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ABSTRACT

The state-of-the-art in development tools today provides users with a large num-
ber of both syntactic and semantic services, such as syntax highlighting, name
completions and refactorings. Preferably, every language should have sophisti-
cated tool support, but unfortunately, the manual task of tool development is both
time-consuming and error-prone, making it too costly for small language com-
munities. This situation can be improved by the use of tool generators and frame-
works supporting reuse. Tool generators can provide swift generation of language-
specific components from high-level specifications, while frameworks can provide
reusable language-generic components. In this thesis we address a number of
problems related to the generation of semantic services used in editors. We present
a prototype tool generator based on reference attribute grammars (RAGs). RAGs
extend attribute grammars with references that turn syntax trees into graphs, and
we find them both powerful and expressive, suitable for the generation of semantic
services. As an example of how RAGs can be used for advanced semantic ser-
vices, we show how they can modularly express the semantics of flow analysis,
using Java as a large case study. Flow analysis is useful in several semantic ser-
vices, including dead code detection, and as a contributing service in a refactoring
tool. We also present contributions to improving the performance of RAG-based
systems. The approach is to use profiling to automatically compute a selective
caching configuration of attributes, performing better than full caching. We have
chosen to focus on text-based editors, which leaves us with the predicament of
translating text to syntax tree through parsing. The text in an interactive editor
often contains parsing errors, making it difficult to maintain a corresponding syn-
tax tree. To mitigate this problem, we present a novel approach to structural error
recovery of text – bridge parsing, used as a pre-processor which makes it indepen-
dent of the actual parser in use. In addition, we present how bridge parsing can
be integrated with scanner-less generalized LR parsing – a fruitful combination
outperforming the Eclipse JDT with regards to structural error recovery.





PREFACE

This thesis is for the Licentiate degree which is a Swedish degree between the MSc
and PhD. It consists of an introductory part, three peer-reviewed papers and two
technical reports. The papers included in this thesis are1:

I. Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree
Level2 Emma Söderberg3, Görel Hedin, Torbjörn Ekman, Eva Magnusson.
Submitted to the journal of Science of Computer Programming, Elsevier
2010

II. Practical Scope Recovery using Bridge Parsing Emma Nilsson-Nyman4,
Torbjörn Ekman, Görel Hedin. In the proceedings of the 1st Conference
on Software Language Engineering (SLE’08), Toulouse, France, September
2008 Lecture Notes of Computer Science 5452:95–113 c� 2009 Springer
Berlin / Heidelberg

III. Natural and Flexible Error Recovery for Generated Parsers Maartje
de Jonge, Emma Nilsson-Nyman5, Lennart C.L. Kats, Eelco Visser. In
the proceedings of the 2nd Conference on Software Language Engineering
(SLE’09), Denver, Colorado, USA, October 2009 Lecture Notes of Com-
puter Science 5969:204–223 c� 2010 Springer Berlin / Heidelberg

1The author of this thesis has recently changed her last name from Nilsson-Nyman to Söderberg
2An extended version of the following paper: Declarative Intraprocedural Flow Analysis of Java

Source Code Emma Nilsson-Nyman, Torbjörn Ekman, Görel Hedin, Eva Magnusson. Proceedings of
the 8th Workshop on Language Descriptions, Tools and Applications (LDTA’08), Budapest, Hungary,
April 2008. Electronic Notes of Theoretical Computer Science 238(5):155–171 c� 2009 Elsevier B.V.

3The main author and responsible for the implementation and the evaluation.
4The main author and responsible for the algorithm, the implementation and the evaluation.
5Contributed with the integration of bridge parsing with SGLR, the implementation of the bridge

parser generator and parts of the evaluation of the approach.



vi

Technical reports included in this thesis are:

I. Automated Selective Caching for Reference Attribute Grammars Emma
Söderberg6 and Görel Hedin. Technical report, LU-CS-TR:2010-245, ISSN
1404-1200, Report 94, 2010, Department of Computer Science, Lund Uni-
versity

II. A Semantic Editing Model in Support of Reference Attribute Gram-
mars Emma Söderberg. Technical report LU-CS-TR:2010-246, ISSN 1404-
1200, Report 95, 2010, Department of Computer Science, Lund University

The author has also contributed to the following peer-reviewed papers, not in-
cluded in this thesis:

- Providing Rapid Feedback in Generated Modular Language Environ-
ments: Adding Error Recovery to Scannerless Generalized-LR Pars-
ing Lennart C.L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, Eelco
Visser. Proceedings of 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA’09),
445–464 Orlando, Florida, USA, October 2009 c� 2009 ACM

- A Plan for Building Renaming Support for Modelica Görel Hedin, Emma
Nilsson-Nyman, Johan Åkesson. Electronic proceedings of 3rd Workshop
on Refactoring Tools (WRT’09) Orlando, Florida, USA, October 2009 Avail-
able online at http://refactoring.info/WRT09 [May 2010]
(Hosted by University of Illinois, Department of Computer Science)

- Ad-hoc Composition of Pervasive Services in the PalCom Architecture
David Svensson Fors, Boris Magnusson, Sven Gestegård Robertz, Görel
Hedin, Emma Nilsson-Nyman. Proceedings of International Conference on
Pervasive Services (ICPS’09), 83–92 London, United Kingdom, July 2009
c� 2009 ACM

6The main author and responsible for the implementation, the evaluation and the design of the
approach. However, the design of the approach evolved much during discussions with the co-author.



vii

Acknowledgements
The work in this thesis is partly funded by Vetenskapsrådet (The Swedish Re-
search Council), VINNOVA (The Swedish Governmental Agency for Innovation
Systems), and EPSRC (The Engineering and Physical Sciences Research Council
of the UK). I am also grateful for grants from The Royal Physiographic Society in
Lund, and The Google Anita Borg Memorial Scholarship.
The work presented in this thesis has been carried out within the Software Devel-
opment and Environments Group (SDE) at the Department of Computer Science
at Lund University, within the Programming Tools Group (PTG) at the Computing
Laboratory, University of Oxford, and in collaboration with the Software Engi-
neering Research Group (SERG) at TU Delft.
My first and foremost thanks goes to my supervisor Dr. Görel Hedin to whom I
am sincerely grateful for advice, support and patience during my exploration of
the fields of reference attribute grammars and semantic editors. She originally in-
spired me to start this journey, and her knowledge and experience has been invalu-
able during the work on this thesis. I am also grateful to my assistant supervisor
Prof. Boris Magnusson for advice and discussions.

I am very grateful to Dr. Torbjörn Ekman for advice and for giving me support
and early encouragement. Particularly, for inviting me to work with his group
(PTG) at the Computing Laboratory at the University of Oxford in the summer of
2007, and to Dr. Oege de Moor (the head of the group) for his invitation for yet
another stint the summer of 2008. A big thanks to the remaining PTG members for
providing a great place to work and for making my visits most enjoyable. Special
thanks to Max Schäfer for using JedGen and our flow analysis modules, and to
Dr. Oege de Moor for using the flow analysis modules in his teaching. Thanks to
Magdalen College for providing a splendid place to stay during these visits.

I am also grateful to Dr. Eelco Visser for showing an interest in our work on
scope recovery and for inviting me to visit his group (SERG) at TU Delft in the
winter of 2009. A big thanks to my co-authors at TU Delft, Lennart Kats and
Maartje de Jonge for fruitful discussions and nice work. Thanks to the remaining
SERG members whom I have had the pleasure to meet at various occasions.

Thanks to Dr. Eva Magnusson for joint work on control-flow and for sharing
her knowledge on collection attributes. Thanks to Dr. Johan Åkesson and the peo-
ple at Modelon for joint work on the JModelica IDE and for using JedGen. Thanks
to Erik Mossberg, Jesper Mattsson and Philip Nilsson for using early versions of
JedGen in their master thesis work. Thanks to past and present co-authors and
colleagues in the SDE group: Sven Gestegård Robertz, David Svensson Fors and
Thomas Forsström for joint work. Thanks to Dr. Robert Fuhrer at IBM TJ Watson
Research Center, Hawthorne, NY for hosting my visit in October of 2009.

A big thanks to all colleagues and students at the Department of Computer
Science in Lund for providing a nice and relaxed place to work. Thanks to Dr.
Klas Nilsson for initially employing me as a research assistant at the department



viii

of Computer Science during the summer of 2005, and to Per Holm for employing
me as a teaching assistant in the fall of 2003. Thanks to Dr. Flavius Gruian for
advice on writing, to Dr. Roger Henriksson for help and advice, and to Dr. Jonas
Skeppstedt for interesting discussions about compilers. Thanks to Lhinn Nilsson-
Nyman, Lena Ohlsson, Tomas Richter and the technical support crew, Anne-Marie
Westerberg, and Jonas Wisbrandt for help with practical things.

Last but not least, I would like to thank my family and friends for all their
support. A special thanks to everyone participating in various crazy ventures –
the floor ball team, the badminton crew, the running group, the climbing maniacs
and the happy golfers. Thanks to my parents (Christina and Lennart) and siblings
(Caja, Lhinn and Carl) for all their love and support. A special thanks to my "insep-
arable twin" Lhinn who never grows tired of me dragging her into things. Thanks
to my new in-laws (Majvor and Jan) and their children (Katarina and Fredrik) with
families for making me feel most welcome. Last, but far from the least, I would
like to thank my husband Christian, who fills my life with sunshine.

Emma Söderberg
June 2010



CONTENTS

I Introduction 1
1 Methods, Languages and Tools . . . . . . . . . . . . . . . . . . . 1
2 Towards the Generation of Semantic Editors . . . . . . . . . . . . 4
3 Long-term Goals and Challenges . . . . . . . . . . . . . . . . . . 8
4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Included Papers 25

I Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree
Level 27
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Control-flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 29
3 Dataflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Dead Code Analysis . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Language Extensions . . . . . . . . . . . . . . . . . . . . . . . . 49
6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Practical Scope Recovery using Bridge Parsing 59
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Bridge Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4 Bridge Parsing for Java . . . . . . . . . . . . . . . . . . . . . . . 70
5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



x CONTENTS

III Natural and Flexible Error Recovery for Generated Parsers 83
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2 Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3 Coarse-grained Error Recovery . . . . . . . . . . . . . . . . . . . 87
4 Fine-grained Error Recovery . . . . . . . . . . . . . . . . . . . . 93
5 Bridge Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Included Technical Reports 109

I Automated Selective Caching for Reference Attribute Grammars 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2 Reference Attribute Grammars . . . . . . . . . . . . . . . . . . . 112
3 Attribute Instance Graphs . . . . . . . . . . . . . . . . . . . . . . 114
4 Computing a Cache Configuration . . . . . . . . . . . . . . . . . 117
5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . 125
8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 126

II A Semantic Editing Model in Support of Reference Attribute Gram-
mars 129
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2 A Historical Note on the Development . . . . . . . . . . . . . . . 131
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4 The Semantic Editing Model . . . . . . . . . . . . . . . . . . . . 135
5 The Service Flora . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6 Current Status and Future Work . . . . . . . . . . . . . . . . . . 145
7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 146



CHAPTER I

INTRODUCTION

Software is inherently difficult to develop. According to Brooks [Bro87], the diffi-
culty lies in the essential complexity of the task. Not surprisingly, large amounts of
research have been directed on facilitating software development, as summarized
by Boehm [Boe06]. This thesis focuses on how to facilitate the development of
semantic editors, that is, editors with knowledge of the meaning of a programming
language.

1 Methods, Languages and Tools
Software development research can roughly be divided into three areas – methods,
languages and tools. These areas are inter-connected, for instance, methods can
be enforced through the use of tools and new languages benefit from tool support.
The topic of this thesis belongs in the third area – tools.

1.1 Methods
Software projects are notorious for being hard to manage and often take more time
than expected, according to Brooks in [Bro95]. Besides Brooks’ observations,
we should not neglect that software development is a human activity – humans
do the work and humans make mistakes [Wei88]. Important parts of software
development is about people management – people run projects, design solutions,
implement programs, test applications, and so on.

One recent influential contribution to the methods of software development is
agile development [BBvB+01, HC01], focusing on individuals and interactions,
working software, customer collaboration and responding to change. While agile
development focuses more on people and teamwork than on languages and tools,
good languages and tools can help support core agile values and principles [BA04],
like communication, feedback and quality.
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1.2 Languages
Good communication is essential to successful software development, both in writ-
ten form and in speech. We communicate in many ways: in speech using natural
language, body language, etc., and in written form using free text, forms, tables,
etc. For communication with computers, we use languages for which we formally
can describe structure and meaning so that computers "understand". Originally,
these formal languages, or programming languages, were in much regard more
developed for computers than for humans [Wei88]. The introduction of higher-
level languages, with language constructs closer to human thinking, was a relief
for software developers, as summarized by Brooks [Bro87]:

"Surely the most powerful stroke for software productivity, reliability
and simplicity has been the progressive use of high-level languages
for programming."

Much research has been focused on so called domain-specific languages [vDK97,
vDKV00] (DSLs), also referred to as little languages [Ben86], and application-
oriented or special-purpose languages [SH03]. A DSL is a form of higher-level
language, not necessarily Turing complete or executable, with language constructs
close to a certain problem domain. At the same time, research has continued in
the general-purpose language domain where interesting new languages like Scala
[Ode04] have emerged, supporting more than one programming paradigm; notably
object-oriented programming and functional programming. Another example of
research related to the use of languages, whether they are in textual or graphical
form, is that of model-driven development [Sel03], focusing on the composition of
models and code generation. The intention being to replace high-level languages
in a manner similar to how high-level languages replaced assembly code with the
use of compilers.

While good languages are essential, they need to be integrated with tools in
order to be fully taken advantage of.

1.3 Tools
Software development is an error-prone task: bugs are easily introduced and they
can be both hard to find and remove. Even the smallest bug can have devastating
consequences. For instance, the NASA Mars Climate Orbiter failed to land in 1999
due to a software bug [IBN99], and the U.S. telephone system broke down during
9 hours in 1990 due to another software bug [EDMW90]. However, computers
do not logically make mistakes – they follow the instructions we give them even
though those instructions may be faulty. Parnas expresses his view on human error
as follows [PC85] :

"Human errors can only be avoided if one can avoid the use of hu-
mans."
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Tools can help us to not make mistakes, as well as, speed-up development. For
instance, integrated development environments (IDEs), can provide developers
with instant feedback on problems in their program, for example, by showing
compile-time errors, supporting refactorings [Opd92, Fow99], and detecting code
smells [VEM02]. Short feedback loops are important in recent agile methodolo-
gies where developers need to respond efficiently to code changes. Early exam-
ples of IDEs for dynamic languages include the Interlisp environment for LISP
by Teitelman et al. [TM81] and the SmallTalk environment by Goldberg and Rob-
son [GR83], both serving as inspiration for later tools supporting statically typed
languages.

Today, the state-of-the-art, concerning tools in Java development, is jointly
represented by IntelliJ IDEA [Jet10], NetBeans [Cor10] and the Eclipse Java De-
velopment Toolkit (JDT) [Fou10a]. These are all language-based tools for Java
with knowledge of the semantics of the Java language. This knowledge is used to
provide users with a large number of interactive syntactic and semantic services to
facilitate development of Java programs.

1.4 Tools for All
Preferably, every language should have sophisticated tool support. However, state-
of-the-art tools are normally hand-crafted and the result of years of development.
This is unfortunate for small language communities where this type of develop-
ment is too expensive, the result being that many language users do their program-
ming in generic text editors. Two important ways of facilitating tool development
are reuse and generation.

Reuse The Eclipse platform [DRW04, Fou10b], provides a plugin-based in-
tegrated platform facilitating development of tools and reuse of existing tools.
For example, tools for version management and file browsing can be reused by
new editing tools. Due to the extensibility of the platform, a number of projects
building on the platform have emerged. The most well-known example is the
Eclipse Java Development Toolkit (JDT). Another example is the Eclipse Mod-
eling Project [The10a], which focuses on the development of model-based tools.
This project includes several subprojects addressing different concerns. For exam-
ple, the Eclipse Modeling Framework (EMF) by Budinsky et al. [BBM03], pro-
vides means for expressing structured data models. Other examples of platforms
supporting reuse include the NetBeans IDE [Cor10] and IntelliJ IDEA [Jet10],
both extendable through the use of plug-ins.

Generation An early example of tool generation includes the Synthesizer Gen-
erator by Reps and Teitelbaum [RT84], which generates syntax-directed editors
supporting incremental re-compilation of code during editing. The GANDALF
system by Habermann and Notkin [HN86] semi-automatically generates software
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development environments including syntax-directed editors, and also other tools
needed in the software development process, for example version management
tools. The Mjølner/ORM system, by Magnusson and Hedin [HM88], also supports
the generation of syntax-directed editors but for statically typed object-oriented
languages.

In recent years, a number of tool generating systems have emerged which ex-
tend the Eclipse Platform. Examples include the IDE Meta-tooling Platform (IMP)
by Charles et al. [CFS+09], which has a semi-automatic approach to the devel-
opment of language-oriented textual editors with features like syntax highlight-
ing, code outlines and name completion. IMP semi-generates these editors using
wizards and generation of code skeletons. Developers manually fill in language-
specific behavior in these code skeletons. The MontiCore system by Krahn et
al. [KRV08], supports generation of textual editors with services like syntax high-
lighting and structural outlines. MontiCore uses a combined grammar format for
concrete and abstract syntax supporting modular language extensions.

2 Towards the Generation of Semantic Editors
Our vision is to generate semantic editors with features similar to those found in
today’s state-of-the-art tools. With semantic editors, we mean editors with knowl-
edge of the semantics (and the syntax) of a programming language. This knowl-
edge is used to provide users with services utilizing context-sensitive semantic
information about a program, like name completion. Compared to traditional text
editing and compilation, semantic editors provide integrated compilation, using an
in-memory semantic program model. The in-memory model is updated continu-
ously to keep it synchronized with user changes in the editor.

The mentioned existing editor generators (IMP and MontiCore), focus on ser-
vices like syntax highlighting, code folding and structural outlines. These services
depend on lexical analysis and an in-memory model in the form of a parse tree,
obtained from a parser. In order to support more advanced semantic services, like
name completion, these editors can extract semantic information from the parse
tree using the visitor pattern [GHJV95].

We want to support the generation of semantic editors with semantic services
like name completion and refactorings. These services depend on semantic anal-
yses, like name analysis and type analysis, normally performed on an in-memory
model in the form of an abstract syntax tree (AST). To remove the need for visitors,
we want to utilize an in-memory AST attributed with context-specific semantic in-
formation facilitating the generation of advanced services like refactorings.

2.1 Editing Styles
Semantic editors can support different editing styles: textual, syntax-directed and
graphical. Textual editing provides an efficient editing style for expert program-
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mers. It is widely used and supported in state-of-the-art tools like the Eclipse
JDT. Text editors need to deal with incomplete nonparsable text which makes
keeping the in-memory model synchronized with user changes challenging. In
contrast, syntax-directed editors prevent this predicament by not allowing users
to make syntactic mistakes. Instead, the editor provides users with a toolbox of
parsable language templates which may be inserted, moved or removed in a pro-
gram. Syntax-directed editors are useful for novice programmers who might be
unfamiliar with the syntactic constructs of the language. For example, the Cornell
Program Synthesizer by Teitelbaum and Reps [TR81] provides a syntax-directed
editor which has been used in teaching of programming. The syntax-directed edit-
ing style is also used in, for instance, XML editors which are described using an
XML schema or a Document Type Definition (DTD). In graphical editing, users
modify graphical components in a "drag-and-drop" fashion. This style of editing
is good for providing an overview and for visualization of relations. For instance,
in UML editors classes and inter-class relations are visualized which provides an
overview of the object-oriented design of an application.

Finally, the above mentioned editing styles can all use the same in-memory
model, which means they can be combined to suite the specific needs of a certain
domain. In this thesis we focus on textual editing due to its wide use in state-of-the
art-tools.

2.2 The State of the Art

What features are comprised in the state-of-the-art of semantic editors today? A
recent study by Hou and Wang [HW09], gives an answer to this question. The
study focuses on the Eclipse JDT, but gives a good overview of features supported,
not only by the Eclipse JDT, but also by the IntelliJ IDEA and the NetBeans tool.

Hou and Wang find the following grouping of visible features in the Eclipse
JDT based on developer activities: project setup (e.g., handling of files, project
configuration), code manipulation (e.g., reading and writing code), build and run
(e.g., automatic building, execution of programs), debugging (e.g., breakpoint sup-
port, program execution state inspection) and testing (e.g., incorporated testing
support using JUnit [Men10], a testing framework for Java).

Considering the code manipulation feature in more detail, Hou and Wang di-
vide it into two sections: reading (e.g., display of program information like er-
rors, code search and navigation) and writing. The writing category is further
divided into three areas: editing (e.g., automatic indentation, generation of code
fragments), refactoring (behavior-preserving code transformations, e.g., rename,
inline method), and code assist (inferred code manipulation actions, e.g., quick
fix, name completion). Semantic editors support the code manipulation features
listed above.

Besides the feature grouping presented above, the code manipulation features
can be divided into lexical, syntactic and semantic, depending on the type of anal-
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ysis needed for realizing the feature, or service. For example, features like refac-
torings and code assist normally require semantic analysis, while syntax highlight-
ing and automatic indentation normally require only lexical analysis and syntactic
analysis (parsing), respectively.

2.3 Defining Semantics
There are a number of different formalisms available for describing the semantics
of a programming language. Examples include denotational semantics by Scott
and Strachey [Sco72, Str66], Attribute grammars, by Knuth [Knu68], Natural se-
mantics by Kahn [Kah87], and Algebraic semantics by Bergstra et al. [Ber89].
These formalisms have all been used in the generation of semantic editors:

• Denotational semantics describe the meaning of a program using mathemat-
ical objects called denotations. The formalism is based on domain theory
which is concerned with the mapping from one domain to another domain.
The formalism is used in practice in, for example, the PSG system by Bahlke
and Snelting [BS86].

• Attribute grammars (AGs) add semantic rules called attributes as extensions
to a context-free grammar. Attribute grammars have been used in practice in
many systems. For example, the Synthesizer Generator by Reps and Teitel-
baum [RT84], generates syntax-directed editors with incremental evaluation
of attributes. The APPLAB system by Bjarnason et al. [BHN99], provides
an environment for interactive development of domain-specific languages.
The Lrc system by Kuipers and Saraiva [KS98], a function-oriented im-
plementation of higher-attribute grammars (HAGs) (an extension to AGs),
generates programming environments with incremental evaluation of HAGs.

• Natural semantics is an extension of structural operational semantics by
Plotkin [Plo81], which describes the meaning of a program based on how
it is interpreted, that is, as a sequence of computational steps. The formal-
ism is used in practice in the CENTAUR system by Borras et al. [BCD+88],
which provides a generic interactive environment customizable to a certain
language using the TYPOL system by Kahn et al. [Kah87]. Natural seman-
tics are also utilized in the RML system by Pettersson [Pet94].

• Algebraic semantics, or the Algebraic Specification Formalism (ASF) by
Bergstra et al. [Ber89], describes semantics using algebraic equations. The
formalism is used in practice in the ASF+SDF Meta-Environment by Klint
[Kli93], which supports development of interactive language-based tools us-
ing language descriptions in ASF and the syntax definition formalism (SDF)
by Heering et al. [HHKR89].

Some recent systems have made use of other means for expressing semantics.
For example, the Spoofax/IMP system by Kats et al. [KdJNNV09], provides a
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language development environment built on IMP using various DSLs to specify
editor services. The system uses strategic term rewriting to express language se-
mantics, as supported by the Stratego system by Visser [Vis01]. The xText project
by Efftinger and Völker [eff], provides a means for generating textual semantic
editors in the EMF project. The system uses the Object Constraint Language
(OCL) [The10b] to describe language semantics. The MontiCore system by Krahn
et al. [KRV08], uses UML-like associations to, for example, describe declaration-
use relations.

We will use the reference attribute grammar (RAGs) formalism [Hed00], an
extension of attribute grammars, to generate semantic services, like name com-
pletion and refactorings. We are confident that RAGs can be used to further
push the frontier of sophistication in generated semantic editors. As proofs of
concept, RAGs have been shown to handle large compiler implementations. For
example, the JastAddJ compiler for Java by Ekman and Hedin [EH07a] and the
JModelica compiler for Modelica by Åkesson et al. [ÅEH10], both implemented
using the RAG-based JastAdd system by Ekman and Hedin [JT, EH07b]. RAGs
have also been used to define refactoring extensions to JastAddJ by Schäfer et
al. [SEdM08, SVEdM09, SDS+10].

2.4 Attribute Grammars and Semantic Editors

Following the development of AGs and their use in semantic editors, we find that
the formalism has been used in several systems. The first occurrence of the com-
bination of AGs and semantic editors were in the Synthesizer Generator by Reps
and Teitelbaum [RT84].

Attribute Evaluation The Synthesizer Generator supports a subclass of AGs
called ordered attribute grammars (OAGs) introduced by Kastens et al. [Kas80].
OAGs are a subclass of Knuth-style AGs which allow for a statically established
evaluation order of attributes. In the Synthesizer Generator the knowledge of eval-
uation order is used to incrementally evaluate attributes. The evaluation time of
attributes affects the response time of an AG-based semantic editor. Incremental
evaluation has the goal of allowing a more efficient evaluation of attributes where
only attributes affected by a change are re-evaluated. Much research has been
focused on trying to speed up incremental evaluation of attributes [JF85, HT86,
Pec90].

In contrast to a statically determined attribute evaluation order, some research
has been focused on dynamic evaluation of attributes. For example, Jourdan
presents a demand-driven approach to attribute evaluation where attributes are
evaluated when they are needed, allowing the full class of Knuth-style AGs to
be evaluated [Jou84].
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Extensions to AGs In order to facilitate modularity and increase expressive-
ness and extensibility, AGs have been extended with new concepts. Examples of
extensions include Farrows introduction of circular attribute grammars (CAGs)
[Far86] which support circular dependencies between attributes, not supported
by Knuth-style AGs. CAGs provide means for defining, for example, data flow
analysis which requires fix-point iteration. Reference attribute grammars (RAGs),
as described by Hedin [Hed00] allow attributes to have references to other AST
nodes as values. Similar extensions have been presented by Boyland [Boy05] and
by Poetzsch-Heffter [PH97]. RAGs allow for modular and concise descriptions of,
for example, name analysis where use nodes can point directly to their declaration
using references. Higher-order attribute grammars (HAGs), described by Vogt et
al. [VSK89], allow attributes to have attributed trees as values. HAGs provide a
means to handle, for example, multi-pass compilation by step-wise refinement of
a parse tree. Forwarding, by van Wyk et al. [WMBK02], allow for the creation of
attributed subtrees, in a fashion similar to HAGs, with forwarding of attribute calls
to the created node. Forwarding can, for example, be used to handle operator over-
loading. A similar notion called ReRAGs has been presented for RAGs by Ekman
and Hedin [EH04]. Collection attributes, by Boyland [Boy96], allow attributes to
have collections as values and can be used to, for example, define sets of uses for
a declaration.

2.5 The JastAdd System

In our work, we use the JastAdd system which supports RAGs, as several other
AG extensions like higher-order attributes, collection attributes and circular de-
pendencies. The JastAdd system is implemented using object-oriented techniques
and supports aspect-oriented programming in the form of inter-type declarations
[KHH+01]. Examples of other systems supporting a similar set of AG extensions
include the Kiama library by Sloane et al. [SKV09], an attribute grammar im-
plementation embedded as a library in the Scala language. The ASTER system by
Kats et al. [KdJNNV09], supports the description of attribute evaluation by the use
of attribute decorators, as an extension to the Stratego transformation language by
Visser [Vis01]. The Silver system by Wyks et al. [vWBGK07], which has been
used to implementation an extendable Java compiler, related to the JastAddJ com-
piler implemented using JastAdd.

3 Long-term Goals and Challenges

Our long-term goal is to develop general techniques allowing families of advanced
high-quality semantic editors to be created easily by generating them from high-
level specifications. This long-term goal includes the following subgoals:
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G1 High-quality: Semantic editors need to be convenient to use with regard to
correctness (of services), robustness (in handling of incomplete programs),
and performance (with sufficient responsiveness).

G2 Advanced: Semantic editors should support services that make use of context-
sensitive program information. For example, name completions, refactor-
ings, bug detection and metrics.

G3 Families: Languages grow [SJ99] and there is a need for different variants.
For example, the Java language has developed from version Java 1.4 to Java
5 (and now to Java 7), and the Modelica language has an extension (Opti-
mica) focused on optimization. The technology needs to support different
variants of a language while avoiding double maintenance.

We think that RAGs have the potential to serve as the underlying technology to
reach these goals. But we see a number of challenges:

C1 Reusable architecture What is a suitable tool architecture? In particular,
we want to allow reuse of generic components, support extensibility of the
language, and extensibility of the semantic editing features supported.

C2 Editing integration How can different editing styles (text, syntax-directed,
graphical) be integrated with the RAG-based in-memory model? For exam-
ple, in textual editing, changes to the code need to be re-parsed and inserted
into the model and related attributes need to be updated.

C3 Performance The semantic editor should be able to handle large programs
and libraries with reasonable performance in terms of time and memory
costs. Interesting problems here include both bringing down the attribute
evaluation cost as such, and supporting incremental updating of the in-memory
model.

To validate the technology it is interesting to apply it to different kinds of lan-
guages:

L1 Small experimental domain-specific languages. For example, used in course
projects or in other small projects. This allows us to evaluate the learning
curve of the tool.

L2 General-purpose languages, like Java. This allows us to compare our gen-
erated semantic editors with those existing in hand-coded IDEs.

L3 Industrial special-purpose languages, like Modelica, which need indus-
trial strength tool quality due to real use in industry. This allows us to gen-
erate services otherwise too expensive to develop in a language community.

L4 Bootstrapping Bootstrapping is a good measure of maturity and provides
an organized means for decreasing the dependencies on other tools.
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4 Contributions

This thesis provides some contributions to our long-term goal and addresses some
of the subgoals, challenges and language kinds identified in the previous section.

4.1 Extensible Flow Analysis

Semantic editors have the potential of providing advanced feedback to users pro-
vided that the needed information is contained in their in-memory models. Nor-
mally, some analyses like dead code analysis are performed later in the compiler-
pipeline, beyond the use of the in-memory model. This makes dead code infor-
mation unavailable. We show how this information can be added to the abstract
syntax tree (AST), and thereby made available to users.

Our implementation supports intraprocedural control-flow and dataflow anal-
ysis and uses RAGs augmented with circular attributes and collection attributes.
The control-flow implementation uses RAGs to super-impose control-flow graphs
on top of the AST and the dataflow module extends this implementation. The
implementation is described in concise and composable modules and provide ex-
tensible frameworks for further source code analyses and language extensions. We
show how a code smell service like dead code analysis can modularly extend the
flow analysis modules. The flow analysis modules have also been used by Schäfer
et al. to implement refactorings [SEdM08, SVEdM09]. Both modules extend the
JastAdd Extensible Java Compiler (JastAddJ), and we have applied the dead code
analysis on normal-sized Java programs. The analysis performs well in compari-
son to other analysis frameworks with imperative implementations. More details
of the flow analysis implementation are given in Paper I.

This work addresses the goal of sophisticated semantic editors (G2) and the
challenge of composing a reusable architecture (C1). Sophistication, is addressed,
in that we want to construct semantic editors with advanced semantic services like
refactorings, and reusablility, is addressed, in that we want to modularly extend ex-
isting semantic language modules. The presented application, dead code analysis,
is shown to work on Java which shows that we can handle a large general-purpose
language (L2). In addition, the implementation modularly handles language ex-
tension from Java 1.4 to Java 1.5, further showing how we address the growth of
languages (G3).

4.2 Structural Recovery of Text

In textual editing, the mapping between the textual representation and the semantic
model depends heavily on robust parsing. However, certain errors like broken
scopes are especially hard to handle and available error recovery techniques often
fail.
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We present a novel approach called bridge parsing for structural recovery of
source files useful in textual semantic editing. In semantic editing, a working se-
mantic model is needed even when the code is broken to such an extent that ordi-
nary parser error recovery fails. The approach is shown to improve error recovery
when set to work as a preprocessor to three parser generators; Beaver, ANTLR and
LPG (earlier known as Jikes). The approach is tested on Java code. More details
of the algorithm are given in Paper II.

Further, we show how bridge parsing can be combined with scannerless gen-
eralized LR parsing (SGLR) by Visser [Vis97] to provide improved error recovery.
This approach builds on error recovery for SGLR presented in [KdJNNV09] in-
spired by bridge parsing. The combination is shown to be fruitful to such an extent
that it outperforms the hand-crafted parser in the Eclipse JDT. More details of the
combination are given in Paper III.

This work addresses the goal of high-quality semantic editors which are con-
venient to use (G1), the challenge of supporting a good editing integration (C2)
and support for general-purpose languages (L2). It addresses conveniece in that
the text editor needs to be robust and able to provide contextual semantic feedback
even when the code is hard to parse, a common scenario during textual editing. It
also supports a good editing integration by providing a light-weight and flexible
error recovery strategy which works with different kinds of text parsers.

4.3 Automated Selective Attribute Caching

Even small improvements, with regard to evaluation time and memory usage, can
affect the experienced convenience of using a semantic editor, since this perfor-
mance can affect the responsiveness of the editor. One effective technique to re-
duce evaluation time of attributes in the underlying RAG-based AST is to cache
attribute values, in order to avoid evaluation of the same attribute more than once.
However, a large semantic editor specification may contain hundreds of attributes
and it may be hard to manually decide which of these attributes to cache. Not the
least, since they normally depend on each other in intricate ways. A simple so-
lution is to cache all attributes (full caching). The opposite solution, to not cache
any attribute, is normally not an option because this is very slow. Full caching pro-
vides reasonable performance, but a manual configuration can provide significant
improvements both regarding evaluation time and memory usage. Unfortunately,
a manual configuration requires deep knowledge of how attribute evaluation works
and how attributes depend on each other.

We present a study of the attribute caching behavior in the JastAdd system,
using the JastAddJ compiler for Java as a large use case. We describe a profiling-
based technique for automatically finding a good caching configuration. The tech-
nique has been evaluated by compilation of Java programs from the DaCapo bench-
mark suite [BGH+06]. Based on profiling of a single program in the suite we
managed to provide a caching configuration capable of compiling other programs
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in the benchmark suite with a mean speed-up of 23.5% (in comparison with the
execution time of a fully cached compiler). More details are given in Technical
Report I.

This work addresses the goal and challenge of semantic editors with good per-
formance (G1, C3) and support for general purpose languages (L2). A good cache
configuration of attributes can significantly improve the performance of a RAG-
based semantic editor, both regarding computation time and memory use.

4.4 An Outline of a RAG-based Semantic Editing Model
In developing a RAG-based semantic editor generator, the first step is to define
how a RAG-based semantic editor and the framework around it should work – the
semantic editing model. A semantic editing model needs to handle, for instance,
synchronization of in-memory models. When a user makes a code modification the
corresponding RAG-based model needs to change. Preferably, this update should
render as small amount of work as possible since any delay in updating may have
an effect on the responsiveness of the semantic editor.

We present an outline of a RAG-based editing model supported by our seman-
tic editor generator – JedGen (JastAdd-based Semantic Editor Generator). The
meta-tool is in its infancy and current work is focused on defining the semantic
editing model. Still, the editing model has been used by Schäfer et al. in explo-
ration of RAG-based refactorings [SVEdM09] for Java and in several master thesis
projects at our department [Mat09, Mos09, Nil10], as well as in a graduate course
on RAGs. More details of the semantic editing model are given in Technical Re-
port II.

This work addresses all of the stated goals (G1, G2 and G3) and, as a con-
sequence, all of the stated challenges (C1, C2 and C3). All the goals need to be
addressed in order to design a stable foundation to stand on in aiming for these
goals. This design process includes the consideration of elements like reusabil-
ity and performance, stated as challenges. The JedGen prototype is being used to
develop semantic editors for Java (L2), Modelica (L3) and small domain-specific
languages in course projects (L1).

5 Future Work
This thesis work only takes some steps towards our long term goal of generating
semantic editors from high-level specifications. There are several interesting ways
to continue the work presented in this thesis:

5.1 Further Development of JedGen
In order for the JedGen tool to reach a state where it can be bootstrapped (L4), fur-
ther development is needed. Currently, users of JedGen have plugged in manually
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to the semantic editing model described in Technical Report II. We would like to
widen the scope of generation by generating the code needed to integrate with the
Eclipse platform. Besides a wider generation scope we want to add support for,
yet, unsupported services like refactorings (G2) and improve performance (G1).

5.2 Validation of JedGen
As a validation of the stated goals and to show that JedGen can support various
kinds of languages (L1-L4) we would like to implement proof of concept tools.
There are two interesting implementation projects already started. A semantic
editor extension to the JastAddJ compiler in support of Java (L2), and a semantic
editor extension to the JModelica compiler in support of Modelica (L3). The Java
editor provides us with a chance to compare our editor with state-of-the-art editors
like that provided in the Eclipse JDT. Both editors provide us with an opportunity
to show how we can support language families (G3), through language extensions
like Java 1.4 to Java 1.5, and language variants like Optimica for Modelica.

As a first step towards bootstrapping (L4), we would like to finish an already
started bootstrapping of JastAdd on top of the JastAddJ compiler. The next step
would be to define a semantic editor for JastAdd in JedGen, and eventually a se-
mantic editor for JedGen in JedGen. Further, we would like to start the develop-
ment of a semantic editor extension for a domain-specific language (L1). Plans
are being made for a semantic editor supporting the QUPER model [RBSO08], a
model for requirements engineering.

5.3 Refactorings
An interesting research direction is to work on supporting refactorings in Jed-
Gen, building on work on RAG-based refactorings by Schäfer et al. [SEdM08,
SVEdM09]. An interesting study would be to use JedGen to define refactorings
for Modelica, as extensions to the JModelica compiler (L3). An outline of how
to describe the rename refactoring for JModelica has been presented by Hedin et
al. [HNNÅ09]. This work would address the goal of providing advanced semantic
editors (G2) and the challenge of constructing a reusable architecture (C1), since
refactorings are added as extensions to existing language modules.

5.4 Incremental Attribute Evaluation of RAGs
Currently, during updating of subtrees in a RAG-based AST we need to re-evaluate
all attributes in the AST since they may depend on information in the updated
subtree. Preferably, we would like to update only those attributes affected by an
update. An interesting research direction would be to study how to provide in-
cremental evaluation to RAGs. Possibly this work can build on earlier work on
incremental attribute evaluation, like that of Reps [RTD83], Boyland [Boy02] and
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Hedin [Hed94]. This work focuses on a more fine-grained incremental updating
on the attribute level, while we primarily are interested in a more coarse-grained
updating on the subtree level. This work would address the goal of semantic edi-
tors with good performance (G1) and the challenge of providing semantic editors
with good responsiveness (C3).

5.5 Visualization and Graphical Editing
Our focus so far has been on textual semantic editing with the goal of generating a
semantic editor with similar features as the Eclipse JDT. Some visualization in the
form of a content outline is currently provided by JedGen. An interesting direction
would be to support graphical editing. A first step in this direction would be to
provide more support for visualization of graphs. Our approach would be to define
these graphs as super-imposed graphs on the AST using RAGs, in a fashion similar
to how control-flow is super-imposed on the AST in the flow analysis modules
presented in Paper I. Some work on providing program visualization using RAGs
has been done by Magnusson and Hedin [MH00]. The second step would be
to allow users to edit the graphical representation. This type of editing presents
some challenges in how to define the semantics of change. For example, what
happens when a user re-directs an arc, corresponding to an attribute value, to point
to a different graphical component? If this is a pointer to a variable declaration
from a variable use, this change may indicate that the variable use now has a
different declaration. For validation we can provide a graphical editor extension
to JModelica to show how we can support a language with both a textual and
a graphical notation. This work would address the goal of providing advanced
semantic editors (G2) and the challenge of supporting a good editing integration
(C2).
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1 Introduction

Control-flow and dataflow analysis are key elements in many static analyses, and
useful for a variety of purposes, e.g., code optimization, refactoring, enforcing
coding conventions, bug detection, and metrics. Often, such analyses are carried
out on a normalized intermediate code representation, rather than on the abstract
syntax tree (AST). This simplifies the computations by not having to deal with the
full source language. However, doing these analyses directly at the AST level can
be beneficial, since the high-level abstractions are not compiled away during the
translation to intermediate code. This is particularly important for tools that are
integrated in interactive development environments, such as refactoring tools and
tools supporting bug detection and coding convention violations.

In this paper, we present a new approach for computing intra-procedural control-
flow and dataflow at the AST level. Our approach is declarative, making use of
attribute grammars. Advantages include compact specification and modular sup-
port for language extensions, while giving sufficient performance for practical use.

To make the approach work, we rely on a number of extensions to Knuth’s
original attribute grammars [14]: Reference attributes [12] allow the control-flow
edges to be represented as references between nodes in the AST. Higher-order at-
tributes [22] are used for reifying entry and exit nodes in the control-flow graph as
objects in the AST. Circular attributes [10,16] are used for writing down mutually
recursive equations for dataflow as attributes, automatically solved through fixed-
point iteration. Finally, collection attributes [5,15], enable the simple specification
of reverse relations, for example, computing the set of predecessors, given the set
of successors. These mechanisms are all supported in the JastAdd system [8],
which we have used to implement our approach.

As a case study, we have implemented control-flow graphs and dataflow anal-
ysis for Java by extending JastAddJ (the JastAdd Extensible Java Compiler) [9].
Control-flow is implemented at the statement level, and includes abruptly com-
pleting control-flow like Java’s exceptions. For dataflow, we have implemented
both liveness analysis and reaching definition analysis. As an example of a tool-
oriented analysis, we have implemented a detector of dead assignments to local
variables.

The implementation is modular and extensible. Similar to the internal modu-
larization of JastAddJ [9], each module can be viewed as an object-oriented frame-
work, with a client API representing the result of the analysis, and an extension
API for the attributes that need to be defined by a language extension module. In
many cases, new language features can reuse the existing analyses as they are, but
for language constructs affecting control-flow, rules need to be added. We exem-
plify this by considering the effect on the analyses when extending Java 1.4 to Java
5.

These are the main contributions of this paper:
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• We show how to concisely specify control-flow graphs at the AST level,
using reference and collection attributes. We show how the approach is
applied to Java, including support for exceptions.

• We show how dataflow analyses can be specified on top of the control-flow,
using circular attributes, resulting in specifications very similar to textbook
definitions.

• We show how the analyses for Java 1.4 can be modularly extended to support
Java 5 with a very small number of additional rules.

• We evaluate the performance of the approach by implementing a dead as-
signment analysis on top of the dataflow analyses, and running it on real
world Java applications of up to 130 000 lines of code, showing that the
approach is practical for real problems.

The rest of this paper is structured as follows. The implementation of control-flow
analysis is described in Section 2, and the dataflow analysis in Section 3. An appli-
cation doing dead code analysis is given in Section 4, and Section 5 discusses how
to extend the analysis when the source language is extended. Section 6 provides a
performance evaluation of our method. Finally, Section 7 discusses related work
and Section 8 concludes the paper.

2 Control-flow Analysis
In control-flow analysis, the goal is to build a control-flow graph (CFG) where
nodes represent blocks of executable code, and successor edges link the blocks in
their possible order of execution. The nodes typically correspond to basic blocks,
i.e., linear sequences of program instructions with one entry and one exit point [2].
Each node n has a set of immediate successors, succ(n), and a set of immediate
predecessors, pred(n), both of which can be empty.

Different levels of granularity can be chosen for the blocks, e.g., statement
level or expression level. In this paper, we do the analysis at the statement level,
treating each source code statement as a block.

2.1 Control-flow API
In JastAdd, a program is represented as an AST, with nodes that are objects with
attributes. To represent the CFG, we superimpose it on the AST, treating statement
nodes as nodes in the CFG. We represent the succ and pred sets as attributes of
statements. In some cases, we extend the AST with synthetic empty statements,
to reify CFG nodes for which there is no natural node in the original AST. In
particular, we add explicit entry and exit statements for each method.
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public Set<Stmt> Stmt.succ();
public Set<Stmt> Stmt.pred();

public Stmt MethodDecl.entry();
public Stmt MethodDecl.exit();

Figure 1: The generated Java API for CFGs.

JastAdd builds on Java, and generates an ordinary Java API for the AST and
its attributes. Figure 1 shows the generated Java API for CFGs. Here, Stmt and
MethodDecl are AST classes. JastAdd specs can use this API to specify additional
analyses, for example dataflow. The API can also be used by ordinary Java code,
for example, an integrated development environment implemented in Java.

2.2 Language Structure
Figure 2 shows an example Java method and its corresponding AST. We will use
this as a running example to illustrate how the control-flow graph is superimposed
on the AST. To keep the example concise, we have omitted parameters and local
declarations in the code.

void m() {
if(c > 2)
x = c;

while(c < 10) {
x += p();
c++;

}
}

MethodDecl "void m()"

Block "{...}"

IfStmt "if(...)"

Expr

"c > 2"
ExprStmt

"x = c;"

WhileStmt "while(...)"

Expr

"c < 10"

Block "{...}"

ExprStmt

"x += p();"

ExprStmt

"c++;"

Figure 2: Sample Java method and its abstract syntax tree.

A simplified part of the abstract grammar for Java is shown in Figure 3. It
is written in an object-oriented form with abstract classes Stmt and Expr, and
subclasses for the individual statements and expressions such as WhileStmt and
VarAccess.

The grammar uses a typical syntax with the Kleene star for list children, angle
brackets for tokens, and square brackets for optional children. Children are either
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MethodDecl ::= ParamDecl* Block;
ParamDecl ::= <Type:String> <Name:String>;

abstract Stmt;
Block : Stmt ::= Stmt*;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
WhileStmt : Stmt ::= Expr Stmt;
ExprStmt : Stmt ::= Expr;
VarDecl : Stmt ::= <Type:String> <Name:String> [Init:Expr];
ReturnStmt : Stmt ::= [Expr];
EmptyStmt : Stmt;

abstract Expr;
AssignExpr : Expr ::= LValue:Expr RValue:Expr;
VarAccess : Expr ::= <Name:String>;
MethodAccess : Expr ::= <Name:String> Arg:Expr*;

Figure 3: Simplified parts of the Java abstract grammar in Figure 2.

named after their types, such as a Block child of a MethodDecl, or with given
names preceding the typename. For example, the left and right children of an
AssignExpr are named LValue and RValue.

Certain constructs in Java can act as both expressions and statements, for exam-
ple assignments. They are represented as expressions in the grammar, for example
AssignExpr, and the class ExprStmt serves the purpose of adapting such expres-
sions to serve as statements. The full grammar for Java is available at the JastAdd
web site [1].

2.3 The control-flow graph

Figure 4 shows how the AST has been attributed with successor edges and syn-
thetic nodes, to form the CFG for the example method. The statement nodes con-
stitute the nodes of the CFG, and reference attributes represent the successor edges.
Two synthetic nodes are added to represent the entry and exit of the graph.

Some statements can be viewed as explicitly transferring control whereas other
merely let the control flow through them. For example, the IfStmt in Figure 4 can
transfer control to its Then branch, whereas the assignment inside the while loop
merely transfers the control to the next statement, as determined by its enclosing
block.

Based on this observation, we distinguish between the following three cate-
gories of statements.
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void m() {
if(c > 2)
x = c;

while(c < 10) {
x += p();
c++;

}
}

MethodDecl

Blockentry exit

IfStmt

Expr

"c > 2"

ExprStmt

"x = c;"

WhileStmt

Expr

"c < 10"

Block

ExprStmt

"x += p();"

ExprStmt

"c++;"

Figure 4: Example method and its CFG. Successors are shown as directed edges.
Synthetic nodes are grey and the dashed lines show parent-child relations to these
nodes.

Non-directing statement which merely transfers control to the next statement, as
given by its context. ExprStmt is an example statement in this category.

Internal flow statement which may transfer control to and between its children.
Examples of statements in this category are Block, WhileStmt, and IfStmt.

Abruptly completing statement which may transfer control to a non-local loca-
tion, in effect abruptly completing an enclosing statement. Examples in Java
include break statements, throw statements, and return statements.

In the following subsections, we will discuss how the different parts of the
CFG are specified, and how these different categories of statements are handled.

2.4 The successors framework

Figure 5 shows a small attribution framework for the successor edges. It specifies
the behavior for non-directing statements, and can be specialized to handle inter-
nal flow and abruptly completing statements. The framework introduces two at-
tributes: succ and following. The succ attribute is a set of references to statement
nodes, and represents the successor edges in the CFG. The following attribute of a
statement s, is its set of successors as seen from its enclosing statement, i.e., with-
out any knowledge of the internal flow or possible abruptly completing statements
inside s. In the framework, succ is defined to be equal to following, thus captur-
ing the behavior of non-directing statements. Subclasses of Stmt can override this
definition to cater for internal flow or abrupt completion.
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// The successor edges in the CFG

syn Set<Stmt> Stmt.succ();

// Statements that follow a statement, as seen from its context

inh Set<Stmt> Stmt.following();

// By default, they are the same.

eq Stmt.succ() = Stmt.following();

Figure 5: The attribution framework for successors.

The attribute succ is synthesized, whereas following is inherited1. The dif-
ference is that synthesized attributes must be defined in the node in which they
are declared, whereas inherited attributes must be defined in an ancestor node. So,
succ is defined by an equation in Stmt, and can have overriding equations in sub-
classes of Stmt, similar to ordinary virtual methods. The attribute following of a
statement s, must instead be defined by one of the ancestor nodes of s. So to use
this framework, equations must be provided that define the value of following for
all possible statements.

As an example, consider the Block statement whose CFG specification is shown
in Figure 6, specializing the successors framework. A Block is an example of
an internal flow statement. To capture the internal flow, it overrides the defini-
tion of its own succ attribute, transferring control to its first internal statement,
if there is one. Since a block has a list of statement children, it must also define
the value of following for each of these children. This is done by the equa-
tion Block.getStmt(int i).following = ... which applies to the i:th state-
ment child of a block. For the last child, following is simply the same as for the
block itself. For other children, following contains the next child in the block.
The function singleton used in this definition returns a set containing a single
given reference.

In Figure 7 we illustrate how the framework is specialized for another inter-
nal flow statement: IfStmt. We assume that the code for the conditional expres-
sion is associated with the IfStmt node itself. Because IfStmt is an internal flow
statement, it overrides its succ attribute. Control can be transferred to the Then

part, and, depending on if there is an Else part or not, to the Else part or to
the following statements. Note that it is not necessary to define the following

attribute for the Then and Else parts, since they should have the same value as
following for the IfStmt itself, so the same equation in some ancestor applies to
these parts.

1Note that this use of the term inherited stems from Knuth [14] and is unrelated to and different
from the object-oriented use of the term.
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eq Block.succ() =
(getNumStmt() = 0) // no children
? following()
: singleton(getStmt(0));

eq Block.getStmt(int i).following() =
(i = getNumStmt()-1) // last child
? following()
: singleton(getStmt(i+1));

Block

Stmt:0 Stmt:n-1. . .

Figure 6: Specializing the successors framework for Block.

eq IfStmt.succ() =
singleton(getThen()).union(

hasElse()
? singleton(getElse())
: following());

IfStmt

Expr
Then

Else

?

Figure 7: Specializing the successors framework for IfStmt.

To sum up, non-directing statements like ExprStmt can reuse the successors
framework as is, and do not need to override or define any attributes. For internal-
flow statements, the succ attribute needs to be overridden, and, depending on the
behavior, the following attribute may need to be redefined for the constituent
statements. Abruply completing statements also need to override the succ at-
tribute, as will be discussed in later sections.

2.5 The entry and exit framework

To make sure there will always be well-defined entry and exit nodes, even for
empty methods, we add two synthetic empty statements to each method. Nodes
can be added declaratively to an AST by means of higher-order attributes, also
known as non-terminal attributes (NTAs) [22]. An NTA is like a non-terminal in
that it is a node in the AST. However, instead of being constructed as part of the
initial AST, typically built by a parser, it is defined by an equation, just like an
attribute. So in this sense, it is both an attribute and an AST node, hence the term
higher-order. The right-hand side of an equation for an NTA must denote a fresh
object, i.e. an object not already part of the AST, typically computed by a new
expression.
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syn nta Stmt MethodDecl.entry() = new EmptyStmt();
syn nta Stmt MethodDecl.exit() = new EmptyStmt();

eq MethodDecl.entry().following() =
singleton(getBlock());

eq MethodDecl.getBlock().following() =
singleton(exit());

eq MethodDecl.exit().following() =
empty();

MethodDecl

Block

entry exit

Figure 8: Attribution framework for entry and exit nodes. Dotted directed edges
indicate elements in the following sets.

Figure 8 shows the attribution framework defining the entry and exit nodes.
Since the method declaration is the parent of both the entry and exit nodes, as well
as of the main block, it furthermore needs to define their following attributes.
Naturally, the entry is followed by the main block, which is followed by the exit
node, which in turn has no following statements, as specified in the equations. The
function empty, used when defining following for the exit node, simply returns
the empty set.

2.6 Handling separate conditions in branching statements
For if-statements, we treated the execution of the conditional expression as part
of the if-statement itself. For some internal flow statements, like the DoStmt, the
conditional expression needs to be represented separately from the host statement,
since the execution does not start with this expression. We solve this by adding a
synthetic statement as a placeholder for the expression, again using an NTA.

Figure 9 shows the use of this technique. A new empty statement is created
as an NTA, and the succ attribute of the while-statement is overridden to transfer
control to the placeholder. The following attributes for the NTA and the Stmt part
are also defined, creating a cycle in the control flow.

2.7 Handling abruptly completing statements
The Java statements break, throw, continue and return transfer control to non-
local locations, in effect abruptly completing the execution of an enclosing state-
ment [11]. We will call these statements abrupt statements.

Normally, the successor of an abrupt statement is a so called target node. For
example, the target of a return statement is the exit node. However, if the abrupt
statement is inside the try block of a Java exception handler with a finally block,
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syn nta Stmt DoStmt.cfgExpr() = new EmptyStmt();

eq DoStmt.succ() = singleton(getStmt());

eq DoStmt.getStmt().following() =
singleton(cfgExpr());

eq DoStmt.cfgExpr().following() = following().union(getStmt());

DoStmt

Expr Stmt

cfgExpr

Figure 9: Specializing the successor framework for DoStmt, introducing a place-
holder statement for the conditional expression.

the finally block will intercept control before transferring control to the target(s).
Figure 10 shows an example.

try {
return;

} finally {
n();

}

TryStmt

Block Finally

Return ExprStmt

exit

Figure 10: The control flow from a return, in the presence of a finally block.

In a similar way, the other abrupt statements also have a target to which control
is normally transferred. For throw it is a matching catch, or the exit node. For
break the target is the statement following a matching enclosing loop or labelled
statement. For continue the target is the first part of a matching enclosing loop.
Figure 11 shows the control-flow in three simplified examples, without finally
blocks.

As an example of how to handle abrupt statements, we will take a closer look
at BreakStmt. The other abrupt statements are handled in an analogous way. We
introduce an inherited attribute breakTarget, returning a singleton set with the
matching target, or the empty set if no target is found (corresponding to a compile-
time error). For the BreakStmt, this attribute will be the true successor, i.e., either
the normal target (e.g., a while loop), or a finally block, in case the normal target
is outside of an enclosing TryStmt with a finally block.

The attribute breakTarget is also defined for TryStmt. Here, the value is the
target outside the TryStmt, i.e., ignoring its internal finally block, typically the
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break:

WhileStmt

Expr Block

StmtBreak

continue:

WhileStmt

Expr Block

StmtContinue

throw:

TryStmt

Block

Throw

"throw new E();"

Catch

Expr

"E e"

Stmt

Figure 11: Control flow for some abrupt statements.

normal break target. By accessing this attribute, the finally block can find its suc-
cessor, i.e., the normal break target. This solution works also for nested TryStmts
with finally blocks, in which case control is transferred from the break, state-
ment, through all the finally blocks of enclosing try statements, and finally to
the normal target.

The breakTarget attribute is parameterized by the BreakStmt to allow the
target for the correct BreakStmt to be found. This attribution solution, using pa-
rameterized inherited attributes, is similar to the JastAdd implementation of Java
name analysis, as presented in [7].

The successor of a BreakStmt is now simply defined as the breakTarget of
itself. Figure 12 shows the specification. There are several equations defining
breakTarget, and if there is more than one in a chain of ancestors, the closest
equation applies. Therefore, if a BreakStmt is enclosed by a TryStmt, and then by
a BranchTargetStmt (e.g., a while loop), the equation in the TryStmt will hold.
If the BreakStmt is not enclosed by any of these kinds of statements, the equation
defined in BodyDecl will hold, defining the target to be the empty set. To illustrate
how this works, consider Figure 13, showing the values of breakTarget for an
example program.

To handle the other three abrupt statements we define three more attributes
– continueTarget, returnTarget and throwTarget, and use them in a similar
fashion. With this approach we end up with potentially several abrupt statements
transferring control to the finally block. The potential successors of the finally

block is thus the set of normal targets for all these intercepted abrupt statements.
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eq BreakStmt.succ() = breakTarget(this);

inh Set BreakStmt.breakTarget(BreakStmt stmt);
inh Set TryStmt.breakTarget(BreakStmt stmt);

// Equations for breakTarget

eq BodyDecl.getChild().breakTarget(BreakStmt stmt) = empty();
eq BranchTargetStmt.getChild().breakTarget(BreakStmt stmt) =

targetOf(stmt)
? following()
: breakTarget(stmt);

eq TryStmt.getBlock().breakTarget(BreakStmt stmt) =
hasFinally()
? singleton(getFinally())
: breakTarget(stmt);

Figure 12: Specializing the successor framework for BreakStmt. The targetOf

attribute is defined in the fontend.

For this reason, we introduce an attribute interceptedAbruptStmts which con-
tains references to these statements. Given this attribute, the TryStmt can define
the following attribute for its finally block, as shown in Figure 14. Here, the
attribute targetAt uses the double dispatch pattern [13] to let each kind of abrupt
statement decide how to compute its target2.

Handling unchecked exceptions

In addition to explicitly thrown exceptions, using the throw statement, exceptions
can be thrown implicitly by the runtime system at more or less every statement
in the program. Examples include null pointer exception, division by zero, out
of memory, etc. So in this sense, more or less every statement can have abrupt
completion. Instead of adding explicit successor edges for all these possible con-
trol paths, we define an inherited attribute uncheckedExceptionTarget for Stmt
nodes, and in that way make all nodes aware of these potential successors. By de-
fault, this attribute is a set containing the exit node. But if there are catch clauses
that match RuntimeException or Error, these clauses are also added.

This approach is inspired by the factored control-flow graph explained in [6]
where unchecked exception branches are summarized at the end of basic blocks to
limit the number of branches.

2The equation for following uses an assignment and a for loop which might be surprising since
our approach is declarative. However, because we use Java method body syntax to define attribute
values, it is natural to use imperative code here. This is perfectly in agreement with the declarative
approach as long as that code has no net side effects, i.e., only local variables are modified.
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{
while (..) {

try {
break;

} finally {
n();

}
}
m();

}

Block

While

Expr

m();

Try bT

Block Finally

Break bT
n();

Figure 13: Values of the breakTarget attribute (bT).

2.8 Predecessors
To complete the implementation of the control-flow API, we now define the set of
predecessors. This is simply the inverse of the successors relation, so if there is
a successor edge from a to b, there will be a predecessor edge from b to a. Such
inverse relations are easily defined using collection attributes [5,15]. The attributes
we have seen so far have been defined using an equation located in an AST node.
A collection, in contrast, is an attribute whose value is defined by the combination
of a number of contributions, distributed over the AST. This way, we can define
the predecessor sets by letting each statement contribute itself to the predecessor
sets of its successors. Figure 15 shows the JastAdd specification.

In the computation of the collection, it will be initialized to empty(), and then
all the contributions will be added, using the method add. It is assumed that add
is commutative, i.e., that the order of adding the contributions is irrelevant. A
more detailed presentation of collection attributes and their evaluation in JastAdd
is available in [15].

3 Dataflow Analysis
We want to analyze dataflow on the control-flow graph defined in the previous sec-
tion. Two typical examples of dataflow analyses are liveness analysis and reaching
definition. We describe our implementation of these analyses using JastAdd in the
following two subsections.

3.1 Liveness analysis
A variable is live at a certain point in the program, if its assigned value will be
used by successors in the control-flow graph. If a variable is assigned a new value
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eq TryStmt.getFinally().following() {
Set flw =
(getFinally().canCompleteNormally())
? following()
: empty();

for (Stmt abrupt : interceptedAbruptStmts) {
flw = flw.union(abrupt.targetAt(this));

}
return flw;

}

syn Set Stmt.targetAt(TryStmt t) = empty();
eq BreakStmt.targetAt(TryStmt t) = t.breakTarget(this);
eq ContinueStmt.targetAt(TryStmt t) = t.continueTarget(this);
...

Figure 14: Specializing the successor framework for TryStmt.

coll Set Stmt.pred() [empty()] with add;
Stmt contributes this to Stmt.pred() for each succ();

Figure 15: Using a collection attribute to define the predecessors.

before an old value has been used, the old assignment to the variable is unnecessary
– dead, unless the assignment has side-effects.

We express liveness in the same fashion as Appel in [3] using four sets – in ,
out , def and use . The def set of a statement s contains the variables assigned
values in s, and the use set contains the variables whose values are used in s.
From these two sets we calculate the in and out sets, i.e., variables live into a
statement and variables live out of a statement, using the following equations:

Definition 1 Let n be a statement node and succ[n] the value of the succ attribute
for the node n:

in[n] = use[n] [ (out [n] \ def [n])
out [n] =

[

s2succ[n]

in[s]

We note that the equations for the in and the out sets are recursive and mutually
dependent, i.e. they have a circular dependency on each other. Equations like these
are usually solved by iteration until a fixpoint is reached, which is guaranteed if
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all intermediate values can be organized in a finite height lattice and all operations
are monotonic on that lattice. We will explain how circular equations like these
can be implemented as circular attributes in JastAdd [16].

The use and def sets

The main challenge in computing the use set for each statement, is to support
all kinds of statements and expressions in the source language. A complex lan-
guage such as Java has more than 20 statements and 50 expressions. Fortunately,
it is quite easy to support all these constructs in JastAddJ (the JastAdd Extensible
Java Compiler), since each expression that accesses a local variable encapsulates
a VarAccess node performing the actual binding. Moreover, each VarAccess node
has two boolean attributes, isDest and isSource, determining whether the access
acts as a definition (l-value) or use (r-value). Some nodes actually act as both. For
example, a VarAccess that is the child of the post increment operator ’++’, will
both read from and write to the variable. JastAddJ also defines an attribute decl

for VarAccess nodes, referring to the appropriate declaration node. Figure 16
summarizes the JastAdd API used.

public boolean VarAccess.isDest();
public boolean VarAccess.isSource();
public Decl VarAccess.decl();

Figure 16: JastAddJ API used by liveness analysis

In the liveness analysis, we represent use and def as sets of references to dec-
laration nodes in the AST. We implement them using collection attributes, letting
VarAccess nodes contribute their declaration to the appropriate collection of their
enclosing statement, depending on their role as an r-value and/or l-value. The vari-
able and parameter declarations are also viewed as assignments, so they contribute
themselves to their own def set. Note that even if a variable declaration does not
have an init clause, it is regarded as an assignment, since when the variable comes
into existence, it will be assigned some value by the runtime system, even if it is
not defined by the language what that value is. Figure 17 shows the implemen-
tation of these attributes. A helper attribute enclosingCFGStmt is also included,
giving all expressions access to their closest enclosing statement.

These three attributes effectively compute the use and def sets for all state-
ments in Java. Consider for instance a MethodAccess with the structure described
in Figure 3. Its arguments may very well contain uses and definitions, since both
are expressions in Java. However, we need not provide any additional equations
for that language construct since contributions from each VarAccess are collected
automatically.
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// closest enclosing statement

inh Stmt Expr.enclosingCFGStmt();
eq Stmt.getChild().enclosingCFGStmt() = this;

// def

coll Set<Decl> Stmt.def() [empty()] with add;
VarAccess contributes decl() when isDest()

to Stmt.def() for enclosingCFGStmt();
VarDecl contributes this to Stmt.def() for this;
ParamDecl contributes this

to Stmt.def() for enclosingCFGStmt();

// use

coll Set<Decl> Stmt.use() [empty()] with add;
VarAccess contributes decl() when isSource()

to Stmt.use() for enclosingCFGStmt();

Figure 17: Implementation of def and use for liveness analysis

These abstractions are also important from an extension point of view. If we
add a new language construct that modifies a local variable we need only make
sure it encapsulates a VarAccess and provide equations for the inherited attributes
isDest and isSource, which are needed elsewhere in the frontend anyway, and
the use set and def set attributes are still valid.

The in and out sets for liveness

The equations for the in set and out set in Definition 1 are mutually dependent. As
mentioned earlier, such equations can be solved by iteration as long as the values
form a finite height lattice and all functions are monotonic. This is clearly the
case for our equations since the power set of the set of local variables ordered by
inclusion forms a finite lattice, with the empty set as bottom, on which union is
monotonic. A fixpoint will thus be reached if we start with the bottom value and
iteratively apply the equations as assignments until no values change.

JastAdd has explicit support for fixpoint iteration through circular attributes, as
described in [16]. If we declare an attribute as circular and provide a bottom value,
then the attribute evaluator will perform the fixpoint computation automatically.
This allows us to implement the in and out sets using circular attributes, resulting
in a specification very close to the textbook definition, as shown in Figure 18.

In our actual implementation, we use an even more concise specification of
the out set by defining it as a collection attribute, reversing the direction of the
computation by making use of the predecessors instead of the successors. See
Figure 19.
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// in

syn Set<Decl> Stmt.liveness_in() circular [empty()] =
use().union(liveness_out().compl(def()));

// out

syn Set<Decl> Stmt.liveness_out() circular [empty()] {
Set<Decl> set = empty();
for(Stmt s : succ()) {

set = set.union(s.liveness_in());
}
return set;

}

Figure 18: Implementation of liveness in and out sets, using circular attributes.

coll Set<Decl> Stmt.liveness_out() circular [empty()] with add;
Stmt contributes liveness_in() to Stmt.liveness_out()

for each pred();

Figure 19: Alternative implementation of the out set, using a circular collection.

An alternative to using circular attributes would be to manually implement the
fixpoint computation imperatively. Such a solution requires manual book keeping
to keep track of change, which significantly increases the size of the implementa-
tion and the essence of the algorithm gets tangled with book keeping code. Also,
it is necessary to either statically approximate the sets of attributes involved in the
cycle to iterate over, or to manually keep track of such dependencies dynamically.
This is all taken care of automatically by the attribute evaluation engine in JastAdd
when using circular attributes.

3.2 Reaching definitions

In computing reaching definitions, we are interested in sets of definitions (assign-
ments), rather than in sets of variable declarations. Because definitions may occur
in several different syntactic constructs, not just in assignment statements, we de-
fine an interface Definition to abstract over the relevant AST classes, namely
VarAccess, VarDecl, and ParamDecl. Not all variable accesses are definitions, but
the isDest attribute can be used to decide this.

A definition of a variable is said to reach a use of a variable if there is a path
in the control-flow graph from the definition to the use. A variable use may be
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reached by more than one variable definition in which case the actual value of the
variable can not be decided statically. For cases where there is only one reaching
definition the use might be replacable with a constant, a property typically used in,
for example, constant propagation.

We define five sets – defs , gen , kill , in and out , in the same fashion as Ap-
pel [3]. The defs set of a variable declaration v contains all definitions of that
variable. The gen set of a statement s contains the definitions in s, i.e., corre-
sponding to the new variable values generated by that statement. The kill set of
a statement s is the set of definitions killed by definitions made in s. Consider a
definition d of a certain variable v. The kill set for a definition d is the defs for v,
minus the definition d itself, see Definition 2. The kill set for a statement is simply
the union of the kill sets of its gen set.

The in set of a statement s is the set of definitions that reach the beginning
of s, and out is the set that reaches the end of s. Given the kill and gen sets, in
and out are defined as shown in Definition 3. Note that the equations for in and
out are recursive and mutually dependent, hence requiring a fixpoint iteration for
evaluation.

Definition 2 Let d be a definition of a variable v:

d : v  . . . : kill [d] = defs[v] \ {d}

Definition 3 Let n be a statement node and pred[n] the value of the pred attribute
for the node n:

in[n] =
[

p2pred[n]

out [p]

out [n] = gen[n] [ (in[n] \ kill [n])

The defs set

To implement the defs set, we use a collection attribute on Variable, which is an
interface implemented by VarDecl and ParamDecl. We then let the definitions con-
tribute themselves to their declaration. The contributing VarAccess nodes check
that they are actually acting as definitions, using the attribute isDest. Since the
analysis is intraprocedural, they also check that they define local variables or pa-
rameters, rather than, for example, fields. The implementation is shown in Fig-
ure 20.

The gen and kill sets

The gen set for a statement contains all the definitions inside the statement. Again,
we use a collection attribute to implement this set. VarAccess nodes that serve as
definitions, contribute themselves to the gen set of their enclosing statement. Vari-
able declarations contribute themselves to their own gen . Parameter declarations,
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coll Set<Definition> Variable.defs() [empty()] with add;
VarAccess contributes this

when isDest() && decl().isLocalOrParameter()
to Variable.defs() for decl();

VarDecl contributes this
to Variable.defs() for this;

ParDecl contributes this
to Variable.defs() for this;

Figure 20: Implementation of defs using attributes.

finally, are considered as assignments performed when entering the method, and
are therefore contributed to the gen of the entry statement, using a helper attribute
entry. The kill set is implemented using the same strategy, see Figure 21.

The in and out sets for reaching definitions

In Definition 3 the sets in and out are defined as two mutally dependent equations
using the kill and gen sets. Again we use circular attributes, obtaining an im-
plementation very similar to the textbook definition of these sets. See Figure 22.

4 Dead Code Analysis
To evaluate the efficiency and scalability of our approach, we have implemented
a simple intraprocedural analysis for Java which detects dead code in the shape
of dead assignments. We locate assignments whose values are not used later in a
method, and variable declarations that are not used at all. This analysis can easily
be added as an extension to the dataflow analyses described in Section 3. We try
out three versions – a basic analysis, locating unused local variables, one based on
liveness analysis, and one combining liveness analysis with reaching definitions
analysis. In all versions we say that a statement is live if it has side effects, namely
if there is

• .. a write to a non-local variable

• .. a write to an array element

• .. a method or constructor call

• .. a returned value

• .. a thrown value
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// helper attribute entry

inh Stmt ParamDecl.entry();
eq MethodDecl.getParamDecl(int i).entry() = entry();

// gen

coll Set<Definition> Stmt.gen() [empty()] with add;
VarAccess contributes this when isDest()

to Stmt.gen() for enclosingCFGStmt();
VarDecl contributes this

to Stmt.gen() for this;
ParamDecl contributes this

to Stmt.gen() for entry();

// kill

coll Set<Definition> Stmt.kill() [empty()] with add;
VarAccess contributes decl().defs().compl(this)

when isDest() && decl().isLocalOrParameter()
to Stmt.kill() for enclosingCFGStmt();

VarDecl contributes defs().compl(this)
to Stmt.kill() for this;

ParamDecl contributes defs().compl(this)
to Stmt.kill() for entry();

Figure 21: Implementation of gen and kill .

To collect all dead assignments of a compilation unit, we add a collection (coll)
attribute deadAssignments to the CompilationUnit class. This class represents a
file with one or more classes which might contain one or more methods:

coll Set<Stmt> CompilationUnit.deadAssignments()
[empty()] with add;

The CompilationUnit class is connected to the grammar in Figure 3 as follows:

CompilationUnit ::= ClassDecl*;
ClassDecl ::= MethodDecl*;
MethodDecl ::= ...

Dead assignments contribute themselves to the collection of their enclosing Comp-

ilationUnit using a contributes clause. The reference to the Compilation-

Unit node is propagated to descending statement nodes using an inherited attribute
enclosingCompilationUnit:

ExprStmt contributes this when isDeadAssign()
to CompilationUnit.deadAssignments()
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// out

syn Set<Definition> Stmt.reaching_out() circular [empty()] =
gen().union(reaching_in().compl(kill()));

// in

coll Set<Definition> Stmt.reaching_in()
circular [empty().mutable()] with add;

Stmt contributes reaching_out()
to Stmt.reaching_in() for each succ();

Figure 22: Implementation of the in and out sets for reaching definitions.

for enclosingCompilationUnit();
VarDecl contributes this when isDeadAssign()

to CompilationUnit.deadAssignments()
for enclosingCompilationUnit();

Each of these statements – ExprStmt and VarDecl contribute to the collection if
their isDeadAssign attribute is true. We define this attribute to be false by default
for all statements:

syn boolean Stmt.isDeadAssign() = false;

4.1 Version I: Dead uses

In our first version, we consider variable declarations, i.e., “int i =0;” or only
“int i;” for cases where we know that i is unused or all uses of i are in dead
assignments. We define that variable declarations are dead when there are no side
effects and all uses are dead. We define this by adding an equation for the VarDecl

node:

eq VarDecl.isDeadAssign() =
!mayHaveSideEffects() && allUsesAreDead().isEmpty();

The latter attribute allUsesAreDead, in the above equation, iterates over a set given
by another attribute, uses, defined as follows:

coll Set Variable.uses() [empty()] with add;
VarAccess contributes this to Variable.uses() for decl();

A use is defined to be dead if its enclosing statement is a dead assignment:

syn boolean VarAccess.inDeadAssign();
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eq VarAccess.inDeadAssign() = enclosingCFGStmt().isDeadAssign();

4.2 Version II: Liveness analysis
The second version also takes liveness analysis into account.

Definition 4 If a variable is defined in a statement, but not live immediately after
the statement, the statement is considered dead in the sense that the assignment is
unnecessary. That is, a statement s is dead when:

kill [s] 6= ; ^ kill [s] \ out [s] = ;

The result of the liveness analysis can provide us with a very useful attribute
isDead, based on the equation in Definition 4:

syn boolean Stmt.isDead() {
Set res = def().compl(liveness_out());
return !res.isEmpty() && res.equals(def());

}

We continue to define that expression statements, i.e. statements like “a = 0;“
or “a++;“, are dead assignments when there are no side effects and the liveness
analysis attribute isDead is true:

syn boolean Stmt.isDeadAssign() = false;
eq ExprStmt.isDeadAssign()= !mayHaveSideEffects() && isDead();

We keep the earlier equation for VarDecl nodes, hence also collecting unused vari-
ables as well as dead assignments.

4.3 Version III: Liveness analysis and reaching definition
In the third version, we add combine liveness analysis with reaching definitions
analysis. We implement this by adding a condition to the equation for isDeadAssign
for expression statements, defining that for cases when there are no side effects and
the isDead attribute is true the statement might still be a dead assignment. Con-
sidering cases like:

a = 0;
b = a; // b is dead

where the first assignment is dead as a consequence of the fact that the second
statement is dead. We modify the previous definition as follows:

eq ExprStmt.isDeadAssign()
= !mayHaveSideEffects() && (isDead() ||
(hasAssigns() && allReachedUsesAreDead()));
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This says that an assignment can be dead if all reached uses are dead. This is where
we make use of the reaching definition implementation. The allReachedUses-

AreDead attribute investigates whether all reached uses are dead using an attribute
reachedUses defined on Stmt which returns a set of reached uses. We let uses,
that is VarAccess nodes, implement an interface ReachedUse:

syn boolean Stmt.allReachedUsesAreDead() circular [false];
eq Stmt.allReachedUsesAreDead() {

for (ReachedUse use : reachedUses())
if (!use.inDeadAssign())

return false;
return true;

}

Here we create a circular dependency for the attribute isDeadAssign. The is-

DeadAssign attribute depends on the allReachedUsesAreDead attribute which de-
pends on the isDead attribute. The isDead attribute depends on isDeadAssign

for VarAccess. We handle this by declaring that the isDeadAssign attribute is
circular, that is:

syn boolean Stmt.isDeadAssign() circular [false];

5 Language Extensions

The previous examples have illustrated how the control-flow specification for in-
dividual statements can be written modularly. Similarly, the control-flow imple-
mentation for Java 1.4 can be extended modularly to support Java 1.5. The only
new language construct that affects the CFG is the new enhanced for statement.
This is an internal-flow statement with the following abstract syntax:

EnhancedFor : BranchTargetStmt ::= VarDecl Expr Stmt;

This statement iterates over the elements in the iterable object denoted by Expr.
In each iteration, a new element is assigned to VarDecl, and the Stmt is executed.
To capture this flow, we let the EnhancedFor itself represent the initialization of
the iterator and then we create a control-flow placeholder node, using an NTA, to
represent the “hasNext” check of the iterator. We provide equations defining the
succ attribute for EnhancedFor and the following attributes of its constituents.
Figure 23 shows the specification.

Note that since the analyses of liveness, reaching definitions, and dead assign-
ments are defined in terms of the control-flow graph, they will work automatically
also for the new EnhancedFor construct.
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syn nta Stmt EnhancedFor.cfgNext() = new EmptyStmt();
eq EnhancedFor.succ() = singleton(cfgNext());

eq EnhancedFor.cfgNext().following() =
following().union(getVarDecl());

eq EnhancedFor.getVarDecl().following()=
singleton(getStmt());

eq EnhancedFor.getStmt().following()=
singleton(cfgNext());

EnhancedFor

VarDecl

Stmt

cfgNext

Expr

Figure 23: Control flow for EnhancedFor

Name Version Lines of Code Candidates # Flows Avg. |Flow|
ANTLR 2.7.7 37 730 4 253 3 332 14.0
Bloat 1.0 38 581 5 771 5 095 9.0
JCharts 1.0 9 968 1 924 1 469 7.0
FOP 0.95 130 300 18 662 19 632 7.0

Figure 24: Applications used for evaluation. Candidates are the number of local
variable declarations and assignments in an application. The last two columns
show the number of intraprocedural flows in an application and the average size,
with regards to the number of statements in the flow, of these flows.

6 Evaluation

To evaluate our implementations we used a set of Java applications, listed in Fig-
ure 24; ANTLR is a parser and translator generator, Bloat is a byte-code level op-
timization and analysis tool, JCharts is a charting utility tool and Apache FOP is
a print formatting tool. We calculated the number of dead assignment candidates,
that is, assignments and declarations of local variables. For each application we
also counted the number of lines of code (excluding blank lines and comments)
and the number of intraprocedural flows, i.e., the number of methods, constructors
and similar constructs with local control flow. We also report the average size of
these flows (average number of statements in the control-flow graphs). As might
be expected, there is a correlation between the number of candidates, flows and
lines of code, as shown in Figure 24. We note that one of the applications has
substantially longer flows, with an average of 14 statements per flow.
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Application Version I Version II Version III
unused variables liveness liveness+reaching definition

ANTLR 163 265 265
Bloat 10 20 20
JCharts 5 9 14
FOP 5 20 20

Figure 25: Dead Assignments (#) for each application and analysis version.

6.1 Analysis results

Figure 25 shows the results from our analyses, measuring unused variables (ver-
sion I), dead assignments based on liveness analysis (version II), and dead as-
signments based on a combination of liveness and reaching definitions analysis
(version III).

We find dead candidates in all of the applications, especially in the one with
long flows, as shown in Figure 24. Larger methods make it harder to get an
overview of the logic of the method, making it harder to spot unnecessary as-
signments or declarations.

There seems to be no direct correlation between the number of dead candidates
and the number of lines of code. This indicates that this metric depends more on
code quality or maturity rather than code size.

We note that versions II and III differ for only one of the applications, and there
with only 5 occurrences of dead assignments. I.e., the reaching definition analysis
does not contribute much in comparison to liveness. These additional occurrences
are due to a ripple effect that the reaching analysis can detect, when one or more
assignments depend on a dead assignment:

a = b; // also dead via dependency to b

b = c; // also dead via dependency to c

c = 0; // dead

Another thing to mention is that a number of the found dead assignments are vari-
ables that are assigned null. There may be cases where such an assignment can
have side-effects on memory management. We still include these assignments in
the analysis, since we only provide suggestions to users and there are no actual
eliminations performed by the analyses.

To validate the results of our analyses we ran Soot, an optimizing framework
for bytecode [21], on the same Java applications. Soot performs optimizations
on different kinds of intermediate code representations. It takes both Java class
files and source files as input. For Java input it uses the frontend from JastAddJ
for parsing and semantic checks before translation to intermediate code. Soot can
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Application Plain
Version I Version II Version III

unused liveness liveness +
variables reaching def.

ANTLR 1.9± 0.1 s 2.4± 0.1 s 6.1± 0.1 s 12.8± 1.4 s
100± 2 kb 111± 2 kb 160± 4 kb 184± 5 kb

Bloat 3.1± 0.1 s 4.0± 0.7 s 5.0± 0.6 s 12.4± 1.4 s
85± 0 kb 92± 1 kb 142± 1 kb 193± 8 kb

JCharts 1.7± 0.3 s 2.7± 0.3 s 3.3± 0.3 s 3.8± 0.2 s
67± 2 kb 70± 1 kb 83± 1 kb 116± 17 kb

FOP 22.8± 0.2 s 23.1± 4.2 s 29.8± 0.4 s 34.8± 0.5 s
370± 1 kb 379± 0 kb 418± 1 kb 428± 6 kb

Figure 26: Execution time and memory usage for JastAddJ. All execution
times are averages over 20 runs on a pre-heated VM. Both execution time and
memory usage are shown with a confidence interval of 95%. The time measures
were acquired using the multi-iteration approach described in [4].

perform both intraprocedural and whole program optimizations with a much wider
scope than the analyses presented in this paper.

In letting Soot analyse the same Java applications, we expect it to find a lot
more dead assignments among the selected candidates than we do. The main rea-
son for this is that Soot performs a number of additional analyses with the goal
of producing efficient bytecode. Soot also performs a more fine-grained analy-
sis. Soot can, for example, eliminate a dead assignment with side-effects on the
right-hand side:

a = m(); // live due to side-effect on the right-hand side

In Soot, the assignment can be eliminated while still preserving the right-hand
side:

/*a = */m(); // the assignment is "removed" but call remains

If we let Soot analyse the applications listed above, it finds many more dead as-
signments. Forr example, in ANTLR, Soot finds 1 718 dead candidates while our
analyses find 265 at most.

6.2 Performance

Another important aspect of these analyses is their running time and memory us-
age. In order to be useful in an interactive setting they need to finish within an ac-
ceptable time frame and the amount of memory used should preferably be low. All
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JastAddJ Soot

App. Plain
Ver. II Ver. III

Plain -Oliveness| liveness +
reaching

ANTLR 8.0± 0.3 13.2± 0.3 14.0± 0.5 33.4± 1.2 58.8± 2.1
Bloat 9.3± 0.4 12.9± 0.4 26.7± 0.7 39.0± 1.7 67.4± 4.0
JCharts 5.9± 0.3 13.5± 0.7 14.7± 0.7 27.6± 0.9 38.3± 1.5
FOP 59.4± 12.0 76.7± 1.8 80.4± 1.8 139.4± 12.4 186.0± 23.5

Figure 27: Time for JastAddJ and Soot. Each configuration was run from a
terminal 10 times and elapsed time for the process was measured using the Unix
command time. The averages of these time measures, along with the confidence
interval for a confidence interval of 95%, are given above in seconds. Soot per-
forms semantic analysis and translations for the plain version, while with the -O
argument Soot performs several intraprocedural analyses. JastAddJ performs se-
mantic checks by default while version II and III also performs one intraprocedural
analysis. No output was generated for any of the configurations.

time and memory measurements referred to below were performed on a Lenovo
Thinkpad X61 running Ubuntu 9.10 (Karmic Koala).

With interactive compilation in mind, we measure time for pure compilation
and for compilation plus analysis version I, II and III using the multi-iteration
approach with a pre-heated VM, as presented in [4]. Figure 26 shows the results as
average execution time and memory usage for each application with a confidence
interval of 95%. The execution time and memory usage for plain compilation is
notably shorter and smaller then the other combinations. The numbers tend to
increase with the complexity of the analysis which is to be expected. The numbers
for Version III are still within an acceptable time frame. Especially since in an
interactive setting, compilation is rarely done in batch mode but rather in a more
incremental fashion, one compilation unit at a time. Memory usage increases for
all combinations, in particular for ANTLR which has larger methods and hence
more dataflow sets to store in memory.

For comparison we also measure execution time from the command line, using
the Unix command time, for Soot and JastAddJ. The average execution times for
different configurations are shown in Figure 6.2. Bear in mind that Soot performs
several more intraprocedural analyses with the -O option while JastAddJ performs
one for version I, II and III. However, they do share the same front end. Without
the -O option, Soot performs the same work as JastAddJ plus translation to inter-
nal intermediate code. This translation, plus potential other tasks internal to Soot
and unknown to us, makes up the difference in time between the plain version
for JastAddJ and Soot. The numbers in the table are merely included to put the
performance of JastAddJ into perspective.
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Modules Number of Rules
Name Version LOC syn inh eq coll contr.

Java Frontend 1.4 10 352 471 168 1 453 0 0
1.5 4 909 166 48 588 0 0

Control Flow 1.4 301 21 24 126 2 3
1.5 9 1 0 9 0 0

Liveness 1.4 24 2 0 2 3 5
Reaching 1.4 96 10 0 9 6 14
Side Effects 1.4 22 1 0 1 1 7
Helpers 1.4 27 8 5 17 0 0

– Version I 1.4 25 2 1 3 2 3
– Version II 1.4 7 1 0 3 0 0
– Version III 1.4 21 2 0 4 0 0

Figure 28: Size of modules using lines of code (LOC) and number of JastAdd
rules separated into different columns for – syn, inh, coll, eq, contributes.

6.3 Specification size
Finally, we are interested in the actual size of the implementations. By adding
higher-level abstractions in the form of attributes our wish is to decrease the code
size needed for the actual dataflow analysis implementation. Table 6.3 shows an
overview of different modules, including the frontend of JastAddJ. Each module
is separated into two rows when there is a modular extension from Java version
1.4 to Java version 1.5. For cases where such an extension is unnecessary due
to reused behavior, only numbers for version 1.4 are given. Besides size we also
show the number of JastAdd rules divided into different columns depending on
rule type. Besides the modules presented in this paper, we show, for completeness,
the size of the Side Effects module and the Helpers module needed by the Control
Flow, Liveness, Reaching Definition and Dead Assignment modules. The Dead
Assignment module is presented as three parts – one for each version. Generally,
the numbers in the table tend to decrease further down in the table showing how
we gradually raise the level of abstraction, modularly adding higher-level APIs
and as a consequence the sizes of the modules decrease.

7 Related Work
Silver is a recent attribute grammar system with many similarities to JastAdd, but
which does not support circular attributes. It has also been applied for declarative
flow analysis [23], but using a different approach than ours. In Silver, the specifi-
cation language itself is extended to support the specification of control-flow and
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dataflow analysis. The actual data-flow analysis is not carried out by the attribute
grammar system, but by an external model checking tool. This approach is moti-
vated by the difficulty of declaratively specifying data-flow analysis on the same
program representation as, for example, type analysis. No performance figures
for this approach are reported. In contrast, we have shown how both control-flow
and dataflow can be specified in a concise way directly using the general attribute
grammar features of JastAdd, in particular relying on the combination of reference
attributes, circular attributes and collection attributes.

In [18], Mughal describes how control-flow can be expressed using attributes
in the Cornell Synthesizer Generator (CSG) [19] with the purpose of performing
incremental code generation. Two attributes, entry (synthesized) and completion

(inherited), are presented which point out where to start evaluation of a statement
and where to start to evaluate the next statement. These share common ground
with the succ and following attributes presented in this paper. However, neither
circular attributes nor real reference attributes are supported by CSG, making it
hard to progress towards dataflow analysis using the control-flow implementation.

Farrow introduced circular attributes, and used liveness as a motivating exam-
ple [10]. He builds on traditional attribute grammars without reference attributes,
and does therefore not build any explicit control-flow graph. The dataflow analysis
is instead defined directly in terms of the underlying syntax, with rules for each
kind of statement.

Morgenthaler [17] has developed static analysis techniques for source-to-source
tools. To reduce the cost, techniques for efficient demand-driven analyses are pro-
posed as opposed to traditional exhaustive methods. These techniques operate
directly on the AST, the most appropriate data structure for a source-to-source tool
architecture. No explicit control-flow representation is built. Instead, a so called
virtual control flow is constructed by demand-driven computations of all possible
control successors and predecessors. Functions realizing this scheme for the C
language, implemented in C++, required about 1000 lines of code. A major differ-
ence between this approach and ours is that in using JastAdd, the demand-driven
evaluator is automatically constructed from concise declarative grammar specifi-
cations.

Soot, [21], is a framework for optimizing, analyzing, and annotating Java byte-
code. The framework provides a set of intraprocedural and whole program opti-
mizations with a much wider scope than the analyses presented in this paper. Soot
is based on several kinds of intermediate code representations, including typed
three-address code, and provides seamless translations between the different rep-
resentations. Java source code is first translated into one of these representations
in which some high-level structure is lost. The control-flow and data-flow frame-
works in Soot are indeed quite powerful with reasonably small APIs. A major dif-
ference, as compared to our approach, is that the Soot approach is not declarative
and therefore relies on manual scheduling when combining analyses, or adding
new analyses as new specializations of the framework.
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Schäfer et al. have used a variant of our analyses modules, extended with
finer-grained expression-based control flow, in the implementation of experimental
refactoring tools for Java. They report performance on par with industrial strength
refactoring tools [20].

8 Conclusions

Control-flow and dataflow analysis are usually cumbersome to implement for source
level analyses of complex languages such as Java. The main reason being the te-
dious work to implement analyses that support all language constructs in today’s
mainstream languages. Moreover, since languages constantly evolve there is a
need to update the analyses accordingly.

We have shown how reference attributed grammars, augmented with circular
attributes and collection attributes, provide an excellent foundation for declara-
tively specifying control-flow and dataflow analysis. The specifications are con-
cise and close to text book definitions, yet the generated analyzers are sufficiently
efficient for real applications. As example applications we implemented different
versions of high-level dead code analysis, suitable for an interactive setting. Per-
formancewise, our implementations finished within an acceptable time frame and
did well in comparison to other optimizing frameworks like Soot. The specifica-
tions are also extensible in that the analyses can be extended modularly when new
features are added to a language.

Our analyses are performed at the statement level which reduces the granu-
larity of the results. More fine-grained results could be achieved by redefining
the control-flow on the expression level, as has been done in [20]. This would
most likely result in the location of more dead code and is one topic for future
work. There are several other interesting ways to continue this work as well. The
design ideas and frameworks presented in this paper are general and it would be
interesting to see how they extend to more advanced analyses, e.g., object-oriented
call graph construction and inter-procedural points-to analysis. We already have
promising work in this direction, for example simple whole program devirtual-
ization analysis [15]. Another possible direction for future work is to design and
implement declarative frameworks for other traditional backend analyses such as
translation to SSA-form. The technique presented in this paper could in principle
be applied to an AST representing intermediate code or bytecode. It would also be
interesting to apply these techniques to do domain-specific source level analyses,
for example, enforcing framework conventions.
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PAPER II

PRACTICAL SCOPE
RECOVERY USING BRIDGE

PARSING

Abstract

Interactive development environments (IDEs) increase programmer productivity,
but unfortunately also the burden on language implementors since sophisticated
tool support is expected even for small domain-specific languages. Our goal is to
alleviate that burden, by generating IDEs from high-level language specifications
using the JastAdd meta-compiler system. This puts increased tension on scope
recovery in parsers, since at least a partial AST is required by the system to perform
static analysis, such as name completion and context sensitive search.

In this paper we present a novel recovery algorithm called bridge parsing,
which provides a light-weight recovery mechanism that complements existing
parsing recovery techniques. An initial phase recovers nesting structure in source
files making them easier to process by existing parsers. This enables batch parser
generators with existing grammars to be used in an interactive setting with minor
or no modifications.

We have implemented bridge parsing in a generic extensible IDE for JastAdd
based compilers. It is independent of parsing technology, which we validate by
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showing how it improves recovery in a set of typical interactive editing scenar-
ios for three parser generators: ANTLR (LL(variable lookahead) parsers), LPG
(LALR(k) parsers), and Beaver (LALR(1) parsers). ANTLR and LPG both con-
tain sophisticated support for error recovery, while Beaver requires manual error
productions. Bridge parsing complements these techniques and yields better re-
covery for all these tools with only minimal changes to existing grammars.

1 Introduction

Interactive development environments (IDE) have become the tool of choice in
large-scale software development. This drastically increases the burden on lan-
guage developers since sophisticated tool support is expected even for small domain-
specific languages. The work presented in this paper is part of a larger effort to
generate IDEs from high-level language specifications based on attribute gram-
mars in the JastAdd meta-compiler tools. The AST is used as the predominant
data structure and all static semantic analyses are implemented as attribute gram-
mars on top of that tree. This approach has been used successfully to implement
a production-quality Java compiler [6], extensible refactoring tools [16], source
level control-flow and data-flow analyses [14], and various Java extensions [1, 9].

One key insight from our earlier work is that we can use the AST as the only
model of the program and then superimpose additional graph structure using at-
tributes on top of that tree, e.g., name bindings, inheritance hierarchies and call
graphs. The IDE can then reuse and extend this model to provide services such
as name completion, cross-referencing, code outline, and semantic search facil-
ities. However, this allows us to use the same extension mechanisms that have
proven successful in building extensible compilers to build extensible IDEs. This
puts extreme tension on the error recovery facilities in parsers since incomplete
programs are the norm rather than the exception during interactive development,
and a recovered AST is necessary for instant feedback to the user. An unfortu-
nate consequence of this challenge is that, despite the wealth of research in auto-
matic parser generators from high-level grammars and sophisticated error recovery
mechanisms, most IDEs still rely on hand crafted parsers to provide such services
to the user.

In this paper we present an algorithm for scope recovery, preserving as much of
the AST structure as possible, that is neither tied to a particular parsing technology
nor to a specific parser generator. A light-weight pre-processor takes an incomplete
program and recovers scope nesting before the adjusted source file is fed to a
traditional parser. Existing error recovery mechanisms are then sufficient to build
a partial AST suitable for static semantic analysis. This approach even makes it
feasible to use a batch parser rather than an incremental parser since the speed of
parsing a complete source unit is usually satisfactory even for interactive editing
on today’s hardware.
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The approach has proven successful when combined with several parser gener-
ators in our IDE generator for JastAdd based compilers in the Eclipse IDE frame-
work. We have integrated bridge parsing in an IDE framework for compilers where
all services use the AST as the only model to extract program information from.
An IDE based on Eclipse is generated from an attribute grammar for static seman-
tic analysis and our largest example is an environment for Java which includes
support for name completion, content outline, cross-referencing, and various se-
mantic search facilities.

We demonstrate that the approach is independent of parsing technology and
parser generator by combining bridge parsing with three different parser gener-
ators: ANTLR which generates an LL(variable lookahead) parser, LPG which
generates an LALR(k) parser, and Beaver which generates an LALR(1) parser.
LPG and ANTLR are particularly interesting because of their sophisticated error
recovery mechanisms. We show that on a set of typical interactive editing scenar-
ios, bridge parsing improves recovery for both these tools and the few cases with
degraded performance can be mitigated by minor enhancements in the IDE. The
contributions of this paper are:

• A general algorithm for recovering scope information suitable for arbitrary
parsing technologies.

• An implementation in an IDE generator for JastAdd based compilers in
Eclipse.

• A careful comparison of its effect on error recovery in state of the art parser
generators.

The rest of the paper is structured as follows. Section 2 explains the require-
ments on error recovery and outlines previous work and room for improvement.
Bridge parsing is introduced in Section 3 and an example of language sensitive
recovery for Java is presented in Section 4 and evaluated in Section 5. We finally
discuss future work and conclude in Section 6.

2 Background
We first outline scenarios requiring error recovery in the setting described above,
and then survey existing recovery mechanisms and explain why they are not suf-
ficient or have room for improvement. This serves as a background and related
work before we introduce bridge parsing in Section 3. A more thorough survey of
error recovery techniques is available in [4].

2.1 Error recovery scenarios
The interactive setting this approach is used in puts extreme pressure on error
recovery during parsing. Incomplete programs with errors are the norm rather than
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the exception, and we rely on an AST to be built to perform most kinds of IDE
services to the user. It is therefore of paramount importance that common editing
scenarios produce an AST rather than a parse failure to allow for services such
as name completion while editing. There is also a tension between sophisticated
error recovery and the goal to lower the burden on language developers building
IDEs. Ideally, she should be able to reuse an existing parser, used in the compiler,
in the IDE with minimal changes while providing satisfactory recovery. We define
the following desirable properties of error recovery in this context:

• Support for arbitrary parser generators and parsing formalisms.

• Only moderate additions to add recovery to a specific language grammar.

• Effective in that recovery is excellent for common editing scenarios.

The motivation behind the goal of using arbitrary parser generators is that Jas-
tAdd defines its own abstract grammar and as long as the parser can build an AST
that adheres to that grammar it can be used with JastAdd. We can thus benefit from
the wealth of available parsing techniques by selecting the most appropriate for the
language at hand. Notice that many proposed parser formalisms are orthogonal to
the problem of handling incomplete programs, e.g., GLR-parsing [18], Earley-
parsing [5], and Parsing Expression Grammars [7], all deal with ambiguities in
grammars rather than errors in programs.

The overall goal of the project is to lower the burden on language developers
who want to provide IDE support for their languages. The extra effort to handle
incomplete programs should therefore be moderate compared to the overall effort
of lexical and syntactic analysis.

The effectiveness criterion is a very pragmatic one. We want the automatic
recovery to be as close as possible to what a user would manually do to correct
the problem. Here we borrow the taxonomy from Pennello and DeRemer [15] and
consider a correction excellent if it repairs the text as a human reader would have,
otherwise as good if the result is a reasonable program and no spurious errors are
introduced, and otherwise as poor if spurious errors are introduced.

Consider the simple incomplete program below. A class C with a method m()

and a field x is currently being edited. There are two closing curly braces missing.
An excellent recovery, and the desired result of an automatic recovery, would be
to insert a curly brace before and after the field x. A simpler recovery, with poor
result, would be to insert two curly braces at the end of the program.

class C {
void m() {
int y;

int x;

Notice that we need to consider indentation to get an excellent result. Chang-
ing the indentation of the field x to the same as for the variable y should, for
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instance, change its interpretation to a variable and result in a recovery where both
closing braces are inserted at the end of the file. Meaning that the simpler recovery
alternative above would be sufficient.

2.2 Simple recovery

The simplest form of recovery is to let the parser automatically replace, remove,
or insert single tokens to correct an erroneous program. This information can
easily be extracted from the grammar and is supported by many parser generators.
However, for incomplete programs this is insufficient since series of consecutive
tokens are usually missing in the source file. It should be noted that this kind of
recovery serves as a nice complement to other recovery strategies by correcting
certain spelling errors.

2.3 Phrase recovery

A more advanced form of recovery is phrase level recovery where text that pre-
cedes, follows, or surrounds an error token is replaced by a suitable nonterminal
symbol [8]. Beacon symbols, e.g., delimiters, and keywords, are used to re-synch
the currently parsed production and erroneous tokens are removed from the in-
put stream and replaced by a particular error token. These symbols are language
specific and the parsing grammar therefore needs to be extended with error produc-
tions unless automatically derived by the parser generator. This form of recovery
works very well in practice when beacon symbols are available in the input stream
and implemented in many parsing tools. Incomplete programs usually lack some
beacons required to re-synch the parser and often result in a parsing failure where
the recovery can not proceed.

2.4 Scope recovery

Hierarchical structure is usually represented by nested scopes in programming lan-
guages, e.g., blocks and parentheses. It is a common error to forget to close such
scopes and during interactive editing many scopes will be incomplete. Burke and
Fisher introduced scope recovery to alleviate such problems [2]. Their technique
requires the language developer to explicitly provide symbols that are closing
scopes. Charles improves on that analysis by automatically deriving such sym-
bols from a grammar by analyzing recursively defined rules [3]. Scope recovery
can drastically improve the performance of phrase recovery since symbols to open
and close scopes are often used as beacons to re-synch the parser. Scope recovery
usually discards indentation information which unfortunately limits the possible
result of the analysis to good rather than excellent for the previously outlined ex-
ample.



64 Practical Scope Recovery using Bridge Parsing

2.5 Incremental parsing

An interactive setting makes it possible to take history into account when detecting
and recovering from errors. This opens up for assigning blame to the actual edit
that introduced an error, rather than to the location in the code where the error was
detected. A source unit is not parsed from scratch upon a change but instead only
the changes are analyzed. Wagner and Graham present an integrated approach of
incremental parsing and a self versioning document model in [20, 21]. It is worth
noting that this requires a deep integration of the environment and the generated
parser, which makes it less suitable for our setting due to the goal of supporting
multiple parser generators.

2.6 Island parsing

Island parsing is not an error recovery mechanism per se but rather a general
technique to create robust parsers that are tolerant to syntactic errors, incomplete
source code, and various language dialects [12]. It is based on the observation
that for source model extraction one is often only interested in a limited subset
of all language features. A grammar consists of detailed productions describing
language constructs of interests, that are called islands, and liberal productions
matching the remaining constructs, that are called water. This allows erroneous
programs to be parsed as long as the errors are contained in water. The parts miss-
ing in an incomplete program are usually a combination of both water and islands
which makes this approach less suitable for extracting hierarchical structure on its
own.

3 Bridge Parsing

We now present bridge parsing as a technique to recover scope information from
an incomplete or erroneous source file. It combines island parsing with layout
sensitive scope recovery. In [12] Moonen defines island grammars [13, 19] as
follows:

An island grammar is a grammar that consists of two parts: (i) detailed pro-
ductions that describe the language constructs that we are particularly interested
in (so called islands), and (ii) liberal productions that catch the remainder of the
input (so called water).

In bridge parsing, tokens which open or close scopes are defined as islands while
the rest of the source text is defined as water or reefs. Reefs are described further
in Section 3.1. This light-weight parsing strategy is used to detect open scopes
and to close them. The end product of the bridge parser is a recovered source
representation suitable for any parser that supports phrase level recovery.
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Figure 1: A bridge parser consists of three parts – a tokenizer returning a token
list, a bridge builder taking a token list and returning a bridge model and a bridge
repairer which takes a bridge model and generates a repaired source text.

A bridge parser is built from three parts, as illustrated in Figure 1. The first part,
the tokenizer, takes a source text and produces a list of tokens based on definitions
in the bridge grammar. The second part, the bridge builder, constructs a bridge
model from the token list and the last part, the bridge repairer, analyses and repairs
the bridge model.

3.1 Tokenizer

The goal of the tokenizer is to produce a list of tokens from a source text. Token
definitions are provided by a bridge grammar which extends the island grammar
formalism with bridges and reefs:

A bridge grammar extends an island grammar with the notions of bridges and
reefs: (i) reefs are attributed tokens which add information to nearby islands, and
(ii) bridges connect matching islands. All islands in a bridge grammar are seen as
potential bridge abutments.

We are primarily interested in tokens that define hierarchical structure through
nested scopes. Tokens that open or close a scope are therefore represented as
islands in the grammar, e.g., braces and parentheses in Java, while most other
syntactic constructs are considered water. However, additional tokens in the stream
may be interesting to help match two islands that open and close a particular scope.
Typical examples include indentation and delimiters, and we call such tokens reefs.
Reefs can be annotated with attributes which enables comparison between reefs of
the same type. Indentation reefs may for instance have different indentation levels.
We call such tokens attributed tokens:



66 Practical Scope Recovery using Bridge Parsing

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF

Figure 2: The token list is a simple double-linked list of islands (A, B, C, D), reefs
(R) and water (W). Two additional nodes representing start of file (SOF) and end of
file (EOF) are added first and last in the list. The numbers within parentheses show
the attribute values of the reefs.

Attributed tokens are tokens which have attributes, which potentially makes them
different from other attributed tokens of the same type. This difference makes it
possible to compare attributed tokens to each other.

The first step when defining a bridge grammar, is to specify islands and reefs.
The following example, which we will use as a running example, shows the first
part of a bridge grammar relevant to the tokenizer:

Listing II.1: Tokenizer Definitions
1 islands SOF, EOF, A=.., B=.., C=.., D=..
2 reefs R(attr)=..

The bridge grammar defines four island types and one reef type. The SOF and
EOF islands, represent start of file and end of file. The A and B islands could, for
instance, be open and close brace and C and D open and close parenthesis. The reef
could represent indentation where the value of attr is the level of indentation. In
our implementation each island corresponds to a class that accepts and consumes
the substring matching its lexical representation. The information given so far in
the example grammar is sufficient to create a lexer which will produce a list of
tokens, e.g., the example in Figure 2.

3.2 Bridge Builder

The bridge builder takes a token list and produces a bridge model defined as fol-
lows:

A bridge model is a token list where matched islands are linked with bridges in
alignment with the nesting structure in a source text. Bridges can be enclosing
other bridges or be enclosed by other bridges, or both, but they never cross each
other in an ill-formed manner. Unmatched islands point out broken parts of the
nesting structure.
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In the bridge model, islands opening and closing a scope should be linked with a
bridge. For the bridge builder to know between which islands to build bridges we
need to add definitions to the bridge grammar.

Listing II.2: Bridge Builder Definitions
1 bridge from SOF to EOF { ... }
2 bridge from [a:R A] to [b:R B] when a.attr = b.attr { ... }
3 bridge from [a:R C] to [b:R D] when a.attr = b.attr { ... }

The first bridge, the file bridge, between the SOF island and EOF island does
not need any additional matching constraints i.e., constraints that define when two
islands of given types match. For other bridges additional constraints besides type
information i.e., an island of type A and type B match, are usually needed. In the
example above the islands of type A and B match if both islands have reefs of type
R to the left which are equal. The constraints for the third bridge are similar.

The order of the bridge abutments in the definition should correspond to the
order in the source text e.g., the bridge start of type C is expected to occur before
the bridge end of type D.

With the information given so far in our example bridge grammar we can con-
struct a bridge model. The BRIDGE-BUILDER algorithm will construct as many
bridges as possible. If at some point no matching island can be found the algorithm
will jump over the unmatched island and eventually construct a bridge enclosing
the island. The algorithm is finished when the file bridge has been constructed.

The BRIDGE-BUILDER algorithm, listed in Figure 4, will iterate through the
token list until it manages to build the file bridge. For each unmatched bridge start
it will try to match it to the next island. If there is a match a bridge will be built
and otherwise the algorithm will continue with the next unmatched bridge start.
Each time a bridge is encountered it will be crossed. In this way the number of
encountered unmatched islands will decrease each iteration.

The algorithm will try to match an unmatched island to the next unmatched
island within the current tolerance. The tolerance defines how many unmatched
islands that are allowed below a bridge. This value is only changed between it-
erations and depends on the success of the last iteration. The tolerance should be
as low as possible. We start out with a tolerance of zero, meaning no unmatched
islands under a bridge. This value will increase if we fail to build bridges during
an iteration. If we have a successful iteration we reset the tolerance to zero. If
we apply this algorithm to the running example we end up with four iterations,
illustrated in Figure 3.

3.3 Bridge Repairer
The goal of the bridge repairer is to analyze the bridge model and repair it if nec-
essary. The BRIDGE-REPAIRER algorithm needs to locate remaining unmatched
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SOF R(0) W A R(1) W A R(3) W C D R(1) R(0) B

EOF0

Iteration:
A Toler-
ance: 0

SOF R(0) W A R(1) W A R(3) W C D R(1) R(0) B

EOF0

Iteration: B
Tolerance:
0

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF0

1Iteration: C
Tolerance:
1

SOF R(0) W A R(1) W A R(2) W C D R(1) R(0) B

EOF0

1

0

Iteration:
D Toler-
ance: 0

Figure 3: The resulting bridge model after running the BRIDGE-BUILDER al-
gorithm. No bridges were built during iteration B which results in an increased
tolerance in iteration C. During iteration C a bridge is built which means the toler-
ance is reset to zero in iteration D.
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BUILD-BRIDGES(sof)

1 tol  0
2 while ¬HAS-BRIDGE(sof )
3 do start  sof

4 change  FALSE
5 while start 6= NIL
6 do end  NEXT-UNMATCHED-ISLAND(start , tol)
7 if BRIDGE-MATCH(start , end)
8 then BUILD-BRIDGE(start , end)
9 change  TRUE

10 start  NEXT-UNMATCHED-START-ISLAND(end)
11 else start  NEXT-UNMATCHED-START-ISLAND(start)
12 if ¬ change

13 then tol  tol +1
14 else if tol > 0
15 then tol  0

Figure 4: The BUILD-BRIDGES algorithm constructs a bridge model from a
token list. The NEXT-UNMATCHED-ISLAND returns the next unmatched island
to the right of the given island. The tolerance defines the number of unmatched
islands to jump over before the procedure returns.
NEXT-UNMATCHED-START-ISLAND is similar but only looks for bridge starts.
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islands and to add artificial islands which will match them. Each island defined
in the bridge grammar can potentially be missing. When an island is missing, the
algorithm will search for an appropriate construction site where an artificial island
can be inserted. The search for a construction site starts from the bridge start if
the bridge end is missing, and vice versa, and ends when a match is found or an
enclosing bridge is encountered. With this in mind we add additional definitions
to our example bridge grammar:

Listing II.3: Bridge Repair Definitions
1 bridge from [a:R A] to [b:R B] when a.attr = b.attr {
2 missing[A] find [c:R] where c.attr = b.attr insert after
3 missing[B] find [c:R] where c.attr = a.attr insert after
4 }
5 bridge from [a:R C] to [b:R D] when a.attr = b.attr {
6 missing[C] find [c:R] where c.attr = b.attr insert after
7 missing[D] find [c:R] where c.attr = a.attr insert after
8 }

If an island of type A is missing, a construction site will be found in the interval
starting at the unmatched island of type B and ending at the start of the enclosing
bridge. The first reef of type R which is equal to the reef to the left of the un-
matched island of type B points out a construction site. The final information we
need is how to insert the artificial island. In this case the artificial island should be
inserted after the reef. The definitions for the remaining islands are similar.

The BRIDGE-REPAIRER algorithm, listed in Figure 5, recursively repairs un-
matched islands under a bridge, starting with the file bridge. When an unmatched
island is encountered the MEND algorithm, listed in Figure 6, will locate a con-
struction site and insert an artificial island.

In the running example, an island of type A is missing an island of type B.
The island of type A has a reef of type R on its left hand side with value 1 which
means the algorithm will search for for a another reef the same type with the same
value. The search is stopped when either a reef is found or a closing island of an
enclosing scope is encountered. In this case there is a reef of the right type and
value, before the enclosing island of type B, which points out a construction site.

The result of the BRIDGE-REPAIRER algorithm is shown in Figure 7. An
artificial island of type B has been inserted to form a bridge with the previously
unmatched island of type A.

4 Bridge Parsing for Java
To construct a bridge parser for Java we need to create a bridge grammar which
can provide information to each of the three parts of the bridge parser, illustrated
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BRIDGE-REPAIRER(bridge)

1 start  START(bridge)
2 end  END(bridge)
3 island  NEXT-ISLAND(start)
4 while island 6= end

5 do if ¬HAS-BRIDGE(island)
6 then if START-OF-BRIDGE(island)
7 then MEND-RIGHT(island , end)
8 else MEND-LEFT(start , island)
9 bridge  BRIDGE(island)

10 BRIDGE-REPAIRER(bridge)
11 island  NEXT-ISLAND(END(bridge))

Figure 5: The BRIDGE-REPAIRER algorithm constructs artificial islands to match
unmatched islands. The MEND-RIGHT algorithm is described further in Figure 6.
The MEND-LEFT algorithm is symmetric to the MEND-RIGHT algorithm.

MEND-RIGHT(broken, end)

1 node  NEXT(broken)
2 while node 6= end

3 do if HAS-BRIDGE(node)
4 then node  NEXT(BRIDGE-END(node)
5 else if POSSIBLE-CONSTRUCTION-SITE(broken,node)
6 then CONSTRUCT-ISLAND-AND-BRIDGE(broken,node)
7 return
8 else node  NEXT(node)
9 CONSTRUCT-ISLAND-AND-BRIDGE(broken, PREVIOUS(end))

Figure 6: The MEND-RIGHT algorithm constructs an artificial bridge end in the
interval starting at the unmatched bridge start (broken) and ending at the end of the
enclosing bridge (end).



72 Practical Scope Recovery using Bridge Parsing

SOF R(0) W A R(1) W A R(2) W C D R(1) B R(0) B EOF

0

0

1

Figure 7: The changes in the example bridge model after the BRIDGE-REPAIRER
algorithm is done. The artificial island is marked with a dashed double edge.

in Figure 1. We will define this bridge grammar for Java in three steps which grad-
ually will include more complex language-specific information. The performance
impact of these different levels of language sensitivity is evaluated in Section 5.

For Java, and other languages with similar language constructs, we need to
consider how to deal with comments and strings. These constructs might enclose
text which would match as reefs or islands but which should be ignored. In our
implementation we handle this separately in the lexer implementation.

4.1 Scopes
The first level of language sensitivity is to only consider tokens directly defining
scopes. We therefore include braces and parentheses as islands since they have a
direct impact on the nesting structure of Java code. Indentation is also included to
enhance matching of islands in incomplete code. The complete bridge grammar
looks like this:

Listing II.4: Bridge Repairer Definitions
1 islands SOF, EOF, LBRACE, RBRACE, LPAREN, RPAREN
2 reefs INDENT(pos)
3
4 bridge from SOF to EOF
5
6 bridge from [a:INDENT LBRACE] to [b:INDENT RBRACE]
7 when a.pos = b.pos {
8 missing [RBRACE]
9 find [c:INDENT] where (c.pos <= a.pos) insert after

10 missing [LBRACE]
11 find [c:INDENT] where (c.pos <= a.pos) insert after
12 }
13
14 bridge from [a:INDENT LPAREN] to [b:INDENT RPAREN]
15 when a.pos = b.pos {
16 missing [RPAREN]
17 find [c:ISLAND] insert before
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18 find [c:INDENT] where (c.pos <= a.pos) insert after
19 missing [LPAREN]
20 find [c:ISLAND] insert before
21 find [c:INDENT] where (b.pos <= c.pos) insert before
22 }

The pos attribute of the INDENT reef corresponds to the indentation level. Com-
paring two reefs of this type corresponds to comparing their pos attribute.

For the islands corresponding to right and left parentheses there are two find
conditions. For cases like these the first occurrence that fulfills all its conditions
decide which action to take.

4.2 Delimiters
To improve matching of parentheses we add additional reefs for delimiters. The
following code snippet illustrates the benefit of defining commas as reefs during
recovery:

void m(int a) {
n(o(, a); // Recover to "n(o(),a)" and not to "n(o(,a))"

}

We have a call to o() as the first argument in the call to n() in the method m().
The comma tells us that we are editing the first element in the list of arguments
and that the call to o() should be closed right before the comma rather than after
reading the a parameter. If we modify the code snippet and remove the other end
parenthesis instead we end up with a different scenario:

void m(int a) {
n(o(), a; // Recover to "n(o(),a);" and not to "n(o(),a;)"

}

The analysis should ideally place a closing parenthesis somewhere after the comma
but before the semicolon. The reason is that the comma separates elements within
the parentheses and the call to o() is within the call to n(), while the semicolon
separates elements in the block. To deal with these scenarios we define additional
reefs to match delimiters and add additional find declarations to the missing
parenthesis blocks.

Listing II.5: Bridge Repairer Definitions
1 reefs .., COMMA, DOT, SEMICOLON
2
3 missing [RPAREN]
4 ..
5 find [c:COMMA] where (previous(c) != WATER) insert before



74 Practical Scope Recovery using Bridge Parsing

6 find [c:DOT] where (previous(c) != WATER) insert before
7 find [c:SEMICOLON] insert before
8
9 missing [LPAREN]

10 ..
11 find [c:COMMA] where (next(c) != WATER) insert after
12 find [c:DOT] where (next(c) != WATER) insert after
13 find [c:SEMICOLON] insert after

These definitions should be seen as extensions to the bridge grammar presented
in the previous section. In the above find declaration for RPARENwe have added
actions for when we encounter a COMMA, DOT or SEMICOLONwhile searching for
a construction site.

4.3 Keywords
To further improve matching we can add keywords as reefs. This can be useful
since keywords separate statements from each other. The following code snippet
shows an example:

boolean m(boolean a) {
if a == true) // Recover to "if (a == true)"
return false; // and not to "(if a == true)"

return true;
}

Ideally, the analysis should put the missing left parenthesis after the if key-
word If the keyword has been defined as a reef this is possible, otherwise not since
then keywords will be considered to be water. To deal with scenarios such as these
we add additional keywords and find definitions to the bridge grammar:

Listing II.6: Bridge Repairer Definitions
1 reefs KEYWORD (if, for, while ..)
2
3 missing [RPAREN]
4 find [c:KEYWORD] insert before
5
6 missing [LPAREN]
7 find [c:KEYWORD] insert after

5 Evaluation
We have chosen to evaluate bridge parsing on common editing scenarios for Java
using the specifications described in Section 4. Our bridge parsing implementation
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has been combined with a set of Java parsers, generated using state of the art parser
generators based on LALR(1) and LL(variable lookahead) grammars. The parsers
were generated with the following parser generators and settings:

• Antlr Generated using Antlr (v.3.0).

• AntlrBT Generated using a forth-coming version of Antlr (v.3.1 beta) with
backtracking turned on. This version of Antlr introduces new error recovery
not yet available in the latest stable version.

• Beaver Generated with Beaver (v.0.9.6.1).

• BeaverEP Generated with Beaver (v.0.9.6.1), with error productions manu-
ally added to the grammar.

• LPG Generated using LPG (v.2.0.12). While this is the newest version of
LPG it does not yet provide a complete automatic scope recovery as sug-
gested by Charles [3]. To allow comparison with Charles approach the test
cases where manually edited to correspond to the suggested recovery from
the generated parser.

In lack of an existing appropriate benchmark suite we have created a test suite for
incomplete and erroneous Java programs to use during evaluation. The test suite
consists of several series of tests, each series with one correct program and one
or more broken programs. The correct program in each series corresponds to the
intention of the programmer, while the broken programs illustrate variations of the
correct program where one or more tokens are missing. Broken programs in this
setting illustrate how programs may evolve during an editing session. For each test
series and parser we build a tree representing the correct program and try to do the
same for each broken program. For the Antlr, AntlrBT and LPG we build parse
trees, while for the Beaver and BeaverEP we build ASTs.

As a metric of how close a tree constructed from one of the broken programs is
to the tree constructed for the correct program we use tree alignment distance, as
described in [10]. To calculate tree alignment distance, a cost function is required
which provides a cost for insertion, deletion and renaming of nodes. We use a sim-
ple cost function where all these operations have the cost one. As a complementary
classification of success we use the categorization of recovery as excellent, good,
or poor by Pennello and DeRemer [15].

5.1 Benchmark examples
The test suite consists of 10 correct test cases which have been modified in various
ways to illustrate possible editing scenarios. The test suite provides a total of 41
tests. Full documentation of the test suite can be found at [17]. We have focused
on three editing scenarios:
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Incomplete code Normally, programs are written in a top-down, left-right fash-
ion. In this scenario we put test cases with incomplete code, to illustrate
how code evolves while being edited in an IDE. An example where a user is
adding a method m() to a class C which already contains two fields x and z

may look like this:

class C {
int x;
void m() {

int x;
if (true) {

int y;

int z;
}

Missing start This scenario highlights situations which might occur when the
normal course of writing a program top-down, left-right is interrupted. A
typical example is that the user goes back to fix a bug or to change an im-
plementation in an existing program. Consider the example below where
the programmer has started changing a while loop which causes a missing
opening brace:

class C {
void m() {

// while (true) {
int a;

}
}

}

Tricky indentation Since bridge parsing relies on indentation it is reasonable to
assume that tricky indentation is its Achilles heel. We therefore included
a set of test cases with unintuative indentation to evaluate its performance
on such programs. An example of nested blocks where indentation is not
increasing is shown below:

class C {
void m() {

}
}

Another scenario leading to a similar situation is when a programmer pastes
a chunk of code with different indentation in the middle of her program, as
illustrated by this example:
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class C {
void n() { .. }

void m() {
}
}

5.2 Results
The results, after running through the test suite with our parser suite, are shown in
Table 8, 9 and 10. The first table shows the results for tests with incomplete code,
the second table shows results for tests with missing starts and the last table shows
results for tests with tricky indentation. Each table has a column for each parser
generator containing a set of tree editing distances: without bridge parsing, with
bridge parsing using the scopes version, with bridge parsing using the delimiters
version. After each tree editing distance set the result for the test case and parser
generator is summarized with a letter indicating excellent (E), improved (I), status
quo (S) or worse (W). A tree alignment distance of 0 indicates a full recovery and
an excellent result while a missing value indicates total failure which is when no
AST or parse tree could be constructed.

The leftmost column for each parser in the tables shows that the test suite
presents many challenges to all parsers which manifest themselves in less than
excellent recoveries, except for the test cases in Table 10 where only indentation
is changed to trick the bridge parser. Without bridge parsing, LPG is much better
than the other parser generators, most likely due to the built-in support for scope
recovery.

The second column for each parser shows that all parser generators benefit
vastly from bridge parsing in most cases, of 41 cases 19 improve from good or
poor recovery to excellent. LPG still has the edge over the other generators with
superior error recovery. We notice that using indentation can indeed improve scope
recovery since the LPG results are improved in many cases.

The third column in each column set shows that there is almost no change when
we use the delimiters version of the bridge parser instead of the scopes version.
Generally, nothing changes or there are small improvement.

There are some problems with bridge parsing, as shown in Table 10, when
there are inconsistencies in the layout. This problem could be alleviated by IDE
support to automatically correct indentation during editing and pasting. Because
of the current problems with some layout scenarios the bridge parser is only run
when the parser fails to construct an AST and there is no other way to acquire an
AST.

We have run tests with keyword sensitive bridge parsing as well, but saw no
improvement using our test suite. There are certainly cases where this could yield
an improvement but we could not easily come up with a convincing realistic edit-
ing scenario to include in the test suite.
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Test Antlr AntlrBT Beaver BeaverEP LPG
A1 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 6, 0, 0 E
A2 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 4, 0, 0 E
A3 75, 0, 0 E 1, 0, 0 E 63, 0, 0 E 63, 0, 0 E 0, 0, 0 E
A4 -, 0, 0 E 65, 0, 0 E 63, 0, 0 E 63, 0, 0 E 2, 0, 0 E
B1 75, 0, 0 E 28, 0, 0 E 73, 0, 0 E 30, 0, 0 E 0, 0, 0 E
B2 -, 0, 0 E 11, 0, 0 E 73, 0, 0 E 73, 0, 0 E 0, 0, 0 E
B3 29, 2, 0 E 29, 1, 0 E 33, -, 0 E 33, -, 0 E 8, 2, 1 E
B4 1, 0, 0 E 1, 0, 0 E -, 0, 0 E -, 0, 0 E 0, 1, 1 E
B5 75, 0, 0 E 1, 0, 0 E 73, 0, 0 E 73, 0, 0 E 8, 0, 0 E
C1 -, 7, 7 I 249, 7, 7 I 207, 5, 5 I 207, 5, 5 I 9, 5, 5 I
C2 249, 0, 0 E 29, 0, 0 E 207, 0, 0 E 123, 0, 0 E 0, 0, 0 E
C3 -, 0, 0 E 33, 0, 0 E 207, 0, 0 E 207, 0, 0 E 19, 0, 0 E
D1 168, 0, 0 E 114, 0, 0 E 124, 0, 0 E 81, 0, 0 E 12, 0, 0 E
D2 168, 0, 0 E 37, 0, 0 E 124, 0, 0 E 124, 0, 0 E 16, 0, 0 E
D3 168, 0, 0 E 65, 0, 0 E 124, 0, 0 E 105, 0, 0 E 2, 0, 0 E
D4 168, 0, 0 E 15, 0, 0 E 124, 0, 0 E 124, 0, 0 E 10, 0, 0 E
E1 31, -, - W 28, 18, 17 I 109, 109, 109 S 47, 47, 109 W 18, 12, 10 I
E2 -, -, - S 38, 18, 17 I -, 109, 109 I -, 109, 37 I 24, 10, 10 I
E3 125, 0, 0 E 16, 0, 0 E 109, 0, 0 E 109, 0, 0 E 11, 0, 0 E
F1 151, 0, 0 E 67, 0, 0 E 106, 0, 0 E 54, 0, 0 E 25, 0, 0 E
F2 151, 0, 0 E 44, 0, 0 E 106, 0, 0 E 54, 0, 0 E 9, 0, 0 E
F3 151, 0, 0 E 48, 0, 0 E 106, 0, 0 E -, 0, 0 E 9, 0, 0 E
G1 1, 0, 0 E 1, 0, 0 E -, 0, 0 E -, 0, 0 E 0, 0, 0 E
G2 -, 1, 1 I 13, 1, 1 I 154, 0, 0 E 114, 0, 0 E 11, 0, 0 E
G3 -, -, - S 36, 34, 34 I 154, 154, 154 S 154, 154, 154 S 2, 2, 2 S
H1 116, 2, 0 E 116, 1, 0 E 96, -, 0 E 96, -, 0 E 13, 2, 1 I
H2 -, 2, 0 E 97, 1, 0 E 73, 11, 0 E 73, 11, 0 E 16, 2, 0 E
H3 -, -, - S 57, 4, 4 I -, 117, 117 I -, 50, 50 I 4, 1, 1 I
H4 -, -, - S 8, 7, 7 I 117, 15, 15 I 117, 15, 15 I 13, 5, 5 I
I1 1, 1, 1 S 2, 1, 1 I 19, 19, 19 S 19, 19, 19 S 0, 0, 0 S
I2 2, 1, 1 I 2, 1, 1 I 21, 21, 21 S 21, 21, 21 S 15, 15, 15 S
I5 0, 5, 5 W 0, 3, 3 W 15, 105, 105 W 15, 15, 15 W 0, 1, 1 W
I4 0, 0, 0 E 0, 1, 1, W 15, -, -, W 15, -, -, W 0, 3, 3, W
I6 1, 1, 1 S 2, 1, 1 W 23, 23, 23 S 23, 23, 23 S 0, 0, 0 S

Figure 8: Results for test cases with incomplete code

6 Conclusions
We have presented bridge parsing as a technique to recover from syntactic errors
in incomplete programs with the aim to produce an AST suitable for static seman-
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Test Antlr AntlrBT Beaver BeaverEP LPG
A5 9, 0, 0 E 9, 0, 0 E 63, 0, 0 E 63, 0, 0 E 5, 0, 0 E
C4 248, 4, 2 I 193, 193, 2 I 207, 207, 34 I 153, 153, 34 I 4, 4, 1 I

Figure 9: Results for test cases with missing starts

Test Antlr AntlrBT Beaver BeaverEP LPG
A6 0, 3, 3 W 0, 3, 3 W 0, 2, 2 W 0, 2, 2 W 0, 1, 1 W
B6 0, 10, 10 W 0, 64, 64 W 0, 73, 73 W 0, 23, 23 W 0, 4, 4 W
I3 0, -, 0 E 0, 14, 0 E 0, -, 105 W 0, -, 23 W 0, 4, 4 W
J1 0, 17, 17 W 0, 59, 59 W 0, 49, 49 W 0, 49, 49 W 0, 15, 15 W
J2 0, 0, 0 E 0, 0, 0 E 0, 13, 13 W 0, 13, 13 W 0, 3, 3 W

Figure 10: Results for test cases with tricky indentation

tic analysis. This enables tool developers to use existing parser generators when
implementing IDEs rather than writing parsers by hand. The approach has proven
successful when combined with several parser generators in our IDE generator for
JastAdd based compilers in Eclipse.

The approach is highly general and can be used in combination with many
different parsing technologies. We have validated this claim by showing how it
improves error recovery for three different parser generators in common interactive
editing scenarios.

One of the main goals of this work is to lower the burden on language devel-
opers who want to provide IDE support for their language. It is pleasant to notice
that the language models for bridge parsing are very light-weight, yet yield good
recovery on complex languages as exemplified by Java in this paper. We believe
that it would be easy to adjust the bridge parser presented in this paper to support
other languages as well.

As future work we would like to investigate the possibility of integrating his-
tory based information into the bridge model, work on improving the handling
of incorrect layout and investigate how to derive bridge grammars from existing
base-line grammars [11]. An other area we would like to look into is to improve
the test suite by observing editing patterns passively from existing code and ac-
tively during development.
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PAPER III

NATURAL AND FLEXIBLE
ERROR RECOVERY FOR
GENERATED PARSERS

Abstract

Parser generators are an indispensable tool for rapid language development. How-
ever, they often fall short of the finesse of a hand-crafted parser, built with the
language semantics in mind. One area where generated parsers have provided un-
satisfactory results is that of error recovery. Good error recovery is both natural,
giving recovery suggestions in line with the intention of the programmer; and flexi-
ble, allowing it to be adapted according to language insights and language changes.
This paper describes a novel approach to error recovery, taking into account not
only the context-free grammar, but also indentation usage. We base our approach
on an extension of the SGLR parser that supports fine-grained error recovery rules
and can be used to parse complex, composed languages. We take a divide-and-
conquer approach to error recovery: using indentation, erroneous regions of code
are identified. These regions constrain the search space for applying recovery
rules, improving performance and ensuring recovery suggestions local to the error.
As a last resort, erroneous regions can be discarded. Our approach also integrates
bridge parsing to provide more accurate suggestions for indentation-sensitive lan-

Maartje de Jonge, Emma Nilsson-Nyman, Lennart C.L. Kats, Eelco Visser
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guage constructs such as scopes. We evaluate our approach by comparison with
the JDT Java parser used in Eclipse.

1 Introduction

Domain-specific languages offer substantial gains in expressiveness and ease of
use for a particular problem domain. To efficiently construct and use domain-
specific languages, language development environments should be used, such as
IMP [6], the Meta-Environment [27], MontiCore [14], openArchitectureWare [8],
or Spoofax/IMP [13]. With these tools, languages are constructed using a gram-
mar as the principal artifact. Using a parser generator, a grammar can be used
to automatically generate a parser. When deployed, the parser constructs abstract
syntax trees (ASTs) from programs, used to provide the user with syntactical and
semantic editor services, such as an outline view and error marking.

Parser generators are an indispensable tool for rapid language development,
allowing the language to be quickly changed according to new domain insights
and needs. Yet general-purpose programming languages are often still constructed
using handcrafted or partially handcrafted parsers. For example, the Java parser
used in the popular Eclipse JDT Java editor, is based on a parser generated by Jike-
sPG (now known as LPG) [5]. However, the parser employs handwritten recovery
rules as well as a number of large, customized Java components.

The reason often stated for not using a purely generated parser is that they fall
short of the finesse of a handcrafted one, built with the language semantics in mind.
A particular area where generated parsers have provided unsatisfactory results is
that of error recovery, which is essential for parsing incomplete and syntactically
incorrect programs, and thus indispensable for interactive editors. Problems with
error recovery in generated parsers are the quality of the recovered program and
the reported errors, and finding a good trade-off between recovery quality and
performance.

Some parser generators allow custom recovery rules to improve error recovery
quality [2, 5, 10, 12]. Custom recovery rules allow a language engineer to inspect
and improve an error recovery strategy. Compared to a handcrafted parser, a rule-
based recovery specification is much easier to maintain, especially as languages
are changed or reused to build new languages. Another way to improve error
recovery is through grammar analysis, such as LPG’s scope detection [5].

In previous work we introduced an approach to error recovery that derives
properties from grammars to produce explicit, customizable recovery rules [12].
Using scannerless generalized-LR (SGLR) parsing, the approach supports lan-
guages with a complex lexical syntax, such as AspectJ [3], and language em-
beddings and extensions, such as the Stratego program transformation language
with embedded Java fragments [30]. Using generalized parsing, SGLR can parse
ambiguous grammars. By considering the different ambiguous meanings of a syn-
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tactically incorrect program, through inspection of an expanding search space for
applying the set of recovery rules, the approach can provide recovery suggestions
that local recovery methods cannot.

An open problem we identified with our approach is that some search space-
based suggestions are too “creative” and not natural (i.e., as a programmer would
suggest them) [12]; in some cases it is simply better to ignore a small part of
the input file, rather than to try and fix it using a combination of insertions and
discarded substrings. Another open problem is that for tight clusters of errors, it is
not always feasible to provide good suggestions in an acceptable time span.

In order to provide better, more natural suggestions, the present paper proposes
an approach to identify the region in which a parse error is found. By restricting
the search space for applying the recovery rules to this region, it becomes much
less likely that the user is presented with “creative” suggestions that are nowhere
near the original error. Using a smaller search space also helps performance. To
further help performance, we add a form of “panic mode” [7]: if no solution of
applying the recovery rules is found within an acceptable time span, the entire
region can be skipped and marked as erroneous. This way, the parser can still
continue, report other errors, and construct a partial AST.

We select erroneous regions based on indentation usage. Using indentation,
programs typically form logical, nested regions of code. The approach of us-
ing layout information for partitioning files has been inspired by the technique of
bridge parsing [20]. Bridge parsing is a supplementary technique to grammar-
based error recovery. It uses structural information, such as typical use of inden-
tation for bracket placement, to improve recovery quality. To further improve the
quality of recovery suggestions, we adapted the bridge parsing approach to be us-
able with an SGLR parser.

We have identified and focus our paper on two open issues with error recovery
for generated parsers. The first is the quality of corrections, which is often lacking
since a generic solution is not aware of the semantics or typical structure of a
language. The second is that given high-quality recovery, a good balance with the
performance of error recovery must be maintained. To address these issues, this
paper provides the following contributions:

• The use of layout to select regions of code that enclose a syntax error. These
can be analyzed in detail by a secondary strategy, or discarded if no recovery
is found within an acceptable time span.

• The application of bridge parsing based on a context-free (tokenizer) gram-
mar rather than a scanner, showing how bridge parsing can be integrated
into a parser rather than used as a preprocessor, improving results.

• The use of grammars for automatic construction of a tokenizer grammar and
the heuristic derivation of a bridge parser specification.

We begin this paper with background on error recovery and setting out a number of
requirements for good error recovery. In Section 3, we show how regions around a
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syntax error can be selected and used for coarse-grained error recovery. Section 4
describes how these regions can be used to apply recovery production rules. We
refine error recovery for scopes based on bridge parsing in Section 5. Finally,
Section 6 evaluates our approach and compares different configurations, using the
Eclipse JDT parser as a baseline.

2 Error Recovery
Parsers serve two purposes: determining the grammatical structure of an input pro-
gram, and syntactically validating it. Given the grammatical structure, the parser
constructs an abstract syntax tree (AST), used for semantic analysis in tools such
as compilers or editors. While performing syntactic validation, a parser also re-
ports any errors that exist in the input.

A good parser does not only report the first character or token that is not valid
according to the grammar, but also provides the user with a more sophisticated
diagnosis. It can for example report missing constructs (e.g., “} expected here”).
An even better parser also supports error recovery: based on the analysis of an
error, it can recover from an error and continue parsing the rest of a file. Recovery
techniques can be divided into correcting error recovery, which tries to transform
the input string into a syntactically correct one, and non-correcting error recovery,
which tries to continue the analysis by skipping parts of the input [7].

Error recovery plays an important role in modern, interactive development en-
vironments (IDEs). IDEs parse a file as it is typed in, making incomplete programs
and syntax errors the common case rather than the exceptional one. Using error
recovery, a parser can still construct a partial abstract syntax tree, allowing the IDE
to perform semantic analysis and provide the user with interactive feedback (e.g.,
error marking, content completion).

In their comparative study, Degano and Priami [7] set out a number of qual-
ity criteria for good error recovery strategies, on which we will elaborate here.
We distinguish between aspects that impact users and developers of a language.
Firstly, there are three main criteria with respect to the end user’s experience:

• Constructing a good AST: The recovered program should be as close to the
program as intended by the programmer as possible. Since the AST is used
for syntactic and semantic editor services in the IDE (e.g., the outline and
error markers), the quality of the reconstructed AST is of great importance
for the user experience.

• Providing good feedback: The parser should provide the user with good
suggestions of how to fix the program. Spurious error messages should be
avoided; instead, a small number of natural suggestions should be reported.

• Delivering adequate performance: For interactive use, the error recovery
mechanism must not incur an unacceptable overhead. As their last criterion,
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Degano and Priami have suggested to only take performance degradation
into account only if greater than a fixed maximum value.

Important criteria for developers of a language or an IDE (plugin) are:
• Flexibility: The approach must be easily adaptable to language insights and

language changes.

• Language independence: an error recovery algorithm should be indepen-
dent of a particular language. It should be usable with any given grammar,
without introducing a prohibitive amount of work.

• Transparency: it should be clear why a particular recovery is presented. The
grammar engineer should have insight into how the recovery works for a
given grammar.

3 Coarse-grained Error Recovery
A parser that supports error recovery typically operates by consuming tokens (or
characters) until an erroneous token is found. At the point of detection of an error,
the recovery mechanism is activated. Simple, local approaches to error recovery
will then attempt to make a modification to the input so that at least one more
original symbol can be parsed [7]. For most cases, this works quite well. There
are cases, however, particularly for complex languages, where these algorithms
choose a poor repair that leads to further problems as the parser continues (“spuri-
ous errors”).

Spurious errors are the result of one of the major problems in error recovery:
the difference between the point of detection and the actual location of an error
in the source program [7]. In contrast to local methods, global recovery methods
examine the entire program and make a minimum of changes to repair all syntax
errors [2, 17]. While these give the “best” repair, they are not efficient.

An alternative approach to local or global recovery is to consider only the di-
rect context of the error, by identifying the region of code in which the errors
reside [16, 18, 21]. Using regions for error recovery has three main advantages.
Firstly, they reduce the search space for a recover algorithm. Secondly, they con-
strain the recovery suggestions to a particular part of the file, avoiding suggestions
that are spread out all over the file. And thirdly, they can be used as a secondary
recovery strategy [7], i.e. erroneous regions can be discarded entirely if a detailed
analysis of the region does not provide a better recovery solution.

3.1 Nested Structures as Regions
Code constructs such as “while” statements and method bodies form good regions
for regional error recovery. They form free standing blocks, in the sense that they
can be omitted without influencing the interpretation of other blocks. Erroneous
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class X {
int i;

void methodX(){
i=1;
if(true){

foo();
bar();

}
m();

}
}

Figure 1: Indentation closely follows the hierarchical structure of a program.

free standing blocks can simply be skipped, providing a coarse recovery that allows
the parser to continue. A typical technique to select such regions is to look for
certain marker tokens in the context of an error, such as the fiducial tokens of Pai
and Kieburtz [21]. These tokens depend on the language used. For example, for
Java, keywords such as class and while could be used. We will take a more
language-independent approach in this paper.

The method presented in this section is based on the use of indentation to
detect code constructs. Indentation typically follows the logical nesting structure
of a program, as illustrated in Figure 1. The relation between constructs can be
deduced from the layout. An indentation shift to the right indicates a parent-child
relation; the same indentation indicates a sibling relation.

Indentation usage is not enforced by the language definition. Proper use of
layout is a convention, being part of good coding practice. We generally assume
that most programmers apply layout conventions, but should keep in mind the
possibility of inconsistent indentation usage.

Proper recognition of nesting structures prevents bad recoveries, obtained by
merging structures that do not belong together. Figure 2 illustrates this idea with
the example of a method that is missing a closing brace. The parser tries to parse
the method header of the second method as a statement, which leads to a failure
at the open brace in the method header. Indentation suggest that both methods
should be considered as separate constructs. An indentation-based region selector
will detect the erroneous if-block; which leads to the recovery presented in the
middle part of the figure. An inferior recovery would be obtained by removing
tokens surrounding the error detection point. The example at the right shows the
result, merging the erroneous method with the correct method.

3.2 Indentation-based Region Selection

We follow an iterative process to select an appropriate region that encloses a syntax
error. Each iteration, a different candidate region is considered. This candidate is
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class X {

int methodX(){
if(true){

foo(); / / }

return 5;
}

void methodY(){
int i=5;
bar(i);

}
}

class X {

int methodX(){

return 5;
}

void methodY(){
int i=5;
bar(i);

}
}

class X {

int methodX(){
if(true){

foo(); / / }

return 5;
}

int i=5;
bar(i);

}
}

Figure 2: Erroneous code (left), discarded erroneous region (middle), and merged
constructs (right)

then either validated or rejected; in case of a rejected candidate, another candidate
is considered. We show example scenarios in Figure 3.

Figure III.3(a) shows a syntax error and the point of detection, indicated by a
triangle (left figure). A candidate region can be selected based on the alignment
of the void keyword and the closing bracket (middle figure). The candidate is
then successfully validated by discarding the region, and attempting to parse the
remainder of the file (right figure). After validation, the parser can be reset to
its previous state (indicated by the circle, which represents a choice point for the
parser). A detailed analysis of the region may be used to attempt to repair the
erroneous region, as we will see in the following sections.

Figure III.3(b) illustrates a rejected candidate region. Based on the point of
detection, an obvious candidate region may be the m2 method (middle figure).
However, an attempt to parse the construct that follows it leads to a premature
parse failure; the region is rejected. Figure III.3(c) revisits the example. Another
candidate region is selected, this time one preceding the point of detection. This
region is successfully validated.

The region validation criteria should balance the risk of selecting the wrong
candidate, which may lead to spurious errors, and the risk of rejecting a correct
candidate region. The latter typically occurs in the context of multiple errors, in
which a new, unrelated error causes the parser to fail again. Both cases lead to
large regions, which should be avoided. We currently consider a region valid if the
two lines of code succeeding it parse correctly, which has shown good practical
results.

Selection Schema

The candidate regions are explored in an ordered fashion, with the aim to find the
smallest fragment enclosing the error first.
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(a) A candidate region is validated and successfully discarded.

(b) A candidate region is rejected.

(c) An alternative candidate region is validated and successfully discarded.

Figure 3: Recovery by discarding of regions
while(true)){

foo();
}

Figure 4: Extra )

Current structure The first candidate region is the construct starting from the
error detection location. The region is recognized by a forward skip until the end
of the construct is found. The construct ends with the last child (more indentation),
including the closing bracket after the last child (same indentation). In Figure 4,
the parser fails after reading the mistakenly inserted second brace. Discarding the
entire while statement resolves the error.

Previous structure The second candidate is the structure preceding the error
detection location. The region is detected by a backwards skip, using the indenta-
tion information stored in the choice points. Typical problems that are solved by
discarding the previous structure are uncompleted lines and scope errors caused
by a missing closing brace. The error in Figure 5 is detected after the bar();
statement, while the preceding line caused the error.
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void methodX() {
foo(
bar();

}

Figure 5: Missing );

if(true){
foo();

else
bar();

Figure 6: Missing }

Siblings Regions that are mutually dependent should be discarded as a whole.
A typical example is provided in Figure 6. The unclosed “then” clause cannot
be discarded, because the “else” clause cannot exist in isolation. The “sibling-
procedure” deals with this situation. The procedure starts with the current structure
as discarded region. Then it successively includes the prior sibling and the next
sibling, until a valid erroneous region is found or all siblings have been considered.

Parent The next region to consider is the parent structure, identified through a
forward and backward search for a decrease in indentation. Identifying the parent
structure can be useful when a child that is missing or erroneous. Parent child
dependencies are rarely seen in common programming languages, but they can
occur in DSLs. The example in Figure 7 shows a simple person data language
with an error in the required field email. Apart from solving errors in parent-
child dependencies, the parent selection scheme adds some robustness with respect
to inconsistent indentation.

While the selection schemata have been designed to be generally applica-
ble, the success of our approach depends on assumptions of indentation conven-
tions and language characteristics. Conventions for widely used programming
languages seem to meet the assumption that the indentation follows the logical
nesting structure of the program. A more problematic issue is the (mis)use of in-
dentation by programmers. Inconsistent indentation usage decreases the quality of
the results, although some robustness for small deviations can be expected. The
second assumption we make is that programs have free standing blocks, i.e. that

Person
Name: John
email: ????

Figure 7: Illegal email property
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bar();
while(true)

foo();
doX();

while(true)
{

foo();
}

Figure 8: Different indentation styles

discarding a region still yields a valid program. Again, conventional programming
languages seem to meet this requirement. However, some (declarative) languages
use constructs that cannot be discarded because they are syntactically obligatory.
Such languages can lead to large regions.

3.3 Implementation Considerations

We implemented the region selection method in SGLR, in order to use it in col-
laboration with recovery rules [12]. The selection method does not depend on spe-
cific features of generalized parsing and can be implemented in other LR parsers
as well.

Layout conventions for braces Varying conventions for closing and open-
ing braces are used. They can be omitted in some situations, besides the position
of the opening brace can vary. The figure illustrates the problem with a concrete
example. Two code fragments with the same indentation characteristics, have a
different decomposition in regions.

The need to cover all different notations in a language independent way, has
greatly increased the complexity of the implementation. A simple solution would
be provided by an explicit recognition of those tokens. This would make the al-
gorithm more precise and the implementation straight forward. However, this will
introduce a language dependency. We have chosen to stick with our language in-
dependent approach, and deal with the support for various brace-conventions in
the code. In case of doubt, we assume the notation including the braces on sepa-
rate lines. The main disadvantage is that sometimes one or two correct lines are
included in the selected region.

Whitespace parse A simple discarding of erroneous regions will offer a re-
covery and allows the parser to continue the analysis, however the information
about line and column numbers may be lost. This will cause problems in the sce-
nario of interactive editor support. A simple solution is offered by whitespace
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class X{
....
void methX(){...}
void methY(){...}
void methZ(

Figure 9: An uncompleted class

parsing. All symbols, except newlines and tabs are parsed as whitespace. Infor-
mation about skipped regions can be used to generate error messages.

Parse tree completion We maintain only a limited number of choice points
to backtrack to, to ensure that there is only a negligible overhead when parsing
(parts of) files without errors. This limitation means that in some cases the layout-
based region selection cannot provide a candidate region. For example, the class
construct in Figure 9 is unfinished, and can only be discarded as a whole. Com-
plementary to the region selection schemata, we implemented a technique that
completes the parse tree for an unfinished code fragment. In this way, at least the
already recognized part of the code can be reported to the programmer. A pro-
gram prefix missing only a few closing tokens at the end, can be completed to a
valid program by inspection of the parse table. Although the missing next token is
not known, a list with possible tokens can be retrieved from the parse table. The
completion method creates separate stack branches for each possible “next state”,
deduced from the list of possible tokens. After a number of parse steps using this
branching mechanism, an accepting state will be found. Generalized parsers like
SGLR and GLR provide native support for branching. The method works efficient
if only a few general branching steps are required, which corresponds to a small
number of missing tokens. Therefore, we apply the method on the location of the
last big reduction, the closing brace of methY, in the example.

4 Fine-grained Error Recovery
We can improve upon the coarse-grained recovery approach by using it in conjunc-
tion with a more fine-grained, correcting error recovery method. In this section we
outline how the error recovery productions of [12] can be used to perform fine-
grained error recovery inside erroneous regions.

Error recovery productions allow for a high-level, grammar-oriented way of
customizing a recovery strategy [2, 10]. Because the language engineer must
design them a priori, they have sometimes been criticized for being language-
dependent [7]. In [12] we introduced a way to derive recovery rules from a gram-
mar, and added general rules that can simply skip over erroneous code fragments.

Following [12], recovery productions are written just as any other production,
annotated with the {recover} annotation. We use the flexible SDF syntax def-
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inition formalism [29] for the specification of grammars and their recovery rules.
As an example of an SDF production, consider the following Java production:

"{" BlockStm* "}" -> Block {cons("Block")}

This rule specifies that a { literal, followed by a list of BlockStm symbols and
a closing } literal, can be parsed as a Block. The {cons} annotation specifies
the name used for the node in the abstract syntax tree. Based on this rule (and
taking global properties of the grammar into consideration, as outlined in [12]),
the following recovery production rule can be derived:

-> "}" {recover, cons("INSERT")}

This production specifies that a possible recovery is to parse the empty string
(hence the empty left-hand side) instead of the closing } literal. Annotated {recover},
this insertion recovery rule is only used when recovery is required.

In addition to insertion recovery rules, [12] also specifies lexical “catch-all”
production rules to discard unparsable substrings. Together, these rules could parse
any string, distinguishing only “words” and “separators”:

[A-Za-z0-9\_]* -> WATERWORD {recover}
~[A-Za-z0-9\_\ \t\r\n] -> WATERSEP {recover}

Each application of recovery rule incurs a cost of 1. A minimal-cost solution
may be the best possible match with the programmer’s intention. However, con-
sidering all candidate recoveries for a complete file results in a search space that
is too large to inspect within reasonable time. In [12] we applied an unbounded,
expanding search space to discover a recovery solution with a minimum cost. For
most cases, this approach is effective, but for a number of pathological cases, the
unbounded search leads to unacceptable recovery times, or to far-fetched, non-
local recovery suggestions.

By restricting the search space to a selected region of code, recovery perfor-
mance and locality can be improved. Smaller regions (fewer than four lines) are
reparsed, applying a bounded number (three in the current implementation) of re-
cover productions. For larger regions, we assume that the error can be corrected
in the three lines nearest to the parse failure, which seems to be the case in most
practical examples. If the application of recovery rules does not lead to a success-
ful repair, the entire region can be discarded using the whitespace parse approach
discussed in the previous section.

5 Bridge Parsing
One of the most common errors made by programmers is omitting closing brackets
of scopes, since scopes are recursive structures need to be properly balanced [5].
A parser can recover in these cases by inserting the missing braces. Unfortunately,
there are often many possible locations where a missing brace can be inserted.
Consider for example the Java fragment of Figure 10. This fragment might be
recovered by inserting a closing brace at the start of line 2, 3, or 4. However, the
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1 class C {
2 void m() {
3 int y;
4 int x;
5 }

Figure 10: Missing }

use of indentation suggests the best choice may be just before the int x; declara-
tion. Bridge parsing [20] provides an algorithm to improve error recovery based
on indentation. Provided with knowledge of typical usage in Java programs, it can
correctly recover cases such as the example above. It can be configured to work
for any given language, and works independently of a particular parser technology.

Inspired by island grammars [19, 28], a bridge parser employs a scanner that
only recognizes tokens that make up scoping structures (“islands”) and important
tokens for determining how those islands should be connected (“reefs”). All other
tokens (“water”) are skipped. Given a list with these kind of tokens, the bridge
parser constructs a bridge model, which captures the scopes in the input. A scope
in this context corresponds to two islands connected with a bridge. Two islands
will only match if a pre-defined set of conditions is fulfilled. Missing bridges
in the bridge model reveal broken scopes. They can be repaired by locating an
appropriate “construction site” for inserting a new, artificial island, matching the
island in need of recovery. A new bridge can then be constructed. An algorithm
for incrementally constructing multiple bridges is given in [20].

5.1 Scannerless Bridge Parsing

Composed languages and languages with a complex lexical structure (such as As-
pectJ) cannot or can only with great difficulty be parsed using a separate scan-
ner [3]. For example, the scanner for the Java language recognizes enum as a
keyword. This means that it can never be parsed as an identifier. When Java is
extended or composed with another language, this restriction also applies for the
combined language. Using the same scanner, a composition of Java and SQL
cannot parse programs where enum is an SQL identifier. Using scannerless pars-
ing [24], these issues can be elegantly addressed [3].

Since bridge parsing as presented in [20] is based on the notion of a scanner,
it cannot support languages that depend on scannerless parsing or parsing with
a context-sensitive scanner. Still, bridge parsing only depends on a small set of
tokens, such as brackets and keywords, not on a full scanner definition. So why
can we not just construct a scanner for those literals in the grammar? The problem
is that each sequence of characters, there can potentially be many different lexical
and literal interpretations. Again consider enum, which is keyword in Java, but
may also be an identifier in the composed Java-SQL or Stratego-Java languages.
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module Java-SQL-Tokenizer

context-free start-symbols
Class Stm Expr ...

context-free syntax%% token l i s t definit ions for a l l start symbols

ClassToken Class -> Class {cons("Cons")}
-> Class {cons("Nil")}

context-free syntax%% tokens and the {cons} name of their production

EnumDecHeadToken -> ClassToken {cons("EnumDecHead")}
SQLId -> ClassToken {cons("Id")}

lexical syntax%% lexical token definit ions

"enum" -> EnumDecHeadToken
[A-Za-z]+ -> SQLId

Figure 11: A (partial) generalized tokenizer definition for the Java-SQL language.

To overcome the difficulties of a scanner-based approach, we introduce the
notion of a generalized tokenizer. This tokenizer constructs all possible token
interpretations, forming an ambiguous token stream. We implement this tokenizer
based on the grammar of a language. For example, given the Java-SQL definition,
we mechanically strip all context-free productions and retain only definitions for
literals and lexical symbols. For each sort in the grammar, we then generate a start
symbol that parses the different lexicals and literals reachable from that state. A
(partial) tokenizer grammar for Java-SQL is illustrated in Figure 11. Using the
Class start symbol, this grammar constructs the following token stream (a list of
Cons and Nil nodes) for the string enum Color{}:

[ amb([EnumDecHead("enum"), Id("enum"])
, LAYOUT(" "), Id("Color")
, amb([EnumBody("{"), ClassBody("{"), Block("{"), ...])
, amb([EnumBody("}"), ClassBody("}"), Block("}"), ...])]

where ambiguities in the token stream are indicated with an amb term. For com-
posed languages, these token streams quickly grow more complex as the number
of different token interpretations increases.

We simplify the token stream by considering only those tokens that are of
interest to the bridge parser, and by flattening the ambiguities to create multiple,
possible interpretations that have no deep ambiguities. After that, the bridge parser
can assign different island classes, reef classes, and water to the tokens:

[KeywordReef("enum"), LayoutReef(" "), Water("Color"), LBrace, RBrace]

In this list, the LBrace and RBrace classes encompass all interpretations for the
{ literal. In the remainder of this section we will discuss how the binding between
these tokens and the bridge parsing island classes is specified.

5.2 The Bridge Parsing Specification

A bridge parser is generated from a bridge parser specification (or bridge gram-
mar) [20]. It defines all islands, reefs, and rules for matching and recovering is-
lands. Attributes can be added to islands and reefs to help with matching in rule
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grammar Layout;

abstract island LayoutStart;
abstract island LayoutEnd;
abstract reef Layout;

bridge from LayoutStart to LayoutEnd;

attr Layout LayoutStart.indent =
[first left Layout];

attr Layout LayoutEnd.indent =
[first left Layout];

java-attr int Layout.pos =
...embedded java code...

recover LayoutStart find [a:Layout]
where (a.pos <= this.indent.pos)
insert bridge-end before a;
...

Figure 12: A generic bridge grammar.

grammar SimpleJava;

import Layout;

island LBrace : LayoutStartIsland = "{"
for-sglr("EnumBody"|"ClassBody"|...);

island RBrace : LayoutEndIsland = "}"
for-sglr("EnumBody"|"ClassBody"|...);

reef Indent : LayoutReef =
NEWLINE|(WS|TAB)+

bridge from LBrace to RBrace;
...

Figure 13: A bridge grammar for Java.

expressions. These specifications are composable and can be extended in sev-
eral steps. Generic behavior such as “closest match recovery” or “layout-based
recovery” is defined in a generic specification that can be reused and redefined
by other grammars. Figure 12 lists parts of a generic bridge grammar that spec-
ifies layout-based recovery. The grammar specifies abstract LayoutStart and
LayoutEnd islands that must be connected by a bridge. It also adds indent and
pos attributes that can be used to do layout-based matching, as described in [20].
The recover rule uses these attributes to construct an artificial LayoutEnd island
to repair bridges from LayoutStart islands.

We extended the bridge parser specification language for the purpose of in-
tegrating it with SGLR, adding a new for-sglr clause to capture the different
possible interpretations for one token or character. For example, braces in Java
have several possible interpretations according to the SGLR tokenizer grammar.
Figure 13 shows how these can be captured using the for-sglr clause. The argu-
ments of the clause correspond to the node types in the generalized token stream,
seen in the previous subsection. The grammar in Figure 13 imports the generic
layout grammar, and provides concrete implementations for the abstract islands
and reef defined in that grammar.

Using the bridge grammar, the bridge parser derives a bridge model from the
token stream (illustrated in the previous subsection). Because of ambiguous in-
terpretations, there may be multiple possible token streams. By assigning island
and reef classes that may encompass multiple node types, some of these can be
eliminated. In case more than one alternative remains, we currently pick the inter-
pretation with the fewest number of broken bridges.
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5.3 Deriving Bridge Parser Specifications
SDF grammars are fully declarative, and do not allow semantic actions or callbacks
to native code. This property makes SDF grammars well-suited for analysis. In
previous work we applied automated analysis of SDF grammars to derive recovery
productions [12]. To help language engineers efficiently employ bridge parsing
with an SDF grammar, we do the same for a bridge parser specification.

Island definitions are central to the bridge parser specification. Typical candi-
dates for island definitions are scoping constructs, such as { } in curly brace pro-
gramming languages. Scoping constructs are generally nestable structures, which
means that their grammar productions are recursive. For example, scopes in Java
are defined as follows:

"{" BlockStm* "}" -> Block {cons("Block")}
Block -> Stm
Stm -> BlockStm

We consider a production p ↵ q � r -> S to define a scoping construct for
opening literal ↵ and closing literal � to form a scoping construct if the following
conditions are satisfied:

• the production is recursive;

• literals ↵ and � are not identical;

• literals ↵ and � appear only in productions of the form p ↵ q � r -> S

where ↵ and � are not part of patterns p, q, or r;

• the literals do not appear in a production with the {bracket} annotation.
The second condition excludes literals such as ` in shell scripts, since they are
typically not nestable. The third condition ensures that we only select literals that
appear in a balanced fashion throughout the grammar, ensuring that the bridge
parser does not try to introduce opening or closing literals for unbalanced literals.
The final condition ensures that we do not select constructs that define parentheses.
Unlike scopes, parentheses (marked with the {bracket} annotation in SDF) have
no direct semantic meaning other than modifying the priority of other operators.
Because of this property, parentheses are typically not indented the same way as
scopes.

For each opening and closing literal, we generate island definitions and bridge
rules similar to those in Figure 13. To complete the bridge parsing specification,
we also generate reef rules for all reserved words in the language. Reserved words
in SDF are defined using a {reject} annotation that indicates they cannot be used
as an identifier. For composed languages where these words may not be globally
reserved; the bridge parser then considers both interpretations.

Automatically deriving recovery rules helps maintain a valid, up-to-date re-
covery rule set as languages evolve and are extended or embedded into other
languages. Grammar engineers may also customize the derived specification to
handle further cases and to introduce different indentation styles.
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5.4 Combining Fine-grained Error Recovery and Bridge
Parsing

Bridge parsing excels at correcting scope errors, while fine-grained recovery is the
designated approach to recover more localized errors like a missing semicolon. In
case the erroneous region contains both types of errors, a combination of both
techniques is required to find an optimal recovery. To do this, we extend the
fine-grained recovery process to handle suggestions provided by the bridge parser.
Each suggestion gives rise to an extra stack branch that is explored in parallel with
the other recovery branches. In this way, the bridge parser suggestions are taken
into account, but only applied if they lead to a least-cost recovery.

6 Evaluation
We implemented our approach based on JSGLR, a Java implementation of SGLR
[11], extending it with support for coarse-grained recovery and refining the sup-
port for recovery rules of [12]. The bridge parser implementation, also written in
Java, is based on the implementation of [20], and adapted to support ambiguous
token streams and recovery of regions rather than complete files. We evaluate our
error recovery according to the criteria set out in Section 2. We study the quantita-
tive criteria through evaluation of the parser using a set of test files written in Java.
Java was selected because of its ubiquity in software development and in modern
IDEs such as the Eclipse JDT, offering a challenging comparison. We will also ar-
gue that our approach satisfies the qualitative criteria of providing good feedback,
flexibility, language independence, and transparency.

Construction of the Test Set We evaluate using an extended version of the
test set used in [20]. The base test set was originally constructed for testing struc-
tural recovery of Java code, and focused on syntax errors such as missing braces
pr parenthesis. The extended test set includes tests for both structural and non-
structural errors, and is available from [1]. We intentionally included some cases
with inconsistent use of indentation, since those are difficult to handle for the
bridge parser, i.e. basic layout recovery depends on good indentation information.
The test set contains three major categories of tests; missing – structural tokens
for grouping, closure or division are missing (65 tests), extra – there are too many
structural tokens (8 tests), and other – remaining errors like erroneous statement,
or missing comment end (3 tests). Together, these total to a set of 76 test cases.

Setting up the Experiment All tests are run in an automated fashion, com-
paring the pretty-printed ASTs for the erroneous files to the pretty-printed ASTs
for the original, correct files they were derived from. We use two methods for
comparison: First, we do a manual inspection, following the quality criteria of
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Pennello and DeRemer [22]. Following these criteria, an excellent recovery is one
that is exactly the same as the intended program, a good recovery is close to this
result, and a poor recovery introduces spurious errors. Since this is arguably a
subjective comparison, we also count the number of lines of code that changed in
the recovered result (the “diff”). The advantage of this approach is that it is objec-
tive, and assigns a larger penalty to recoveries where a larger area of the text does
not correspond or is placed in an incorrect scope. The resulting figures are also
arguably easier to interpret than comparing tree distances.

Various Approaches We compare the integrated recovery approach presented
in this paper to different configurations of the individual techniques and to the
parser used by Eclipse’s JDT. We apply the test set with the following parser
configurations; the JDT parser; the JDT parser with a bridge parser (BP) pre-
processor, as suggested in [20] (BP!JDT); our approach without using bridge
parsing (Course Grained (CG) ! Fine Grained (FG)); our approach with the
bridge parser as a preprocessor (BP!CG!FG); the fully integrated approach
(CG!BP+FG); and finally the same approach with a tuned bridge parser spec-
ification (CG!BPtun+FG).

Except for the final configuration, the three SGLR-based parsers use fully au-
tomatically derived recovery specifications. In contrast, specialized, handwritten
recovery rules and classes related to recovery are used for the JDT parser. For
the tests we used the JDT parser with statement-level recovery enabled, follow-
ing [15]. In some of the test cases, particularly those with multiple errors, the
parser was unable to recover the entire body of a method. For content completion,
Eclipse uses a secondary parser that can analyze these method bodies. Because
of its specialized nature, we have not included it in our experiments. Both the
bridge parser used as a preprocessor and the one integrated into SGLR use the
same recovery rules and node types.

Results

The diff values acquired for the various approaches are shown in Figure 15 and
the same values with a quality distinction are shown in Figure 14. Considering
both diagrams, we see that the SGLR parser, parsing using different steps and
granularity, consistently outperforms the JDT parser. When fully integrated with
the bridge parser, the best results are obtained.

Using the bridge parser in a preprocessor setting was shown to be effective for a
number of different parsers in [20]. For the JDT parser, we can see that the results
are improved using the bridge parser as a preprocessor. When combined with
SGLR, however, we see that the preprocessing approach does not work well. We
speculate that these results arise because the bridge parser can only insert braces
to recover scopes, never remove them, since it does not have enough knowledge
of the complete language. However, when it is actually integrated into SGLR,
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Figure 14: Quality of Recovery The x axis shows percentage of tests. Each bar
shows the percentage of recoveries which where excellent, non-excellent or failed
for each approach. CG - Coarse Grained, FG - Fine Grained, BP - Bridge Parsing,
JDT - Java Developer Toolkit
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Figure 15: Diffs for Various Approaches The y axis shows percentage of tests
and the y axis shows categories of number of diff lines – No diff (0), Small diff
(1� 10), Medium diff (11� 20) and Large diff (> 20). CG - Coarse Grained, FG
- Fine Grained, BP - Bridge Parsing, JDT - Java Developer Toolkit
the bridge parser’s suggestions lead to the best results. Manual inspection of the
non-excellent results for each approach reveals more in-depth knowledge:

• JDT (49 missing, 4 extra, 2 other): A majority of the cases are in the missing
category. The most common recovery is for JDT to skip the whole content
of a block if there is an error. This explains why the diff values for JDT tend
to be higher.

• BP!JDT (34 missing, 5 extra, 2 other): The bridge parser helps to reduce
the number of cases in the missing category. However, it fails to improve
cases which are of out of scope for the bridge parser, for example, missing
semicolons or extra structural tokens.

• CG!FG (24 missing, 4 extra, 3 other): Also has a majority of cases in the
missing category, particularly missing braces (both start and end).
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• BP!CG!FG (27 missing, 5 extra, 3 other): This combination does not
work out very well. The bridge parser manages to slightly improve cases in
the missing category, but makes things worse in some of the other cases.

• CG!BP+FG (8 missing, 3 extra, 3 other): This is the best option. The
robustness of SGLR evens out the rough edges of the bridge parser, using
it more like a consultant and discarding bad advice. In practice, this means
that tests in the missing category see a huge improvement. There is a slight
improvement in the extra category, while the others categories stay the same.

• CG!BPtun+FG (8 missing, 3 extra, 3 other): There are no visible changes
using this tuned bridge parser. The partial recoveries performed by the
bridge parser show a small improvement, i.e., if there is more than one error
one of the two gets a better recovery but the end result is the same.

Our experiments have not indicated that using a “tuned” bridge parser specifica-
tion helps results. Tuning in this context can be quite tricky due to the various uses
of, for example, a keyword. Turning all keywords into reefs will potentially ruin
recoveries. For example, considering a for loop missing a left parenthesis, with
too many keywords defined as reefs, the bridge parser might insert a left parenthe-
sis too early. If both int and for are keywords and there is a rule stating that a
recovery shall not pass a reef, then the left parenthesis will be inserted before the
int and not before the for. This indicates that keywords must be chosen with
care and the set should probably be quite small.

Concerning the selection of error fragments by the coarse grained recovery
approach, manual inspection revealed that the right segment is identified for most
of the test cases – both in position and size. Generally, however, there can be cases
where selecting the right error fragment is difficult, which can result in a poor
recovery.

While we have not performed an in-depth performance study, we set a maxi-
mum of 1 second for completing each test run, to allow for good responsiveness
when used in an interactive environment (where the parser runs in a background
thread). All tests complete within this time limit. The pathological cases previ-
ously identified for the Stratego-Java language [30] used to take much longer than
this time limit [12], but with the addition of the coarse-grained recovery mech-
anism now also complete within this time limit. By constraining the expensive
fine-grained recovery rules to a small region, setting an upper bound for the num-
ber of cases to consider per region, and introducing the possibility to fall back to
discarding an entire region, the performance issues seem to have been resolved.

The Impact of Indentation Usage Since our approach depends on layout,
one issue to address is robustness in case of inconsistent indentation. The tab size
used greatly affects the indentation levels in a file. The tab size might change, and
tabs and white spaces are often mixed. IDEs such as Eclipse can automatically
insert spaces for tabs and maintain indentation settings per project, avoiding some
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of these problems. Possible strategies for more robustness are: 1) Using averages
to determine the indentation shift, and in that way handle different indentation
shifts within a file or project. 2) Rounding off exact indentation offsets to their
approximate indentation level. Some times the exact indentation position has an
off-by-one position, e.g., there might be three spaces when the indentation shift is
four. This situation can cause indentation matching problems. The two strategies
can be combined, normalizing the indentation levels to match the indentation shift
in the rest of the file or fragment.

Qualitative Evaluation When working with interactive parsing the most im-
portant thing is to provide a good service to the user. We integrated our approach
into Eclipse based on the Spoofax/IMP editor environment [13]. Based on the
recovery productions, the editor gives accurate feedback. Following [12], every
class of recovery rule is associated with a particular message (e.g., “} expected”).

For the language engineer, flexibility, language independence, and transparency
of the approach are important qualitative criteria. Our approach is highly flexible
as it allows for customization of the high-level bridge parsing and recovery rules
specifications. Yet, it maintains language independence by deriving defaults for
these specifications, ensuring it is in line with the expectations of parser genera-
tors. By deriving explicit, customizable specifications, the approach is also highly
transparent.

7 Related Work
In previous work, we introduced error recovery for SGLR, based on parse error
productions that can be automatically derived from a grammar [12], and described
its integration in Spoofax/IMP [13]. The present paper refines this work, constrain-
ing the application of recovery rules to coarse-grained regions and adding support
for bridge parsing.

Bridge parsing was previously applied purely as a preprocessor for other parsers
[20], ensuring that it repaired scope-related errors before other errors are recov-
ered. We found that this approach was ineffective in combination with the production-
based recovery approach of SGLR (see Section 6). Furthermore, using a scanner,
the bridge parser was unable to cope with the lexical complexity of composed lan-
guages. The present work introduces a scannerless tokenizer and fully integrates
the bridge parser into SGLR to address these issues.

Using SGLR parsing, our approach can be used to parse languages with a
complex lexical syntax and composed languages. In related work, only a study by
Valkering [26], based on substring parsing [23], offered a partial approach to error
recovery with SGLR parsing. Composed languages are also supported by parsing
expression grammars (PEGs) [9]. PEGs lack the disambiguation facilities [29] that
SDF provides for SGLR. Instead, they use greedy matching and enforce an explicit
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ordering of productions. To our knowledge, no automated form of error recovery
has been defined for PEGs. However, existing work on error recovery using parser
combinators [25] may be a promising direction for recovery in PEGs. Further-
more, based on the ordering property of PEGS, a “catch all” clause is sometimes
added to a grammar, which is used if no other production succeeds. Such a clause
can skip erroneous content up to a specific point (such as a newline) but does not
offer the flexibility of our approach.

There are several different forms of error recovery techniques for LR pars-
ing [7]. These techniques can be divided in correcting and non-correcting tech-
niques. The most common non-correcting technique is panic mode. On detection
of an error, the input is discarded until a synchronization token is reached. Then,
states are popped from the stack until the state at the top enables the resumption
of the parsing process. Our coarse-grained recovery algorithm can be used in a
similar fashion, but selects discardable regions discarded based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or delete
tokens nearby the location of an error, until parsing can resume. Successful recov-
ery mechanisms often combine more than one technique [7]. For example, panic
mode is often used as a fall back method if the correction attempts fail.

Burke and Fisher [4] present a method based on three phases of recovery. The
first phase looks for simple correction by the insertion or deletion of a single token.
If this does not lead to a recovery, one or more open scopes are closed. The last
phase consists of discarding tokens that surround the parse failure location. We
improve on their work by taking indentation into account, for the scope recovery
using an adapted version of bridge parsing [20], as well as for the coarse recover
technique. In addition, by starting with region selection, the performance as well
as the quality of the fine-grained technique [12], is improved.

Regional error recovery methods [16, 18, 21] select a region that encloses the
point of detection of an error. Typically, these regions are selected based on nearby
marker tokens (also called fiducial tokens [21]), which are language-dependent. In
our approach, we assign regions based on layout instead.

The LALR Parser Generator (LPG) [5] is incorporated into IMP [6] and is
used as a basis for the Eclipse JDT parser. LPG can derive recovery behavior
from a grammar, and supports recovery rules in the grammar and through semantic
actions. Like our approach, LPG detects scopes in grammars. However, unlike our
approach, it does not take indentation into account for scope recovery.

8 Conclusion

Source code has a hierarchical structure that generally is reflected in the usage
of layout and indentation. We have shown that this property can be exploited to
confine syntax errors to small regions of code, and to provide better, more natural
error recovery suggestions. Our approach to error recovery provides language
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independence by automatically deriving language-specific recovery behavior from
grammars. Yet by allowing customization of the recovery behavior, using fine-
grained recovery rules and a high-level bridge parsing specification, the approach
maintains flexibility.
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Abstract
Reference attribute grammars can be used for compiler generation, and are based
on dynamic attribute evaluation with caching. Practical performance can be im-
proved by selecting to not cache certain attributes. We present a profiling-based
technique for automatically finding a good caching configuration. The technique
has been evaluated on a generated Java compiler, compiling programs from the
DaCapo benchmark suite. Based on profiling of a single program in the suite, with
only 50.2% attribute coverage, we obtained a mean compilation speedup of 23.5%,
which is close to that obtained by a manual expert configuration (31.7%).

1 Introduction
Reference attribute grammars (RAGs) [9] have been shown useful for implement-
ing extensible compilers of high quality and good performance [2, 7], and are
being used in an increasing number of metacompilation systems [10, 13, 17, 19].
RAGs are based on dynamic attribute evaluation where attributes are evaluated
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on demand, and their values are cached (memoized) for obtaining optimal perfor-
mance [11]. Caching has a cost in both execution time and memory consump-
tion, and performance can therefore be improved in practice by selective caching,
caching only a subset of the attributes, a caching configuration.

But determining a good caching configuration is not easy to do manually. It
requires a good understanding of how the underlying attribute evaluator works, and
a lot of experience is needed to understand how different input programs can affect
the caching inside the compiler. Ideally, the compiler developer should not need
to worry about this, but let the system compute the configuration automatically.

To help solve this problem, we have developed a technique for automatically
computing a caching configuration, based on profiling. We have evaluated the ap-
proach experimentally on a generated compiler for Java [7]. This compiler is im-
plemented using JastAdd [8], which is a metacompilation system based on RAGs.

The rest of this paper is structured as follows. Section 2 gives background on
reference attribute grammars and their evaluation, explaining the JastAdd caching
scheme in particular. Section 3 introduces the concept of an AIG, an attribute
instance graph with call information, used as the basis for the caching analysis.
Section 4 introduces our technique for computing a cache configuration. Section 5
presents an experimental evaluation of the approach. Section 6 discusses related
work, and Section 7 concludes the paper with a discussion and future work.

2 Reference Attribute Grammars
Reference Attribute Grammars (RAGs) [9], extend Knuth-style attribute gram-
mars [14] by allowing attributes to be references to nodes in the abstract syntax
tree (AST). This is a powerful notion because it allows the nodes in an AST to be
connected into the graphs needed for compilation. For example, a type graph con-
necting subclasses to superclasses [6], or a control-flow graph between statements
in a method [15].

In attribute grammars, attributes are defined by equations in such a way that for
any attribute instance in any possible AST, there is exactly one equation defining
its value. The equations can be viewed as side-effect-free functions which make
use of constants and of other attribute values.

In RAGs, it is allowed for an equation to define an attribute by following a
reference attribute and accessing its local attribute. For example, suppose node
n1 has attributes a and b, where b is a reference to a node n2, and that n2 has an
attribute c. Then a can be defined by an equation as follows:

a = b.c

For Knuth-style attribute grammars, dependencies are restricted to attributes in
parents or children. But the use of references gives rise to non-local dependencies,
i.e., dependencies that are independent of the AST hierarchy: a will be dependent
on b and c, where the dependency on b is local, but the dependency on c is non-
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local: the node n2 referred to by b could be anywhere in the AST. The resulting
attribute dependency graph cannot be computed without actually evaluating the
reference attributes, and it is therefore difficult to statically precompute evaluation
orders based on the grammar alone. Instead, evaluation of RAGs is done using a
simple but general dynamic evaluation approach, originally developed for Knuth-
style attribute grammars, see [11]. In this approach, attribute access is replaced by
a recursive call which evaluates the equation defining the attribute. To speed up
the evaluation, the evaluation results can be cached (memoized) in order to avoid
evaluating the equation for a given attribute instance more than once. Caching all
attributes results in optimal evaluation in that each attribute instance is evaluated
at most once. Because this evaluation scheme does not require any pre-computed
analysis of the attribute dependencies, it works also in the presence of reference
attributes.

Caching is necessary to get practical compiler performance for other than the
tiniest input programs. But caching also implies an overhead. As compared to
caching all attributes, selective caching may improve performance, both concern-
ing time and memory.

2.1 The JastAdd Caching Scheme

In JastAdd, the dynamic evaluation scheme is implemented in Java, making use of
an object-oriented class hierarchy to represent the abstract grammar. Attributes are
implemented by method declarations, equations by method implementations, and
attribute accesses by method calls. Caching is decided per attribute declaration,
and cached attribute values are stored in the AST nodes using two Java fields:
one field is a flag keeping track of if the value has been cached yet, and another
field holds the value. Figure 1 shows the implementation of the equation a = b.c,
both in a non-cached and a cached version. It is assumed that a is declared in a
class N and that the equation is declared in the subclass SubN . It is furthermore
assumed that a is of type A. The example shows the implementation of a so called
synthesized attribute, i.e., an attribute defined by an equation in the node itself.
The implementation of a so called inherited attribute, defined by an equation in an
ancestor node, is slightly more involved, but uses the same technique for caching.
The implementation is also simplified as compared to the actual implementation
in JastAdd which takes into account, for example, circularity checking. These
differences are, however, irrelevant to the caching problem.

This caching scheme gives a low overhead for attribute accesses: a simple test
on a flag. On the other hand, the caching pays off only after at least one attribute
instance has been accessed at least twice. Depending on the cost of the value
computation, more accesses than that might be needed for the scheme to pay off.

JastAdd allows attributes to have parameters. A parameterized attribute has
an unbounded number of values, one for each possible combination of parameter
values. To cache accessed values, the flag and value fields are replaced by a map
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// non-cached version
abstract class N {

abstract A a();
}

class SubN extends N {
A a() {return b().c();}

}

// cached version
abstract class N {
boolean a_cached = false;
A a_value;
abstract A a();

}

class SubN extends N {
A a() {
if (! a_cached) {

a_value = b().c();
a_cached = true;

}
return a_value;

}
}

Figure 1: Caching scheme for non-parameterized attributes

where the actual parameter combination is looked up, and the cached values are
stored. This is a substantially more costly caching scheme, both for accessing at-
tributes and for updating the cache, and more accesses per parameter combination
will be needed to make it pay off.

3 Attribute Instance Graphs
In order to decide which attributes that may pay off to cache, we build a graph
that captures the attribute dependencies in an AST. This graph can be built by
instrumenting the compiler to record all attribute accesses during a compilation.
By analyzing such graphs for representative input programs, we would like to
identify a number of attributes that are likely to improve the performance if left
uncached. We define the attribute instance graph (AIG) to be a directed graph
with one vertex per attribute instance in the AST. The AIG has an edge (a1, a2) if,
during the evaluation of a1, there is a direct call to a2, i.e., indirect calls via other
attributes do not give rise to edges. Each edge is labelled with a call count that
represents the number of calls. This count will usually be 1, but in an equation like
c = d+d, the count on the edge (c, d) will be 2, since d is called twice to compute
c.

The main program is modelled by an artificial vertex main, with edges to all
the attribute instances it calls. This may be many or few calls, depending on how
the main program is written.

To handle parameterized attributes, we represent each accessed combination of
parameter values for an attribute instance by a vertex. For example, the evaluation
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main!

e(4)!

e(3)!a!

b!

c! d!

1!
1!

1!
2!

1!

2!

x! instance of attribute x!

n!x! y! when evaluating x, y is called n times!

LEGEND:!

Figure 2: Example AIG

of the equation d = e(3) + e(4) + e(4) will give rise to two vertices for e, one for
e(3) and one for e(4). The edges are, as before, labelled by the call counts, so the
edge (d, e(3)) is labelled by 1, and the edge (d, e(4)) by 2, since it is called twice.
Figure 2 shows an example AIG for the following equations:
a = b.c

c = d+ d

d = e(3) + e(4) + e(4)
and where it is assumed that a is called once from the main program.

3.1 An Example Grammar
Figure 3 shows parts of a typical JastAdd grammar for name and type analysis.
The abstract grammar rules correspond to a class hierarchy. For example, Use
(representing a use of an identifier) is a subclass of Expr. The first attribution
rule:

syn Type Expr.type();

declares a synthesized attribute of type Type, declared in Expr and of the name
type. All nodes of class Expr and its subclasses will have an instance of this
attribute. Different equations are given for it in the different subclasses of Expr.
For example, the equation

eq Use.type() = decl().type();
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abstract Expr;
Use : Expr ::= ...;
Literal : Expr ::= ...;
AddExpr : Expr ::=

e1:Expr e2:Expr;

Decl ::= Type ... ;

abstract Type;
Integer : Type;
Unknown : Type;

...

syn Type Expr.type();
syn Type Decl.type() = ...;

eq Literal.type() =
stdTypes().integer();

eq Use.type() = decl().type();
eq AddExpr.type() =
(left.type().sameAs(right.type()) ?
left.type() : stdTypes.unknown();

syn Decl Use.decl() = lookup(...);
inh Decl Use.lookup(String name);
inh Type Expr.stdTypes();

syn boolean Type.sameAs(Type t) = ...;
...

Figure 3: Example JastAdd attribute grammar

says that for a Use node, the value of type is defined to be decl().type().
The attribute decl() is another attribute in the Use node, refererring to the ap-
propriate declaration node, possibly far away from the Use node in the AST. The
decl() attribute is in turn defined using a parameterized attribute lookup, also
in the Use node. The lookup attribute is an inherited attribute, and the equation
for it is in an ancestor node of the Use node (not shown in the grammar). For
more information on name and type analysis in RAGs, see [6].

Figure 4 shows parts of an attributed AST for the grammar in Figure 3. The ex-
ample program contains two declarations: "int a" and "int b", and two add
expressions: "a + b" and "a + 5". For the decl attributes of Use nodes, the
reference values are shown as arrows pointing to the appropriate Decl node. Sim-
ilarly, the type attributes of Decl nodes have arrows pointing to the appropriate
Type node. The nodes have been labelled A, B, and so on, for future reference.

Figure 5 shows parts of the AIG for this example. In the AIG we have grouped
together all instances of a particular attribute declaration, and labelled each at-
tribute instance with the node to which it belongs. For instance, since the node D
has the three attributes (type, decl, and lookup), there are three vertices la-
belled D in the AIG. For parameterized attribute instances, there is one vertex per
actual parameter combination, and their values are shown under the vertex. For
instance, the sameAs attribute for I is called with two different parameters: J
and K, giving rise to two vertices. (K is a node representing integer literal types
and is not shown in Figure 4.) All call counts in the AIG are 1 and have therefore
been omitted.
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Figure 4: An example attributed AST
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Use.decl
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I
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I
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Figure 5: Parts of the AIG for the example

4 Computing a Cache Configuration

Our goal is to automatically compute a good cache configuration for a RAG spec-
ification. A cache configuration is simply the set of cached attributes, CACHED,
which is a subset of the full set of attribute declarations, FULL. The FULL set is
furthermore divided into two disjoint sets PARAM and NONPARAM, for parameter-
ized and nonparameterized attributes respectively. There are some attributes that
will always need to be cached, due to properties of the specification, e.g., circular
attributes. We let the set PRE denote this set of attributes.

As a basis for the computation, we do profiling runs of the compiler on a set of
test programs, producing the AIG for each program. These runs are done with all
attributes cached, allowing us to use reasonably large test programs, and making it
easy to compute the AIG which reflects the theoretically optimal evaluation with
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each attribute instance evaluated at most once.
It cannot be assumed that a single test program uses all attributes. We let

USED be the set of attribute declarations for which at least one instance is called,
and UNUSED the complementary set, UNUSED = FULL \ USED.

4.1 Excessive Calls
The calls label on the edges in the AIG reflects the number of attribute calls in
an all cached configuration. To find out if a certain attribute is worth uncaching,
we define extra_evals(ai), i.e., the number of extra evaluations of the attribute
instance ai that will be done if the attribute a is not cached:

extra_evals(ai) =

(
calls(ai)� 1, if a 2 NONPARAM
P

p2params(ai)
(calls(p)� 1), if a 2 PARAM

(1)

where params(ai) is the set of vertices in the AIG representing different parame-
ter combinations for the parameterized attribute instance ai. The number of extra
evaluations is a measure of what is lost by not caching an attribute. The total num-
ber of extra evaluations for an attribute a is simply the sum of the extra evaluations
of all its instances:

extra_evals(a) =
X

ai2Icalled(a)

extra_evals(ai); (2)

where Icalled(a) is the set of attribute instances of a that are called at least once.
Finally, we define the set ONE containing attributes with no extra evaluations of
any of its instances. ONE = {a 2 USED \ PRE : extra_evals(a) = 0}.

4.2 Selection of Test Programs
Naturally, it is desirable that the test program has a large attribute coverage, i.e., as
large a USED set as possible, in order to be able to compute a good configuration.
To obtain as complete coverage as possible, it is advisable to also run erroneous
programs which may use attributes specific to error checking. If the cache con-
figuration is based on test programs with incomplete coverage, the attributes in
UNUSED should be selected to be cached, in order to not risk performance degra-
dation for other programs using those attributes.

5 Evaluation
To evaluate our approach we have applied it to the Java compiler JastAddJ [7].
This compiler is specified with RAGs using the JastAdd system. The specification
comes with a manual cache configuration composed by the compiler author, an
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expert on RAGs, making an effort to obtain as good compilation speed as possible.
The compiler performs within a factor of three as compared to the standard javac
compiler, which is good considering that it is generated from a specification. It
is clearly an expert configuration, and it cannot be expected that a better one can
be obtained manually. In terms of attribute sets, JastAddJ has a FULL set of size
1031, a PRE set of size 30 and manual configuration of size 381 (MANUAL).

In our experiment, we have profiled the compilation of a single Java program,
and used the resulting AIG to compute different cache configurations. We have
then selected the best configuration and used it to benchmark the compilation of a
suite of programs, comparing our configuration with MANUAL and FULL.

5.1 Experimental setup
All measurements were run on a high-performing computer with two Intel Xeon
Quad Core @ 3.2 GHz processors, a bus speed of 1.6 GHz and 32 GB of primary
memory. The operating system used was MacPro 3.1 and the Java version was
Java 1.6.0._15. We used a documented measurement approach and benchmark
suite [4].

Measuring of performance The JastAddJ compiler is implemented in Java
(generated from the RAG specification), so measuring its compilation speed comes
down to measuring the speed of a Java program. This is notoriously difficult, due to
dynamic class loading, just-in-time compilation and optimization, and automatic
memory management [4]. To eliminate as many of these factors as possible, we use
the multi-iteration approach suggested in [5]. We start by warming up the compiler
with a number of non-measured compilations (5), thereby allowing class loading
and optimization of all relevant compiler code to take place, in order to reach
a steady state. Then we turn off the just-in-time compilation and run a couple of
extra unmeasured compilations (2) to drain any JIT work queues. After that we run
several (20) measured compilation runs of which we compute confidence intervals
of 95%. In addition to this, we start each measured run with a forced garbage
collection (GC) in order to obtain as similar conditions as possible for each run.
Memory usage is measured by checking of available memory in the Java heap after
each forced GC call and after each compilation. The measurements are given with
a confidence interval of 95%.

Benchmark suite We used the projects from the DaCapo suite as the basis for
profiling and testing. ANTLR, an LL(k) parser generator (ca 35 000 LOC). Bloat,
a program for optimization and analysis of Java bytecode (ca 41 000 LOC). Chart,
a program for plotting of graphs and rendering of PDF files (ca 12 000 LOC). FOP,
parses XSL-FO file and generates PDF files (ca 136 000 LOC). HsqlDb, a database
application (ca 138 000 LOC). Jython, a Python interpreter (ca 76 000 LOC).
Lucene, a program for indexing and searching of large text corpuses (ca 87 000 LOC).
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PMD, a program for analyzing Java classes for a range of source code problems
(ca 55 000 LOC). Xalan, a program for transformation of XML documents into
HTML (ca 172 000 LOC). The DaCapo suite also contains Eclipse, but this project
was excluded due to compilation issues.

Cache configurations We want to compare the result of using different kinds
of cache configurations. To start with we have access to an expert configuration in
the MANUAL set and two basic configurations:

M MANUAL, cache a manually selected set of attributes

B1 FULL, cache all attributes in the specification

B2 PRE, cache only attributes that are inherently cached, e.g., circular attributes

By applying our profiling scheme, counting number of calls and evaluations of
attributes on a test program, we can obtain the following three profiled configura-
tions:

P1 USED [ PRE, like B2, but cache also all used attributes

P2 (USED \ ONE) [ PRE, like P1, but do not cache attributes that are evaluated
only once

P3 (USED \ ONE) [ PRE [ UNUSED, like P2, but cache also attributes not used
by the profiling program

The expert configuration M is interesting to compare to, as it would be nice if we
could obtain similar results with our automated methods, and possibly even better
results.

The full configuration B1 is interesting as it is easily obtainable and robust with
respect to performance: there is no risk that a particular attribute will be evaluated
very many times for a particular input program, and thereby degrade performance.

The least possible configuration, B2, is interesting as it provides a lower bound
on the memory needed during evaluation. However, this configuration will in gen-
eral be useless in practice, leading to compilation times that increase exponentially
with program size.

P1 is interesting because it is an easy-to-compute configuration that will per-
form better for the profiled program than B1, by leaving out the initialization costs
for unused attributes. For other input programs, however, there is a risk of expo-
nential behavior.

P2 and P3 are like P1 and B1, but avoid caching of attributes that are used only
once for the profiling program. If we assume that this behavior is representative for
all input programs, i.e., that if these attributes are used, they are used only once,
then it will pay off to remove them from the caching configuration used by the
compiler. Depending on how much the attributes in UNUSED are used in different
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input programs, it might pay off to exclude or include them. For the profiled
program it clearly pays of to exclude them. However, for other input programs,
there is a risk of exponential behavior. So performance will be more robust if they
are included.

5.2 Profiling using Hello World
As an experiment we profiled a simple Hello World program. We compiled Hello
World using configurations B1, B2, P1, P2 and M. The results are shown in Fig-
ure 5.2. It is clear from these results that B2 is not a good configuration, even on
this small program. Even though it provides excellent memory usage, the execu-
tion time is several times slower than any of the other configurations. For a larger
application the B2 configuration would be useless.

B1 B2 P1 P2 M
40

60

80

Execution Time (ms)

B1 B2 P1 P2 M
0.8

1

1.2

1.4

·104
Used Memory (kb)

Figure 6: Compilation of Hello World The plots show the results of compiling
Hello World using different cache configurations. P1 and P2 are acquired from
profiling of the same application (Hello World). The I-shaped markers show the
confidence interval.

5.3 Profiling using ANTLR
As an example of a normal-sized Java program to use for profiling we chose
ANTLR from the DaCapo suite [4,18]. This choice was made arbitrarily: ANTLR
is the first program in the suite. When compiling ANTLR using JastAddJ, 50.2 %
of the attributes in the FULL set are used, which is a reasonable number consid-
ering that a lot of attributes deal with semantics not found in the average Java
application.

We ran the profiler on ANTLR and then compiled ANTLR using M, B1, B2,
P1, P2 and P3. The results are shown in Figure 7. We see that all the configurations
from the profiler end up somewhere between B1 and M. P2 performs best, among
the configurations from the profiler, with a mean speed-up of execution time at
23%, which is close to the speed-up of M (26%). P3 is clearly a better option than
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P1 showing that it pays off to remove the ONE set. P3, with a speed-up of 16% is
slower than P2. This is due to the inclusion of unused attributes, resulting in more
memory usage and initialization costs. However, we consider the performance of
P3 to be good considering that this configuration provides extra robustness.
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Execution Time (ms)

B1 M P1 P2 P3

1.5

2

2.5

3
·105

Used Memory (kb)

Figure 7: Compilation of ANTLR The plots show the results of compiling
ANTLR. The I-shaped markers show the confidence intervals.

Compiling other projects from the suite We apply the best configuration
from our experiments compiling ANTLR (P2), along with the best robust version
(P3), to the remaining projects in the benchmark suite. We also include B1 and
M for each project as a reference. The compilation results are shown in Figure 8.
The figure shows that the lack of robustness in P2 results in very bad performance
for half of the projects (FOP, Lucene, PMD and Xalan). The P3 configuration,
on the other hand, compiles all of the projects with good performance, close to
M in two cases (HsqlDb and Xalan) and better than M in two cases (Lucene and
PMD). Considering the speed-up of P3 as a geometric mean for all projects, we
get a speed-up of 23.5%. The corresponding mean for M is 31.7%.

Observations from the ANTLR trace In order to try to find out more about
the caching behavior, we generated an extended trace for ANTLR using full caching.
In this extended trace we note that for some attributes the number of evaluations
of a cached attribute is far more than one, as shown in Table 5.3.

These extra evaluations are due to rewrites included in the JastAddJ specifica-
tion. Rewrites are evaluated at first access to a subtree in an AST and are triggered
via expressions containing attributes. Attributes are cached during rewrites be-
cause changes in the AST may affect attribute values.
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Figure 8: Compilation of remaining projects The plots show the results of
compiling the remaining projects in the benchmark suite. The white bars show
execution time (ms), gray bars show memory usage (kb) and I-shaped markers
show confidence intervals. Time bars reaching the top of the diagram are slower
than B1 due to uncached attributes. These time bars do not have a corresponding
memory bar (not measured).
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Attributes (a 2 A) |Ia| calls(i) evals(i) cached(i)

AccessControl
syn ArrayDecl.accessibleFrom(TypeDecl) 10 54.8 7.4 48.4
syn ConstructorDecl.accessibleFrom(TypeDecl) 316 10.6 2.9 8.7
syn FieldDeclaration.accessibleFrom(TypeDecl) 254 0.8 1.8 0.0
syn MethodDecl.accessibleFrom(TypeDecl) 2 910 13.8 4.5 10.3
syn TypeDecl.accessibleFrom(TypeDecl) 264 99.9 8.5 92.3
syn TypeDecl.accessibleFromExtend(TypeDecl) 42 3.0 4.0 0.0
syn TypeDecl.accessibleFromPackage(String) 230 6.1 1.9 5.2

AccessTypes
syn Expr.isPackageAccess() 10 861 0.0 3.4 0.0
syn Expr.isSuperAccess() 692 0.9 1.0 0.9
syn Expr.isTypeAccess() 3 446 0.5 1.0 0.5

AncestorMethods
syn TypeDecl.ancestorMethods(String) 192 29.0 22.3 7.7

Annotations
inh Modifiers.lookupType(String,String) 2 918 0.0 1.0 0.0
syn ConstructorDecl.isDeprecated() 241 4.9 1.0 4.9
syn FieldDeclaration.isDeprecated() 958 10.3 1.0 10.3
syn MethodDecl.isDeprecated() 1 461 8.4 1.0 8.4
syn Modifiers.annotation(TypeDecl) 2 918 0.0 1.0 0.0
syn Modifiers.hasDeprecatedAnnotation() 2 918 0.0 1.0 0.0
syn TypeDecl.isDeprecated() 258 49.1 1.0 49.1
. . .

Table 1: Extract from the ANTLR trace Shows some of the attributes (A)
used under the compilation of ANTLR using full caching. The columns show
attributes (a 2 A) (grouped after aspects), number of attribute instances (|Ia|),
average number of calls to attribute instances of the attribute (calls(i), i 2 Ia),
average number of calls resulting in an evaluation (evals(i), i 2 Ia), and average
number of calls using cached values (cached(i), i 2 Ia).

6 Related Work

There has been a substantial amount of research on optimizing the performance of
attribute evaluators and to avoid storing all attribute instances in the AST. Much
of this effort is directed to optimize static visit-oriented evaluators, where a num-
ber of attribute evaluation visits is computed statically from the dependencies in
an attribute grammar. For RAGs, such static analysis is, in general, not possible
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due to the reference attributes. As an example, Saarinen introduces the notion
of temporary attributes that are not needed outside a single visit, and shows how
these can be stored on a stack rather than in the AST [16]. The attributes we have
classified as ONE correspond to such temporary attributes: they are accessed only
once, and can be seen as stored in the stack of recursive attribute calls. Other static
analyses of attribute grammars are aimed at detecting attribute lifetimes, i.e., the
time between the computation of an attribute instance until its last use. Attributes
whose instances have non-overlapping lifetimes can share a global variable, see,
e.g., [12]. Again, such analysis cannot be directly transfered to RAGs due to the
use of reference attributes.

Memoization is a technique for storing function results for future use, and is
used, for example, in dynamic programming [3]. Our use of cached attributes is a
kind of memoization. Acar et al. present a framework for selective memoization in
a function-oriented language [1]. However, their approach is in a different direc-
tion than ours, intended to help the programmer to use memoized functions more
easily and with more control, rather than to find out which functions to cache.
There are also other differences between memoization in function-oriented pro-
gramming, and in our object-oriented evaluator. In function-oriented program-
ming, the functions will often have many and complex arguments that can be dif-
ficult or costly to compare, introducing substantial overhead for memoization. In
contrast, our implementation is object-oriented, reducing most attribute calls to pa-
rameterless functions which are cheap to cache. And for parameterized attributes,
the arguments are often references which are cheap to compare.

7 Discussion and Future Work

We have presented a profiling technique for automatically finding a good caching
configuration for compilers generated from RAG specifications. Since the attribute
dependencies in RAGs cannot be computed statically, but depend on the evaluation
of reference attributes, we have based the technique on profiling of test programs.
We have introduced the notion of an attribute dependency graph with call counts,
extracted from an actual compilation. Experimental evaluation on a generated Java
compiler shows that by profiling on only a single program with an attribute cov-
erage of only 50.2%, we get a mean compilation speed-up of 23.5%, as compared
to caching all attributes. This is close to the performance obtained for a manually
composed expert configuration (31.7%). We find this result very encouraging and
intend to continue this work with more experimental evaluations. In particular,
we plan to combine the profiling of several programs to obtain a higher attribute
coverage, hopefully obtaining even better results, and to apply the technique to
compilers for other languages. Further, we would like study the effects on rewrites
in order to automatically obtain even better cache configurations.
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TECHNICAL REPORT II

A SEMANTIC EDITING
MODEL IN SUPPORT OF
REFERENCE ATTRIBUTE

GRAMMARS

Abstract

Good programming tools, like semantic editors with knowledge of the meaning
of a language, can help developers produce better programs. Sophisticated tool
support like this should be available to all language communities, but tool devel-
opment is often to costly for small communities. One way to reduce this cost is
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1 Introduction

Good programming tools like semantic editors, editors with knowledge of the se-
mantics of a programming language, are essential for efficient software develop-
ment. A sophisticated semantic editor can provide users with semantic services
like name completion, detection of code smells and refactorings, which help pro-
grammers efficiently produce high quality code.

In order for a textual semantic editor to provide semantic services, the editor
needs to construct a semantic model of the edited text. Normally, this semantic
model is in the form of an abstract syntax tree (AST), a model common in lan-
guage processors like compilers. With an available AST, an editor can provide
users with feedback of the current state of the AST. For instance, the editor can
show users semantic errors like missing variable declarations or unknown types.
Users expect semantic editors to provide feedback like this in response to change.
In order for an editor to provide up-to-date feedback, it needs to keep the underly-
ing AST synchronized with the edited text. As long as a user makes changes to the
edited text, this synchronization work continues. We call this continuous response
to change, in order to provide feedback, the feedback cycle.

While maintaining the feedback cycle, the editor needs to provide users with
semantic services. These services can either be provided as a response to updates
of the AST, like semantic errors, or be requested by the users, like refactorings.
We call the mechanism handling the feedback cycle and providing semantic infor-
mation via the AST the semantic editing model.

In this report we describe the semantic editing model supported by JedGen, a
tool with the purpose of generating semantic editors. Preferably, every language
should have sophisticated tool support like semantic editors, but tool development
is time-consuming and error-prone making it too costly for a lot of language com-
munities. Tool generators can reduce costs by generating tools from specifications.
The intention of JedGen is to generate semantic editors with support for services
like name completion and refactorings.

Besides lowering development costs, tool generators have the potential of gen-
erating better tools, compared to hand-crafted alternatives. For example, LALR
parser generators can generate complex parsers which would be difficult to im-
plement manually. This potential of generating better tools is due to the bene-
fits of a formal specification. For example, a parser is described using a formal
context-free grammar specification. The JedGen tool supports a formal specifica-
tion of semantics using reference attribute grammars (RAGs) [9], an extension of
attribute grammars (AGs) by Knuth [13]. AGs extend an context-free grammar
with context-sensitive semantic rules (attributes) in order to specify the semantic
of a language. RAGs extend AGs by letting these attributes have references to AST
nodes as values, which makes it easier to express, for example, declaration-use re-
lations in a language. RAGs present a powerful means for describing semantics
and have been used to describe compilers for languages like Java , the JastAddJ
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compiler [5], and Modelica, the JModelica compiler [1].
The generation of semantic editors using RAGs is related to other tool gener-

ators like the Synthesizer Generator by Reps and Teitelbaum [20], which gener-
ates AG-based syntax-directed editors. Other examples include the Mjølner/ORM
system by Magnusson and Hedin [10] which generates AG-based integrated envi-
ronments for object-oriented languages, and the Lrc system by Kuiper and Saraiva
[14], generating semantic editors, with semantics described using higher-order at-
tribute grammars (HAGs), another extension to AGs. JenGen’s support for RAGs
make it different from these tool generators. Part of the goal with JedGen is to
utilize the power of RAGs in semantic editors. Promising work by Schäfer et
al. [21,22] show that RAGs can be used to support sophisticated sevices like refac-
torings. RAGs can also be used to specify code smell services like detection of
dead code, as described by Nilsson-Nyman et al. in [19].

Besides tool generation, reuse of libraries and generic components can speed
up tool development. One example of a platform facilitating tool development by
reuse, is the Eclipse platform [4, 7]. Eclipse provides an integrated development
environment (IDE), which can be extended with new tools. The platform seam-
lessly integrates extending tools, called plug-ins, with other tools on the platform.
The semantic editors generated by JedGen are intended to run on the Eclipse plat-
form. As a consequence, the semantic editing model supported by JedGen is built
on top of Eclipse. Besides Eclipse, the JedGen tool uses the support for RAGs
offered by the JastAdd system [6] for generation of semantic service information.

The JedGen tool is still in its infancy, but an alpha version of the tool support-
ing the semantic editing model has been used by Schäfer et al. in their exploration
of refactorings [21, 22]. JedGen has also been used by several undergraduate stu-
dents, as a part of their thesis work [15–17], and in a graduate course on RAGs.

The rest of this report starts with a historical note on the development of Jed-
Gen in Section 2, followed by some background about the Eclipse platform and
the JastAdd system in Section 3. Section 4 describes the semantic editing model
and Section 5 gives a description of semantic services. Finally, Section 6 gives
some concluding remarks along with an outline of future work.

2 A Historical Note on the Development

The work on what is now called JedGen was started during a visit by the author to
Oxford during the summer of 2007. The original goal was to develop a semantic
editor for Java on top of Eclipse for refactoring experiments.

The Eclipse platform at the time already hosted the successful Eclipse Java
development tool (JDT), which is hand-crafted on top of the Eclipse platform.
An initial approach, extending the JDT implementation, was considered, but re-
jected in favor of generating parts of a semantic editor extending the existing Java
compiler JastAddJ, developed using RAGs. This second approach allowed for a
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RAG-based AST and more flexibility in developing RAG-based refactorings. As
the result of an exploratory addition of Java services, comparable to those found in
the Eclipse JDT, a semi-generated semantic Java editor reached a somewhat shaky
alpha state at the beginning of the fall of 2007. At this early stage, where we were
trying to build an environment with the same set of services as the JDT, we chose,
for example, to support textual editing.

This choice of supporting textual editing shed light on some of the difficul-
ties of maintaining a feedback cycle for textual editing. It was concluded that a
semantic editing model for textual editing needs robust parsing of text in order
to continuously construct internal ASTs. Several attempts were made to get the
existing LALR parser, generated by Beaver, robust by adding error productions.
It was noted that certain errors, which to the human eye seemed simple, totally
failed to parse. Typically, these were errors where characters defining the structure
of the code were missing, for example, a missing end brace for a Java method.
These errors might not look so bad to a user due to the secondary notation – in-
dentation. Hence, the idea to use indentation to facilitate error recovery via scope
recovery was born. This idea evolved during 2008 to what is now called bridge
parsing [3, 18].

The work on JedGen continued a couple of months during the summer of 2008,
but the tool was mainly polished during this period. The semantic editing model
went through a larger refactoring during the winter of 2009 moving it closer to its
existing design. During the first part of this year (2010) the, earlier nameless, tool
has been given the name JedGen for JastAdd-based semantic editor generator, as
the first step of what is to come.

3 Background
The intention is for JedGen to generate semantic editors which are to run on top
of the Eclipse platform. As a consequence, the semantic editing model is designed
with consideration of notions like plug-ins etc. supported by Eclipse. Besides the
influence of the Eclipse platform, the editing model is designed to support RAG-
based ASTs, as they are generated by JastAdd, a system supporting RAGs and
other AG extensions.

3.1 The Eclipse Platform

Eclipse, initiated in 2001 by a consortium of companies and organizations such
as IBM, Rational Software and RedHat Linux, became an not-for-profit corpora-
tion [7]. The Eclipse framework provides a platform for exploratory work as well
as large-scale software development. The platform has gained large acceptance
in industry, as well as in research, partly due to the well-known Eclipse Java De-
velopment Toolkit (JDT), which is similar to other Java development tools like
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NetBeans [2] and IntelliJ IDEA [12]. Several research groups use Eclipse as a
platform for their research.

The Plug-in Architecture The Eclipse platform is designed using a plug-in
architecture. A plug-in is a wrapping of a tool which describes how the tool either
depends on or extends other plug-ins. The platform is, except for a small hand-
coded core, entirely constructed using plug-ins. Except for a small set of default
plug-ins which are loaded on start-up, the platform loads new plug-ins when they
are needed by depending plug-ins.

For example, when a certain file type is double-clicked in a file browser the
editor matching the content-type of the file should be opened. The first time this
type of file is opened, the plug-in extending the platform with a suitable editor is
activated by the platform.

The platform offers a number of possible extension points which a plugin can
extend with functionality. One such example is the org.eclipse.ui.editors
extension point which provides a means for adding a new editor to the platform.
In addition to the extensions offered by the platform, new plug-ins can add new
extension points. All plug-ins extending the platform can be found via a plug-in
registry maintained by the platform.

Resources and Builders Eclipse uses the notion of a workspace in which
a user can create projects. Projects are the top level elements in the Eclipse
workspace. A project may contain a number of folders and files, but may not
be nested within other projects. All these resources – projects, folders and files,
correspond to entities in the file system of the underlying operating system.

Much in Eclipse depend on the concept of projects as top-level elements. Con-
figurations are set on the project level, for example, class paths and compiler ver-
sions. The logic of setting things like compiler version on a project is due to
Eclipse’s mapping of builders to projects. A builder is a plug-in extension that
creates an in-memory model, like an AST, by parsing a resource. Typically, a
builder is called when a resource, like a file, is saved or when a user requests a re-
build of a project. A project will typically have one or several builders listed in its
project configuration. These builders are called one by one when a build action is
requested. The calling of the builder plug-ins is completely handled by the Eclipse
platform.

3.2 The JastAdd System

JedGen uses the JastAdd system to generate semantic service information. The
JastAdd system supports RAGs, and other AG extensions, and the specification of
an abstract grammar defining the nodes of an AST. The abstract grammar and the
RAG notation in JastAdd support object-oriented inheritance and aspect-oriented
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inter-type declarations, both contributing with means for modular development
and extensibility.

Reference Attribute Grammars RAGs are an extension of attribute gram-
mars (AGs) presented by Knuth [13], which are a means for extending a context-
free grammar with context-specific semantic rules called attributes. The original
AG version supported two kinds of attributes – synthesized and inherited. Synthe-
sized attributes provide a means for propagating information upwards in the AST,
in a fashion similar to methods in Java. Inherited attributes provide a means for
propagating information downwards in the AST. Attributes are defined on node
types. Each instance of a certain node type will have its own attribute instances of
all attributes defined for the node type. Attributes are similar to functions in that
they are defined in terms of other attributes without any side effects. In Knuth’s
version of AGs, attributes are not allowed to depend on themselves (circular de-
pendencies) and attributes are defined in terms of child nodes and parent nodes of
the node on which the attribute is defined.

RAGs extend the original kind of AGs with the notion of reference attributes.
These are attributes that may have references to other nodes in the AST as values.
This is useful for defining definition-use relations and facilitates modular specifi-
cations.

Caching of Attribute Values JastAdd supports dynamic demand-driven eval-
uation of attributes, that is, attribute are evaluated when they are needed. Attributes
may depend on other attributes, which means that the evaluation of one attribute
may trigger evaluation of other attributes. For attribute values which are requested
several times, evaluation more than once is unnecessary, unless the state of the
AST has changed since the last request. In order to avoid unnecessary evaluation
of attributes, they can be defined to be cached, that is, their computed value can be
saved and reused in later requests.

In case the AST has changed since the last request of a cached attribute value,
the value needs to be flushed, that is, removed since it may depend on information
that has changed. Small changes of an AST may only affect a small subset of
all the attributes in an AST. Preferably, only those attribute affected by a certain
change of the AST, should be flushed. In order to accomplish an optimized flush-
ing of attributes, the dependencies between attribute need to be known. Automated
support for re-evaluation, incremental updating, of RAGs is an unsolved problem.
In JedGen, we therefore currently flush all attributes after any kind of change to an
AST.
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4 The Semantic Editing Model
The purpose of the semantic editing model is to maintain the feedback cycle and
provide semantic service information. To describe the details of the semantic edit-
ing model, we study an instance of a semantic editor showing the content of a
single file. We consider an editor to be an entity which can be instantiated in sev-
eral editor instances which are active at the same time. An editor instance shows
the content of a file modeled using a file AST, an AST with content corresponding
to the text in the editor instance. An editor instance queries its file AST for seman-
tic service information. In order for the file AST to provide its editor instance with
fresh semantic information it needs to stay up to date with the content of the editor
instance. The editing model needs to provide means for the following:

• Notification of change in an editor instance, in order to initiate a re-build of
a corresponding file AST.

• Parsing of files in editor instances in order to construct corresponding file
ASTs.

• Updating of ASTs in order to replace an old file AST with a new AST con-
structed in response to a change in an editor instance.

• Notification of updates to editor instances, in order for them to know when
new semantic information is available in their file AST.

• Provision of semantic service information from a file AST to the correspond-
ing editor instance.

The builder mechanism on the Eclipse platform provides a means for notification
of change, at least, changes discovered when a file is saved. We use this mecha-
nism to define a JedGen builder.

To handle parsing of files, suitable resource parsers need to be known to the
JedGen builder. The extension point mechanism in Eclipse provides a means for
adding extensions which can be found via the plug-in registry. We use this mech-
anism to add a resource parser extension accessible by the JedGen builder. For a
resource parser to update an existing file AST with a new instance we provide an
update interface.

For notification of change, the Eclipse platform makes extensive use of the ob-
server pattern [8], where an object maintains a list of observers which are notified
of changes in the state of the object. We make use of this pattern (calling observers
listeners) by letting editor instances listen to changes in their corresponding file
AST via a listener interface. Finally, to make the semantic information in the file
AST available to an editor instance, we define a service interface for each semantic
service in the editor instance.

The primary purpose of a file AST is to model the content of a file shown in
a corresponding editor instance. It is not to maintain, for example, listener lists
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Figure 1: An overview of the feedback cycle for one editor instance 1) The
editor instance sends a notification to the builder when a user saves a file. 2)
The builder looks up a suitable resource parser. 3) The resource parser translates
the file content to a file AST and sends it to the update interface of the semantic
kernel. 4) The kernel stores the file AST and notifies listeners (the editor instance)
of an update via the listener interface. 5) The editor instance queries the semantic
kernel for semantic information from its file AST via the service interface. 6) The
semantic kernel sends results via the service interface.

and notification. For tasks like these we use an other entity we call the seman-
tic kernel. The semantic kernel provides a repository for ASTs and maintains the
three interfaces presented above – the update, service and listener interfaces. In
maintaining, for example, the listener interface the semantic kernel handles regis-
tration, removal and notification of listeners, and in handling the service interfaces
the semantic kernel maps interface calls to attribute values in a file AST.

Figure 1 shows an editor instance, its corresponding file AST and the enclosing
semantic kernel providing update, listener and service interfaces. The figure illus-
trates the feedback cycle as an outer loop, and the provision of service information
as an inner loop. The outer loop reacts to save events in the editor instance by
calling the JedGen builder. The JedGen builder looks up a resource parser suitable
to parser the the saved file. The resource parser translates the file to a file AST
and sends it to the semantic kernel via the update interface. The semantic kernel
updates the internal representation of the file AST and notifies the listening editor
instance via the listener interface. In the inner loop, the editor instance queries
the semantic kernel for semantic information via a method call and the semantic
kernel returns results based on the query. The editor instance may, for example,
query the semantic kernel as a response to an update notification, or as a response
to a user request.
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4.1 Synchronization
Normally, in an interactive environment there are several active threads sharing the
work-burden in order to provide users with reasonable response times. This is also
true for the Eclipse platform, where, for example, builders run in a background
thread while editor instances run in a foreground thread dedicated to graphical
components. With this in mind, the semantic kernel needs to synchronize access
to the contained file AST. The synchronization involves the following:

• No escaping node references, meaning that no references to nodes of an AST
maintained by the semantic kernel are allowed outside of the kernel. This is
because external references may become out-dated due to updates of a file
AST.

• One locked access point, meaning that all access to the file ASTs, main-
tained by the semantic kernel, are accessed through one well-defined access
point protected by a lock (mutual exclusion). Typically, the top node of the
AST, the root node, is a good access point.

With the semantic kernel already maintaining the repository of ASTs, we can ex-
tend its responsibilities to also include synchronization and the prevention of es-
caping node references.

4.2 Cross-References between Files
Cross-references in a RAG-based AST may be references to variable declarations
from variable uses, or the reverse, references from variable declarations to variable
uses. In large applications the implementation is, normally, spread out over several
files. Preferably in this scenario, a use should be able to point to its declaration
even if it is defined in another file. In order to handle this using file ASTs, we need
to have references between ASTs. This is problematic since then we are referring
to nodes inside another AST and these nodes may be updated, hence, the reference
may become inconsistent. To handle references between ASTs we can, either, try
to manually manage the references, or we can introduce a new AST enclosing file
ASTs from, say, the same project. We choose the second alternative and introduce
an enclosing AST we call the project AST.

Nesting of file ASTs inside project ASTs requires no changes in the semantic
kernel. In fact, the semantic kernel can maintain both project ASTs and file ASTs
in the AST repository, or any other AST with a root connected to a resource on the
Eclipse platform. Figure 2 illustrates the structure of the project AST.

4.3 Loosely-Coupled Node References
Direct references to AST nodes from outside the AST, are not allowed but some
kind of references are necessary for updating, notification and querying for se-
mantic service information. For this purpose, we have added the concept of node
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1) Project level

2) File level

Project AST
File AST File AST

Figure 2: An overview of the project AST 1) The root of the AST corresponds
to a project. 2) The children of the root correspond to files in the parent project.
The dotted edges show how the enclosed file ASTs can support cross-references
between files.

keys, loosely coupled node references allowed outside of the semantic kernel. Each
node in an AST has a node key which is unique to the node. A node key contains
information of the enclosing project, file and a path to the node, based on child
indices.

All communication through the compiler, listener and service interfaces use
node keys to specify which AST node that should be regarded. Any node can be
asked for its node key. However, editor instances and resource parsers have no
direct access to nodes in the semantic kernel. Instead, they create node keys based
on a specific resource they are working with. For example, an editor instance can
create a node key for a file and then use this node key to communicate with the
semantic kernel. The semantic kernel will register listeners to a certain node key,
update ASTs for a certain node key, and provide semantic service information for
a certain node key. Figure 3 illustrates the lookup of a node using a node key.

Offset-based Mapping for Textual Editing In textual editing, text positions
and intervals need to be mapped to AST nodes in order for the semantic editor to
provide certain kinds of services. For example, in code browsing a user selects
a name and asks for its declaration. The intended node is given by position in-
formation about the text selection and the file containing the selection. Eclipse
regards a file as a sequence of characters, and represent positions as offsets in that
sequence. An offset can also be communicated using line and column information.
A selection is normally given using an interval of offsets.

In order to support services in need of this kind of offset-to-node mapping, we
introduce the concept of mapping node keys. A mapping node key works like an
ordinary node key, with the exception of the node path, which is replaced with
an offset interval. Figure 4 illustrates how a mapping node key is used to find a
specific node.
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Project / File : 1
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Project / File : 1/0/1

..
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Figure 3: An example of a node key The column to the left shows the node keys
for the black nodes in the project AST to the right. Each node key corresponds to
a specific node, illustrated with a dotted arrow. A node key contains information
about the enclosing project, the enclosing file and the index path to a node. The
length of the path depends on the corresponding level of the project AST. The
numbers on the edges in the project AST show child indices used in the node
paths.

Project

Project / File : [0, 20]

Project AST

Project / File : [10, 20]

Project / File : [10, 15]

Project / File : [12, 15]

..

Figure 4: An example of a mapping node key The column to the left shows
the mapping node keys for the black nodes in the project AST in the middle. The
column to the right shows an offset interval from a file, that is a section of the text.
Each node key corresponds to a specific node, illustrated with a dotted arrow. Each
node within an AST corresponds to an offset interval, as illustrated by the dotted
arrows, emanating from the black nodes.
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Handling of Outdated Node Keys Node keys stored outside of the seman-
tic kernel may become outdated. For example, an editor instance may try to ask
for semantic information using a node key connected to an old version of its cor-
responding file AST. A file AST may, in fact, have been updated several times
between a call to a certain service.

To deal with outdated node keys, we introduce a basic version handling of
ASTs using build version IDs. Each AST (project AST of file AST) entering the
update interface of the semantic kernel, is given a build version ID from a counter.
This ID is set at the root of the subtree and propagated to descending nodes in the
subtree. The result being that child AST nodes may have higher build IDs than
their parent nodes. For example, a file AST may be updated after a project AST
has been updated and, hence, get a higher build ID. The reverse, that a child node
would have a lower build ID than its parent is a malformed state and not allowed.
This cannot happen, because the update of a parent node results in updates of its
child nodes.

During node lookup, the build version ID of the regarded node key is com-
pared to the build version ID of encountered nodes on the path. If a node with
a higher build version ID is encountered on the path, the tree has been updated.
This will interrupt the lookup of the node and return an empty result, along with a
notification of change for the node key.

Handling of Unknown Node Keys Node keys used to communicate with the
semantic kernel may be unknown to the kernel. For example, this may happen the
first time a resource parser creates a project AST and sends it to the update inter-
face of the semantic kernel. Another example is when an editor instance queries
the service interface before the referenced AST, referred to by the node key, has
been added to the AST repository. In fact, all the interfaces of the semantic kernel
need to handle unknown node keys.

For the listener interface, the handling of unknown node keys is easy, because
listeners are registered and removed in a list separate from the content of the AST
repository. For the service interfaces, on the other hand, it is impossible to provide
semantic service information using an unknown node key. A service information
request with an unknown node key will result in an empty result. Finally, for
the update interface, the occurrence of an unknown node key corresponds to a
registration of a new entry in the AST registry.

4.4 Updating
The update interface of the semantic kernel allows resource parsers to update
project ASTs and file ASTs in the AST repository of the kernel. Project ASTs
are updated by replacement in the AST repository, while file ASTs are updated
via node replacement in a project AST. File ASTs with their own place in the
AST repository (due to a missing enclosing project AST) may also be updated by
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replacement in the repository. This may happen when a file from outside of the
Eclipse workspace is being edited in the workspace.

Updating of Attribute Values Node replacement in a RAG-based AST is
non-trivial in that there may be attribute references to the node being replaced,
or to children of the node. In order to maintain a consistent AST, cached attribute
values in the enclosing AST need to be flushed (removed). This is to avoid attribute
references to nodes in an old version of the AST.

Currently, flushing is performed on all nodes in the AST being updated, that
is, via the root of the project AST. This is not optimal since it most likely means
that unaffected attribute values are removed, but unavoidable without support for
incremental evaluation of RAGs.

5 The Service Flora
The service flora of a state-of-the art semantic editor of today contains a large
amount of services. A recent study by Hou and Wang [11], studying features (ser-
vices) in the Eclipse JDT, makes the following grouping of visible features for code
manipulation: reading (e.g., display of program information (like errors and out-
lines), browsing (code search and navigation)) and writing. The writing category
is further divided into three subcategories: editing (e.g., automatic indentation,
generation of code fragments), refactoring (behavior-preserving code transforma-
tions, e.g., rename, inline method), and code assist (inferred code manipulation
actions, e.g., quick fix, name completion). Some of these services require seman-
tic analysis, while some require only lexical or syntactical analysis, for example,
syntax highlighting or auto indentation. We are interested in the first category –
the semantic services. The following services end up in this category: refactorings,
code assist and reading (with regard to display of errors and browsing). Outlines
can also be semantic if they are constructed using semantic information.

5.1 Implementation of Services in JedGen
In JedGen, a semantic service is supported via the following:

• a service interface supported by the semantic kernel
(mentioned earlier in this report (Section 4)),

• a node interface supported by nodes in the AST, and

• a default behavior, implemented using RAGs.

Most services also require graphical components, of which some can be provided
by JedGen as generic components. Each service has its own set of these entities.
However, those features needed by all services, or by the semantic kernel, are
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shared and, hence, defined as a core service of JedGen. The core service has no
visual components and provides updating of ASTs and lookup of AST nodes.

Core Node Interface The ASTs placed in the AST repository of the semantic
kernel may represent several different languages. For JedGen to communicate with
the ASTs in a well-defined way the nodes of all ASTs in the repository need to
implement a basic interface called IJedGenNode, with the following methods:

public interface IJedGenNode {

// Keys and Lookup
public NodeKey nodeKey();
public boolean hasResourceConnection();
public IJedGenNode lookupNode(NodeKey key);
public IJedGenNode lookupNode(MappingNodeKey key);

// Updating
public void flushAttributes();
public void replaceWith(IJedGenNode node);

// Position
public int getBeginLine();
public int getEndLine();
public int getBeginColumn();
public int getEndColumn();

}

These methods are needed by the semantic kernel to handle updating and lookup
of nodes.

Core Default Behavior All of the methods in the IJedGen interface, ex-
cept the position methods which need specific lexer and parser information, are
generic and can be provided with a default implementation. This default behavior
is provided in a JastAdd aspect using inter-type declarations and attributes (with
signatures matching the interface methods):

aspect JedGen {

ASTNode implements IJedGenNode;

syn lazy NodeKey ASTNode.nodeKey() = ...;
syn boolean ASTNode.hasResourceConnection() = ...;

syn IJedGenNode ASTNode.lookupNode(NodeKey key) {...}
syn IJedGenNode ASTNode.lookupNode(MappingNodeKey key) {...}

public void ASTNode.flushAttributes() {...}
public void ASTNode.replaceWith(IJedGenNode node) {...}
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}

ASTNode, the top class of the inheritance hierarchy of RAG-based AST nodes
supported by JastAdd, is defined to implement the IJedGen interface. The meth-
ods of the interface are added using inter-type declarations, that is, by using the
ASTNode class name as a prefix to the attribute signature. The interface methods
returning a value are implemented as synthesized attributes, which behaves in a
fashion similar to methods in Java. The lazy keyword defines the nodeKey()
attribute to be cached which is useful in case we think an attribute will be called
several times. We leave the implementation of the position methods of the IJedGen
interface to each semantic editor using JedGen.

Core Service Support The core service interface does not have any service
interface of its own but contribute with functionality needed by other services.
Most services need to communicate node information via their service interface
but are not allowed to return references to AST nodes. Still, they need to com-
municate node information. To handle this we use a hierarchy of small objects
containing a node key and position information, corresponding to that offered by
the IJedGenNode interface. At the top of this hierarchy we define an abstract
class JedGenNode:

public abstract class JedGenNode {

protected NodeKey key;
protected int startLine, endLine, startCol, endCol;

public JedGenNode(NodeKey key, int startLine, int endLine,
int startCol, int endCol) {

this.key = key;
this.startLine = startLine;
// ...

}
public NodeKey getNodeKey() {

return key;
}
public int getStartLine() {

return startLine;
}
// ...

}

This class can be extended with service specific subclasses which can be returned
via a service interface.

As an example of a service offered by JedGen, we will describe the browsing
service in more detail. By browsing, we mean operations such as find the declara-
tion of a use or find the references of a declaration.
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5.2 Example: The Browsing Service

The browsing service has a node interface called IBrowsingNode defining
methods suitable for extracting browsing information from an AST node:

public interface IBrowsingNode extends IJedGenNode {

public IBrowsingNode declaration();
public Collection<IBrowsingNode> references();

}

The IBrowsingNode interface extends the IJedGenNode interface with two
methods, one for the finding of a declaration and one for the finding of references.
Both of the methods return results in terms of the IBrowsingNode interface. To
further follow the example of the core service, the browsing service has an aspect
with default behavior defined on the ASTNode class:

aspect GenericBrowsing {

ASTNode implements IBrowsingNode;

syn IBrowsingNode ASTNode.declaration() = null;
syn Collection<IBrowsingNode> ASTNode.references() =

new ArrayList<IBrowsingNode>();
}

The default behavior is to return null and an empty collection. This behavior is
not very useful in itself but is intended to be extended by semantic editors using
JedGen. Typically, a specialization of the behavior of an AST node in JastAdd is
done by defining an equation for an attribute on a subclass of where the attribute
was defined. A specialization for a language with two node types defining, for
example, variable uses (Use) and declarations (Decl) may be defined like this:

aspect LanguageSpecificBrowsing {

eq Use.declaration() = decl();
eq Decl.references() = uses();

}

Here, the decl() attribute may be a reference attribute pointing to the declaration
of the node, and uses() may be an attribute returning the uses of a declaration.

The final entity needed to implement the browsing service is the service inter-
face supported by the semantic kernel. We start to define a class (BrowsingNode)
for returning of service results:

public class BrowsingNode extends JedGenNode {

public BrowsingNode(IBrowsingNode node) {
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super(node.nodeKey(),
node.getBeginLine(), node.getEndLine(),
node.getBeginColumn(), node.getEndColumn());

}
}

The BrowsingNode class only extends the abstract class JedGenNodewithout
adding any additional information. As the final step, we use this class to define a
simple service interface provided by the semantic kernel:

public class SemanticKernel {
// ...
public BrowsingNode findDeclaration(MappingNodeKey fileKey) {

// ...
}
public Collection<BrowsingNode>

findReferences(MappingNodeKey fileKey) {
// ...

}
}

A find declaration, or find references, operation is activated with a text selection in
an editor instance as input. In order to handle text selections (offset intervals) we
define that the interface should make use of a mapping node key.

6 Current Status and Future Work
Recent efforts have been made to make the implementation of JedGen more robust,
involving several refactoring phases. The core ideas have stayed the same but the
implementation has become more harmonized with the mechanisms in Eclipse.
Currently, service implementations are being migrated to the latest version. There
are numerous ways to continue to improve this work. Some examples include:

• Improving performance
Synchronization and flushing could both possibly be done on a lower level
than the project AST level.
A possible more fine-grained synchronization scheme would be to have mu-
tual exclusion of subtrees in the project AST. These locks would have to
have a notion of the tree hierarchy in order to work. For example, an up-
date of the project AST should not be possible when one of its file ASTs are
locked.
A more fine-grained flushing scheme requires incremental updating of RAGs
which is an unsolved problem and an interesting research direction. In our
case, we would like a means for flushing of attributes affected by the update
of a certain subtree in the AST.
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• Handling of libraries
Currently, there is no special support for handling of libraries in JedGen.
Libraries can, for example, be considered as resources on the Eclipse plat-
form and stored as project ASTs, or similar, in the AST repository of the
semantic kernel. However, to link uses and declarations in a project and a
library there would need to be references between two project ASTs. One
solution to this problem is to add another level enclosing the project ASTs
in the AST repository, a workspace AST. The down side of this solution
is that it adds another path segment to all node keys. Another solution is to
add a new mechanism which can handle inter-AST references in a controlled
way between project ASTs in the semantic kernel. In order to comply with
the prevention of not letting direct references of AST nodes outside of the
semantic kernel, this mechanism would be added inside the kernel.

• Providing feedback between builds
The presented feedback cycle reacts to changes when a user saves a file.
Preferably, the editor should provide fresh feedback also in between saves.
Eclipse offers support for light-weight reconciling of files which can be used
to keep up-to-date with user changes on a more fine-grained level. One
possible extension of JedGen is to support a shorter feedback cycle using
reconciling of the current file being edited.
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