ID, rule, resources, firstStage, endTime and DataHandler
attributes are set. This RepeatStage is also added to the release map in the RepeatHelp class.

Methods

getEndTime
public int getEndTime()

getReleaseID
public int getReleaseID()

getStageID
public java.lang.String getStageID()

treatEvent
public void treatEvent(Event event)

The Event is handled in this method. Firstly the service time is determined. Either is already stored
in the Event, otherwise it is obtained from the specific rule connected to this object. Then the Event
is treated, depending on the type attribute of the Event. Basically, this method determines the
service time of an Event from the rule connected to the object and as well the next stage for the
Event.

Parameters:

event - the Event which should be treated.

Overrides:

treatEvent in class Stage

Class DataHandler
java.lang.Object

|
+--se.lth.simulator.DataHandler

< Constructors > < Methods >

public class DataHandler
extends java.lang.Object

This class produces all output data. The output data is always produced from the method handleData.
This method is always called when an Event is removed from the system. This method could be
overridden to enable the user to collect and store output data of an Event when it is removed the system.
However, the measurement conducted in the method in the Stage class is collected in the Stage class
and the writeToFile is called. This class contains a unique id which is attached to every file to avoid
overwritten files.

Author:
Christofer Tingström

Constructors

DataHandler
public DataHandler()

Default constructor, sets the unique id.

Methods

generateResult
public void generateResult(Event event,

java.lang.String outputFile)

Generate Results from an event, the value and the effort is collected

Parameters:

event - the Event where the data is collected
outputFile - the file to store the collected data

getUniqueID
public java.lang.String getUniqueID()

handleData
public void handleData(Event event)

Handle data when an event has been removed from the system. This class should be overridden if
the user of the framework wants to control the output data. This method is implemented to only
measure the total time an Event spend in the system.

Parameters:

event - the event which has been removed from the system.

writeToFile
public void writeToFile(java.lang.String text,

java.lang.String outputFile)

This method write data to an output file

Parameters:

text - the text to write to the output file
outputFile - the file where the text should is written.

Class Event
java.lang.Object

|
+--se.lth.simulator.Event

< Constructors > < Methods >

public class Event
extends java.lang.Object

An Event is the message sent between the processes. The Event does in general contain an Assignment.
However, there are also measure event which is specified by there type attribute. The Event contains
several attributes as the destination of the Event, arrival time in the system, departure time and Resource
which is handling the Event.

Author:
Christofer Tingström

Constructors

Event
public Event()

Construct an Event object. A HashMap to store different service times is also created.

Event
public Event(double departureTime,

Process destination,
int type,
Assignment assignment)

Construction of an Event object and departureTime, destination, type and assignment is also set in
this constructor. A HashMap to store different service times is also created.

Methods

getArrivalTimeInSystem
public double getArrivalTimeInSystem()

getAssignment
public Assignment getAssignment()

getDepartureTime
public double getDepartureTime()

getDestination
public Process getDestination()

getResource
public Resource getResource()

getResourceID
public int getResourceID()

getServiceTime
public java.lang.Double getServiceTime(Stage key)

getType
public int getType()

setArrivalTimeInSystem
public void setArrivalTimeInSystem(double arrivalTimeInSystem)

setAssignment
public void setAssignment(Assignment assignment)

setDepartureTime
public void setDepartureTime(double departureTime)

setDestination
public void setDestination(Process destination)

setResource
public void setResource(Resource resource)

setResourceID
public void setResourceID(int resourceID)

setServiceTime
public void setServiceTime(Stage key,

java.lang.Double value)

setType
public void setType(int type)

Class EventList
java.lang.Object

|
+--se.lth.simulator.EventList

< Constructors > < Methods >

public class EventList
extends java.lang.Object

This class is a List which acts as a Linked List and the Event stored in this List is ordered in an ascending
order according to their departure time.

Author:
Christofer Tingström

Constructors

EventList
public EventList()

Methods

add
public static boolean add(Event e1)

This method attaches and Event to the LinkedList The Event is sorted in an ascending order
according to the departure time of the Event

Parameters:

e1 - the Event which should be inserted in the Linked List

Returns:

true is returned if the insertion was successful

createNewList
public static void createNewList()

This method creates a new LinkedList and removes the old one.

getFirst
public static Event getFirst()

This method return the first Event in the Linked list.

Returns:

the Event with the lowest departure time

isEmpty
public static boolean isEmpty()

This method checks if the Linked list is empty.

Returns:

true if the List is empty

numberOfJobsEventList
public static int numberOfJobsEventList(java.lang.String id)

A method to count the number of specific Events in a Linked List. The Events are grouped after
their destination attribute.

Parameters:

id - the id to check, it is the id of the destination attribute

Returns:

the number of Events which matches the id

size
public static int size()

This method checks the size of the Linked list

Returns:

the size of the Linked List

Class Global
java.lang.Object

|
+--se.lth.simulator.Global

< Fields > < Constructors > < Methods >

public class Global
extends java.lang.Object

This class contains global variables and constants. Two methods for the seed is also implemented here,
get and set. The setting of the seed needs to follow a few rules.

Author:
Christofer Tingström

Fields

ARRIVAL
public static final int ARRIVAL

Each Event can be in three states, either arrival, measure or departure

DEPARTURE
public static final int DEPARTURE

Each Event can be in three states, either arrival, measure or departure

MEASURE
public static final int MEASURE

Each Event can be in three states, either arrival, measure or departure

isSeed
public static boolean isSeed

if a seed is set.

time
public static double time

The time in the framework

Constructors

Global
public Global()

Methods

getSeed
public static int[] getSeed()

setSeed
public static void setSeed(int[] newSeed)

throws FrameworkException

This method sets the seed array. The first element in the array need to be greater than 1, the
second greater than 7, the third greater than 15 and the last greater than 127

Parameters:

seed - the seed vector

Throws:

se.lth.swprocess.FrameworkException - is thrown if the seed is incorrect set.

Class Process
java.lang.Object

|
+--se.lth.simulator.Process

Direct Known Subclasses:
JobGenerator, Stage

< Constructors > < Methods >

public abstract class Process
extends java.lang.Object

This class determines the methods which need to be implemented to be able to handle Events. This class
has two known subclasses, JobGenerator and Stage.

Author:
Christofer Tingström

Constructors

Process
public Process()

Methods

toString
public abstract java.lang.String toString()

Overrides:

toString in class java.lang.Object

treatEvent
public abstract void treatEvent(Event event)

This method treats an Event and is implemented in the subclasses.

Parameters:

event - the Event which is treated

Class SampleFile
java.lang.Object

|
+--se.lth.simulator.SampleFile

< Constructors > < Methods >

public class SampleFile
extends java.lang.Object

The purpose of this class is to sample a file with a specific interval. The sampling is simple; reading an
input file and producing an output file. The class also calculate a mean and a sampled mean. The
sampling can also be conducted with an exponential interval.

Author:
Christofer Tingström

Constructors

SampleFile
public SampleFile()

Methods

getMean
public double getMean()

getMeanSampled
public double getMeanSampled()

sampleFile
public void sampleFile(java.lang.String inputFileName,

java.lang.String outputFileName,
double lambda)

throws FrameworkException

This method samples a file according to the specified lambda.

Parameters:

inputFileName - the file to sample.
outputFileName - the file where the sampled points are stored.
lambda - the sample interval.

Throws:

se.lth.swprocess.FrameworkException - an exception is thrown if lambda is less than 1.

setExponential
public void setExponential(boolean exponential)

Class Assignment
java.lang.Object

|
+--se.lth.swprocess.Assignment

Direct Known Subclasses:
Requirement

< Constructors > < Methods >

public class Assignment
extends java.lang.Object

This class represents an Assignment which is always included in an Event and sent between the
Processes. The Assignment is a base class and has one known subclass, Requirement. The Assignment
is closely connected with the JobGenerator as the JobGenerator is extended with an
RequirementGenerator and Assignment is extended with a Requirement.

Author:
Christofer Tingström

Constructors

Assignment
public Assignment()

Constructs an Assignment object.

Assignment
public Assignment(int id)

Constructs an Assignment object connected to an id.

Methods

getId
public int getId()

Class FrameworkException
java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--se.lth.swprocess.FrameworkException

All Implemented Interfaces:
java.io.Serializable

< Constructors >

public class FrameworkException
extends java.lang.Exception

The FrameworkException class purpose is to be a base class for the exceptions. The exception, which is
thrown from the framework contains a specific message. At this time no Exception tree has been built, but
if extensions are developed this should be done.

Author:
Christofer Tingström

Constructors

FrameworkException
public FrameworkException()

A FrameworkException object is created.

FrameworkException
public FrameworkException(java.lang.String message)

A FrameworkException object is created associated with a message.

Class JobGenerator
java.lang.Object

|
+--Process

|
+--se.lth.swprocess.JobGenerator

Direct Known Subclasses:
RequirementGenerator

< Constructors >

public abstract class JobGenerator
extends Process

This class extends the Process class and is a base for generating jobs. This class is abstract and contains
no methods. This class is created to be a base, which should be extended to fit any software process.
JobGenerator has one known subclass, RequirementGenerator.

Author:
Christofer Tingström

Constructors

JobGenerator
public JobGenerator()

Class Resource
java.lang.Object

|
+--se.lth.swprocess.Resource

Direct Known Subclasses:
Engineer

< Constructors > < Methods >

public class Resource
extends java.lang.Object

This class represent a Resource in the Framework. The purpose is that the Resource should be an base
class. The Resource has one known subclass, Engineer. The Resource represent a server in the queuing
network.

Author:
Christofer Tingström

Constructors

Resource
public Resource()

Construct a Resource object.

Resource
public Resource(int id)

Construct a Resource object and an id is attached.

Methods

getId
public int getId()

isAvailable
public boolean isAvailable()

setAvailable
public void setAvailable(boolean isAvailable)

Interface Rule

< Methods >

public interface Rule

The Rule interface enables complex rules for a Stage to be implemented. The Rule interface can always
be used if the next stage of an Event is not simple to determine. In addition the Rule interface shall also
be used if the service time for an Event depend on any attributes of the Assignment included in the Event
or the Resource which is handling the Event.

Author:
Christofer Tingström

Methods

getServiceTime
public double getServiceTime(Event event,

Resource resource)

The service time is calculated and returned.

Parameters:

event - the event which service time is calculated for
resource - the resource which handles the event

Returns:

the service time for the event

nextStage
public Process nextStage(Event event)

Determining which is the next Stage, the logic of the rule is implemented in this method.

Parameters:

event - the next Stage can depend on the event

Returns:

the next Stage

setNextStage
public void setNextStage(Process nextStage)

This class can be of support to the measurements, if the queuing network is not complex. It is
used for the RSQ model.

Class RuleBase
java.lang.Object

|
+--se.lth.swprocess.RuleBase

All Implemented Interfaces:
Rule

< Constructors > < Methods >

public abstract class RuleBase
extends java.lang.Object
implements Rule

This class is a base class which implements the interface Rule and implement the most basic methods as
service time and the next stage.

Author:
Christofer Tingström

Constructors

RuleBase
public RuleBase()

Construct a RuleBase object

RuleBase
public RuleBase(double serviceRate)

Construct a RuleBase object with a specific service rate

RuleBase
public RuleBase(double serviceRate,

boolean exponential)

Construct a RuleBase object with a specific service rate which can be exponential

Methods

getServiceRate
public double getServiceRate()

getServiceTime
public double getServiceTime(Event e,

Resource resource)

The service time is calculated and the Event nor the Resource is considered. The service time can
be exponential or 1/(service rate). This is parameter controlled.

Returns:

the service time as a double

isExponential
public boolean isExponential()

setNextStage
public void setNextStage(Process nextStage)

Class Stage
java.lang.Object

|
+--Process

|
+--se.lth.swprocess.Stage

Direct Known Subclasses:
RepeatStage

< Constructors > < Methods >

public class Stage
extends Process

The Stage class handles an Event when it arrives and when it departures. The Stage class can also
perform measurement on the System. The Stage class contains the logic of the Resources allocation. If
one queue is used or a separate one for each Resource.

Author:
Christofer Tingström

Constructors

Stage
public Stage(java.lang.String ID,

se.lth.swprocess.Resource[] resources,
double serviceTime,
boolean firstStage,
boolean exponential,
DataHandler dataHandler)

A Stage object is created without a Rule. The ID, the Resources, service time, firstStage,
exponential and DataHandler attributes are set.

Stage
public Stage(java.lang.String ID,

Rule rule,
se.lth.swprocess.Resource[] resources,
boolean firstStage,
DataHandler dataHandler)

A Stage object is created with a Rule. The ID, the Resources, service, firstStage, and DataHandler
attributes are set.

Methods

getDataHandler
public DataHandler getDataHandler()

getNumberOfJobsInSystem
public int getNumberOfJobsInSystem()

This method recursively determining the amount of Event in this Stage and the other Stages in the
system.

Returns:

the number of Jobs in the system.

getNumberOfServers
public int getNumberOfServers()

getRule
public Rule getRule()

isFirstStage
public boolean isFirstStage()

setMeasureInterval
public void setMeasureInterval(double measureInterval)

setNextStage
public void setNextStage(Process nextStage)

setOneQueue
public void setOneQueue(boolean oneQueue)

toString
public java.lang.String toString()

Overrides:

toString in class Process

treatEvent
public void treatEvent(Event event)

This method handles an Event and is generating a new departure time for the Event by adding a
service time. In addition the destination is also set here. If the servers already are busy the Event
is stored in a queue and is handled when a server is available. The choice of the server depend if
all servers have one common queue or a separate one.

Parameters:

event - the Event which shall be handled.

Overrides:

treatEvent in class Process

	1. Introduction
	1.1 Background
	1.2 Purpose and Scope
	1.3 Target Group
	1.4 Glossary
	1.5 Outline of the Thesis
	2 Objectives and Methods
	2.1 Objectives
	2.2 Methodology

	3 Theoretical Background and Related Work
	3.1 Software Requirements Engineering
	3.1.1 Elicitation
	3.1.2 Specification and validation

	3.2 Market-Driven Requirements Engineering
	3.2.1 Elicitation
	3.2.2 Specification and Validation
	3.2.3 Release Planning
	3.2.4 Process Quality
	3.2.5 Managing the constant flow of new Requirements

	3.3 Software Process Simulation Modelling
	3.3.1 Introduction to Simulation Modelling
	3.3.2 Advantages of Simulation Modelling
	3.3.3 Disadvantages of Simulation Modelling
	3.3.4 Classifications of Simulations Models

	4 Framework and Simulation models
	4.1 Introduction
	4.2 Framework
	4.3 RSQ model
	4.4 REPEAT process
	4.4.1 Elicitation
	4.4.2 Selection
	4.4.3 Change management during construction
	4.4.4 Conclusion

	4.5 REPEAT Simulation Model
	4.5.1 Elicitation
	4.5.2 Selection
	4.5.3 Construction
	4.5.4 Simplifications

	5 Results
	5.1 Introduction
	5.2 Implementation of the Simulation Models
	5.3 Verification and Validation
	5.3.1 RSQ
	5.3.2 REPEAT

	6 Conclusions
	 Reference
	 Appendix A

