Object-Oriented Declarative
Program Analysis

Eva Magnusson

Doctoral Dissertation, 2007

Department of Computer Science
Lund University




ii

ISBN 978-91-628-7306-6
ISSN 1404-1219
Dissertation 28, 2007
LU-CS-DISS:2007-2

Department of Computer Science
Lund Institute of Technology
Lund University

Box 118

SE-221 00 Lund

Sweden

Email: Eva.Magnusson@cs.lth.se
WWW: http://www.cs.lth.se/home/Eva_Magnusson

Typeset using TeXShop
Printed in Sweden by Tryckeriet i E-huset, Lund, 2007

(© 2007 Eva Magnusson



ABSTRACT

This thesis deals with techniques for raising the programming level for a particular
kind of computations, namely those on abstract syntax trees. Such computations
are central in many program analysis tools, such as compilers, smart language-
sensitive editors, and static analysis tools. All techniques presented in this thesis
support modular description and efficiency and are capable of handling large pro-
grams.

The work is based on Reference Attributed Grammars (RAGs) which com-
bines object-oriented features with declarative programming to specify compu-
tations on abstract syntax trees. RAGs have proven useful, e.g., for performing
static-semantic analysis of object-oriented languages. We investigate new appli-
cations of RAGs, extensions of RAGs in order to cover yet more applications,
modularization issues for RAGs, and implementation of RAG extensions.

The thesis consists of an introduction and four papers. The first paper deals
with the application of RAGs to a new problem area: program visualization. The
second paper describes JastAdd, a practical system for RAGs, based on static
aspect-oriented programming and which supports the combination of imperative
Java programming with declarative RAG programming. JastAdd has been used
for developing practical compilers for full-scale languages. The third paper de-
scribes CRAGs, an extension of RAGs allowing circular dependencies and where
the evaluator computes fixed-point solutions by iteration. CRAGs open up RAGs
for new application areas such as grammar and data flow analyses. The fourth
paper deals with extending attribute grammars with collection attributes and cir-
cular collection attributes. These attributes allow whole-program properties such
as cross-references to be easily specified. A number of evaluation techniques and
a number of application areas, including source code metrics, are described. All
techniques described in the papers have been implemented and tested in practice.
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CHAPTER |

INTRODUCTION

An important goal in computer science is to raise the level of programming, pro-
viding languages that are closer to the way the programmer thinks and reasons.
The development of object-oriented programming languages is one important step
in this direction, providing abstraction mechanisms for real-world modelling con-
taining both data and computation aspects. Declarative programming is another
important principle, allowing the programmer to describe what to be computed
without having to explicitly state in which order the computations should take
place. Modularization is a third important principle, allowing reuse and separa-
tions of concerns.

This thesis deals with techniques for raising the programming level for a par-
ticular kind of computations, namely those on abstract syntax trees (ASTs). Such
computations are central in many program analysis tools, such as compilers, smart
language-sensitive editors, and static analysis tools. All techniques presented in
this thesis support modular description and efficiency and are capable of handling
large programs.

Our basis is Reference Attributed Grammars (RAGs) [15], which combines
object-oriented features with declarative programming to specify computations
on abstract syntax trees. RAGs have proven useful, e.g., for performing static-
semantic analysis of object-oriented languages. A RAG is an extension of tradi-
tional or classical attribute grammars (AGs) [23] which is a formalism in which
the static semantics of a programming language can be specified using a declara-
tive approach. Traditional AGs are often considered clumsy and difficult to use for
tasks where computations on general graphs are natural. Examples include name-
and type-analysis of languages with complex scope rules, and many other static
analysis problems. By allowing references between distant nodes in the AST, the
RAG formalism supports the definition of graphs as attributes, facilitating these
tasks. Furthermore, the object-oriented view of the grammar used in RAGs is
a conceptual extension of AGs which makes it possible to apply all the object-
oriented modularization advantages such as inheritance and method overriding.
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In the thesis we deal with extensions of RAGs and how they can be combined
to facilitate tasks further for the attribute grammar author. We also explore applica-
tions of the combined extensions. Furthermore, we discuss evaluation techniques
for extended AG formalisms. Some extensions concern the formalism, e.g., al-
lowing circular dependencies between attribute instances or introducing collection
attributes, while others can be characterized as conceptual. Conceptual extensions
include the object-oriented modelling of the grammar and modularization con-
cepts.

Even in extended AG formalisms, some computations can be complicated or
unnatural to express. Another objective of this thesis is therefore to show how the
declarative approach used in attribute grammars can be combined with imperative
techniques in a tool using static aspect-oriented modularization and where modules
can be implemented in either imperative or declarative style.

The thesis consists of an introduction and four papers. The objectives of the
research presented in the papers can be summarized in the following way:

e Application areas for RAGs and their extensions, especially outside the tra-
ditional compiler-related area.

e Modularization of attribute grammars as a way to separate subtasks accord-
ing to aspect, to support reuse and to open up the possibility to combine
imperative and declarative style modules.

o Extensions of RAGs, how they widen the applicability of RAGs and facilitate
for the grammar author.

e FEvaluator implementation for the extended formalisms.

The first paper deals with the application of RAGs to a new problem area; program
visualization. The second paper describes JastAdd, a practical system for RAGs,
based on static aspect-oriented programming and the combination of imperative
and declarative programming. The third paper describes an extension of RAGs
supporting circular dependencies (CRAGs). The extended formalism opens up for
new application areas such as grammar flow and data flow analysis, which is also
discussed in the paper. The fourth paper describes how RAGs can be extended with
the collection attribute mechanism, allowing declarative specifications of whole
program properties such as cross references. A number of evaluation algorithms
are presented as well as application areas, including source code metrics. The
combined formalism, circular collection attributes, is also introduced.

The techniques have all been implemented and tested in practice. Our tool
JastAdd incorporates the extended AG formalism and automatically generates an
evaluator for it. Its modularization concept also allows imperative style modules
to be freely combined with AG modules. Thanks to the work of Torbjorn Ekman
on other parts of JastAdd, as well as a full Java implementation using JastAdd, it
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has been possible to try out example applications computing properties of large
Java programs.

The aim of this chapter is to describe and motivate the objectives further and to
present the contributions. In order to do so, an overview of the attribute grammar
formalisms and their corresponding evaluation techniques is given first. Then it
is possible to present the objectives of our research in a more detailed manner
and to give short descriptions of each paper. Finally, the thesis contributions are
summarized and possible directions for future work are discussed.

The rest of this chapter is organized as follows: Section 1 introduces tradi-
tional attribute grammars and some extended formalisms. Section 2 is devoted to
evaluation techniques. In Section 3 the objectives of this thesis work are discussed
and the papers are presented. Section 4 concludes the introduction and discusses
some possible future work.

1 Attribute Grammars

1.1 Traditional Attribute Grammars

Traditional attribute grammars (AGs) were introduced by Knuth [23] in 1968 as
a formalism to specify the syntax and semantics of a programming language. An
AG is a context-free grammar, a set of attributes associated with its nonterminals,
and a set of equations specifying the values of the attributes.

The nodes of an abstract syntax tree (AST) are instances of nonterminals. The
attributes A(X) of a nonterminal X consists of two subsets: the synthesized at-
tributes and the inherited attributes. Each attribute is specified by an equation.
Synthesized attributes propagate information upwards in the abstract syntax tree
and inherited attributes propagate information downwards. For example, a syn-
thesized attribute t ype of a nonterminal Identifier can be used to propagate
information upwards to check for correct use of identifiers in expressions. An
inherited attribute env containing information about declarations can be used to
propagate information downwards and be used to look up information about the
type of an identifier.

AGs use a declarative formalism, i.e., it specifies what to do but without impos-
ing any explicit order of computations. For problems where declarative specifica-
tions are suitable, the specifications are often clear and concise and easy to extend.
They also often help avoiding errors common in imperative style programming.

Consider a production Xy ::= X;Xs...X} of a context-free grammar. An
equation specifying the value of an attribute ag is written ag = f(aq, asg, ...a,).
The equation defines the value of ag in terms of its semantic function f. Each
equation only involves information associated with the local symbols of the pro-
duction, i.e., the attributes a1, ..., a,, must be attributes associated with the sym-
bols, Xg, X1, ...X%. An equation defines either a synthesized attribute of the non-
terminal of the left-hand side, X, or an inherited attribute of one of the right-
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hand side nonterminals X;,1 < j < k. The arguments of the semantic function,
ai,asz, ...a,, can be attributes of any of the symbols Xg, X1, ... Xj.

In order for the AG to be well formed there must be exactly one equation
defining each attribute of any syntax tree. This requirement is fulfilled if for each
production there is one equation for each synthesized attribute of X and one for
each inherited attribute of all the right-hand-side symbols X;,1 < j < k. The
start symbol of the grammar must not have any inherited attributes.

A semantic function introduces dependencies between attributes. If a; is used
to define ag, then ag is dependent on a;. Traditional AGs consider circular depen-
dencies as an error, i.e., for any syntax tree derivable from the grammar there must
not be any circular dependencies between instances of attributes.

Attribute evaluation means assigning values to attribute instances. An attribute
instance is said to be consistent if its value is equal to the application of its semantic
function, or, in other words, if its equation is satisfied. An attributed abstract syntax
tree is consistent if all its attribute instances are consistent, i.e., the equations of
all its attribute instances are satisfied. The values of the attribute instances of a
consistent AST is a solution to the equational system made up of all the equations
of its attribute instances. An attribute grammar is said to be well defined if every
possible AST has exactly one solution.

An attribute evaluation scheme is a method for obtaining consistent attribute
assignments. Some schemes evaluate all attribute instances and obtain consistently
attributed ASTs. Other schemes evaluate individual attributes on demand by eval-
uating only the subset of attribute instances of the AST of which the demanded
attribute is dependent. We will describe some evaluation techniques further in
Section 2.

1.2 Reference Attributed Grammars

Traditional AGs provide a concise way of specifying local dependencies. How-
ever, many tasks require information to be transmitted between distant nodes in
the abstract syntax tree. One example is name analysis of programming languages,
especially those with advanced scope rules. To specify name analysis in the tradi-
tional AG formalism you need to replicate large complex aggregate attributes con-
taining the necessary declaration information to all nodes representing use sites.
For languages with complex scope rules, like object-oriented languages, the task
becomes very cumbersome.

Several researchers, e.g., [6, 15,27], have suggested extensions to AGs by al-
lowing attributes to be references to remote nodes in the syntax tree and to use
those references to access attributes of the remote nodes. When specifying name
analysis you may then link each use site directly to its corresponding declaration
site by a reference attribute. Information needed for example in type analysis can
then be accessed from use sites. The syntax tree itself is in this way used as a
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symbol table and there is no longer any need to replicate information all around
the tree.

This thesis work is based on Reference Attributed Grammars (RAGs) as sug-
gested by Hedin [15]. This extension supports attribute access via references.
Attributes are allowed to reference nodes in the abstract syntax tree and collection-
valued attributes may contain reference values. A reference attribute may be deref-
erenced to access attributes in the remote node. RAGs facilitate specification of
problems where non-local dependencies are common and they have been used
in problem areas such as program visualization (described in the first paper of
this thesis), specification of object-oriented languages [15], design pattern check-
ing [8], and prediction of worst case execution times [26].

RAGs were initially implemented in a tool APPLAB [5], developed at our
department. APPLAB is an interactive environment based on language-sensitive
editing, aimed at the interactive design of domain-specific languages. APPLAB
was used for the implementation of the work described in the first paper of this
thesis. The second paper describes a new tool, JastAdd, which is a compiler con-
struction tool supporting RAGs, static aspect-oriented modularization, as well as
the combination of imperative style and declarative style modules. The JastAdd
system, described in the second paper, was later re-implememented by Torbjorn
Ekman [9]. The new version was bootstrapped in itself and extended to allow
rewriting of the AST [11]. It has also extended support for parameterized at-
tributes and various short-hands. The current version of JastAdd [1] has later been
enhanced to handle circular grammars as well as collection attributes as described
in the third and fourth papers.

1.3 Attribute Grammars with Collection Attributes

In RAGs, reference attributes are used to read information from referenced sites
in the AST. Allowing information to flow in the opposite direction in more or less
restricted forms has been suggested by a number of researchers. One restricted
form was suggested by Knuth [23] who allowed information to be propagated in
this way to global sets in the start symbol. Other researchers suggested the in-
troduction of collection attributes, whose values are defined as a combination of
properties in distant AST nodes. Kaiser [20] and Beshers [4] allowed collection
attributes associated with subtrees. Hedin [14] introduced general collection at-
tributes but with partly manual implementations techniques.

In our own work we implemented an extension of AGs with collection at-
tributes based on the work of Boyland [6]. Here, a collection attribute is defined
through a number of partial definitions, located in arbitrary AST nodes and are
typically used for cross-referencing information. The final value of a collection
attribute is defined as the application of a combination operation to its partial def-
initions. For each partial definition, a reference attribute is used to point out for
which instance of the collection attribute the definition is intended. In the fourth
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paper we introduce a number of implementation algorithms for this extension.
These algorithms have all been implemented in the JastAdd tool.

1.4 Circular Attribute Grammars

Many computations on abstract syntax trees are easily specified using recursive
equations, often broadly distributed over the tree and introducing circular depen-
dencies. Examples come from different problem areas like data-flow analysis and
live analysis in optimizing compilers, and properties of circuits in hierarchical
VLSI design systems [12, 17].

In a traditional AG it is considered an error if circular dependencies between
attribute instances occur for any derivable syntax tree. However, as several re-
searchers have pointed out, attribute grammars with circular dependencies can un-
der certain constraints be considered well defined in the sense that all equations
can be satisfied [12,17].

The most common way to ensure that circular AGs are well defined is to re-
quire that the domain of attributes involved in circular definitions can be arranged
in lattices of finite height and that the semantic functions defining the attributes
involved are monotonic with respect to these lattices. If these conditions are ful-
filled, a least fixed point can be calculated using an iterative process as in Fig. 1.

for each attribute «; involved in the cycle
xr; = ...// initialize each attribute in cycle to a bottom value;

repeat {
for each attribute x; in the cycle

z; = fi(...)

} until (no computation changes the value of an attribute)

Figure 1: Iterative algorithm for computing the least fixed point for attributes on
acycle. f; denotes the semantic function of the attribute ;.

Allowing circular dependencies under proper constraints makes many spec-
ifications easy to write for the AG author and easy to read and understand. The
specifications involving circular dependencies are often a direct translation of their
mathematical recursive definitions. Farrow [12] uses as an example the specifica-
tion of a language where the use of a constant is allowed before its declaration. He
shows how its alternative noncircular specification, in contrast, adds huge com-
plexity using, e.g., higher order functions one of which in essence captures the
iterative process used in Fig. 1.

The third paper of this thesis describes the possibility and advantages of com-
bining circular attribute grammars with reference attributed grammars. In the
fourth paper the combination of circular grammars and collection attributes is in-
troduced.
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1.5 Object-Oriented Attribute Grammars and Modulariza-
tion

From an object-oriented perspective the nodes of a syntax tree can be viewed as
objects of classes corresponding to the productions of a grammar. These objects
have children corresponding to production right-hand sides [13]. Each nonterminal
X can be modelled as an abstract class and its different alternative productions can
be modelled as concrete subclasses. Attribute declarations are in traditional AGs
associated with nonterminals and their defining equations with productions. A
synthesized attribute a of X can in the object-oriented perspective be modelled
as a virtual function a () and a semantic function of a production defining a is
modelled as an implementation of the function a ().

From the object-oriented perspective it is also desirable to allow equations to
be associated with nonterminals. They then model the default behavior, which
may be overridden by equations in some of their subclasses. It is also convenient
to allow the introduction of abstract superclasses that do not correspond to any of
the nonterminals of the grammar. For example, it might be convenient to introduce
an abstract class ASTNode and make this the root class of the class hierarchy.
Behavior common to all node classes can then be modelled by attributes of the
class ASTNode.

Object-oriented AGs (OOAGS) is not an extension of traditional AGs — any
OOAG can trivially be reformulated as a traditional AG. Rather, the difference is
conceptual. By formulating the underlying context-free grammar as a class model,
the syntax tree can be directly understood as a tree of objects, and all the object-
oriented advantages of inheritance and overriding can be applied, yielding con-
cise specifications that are easy to understand and write by people with an object-
oriented programming background. Furthermore, the object-oriented model of
AGs allows easy integration with imperative object-oriented program code, as is
discussed further in the second paper.

In object-oriented programming, class hierarchies are used for modulariza-
tion purposes. For many tasks, for example compiler construction, this type of
modularization is not sufficient. Each node class will contain code related to sev-
eral different subtasks such as name analysis, type checking, code generation etc.
Attribute grammar systems normally introduce another type of separation mecha-
nism by allowing specifications to be textually split into modules. The AG author
may then specify appropriate attributes and their equations in different modules,
e.g., according to different aspects of the actual problem. The union of all mod-
ules constitute the attribute grammar. The combination of object-oriented attribute
grammars with a mechanism supporting such aspect-oriented modularization has
many advantages. Features from object-orientation, like inheritance and overrid-
ing, make many specifications easier to express and a modularization mechanism
supports reuse, modification and extension of existing modules in different appli-
cations. These issues are further addressed in the second paper.
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2 Evaluation Techniques for Attribute Grammars

As mentioned earlier, evaluating an attribute instance means assigning it a value
so that its equation is satisfied. In the following subsections we will describe some
general techniques for traditional AGs and how they can be adapted to handle
extended AG formalisms.

2.1 Evaluation of Traditional Attribute Grammars

Evaluators for traditional attribute grammars can be constructed automatically by
several techniques. These techniques all have in common that they evaluate at-
tributes in an order based on the attribute dependencies: an attribute is not evalu-
ated until all the attributes it depends on have been evaluated. This allows optimal
evaluation, meaning that each attribute is evaluated at most once.

Many techniques construct dependency graphs and use these to compute the
evaluation order. An evaluation technique is usually classified as static or dynamic
depending on when the dependency graph is constructed. For static techniques, the
dependency graphs are constructed at evaluator construction time, based on the at-
tribute grammar. For dynamic techniques, the dependency graphs are constructed
at evaluation time, based on the AST. The static dependency graphs are pessimistic
approximations of all possible dynamic dependency graphs, and are therefore usu-
ally less general than dynamic techniques, but usually they yield faster evaluators.

Another way of characterizing an evaluation technique is if it is data-driven
or demand-driven. A data-driven evaluation technique uses the dependency graph
to evaluate all attribute instances in an order corresponding to the topological sort
of the graph, and stores them in memory cells. A demand-driven technique uses
no explicit dependency graph. Instead, it makes use of the fact that the graph is
implicitly defined by the semantic functions. Accessing an attribute is realized
by calling its semantic function and only attributes needed for computations of
demanded attribute instances are computed.

More detailed descriptions of the different groups of evaluation techniques for
traditional AGs are given in the following subsections.

Static data-driven techniques

Static data-driven techniques evaluate all attribute instances. They use the gram-
mar to derive information about possible dependencies between attribute instances
in order to construct a proper evaluation scheme. Evaluators constructed with this
technique therefore do not perform any run time analysis. An example of a static
method designed to handle noncircular AGs is the one proposed independently
by Katayama [22] and Courceller & Franchi-Zannettacci [3]. In their scheme all
possible dependencies between attributes of each production are derived from the
grammar. Using these graphs, a set of mutually recursive functions to evaluate the
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attributes are constructed. The technique is not completely general in that it some-
times fails to build an evaluator even if the AG is noncircular. This is because the
derived dependency graphs may contain circularities introduced by spurious edges
that could not appear in any syntax tree.

There are also a number of subclasses of traditional AGs for which there exists
static construction techniques that produce especially simple and fast evaluators,
while being sufficiently general to handle full programming languages, e.g., Or-
dered Attribute Grammars [21].

Dynamic data-driven techniques

Dynamic data-driven techniques analyze dependencies between attribute instances
at evaluation time for the abstract syntax tree at hand. All attribute instances are
evaluated.

An example of a general dynamic technique is the one proposed by Jones [17].
The dependency graph is derived at evaluation time and is used as a basis for
evaluating the attributes in proper order. If the AG is noncircular, the dependency
graphs for all possible ASTs are acyclic. Attributes can therefore be evaluated by
simply applying their respective semantic functions according to the topological
ordering of the dependency graph. The scheme is optimal in the sense that every
attribute instance is evaluated only once.

Demand-driven techniques

Demand-driven techniques evaluate only attributes needed for computing deman-
ded attribute instances. For demand-driven evaluation there is a simple and general
evaluation technique which replaces each attribute by its semantic function. Ac-
cessing an attribute is realized by calling its semantic function. This evaluation
technique does not construct any explicit dependency graphs, but makes use of
the fact that the semantic functions define the dependency graph implicitly. This
technique was described in [16, 18,24].

The plain demand-driven technique can be non-optimal since the same seman-
tic function might be called many times. In the worst case, the time complexity
is exponential in the number of attributes. To overcome this problem, attributes
may be cached when they are evaluated for the first time. When an attribute is
demanded for evaluation it is checked if it has already been computed. In that
case its cached value is returned. Otherwise its semantic function is called, the
resulting value is cached, and a flag is set to mark the attribute as computed. If all
attributes are cached, optimal evaluation is achieved at the cost of memory space.
An alternative is to let the AG author decide which attributes to cache.

Since a demand-driven technique does not necessarily evaluate all attribute
instances, its performance can be better than a data-driven technique.

The object-oriented view on attribute grammars presented in Section 1.5 makes
it very easy to automatically generate demand-driven evaluators. In fact, the eval-
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uator is constructed implicitly by translating the attributes and their equations to
virtual functions and their implementations. This is discussed in more detail in the
second paper.

2.2 Evaluation of Reference Attributed Grammars

The static technique of Katayama and the dynamic technique of Jones described
earlier cannot be applied to RAGs. In a RAG the dependency graph is not known
completely before evaluation. Dependencies are introduced by reference attributes
and their values will not be known until they have been evaluated.

The demand-driven technique described in Section 2.1 requires no initial de-
pendency analysis, and is immediately applicable to RAGs. It automatically tra-
verses the dependency graph depth-first, evaluating the attributes in topological
order. This evaluation technique is used both by the APPLAB tool [5] and by
our JastAdd tool described in paper 2, as well as by other systems for similar
formalisms, e.g., [6,27] .

2.3 Evaluation of Circular Attribute Grammars

Farrow [12] showed that the static technique of Katayama can be generalized to
handle circularities. The possibly circularly defined attributes are detected by iden-
tifying the strongly connected components of the production dependency graphs.
Components consisting of one attribute instance only are treated as in the original
algorithm. A component with more than one vertex corresponds to attribute in-
stances that are all dependent on each other and they are evaluated together by an
iterative process as described in Fig. 1.

Jones [17] showed that his dynamic technique can also be adapted to handle
circular AGs. The strongly connected components of the dependency graph are
identified. A new graph is constructed by contracting each component into a sin-
gle vertex. The new graph is acyclic and can be ordered topologically. A vertex
corresponding to a single vertex in the original graph is evaluated by applying its
semantic function. Attribute instances of a vertex corresponding to more than one
vertex in the original graph are evaluated together by a fixed-point iteration.

In the third paper we show that it is possible to adapt the demand-driven tech-
nique to handle also circular attribute grammars. Since the demand-driven tech-
nique is also applicable to reference attributed grammars it thereby becomes a
technique that is capable of evaluating grammars of the combined extended for-
malism, circular reference attributed grammars (CRAGs).

In the fourth paper we show how circular collection attributes can be evaluated
using techniques built on combinations of the evaluation technique for CRAGs and
techniques for evaluating non-circular collection attributes.
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2.4 Evaluation of collection attributes

The value of a collection attribute is defined as the combinations of partial def-
initions from remote nodes in the AST. The collection attribute mechanism thus
relies on RAGs since reference attributes must be used to point out the nodes in
the AST for which the partial definitions are intended.

In the fourth paper we show that the demand-driven technique can be used to
evaluate collection attributes. This is potentially very expensive as the complete
AST has to be traversed to find contributors for a particular collection attribute
instance. For efficiency reasons it is therefore preferable to use techniques which
are not purely demand-driven in the sense that more attribute instances than are
actually demanded may be partially evaluated. For example, all contributors to
all instances can be found during a single tree traversal. When an instance is
demanded, a tree traversal can be performed caching information about contrib-
utors for each instance of the collection attribute. Subsequent demands for other
instances can then use the cached information which speeds up their evaluation.
This two-phase technique, as well as a one-phase technique which deviates further
from pure demand evaluation, is described and analyzed in the fourth paper.

3 Objectives of this Work and Description of
the Papers

The research presented in this thesis has the following objectives:

Applications The traditional application area for AGs is related to compiler con-
struction. One aim of this thesis has been to explore new applications outside
the traditional ones and how different extensions of attribute grammars open
up new areas of applications. This aspect of our work is addressed in papers
1, 3 and 4.

The first paper focuses on a new application for RAGs; program visualiza-
tion. In the third and fourth paper we show how extending the formalism to
allow circular dependencies and collection attributes further strengthens the
expressiveness and applicability.

Modularization By modularization we here mean the textual separation of dif-
ferent parts of the attribute specification. Modularization of the underlying
context-free grammar is also an important topic, but it is not addressed in
this thesis.

RAGs introduces an object-oriented view of the grammar, modelling nonter-
minals as abstract classes and productions as concrete subclasses. In object-
oriented programming, class hierarchies are used for modularization pur-
poses. Classes will often contain code related to several different subtasks.
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An additional modularization concept allowing the code of a class to be tex-
tually split over several modules is therefore desirable.

In RAGs the object-oriented view is used to model the abstract syntax tree.
The computations within each class of the resulting model are still specified
in a declarative manner. Declarative programming has many advantages. It
renders concise problem specifications and it helps the user to avoid many
of the errors that are common in imperative programming. There are, how-
ever, tasks which are cumbersome to specify declaratively while their corre-
sponding imperative style solutions are much simpler. Therefore, a system
allowing the combination of modules using imperative style programming
with declarative attribute grammar modules would be desirable.

Our first paper uses a tool that supports textual modularization of RAGs and
it is demonstrated how this facilitates and supports reusing and extending
specifications. The second paper stresses the advantage of modularization
from an aspect-oriented perspective and also the combination of modules
written in imperative as well as declarative styles. The techniques have been
implemented in a practical tool for RAGs, JastAdd.

Extensions of RAGs As has been mentioned earlier, RAGs facilitate tasks within
traditional compiler-related applications. One example is name and type
analysis of languages with complex scope rules. RAGs have also proven
useful in a number of applications outside the traditional application areas
of attribute grammars. An interesting question is then to what extent further
extensions enhances the expressiveness of attribute grammars and facilitates
tasks for the grammar author.

The second paper focuses on conceptual extensions such as the object-orien-
ted view of attribute grammars and the combination of imperative and declar-
ative programming code. A practical tool, JastAdd, that incorporates the
extensions has been developed and tested.

In the third paper we deal with a formal extension: circular reference at-
tributed grammars (CRAGs) and show how this widens the application area
and makes specifications easier to write for many problems. The JastAdd
tool has been enhanced to deal with circular dependencies and thereby we
have been able to test the extended formalism in practice.

The fourth paper introduces further extensions: collection attributes and the
combined formalism, circular collection attributes. Collection attributes are
especially useful to specify solutions to “whole program problems”, i.e.,
problems where information from, potentially, the whole program must be
combined. Solutions for these problems can also be specified using the clas-
sical AG formalism or RAGs, but using collection attributes yields much
more concise specifications. For non-circular collection attributes our pro-
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posed evaluation techniques also yield substantially faster evaluation than
solutions based on ordinary attributes.

Evaluator implementation In Section 2 we mentioned that some of the evalua-
tion techniques for traditional attribute grammars can easily be adapted to
handle also circularities while others can be used for the RAG formalism.
The question is then what evaluation technique is suitable for combined for-
malisms and how fast it is for practical applications.

In paper 2, we describe the basic demand-driven algorithm used for RAGs
and show how it can be implemented in a very simple way in Java. In paper
3 this basic algorithm is extended to deal with the circular dependencies that
may occur in CRAGs. A large part of paper 4 is devoted to different evalu-
ation techniques for collection attributes, noncircular as well as circular.

The rest of this section briefly introduces the papers included in the thesis.

3.1 Paper 1: Program Visualization using Reference At-
tributed Grammars

The traditional application area for attribute grammars is related to compiler con-
struction. One of our objectives has been to explore new application areas. This pa-
per describes how RAGs can be used to integrate program visualization in language-
based environments and how it can be specified and generated from grammars. It
is shown how a general solution for a simple grammar can be reused in grammars
for other specific languages.

As our experimental platform, we used an interactive language development
tool APPLAB [5] that has been developed earlier at our department. The tool
supports interactive development of application-specific languages. It is based on
structure-oriented editing and makes use of RAGs. The user can organize the RAG
specifications in several modules, thus separating different grammar aspects.

It is described how a reusable visualization specification can be obtained by us-
ing the modularization concept. Ideally, the visualization can be organized in three
parts (each of which might be separated into modules). One part, the visualization
front-end, captures the essence of the visualization by introducing node classes
matching the main concepts of the visualization. The second part, the visualiza-
tion back-end, then ties the first part to a certain visualization tool by specifying
attributes to generate the representation required by the tool. The third part ties
the front-end to a specific language. This part, the visualization glue module, can
make use of static-semantic modules for the language at hand. The paper exem-
plifies the technique by using a state transition language as a running example.
If, for example, a new state transition language is to be visualized, only the glue
module has to be rewritten. The visualization front-end can be reused for all state
transition languages and all visualization tools. Likewise, if a new visualization
tool is to be used only the visualization back-end part needs to be rewritten.
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The essence of the visualization specification is facilitated by reference at-
tributes. For state transition languages, for example, the visualization is based on
a state-transition graph which can be directly modelled as a RAG by tying nodes
of the AST representing states to each other by reference attributes according to
the transitions declared in the program at hand.

The work on which this paper is based was done before the implementation
of the tool JastAdd, described in the second paper. Some of the specifications
for the visualization were difficult to express in the declarative paradigm while
their corresponding imperative implementations would have been simpler. Speci-
fying program visualization would thus have been facilitated if combining the two
paradigms had been possible. This observation supports one of the conclusions of
the second paper, namely the advantage of combining imperative and declarative
code.

The front-end of the visualization builds the graph on which the visualization
is based. This is in essence realized by introducing two set-valued attributes in
the node class corresponding to a vertex of the graph. For a particular vertex,
one of them (outgoingTrs) models the set of target vertices for its outgoing
edges and the other (incomingTrs) the set of source vertices for its incoming
edges. The attributes are specified as traversals of the AST, assembling the proper
nodes for each set. As will be described in the fourth paper, JastAdd has later
been extended to support the collection attribute mechanism. The outgoingTrs
and incomingTrs attributes are in fact excellent examples of when to use of
collection attributes in order to yield simpler specifications. Both are examples
of “whole program problems” since they combine information from, potentially,
the whole program. More precisely, every node instance in the AST of the type
corresponding to an edge of the visualization graph is a potential contributor to
the information assembled in outgoingTrs and incomingTrs. By declaring
them as collection attributes the explicit tree traversal is no longer needed. Instead,
contributions are concisely specified in the AST class corresponding to edges as
shown in Fig. 2.

3.2 Paper 2: JastAdd - an aspect-oriented compiler con-
struction system

The paper describes JastAdd, a Java-based system for compiler construction built
on top of the JavaCC parser generator [2]. The tool is centered around the object-
oriented representation of the AST and supports modularized compiler implemen-
tation.

Usually, an abstract grammar is only a simplification of the corresponding
parsing grammar leaving out tokens that do not carry semantic values and extra
nonterminals introduced to resolve parsing ambiguities. In many cases, however,
it is useful to impose different structures in the abstract and parsing grammars for
some constructs. In JastAdd, the user specifies the abstract grammar independently
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class StateDecl({
coll HashSet incomingTrs() [new HashSet()] with add;
coll HashSet outgoingTrs() [new HashSet()] with add;
}

TransitionDecl contributes
destState()

to StateDecl.outgoingTrs()
for sourceState() ;

TransitionDecl contributes
sourceState()

to StateDecl.incomingTrs()
for destState();

Figure 2: Yielding a more concise front-end by using collection attributes

of the underlying parsing grammar. JastAdd uses JavaCC and its underlying tree-
building system JJTree for parser construction but its design is not tied to JavaCC.
The abstract grammar in JastAdd is object-oriented (see Section 1.5) and defines a
class hierarchy augmented with subcomponent information corresponding to pro-
duction right-hand sides.

Different aspects of a compiler can in JastAdd be specified in separate mod-
ules. In imperative style modules (jadd-modules) fields and methods can be added
to different node classes introduced by the abstract grammar. These modules use
ordinary Java syntax. In declarative modules (jrag-modules), attributes and their
equations can be added to the node classes. These modules use a somewhat ex-
tended Java syntax. The jrag-modules are translated into a jadd-module by the
tool. The translated module implicitly defines a demand-driven evaluator for the
attribute grammar of the jrag modules implemented as fields and methods. Jas-
tAdd generates node classes according to the abstract grammar and weaves into
each node class the additions made in all the different jadd-modules (one of which
might be a translation of jrag-modules).

We have quite substantial experience of using JastAdd both in education and in
research. The combination of object-oriented ASTs, aspect modularization and the
capability of combining imperative and declarative code has proven very useful.
Other systems for RAGs and similar formalisms (for example APPLAB used in the
previous paper) often have their own formal languages for specification. JastAdd,
in contrast, is based on Java which makes the system easily accessible for many
users.

The paper presents the original version of JastAdd, supporting RAGs. Its im-
plementation uses JavaCC visitors. It has later been re-implemented by Torbjorn
Ekman. The new implementation is bootstrapped using RAGs and has Aspect]-
like notation for intertype declarations. Many features and extensions were added.
Extensions include AST rewrites [11] and higher order attributes [9]. The new
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JastAdd version also supports various shorthands. For example, imperative style
code and code using the extended formalism for attribute grammars can now be
written in the same module. The newer JastAdd is also independent of JavaCC
and can be used together with other Java-based parser generators.

Further extensions have later been added: Circular reference attributed gram-
mars as described in the third paper of this thesis and the collection attribute mech-
anism as described in the fourth paper.

The current version of JastAdd [1] has been used for implementing a complete
compiler for Java [10]. This extensible Java compiler is used in the fourth paper
for experimenting with collection attributes for large Java programs.

3.3 Paper 3: Circular Reference Attributed Grammars —
their Evaluation and Applications

In traditional attribute grammars, all direct dependencies between attributes must
be local involving only attribute instances of AST nodes of one production. As has
been mentioned before, reference attributed grammars, RAGs, lift this restriction.
RAGs therefore facilitates, e.g., the task of specifying name and type analysis for
languages with complex scope rules. Many problems include name analysis as a
subproblem on which further analyses can be built. Their specifications are, as a
consequence, also facilitated by RAGs.

Some researchers have pointed out that allowing circular dependencies be-
tween attributes (under proper constraints to guarantee that the grammar is well
defined) makes it easy for the AG author to specify problems that are naturally
solved using mathematical recursion. In many cases the recursive solutions can be
directly translated into a circular attribute grammar.

In the third paper we propose the combined formalism circular reference at-
tributed grammars, CRAGs. We show how an evaluator for CRAGs can be auto-
matically generated. We also explore the expressiveness of CRAGs by application
examples. They include classical examples for CAGs as well as problems from
new areas.

Our compiler construction tool JastAdd, described in the previous paper, is
used as the experimental platform. Its evaluator generator capability has been gen-
eralized to include the necessary iterative process for circularly defined attributes.
For performance reasons, as well as for robustness, the evaluator code for non-
circular attributes has also been modified.

Two classical examples for circular attribute grammars are revisited: live anal-
ysis in optimizing compilers and the analysis of languages where constants can
be used before declaration. In the first case we show that a larger class of lan-
guages can be handled by CRAGs given the possibility to use reference attributes.
In the second case we show that reference attributes make it possible to specify the
solution in a straight-forward way without introducing any circular dependencies.
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We also exemplify the applicability of CRAGs by a highly recursive problem:
the computation of nullable, first and follow used in parser construction. This is
a problem that to our knowledge has not been solved using attribute grammars
before and is typical for a large class of problems dealing with properties of gram-
mars, so called grammar flow analysis [19,25]. The specification of these com-
putations clearly shows how the mathematical definitions of these concepts can
be almost directly formulated as an attribute grammar. The task of computing the
fixed points is the responsibility of the evaluator and is completely hidden from
the AG author.

Many problems include name analysis of some kind as a subproblem and many
analysis problems are inherently circular and need to be computed by iterating to
a fixed point. We therefore expect CRAGs to be useful for a number of practical
applications. We have also compared our demand-driven evaluator with hand-
written imperative code implementing fixed-point iterations (in JastAdd). These
experiments indicate that, for larger applications, solutions based on CRAGSs are
somewhat faster.

3.4 Paper 4: Collection Attribute Algorithms

In name analysis we introduce reference attributes in nodes corresponding to use
sites in the AST. These attributes are specified to reference the corresponding dec-
laration sites and are used, for example in type analysis, to propagate information
from the referenced (declaration) sites to referencing (use) sites. For a certain
metrics problem it might be interesting to find all use sites of a particular decla-
ration. Le., there is a need for information to flow from referencing (use) sites to
referenced (declaration) sites.

Similar cross-referencing problems include finding all calls of a method, all
subclasses of a class, and all overriders of a method. These problems are whole
program properties in the sense that the cross references might be located in prac-
tically any part of the program.

Combined properties, like those mentioned above, can be modelled by ordi-
nary synthesized and inherited attributes. However, the use of collection attributes
as defined by Boyland [6], makes their specification much easier and more concise.

In the paper we describe how the collection attribute mechanism has been in-
troduced in JastAdd and discuss a variety of possible evaluation techniques. The
techniques are compared with respect to applicability and performance. The pure
demand-driven techniques are shown to be outperformed by other alternatives
which are not purely demand driven.

We also compare solutions based on collection attributes to those using ordi-
nary attributes with respect both to simplicity and performance. We demonstrate
how collection attributes raise the abstraction level of RAGs and yield much more
concise specifications. They are also shown to open up for more efficient imple-
mentations.
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A number of applications are presented as are experimental results for using
collection attributes for their solutions. Examples include devirtualization and
metrics problems for Java programs with 100k lines of code.

The paper also presents the combined formalism circular collection attributes
and a number of algorithms for their evaluation. One of the examples from paper 3,
dealing with computation of nullable, first, and follow is revisited to demonstrate
how circular collection attributes facilitate specifications. More precisely, it is
shown how the specification of follow becomes much shorter and simpler when
circular collection attributes are available.

4 Contributions and Future Work

The main contributions of this thesis are connected to the experience of apply-
ing combined extended AG formalisms to different application areas. This work
has included the development of a tool, JastAdd, which incorporates formal as
well as conceptual extensions of AGs: reference attributes, circular dependencies,
collection attributes, an object-oriented view of the grammar, and modularization
concepts. It also allows the user to separate the abstract grammar from the parsing
grammar and to combine imperative implementation code with attribute gram-
mars. As a part of the JastAdd implementation, an evaluator generation technique
capable of handling the combined formalisms was developed.

In the following subsections we summarize our contributions and discuss some
possible directions for future work.

4.1 Contributions

In this subsection the contributions of the research presented in the papers are sum-
marized and related to the list of objectives given in Section 3. The contributions
of the author of this thesis is summarized in the last part of this subsection.

Paper 1 We, as well as other researchers [8, 26], have exemplified new areas,
outside the traditional compiler-related ones, where RAGs can be applied.
The program visualization application described in paper 1 is one example
of how RAGs can be used outside the traditional compiler-related area for
AGs.

The paper also demonstrates the advantages of modularization. The object-
oriented view of the grammar is combined with the possibility to separate
specifications in modules according to different aspects of the problem.

Based on our example applications, we conclude that the combination of
RAGs with a modularization concept supports separation of concerns and
makes it easy to understand and also to reuse and extend the specifications.
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Paper 2 The advantages of modularization techniques are again stressed in this
paper. The concept of modularization is generalized to also include the pos-
sibility of combining declarative attribute grammar modules with imperative
style modules using ordinary Java syntax. The most appropriate technique
for each subproblem can thus be used.

Even in extended formalisms, there are some computations that do not lend
themselves easily to declarative specification, while they are trivial to ex-
press using imperative style programming. Our conclusion is therefore that
the possibility to combine imperative and declarative aspects is very use-
ful. It is shown how the generalized modularization technique can be im-
plemented in a Java-based system. This includes the implementation of a
demand-driven evaluator for the attribute grammar modules. The construc-
tion of the evaluator is straight-forward, given the object-oriented view of
the grammar. Furthermore, the demand-driven technique facilitates the in-
tegration of attribute grammar modules and imperative modules. Attributes
defined in declarative aspects can be accessed by imperative aspects. The
access of an attribute causes the demand for its evaluation.

In our experience, the combination of declarative and imperative modules is
very useful. JastAdd has been used quite extensively in research projects at
our department and also in education.

Paper 3 Circular Reference Attributed Grammars (CRAGs) are introduced in this
paper. An important contribution of the paper is the development of algo-
rithms for evaluation of CRAGs. A CRAG is a combination of two ex-
tensions of AGs; allowing attributes to be references to nodes in the AST
and allowing circular dependencies between attribute instances under proper
constraints. The results described indicate that CRAGs have a number of
practical application areas and significantly widens the application area of
AGs. It is exemplified by the computation of nullable, first and follow intro-
duced in the context of parser construction. This problem is representative
for a large class of so called grammar flow problems, which to our knowl-
edge has not been specified using the attribute grammar formalism before.

Many problems have solutions that can be expressed using mathematical
recursion including circular dependencies. We demonstrate how these solu-
tions can be almost directly formulated as CRAG specifications.

Furthermore, CRAGs widen the scope of specifications for some classical
problems where CAGs have been used before. Live analysis in optimizing
compilers is one example. This is a classical example used to demonstrate
the usefulness of CAGs. In a CRAG, where attributes are allowed to refer-
ence remote nodes in the AST, the specification can be generalized to handle
a larger class of languages. An evaluator for CRAGs has been implemented
by generalizing the evaluator construction mechanism in our tool JastAdd.
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We have found that the demand-driven technique can be adapted to handle
CRAGSs. We have compared our demand-driven evaluation algorithm with
handwritten imperative code implementing fixed-point iterations. The re-
sults indicate that there is little difference in performance. Solutions based
on CRAGs even seem to be somewhat faster for large applications.

Circular attributes are used in the extensible Java compiler implemented
in JastAdd [10], for example, for checking that inheritance hierarchies are
acyclic.

Paper 4 Collection attributes, non-circular as well as circular, are introduced.
We demonstrate through application examples how these extensions further
raise the abstraction level of AGs. Important contributions of this paper are
the development of a number of evaluation algorithms for the extended for-
malisms and a comparison of the algorithms with respect to performance.

It is shown how the extended formalism can be used to specify concise so-
Iutions to problems in different application areas.

It is also shown how the AG evaluator can be enhanced to handle the ex-
tended formalisms in different ways. In particular it is shown how small
deviations from purely demand-driven techniques improves efficiency sub-
stantially.

Contributions by the author

The author of this thesis is the main author of papers one, three and four. For all
papers included in the thesis, the work on presentation has been shared among the
authors.

Concerning the work described in the papers, the author of this thesis con-
tributed as described below:

Paperl Design, specification and implementations of the solutions described.
Paper 2 Implementation of the attribute grammar part of JastAdd.

Paper 3 Construction of all evaluation algorithms for circular attributes and their
implementation in JastAdd. Implementations of all examples in the paper.
Analysis of performance through experiments.

Paper 4 Construction of all evaluation algorithms for collection attributes and
their implementation in JastAdd. Analysis of applicability and performance
for these algorithms. Implementation of all examples except the metrics
example, which was implemented by Torbjorn Ekman.
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4.2 Future work

There are many interesting ways in which this research may be continued:

Modularization An interesting field for future research is a generalization of
the modularization concept to further support reusability. For example, in
the first paper of this thesis, the visualization modules are not completely
reusable. They specify a graph-based visualization by adding attributes and
equations to node classes corresponding to vertices and edges. In the solu-
tion presented in the paper, they rely on the underlying grammar to use the
same name for these node classes. In an extended experimental version of
JastAdd, we are currently investigating how to overcome this problem. One
idea is to allow aspects to introduce interfaces containing declarations of AG
attributes and also to specify additions to such interfaces. An AST class can
declare that it implements such an interface. The tool then checks that it
provides specifications of the interface attributes. Also, all additions to the
interface specified in aspects will be added to all classes implementing the
interface. Using these features for the visualization example, the glue mod-
ule can be replaced by interfaces. One interface represents vertices of the
graph and another interface represents edges. These interfaces are declared
to contain the same attributes as the glue module of the present solution.
These attributes are used in the visualization modules, where specifications
now can be expressed as additions to the interfaces instead of additions to
certain AST node classes.

Evaluation of RAGs The evaluation technique we use for RAGs can probably be
improved in several ways. One possibility would be to support automatic
caching of attributes. The tools used in our work, APPLAB and JastAdd,
both allow the user to declare which attributes to cache. Optimal evaluation
is, in principle, achieved by caching all attributes. Avoiding caching of at-
tributes that are accessed only once will, however, decrease memory usage,
and improve performance in practice. It would be desirable to develop a
technique for automatically deciding which attributes to cache for best per-
formance and memory usage either based on static analysis of the grammar,
or on profiling, or on a combination of these.

Interaction with rewrites There are issues concerning the interaction between
the evaluation of circular attributes and tree rewrites [11] that need to be
further investigated. For example, it is desirable to cache circular attributes
since their evaluation is potentially expensive. Taking rewrites into consid-
eration, it is not possible to cache an attribute instance if it is dependent
on attributes instances in nodes that are not final, i.e., that can be subject
to further replacements. There are several cases that need to be considered
concerning, for example, whether the iterative process starts in rewrite mode
or not, whether attributes of non-final nodes are needed during iterations or
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not and so on. In some of these cases, circular attributes must not be cached.
Instead, they must be set back to their bottom values. These cases can be
detected by the JastAdd tool and there is already an implementation in place
for some of them. Further interference scenarios must, however, be investi-
gated. It is also important to find out to what extent these situations appear
in practical applications.

Incremental evaluation Incremental evaluation techniques have been developed

for classical AGs [28] and for CAGs [17]. Boyland [7] developed an incre-
mental technique for a RAG-like formalism that has been tried out on small
example grammars. It is a very interesting and challenging question for
further research to explore the possibility to develop incremental evaluation
techniques for CRAGs and for collection attributes. Incremental techniques
for these combined formalisms, capable of handling large programs, would
be of great practical interest. Examples include Java compilers used in inte-
grated development environments.

Continued work on CRAGs Future work also includes improving the CRAG eval

uator. As is pointed out in paper 3 the evaluator does not always detect that
circularly dependent attribute instances belong to different strongly con-
nected components of the dependency graph. As a result, iterations are
sometimes performed over more than one component at a time, resulting
in suboptimal performance and requiring monotonicity over the combined
components. It might be possible to improve component detection by using
the underlying modularity of the specifications.

Another issue concerns detecting circularities. In the present version of Jas-
tAdd the user must declare which attributes are circular. The tool will de-
tect undeclared circularities during evaluation and treat these as exceptions
which cause termination of the evaluation process. It would be desirable to
have a tool that detects all possible circularities before evaluation and then
generates an evaluator that performs the necessary iterations for the detected
possible cycles. It is, however, an open question to what extent it is possi-
ble to detect possible circular structures statically for RAGs. Such analysis
would need to be conservative and it would be interesting to look into pos-
sible approaches and their applicability.

Application areas We also plan to explore new application areas for CRAGs and

for collection attributes. For CRAGs, looking into grammar flow analysis
work [19,25] and different types of data flow analysis are of special interest.
For the combined formalism with collection attributes we have only begun to
explore the possibilities, and we believe that there are many more interesting
applications areas than those presented in the fourth paper.
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Abstract

This paper describes how attribute grammars can be used to integrate program
visualization in language-based environments and how program visualizations can
be specified and generated from grammars. It is discussed how a general solution
for a simple grammar can be reused in grammars for other specific languages. As
an example we show how diagram generation for a very simple state transition
language can be integrated in a more complex specific state transition language.
We use an extended form of attribute grammars, RAGs, which permits attributes
to be references to nodes in the syntax tree. An external graph drawing tool is
used to visualize the diagrams. The solution is modularized to support reuse for
different languages and exchange of the external drawing tool for different types
of visualization.
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1 Introduction

Program visualization is an important technique useful to gain understanding of
the structure of a program. Meaningful visualizations can be built from several
different types of elements (words, images, ..) but graph drawing is the most pop-
ular way to present structural relationships. One example is call-graphs where
functions are presented as nodes in a directed graph and possible calls between
functions as edges. Other examples are UML class diagrams, where design is ex-
pressed through graphical notations, and state transition diagrams used to visualize
finite state machines.

In this paper we discuss integrating program visualization in language-based
environments and how such program visualizations can be specified and generated
from grammars. We deal with static code visualizations, i.e., visualizations of the
program code, in contrast to, e.g., dynamic code visualization (visualizations of an
executing program) and algorithm visualization. We have an interactive environ-
ment, APPLAB (APPlication language LABoratory) supporting language-based
editing of the grammars of a language as well as language-based editing of pro-
grams in the language [5—7]. APPLAB is based on structure-oriented editing and
reference attributed grammars [14] (an object-oriented extended form of attribute
grammars).

The main representation of the program is an abstract syntax tree (AST), but
a program visualization is often based on some kind of graph. We use reference
attributed grammars to describe how these graphs can be generated from the syntax
tree. External visualization tools can then be integrated provided that they have an
import mechanism for graphs from text files in some documented format. The
generation of the text files on the format required by the tool is also specified
using reference attributed grammars.

We show how it is possible to modularize the solution for a particular kind of
visualization so that both the underlying programming language and the external
visualization tool can easily be exchanged. In this article, we use state-transition
visualizations as a running example and show how the solution can be reused for
different state-based languages. A similar technique could be used for other vi-
sualizations, e.g. to obtain UML class diagrams for different object-oriented pro-
gramming languages.

The rest of this article is organized as follows. Section 2 presents the envi-
ronment architecture. Section 3 describes a general solution for a simple state
transition language and section 4 gives an overview of how the representation for
an external tool can be generated. In section 5 we show how the solution can be
integrated in a more complex specific state transition language. Comparison of
our approach to some related work is done in section 6. Section 7, finally, gives a
concluding discussion of our technique and how it can be developed further.
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2 Environment architecture

The environment architecture consists of two parts; a language environment sup-
porting language specification and language-based editing of programs in the spec-
ified languages, and a visualization tool, i.e., an external graph drawing tool used
for visualizing programs. In our experimental platform we use our interactive
language development tool APPLAB as the language environment, and the tool
daVinci [1] from University of Bremen as the visualization tool. See Fig. 1.

rL‘ state < Alternativel Revision 184 > b

> ABSTRACT |¢N DDSL-szua112ation—G1ue|

“ CONGRETE £x 005L-visualization-Front-end

<k, 005L-Nanednalysis | UUSL*VisuaW1zat10nfBackfend|

. PROGRAM| . = &
= daVinci ¥2.1 — PROGRAM

state 4

Szaie g Fle #g% View HNavigation Abstraction Layoul Options  Help

state : ¢

trans TL(4,B) i

trans T2(4,0) 5

trans T3(C,A) :
L5

[‘A‘t‘tribute printed to file PROGRAM.code

| T T2 T3
T

ﬁﬂ?

|
. ' b

SToP

Figure 1: Overall architecture. To the left, the language environment APPLAB
with the language specification in several aspects (icons ABSTRACT, CON-
CRETE, OOSL-Name-Analysis, ...) and an example program in the specified
language (window PROGRAM). To the right, the daVinci tool is used to visualize
the program as a state-transition diagram.

2.1 The interactive language development tool APPLAB

The language environment is implemented using our interactive tool APPLAB
(APPlication language LABoratory) [5,6]. The main goal of APPLAB is to sup-
port interactive development of application-specific languages, allowing the user
to simultaneously work on the language definitions and experiment with the result-
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ing language. Changes in the language are immediately reflected in the program
editor. The system is based on structure-oriented editing and an object-oriented
extension to attribute grammars.

An attribute grammar [15] is an extension of a context-free grammar where
a set of attributes A(X) are associated with each non-terminal symbol X. A set
of equations F(p) are associated with every production p. There are two kinds
of attributes, synthesized and inherited. Synthesized attributes are used to propa-
gate information upwards in the syntax tree and inherited attributes to propagate
information downwards. For each production p : X ::= X3 ... X,,, E(p) should
have equations defining all the synthesized attributes of X and all the inherited
attributes of X;,7 =1,2,... n.

In the extended attribute grammars used in APPLAB, the context-free syntax
is modeled as an object-oriented inheritance hierarchy of node classes, where the
leaf classes correspond to productions and their superclasses to nonterminals. The
class hierarchy allows attribute grammars to be written in a compact way by using
the inheritance hierarchy to avoid much of the repetition of attributes and equations
that is otherwise common in classical attribute grammars [12].

The root of the class hierarchy is the node class ANYNODE which can be used
to model behavior common to all nodes in the AST. Every node in the syntax
tree is an instance of a subclass of ANYNODE. Equations defining attributes can
be viewed as parameterless virtual functions. It is therefore possible to make a
default definition of an attribute in a superclass and then override it in a subclass.
APPLAB also supports the definition of virtual functions with parameters.

APPLAB makes use of object-oriented concepts to organize the specification,
but in contrast to object-oriented programming languages the specification con-
tains only declarative constructs (no assignments or other imperative constructs).
The attribute evaluation method used is demand evaluation, a simple but general
evaluation method based on recursion [17]: When an attribute value is demanded,
the right-hand side of its defining equation is evaluated (similar to a function call)
and this will in turn lead to the demand evaluation of the attributes used in that
equation. Optimal evaluation is achieved by caching evaluated attributes in the
AST and cyclic definitions of attributes can be detected at evaluation time by set-
ting a flag for each cached attribute. In APPLAB, the user can demand an attribute
value to be displayed or written to a file.

In addition to the object-oriented style of specifying the attribute grammar,
APPLAB supports reference attributed grammars, i.e., the ability to let an attribute
be a reference to an arbitrary node in the syntax tree [14]. Reference attributes are
similar to ordinary reference variables in object-oriented programming languages
in that they can refer to other objects and be used to obtain arbitrary linked data
structures (including cyclic structures). However, reference attributes differ from
reference variables by being defined declaratively by equations. This is in contrast
to the usual programming language approach of writing an imperative mutating
computation to obtain the linked structure.
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Reference attributes are useful for describing arbitrary relations between nodes
in a syntax tree, in addition to the syntactic (tree-structured) relations that ordinary
attribute grammars support. For example, call graph relations, inheritance rela-
tions, and state-transition relations are easily described using reference attributes.
A few built-in structured data types like dictionaries mapping strings to node ref-
erences (NodeDictionary) and sets/bags of node references (NodeBag) have been
added to APPLAB in order to allow such relations to be described effectively.

A language is specified in APPLAB in a document containing several gram-
mar aspects, see also Fig. 1. The ABSTRACT aspect defines the abstract context-
free syntax of the language and the CONCRETE aspect defines the concrete syn-
tax (how to unparse an AST as text in a window). The OOSL (Object-Oriented
Specification Language [5, 6, 13]) aspect defines an attribute grammar. An OOSL
specification can be split in a number of modules thus textually separating at-
tributes and equations for different purposes, e.g., static-semantic checking and
code generation. Similar possibilities for modularizing the attribution specifica-
tion is available also in non-object-oriented attribute grammar systems such as the
Synthesizer Generator [20]. From an object-oriented viewpoint, the OOSL mod-
ules are orthogonal to the class hierarchy. Similar modularization techniques are
available also for some object-oriented programming languages, in particular the
fragment system for the BETA language [16] and in subject-oriented program-
ming [11].

Fig.2 shows an OOSL example of how to add an inherited attribute root
referencing the root node in the AST to every node. The equation is an example of
a so called collective equation which defines the value of an inherited attribute of
all sons of a given type, in this case of any type [12]. The example also shows an
example of an overriding equation: the equation in Program overrides the default
definition in ANYNODE since Program is a subclass of ANYNODE.

Noz.z— Attributes Equations and functions
terminal
ANYNODE | inh root: eq son ANYNODE.root := root
ref Program
Program eq son ANYNODE.root := this Program

Figure 2: Adding an inherited reference attribute root to all nodes. The de-
fault definition in ANYNODE defines the root attribute of all son nodes to be the
same as for the current node. In Program (the root production), the definition is
overridden, defining the root attribute of all sons to the Program node to be a
reference to the Program node.
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2.2 The graph drawing tool daVinci

The external tool used for the graph visualization is daVinci [1], an interactive
visualization system for drawings of directed graphs, developed at the Computer
Science Department at the University of Bremen. An application program can
access the operations of daVinci by using its API. The communication between
daVinci and the application is realized with UNIX pipes. There is also a Graph
Editor Application which is an interactive tool to create and modify graphs. The
editor in this case acts as an application program which communicates with the
daVinci API. Currently, we use the daVinci editor only to display graphs, not to
edit them. Graphs can be loaded in the editor from text files with a special format,
the term representation, described in more detail in Section 4.1.

After loading a graph into daVinci it can be processed in different ways. For
example edge crossing minimization and edge bending minimization can be per-
formed. It is also possible to create a survey view of the graph and zoom into
different part of it and to change the orientation of the graph.

In our experimental platform, an attribute grammar is specified in APPLAB
which defines the representation required by daVinci as a string attribute. Thus,
to visualize a program, this attribute is evaluated and saved on a text file which
is then loaded into daVinci, and displayed on the program window of the daVinci
editor. See Fig.1. Our ambition is to improve the integration of the language
environment and the visualization tool. Preferably it should be possible to connect
to the external graph drawing tool directly from APPLAB.

2.3 Obtaining a reusable visualizatation specification

In order to obtain a general reusable solution, it is useful to organize the speci-
fication of a visualization according to the following different aspects: First, the
essence of the visualization can be specified by introducing node classes that match
the main concepts in the visualization. For example, for a state diagram, the node
classes could be State and Transition. Attributes of these node classes are
introduced for modelling the essential properties of the visualization. We call this
part of the specification the visualization front-end. Second, to tie this specification
to a certain visualization tool, a visualization back-end module is introduced which
specifies the computations needed to generate the representation required by the
external visualization tool. If the visualization tool is exchanged, another back-end
is written for that tool. Third, a visualization glue module is written which ties the
front-end to the specific language to be visualized. Typically, the glue module can
make use of a static-semantics module which defines the name analysis (identifier
declaration/use sites) for the language at hand. To visualize another language with
the same kind of diagrams, a new glue module is written. The front-end module
can be reused for all languages and visualization tools. This module organization
is shown in Fig. 3.
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CONCRETE
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Static- Visualization-
Semantics Front-end
\ / \ Output o
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Visualization- Visualization- tion tool
Glue Back-end

A uses or defines attributes declared in B

Figure 3: Internal architecture in APPLAB showing module dependencies for a
general reusable specification of the visualization.

APPLAB currently supports this module organization, with the restriction that
the front-end must use the node classes that correspond to states and transitions in
the ABSTRACT syntax. As future work, we plan to generalize the module system
of APPLAB in order to allow the front-end to introduce its own node classes, and
let the glue module tie these node classes to the corresponding ones appearing in
the ABSTRACT syntax.

3 Visualization for a simple state transition lan-
guage

We will use state-transition diagrams as our running example. In this section, we
introduce a very simple state transition language, TinyState, and the front-end and
glue of our solution, i.e., how to specify the essence of the state-transition graph
on which visualizations of programs written in TinyState are based, and how to tie
this to the syntax of TinyState.

3.1 The language TinyState

The abstract grammar for a very simple state transition language, TinyState, is
given in Fig. 4. Production (2) is a list production stating that a StateDecls
consists of a number of StateDecl nodes. Production (5) is a construction pro-
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duction stating that TransitionDecl is a construction of three IDs (the name
of the transition, the name of the source state and the name of the target state).

Program ::= StateDecls TransitionDecls (1)
StateDecls ::=StateDecl* (@)
StateDecl ::= ID (3)
TransitionDecls ::= TransitionDecl* (4)
TransitionDecl ::= ID ID ID (5)

Figure 4: The ABSTRACT grammar of TinyState, a simple state transition lan-
guage.

The concrete syntax of TinyState becomes evident from the example program
of Fig. 5. The program can be visualized as a directed graph, where vertices cor-
respond to states and edges to transitions.

3.2 \Visualization front-end

The visualization front-end defines a representation of the state-transition graph
that is independent of the programming language syntax and which is easy to tra-
verse for the back-end. The representation is realized using reference attributes
that link together declarations of transitions and declaration of their source and
target states.

In every TransitionDecl node we add two attributes sourceState
and targetState referencing the StateDecl nodes in the tree correspond-
ing to the source and target states. Every StateDecl node has an attribute
outgoingTrs defined to be a set of references to the transitions having the ac-
tual state as its source. There is also a corresponding attribute incomingTrs

t2
state a
state b 1l
state ¢
trans t1(a,b)
trans t2(a,a)
trans t3(b,c) 4 t3
(c

trans t4(c,a) °

Figure 5: A simple program and a possible visualization.
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Program
StateDecls TransitionDecls
/\ TransitionDecl (t
StateDecl (a) | StateDecl (b ®
outgoingTrs | = outgoingTrs sourceState i
||ncom|ngTrs incomingTrs : targetState |
|
SPtraotgrzm: reference attribute
state b — syntax tree link

trans t (a,b)

Figure 6: Connections between states and transitions for a small program.

for transitions having the state as their target. In this way we get a description
of the graph resembling an ordinary adjacency list representation which makes
it easy to traverse. In Fig.6 the connections between StateDecl nodes and
TransitionDecl nodes in the AST for a small program are shown.

To define the attributes sourceState and targetState, detailed knowl-
edge about the programming language syntax is needed, and the equations defining
these attributes are therefore placed in the glue module. The attributes outgoing-
Trs and incomingTrs can then be computed in a syntax-independent way, us-
ing the values of sourceState and targetState. E.g., outgoingTrs can
be defined by searching the AST for TransitionDecl nodes where source-
State references the actual state. A function outTrs is defined which recur-
sively searches the tree for nodes matching this condition. To be able to start the
search at the root of the AST, a reference attribute ASTroot is introduced which
must be defined by the glue module. The attribute incomingTrs is defined in a
similar way. Fig. 7 shows the front-end module.

The out Trs function in Fig. 7 makes use of the foreach-construct in OOSL.
In this case it is used to iterate over all the sons of an arbitrary AST-node. The
same construct can be used to iterate over the elements in a NodeBag. (Despite its
imperative appearance, the foreach construct is a declarative language construct
equivalent to a special case of a tail-recursive function.) The function outTrs
may seem unnecessarily complicated for our simple language. Since we know that
all TransitionDecl nodes in the AST are sons of the TransitionDecls
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Attributes to be defined in the glue module

Non-terminal Attributes Equations and functions

TransitionDecl | syn sourceState: ref StateDecl;
syn targetState: ref StateDecl;
syn transitionLabel: string;

StateDecl syn stateLabel: string;

ANYNODE syn ASTroot: ref ANYNODE;

Additional attributes and definitions

Non-terminal Attributes Equations and functions

ANYNODE outTrs: func ref NodeBag
(n: ref StateDecl)
foreach $X: ANYNODE in this ANYNODE do
$N := (init new NodeBag)
inspect $Y := $X
when TransitionDecl do
if $Y.sourceState=n
then $N.add( $Y )
else $N
otherwise $N.union( $Y.outTrs( n))

StateDecl syn outgoingTrs: eq outgoingTrs :=
ref NodeBag; ASTroot.outTrs(this StateDecl)
syn incomingTrs: eq incomingTrs =
ref NodeBag ASTroot.inTrs(this StateDecl)

Figure 7: Front-end module. The function inTrs used in the definition of
incomingTrs is similar to out Trs and not shown.

node iterating over these would be sufficient. Implementing this function (and
others) in a more general way means, however, that we are able to reuse them
when adding visualization aspects to other languages with completely different
syntax tree structures.

We also declare two string attributes stateLabel and transitionLabel
in the front-end module. They denote the text to be attached to nodes and edges
respectively in the visualization graph and are to be defined by the glue module.

3.3 Static-semantics of TinyState

It is often useful to base the glue module on the static-semantics module, because
this module already contains the name analysis needed for the glue module. The
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static-semantic analysis of TinyState is very simple. One of its goals is to check
that the names of states used in transition declarations are declared in the program.
For this purpose an aggregate attribute stateDict (a NodeDictionary) is defined
as a mapping from state names to references to their respective declaration nodes.
Checking that a transition declaration is correct means checking that the names of
the source and target states can be retrieved from the dictionary. The dictionary is
an attribute defined in the root node of the syntax tree. All other nodes of the AST
are given access to the dictionary via an attribute root referencing the root node
and defined as was shown in Fig. 2. The definition of stateDict is shown in the
table of Fig. 8.

Nor-z— Attributes Equations and functions
terminal
Program syn stateDict: eq stateDict := a_StateDecls.buildDict()
ref NodeDictionary
StateDecls buildDict func ref NodeDictionary :=
foreach $X : StateDecl in this StateDecls do
$D := (init new NodeDictionary)
$D.add($X .stateName, $X)
StateDecl syn stateName: string | eq stateName := a_ID.val

Figure 8: Part of the static-semantics of TinyState. A table, stateDict, map-
ping state names to state declarations is defined.

The function buildDict () in node class StateDecls uses the foreach
construct in OOSL. In this case a table is built containing association pairs (key,
element) for all sons (all of which are StateDecl nodes) where key is the name
of the son and element is a reference to the son node. If the same key is added more
than once to a NodeDictionary the previous association is overridden. The table
stateDict can therefore also be used when checking that all state names in a
program are unique. To each St ateDec1 node an equation can be added where a
lookup for the state name is performed. The corresponding element should refer to
the actual state. If not, a violation of the uniqueness requirement has been detected.
The complete static-semantics is available in a separate report [19].

3.4 The glue module

Fig.9 shows the glue module. It should implement some of the attributes de-
clared in the front-end according to Fig.7. The attributes sourceState and
targetState can be defined simply by doing a lookup in the dictionary state-
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Dict defined in the static-semantics module. The ASTroot attribute can be de-
fined simply using the root attribute (as defined in Fig.2). For stateLabel
and transitionLabel there is little choice in TinyState but to define them as
the names of the corresponding state and transition respectively.

Non-terminal Attributes Equations and functions

TransitionDecl eq sourceState := root.stateDict.lookup(a_ID_2.val)
eq targetState := root.stateDict.lookup(a_ID_3.val)
eq transitionLabel := a_ID_1.val

StateDecl eq stateLabel := a_ID.val

ANYNODE eq ASTroot := root

Figure 9: The glue module. The indexing on the identifiers (a_ID_1, a_ID_2 etc.)
refers to the different occurences of the ID nonterminal in the TransitionDecl
production. See Fig. 4.

4 Visualization back-end for the state transition
visualization

Once the graph has been described in the front-end, by linking together State-
Decl and TransitionDecl AST nodes via reference attributes, the represen-
tation required by the external graph drawing tool can be specified independently
from the actual underlying language. In this section we give an example of such
a back-end, by showing how code is generated for output to the daVinci tool. The
daVinci tool represents graphs as nodes and edges, and the goal of the back-end
is thus to map the StateDecl-TransitionDecl graph of the program to
the format for nodes and edges required by daVinci. This mapping is non-trivial
because daVinci represents graphs as trees with special treatment of edges that
cannot be mapped to a tree and special treatment of cyclic structures in the graph.

4.1 The daVinci term representation

When graphs are loaded in daVinci a special format called the term representation
is used. The term representation is defined by a context-free grammar. A term
is a structure of type parent [child;, childs, ...]. Brackets are used
around a list of elements of the same type. The scheme is applied recursively. The
term representation is plain text, so it can be created manually using a text editor.
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Typically, however, it is created automatically by some application program. In our
case the input to daVinci is created by defining a string attribute of the program to
be visualized.

Identifiers and references are used to identify daVinci nodes and edges. If a
child node has more than one parent the subgraph of the child appears only once in
the term representation (as a child of one of the parents). This subterm is given an
identifier, the identifier of the child node. The other parents have only a reference
to this identifier. For example the node C' in the graph of Fig. 10 has two parents
A and B. When generating the code the node A will be treated as parent of C'
and when visiting C on a traversal coming from A we will continue recursively to
generate the code of the subgraph of C. Coming from B, however, we will stop
the traversal at C' and just return the code of a reference to the child C.

Figure 10: A node (C) with more than one parent.

One task of the back-end is to generate unique identifiers for all daVinci nodes
and edges. This is done by adding an integer attribute prefixNbr to all nodes
in the AST and defining this attribute as the number of the node when traversing
the tree in prefix order starting with number 1 in the root node. The relationship
between the number of a node and the number of its parent can be expressed as

prefixNbr:=parent.prefixNbr+l+nbrOfNodesInLeftSiblings

where the last term denotes the total number of nodes in the subtrees rooted in
the left siblings of the actual node. This number can be computed using auxiliary
functions implemented in ANYNODE, in a manner completely independent of the
underlying programming language. Since daVinci requests its unique identifiers
to be strings, another string attribute nodeId is defined in each node. Its value is
simply the pre fi1xNbr attribute translated into its corresponding string. See [19]
for the specification of these computations.

The term representation uses attributes to specify the visualization of individ-
ual daVinci nodes and edges. We call these attributes daVinci attributes to distin-
guish them from attributes of an attribute grammar. All daVinci attributes have
default values. The following example shows daVinci attributes for a graph node
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which should be drawn as a box (a default shape value) with blue background and

text "hello" written using the default font ("a" is the constructor for string pairs
defining daVinci attributes in the term representation):

[a ("OBJECT", "hello"), a("COLOR", "blue")]

All daVinci attributes that need to be defined have their corresponding at-
tributes in our grammar. We have chosen to draw the nodes as ovals and edges
as lines with an arrow pointing to the target state.

4.2 Code generation by graph traversal

The daVinci term representation (in the following called simply the code) can be
generated by using information propagated along the reference attributes describ-
ing the graph, corresponding to depth-first graph traversal. There are however two
problems which need to be dealt with.

The first problem concerns cycles in the graph. In an imperative language you
usually perform depth-first traversal by adding an extra boolean attribute "visited",
initially false and changed to true when visiting the node for the first time. In
a declarative language it is not possible to change the value of an attribute once
defined. The usual solution is to use sets to keep track of which nodes to visit next
and which nodes to avoid to visit again. A simpler technique for the problem at
hand is to avoid cycles by inverting edges and then draw them reinverted. Since
all nodes in the AST are numbered (the prefixNbr attribute) we can introduce
an order between states. We define a state S1 to be declared before another state
S2 if Sl.prefixNbr < S2.prefixNbr. An attribute inverse is added
to TransitionDecl nodes. If the source of a transition is not declared before
its target the value of inverse is true, otherwise false. In the code generation
phase a transition where inverse is true will be treated as a transition from its
target state to its source state. One of the daVinci attributes for edges specifies
the way the edge should be drawn. If inverse is true then the corresponding
daVinci attribute is defined to draw the edge inverted i.e. it appears with its original
orientation in the visualization. Selfedges need special treatment.

When cycles are removed the code can be generated by appending the code
representation of all StateDecl nodes with indegree 0. The code of a State-
Decl is constructed by appending the code of all transitions in its outgoingTrs
attribute where inverse is false and all transitions in its incomingTrs at-
tribute where inverse is true. The code of a transition is in turn in principle
the code of its target state. daVinci attributes are inserted in appropriate places as
stated by the grammar of the term representation. Thus the generation of the code
of a state corresponds to a depth-first traversal of the graph starting in the actual
state.

The second problem originates from the requirement to describe a subgraph
only once in the term representation as explained in section 4.1. For this purpose
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we add an attribute theTransition to each StateDecl node defined to be a
reference to one of the transitions having the actual state as its target. In the code
generation we continue to recursively visit and generate the code of a target state
node if the transition node being treated equals its theTransition attribute.
Otherwise we just return the reference code (the unique identifier) of the target
state node.

The complete back-end specification is available in [19].

5 Reusing the visualization specification for a
more complex state transition language

The state-transition visualization specified by the front-end and back-end modules
can be used for any state-transition language simply by exchanging the glue mod-
ule. In another research project at our department, an application-specific language
has been developed to support executable state-transition based specifications for
devices communicating over short-distance radio. This project is done in cooper-
ation with Ericsson Mobile Communications [10]. We have used this language,
ExSpecState, as an example of how to integrate the diagram generation in a spe-
cific state transition language. In this section we will discuss the glue module for
ExSpecState.

5.1 Differences between the languages

The ABSTRACT grammar of ExSpecSate contains approximately 90 productions.
It comes equipped with OOSL grammar aspects for name and type analysis. As
a state transition language it differs from TinyState in two ways. The states are
hierarchical and the transitions have no names. An excerpt from the ABSTRACT
grammar showing only the productions affecting state and transition declarations
is given in Fig. 11. and part of a program using ExSpecState is shown in Fig. 12.

Root ::= Process*

Process ::= ID OptComment StateSpecification

StateSpecification ::= DeclList

DeclList ::= Decl*

Decl ::= StateDecl | TransitionDecl | VarDecl | ChannelDecl

StateDecl ::= ID OptFormalParamList OptCommentList OptStateSpecification
OptStateSpecification ::= NoStateSpecification | StateSpecification
TransitionDecl ::= EventDecl OptCommentList OptLocalDecls OptActionList Use

Figure 11: Some of the productions for the ExSpecState language.
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process MP: (* Mobile Phone*) {
state Delnitialized {
when GUI event GUI_REQ_INIT(BSid:integer, BSPinCode:integer)

(* User requests init with specific BS id and PIN code *)

actions
L2CAP request connection to id (BSid) with
protocol("CLT") returning (channel ch)

transfer to Initializing(ch,BSPinCode)

state Initializing {
state WaitingForChannel(BSch:channel, BSPinCode:integer) {
when L2CAP connection response from (BSch) is (false)
(* No such BS found *)
transfer to Delnitialized
when L2CAP connection response from (BSch) is (true)
(* Channel established to BS *)
transfer to WaitingForBSInitReply(BSch)
state WaitingForBSInitReply(BSch:channel) {

Figure 12: Part of a program in ExSpecState.

5.2 Integrating the diagram generation

The reuse of the front-end and back-end modules currently relies on that all pro-
gramming languages use the names StateDecl and TransitionDecl for the
non-terminals modelling states and transitions.

In the glue module for ExSpecState, definitions for the attributes source-
State and targetState in a TransitionDecl node are added. The at-
tribute targetState could be defined using the lookup facilities provided by
the name analysis of ExSpecState (as was done in the glue module of TinyS-
tate). In fact it doesn’t need to be looked up since each Use node is already
equipped with an attribute (decl) referencing its corresponding declaration. The
sourceState is in ExSpecState a reference to the declaration of the state in
which the transition is declared i.e. we have to look for the closest ancestor node of
type StateDecl in the AST. The principal part of the glue module for ExSpec-
State is shown in Fig. 13 with equations for sourceState, targetState,
statelLabel, transitionLabel and ASTroot. The attribute parent-
State used in the definitions is declared in StateDecl nodes and defined to
reference the closest ancestor of type StateDecl in the AST. If there is no such
ancestor it references the ancestor of type Process instead. Labels for states
are in principle defined by appending the labels of its parent states (the symbol
"&" is used for appending). If a process named P contains a declaration of a state
named S1 which in turn contains a declaration of a state named S2 then the label
of S2 will be P_S1_S2. For transitions the label is the comment attached to its



6 Related work

45

declaration if present otherwise the name of the event causing the transition.

Non-terminal Attributes Equations and functions

TransitionDecl eq sourceState := parentState
eq targetState :=
inspect $X := a_Use.decl
when StateDecl do $X
otherwise none
eq transitionLabel :=
inspect $X := a_OptCommentList
when CommentList do $X.commentText
otherwise a_Event_Decl.eventName

StateDecl eq stateLabel :=

inspext $X := parentState

when StateDecl do
$X.stateLabel&”_"&a_ID.val

otherwise processName&”_"&a_ID.val

ANYNODE eq ASTroot := root;

Figure 13: Part of the glue module for ExSpecState.

6 Related work

Our visualization technique can be characterized as follows:

e static code visualization: the scope of our technique is restricted to static
code visualizations, i.e., visualizations that can be derived from the program
code (in contrast to dynamic visualizations like execution visualization and

algorithm animation).

e open system: visualizations are not built into the environment, but can be

added as desired.

e declarative specifications: visualizations are specified using a declarative

formalism, rather than explicitly programmed.

e language independent: the visualizations can be specified independently
of the programming language used, and reused for different programming

languages by specifying different glue modules

e visualization tool independent: different visualization tools can be used by

specifying different back-end modules
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There are many systems that have support for some kind of program visualization.
However, most systems are not open, but provide support only for a set of built-in
visualizations. They are usually also language dependent and provide support only
for a predefined set of programming languages. One example is Panorama, a visual
environment for Java/C/C++ which supports visualizations like call graphs and
flow diagrams [2]. Other examples include Rational Rose [3] and TogetherJ [4].
These latter systems provide support not only for program visualization, but also
for visual programming, i.e., the possibility to edit the diagrams. They support
round-trip engineering where the user can edit diagrams with auto-updating source
code and also edit source code with auto-updating diagrams. Dedicated visual
programming environments include Prograph [8]. Language-based approaches to
visual programming includes graph-grammar based environments, such as Pro-
gres [23]. A fundamental difference between these tools and ours is that they use
graphs as the main program representation, whereas in our approach the main rep-
resentation is an abstract syntax tree described by a context-free grammar.

Pavane [21] is a tool that, like ours, takes a declarative and language-indepen-
dent approach to visualization. However, the scope of Pavane is algorithm anima-
tion rather than static code visualization. The animator defines a mapping from
program states to graphical objects. For some languages, like C++, some annota-
tion of the program code is needed.

In [22], another language-based approach for using attribute grammars for vi-
sualization is described. However, this approach is restricted to tree-structured
visualizations of syntax trees. The system integrates the language-based editor
generator CENTAUR with a visualization tool FIGUE which is capable of dis-
playing trees specified as Lisp lists. An example of its use is in visualizing math-
ematical formulas in their standard mathematical form. Attribute grammars are
used, but only in the integration process of the tools. A given visualization can be
reused for all languages specified in CENTAUR but the only structural aspect of
a program that can be visualized is its abstract syntax tree. The solution seems to
closely couple the tools with no intention of possible exchange of the visualization
tool.

A language independent program visualization technique is described in [9].
Control structure diagrams (CSD) are generated automatically from source code.
CSD diagrams add some graphical notations to pretty-printed source code in order
to depict control structures and levels of nesting. The tool works in two phases.
During the first phase markup tags are inserted in the source code to identify all
control structures. In the second phase the tags are used to render the visualiza-
tion. The renderer is completely language independent but a new tagger must be
developed for every language. The separation of a language dependent phase from
a language independent one resembles our modularization technique. The scope
of the visualization is restricted to CSD diagrams, and diagrams with arbitrary
relationships between program structures can thus not be handled.
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7 Conclusions and future work

We have described a technique to integrate visualizations in language-based en-
vironments and how they can be specified declaratively in RAGs. We have also
shown how the solution can be modularized to facilitate reuse for different pro-
gramming languages and exchange of the external drawing tool.

Attribute grammars allow specification of context-sensitive aspects of a lan-
guage such as semantic checking and code generation. The specifications are
declarative and thus potentially clearer and more concise than imperative code
since they only state facts about the final computation results and not the order
of computation. The extension of canonical attribute grammars to RAGs makes
it easy to define grammar aspects where non-local dependencies play an impor-
tant role. An example is the visualization aspects as shown in sections 3 and 4.
Reference attributes permit a clear and concise way of describing the non-local
dependencies in the AST that constitute the graph on which the visualization is
based. Information can be propagated along the reference attributes describing the
graph structure thus facilitating the generation of a correct representation for an
external drawing tool.

For the definition of an individual attribute, one can always argue if an impera-
tive procedure or a declarative function is easiest to understand. This was touched
upon in section 4.2 where different techniques for handling cycles in the graphs
were discussed. In principle, it would be possible to allow imperative definition
of an attribute, provided this code does not produce any net side effects (i.e., side
effects that remain after execution of the code). To support such imperative speci-
fication in a safe way could be a topic of future work.

It is straightforward to express a solution in general terms in APPLAB. Rather
than using information about the structure of the syntax tree for a certain language,
a more general approach can be taken by representing the important structures us-
ing reference attributes. This allows the front-end and back-end of the specification
to be reused for different programming languages.

The APPLAB specification language currently supports modularization by al-
lowing attribute definitions for a certain aspect of the grammar to be textually
separated from other grammar aspects of the language being specified. As men-
tioned in section 2.3, a generalization of the module system is needed to make
the front-end of our solution completely reusable for all programming languages.
Currently, the essence of the front-end is reusable but relies on grammars to use
the same names for its node classes. We plan to generalize this by extending the
OOSL formalism with a possibility to declare syntactic part objects, similar to part
objects in BETA [18] or anonymous inner classes in Java. The back-end is con-
cerned solely with the generation of a proper representation for an external tool.
Using different tools for different kinds of visualizations can thereby be achieved
by exchanging this module.
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In the near future, we also plan to improve our tool integration so that visual-
izations in external drawing tools can be opened and updated more conveniently;
in the current solution the user has to print an attribute to an explicit text file and
start the drawing tool by a shell command.

A more long-term challenge is to try to extend the technique so that external
visualization tools that support editing, like daVinci, can be used for actually edit-
ing the visualized program, and propagate those edits back to the original syntax
tree. Preferably, the external tool should include an event propagation mechanism
so that each individual editing step could be propagated back to APPLAB. A main
challenge in making such integration work is to devise a mechanism that allows
the change of a reference attribute value to induce a corresponding change to the
AST. For example, changing an edge in the visualization graph means changing
the value of reference attributes in the AST. The proper change of the AST to make
it consistent must then be found.
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JASTADD—AN
ASPECT-ORIENTED
COMPILER CONSTRUCTION
SYSTEM

Abstract

We describe JastAdd, a Java-based system for compiler construction. JastAdd is
centered around an object-oriented representation of the abstract syntax tree where
reference variables can be used to link together different parts of the tree. JastAdd
supports the combination of declarative techniques (using Reference Attributed
Grammars) and imperative techniques (using ordinary Java code) in implement-
ing the compiler. The behavior can be modularized into different aspects, e.g.
name analysis, type checking, code generation, etc., that are woven together into
classes using aspect-oriented programming techniques, providing a safer and more
powerful alternative to the Visitor pattern. The JastAdd system is independent
of the underlying parsing technology and supports any non-circular dependencies
between computations, thereby allowing general multi-pass compilation. The at-
tribute evaluator (optimal recursive evaluation) is implemented very conveniently
using Java classes, interfaces, and virtual methods.

Published as: G. Hedin and E. Magnusson, “JastAdd—an aspect-oriented compiler construction
system”. SCP - Science of Computer Programming, 47(1):37-58. Elsevier. November 2002.
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1 Introduction

Many existing parser generators have only rudimentary support for further com-
pilation. Often, the support is limited to simple semantic actions and tree build-
ing during parsing. Systems supporting more advanced processing are usually
based on dedicated formalisms like attribute grammars and algebraic specifica-
tions. These systems often have their own specification language and can be dif-
ficult to integrate with handwritten code, in particular when it is desired to take
full advantage of state-of-the-art object-oriented languages like Java. In this paper
we describe JastAdd, a simple yet flexible system which allows compiler behavior
to be implemented conveniently based on an object-oriented abstract syntax tree.
The behavior can be modularized into different aspects, e.g., name analysis, type
checking, code generation, etc., that are combined into the classes of the abstract
syntax tree. This technique is similar to the introduction feature of aspect-oriented
programming in Aspect] [17]. A common alternative modularization technique is
to use the Visitor design pattern [9,24]. However, the aspect-oriented technique has
many advantages over the Visitor pattern, including full type checking of method
parameters and return values, and the ability to associate not only methods but also
fields to classes.

When implementing a compiler, it is often desirable to use a combination of
declarative and imperative code, allowing results computed by declarative mod-
ules to be accessed by imperative modules and vice versa. For example, an im-
perative module implementing a print-out of compile-time errors can access the
error attributes computed by a declarative module. In JastAdd, imperative code
is written in aspect-oriented Java code modules. For declarative code, JastAdd
supports Reference Attributed Grammars (RAGs) [14]. This is an extension to
attribute grammars that allows attributes to be references to abstract syntax tree
nodes, and attributes can be accessed remotely via such references. RAGs allow
name analysis to be specified in a simple way also for languages with complex
scope mechanisms like inheritance in object-oriented languages. The formalism
makes it possible to use the Abstract Syntax Tree (AST) itself as a symbol ta-
ble, and to establish direct connections between identifier use sites and declaration
sites by means of reference attributes. Further behavior, whether declarative or
imperative, can be specified easily by making use of such connections. The RAG
modules are specified in an extension to Java and are translated to ordinary Java
code by the system.

Our current version of the JastAdd system is built on top of the LL parser gen-
erator JavaCC [4]. However, its design is not specifically tied to JavaCC: the parser
generator is used only to parse the program and to build the abstract syntax tree.
The definition of the abstract syntax tree and the behavior modules are completely
independent of JavaCC and the system could as well have been based on any other
parser generator for Java such as the LALR-based system CUP [2] or the LL-based
system ANTLR [1].
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The JavaCC system includes tree building support by means of a preproces-
sor called JJTree. JJTree allows easy specification of what AST nodes to generate
during parsing, and also supports automatic generation of AST classes. However,
there is no mechanism in JJTree to update AST classes once they have been gen-
erated, so if the AST classes need more functionality than is generated, it is up to
the programmer to modify the generated classes by hand and to update the classes
after changes in the grammar. In JastAdd, this tedious and error-prone procedure
is completely avoided by allowing handwritten and generated code to be kept in
separate modules. JastAdd uses the JJTree facility for annotating the parser spec-
ification with tree-building actions, but the AST classes are generated directly by
JastAdd, rather than relying on the JJTree facility for this. SableCC [11] and
JTB [3] are other Java-based systems that have a similar distinction between gen-
erated and handwritten modules. While both SableCC and JTB support the Visitor
pattern for adding behavior, neither one supports aspect-oriented programming nor
declarative specification of behavior like attribute grammars.

The attribute evaluator used in JastAdd is an optimal recursive evaluator that
can handle arbitrary acyclic attribute dependencies. If the dependencies contain
cycles, these are detected at attribute evaluation time. The evaluation technique
is in principle the same as the one used by many earlier systems such as Mad-
sen [21], Jalili [15], and Jourdan [16]: an access to an attribute value is replaced
by a function call which computes the appropriate semantic function for the value
and then caches the computed value for future accesses to the same attribute. A
cache flag is used to keep track of whether the value has been computed before
and is cached. A cycle flag is used to keep track of attributes involved in an eval-
uation so that cyclic dependencies can be detected at evaluation time. While these
earlier systems used this evaluation algorithm for traditional attribute grammars,
it turns out that this algorithm is also applicable to RAGs [14]. Our implementa-
tion in JastAdd differs from earlier implementations in its use of object-oriented
programming for convenient coding of the algorithm.

The rest of the paper is outlined as follows. Section 2 describes the object-
oriented ASTs used in JastAdd. Section 3 describes how imperative code can
be modularized according to different aspects of compilation and woven together
into complete classes. Section 4 describes how RAGs can be used in JastAdd and
Section 5 how they are translated to Java. Section 6 discusses related work and
Section 7 concludes the paper.

2 Object-oriented abstract syntax trees

2.1 Connection between abstract and parsing grammars

The basis for specification in JastAdd is an abstract context-free grammar. An ab-
stract grammar describes the programs of a language as typed trees rather than as
strings. Usually, an abstract grammar is essentially a simplification of a parsing
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grammar, leaving out the extra nonterminals and productions that resolve pars-
ing ambiguities (e.g., terms and factors) and leaving out tokens that do not carry
semantic values. In addition, it is often useful to have fairly different structure
in the abstract and parsing grammars for certain language constructs. For exam-
ple, expressions can be conveniently expressed using EBNF rules in the parser,
but are more adequately described as binary trees in the abstract grammar. Also,
parsing-specific grammar transformations like left factorization and elimination of
left recursion for LL parsers are undesirable in the abstract grammar.

Most parsing systems that support ASTs make use of various automatic rules
and annotations in order to support abstraction of the parsing grammar. In JastAdd,
the abstract grammar is independent of the underlying parsing system. The parser
is simply a front end whose responsibility it is to produce abstract syntax trees that
follow the abstract grammar specification.

2.2 Object-oriented abstract grammar

When using an object-oriented language like Java, the most natural way of rep-
resenting an AST is to model the language constructs as a class hierarchy with
general abstract classes like Statement and Expression, and specialized concrete
classes like Assignment and AddExpression. Methods and fields can then be at-
tached to the classes in order to implement compilation or interpretation. This
design pattern is obvious to any experienced programmer, and documented as the
Interpreter pattern in [9].

Essentially, this object-oriented implementation of ASTs can be achieved by
viewing nonterminals as abstract superclasses and productions as concrete sub-
classes. However, this two-level hierarchy is usually insufficient from the mod-
elling point of view where it is desirable to make use of more levels in the class hi-
erarchy. For this reason, JastAdd makes use of an explicit object-oriented notation
for the abstract grammar, similar to [13], rather than the usual nonterminal/produc-
tion-based notation. This allows nonterminals with a single production to be mod-
elled by a single class. It also allows additional superclasses to be added that would
have no representation in a normal nonterminal/production grammar, but are useful
for factoring out common behavior or common subcomponents. Such additional
superclasses would be unnatural to derive from a parsing grammar, which is yet
another reason for supplying a separate specification of the abstract grammar.

The abstract grammar is a class hierarchy augmented with subcomponent in-
formation corresponding to production right-hand sides. For example, a class As-
signment typically has two subcomponents: an Identifier and an Expression. De-
pending on what kind of subcomponents a class has, it is categorized as one of the
following typical kinds (similar to many other systems):

list The class has a list of components of the same type.

optional The class has a single component which is optional.



2 Object-oriented abstract syntax trees 55

Tiny.ast
1 Program ::= Block;
2 Block ::= Decl Stmt;
3 abstract Stmt;
4 BlockStmt : Stmt ::= Block;
5 IfStmt : Stmt ::= Exp Stmt OptStmt;
6 OptStmt ::= [Stmt];
7 AssignStmt : Stmt ::= IdUse Exp;
8 CompoundStmt : Stmt ::= Stmtx;
9 abstract Decl;
10 BoolDecl: Decl ::= <ID>;
11 IntDecl : Decl ::= <ID>;
12 abstract Exp;
13 IdUse : Exp ::= <ID>;

14 Add : Exp ::= Exp Exp;

Figure 1: Abstract grammar for Tiny

token The class has a semantic value extracted from a token.

aggregate The class has a set of components which can be of different types.

The subcomponent information is used for generating suitable access methods
that allow type safe access to methods and fields of subcomponents.

2.3 An example: Tiny

We will use a small toy block-structured language, Tiny, as a running example
throughout this paper. Blocks in Tiny consist of a single variable declaration and
a single statement. A statement can be a compound statement, an if statement, an
assignment statement, or a new block.

Figure 1 shows the object-oriented abstract grammar for Tiny. (The line num-
bers are not part of the actual specification.) All the different kinds of classes are
exemplified: An aggregate class T£Stmt (line 5), a list class CompoundStmt
(line 8), an optional class Opt Stmt (line 6), and a token class BoolDecl (line
10). The classes are ordered in a single-inheritance class hierarchy. For example,
BlockStmt, IfStmt, AssignStmt, and CompoundStmt (lines 4, 5, 7, and
8) are all subclasses to the abstract superclass Stmt (line 3).

From this abstract grammar, the JastAdd system generates a set of Java classes
with access methods to their subcomponents. Figure 2 shows some of the gener-
ated classes to exemplify the different kinds of access interfaces to different kinds
of classes. Note that for an aggregate class with more than one subcomponent
of the same type, the components are automatically numbered, as for the class
ASTAdd.
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abstract class ASTStmt {

}

class ASTIfStmt extends ASTStmt {
ASTExp getExp() { ... }
ASTStmt getStmt() { ... }
ASTOptStmt getOptStmt () { ... }

}

class ASTOptStmt {
boolean hasStmt() { ... }
ASTStmt getStmt() { ... }

}

class ASTCompoundStmt extends ASTStmt {
int getNumStmt() { ... }
ASTStmt getStmt (int k) { ... }

}

class ASTBoolDecl extends ASTDecl {
String getID() { ... }

}

class ASTAdd extends ASTExp {
ASTExp getExpl() { ... }
ASTExp getExp2() { ... }

}

Figure 2: Access interface for some of the generated AST classes

Behavior can be added to the generated classes in separate aspect-oriented
modules. Imperative behavior is added in Jadd modules that contain methods
and fields as described in Section 3. Declarative behavior is added in Jrag mod-
ules that contain equations and attributes as described in Section 4. Figure 3 shows
the Jastadd system architecture. The jadd tool generates AST classes from the
abstract grammar and weaves in the imperative behavior defined in Jadd mod-
ules. The jrag tool translates the declarative Jrag modules into an imperative
Jadd module, forming one of the inputs to the jadd tool. This translation is
described in more detail in Section 5.

2.4 Superclasses and interfaces

When adding behavior it is often found that certain behavior is relevant for several
classes although the classes are unrelated from a parsing point of view. For ex-
ample, both Stmt and Exp nodes may have use for an env attribute that models
the environment of visible identifiers. In Java, such sharing of behavior can be
supported either by letting the involved classes inherit from a common superclass
or by letting them implement a common interface. JastAdd supports both ways.
Common superclasses are specified in the abstract grammar. Typically, it is useful
to introduce a superclass Any that is the superclass of all other AST classes. For
the example in Figure 1, this would be done by adding a new class "abstract
Any; " into the abstract grammar and adding it as a superclass to all other classes
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that do not already have a superclass. Figure 4 shows the corresponding class
diagram.

Such common superclasses allows common default behavior to be specified
and to be overridden in suitable subclasses. For example, default behavior for all
nodes might be to declare an attribute env and to by default copy the env value
from each node to its components by adding an equation to Any. AST classes that
introduce new scopes, €.g2. B1lock, can then override this behavior by supplying a
different equation.

Java interfaces are more restricted in that they can include only method in-
terfaces and no fields or default implementations. On the other hand, they are
also more flexible, allowing, e.g., selected AST classes to share a specific inter-
face orthogonally to the class hierarchy. Such selected interface implementation is
specified as desired in the behavior modules and will be discussed in Section 3.4.

Any

Program Block Stmt OptStmt

T

BlockStmt 1fStmt

Figure 4: Class diagram after adding the superclass Any

2.5 Connection to the parser generator
Building the tree

JastAdd relies on an underlying parsing system for parsing and tree-building. The
abstract grammar is not tied to any specific parsing grammar or parsing algorithm
and there is thus normally a gap between these grammars that must be bridged. To
aid the compiler writer, the JastAdd system generates a method syntaxCheck ()
which can be called to check that the built tree actually follows the abstract gram-
mar.

Currently, JastAdd uses JavaCC/JJTree as its underlying parsing and tree-
building system. JJTree allows easy specification of what AST nodes to generate
during parsing. A stack is used to give the programmer control over the order in
which to insert the individual nodes, so that the structure of the constructed AST
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does not have to match the structure of the parse. For example, expressions that
are parsed as a list can easily be built as a binary AST. In this way, JJTree allows
the gap between the parsing and abstract grammars to be bridged fairly easily.

Token semantic values

When building the AST, information about the semantic values of tokens needs
to be included. To support this, JastAdd generates a set-method as well as a get-
method for each token class. For example, for the token class BoolDecl in
Figure 1, a method void setID(String s) is generated. This method can
be called as an action during parsing in order to transmit the semantic value to the
AST.

3 Adding imperative behavior

Object-oriented languages lend themselves very nicely to the implementation of
compilers. It is natural to model an abstract syntax tree using a class hierarchy
where nonterminals are modelled as abstract superclasses and productions as spe-
cialized concrete subclasses, as discussed in Section 2. Behavior can be imple-
mented easily by introducing abstract methods on nonterminal classes and im-
plementing them in subclasses. However, a problem is that to make use of the
object-oriented mechanisms, the class hierarchy imposes a modularization based
on language constructs whereas the compiler writer also wants to modularize based
on aspects in the compiler, such as name analysis, type checking, error reporting,
code generation, and so on. Each AST class needs to include the code related to
all of the aspects and in traditional object-oriented languages it is not possible to
provide a separate module for each of the aspects. This is a classical problem that
has been discussed since the origins of object-oriented programming.

3.1 The Visitor pattern

The Visitor design pattern is one (partial) solution to this problem [9]. It allows
a given method that is common to all AST nodes to be factored out into a helper
class called a Visitor containing an abstract visit (C) method for each AST
class C. To support this programming technique, all AST classes are equipped
with a generic method accept (Visitor) which delegates to the appropri-
ate visit (C) method in the Visitor object. For example, a Visitor subclass
TypeCheckingVisitor can implement type checking in its visit methods.
Type checking of a program is started by calling accept on the root node with
the TypeCheckingVisitor as a parameter.

There are several limitations to the Visitor pattern, however. One is that only
methods can be factored out; fields must still be declared directly in the classes, or
be handled by a separate mechanism. For example, in type checking it is useful to
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associate a field t ype with each applied identifier, and this cannot be handled by
the Visitor pattern. Another drawback of the Visitor pattern is that the parameter
and return types can not be tailored to the different visitors — they must all share the
same interface for the visit methods. For example, for type checking expressions,
a desired interface could be

Type typecheck (Type expectedIype)

where expectedType contains the type expected from the context and the t ype-
check method returns the actual type of the expression. Using the Visitor pattern,
this would have to be modelled into visit methods

Object visit (C node, Object arg)

to conform to the generic visit method interface.

3.2 Aspect-oriented programming

A more powerful alternative to the Visitor pattern is to introduce an explicit mod-
ularization mechanism for aspects. This is the approach used in JastAdd. Our
technique is similar to the introduction feature of the aspect-oriented programming
system Aspect] [17].

For each aspect, the appropriate fields and methods for the AST classes are
written in a separate file, a Jadd module. The JastAdd system is a class weaver: it
reads all the Jadd modules and weaves the fields and methods into the appropriate
classes during the generation of the AST classes. This approach does currently not
support separate compilation of individual Jadd modules, but, on the other hand, it
allows a suitable modularization of the code and does not have the limitations of
the Visitor pattern.

The Jadd modules use normal Java syntax. Each module simply consists of a
list of class declarations. For each class matching one of the AST classes, the cor-
responding fields and methods are inserted into the generated AST class. It is not
necessary to state the superclass of the classes since that information is supplied by
the abstract grammar. Figure 5 shows an example. The typechecker. jadd
module performs type checking for expressions and computes the boolean field
typeError. The unparser. jadd module implements an unparser which
makes use of the field t ypeError to report type-checking errors.

The Jadd modules may use fields and methods in each other. This is illustrated
by the unparser module which uses the typeError field computed by the type
checking module. The Jadd modules may freely use other Java classes. This is
illustrated by the unparsing module which imports a class Display. The import
clause is transmitted to all the generated AST classes. Note also that the Jadd mod-
ules use the generated AST access interface described in Section 2. An example
of a complete AST class generated by the JastAdd system is shown in Figure 6.
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typechecker.jadd

class IfStmt {
void typeCheck() {
getExp() .typeCheck ("Boolean") ;
getStmt () .typeCheck() ;
getOptStmt () .typeCheck() ;
}
}
class Exp {
abstract void typeCheck (String expectedType) ;
}
class Add {
boolean typeError;
void typeCheck (String expectedIype) {
getExpl () .typeCheck ("int") ;
getExp2 () .typeCheck ("int") ;
typeError = expectedIype != "int";
}
}

unparser.jadd

import Display;
class Stmt {

abstract void unparse (Display d);
}
class Exp {

abstract void unparse (Display d);
}
class Add {

void unparse (Display d) {

if (typeError)
d.showError ("type mismatch") ;

Figure 5: Jadd modules for typechecking and unparsing.
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ASTAdd.java

class ASTAdd extends ASTExp {
// Access interface
ASTExp getExpl() { ... }
ASTExp getExp2() { ...}

// From typechecker. jadd

boolean typeError;

void typeCheck (String expectedTlype) {
getExpl () .typeCheck ("int") ;
getExp2 () .typeCheck ("int") ;
typeError = expectedType != "int";

}

// From unparser. jadd
void unparse (Display d) {
if (typeError)
d.showError ("type mismatch") ;

Figure 6: Woven complete AST class

In the current JastAdd system, the names of the generated classes are by default
prefixed by the string “AST” as in the JavaCC/JJTree system.

3.3 Using the AST as a symbol table

In traditional compiler writing it is common to build symbol tables as large data
structures, separate from the parse tree. The use of object-oriented ASTs makes it
convenient to use another approach where the AST itself is used as a symbol table,
connecting each AST node that serves as an applied identifier to the corresponding
AST node that serves as the declaration. This technique is particularly powerful
in combination with aspect-oriented programming. Each part of the compiler that
computes a certain part of the “symbol table” can be separated into a specific
aspect, imperative or declarative.

Consider the language Tiny in Figure 1. Name analysis involves connect-
ing each applied identifier (IdUse node) to its corresponding declared identifier
(Decl node). For example, taking an imperative approach, this can be imple-
mented by declaring a field Dec1l myDecl in class IdUse and by writing meth-
ods that traverse the AST and set each such field to the appropriate Dec1 node.
Typically, this computation will make use of some efficient representation of the
declarative environment, e.g. a hash table of references to the visible Dec1 nodes.
But once the myDec1 fields are computed, the hash table is no longer needed.



3 Adding imperative behavior 63

Other aspects can add fields and methods to the Decl nodes and access that
information from the TdUse nodes via the myDecl field. For example, a type
analysis aspect can add a type field to each Dec1 node and access that field from
each IdUse node during type checking. A code generation aspect can add a field
for the activation record offset to each Dec1 node and access that field from each
IdUse node for generating code.

More complex type information such as structured and recursive types, class
hierarchies, etc. is available more or less directly through the myDec1l fields.
For example, a class declaration node will contain a subnode that is an applied
identifier referring to the superclass declaration node. More direct access to the
superclass can easily be added as an extra field or method of the class declaration
nodes. In this way, once the myDec1 fields are computed, the AST itself serves
as the symboltable.

The different compiler aspects can be implemented as either imperative or
declarative aspect modules. Section 4 describes how to implement the name anal-
ysis declaratively, defining myDec1 as a synthesized attribute rather than as a field
and specifying its value using equations rather than computing it with imperative
methods.

3.4 Adding interface implementations to classes

As mentioned in Section 2.4, aspect modules may add interface implementations
to the AST classes. One use of this is to relate AST classes that are syntactically
unrelated. As an example, consider implementing name analysis for a language
which has many different block-like constructs, e.g. class, method, compound-
statement, etc. Each of these block-like constructs should have a method 1ookup
which looks up a name among its local declarations, and if not found there, del-
egates the call to some outer block-like construct. This can be implemented in a
name analysis aspect by introducing an interface Env with the abstract method
lookup and adding this interface implementation to each of the involved AST
classes.

Another use of interfaces is to relate AST classes to other externally defined
classes. One use of this is in order to apply the Null pattern for references within
the AST. The Null pattern recommends that null references are replaced by ref-
erences to real (but usually empty) objects, thereby removing the need for spe-
cific handling of null references in the code [25]. For example, in the case of
an undeclared identifier, the myDec1 field could refer to a special object of type
NotDeclared, rather than being null. This can be implemented in a name anal-
ysis aspect by introducing an interface Declaration whose implementation is
added both to the class NotDeclared and to the involved AST classes. Natu-
rally, the type of myDecl should in this case be changed to Declaration as
well.
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3.5 Combining visitors with aspect-oriented programming

Visitors have serious limitations compared to aspect-oriented programming as dis-
cussed earlier. They support modularization only of methods and not of fields,
and they do not support type-checking of the method arguments and return values.
However, there are certain applications where visitors actually may be slightly sim-
pler to use than Jadd modules, namely when the computation can be formulated
as a regular traversal and when the untyped method arguments can be replaced
by typed visitor instance variables. This is illustrated in Figure 7 where the visitor
implementation is slightly simpler than the corresponding Jadd module. In the vis-
itor implementation, the traversal method has been factored out into a superclass
DefaultTraversingVisitor which can be reused for other visitors. Fur-
thermore, the ErrorCollector object which is used by all visit methods is declared
directly in the visitor, rather than supplied as an argument as in the Jadd module.

Visitors and aspect-oriented programming can be freely combined so that each
subproblem is solved by the most suitable implementation technique. For example,
the visit (IdUse) method in the visitor in Figure 7 accesses the field myDecl
that can be supplied by a Jadd (or Jrag) module.

JastAdd stays backward compatible with JavaCC/JJTree by generating the same
visitor support as JJTree (the same "accept " methods), thereby allowing exist-
ing JJTree projects to be more easily migrated to JastAdd. The visitor support has
also been useful for bootstrapping the JastAdd system.

4 Adding declarative behavior

In addition to imperative modules it is valuable to be able to state computations
declaratively, both in order to achieve a clearer specification and to avoid explicit
ordering of the computations, thereby avoiding a source of errors that are often
difficult to debug.

JastAdd supports the declarative formalism Reference Attributed Grammars
(RAGs) which fits nicely with object-oriented ASTs. In attribute grammars, com-
putations are defined declaratively by means of attributes and equations. Each
attribute is defined by an equation and can be either synthesized (for propagating
information upwards in the AST) or inherited (for propagating information down-
wards in the AST). An equation defines either a synthesized attribute in the same
object, or an inherited attribute in a child object. An attribute can be thought of as a
read-only field whose value is equal to the right-hand side of its defining equation.

The important extension in RAGs (as compared to traditional attribute gram-
mars) is the support for reference attributes. The value of such an attribute is a
reference to an object. In particular, a node g can contain a reference attribute
referring to another node r, arbitrarily far away from ¢ in the AST. This way arbi-
trary connections between nodes can be established, and equations in g can access
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visitor — ErrorChecker.java

class ErrorChecker extends DefaultTraversingVisitor {
ErrorCollector errs = new ErrorCollector();

void visit (IdUse node) {
if (node.myDecl==null) errs.add(node, "Missing declaration");

}

void visit(...
Jadd module - errorchecker.jadd

class Any {
void errorCheck (ErrorCollector errs) {
for (int k=0;k<getNumChildren() ;k++)
getChild (k) .errorCheck (errs) ;
}
}

class IdUse {
void errorCheck (ErrorCollector errs) {
if (myDecl==null) errs.add(this, "Missing declaration");
}
}

class ...

Figure 7: Two alternative implementations of error checking
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attributes in r via the reference attribute. Typically, this is used for connecting
applied identifiers to their declarations.

In a Java-based RAG system, the type of a reference attribute can be either a
class or an interface. The interface mechanism gives a high degree of flexibility.
For example, to implement name analysis, the environment of visible declarations
can be represented by a reference attribute env of an interface type Env. Each
language construct that introduces a new declarative environment, e.g., Block,
Method, Class, and so on, can implement the Env interface, providing a suit-
able implementation of a function 1ookup for looking up declarations.

RAGs are specified in separate files called Jrag modules. The Jrag language
is a slightly extended and modified version of Java. A Jrag module consists of
a list of class declarations, but instead of fields and methods, each class contains
attributes and equations. Ordinary methods may be declared as well and used in
the equations. However, in order to preserve the declarative semantics of attribute
grammars, these methods should in effect be functions, containing no side effects
that are visible outside the method.

The syntax for attributes and equations is similar to Java. Attribute declara-
tions are written like field declarations, but with an additional modifier "syn™" or
"inh" to indicate if the attribute is synthesized or inherited. Java method call
syntax is used for accessing attributes, e.g., a () means access the value of the
attribute a. Equations are written like Java assignment statements. Equations for
synthesized attributes can be written directly as part of the attribute declaration
(using the syntax of variable initialization in Java). For access to components, the
generated access methods for ASTs is used, e.g., get Stmt () for accessing the
Stmt component of a node.

Jrag modules are aspect-oriented in a similar way as Jadd modules: they add
attributes and equations to AST classes analogously to how Jadd modules add
fields and methods. The JastAdd system translates the Jrag modules to Java and
combines them into a Jadd module before weaving. This translation is described
in Section 5.

4.1 An example: name analysis and type checking

Figure 8 shows an example of a Jrag module for name analysis of the language
Tiny. (Line numbers are not part of the actual specification.) All blocks, state-
ments, and expressions have an inherited attribute env representing the environ-
ment of visible declarations. The env attribute is a reference to the closest enclos-
ing Block node, except for the outermost BLock node whose env is null, see
the equations on lines 2 and 6. All other env definitions are trivial copy equations,
e.g., on lines 22 and 23.

The goal of the name analysis is to define a connection from each IdUse node
to the appropriate Decl node (or to null if there is no such declaration). This
is done by a synthesized reference attribute myDec1 declared and defined at line
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nameanalysis.jrag

1 class Program {

2 getBlock() .env = null;

3}

4 class Block {

5 inh Block env;

6 getStmt () .env = this;

7 ASTDecl lookup(String name) {

8 return

9 (getDecl() .name() .equals (name) )
10 ? getDecl()
11 : (env() == null) ? null
12 : env() .lookup (name) ;
13 }
14 1}

15 class Stmt {
16 inh Block env;

17 }

18 class BlockStmt {

19 getBlock() .env = env();
20 1}

21 class AssignStmt {

22 getIdUse() .env = env() ;
23 getExp() .env = env() ;
24 )}

25 class Decl {

26 syn String name;

27 }

28 class Exp {

29 inh Block env;
30}

31 class Add {

32 getExpl() .env = env();

33 getExp2 () .env = env() ;

34 1}

35 class IdUse {

36 inh Block env;

37 syn Decl myDecl= env() .lookup (name()) ;
38 syn String name = getID();
39 1}

40 class IntDecl {

41 name = getID();

42}

43 class BoolDecl {

44 name = getID();

45 '}

Figure 8: A Jrag module for name analysis.
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typechecker.jrag

1 class Decl { syn String type; }

2 class BoolDecl { type = "boolean"; };

3 class IntDecl { type = "int"; };

4 class Exp { syn String type; };

5 class IdUse {

6 type = (myDecl()==null)

7 ? null : myDecl() .type()

8 1

9 class Stmt { syn boolean typeError; };
10 class AssignStmt {
11 typeError = !getIdUse() .type() .equals(getExp() .type());
12}
13 ...

Figure 9: A Jrag module for type checking.

37. Usual block structure with name shadowing is implemented by the method
lookup on Block (lines 7-13). It is first checked if the identifier is declared
locally, and if not, the enclosing blocks are searched by recursive calls to 1ookup.

The lookup method is an ordinary Java method, but has been coded as a
function, containing only a return statement and no other imperative code. As
an alternative, it is possible to code it imperatively using ordinary if-statements.
However, it is good practice to stay with function-oriented code as far as possible,
using only a few idioms for simulating, e.g., let-expressions. Arbitrary imperative
code can be used as well, but then it is up to the programmer to make sure the code
has no externally visible side effects.

Figure 9 shows a type checking module that uses the myDec1 attribute com-
puted by the name analysis. This is a typical example of how convenient it is to
use the AST itself as a symbol table and to extend the elements as needed in sep-
arate modules. The type checking module extends Decl with a new synthesized
attribute t ype (line 1). This new attribute is accessed in IdUse in order to define
its type attribute (lines 6-7). The types of expressions are then used as usual to
do type checking as shown for the AssignStmt (line 11).

The examples are written to be self-contained and straight-forward to under-
stand. For a realistic language several changes would typically be done. The copy
equations for env would be factored out into a common superclass Any, thereby
making the specification substantially more concise. The type for env attributes
would typically also be generalized. In the example we simply used the class
Block from the abstract grammar as the type of the env attribute. For a more
complex language with several different kinds of block-like constructs, an inter-
face Env can be introduced to serve as the type for env. Each different block-like
construct (procedure, class, etc.) can then implement the Env interface in a suit-
able way. The Null pattern could be applied, both for the env and the myDecl
attributes, in order to avoid null tests such as on line 11 in Figure 8 and on line 6
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in Figure 9. A more realistic language would also allow several declarations per
block, rather than a single one as in Tiny. Typically, each block would be extended
with a hash table or some other fast dictionary data type to support fast lookup of
declarations. Types would be represented as objects rather than as strings, and the
type checker would support better error handling, e.g., not considering the use of
undeclared identifiers as type checking errors.

It is illustrative to compare the Jrag type checker in Figure 9 with the impera-
tive one sketched in Figure 5. By not having to code the order of computation the
specification becomes much more concise and simpler to read than the imperative
type checker.

4.2 Combining declarative and imperative aspects

An important strength of the JastAdd system is the ease with which imperative
Jadd aspects and declarative Jrag aspects can be combined. A compiler can be
divided into many small subproblems and each be solved declaratively or imper-
atively depending on which paradigm is most suitable. For example, the name
analysis and type analysis can be solved by declarative aspects that define the
myDecl and type attributes. Code generation can be split into a declarative as-
pect that defines block levels and offsets and an imperative aspect that generates
the actual code.

It is always safe for an imperative aspect to use attributes defined in a declar-
ative aspect. Usually, this is the natural way to structure a compiler problem: a
core of declarative aspects defines an attribution which is used by a number of im-
perative aspects to accomplish various tasks such as code generation, unparsing,
etc.

In principle, it is also possible to let a declarative aspect use fields computed
by an imperative aspect. However, for this to be safe it has to be manually ensured
that these fields behave as constants with respect to the declarative aspect, i.e., that
the computation of them is completed before any access of them is triggered. For
example, it would be possible to write an imperative name analysis module that
computes myDecl fields and let a declarative type checking module access those
fields, provided that the name analysis computation is completed before any other
computations start that might trigger accesses from the type checking module.

In some attribute-grammar systems, equations are allowed to call methods in
order to trigger desired side-effects, e.g., code generation. This technique is used
in systems with evaluation schemes that evaluate all attributes exactly once and
where the order of evaluation can be predicted. In JastAdd, this technique is not
applicable because of the demand evaluation scheme used which will delay the
computation of an attribute until its value is needed. This results in an order of
evaluation which is not always possible to predict statically and which does not
necessarily evaluate all attributes.
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5 Translating declarative modules

The JastAdd system translates Jrag modules to ordinary Java code, weaving to-
gether the code of all Jrag modules and producing a Jadd module. Attribute evalu-
ation is implemented simply by realizing all attributes as functions and letting them
return the right-hand side of their defining equations, caching the value after it has
been computed the first time, and checking for circularities during evaluation. This
implementation is particularly convenient in Java where methods, overriding, and
interfaces are used for the realization. In the following we show the core parts of
the translation, namely how to translate synthesized and inherited attributes and
their defining equations for abstract and aggregate AST classes.

5.1 Synthesized attributes

Synthesized attributes correspond exactly to Java methods. A declaration of a
synthesized attribute is translated to an abstract method declaration with the same
name. For example, recall the declaration of the type attribute in class Decl of
Figure 9

class Decl { syn String type; }

This attribute declaration is translated to

class Decl { abstract String type(); }

Equations defining the attribute are translated to implementations of the abstract
method. For example, recall the equations defining the t ype attribute in IntDecl
and BoolDecl of Figure 9

class IntDecl { type = "int"; }

class BoolDecl { type = "boolean"; }

These equations are translated as follows.

class IntDecl {
String type() { return "int"; }
}
class BoolDecl
String type() { return "boolean"; }

}
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5.2 Inherited attributes

An inherited attribute is defined by an equation in the parent node. Suppose a class
X has an inherited attribute ia of type T. This is implemented by introducing an in-
terface ParentOfX with an abstract method T X_ia (X). Any class which has
components of type X must implement this interface. If a class has several com-
ponents of type X with different equations for their ia attributes, the X parameter
can be used to determine which equation should be applied in implementing the
X_1ia method. To simplify accesses of the ia attribute (e.g. from imperative Jadd
modules), a method T ia () is added to X which simply calls the X_ia method
of the parent node with itself as the parameter.

For example, recall the declaration of the inherited attribute env in class Stmt
in Figure 8. Both Block and If£Stmt have Stmt components and define the
env attribute of those components:

class Stmt {
inh Block env;
}
class Block {
getStmt () .env = this;
}
class IfStmt {
getStmt () .env
}

env();

Since Stmt contains declarations of inherited attributes, an interface is generated
as follows:

interface ParentOfStmt {
ASTBlock Stmt_env (ASTStmt theStmt) ;

}

The Block and I £Stmt classes must implement this interface. The implementa-
tion should evaluate the right-hand side of the appropriate equation and return that
value. The translated code looks as follows.

class Block implements ParentOfStmt {
ASTBlock Stmt_env (ASTStmt theStmt) {
return this;
}
}
class IfStmt implements ParentOfStmt {
ASTBlock Stmt_env (ASTStmt theStmt) {
return env() ;
}
}
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The parameter theStmt was not needed in this case, since both these classes
have only a single component of type Stmt. However, in general, an aggregate
class may have more than one component of the same type and equations defining
the inherited attributes of those components in different ways. For example, an ag-
gregate class Example ::= Stmt Stmt could have the following equations:

class Example {
getStmt1l() .env = env();
getStmt2 () .env = null;
}

The translation of Example needs to take the parameter into account to handle
both equations:

class Example implements ParentOfStmt {
ASTBlock Stmt_env (ASTStmt theStmt) {
if (theStmt==getStmtl())
return env() ;
else
return null ;

Finally, a method env () is added to Stmt to give access to the attribute value.
The method getParent () returns a reference to the parent node. The cast is
safe since all AST nodes with Stmt components must implement the Parent -
OfStmt interface (this is checked by the JastAdd system).

class Stmt {
ASTBlock env() {
return ( (ParentOfStmt) getParent()) .Stmt_env(this) ;
}
}

5.3 Generalizations

The translation described above can be easily generalized to handle lists and op-
tionals. It is also simple to add caching of computed values (to achieve opti-
mal evaluation) and circularity checks (to detect cyclic attribute dependencies and
thereby avoid endless recursion) using the same ideas as in other implementations
of this algorithm [15,16,21].
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6 Related work

Recent developments in aspect-oriented programming [10] include the work on
Aspect] [17], subject-oriented programming [12], and adaptive programming [20].

Aspect] covers both static aspects through its introduction feature and dynamic
aspects through its notion of joinpoints. The introduction feature allows fields,
methods, and interface implementations to be added to classes in separate aspect
modules, similar to how our Jadd modules work. Now that a stable release of
Aspect] is available and seems to gain wide-spread use it would be attractive to
build JastAdd on top of Aspect] rather than using our own mechanism. The focus
in Aspect] is, however, on the dynamic aspects rather than the static aspects. The
joinpoint model in Aspect] allows code written in aspects to be inserted at dy-
namically selected execution points. We do not employ such dynamic aspects in
JastAdd, but it is a very interesting area of future work to investigate their benefits
in compiler construction.

Subject-oriented programming supports static aspects called subjects where
each subject provides a (possibly incomplete) perspective on a set of classes. There
is a strong focus on how to merge subjects that are developed independently. Ex-
plicit composition code is used to specify how to merge subjects, allowing, e.g.,
different subjects to use different names for the same program entity. This ap-
proach is powerful, but also more heavy-weight than the technique used in Jas-
tAdd.

Adaptive programming focuses on factoring out traversal code and making it
robust to structural changes in the class hierarchy. This separation is similar to
what can be accomplished by visitors where default traversal strategies can be fac-
tored out in superclasses (as in our example in Figure 7). However, adaptive pro-
gramming goes beyond visitors in several ways. In particular, they do not require
the classes involved to be related in a class hierarchy, and they employ generative
techniques to generate traversal code from high-level descriptions.

The fragment system is a technique for aspect-oriented modularization which
predates the above approaches [8, 18]. It provides a general approach to static
aspect modularization based on the syntax of the supported language. By using
this mechanism for entities in imperative code, dynamic aspect modularization is
also supported to a certain extent. The BETA language uses the fragment system
as its modularization mechanism.

There are many compiler tools that generate object-oriented ASTs. An early
example was the BETA meta programming system (MPS) [22] which also sup-
ported aspect modularization to a certain extent via the fragment system mentioned
above. However, due to limitations of the separate compilation mechanism it was
only possible to factor out methods and not fields.

The Visitor pattern is supported by many recent compiler tools including JJTree
[4], SableCC [11], Java Tree Builder [3], and JJForester [19]. These systems
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generate AST classes and abstract visitor classes that support various traversal
schemes.

There are a few other experimental systems for reference attributed grammars
or similar formalisms: the MAX system by Poetzsch-Heffter [23], Boyland’s pro-
totype system for the compiler description language APS [6], and our own prede-
cessing system Applab [S]. Similar to JastAdd, these systems stress the modularity
with which specifications can be written. In contrast to JastAdd, they all have their
own formal languages for specification and do not easily integrate with imperative
object-oriented programming in standard languages.

7 Conclusion

We have presented JastAdd, a simple yet flexible and safe system for constructing
compilers in Java. Its main features are

e object-oriented ASTs (decoupled from parsing grammars)
e typed access methods for traversing the AST

e aspect modularization for imperative code in the form of fields, methods,
and interface implementations

e aspect modularization for declarative code in the form of RAG attributes and
equations

e seamless combination of imperative and declarative code

We find this combination very useful for writing practical translators in an easy
way. The use of object-oriented ASTs with typed access methods is a natural way
of modelling the program. The aspect-modularization is easy to use and makes
it easy to change and extend the compiler. We have found it very useful to be
able to combine the declarative and imperative techniques for coding a compiler,
making it possible to select the most appropriate technique for each individual
subproblem. While subsets of these features exist in other systems we are not
aware of other systems that combine them all. In particular, we have not found
other Java-based compiler tools that are based on aspect-oriented programming or
reference attributed grammars.

We have quite substantial experience from using JastAdd in research and edu-
cation, and also from bootstrapping the system in itself.

Research projects using JastAdd include a Java-to-C compiler and a tool for
integrating Java with automation languages. As a part of these projects a general
name analyzer for Java has been developed as a Jrag component. Additional on-
going projects using JastAdd involve translators for robot languages and support
for extensible languages.
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The JastAdd system is used in our department’s undergraduate course on com-
piler construction. The students work in pairs and use JastAdd to implement
a compiler for a small procedural language of their own design and producing
SPARC assembly code as output. The course has covered both visitors and aspect-
oriented programming using Jadd modules, but not Jrags or attribute grammars.

JastAdd is being bootstrapped in itself. This process has proceeded in sev-
eral steps. Our starting point was the JavaCC/JJTree system which generates AST
classes with untyped access methods and a simple default visitor. The first step was
to implement the generation of AST classes with fyped access methods to allow
us to use visitors in a safer way. This step was itself bootstrapped by starting with
hand coding the would-be generated AST classes for the abstract grammar for-
malism (a small amount of code), allowing us right away to use the typed access
methods when analyzing abstract grammars. The next step was to use this plat-
form (JJTree-generated visitors and our own generated AST classes with typed
access methods) to implement the class weaving of Jadd modules. Once this was
implemented we started to use Jadd modules for further implementation, adding
the translator for Jrag modules (which generates a Jadd module), and improving
the system in general. We are now continuing to improve the system and are also
gradually refactoring it to use Jadd and Jrag modules instead of visitors.

The implementation of the JastAdd system is working successfully but we have
many improvements planned such as generation of various convenience code, bet-
ter error reporting, and extensions of the abstract grammar formalism.

There are several interesting ways to continue this research. One is to sup-
port modularization not only along phases, but also along the syntax. Le., it
would be interesting to develop the system so that it is possible to supply sev-
eral abstract grammar modules that can be composed. Another interesting topic
is to explore how dynamic aspect-modularization, for example using joinpoints
in Aspect], can be exploited in compiler construction. Yet another interesting di-
rection is to investigate how emerging aspect-oriented techniques can be applied
to achieve language-independent compiler aspects, e.g., name analysis and type
analysis modules that can be parameterized and applied to many different abstract
grammars. Work in this direction has been done by de Moor et al. for attribute
grammars within a functional language framework [7]. We also plan to continue
the development of reference attributed grammars and to applying them to new
problem areas.
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PAPER 1l

CIRCULAR REFERENCE
ATTRIBUTED GRAMMARS —
THEIR EVALUATION AND
APPLICATIONS

Abstract

This paper presents a combination of Reference Attributed Grammars (RAGs) and
Circular Attribute Grammars (CAGs). While RAGs allow the direct and easy spec-
ification of non-locally dependent information, CAGs allow iterative fixed-point
computations to be expressed directly using recursive (circular) equations. We
demonstrate how the combined formalism, Circular Reference Attributed Gram-
mars (CRAGs), can take advantage of both these strengths, making it possible
to express solutions to many problems in an easy way. We exemplify with the
specification and computation of the nullable, first, and follow sets used in parser
construction, a problem which is highly recursive and normally programmed by
hand using an iterative algorithm. We also present a general demand-driven eval-
uation algorithm for CRAGs and some optimizations of it. The approach has been
implemented and experimental results include computations on a series of gram-
mars including that of Java 1.2. We also revisit some of the classical examples of
CAGs and show how their solutions are facilitated by CRAGs.
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1 Introduction

Attribute grammars (AGs), as introduced by Knuth [19], allow computations on
a syntax tree to be defined declaratively using attributes where each attribute is
defined by a semantic function of other attributes in the tree. An attribute is ei-
ther used to propagate information upwards in the tree (synthesized attribute) or
downwards in the tree (inherited attribute). In the original form of AGs, the defi-
nition of an attribute may depend directly only on attributes of neighbor nodes in
the tree. Furthermore, the dependencies between attributes may not be cyclic. The
first of these restrictions is lifted by Reference Attributed Grammars (RAGs) [12]
and similar formalisms, e.g., [3,25]. In these formalisms, an attribute may be a
reference to an arbitrarily distant node in the tree, and an attribute may be defined
in a semantic function by directly accessing attributes of the reference (remote
access). It has been shown earlier how RAGs support the easy specification and
automatic implementation of many practical problems, for example, name- and
type analysis of object-oriented languages [12], execution time prediction [24],
program visualization [23], and design pattern checking [8].

The second of the restrictions mentioned above, circular definitions, is lifted by
Circular Attribute Grammars (CAGs) such as those of Farrow [10] and Jones [15].
The traditional AG requirement of noncircularity is a sufficient but not necessary
condition to guarantee that an AG is well defined in the sense that all semantic
rules can be satisfied. It suffices that all attributes involved in cyclic dependen-
cies have a fixed point that can be computed with a finite number of iterations. In
CAG:s, circular dependencies between attributes are allowed provided that such a
fixed point is available for all possible trees. This is guaranteed if the values for
each attribute on a cycle can be organized in a lattice of finite height and if all
the semantic functions involved in computing these attributes are monotonic on
the respective lattices. Several authors (e.g., [10], [15], [27]) have shown how the
possibility of circular definitions of attributes allows simple AG specifications for
some well-known problems from different areas. Examples include data-flow anal-
ysis, code optimizations, and properties of circuits in a hierarchical VLSI design
system. Farrow [10] also demonstrates how alternative non-circular specifications
in some cases can be constructed with additional huge complexity, including, e.g.,
the use of higher-order functions. The circular specifications, in contrast, are both
easy to read and understand and easy for the AG author to write.

In this paper, we combine Circular Attribute Grammars (CAGs) and Refer-
ence Attributed Grammars (RAGs) into Circular Reference Attributed Grammars
(CRAGS). We demonstrate how CRAGs can take advantage of both the combined
formalisms, making it possible to express many new problems in a concise and
straight-forward way. To exemplify, we show how to specify the nullable, first,
and follow sets used in parser construction. These sets are traditionally defined
using recursive equations and computed imperatively by iteration. We demon-
strate in this paper how the recursive definitions can be expressed directly using
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CRAGs. We also revisit some of the classical examples of CAGs, in particu-
lar, constant evaluation and live analysis, and show how their solutions are facili-
tated by CRAGs. We have developed a general recursive evaluation algorithm for
CRAGs and implemented it in our tool JastAdd [13], which is an aspect-oriented
compiler construction tool supporting RAGs. For evaluation, we present some ex-
perimental results of the CRAG evaluation of the nullable, first, and follow prob-
lems as compared to the corresponding handcoded iterative implementation.

There is some previous work on combining RAG-like formalisms with CAGs.
Boyland has implemented a similar combination in his APS system [3]. Sasaki
& Sassa present Circular Remote Attribute Grammars (also abbreviated CRAGs),
which on the surface is similar to our CRAGs [27]. However, Sasaki & Sassa as-
sume that the remote links are computed separately outside the attribute grammar.

The rest of this paper is structured as follows: Section 2 reviews existing eval-
uation algorithms for CAGs and RAGs. Section 3 introduces our demand-driven
algorithm for CRAGs. In Section 4 we focus on some example applications and
our experience of using CRAGs for their specifications. Section 5 summarizes the
contributions and provides some directions for future work.

2 Existing Evaluation Algorithms

Dependencies between attribute instances in a syntax tree can be modelled as a
directed graph. The vertices of the graph correspond to attribute instances and if
the specification of an attribute a1 uses another attribute a, there will be an edge
from as to a;. If the dependency graph is acyclic for every possible derivable
syntax tree for a certain grammar, the grammar is said to be noncircular. For
noncircular grammars it is always possible to topologically order the dependency
graphs and evaluate the attributes by applying the semantic functions in that order.

Traditional AGs are required to be noncircular, but, as has been shown by,
e.g., Farrow [10] and Jones [15], grammars with circular dependencies under cer-
tain constraints can be considered well defined in the sense that it is possible to
satisfy all semantic rules for all possible syntax trees. One way to formulate the
constraints is to require that the domain of all attributes involved in cyclic chains
can be arranged in a lattice of finite height and that all semantic functions for
these attributes are monotonic.! The evaluation of circularly defined attributes can
be regarded as a special case of solving the equation X = f(X) for the value
of X. By giving X the bottom of the lattice as start value the iterative process
X1 = f(X;) will converge to a least fixed point for which all involved semantic
rules are satisfied.

'More precisely it is sufficient that the domain of the attributes forms a complete partial order and
that the semantic functions satisfy the ascending chain condition.
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The values of the attributes involved in a cycle can be computed by the iterative
algorithm shown in Fig. 1. The arguments of the semantic functions f; are to be
the values from the previous iteration of all attributes on which z; depends.

initialize all attributes x; involved in the cycle to a bottom value;
do {
foreach attribute x; in the cycle
X =fi(); _ _
} while (some computation changes the value of an attribute);

Figure 1: Iterative algorithm for computing the least fixed point for attributes on
acycle.

2.1 Detection of circularity

The problems of deciding whether a traditional AG is circular and of identifying
the attributes taking part in cycles have been addressed by several researchers.
In [19] Knuth developed a polynomial algorithm for circularity testing. The algo-
rithm is conservative, i.e., circularity is always detected but some noncircular AGs
may be reported to be circular. Later [20] Knuth constructed an exact algorithm
which is exponential in time and space complexity. Rodeh & Sagiv [26] extended
these algorithms to deal with the problem of finding circular attributes. They de-
veloped a polynomial approximation algorithm, i.e., all circular attributes are dis-
covered but some noncircular attributes may be reported to be circular. They also
constructed an exact algorithm with exponential time complexity and showed that
finding the circular attributes is a harder problem than testing for circularity. The
problem of testing reference attributed grammars for circularity can be addressed
as in [27] by introducing all possible remote edges with lots of potential cycles
in the dependency graph as a result. Most abstract syntax trees will, however,
not contain any cycles and the iterations performed by the generated evaluator are
unnecessary. In [3] Boyland has defined an extension to traditional AGs called
remote attribute grammars, which supports reference attributes like in RAGs and
also additional features like collection attributes that can be written from remote
locations. In [7] he shows that testing remote attribute grammars for circularity is
undecidable and examines techniques for approximation.

2.2 Evaluation of circular attribute grammars

Jones [15] proposes a dynamic evaluation algorithm derived from the underly-
ing attribute dependency graph. Optimal dynamic evaluation for circular AGs is
obtained by analyzing the dependency graph dynamically to identify its strongly
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connected components. A strongly connected component is a maximal set of ver-
tices in which there is a path from any one vertex in the set to any other vertex
in the set. All attribute instances belonging to the same strongly connected com-
ponent are thus dependent of each other. Each strongly connected component is
contracted into a single node to obtain a new graph C (G) , which is acyclic and can
be ordered topologically and evaluation can follow this order. A vertex in C (G)
corresponding to more than one vertex in the original graph represents a set of
attribute instances that are all dependent of each other and they will be evaluated
in a single fixed-point evaluation. The graphs must be constructed initially. When
the attribute grammar is acyclic, Jones’ algorithm reduces to a standard optimal
algorithm for noncircular evaluation. His scheme is not immediately applicable
to RAGs since the reference attributes introduce dependencies that are not known
until they have been evaluated.

Farrow [10] introduced a static evaluation technique based on the one by Kata-
yama [ 18], but modified to compute the fixed point for attributes which potentially
have circular dependencies. His scheme is also limited to traditional AGs without
remote references since it depends on deriving the attribute dependencies statically
from the productions of the grammar. Sasaki & Sassa [27] have elaborated on
the technique of Farrow in the presence of remote references. However, these
references are not considered to be a part of the attribute grammar and must be
evaluated separately in an initial phase. They also make the additional assumption
that cycles do not appear without remote references, a constraint that facilitates the
check for convergence.

The static evaluation technique used by Farrow and Sasaki & Sassa is realized
with a group of mutually recursive functions along the AST. Inefficiency arises
when iterative evaluation of a group of attribute instances includes other iterative
evaluations further down the tree. Fig. 2 illustrates this: Attribute instances belong-
ing to a strongly connected component with more than one vertex are indexed, e.g.,
a1, as, az and ay, and the corresponding component will be called A. Consider
case (I). An iterative evaluation of the four a; attributes will in each iteration call
a function evaluating the b; attributes belonging to another cyclic component B.
A new iterative process will thus be started bringing B to a fixed point in each
iteration of A. Case (II) gives rise to the same kind of inefficiency.

Sasaki & Sassa have shown how to overcome this shortcoming and avoid inner
loops by using a global variable to keep track of whether the computation is already
within an iterative phase. Iterations will in their case, as a consequence, take place
over a larger number of attribute instances belonging to more than one strongly
connected component of the dependency graph. For case (I), iterations will span
over components A and B, and in case (II) components A, B, and C will be part
of the same iterative process.

The static techniques of Farrow as well as that of Sasaki & Sassa have another
shortcoming in that iterative evaluation will include a possibly large number of
noncircular attribute instances below the AST node associated with the circularly
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defined attributes that started the iterative process. Case (III) in Fig.2 is an ex-
ample. The noncircular attributes b, ¢ and d will then be evaluated during each
iteration of the evaluation of component A.

@@ @@ 7

@ an I1n av

Figure 2: Different cases of dependencies involving strongly connected compo-
nents.

Non-monotonic intercomponent dependencies

If two strongly connected components are evaluated in topological order, the de-
pendency between the components does not need to be monotonic. The inner
component will then have received its final value before it is used by the outer
component, and the monotonicity of the intercomponent dependency is therefore
not important. This was pointed out to us by Boyland, who also reports practical
uses of such nonmonotonic dependencies in, e.g., using inferred types in polymor-
phic type checking [6].

2.3 Demand-driven evaluation of AGs

We will base the evaluation of CRAGs on a general demand-driven evaluator for
non-circular AGs where each attribute is implemented by a method that recur-
sively calls the methods implementing other attributes. By caching evaluated at-
tribute values in the syntax tree, the evaluator is optimal in that it evaluates each
attribute at most once. (Our experimental system allows the user to choose which



2 Existing Evaluation Algorithms 85

attributes are to be cached. In the rest of this paper we will, however, assume
that all attributes are cached in order to achieve optimality.) Circular dependen-
cies can be checked at evaluation time by keeping track of which attributes are
being evaluated. In principle, this evaluator is the same as the ones used for tra-
ditional AGs by Madsen [21], Jalili [14], and Jourdan [16], although we use an
object-oriented implementation [11, 13]. The evaluator is dynamic in that depen-
dencies are not analyzed statically. In fact, the dependencies between attributes
need not be analyzed at evaluation time either since the call structure of the recur-
sive evaluation automatically results in an evaluation in topological order. Thus, in
contrast to other dynamic evaluation algorithms, no explicit dependency graph is
built. The demand-driven dynamic algorithm is sufficiently fast for practical use,
also for large examples. Current experiments with generated Java compilers indi-
cate that this kind of evaluation method easily performs within a factor of 3 from
handwritten compilers [9]. Our evaluator is implemented in Java which provides
a straight-forward implementation of the algorithm. Fig. 3 shows a fragment of an
AG based on abstract syntax and the corresponding evaluator code in Java.

AG Evaluator code

abstract class Node {
Node ancestor;

}
Exp { abstract class Exp extends Node {
syn int val; int val_value;
} boolean val_computed = false;

boolean val_visited = false;
abstract int val();

}

AddExp: Exp ::= Exp; Exp, { class AddExp extends Exp {
val = Exp,.val + Exp,.val; Exp expl, exp2;
} int val() {
if (val_computed) return val_value;
if ('val_visited) {
val_visited = true;
val_value = expl.val() + exp2.val();
val_computed = true;
val_visited = false;
return val_value;

else throw new RuntimeException
("Circular definition of attribute”);

Figure 3: Demand-driven evaluator for noncircular AG.

The abstract syntax is translated to classes and fields modelling an abstract



86 Circular Reference Attributed Grammars — their Evaluation and Applications

syntax tree (AST). A general class Node models the general aspects of all AST
nodes. For instance, each AST node has an ancestor node. Each nonterminal, like
Exp, is translated to an abstract class, and each of its productions, like AddExp,
is translated to a concrete subclass. A right-hand side is translated to fields in the
production class (e.g., Exp expl, exp2;).

Each synthesized attribute declaration (e.g., syn int wval) is translated to
an abstract method specification (e.g., abstract int val();), a field for
storing the cached value (e.g., val_value), and two additional boolean fields
for keeping track of if the attribute is already computed (val_computed) and
if it is under computation (val_visited). Each equation that defines a synthe-
sized attribute is translated to a corresponding method implementation (e.g., int
val() {...}). If the value is already computed, the method simply returns
the cached value. If not, it computes the value, which involves calling meth-
ods corresponding to other attributes (e.g., val_value := expl.val() +
exp2.val () ;). The val_visited field is used in order to check for circular
dependencies, thereby avoiding endless recursion, and an exception is raised if a
circularity is found.

Inherited attributes are implemented in a similar, although slightly more in-
volved, manner, making use of the ancestor field to call methods of the ancestor
node. See [13] for details.

2.4 Demand-driven evaluation of RAGs

RAGs can be evaluated using the same demand-driven algorithm as for AGs with
the extension of allowing attributes to be references to other nodes in the AST [13].
A typical use of reference attributes is in name analysis, where applied occurrences
of identifiers are linked to declared occurrences. Fig. 4 shows fragments of a typi-
cal RAG with such links. For example, the IdExp production contains a reference
attribute dec1 which is a reference to the appropriate Decl node in the AST. The
implementation of the evaluator is a straight-forward extension of the demand-
driven AG evaluator. An access to a reference attribute is translated to a call to the
corresponding method computing the reference value. For example, the dec1l ()
method in TdExp computes the decl reference value. This is done by first com-
puting the value of the env attribute (also a reference attribute) and then calling
the 1ookup method of the env object.

The example also illustrates a number of additional features of RAGs: A pro-
duction may occur directly in the right-hand side of another production. E.g.,
Decl is used in the right-hand side of Block. General nonterminals that do
not appear on any right-hand side are allowed (e.g., Any). These can be used
to capture attributes and equations applying to many other classes, e.g., the env
attribute. The right-hand sides may contain lists (as in Block) or String to-
kens (like <ID>). Classes in the RAG may contain ordinary methods in addition
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RAG Evaluator code
Any { class Any extends Node {
inh Block env; Block env() {
}
}
}
Block: Any ::= Decl* Stmt* { class Block extends Any {
Decl lookup(String name) { List decls;
List stmts;
} Decl lookup(String name) {
}
}
}
Decl: Any::= Type <ID> { class Decl extends Any {
Type type;
String ID;
}
Exp: Any { class Exp extends Any {
syn Type tp; abstract Type tp();
} }
IdExp: Exp = <ID> { class IdExp extends Exp {
syn Decl decl = String ID;
env.lookup(<ID>);
syn Type tp = Decl decl() {
decl != null ? decl.type : null;
} decl_value = env().lookup(ID);
}
Type tp() {
{[;_value =
decl() != null ? decl().type : null;
}
}

Figure 4: Example of RAG and corresponding evaluator.
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to attributes (like 1ookup in Block). These methods must be side-effect free,
however.

3 An evaluator for CRAGs

We now turn to CRAGs and their evaluation. The CRAG fragment in Fig. 5 de-
clares a synthesized set-valued attribute s. The attribute is explicitly declared as
circular and the bracketed expression encloses the bottom value (an empty set
in this case).

CRAG Evaluator code
A{ abstract class A extends Node {
syn Set s circular [new Set()]; Set s_value = new Set();
} boolean s_computed = false;

boolean s_visited = false;
abstract Set s();

}
B:A:=..{ class B extends A {
s=1(..)
} } Sets(){...}

Figure 5: Example of CRAG fragment and corresponding classes.

3.1 Basic algorithm

We will now extend the demand-driven evaluator from Sections 2.3 and 2.4 to
handle CRAGs. Fig. 6 shows a basic evaluation algorithm for the circular attribute
s. This algorithm is a straight-forward implementation of the iterative process
shown in Fig. 1.

The algorithm makes use of two global variables: IN_CIRCLE keeps track of
whether we are already inside a cyclic evaluation phase. When this is the case,
CHANGE is used to check whether any changes of iterative values of the attributes
on the cycle have taken place during an iteration. The right-hand sides of the two
assignment statements for new_s_value are the expressions corresponding to
the semantic function for the attribute s. It thus involves calls for evaluation of
attributes on which s is dependent, some of which will be in the same cycle as s.
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class B extends A{

Set s() {
if (s_computed) return s_value;
if (! IN_CIRCLE) {
IN_CIRCLE = true;
s_visited = true;
do {
CHANGE = false;
Set new_s_value = f(...);
if (! new_s_value.equals(s_value))
CHANGE = true;
s_value = new_s value;
} while (CHANGE);
s_visited = false;
s_computed = true;
IN_CIRCLE = false;
return s_value;

else if (! s_visited ) {
s_visited = true;
Set new_s_value = f(...);
if (! new_s_value.equals(s_value))

CHANGE = true;

s_value = new_s_value;
s_visited = false;
return s_value;

}

else
return s_value;

Figure 6: Evaluation code for the equation s = f(...) where s is a circular

attribute.
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3.2 Comparison of algorithms

In this and the following subsections we will compare our algorithm to existing
algorithms and also present some improvements of the basic algorithm shown in
Fig. 6 in order to avoid certain inefficiencies.

To facilitate the description we will use the following terminology: An at-
tribute is definitely noncircular if no instance of the attribute can be part of a cycle
in the dependency graph for any derivable AST. An attribute is potentially circular
if some instance can be part of a cycle for some AST. An instance of a poten-
tially circular attribute in a certain AST is actually circular if it is on a cycle and
otherwise actually noncircular.

All potentially circular attributes are required to be declared circular. (In
Section 3.4 we will discuss how to detect and handle failures of this requirement.)
Thus, we have a similar situation as in Farrow’s static evaluator where potentially
circular attributes are detected by analyzing the productions of the grammar. How-
ever, some of the shortcomings of the static technique mentioned in Section 2.2 are
avoided by our basic algorithm and others can be avoided by small modifications
of our demand driven evaluator given the possibility to cache attribute values.

We will use the different cases of Fig. 2 in the discussion below.

Nested iterative evaluations are avoided

In Farrow’s static method and in the basic method of Sasaki & Sassa, an iterative
evaluation may recursively include another iterative evaluation. The number of
iterations in the innermost loop becomes an exponential factor of its nesting level.
Sasaki & Sassa improve their evaluator to avoid such nested behavior by introduc-
ing a global variable. In our evaluator the global variable IN_CIRCLE achieves
the same improvement. However, as a consequence, iterations might span over
more than one strongly connected component of the dependency graph. This is
suboptimal behavior as compared to the dynamic algorithm of Jones, where each
component is evaluated individually. In Section 3.3 we will show how this ineffi-
ciency can be avoided in some cases.

lterative evaluation of definitely noncircular attributes is avoided

Recall case (III) of Fig. 2, and assume that b is definitely noncircular. Suppose that
one of the attribute instances of component A is demanded. An iterative process
is then started during which b will be demanded. Since b is cached it will only
be evaluated the first time it is demanded. When a later iteration in component A
demands b again, its computed value will be returned. This differs from the static
evaluation techniques of Farrow and Sasaki & Sassa, where definitely noncircular
attributes might be evaluated during each iteration.
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3.3 Improving the algorithm

We can avoid some additional inefficiencies by slight modifications to our demand-
driven evaluator.

Avoiding recomputation of potentially circular attributes

The basic algorithm in Fig.6 computes the value of an attribute s and caches
the intermediate values of the circular attributes involved in the cycle. When the
iterative evaluation has converged, the attribute s has reached its fixed point and
is registered as computed by setting the field s_computed. However, at this
point, all other attributes on the cycle have reached their fixed point as well, but
are not registered as computed. For efficiency reasons it is desirable to register
these attributes as computed in order to avoid their recomputation in case they will
be demanded again. By introducing another global variable READY, that is set to
true when the fixed point is reached, it is possible to perform one extra iteration
during which all involved attribute instances register themselves as computed.

Evaluating strongly connected components in topological order

Consider case (II) of Fig. 2 and suppose that b is definitely noncircular. When an
attribute of component A is demanded, an iterative process is started and even-
tually b will be demanded. b will in turn demand ¢;. A new strongly connected
component is thereby entered, but a new iterative process would not be started
by the basic algorithm shown in Fig. 6 since IN_CIRCLE is already true. The
resulting iterative process would thus involve all attributes of components A, B,
and C just as in the static techniques mentioned in Section 2.2. It would be more
efficient to suspend the iterative process of A temporarily and start a new iterative
process for component C, and thereby avoid unnecessary evaluations in A while
the attributes in C' are being computed. This scheme can be realized by slightly
modifying the algorithm for definitely noncircular attributes (i.e. the algorithm in
Fig. 3). An outline of the modified algorithm is given in Fig. 7. When the attribute
b is demanded, the status of the iterative process is now stacked (CHANGE flag), b
calls its semantic function and on return, the interrupted cyclic evaluation of com-
ponent A is resumed. When b demands the attribute ¢; a new cycle is entered, so
the component C' will be brought to a fixed point before b gets its value. When b
is computed, the suspended iterations of A are resumed. Since all cyclic attributes
are cached after they have been brought to a fixed point, the attributes in cycle C
will only be computed once.

Avoiding iterative evaluation of actually noncircular attributes

For many ASTs there might be many actually noncircular instances of potentially
circular attributes. Consider case (IV) in Fig.2 and suppose a is demanded. If
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boolean interrupted_Circle = false;
if (attribute_computed)
return attribute_value;
if (!attribute_visited ) {
attribute_visited = true;
if IN_CIRCLE) {
push value of CHANGE on stack;
IN_CIRCLE = false;
interrupted_Circle = true;

attribute_value = f(..);

attribute_computed = true;

if (interrupted_Circle) {
CHANGE = pop from stack;
IN_CIRCLE = true;

attribute_visited = false;
return attribute _value;

else throw new RuntimeException(“Circular def...”);

Figure 7: Pseudo-code for improved evaluation of a definitely noncircular at-
tribute.

a is potentially circular, an iterative process is started in which b and ¢ will be
demanded. Again, a small modification of the algorithm makes it possible to detect
that no cycle is ever encountered and interrupt the iterative process. Basically, a
global variable is used to keep track of if we have encountered an already visited
attribute during an ongoing iterative evaluation process.

Sasaki & Sassa [27] also have a refined mostly static version of their originally
completely static technique. The basic idea is here to have several versions of at-
tribute evaluation sequences, one for each possible pattern of remote dependency
edges. The actual pattern for each subtree in the AST is then computed at runtime
and the evaluator selects the proper version. If there are no actually circular at-
tributes in a subtree, iterations are avoided for the production at its root, provided
cycles are always caused by remote references. It is not clear if their algorithm
can be generalized to deal with cyclic behavior that is not caused by remote links.
The refinement deals only with potentially circular attributes that are not actually
circular. Their evaluator will still make unnecessary iterations for definitely non-
circular attributes in a subtree below AST nodes corresponding to productions with
actually circular attributes.
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3.4 Robust improved algorithm

So far, we have assumed that the AG author has declared all potentially circular
attributes as circular. As will become evident from examples in Section 4, it
is often apparent to the AG author which attributes are potentially circular. How-
ever, if the AG author has forgotten to declare an attribute as circular, and it
is in fact actually circular, the algorithms in figures 6 and 7 may yield erroneous
results. Consider Fig. 8 as an example. There are five attribute instances of which
four (a, b, ¢, and d) have a circular dependency. Given the equations to the right in
the figure, it is obvious that the set { 1d} should be the final value of all attributes
after a fixed-point iteration. Suppose that the AG author has forgotten to declare
attribute c as circular and suppose that attribute a is demanded. An iterative pro-
cess is started, b is demanded and then c is demanded. Since c is not declared
circular its evaluation code will be that of Fig. 7 and thus the iterative phase will
be temporarily suspended and d will be demanded. Since d is a circularly declared
attribute, a new iterative process is started. When a is demanded it is already vis-
ited, so it will return its current value (the bottom value). The iterative process
started by d will thus only involve attributes d and a and their values will never
change from the bottom value, i.e, the empty set. Consequently the value of ¢ will
also be the empty set. The interrupted iterative process started by the evaluation of
a is resumed when c has been evaluated. Since c is cached, the iterations will only
span over attributes a and b and the fixed point is reached when their respective
values are { 1d}. Obviously all semantic rules are not satisfied.

(a)
e

Figure 8: Equations for some attributes creating cyclic dependency.
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In order to make the algorithm robust to such grammar errors, the algorithm
can be modified as follows. Using the information about which attributes are de-
clared circular, it is possible to keep track of which nodes in the dependency graph
might belong to the same strongly connected component. If a visited node be-
longing to another component is encountered, then an error has ocurred. In the
case described above the evaluator would consider attributes a and b to belong to
one component and attribute d to another. When the evaluation of d demands a«,
a visited node belonging to a different component is encountered. The scheme of
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keeping track of components can be realized by adding vertices of the dependency
graph to a set during evaluation, as long as only potentially circular attributes are
encountered. This set will be stacked together with the CHANGE flag when an iter-
ation is temporarily suspended as in Fig. 7. When a visited node is encountered it
can then be checked if it belongs to the set of the component actually being brought
to a fixed point. Thus, in case of a missing circular declaration, the algorithm will
detect the error, identify the attributes involved, and raise an exception.

3.5 Comparison to related work

Our evaluation algorithm uses a pure dynamic demand-driven technique where no
initial dependency analysis is performed. In general, the complete dependency
graph for a RAG or a CRAG is not known until after evaluation, since the depen-
dencies introduced by reference attributes will depend on the reference values.

Boyland takes a similar approach in his APS system where he has implemented
support for evaluation of circular attributes for remote attribute grammars. His
evaluation method is based on demand-driven evaluation and performs topolog-
ical evaluation of strongly-connected components, allowing non-monotonic de-
pendencies between components. However, he provides no explicit evaluation
algorithms [3].

For ordinary attribute grammars, the dependency graph can be computed from
the grammar and constructed before evaluation. The static attribute evaluation al-
gorithms available for ordinary attribute grammars, like OAGs [17], rely on this
property in order to compute approximations of the dependency graph before eval-
vation. The same holds for the static evaluation algorithms for circular attribute
grammars, like Farrow’s algorithm [10].

The development of static evaluators for subcategories of RAGs and CRAGs is
a problem that we have not pursued, but there is some other work in this direction.
In [4], [5], [7], Boyland addresses the problem of analyzing (noncircular) non-local
dependencies statically. He develops a technique to schedule evaluation statically
and shows how it may be implemented incrementally. The technique has been
applied to variants of name and type analysis including the static-semantics of a
simple object-oriented language.

Sasaki & Sassa [27] allow circular dependencies as well as remote links be-
tween nodes in the AST, but links between nodes are not considered a part of the
AG and must be provided by a separate initial phase that they have not elaborated
further on in their paper. In contrast, our demand-driven evaluation technique al-
lows reference attributes as well as ordinary attributes to be evaluated in the same
manner. An additional constraint in the scheme of Sasaki & Sassa is that cycles
are assumed to arise only from remote references.

As was discussed in Section 3.2, the static evaluation algorithms of Farrow and
of Sasaki & Sassa have suboptimal behavior for strongly connected components
of circular attributes, while the dynamic algorithm of Jones [15] is optimal. Jones
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algorithm computes the strongly connected components for a given AST before
evaluation, based on the actual attribute dependencies. For CRAGs, such pre-
evaluation computations are not possible in general, since the reference attributes
give rise to attribute dependencies that are not known until after the evaluation
of those reference attributes. For this reason, the strongly connected components
in CRAGs cannot, in general, be computed before evaluation. Our evaluation al-
gorithm detects strongly connected components during evaluation, and does not
always have sufficient information to distinguish between two components. In this
case, the components will be evaluated together rather than in topological order,
thereby yielding suboptimal evaluation. However, in Section 3.3 we showed how
to avoid many of these cases by using cached attribute values. The remaining
suboptimal case is the one where there are two adjacent strongly connected com-
ponents. L.e., where an attribute in one component depends directly on the attribute
in another component, like in case (I) of Fig. 2. To handle also these cases, there
would be the need for either more information given by the grammar author, or
for some kind of approximative pre-evaluation analysis. The development of such
analyses remains an open issue. For non-circular RAGs, dynamic demand-driven
evaluation using caching is optimal (each attribute is evaluated at most once).

For CRAGs, we rely on the author to declare a potentially circular attribute as
circular, which provides the same information as the analysis of the grammar
performed initially in the static methods of Farrow and Sasaki & Sassa. In both
cases the potentially circular attributes are identified and become known to the
evaluator. A less experienced author might forget to declare some attributes that
are potentially part of cyclic dependencies as circular. Our evaluator will then
report an error on inputs where cycles do appear and it will produce a correct result
on cycle-free input.

We find it reasonable to demand of the grammar author to explicitly declare
which attributes are potentially circular. The grammar author needs to be aware
of such attributes since they should be given a start value (bottom of the lattice),
and their semantic functions must be monotonic. In principle, it would be possible
to instead regard all attributes as potentially circular, and use default start values.
However, this would imply that attributes that were mistakenly defined in a circular
manner might lead to nonterminating evaluation, e.g. if the functions were non-
monotonic. In our system, such mistaken circularities would be flagged as errors
at evaluation time. To regard attributes as potentially circular when they are in fact
definitely noncircular, would also lead to performance degradation. We would not
be able to perform the optimizations described above that make use of knowing
which attributes are definitely noncircular.

Our evaluator presently does not check whether circularly defined attributes
take their values from a lattice of finite height or if their defining semantic func-
tions are monotonic. Thus there is no guarantee that iterations will converge. Our
approach is in this respect similar to that of, e.g., Farrow [10] and means that we
rely on the AG author to ensure that the semantic functions involved are properly
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constrained.

4 Application Examples

In this section we will discuss three examples which are naturally expressed using
recursion and circular dependencies. Two of them are classical and are discussed
in earlier papers dealing with circular attribute grammars. In these cases we will
focus on a comparison between the solutions proposed earlier and solutions made
possible when reference attributes are available. However, we start with an exam-
ple that computes nullable, first, and follow in the context of parser construction.
This is a problem that, to our knowledge, has not been solved using an attribute
grammar approach before. This application is typical for a large class of problems
within compiler construction that deal with computing various properties of gram-
mars. Other similar problems are the computation of static dependency graphs
in the context of attribute grammars, computation of visit sequences for ordered
attribute grammars, etc. All these problems are expressed as highly recursive equa-
tions and are typically solved by iterative fixed-point computations.

4.1 Computation of nullable, first and follow

Given a context-free grammar (CFG), a recursive-descent or predictive parser can
be generated if the first terminal symbol of each subexpression provides enough
information to select production. This can be more precisely formulated by intro-
ducing the notion of a nonterminal being nullable and by defining the sets first and
follow, informally defined as:

e A nonterminal X is nullable if the empty string can be derived from X.
o first(X) is the set of terminals that can begin strings derived from X.
e follow(X) is the set of terminals that can immediately follow X.

Fig. 9 shows an example context-free grammar and its values for nullable, first,
and follow (grammar 3.12 in Appel [2]).

’ Nonterminals and their productions ‘ nullable first follow ‘
X—Y]|a true {a,c} {a,c,d}
Y—cle true {c} {a,c,d}
Z—XYZ|d false {a,c,d} 0

Figure 9: Example CFG and its values for nullable, first, and follow.
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Computation of nullable

The following equations hold for nullable:
(i) Let X be a nonterminal with the productions X — v1, X — v2,... X —
X is nullable if any of its production right-hand sides is nullable:
nullable(X) == nullable(y1) || nullable(y2), ... || nullable(yn)
(ii) Let € be an empty sequence of terminal and nonterminal symbols.
The empty sequence is nullable:
nullable(e) == true
(iii) Let~y = s be a nonempty sequence of terminal and nonterminal symbols
where s is the first symbol and ¢ is the remaining (possibly empty) sequence.
- is nullable if both s and § are nullable:
nullable(y) == nullable(s) && nullable(d)
(iv) A terminal symbol ¢ is not nullable:
nullable(t) == false
These equations are circular which is evident from (i) since X might be identical
to, or derivable from, one of the nonterminal symbols on the right-hand side of
one of the productions. The domain of nullable is a boolean lattice with the bottom
value false. The functions corresponding to the right-hand side of the equations are
monotonic with respect to this lattice. Therefore an iterative process initializing
nullable for each symbol of the grammar to false will compute the least fixed point
of the equations.

The above equations can, with trivial adaptions to syntax form, be formulated
directly in a CRAG as demonstrated in Fig. 10. The CRAG equations correspond-
ing to (i) - (iv) above are marked in the CRAG specification. In the CRAG, we
differ between declared and applied occurrences of nonterminal symbols (NDecl
and NUse). Each NUse is bound to the appropriate NDec1 by means of a refer-
ence attribute dec1 which is specified in a similar way as was sketched in Section
2.4. Their values for nullable are equal as indicated by equation (v).

Computation of first

The following equations hold for the first set for symbols and symbol sequences:
(i) Let X be a nonterminal with the productions X — v1, X — v2,... X —
first(X) == first(y1) U first(y2)... U first(yn)
(ii)) Let € be an empty sequence of terminal and nonterminal symbols.
first(e) == 0
(iii) Let sd be a nonempty sequence of terminal and nonterminal symbols
where s is the first symbol and ¢ is the remaining (possibly empty) sequence.
first(sd) ==if (nullable(s)) then first(s) U first(d) else first(s)
(iv) Lett be a terminal symbol.
first(t) == {t}
The equation system is circular which is evident from (i) since X might be iden-
tical to, or derivable from, one of the nonterminal symbols on the right-hand side
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CFG ::=Rule *{}
Rule ::= NDecl ProdList {
NDecl.nullable = ProdList.nullable; 0]

}
NDecl ::= <ID> {
inh boolean nullable circular [false];

}
ProdList, Prod, SymbolList, Symbol {
syn boolean nullable circular [false];

}
EmptyProdList: ProdList ::= {
nullable = false; 0]

}
NonEmptyProdList: ProdList ::= Prod ProdList {
nullable = Prod.nullable || ProdList.nullable; 0]

}
Prod ::= SymbolList {
nullable = SymbolList.nullable; (iii)

}
EmptySymbolList: SymbolList ::= {

nullable = true; (i)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {

nullable = Symbol.nullable && SymbolList.nullable; (iii)
}
Terminal: Symbol ::= <TERMINAL> {

nullable = false; (iv)

}
NUse: Symbol ::= <ID> {
syn NDecl decl = ...;
nullable = decl.nullable; (v)

}

Figure 10: A CRAG that computes nullable.
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of one of the productions. We can also note that the equations for first relies on
the values of nullable. The domain of first is the lattice of finite subsets of the
set of all terminals of the grammar with the empty set as the bottom value. The
expressions of the right-hand side of the equations are monotonic with respect to
this lattice. Figure 11 shows the corresponding CRAG including (i) - (iv) from
the equations above. As in the case of nullable, the first computation relies on the
decl reference attribute in NUse to equate the £irst values of an NUse and its
corresponding NDec1 (v).

CFG ::=Rule * {}
Rule ::= NDecl ProdList {
NDecl.first = ProdList.first; 0]

}
NDecl ::= <ID> {
inh Set first circular [U];

}
ProdList, Prod, SymbolList, Symbol {
syn Set first circular [U];

}
EmptyProdList: ProdList ::= {

first = [J; 0]
}
NonEmptyProdList: ProdList ::= Prod ProdList {
first = Prod.first J ProdList.first; 0]
}
Prod ::= SymbolList {
first = SymbolList.first; (i)
}
EmptySymbolList: SymbolList ::= {
first=0; (i)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {
first = Symbol.nullable (i)
? Symbol.first [J SymbolList.first
: Symbol first;
}
Terminal: Symbol ::= <TERMINAL> {
first = { <TERMINAL> }; (iv)

}
NUse: Symbol ::= <ID> {
first = decl.first; V)

}

Figure 11: A CRAG that computes first.
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Computation of follow

The definition and CRAG for follow is similar in style to nullable and first, but
makes additional use of reference attributes: To compute follow for a nonterminal
X we need to locate all the applied occurrences of X and look at the subsequent
symbols. To this end, reference attributes are used for linking an NDec1 to all
its NUses. The additions of such cross-referencing attributes are straight-forward
using RAGs, for example by defining a set of NUse references at each NDec1.
These set-valued attributes can easily be defined using parameterized attributes
which are analogous to virtual functions, and which are available in RAGs [12]. In
essence, such a function simply traverses a suitable portion of the AST to collect
the appropriate information. An example of such a computation is shown in our
paper on using RAGs for visualization computations [22]. The collection attributes
of Boyland [3] would provide a more elegant way of defining such cross-reference
information. With these cross-reference attributes in place, the specification of
follow becomes as straight-forward as for nullable and first, and is also circular.

During evaluation, the computation of nullable, first, and follow, forms three
strongly connected components where the first component depends on the nul-
lable component, and the follow component depends on both the nullable and first
components.

Experimental results

We have implemented the robust improved CRAG evaluation algorithm in our
compiler construction tool JastAdd. In order to test performance, we developed
a CRAG for computing nullable, first, and follow for context-free grammars. We
have compared the generated CRAG evaluator with a typical hand-coded iterative
implementation. We have tried to make the basis for comparison as fair as possi-
ble: Both implementations use the same implementation language (Java), the same
underlying AST classes, and the same data structure classes (for sets etc.). There
has been no effort put into optimizing any data structures or operations. All is
implemented in a straight-forward manner using classes, objects, and methods.
The results are shown in Fig. 12. The grammars Appel 1 and Appel 2 are small
example grammars from [2]. Appel 1 is a toy language (the same as in Fig. 9.) with
3 nonterminals (#N) and 6 productions (#P) and Appel 2 is a grammar for simple
arithmetic expressions. Tiny is a grammar for a small block-structured language.
The grammar for Java 1.2 is the largest and has been taken from the examples
distributed with JavaCC [1]. It has about 160 nonterminals when written in our
CFG language. The times given are average times for 100 executions on a Sun
Ultra 80 using the HotSpot JVM. The results indicate that the evaluator of CRAG
performs as well as the handwritten iterative evaluation code. For a large grammar
like Java the declarative approach even seems to be superior. One explanation
could be that in an imperative style fixed-point iteration, the order in which the
productions are processed is very important. (See, e.g. [2] chapter 17.4.) The
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CRAG evaluator, on the other hand, traverses the dependency graph depth first,
i.e., in topological order, and the iterations will thus usually converge faster.

We can also see that the maximum number of iterations for a single attribute
value to converge (#I-A) seems to be almost constant, regardless of grammar size,
whereas the total number of iterations (#I-T) naturally depends on the number of
attributes, and thereby on the size of the grammar.

CRAG Handwritten
Language | #N  #P | #I-T #I-A time (ms) time (ms)
Appel 1 3 6 8 4 8 7
Appel 2 6 12 18 4 13 9
Tiny 18 30 35 4 22 15
Java 1.2 157 321 263 5 147 175

Figure 12: Computation of nullable, first, and follow for some different gram-
mars.

4.2 Using constants before declaration

This is an example described by Farrow in [10] and deals with a language where
constants can be defined in terms of other constants and where use of a constant
before its declaration is legal as in the following example:

2+xb + c;
= 2;
d - 1;
= 4;

Q0 0w
I

Farrow shows how a part of an AG for the language can be specified to build a
table mapping constant names to their respective values. The specification will
be circular. In essence, to build a table of constants and their values you need
the value of the expression defining each constant. If an expression defining a
constant uses another constant (as in the definitions of a and c above) you will
need to look them up in the table. The table thus depends on the constant values
which in turn depend on the table. The only case when cycles will not occur is
when no expression defining constants uses other constants, i.e., have the form of
the declarations of b and d above. Had there not been the requirement to allow use
of constants before their declaration, the AG could be simplified to avoid cycles.
Farrow showed that it is possible to rewrite the AG to be cycle free by introducing
complexity involving higher order functions one of which in essence captures the
behavior of the fixed-point iterations needed for the evaluation in the cyclic version
of the grammar.
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Farrow’s discussion is based on traditional AGs enhanced with a static evalua-
tion technique for cyclic dependencies mentioned in Section 2. The evaluation will
produce the table of constants and their values if the constants are well-defined,
i.e., there must be exactly one defining expression for each constant and the def-
initions themselves must not be cyclic. The table will thus be incomplete if the
constants, e.g., are defined as in:

a=">b + 2;
b = 2%a; // circular definition

Using CRAGS it is easy to specify a non-circular attribute grammar for the
specification of the constant values. Again a name analysis proves useful linking
constant use sites to their declaration sites by a reference attribute decl as was
described in Section 2.4. The value of a constant can then be modelled as an
attribute val of its declaration node class. The val attribute is specified in terms
of the values of the constants used in its defining expression. These values are in
turn specified as the value of the val attribute at their corresponding declaration
sites, using the reference attribute dec1.

Fig. 13 shows parts of an abstract grammar for a language with integer con-
stants. The specification of the val attribute in the ConstUse class checks if
the constant has been declared. If not, it will be assigned the value undefined.
The example demonstrates how reference attributes can simplify a grammar as
compared to previously suggested solutions.

ConstDecl ::= IdDecl Exp { syn Integer val = Exp.val; }
Exp { syn Integer val; }
AddExp : Exp ::= Exp; Exp, { val = Expq.val + Exp,.val; }

ConstUse : Exp ::=<ID>{
syn ConstDecl decl = ..;
val = decl != null ? decl.val : undefined;

}
INtExp : Exp ::= <INT>{val = <INT>; }

Figure 13: CRAG for a language where constants can be used before declaration.

The val attribute will be noncircular exactly when Farrow’s cyclic specifi-
cation produces a complete table of constant values, i.e., when each constant has
a defining expression and no constant is defined in a circular manner. Should
some constants be part of circular definitions like in the example above, this is
a programming error that should be caught by the compiler. To use circular at-
tributes is not an option here since there does not, in general, exist any fixed-point
solution. For the CRAG above, the evaluator will throw an exception when it
discovers the circular dependency. This is, of course, not an acceptable behavior
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for a production compiler. An improved CRAG can instead check explicitly for
such erroneous circular definitions by introducing an attribute wellDefined in
class ConstDecl. Its value can be specified in a noncyclic manner by a recursive
function that builds the set of all constants of which a certain constant is dependent
and checks that the constant is not itself in this set. An alternative way is to intro-
duce a circular boolean attribute wellDefined in ConstDecl and Exp with
bottom value false. The specification of this attribute is straight-forward. A
simple integer expression (IntExp) is well-defined and a compound expression
is well-defined if all its subexpressions are well-defined.

4.3 Live analysis in optimizing compilers

One of the most frequently used examples of cyclic dependencies in AGs is the
performance of live analysis for variables. Farrow [10], Jones [15], and Sasaki &
Sassa [27] all focus on this example in their papers.

A variable v is said to be live on entry to a statement S if there is a control
flow path from S to another point p such that p uses the value of v and v is not
redefined on the path from S to p. The goal of an attribute grammar in this context
is to specify the sets of live variables on entry to each statement or block in a
program.

Farrow and Jones both exemplify with a language with loop-structures like
for- and while-statements. No reference attributes need to be involved here,
but the specifications become cyclic for loop-statements. Sasaki & Sassa use a
smaller language with only assignment statements, 1 abe1-statements and got o-
statements. Here remote attributes are used to link goto nodes in the AST to
their corresponding Label nodes. Cycles can in their simple example language
arise only if a program contains got o-statements. Their evaluation technique (or
rather the technique to check for convergence) requires that cycles always include
remote links. This means that the evaluation process described in [27] would not
directly be capable of handling, e.g., a language with structured loop-statements
without adding explicit remote links. Also, as has been mentioned before, their
links between gotos and labels in the AST are not ordinary attributes, but
need to be provided by a separate phase that takes place before attribute evaluation.

Given the combination of reference attributes and capability of handling cyclic
dependencies makes it easy for us to specify a CRAG for live analysis for a lan-
guage containing ordinary loop-structures as well as labels and goto-state-
ments. A name analysis links goto nodes in the AST to their proper label
nodes. The rest of the attributes needed to perform a live analysis can be specified
following the pattern proposed in earlier papers. In CRAGs, there is no need for
an initial phase for computing reference attributes. The reference attributes are
evaluated by our system when they are demanded just like any other attributes.
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5 Conclusions

In this paper we have presented CRAGS, an extension of traditional AGs with
reference attributes and circularly defined attributes. We have developed a general
demand-driven evaluation technique for CRAGs, implemented it in Java, and tried
it out on several applications, thereby demonstrating the expressiveness of CRAGs
and that they are useful for a number of practical problems.

Most language analysis problems include name analysis as a subproblem. It is
well known that traditional AGs are not well suited for specifying name analysis,
leading to complex awkward specifications. Reference attributes have proved use-
ful to overcome this problem and this paper demonstrates how such name analysis
provides a natural basis for further analyses based on circular recursive equations.
In Section 4.2 we demonstrated how reference attributes in some cases even re-
move the need for circular specifications.

Many language analysis problems are inherently circular and need to be com-
puted by iterating to a fixed point. We have demonstrated how CRAGs allow the
recursive definitions to be specified directly in the grammar, and the fixed point
to be computed by an automatically generated evaluator. The use of reference
attributes broadens the potential applications of circular attribute evaluation to a
much wider range. The computation of nullable, first, and follow, that we have
presented here is representative of a large number of grammar analysis problems
that can make use of this technique.

We have compared our demand-driven evaluation algorithm with handwritten
imperative code implementing fixed-point iterations, and the results indicate that
there is little difference in performance.

Future work includes further improvements of the evaluator. One idea we are
looking at is how to isolate strongly connected components by modularizing the
grammar. Such modularization is natural to do anyway from a grammar writing
perspective, and can probably be used for improving the evaluator performance
and for allowing non-monotonic dependencies between components in different
modules. We are also looking at techniques for automatically deciding which at-
tributes to cache to provide best performance and memory usage. It would be
desirable to let the user decide what attributes to save in the AST nodes and let
the tool help to decide when to cache other attributes temporarily to avoid inef-
ficiencies and for check of convergence. One idea could be using a cache like
in [27]. We also plan to apply CRAGs to more problem areas. In [9] a formal-
ism for rewriting abstract syntax trees is presented. The formalism, Rewritable
Reference Attributed Grammars (ReRAGs), has been implemented in our aspect-
oriented compiler tool JastAdd. We plan to merge this extension of JastAdd with
our CRAG extension. We believe that there are problem areas where this combi-
nation would prove useful.
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PAPER IV

COLLECTION ATTRIBUTE
ALGORITHMS

Abstract

In order to make attribute grammars useful for complicated analysis tasks, a num-
ber of extensions to the original Knuth formalism have been suggested. One such
extension is the collection attribute mechanism, which allows the value of an at-
tribute to be defined as a combination of contributions from distant nodes in the
abstract syntax tree. Another extension that has proven useful is circular attributes,
i.e., attributes defined in a circular recursive manner. In this paper we show how
collection attributes and the combined formalism, circular collection attributes has
been implemented in our declarative meta programming system JastAdd and how
they can be used for a variety of applications including devirtualization analy-
sis, metrics and flow analysis. A number of possible evaluation algorithms are
discussed and compared for applicability and efficiency. The key design criteria
for our algorithms are that they work well with demand evaluation, i.e., defined
properties are computed only if they are actually needed for a particular analysis
problem. We show that the best algorithms work well on large practical problems
including the analysis of large Java programs.

An extended version of: E. Magnusson, T. Ekman, and G. Hedin, “Extending Attribute Grammars
with Collection Attributes — Evaluation and Applications.”, In the proceedings of SCAM 2007,
Seventh IEEE International Working Conference on Source Code Analysis and Manipulation. Best
paper award, SCAM 2007.
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1 Introduction

Attribute grammars have recently received renewed interest due to the emergence
of practical meta programming tools such as JastAdd [1] and Silver [25] that can
handle analysis, transformation and compilation of complex programming lan-
guages like Java. Main advantages of these systems are that they make use of
declarative specifications, allowing high-level concise specifications, and that they
support extensibility, for example, allowing advanced analyses to be added modu-
larly to a compiler. Good performance can be achieved, as shown for our own tool,
JastAdd, with which we have built an extensible Java compiler that can compile
programs in the order of 100 k lines of code and that runs within a factor of three
of javac [8,9].

The practicality of recent attribute-grammar based systems relies on the de-
velopment of a variety of extensions to the original Knuth style attribute gram-
mars [18]. One such extension allows attributes to reference distant nodes in the
abstract syntax tree (AST), and use these references to access attributes in the ref-
erenced nodes [4,12,13,16,21]. We will call this extended formalism Reference
Attributed Grammars or RAGs. RAGs facilitate specifications of problems where
non-local dependencies are common and there are many compiler related tasks
where they are essential and provide for concise and clear specifications.

Another useful extension is to allow circular dependencies between instances
of attributes [11]. Circular specifications do, under certain circumstances, define
well defined attribute grammars in the sense that all semantic rules can be sat-
isfied. Allowing circular attributes in some cases makes it possible to more or
less directly use underlying recursive definitions. It becomes the responsibility
of the attribute evaluator to perform the necessary fixed-point iterations to com-
pute values for attributes involved in circular dependencies. AGs allowing circular
definitions are often called CAGs (Circular Attribute Grammars). The combined
formalism, i.e., AGs incorporating reference attributes as well as circular specifi-
cations is called CRAGs (Circular Reference Attributed Grammars) [20].

Extensions also include AST rewriting where rules are used for specifying
transformations of the abstract syntax tree [10], and the related mechanism higher
order attributes where an attribute can have the strucure of an AST and can itself
have attributes [27]. Combined with a forwarding technique [26], where equations
can be forwarded from one node to another, HAGs allows computations to be
expressed on a more suitable model in a manner similar to rewrites. Applications
for these extended formalisms include semantic specialization, code optimization
and reeingineering of source code.

In this paper we investigate applications and implementation of collection at-
tributes, as defined by Boyland [4]. A collection attribute is the declarative speci-
fication of a combination of properties of an unbounded number of abstract syntax
tree nodes. Simple examples are the set of calls of a procedure, and the set of sub-
classes of a class. While such combined properties can be computed by ordinary
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Knuth-style synthesized and inherited attributes, the use of collection attributes
makes their specification much more simple and concise, and opens for more ef-
ficient implementations. Furthermore, the use of collection attributes supports the
building of extensible analysis tools [24]. In [19] we have presented the collection
attribute formalism, presented a number of applications and also discussed possi-
ble evaluation algorithms. This paper is an extended and revised version of [19]
and includes detailed descriptions of the evaluation algorithms.

Collection attributes are often whole-program properties, i.e., they combine in-
formation from, potentially, the whole program. A naive way to implement them
is to simply traverse the whole program, find all the contributing AST nodes of
the program, and that way compute the combined value. This is potentially very
expensive. In this paper we propose a series of evaluation algorithms and compare
them, both with regard to applicability and to performance. Our evaluation algo-
rithms are all based on demand evaluation, i.e., attributes are not evaluated until
their value is demanded by some other computation. This is important for many
applications since the set of attributes needed for a computation may depend on
the particular program that is analyzed.

Of particular interest is the combination of collection attributes with circular
attributes [11,20]. As for ordinary circular attributes, an AG containing circularly
defined collection attributes may be considered well defined in that all its semantic
rules may be satisfied.

We have implemented collection attributes and the combined formalism cir-
cular collection attributes in our system JastAdd and we give several examples of
their use, including devirtualization analysis and metrics for Java programs, and
flow analysis for grammars.

The rest of this report is structured as follows: In Section 2 we give a moti-
vating example for the introduction of collection attributes. Section 3 discusses
the definition of collection attributes and how they are used in JastAdd. Section
4 gives a series of algorithms for evaluation of non-circular collection attributes.
Section 5 discusses application examples for non-circular collection attributes. In
Section 6 the combined formalism circular collection attributes is introduced and
an application example is discussed. Possible evaluation algorithms for circular
collection attributes are presented in Section 7. Section 8 is devoted to perfor-
mance issues for all presented algorithms. Section 9 discusses related work, and
Section 10 concludes the paper.

2 Motivation
2.1 The JastAdd system

The JastAdd system [1, 14] allows source code analyses to be built in a concise
way as extensions on top of other analyses, typically on top of the name and
type analyses that are core parts of a compiler. The analyses are formulated as
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attribute grammars (AGs) that include the basic AG mechanisms of synthesized
and inherited attributes [18], as well as several extensions, including reference at-
tributes [13] that are of key importance to this paper, circular attributes [20] and
rewrites [10].

A reference attribute of an abstract syntax tree (AST) node is an attribute that
refers to another node in the AST. They are used to bind different parts of the AST
together, e.g., to bind a use of a variable to its declaration, a class to its superclass,
a call to its method declaration, an expression to a type declaration denoting its
type, etc. Using JastAdd, such attributes are typically specified in name and type
analysis modules, and a compiler is composed by combining these with a code
generation module.

For many source code analysis problems it is useful to reuse the reference
attributes computed by the name and type analysis modules. In addition, there is
often a need for the reverse information, i.e., the cross references. For example,
for a metrics problem, we might be interested in finding all the uses of a particular
instance variable declaration, all the calls of a method, or all the subclasses of a
class. Cross-reference problems are often whole program problems in the sense
that the cross references may be located in any part of the program. For example,
a public instance variable declaration can, through qualified use, be used from any
other class in the program.

2.2 A motivating example

Later in this paper we will see how cross-reference sets can be specified by means
of collection attributes. But first, as a motivation and for comparison, we will look
at how they can be specified using ordinary synthesized and inherited attributes'.

As an example, consider cross references for name bindings. The name anal-
ysis module has defined that each Use node has an attribute decl which refers
to the appropriate Decl node. We now want to define that each Decl node has
an attribute uses which is a set of cross references, i.e., it contains references to
all the Use nodes whose dec1 refers to that particular Dec1 node. This can be
done by using attributes that in effect traverse the complete AST and collect all
the relevant Use nodes. The specification is shown in Fig. 1. The uses attribute
accesses the collectUses attribute of the root. The collectUses attribute
is defined for all AST nodes (in the superclass ASTNode), and by default collects
the uses of its children. This in effect results in a traversal of the complete AST.
For Use nodes, the collectUses attribute in addition adds a reference to that
Use node, if appropriate, i.e., if its dec1 refers to the Dec1 in question.

The JastAdd system evaluates attributes through demand evaluation. This
means that the value of an attribute is not computed until its value is needed. This
is important for efficiency because there may be many attributes defined whose

I'A synthesized attribute is defined by an equation in the same AST node. An inherited attribute is
defined by an equation in an ancestor node.
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ASTNode
syn HashSet collectUses(Decl d) \_u's'e'sc"ilnleacll
children ...
Decl Use
inh ASTNode root; eq HashSet collectUses(Decl d);
syn HashSet uses();

~
HashSet s = new HashSet();]
d)

if (decl() ==
return root().collectUses(this); s.add(this);
s.addAll (super.collectUses(d));

return s;

Figure 1: Finding all uses of a declaration.

values are not needed for a particular application. For our example we can note
that there is one instance of the uses attribute for each declaration in the analyzed
program. It might be the case that we are interested in a uses attribute instance
only if some condition holds. For example, if the declaration has a particular name.

In analyzing the specification of the uses attribute above, we can notice some
drawbacks. First and foremost, the evaluation is inefficient if several instances of
the attribute are demanded since a complete tree traversal is performed for every
instance. Furthermore, the user has to explicitly express the tree traversal using
auxiliary attributes like collectUses. In the next section, we will see how both
these drawbacks can be overcome through the use of collection attributes.

3 Collection Attributes

3.1 Definitions

The value of an ordinary synthesized attribute of an AST node 7 is defined locally
by an equation in node n. In contrast, the value of a collection attribute, as defined
by Boyland [4], is defined through a number of partial definitions, located in arbi-
trary nodes in the AST. More precisely, the value is defined as a combination of an
initial value and zero or more applications of a combination operation. The collec-
tion attribute declaration contains the initial value and the combination operation.
The partial definitions, in the form of applications of the combination operation,
can be located in arbitrary AST nodes. Following the declarative paradigm of
AGs, the order of specification is irrelevant. Therefore, the combination operation
must be such that the order of application does not affect the resulting value of the
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collection attribute. Typical examples of collection attribute types are sets, with
the empty set as the initial value and add element as the combination operation;
booleans, with false and or; and integers, with zero and +.

In order to facilitate the description of evaluation algorithms we introduce
some additional terms. A node containing a partial definition for some collec-
tion attribute c is said to be a contributor to its final value. Alternatively, we say
that the node contributes to the value of c. The value of the partial definition is
said to be its contribution.

3.2 Motivating example revisited

Consider again the problem of finding all uses of a declaration, as was described in
Section 2. After introducing collection attributes, we can replace the synthesized
attribute uses with a collection attribute as shown in Fig. 2. It has the initial value
new HashSet () and the combination operator add. The nodes of type Use
are contributors of Decl .uses and their respective contribution is this, i.e., a
reference to the Use node. The reference attribute dec1 (that was defined in the
name analysis module) points out the appropriate Dec1 node to contribute to.

[ ASTNode |
Decl Use
coll HashSet uses() contributes this
[new HashSet()] with add; to Decl.uses()
for decl();

Figure 2: Defining uses with a collection

This definition is much more concise than the one using ordinary attributes.
We can also notice that the combination operator add is an ordinary Java method
that updates the state of the HashSet object. This is fine, since the value of
uses will not be used until its final value is computed. In contrast, the solution
shown in Section 2 exposes all the partial collections as attributes, and therefore
needs to represent them as separate objects. This difference will contribute to
better efficiency for the collection attribute solution.

3.3 JastAdd collection attribute syntax

The JastAdd syntax for declaring a collection attribute ¢ of type T in a node class
N1 is:
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coll T Nl.c() ' [’ initial "]’ with op;

The declaration of the attribute c is an intertype declaration in that it allows the

declaration to be expressed in a module textually separate from class N1, similar

to intertype declarations of methods and fields in, for example, Aspect] [17].
Alternatively, the following syntax can be used:

class N1{
coll T c() '[’ initial "]’ with op;
}

This syntax is convenient to use when there are several intertype declarations for
the same class.

The expression initial is the initial value of the collection attribute, before
applying the contributions, and thereby also the final value in the case of zero
contributions. The op should be a Java method for class T that serves as the
combination operator and updates the T object by adding a contribution. The
method op should be void and have a single parameter of the same type as the
contributions?. Given a set of contributions E, the final value of c is computed as
follows (pseudo code):

T ¢ = initial;

foralle € E do
c.op(e);

end for

The uses example in Fig. 2 illustrated a very simple example of declaring con-
tributions. In more complex cases it can be desirable to express conditional con-
tributions, and contributions for a set of collection attributes, not just for a single
attribute. Below, the general syntax for declaring contributions from a node N2 to
collection attributes c in N1 nodes is shown.

N2 contributes
contrl [when condl],
contr2 [when cond?],

contrN [when condN]
to Nl.c()
for [each] ref();

The contributions contrl, contr2, etc., should be expressions that have the
same type as the parameter of the combination operator of c. The semantics of a
specification with when-clauses is that all contributions for which the correspond-
ing condition holds are valid. The expression ref should be a reference to an N1
object, or, if the optional keyword each is used, re f should be a set of references
to N1 objects. In the latter case, the contribution is added to the collection attribute
c of all those N1 objects.

2If collections of primitive types like int and boolean are desired, they currently have to be imple-
mented by wrapper classes.
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Below, an example of using for each in a contribution is given. The class
MethodDecl has a collection attribute calls (defined elsewhere) which con-
tains references to all methods called inside its body. We now want to define
a cross-referencing collection, callers, that should contain references to all
methods that call the MethodDecl. This is accomplished concisely by letting
the MethodDec1 contribute itself to all the caller attributes of each of the
members in its calls attribute.

coll HashSet MethodDecl.callers() = new HashSet () with add;

MethodDecl contributes this
to MethodDecl.callers()
for each calls();

4 Evaluation of non-circular Collection Attributes
4.1 Attribute evaluation in JastAdd

In the demand driven evaluation technique used in JastAdd for non-collection at-
tributes, an attribute instance is not computed until its value is needed. If the value
depends on other attribute instances, these instances are demanded and evaluated
as well. The evaluator code for ordinary synthesized and inherited attributes is
realized by translating their declarations and equations into Java methods, as de-
scribed in more detail in [14]. For efficiency reasons, a caching technique is also
available. Circular attributes are always cached since the iterative technique used
for their evaluation requires values from a previous iteration to be cached for con-
vergence check. When the iterative process is over, these cached values contain
the final values of all attributes involved in the cycle. Collection attributes are also
always cached since their computation involves traversing the whole AST, and is
thus inherently expensive.

When implementing collection attributes, we want to keep with the demand-
driven approach, so that the evaluation of the attributes demanded in a particular
application is not slowed down by the existence of attributes that are not demanded.

This section contains, descriptions of a number of evaluation techniques for
collection attributes and their applicability while performance issues are treated in
a later section. Descriptions and code examples for all alternatives assume that a
collection attribute has been declared and specified as follows:

coll T A.s() [init_value()] with op;

B contributes
f£(..)

to A.s()

for ref();
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In order to facilitate the discussion of applicability we introduce some additional
terms:

e All instances of node classes which specify contributions to a collection
attribute will be called potential contributors to an instance of the attribute.
Thus, all instances of class B are potential contributors to any instance of the
collection attribute s in the example above.

e Let ref denote the reference attribute used in contributing classes to ex-
press for which node a contribution is intended. The actual contributors to
a certain instance s1 of a collection attribute s is the subset of its potential
contributors, for which re f points out the node site of s1.

e A contribution from an actual contributor is a valid contribution if it is either
unconditional or conditional with an attached condition which evaluates to
true.

4.2 Naive evaluation

A simple way to implement a collection attribute is to represent the collection
attribute by a method that traverses the complete AST, finds the appropriate con-
tributors, and returns the final value, i.e., the combination of the contributions. We
refer to this evaluation scheme as the naive evaluation algorithm. This algorithm
has the advantage that it is purely demand driven: if a single collection attribute
instance is demanded, there is no extra work involving the evaluation of other in-
stances. But if several instances are demanded, the tree will be traversed over and
over again, leading to overall inefficiency.

The essential parts of the evaluator code for the naive technique is shown in
Fig. 3. (Code needed for interaction with rewrites and certain optimization issues
for circular evaluation has been omitted.) The method s () first checks if s has
already been computed. If not, a method in the root node is called to compute its
value with the node of the demanded attribute instance as a parameter. root is
assumed to be an ordinary reference attribute specified to reference the root node
of the AST. Node class ASTNode is supposed to be the superclass for all node
classes of the AST. In ASTNode the method for computing the attribute s of A is
defined to simply call itself for all children. In the contributing class B this method
is overridden. Here it is checked if the reference attribute ref references the same
node as the parameter. If this is the case, the contribution is combined with the
current value of the s_value. Then the corresponding method in the superclass
(in this case ASTNode) is called to continue the tree traversal.

If contributions are conditional, a check of these conditions must be made in
contributing nodes. If, for example, the contribution given to A . s from class B has
an attached condition, then the generated code for the method A_s_compute in B
would also check this condition before combining the contribution with s_value.
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Should the for each construct be used to specify contributions, then the code
of A_s_compute will include an iteration over the set ref. For each element it
will then be checked if it points out the demanded instance, and if this is the case
the combination will be performed.

class A {
boolean s_computed = false;
T s_value = init_value();

public T s() {
if (s_computed)
return s_value;
root () .A_s_compute (this) ;
s_computed = true;
return s_value;
}
}
class ASTNode {
void A s_compute (A n) {
for(int i = 0; i < getNumChild(); i++)
getChild(i) .A_s_compute (n) ;
}
}
class B {
void A_s_compute(A n) {
if (ref() == n) {
n.s_value.op(f(...));
}
super.A_s_compute(n) ;
}
}

Figure 3: Naive evaluation of collection attribute s in class A.

Applicability of the naive technique

For a discussion of the applicability of evaluation algorithms some basic facts need
to be established. Firstly, we can state that in order to compute the value of a col-
lection attribute instance we need the values of the referencing attributes in all its
potential contributors. The reason is that all these reference attributes must be eval-
uated in order to find the actual contributors. Secondly, we also need the values
of conditions attached to contributions in the actual contributors of the collection
attribute instance. Thirdly, we need the values of the valid contributions. Any in-
stance of a collection attribute is thus dependent on the reference attributes in all
potential contributors, all conditions in actual contributors and their valid contri-
butions. We will call this type of dependency inherent since it exist regardless of
which algorithm is used for evaluation.
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The inherent dependency on the reference attributes is of particular interest,
since it introduces circularities whenever any of the reference attributes are depen-
dent on an instance of the collection attribute. To see this, assume that the value
of an instance s1 of a collection attribute s is needed. The instance s1 depends
on all reference attributes in potential contributors. If one of them, say refl, is
dependent on an instance of the collection attribute, say s2, then we have a cycle
since s2 depends on all references, among them ref1. Using the code presented
above, this type of dependencies causes looping behavior. Evaluation of refl
causes s2 to be demanded and thereby a new tree traversal is triggered. During
this traversal all references, among them ref1, will be needed again and there-
fore s2 is demanded again. In this case, ref1 is the first attribute instance to be
revisited during the evaluation. The reference attributes are normally ordinary syn-
thesized or inherited attributes. The evaluator code generated for such attributes
are capable of detecting looping behavior as described in [20].

The inherent dependency on conditions and contributions does not create cy-
cles in the same way. If, for example, a condition is dependent on another instance
of the collection attribute, it will simply trigger the evaluation of the other collec-
tion attribute instance and then continue with the evaluation of the first one. Only
if dependencies are actually circular, i.e., an instance is dependent on itself, will
there be problems. Such circular dependencies can be detected dynamically using
the same technique as for ordinary non-circular attributes as described in [20]. In
essence, a boolean Java attribute s_ visited is introduced in class A and used in
the method s () as outlined in Fig. 4.

When the naive technique is used and failure is reported by the evaluator as in
Fig. 4, it is necessary to resort to other algorithms capable of handling collection
attributes involved in circular dependencies. Such algorithms will be discussed in
a later section.

4.3 One-phase joint evaluation

To obtain better overall efficiency, it is possible to compute all instances of a given
collection attribute when the first instance is demanded. One traversal of the tree
is sufficient to find all contributing nodes to any instance of the attribute and to
perform the proper computations for combining contributions. We call this tech-
nique one-phase joint evaluation. This scheme deviates from the demand-driven
technique. If only a single attribute instance is actually demanded, it will be less
efficient than the naive algorithm. But if more instances are demanded, it will
quickly become much more efficient. An outline of the evaluator code is given in
Fig.5. The evaluator method for s in class A is no longer parameterized. If the
attribute is not already computed it calls a method in the root node. For the root
node, Program, this method checks whether the tree has already been traversed
(using a flag A_s_computed). If not, a tree traversal is triggered and the flag
is set to indicate that all instances of s have been computed. As before, in the
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class A {
boolean s_computed = false;
boolean s_visited = false; // new
T s_value = init_value();

public T s() {
if (s_computed)
return s_value;
if (s_visited)
throw new RuntimeException("..."); // new
s visited = true; //new
root () .A_s_compute (this) ;
s visited = false; // new
s_computed = true;
return s _value;
}
}

Figure 4: Detecting circularities in the naive technique.

naive technique, the computing method is overridden in the contributing class B.
Here, the contribution is combined with the current value of s_value in the node
referenced by ref.

As for the naive technique, the generated code for A_s_ compute is modified
if conditions are attached to contributions or if the for each construct is used.

Applicability of the one-phase technique

A shortcoming of the one-phase algorithm is that it is less general than the naive
technique. As described in connection with the naive technique, a collection at-
tribute instance is inherently dependent on the reference attributes in all potential
contributors, on conditions in actual contributors and on their valid contributions.
For the one-phase technique there are also additional algorithmic dependencies in
the sense that the algorithm creates dependencies by enforcing a certain order of
computations. Before the value of any instance of a collection attribute is returned
the algorithm enforces not only all references but also all conditions for potential
contributors and all contributions valid for any instance to be evaluated. Any in-
stance of collection attribute thus becomes dependent on all these entities. With
the same reasoning as for the naive technique we can therefore deduce that the al-
gorithm will have a looping behavior whenever any reference attribute or any con-
dition for a potential contributor or any of their valid contributions is dependent
on any instance of the collection attribute under computation. The dependency
will then trigger a new tree traversal, during which the same dependency will be
encountered, and the algorithm will end up in a loop.
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class A {
boolean s_computed = false;
T s value = init_value();

public T s() {
if (s_computed)
return s_value;
root () .A_s_compute() ;
s_computed = true;
return s_value;
}
}
class Program {
boolean A _s_computed = false;

void A _s_compute() {
if (A s computed) return;
super.A _s_compute() ;
A s_computed = true;

}

}
class ASTNode {

void A s _compute() {

for(int 1 = 0; i < getNumChild(); i++)

getChild(i) .A_s_compute() ;
}
}
class B {
void A s _compute() {
ref() .s_value.op(f(...));
super.A_s_compute() ;
}
}

Figure 5: One-phase joint evaluation of collection attribute s in class A.
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The evaluator code for the one-phase technique can be modified to detect loop-
ing behavior and report failure by simply adding a boolean instance variable to the
root class and use it in the method starting tree traversal as shown in Fig. 6.

class Program {
boolean A s _computed = false;
boolean A_s_computing = false; // new

void A_s_compute() {
if (A_s_computed) return;
if (A_s_computing)

throw new RuntimeException("..."); //new

A_s computing = true; //new
super.A_s.compute() ;
A s_computing = false; //new
A s computed = true;

}

}

Figure 6: Detecting dependencies leading to looping behavior in the one-phase
technique.

4.4 Two-phase joint evaluation

In order to avoid the inefficiency of the naive technique and to avoid the shortcom-
ings of the one-phase technique, we propose an alternative technique, two-phase
Jjoint evaluation.

Survey phase The first time any instance of the s attribute is demanded, a traver-
sal of the AST is triggered. During this traversal, contributors to all in-
stances of s are collected into contributor sets, one set for each instance of
s, and stored in an auxiliary attribute s_contributors, in class A. A
flag is set to indicate that this survey phase has been performed.

Combination phase To compute the value of an instance of s, the flag is first
checked to see if the survey phase has already been run. If not, this phase
is performed first. Then the combination phase is run: the attribute value is
computed by iterating over the elements in the corresponding s_contri-
butors set, and combining the contributions using the combination opera-
tion. The final value of the s instance is cached so that subsequent demands
for it can return the value directly.

For conditions attached to contributions we have two variants of the two-phase
algorithm: to evaluate the conditions during the survey phase, early condition eval-
uation, or to postpone these computations until the combination phase, late condi-
tion evaluation. In the rest of this paper we will call the first variant 2Ph-EC and
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the second variant 2Ph-LC. If conditions are evaluated during the survey phase,
and there is more than one when-clause, they will have to be checked again during
the combination phase in order to find the valid contributions.

An outline of the evaluator code for the two-phase scheme is given in Fig. 7.
As before, root is assumed to be an ordinary reference attribute referencing the
root node of the AST and Program is assumed to be the class of the root node.
As for the one-phase technique, it is first checked whether the demanded instance
has already been computed. If not, a method in the root node is called to perform
the survey phase. If the survey phase has already taken place, this method re-
turns immediately. Otherwise, a tree traversal is triggered collecting contributors
in appropriate sets. The evaluator method, s (), then combines its contributions.
This is realized by calling a method contributeTo for each member in the
contributor set. This method is called with the current non-final value of the in-
stance under computation as a parameter. In the contribution class, in this case B ,
contributeTo combines its contribution with the current value of s.

If conditions are attached to the contributions, then some additional code is
added. For the 2Ph-EC variant the collect_contributors_A_s method is
modified to check conditions before adding a node to the appropriate contributor
set. For both variants conditions must also be checked in the contributeTo_-
A__s method in the contributing class before combining a contribution with the
current, non-final value of the attribute under computation.

If the for each construct is used for expressing contributions, then the gen-
erated code of collect_contributors_A_s method will include an itera-
tion over the set ref. The add operation will be applied to contributor sets of
each node referenced by a member in this set.

Applicability of the two-phase techniques

Late condition evaluation. With respect to applicability, the 2Ph-L.C technique
is equivalent to the naive technique. I. e., it will fail (loop) for a collection
attribute that is circularly defined but succeed otherwise. To see this, we
simply note that the only order of computation enforced by this technique is
that it evaluates references in all potential contributors (in the survey phase)
before any collection attribute instance. This does not introduce any ad-
ditional algorithmic dependencies since any collection attribute instance is
inherently dependent on these reference attributes.

If the reference attributes introduce dependencies between instances of the
collection attribute, then the algorithm outlined in Fig.7 will end up in a
loop. Assume that an instance s1 is demanded. During the survey phase all
reference attributes are evaluated. Assume that one of them, say ref1, de-
pends on another instance s2. s2 is then demanded and the survey phase is
re-entered. During this phase, the reference re £1 will be demanded again.
Since it depends on s2 there will be a looping behavior. The code can be
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class A {
boolean s_computed = false;
T s_value;
HashSet s_contributors = new HashSet () ;

public T s() {
if (s_computed)
return s_value;
root () .collect_contributors_A s();
s_value = init_value;
for (Iterator iter = s_contributors.iterator(); iter.hasNext(); ) {
ASTNode contributor = (ASTNode)iter.next();
contributor.contributeTo A s(s_value) ;
}
return s_value;
}
}
class Program {
boolean has collected contributors_A s = false;
void collect_contributors_A s() {
if (has_collected contributors_A s) return;
super.collect_contributors A s();
has_collected contributors_A s = true;
}
}
class ASTNode {
void collect_contributors_A s() {
for(int i = 0; 1 < getNumChild(); i++)
getChild(i) .collect_contributors A s();
}
void contributeTo A s(T c) {
}
}
class B {
void collect_contributors A s() {
ref() .s_contributors.add (this) ;
super.collect contributors A s();
}
void contributeTo A s(T c) {
c.op(f(...));
}

Figure 7: Two-phase evaluation of collection attribute s in class A.
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exended to detect looping behavior in the same way as described before for
the naive technique.

Looping behavior caused by the reference attributes can also be captured
earlier, as soon as the survey phase is re-entered. This is accomplished by
extending the code of the survey phase as shown in Fig. 8.

class Program {
boolean has_collected contributors A s = false;
boolean collecting contributors_A s = false; // new
void collect_contributors A s() {
if (has collected contributors A s) return;
if (collecting contributors_A s)
throw new RuntimeException("..."); // new
collecting_contributors A s = true; // new
super.collect contributors A s();
collecting contributors_A s = false; //new
has_collected contributors A s = true;

Figure 8: Detecting looping behavior during the survey phase of the two-phase
technique.

When the 2Ph-LC technique reports failure, an algorithm capable of han-
dling circular dependencies must instead be used.

Early condition evaluation. The 2Ph-EC algorithm is less general than the 2Ph-
LC variant in that it will fail to evaluate certain collection attributes even if
they are not circularly defined. To see this, we observe that references as
well as conditions attached to contributions are evaluated for all potential
contributors during the first (survey) phase. This adds algorithmic depen-
dencies of collection attribute instances on the conditions of all potential
contributors. There will therefore be looping behavior whenever any of
these conditions are dependent on any instance of the collection attribute
under computation. Assume, for example, that an instance s1 is demanded.
During the survey phase all conditions are evaluated. Assume that one of
them depends on another instance s2 of the collection attribute. s2 is
then demanded and the survey phase is re-entered. During this phase, the
same conditions will be evaluated and therefore s2 will be demanded again.
Hence, such collection attributes cannot be evaluated by the 2Ph-EC tech-
nique.

The code can be modified to detect looping behavior in the same manner as
for the 2Ph-LC variant.
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Failure during the combination phase of the 2Ph-EC technique happens only
when dependencies are actually circular. In this case an algorithm capable
of handling circular dependencies must be used. Failure during the sur-
vey phase can either be caused by algorithmic dependencies (introduced by
the conditions) or inherent dependencies (introduced by the reference at-
tributes). In the former case, the 2Ph-LC algorithm can be used instead. If,
on the other hand, the survey phase fails because of inherent dependencies
through the reference attributes, then dependencies are actually circular and
an algorithm for circular collection attributes must be used.

4.5 Additional variants

Grouped joint evaluation The two-phase techniques and the one-phase technique

deviate from pure demand evaluation. When, for the first time, an instance
is demanded they both perform computations that might not be needed in
the future. In the two-phase techniques the survey phase prepares for later
demands of other instances by collecting contributor sets. The one-phase
technique fully computes all instances. Efficiency can, in some cases, be
improved by grouping two or more collection attributes. In the two-phase
techniques the survey phase can be modified to collect contributors for all
instances of all attributes in the same group in one tree traversal. The
one-phase technique can be modified to fully compute all instances of the
grouped attributes when for the first time an instance of any one of them is
demanded. Detailed code is omitted.

In JastAdd the user can require grouped evaluation of collection attributes
by annotating their declarations as in the following example:

coll @QCollectionGroup("GroupOne") Set A.s() with add;
coll @QCollectionGroup("GroupOne") Set B.t () with addAll;

CollectionGroup (...) isused to indicate that grouped evaluation is
required. Groups are named by the string parameter and attributes annotated
with the same name belong to the same group.

Grouped evaluation combined with the one-phase technique fails if there
are dependencies between any instances of attributes in the group caused by
references, conditions or contributions.

Grouped evaluation combined with the 2Ph-LC technique works well as
long as the references used in potential contributors for attributes in the
group are not dependent on any instance of an attribute in the group. If in-
stead a combination with the 2Ph-EC technique is used, failure occurs when
these references or conditions in potential contributors for attributes in the
group are dependent on any instance in the group. In both cases the survey
phase is re-entered which causes looping behavior. Failure can be detected
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and reported by the evaluator in a similar manner as for the un-grouped
techniques described above.

Pruned traversal Through a simple analysis of the abstract grammar, it can be
determined which AST types can be derived from a given AST type T. If
none of these AST types contain contributions for a given collection attribute
c, then the AST traversal for c can be pruned at T nodes, thereby speeding
up the traversal. However, for Java, such prunings cannot be expected to be
other than marginal due to the very recursive structure of the language. For
example, a Java expression can derive an anonymous class, which means
that most AST types can be derived from expressions.

4.6 Summary

We have presented a series of algorithms for evaluation of non-circular collection
attributes differing with respect to applicability. The following algorithms have
been implemented in JastAdd: Naive, 2Ph-LC, 2Ph-EC and 1Ph-Joint. We have
also implemented grouped evaluation in combination with the 2Ph and and the
1Ph-Joint techniques. Pruned traversal is not implemented.

With respect to applicability the Naive and the 2Ph-LC algorithms are equiva-
lent. They work as long as there are no circular dependencies between collection
attribute instances. The 2Ph-EC is less general in that it fails whenever the 2Ph-LC
algorithm fails and also if there are dependencies between instances of the collec-
tion attribute introduced by the conditions attached to contributions in potential
contributors. The 1Ph-Joint technique is the least general as it fails whenever the
2Ph-EC fails and also if valid contributions introduce interdependencies.

Whenever the 2Ph-LC technique fails for a certain collection attribute ¢ then
the grouped alternative of the algorithm will fail for a group containing c. This
happens when any of the references used to point out nodes for contributions is de-
pendent on another instance of the same attribute. The grouped alternative will also
fail if such a reference is dependent on an instance of another collection attribute
in the group. Therefore the 2Ph-LC is more general than the 2Ph-LC-Grouped.
Using similar arguments we can also deduce that the 2Ph-EC is more general than
the 2Ph-EC-Grouped and that the 1Ph-Joint is more general than the 1Ph-Joint-
Grouped.

In JastAdd, the user can for each individual attribute, choose which algorithm
to use. This is done through annotations of declarations for collection attributes.
We have chosen the 2Ph-LC algorithm as the default method. It will be used
for collection attributes for which declarations are not annotated. The reason for
choosing this algorithm is that it is general, working as long as there are no circular
dependencies. It is also more efficient than the equally general naive algorithm,
which will be shown in Section 8.
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5 Application Examples for non-circular Collec-
tion Attributes

In this section we will discuss some application examples for which part of the
specification can be naturally expressed using non-circular collection attributes.

5.1 Devirtualization

For object-oriented languages it is possible to improve execution speed by apply-
ing devirtualization techniques. The aim is to determine statically which virtual
method calls can be replaced by static method calls. There are many different
techniques for devirtualization based on analyzing the class hierarchy and the call
graph of the program, e.g., [7,23].

The simplest condition for devirtualization is that a class has no subclasses.
If for a methodcall a.m () the declared type of a is a class A with this property,
then m () can be devirtualized. In Fig.9 this simple criterion is checked. It is
assumed that the synthesized attribute superClasses is specified as the set of
all superclasses for a class declaration. The cross-referencing collection attribute
subClasses models the set of subclasses. The attribute ZSdevirt (Zero Sub-
classes devirtualization), declared in class VirtualMethodAccess uses the
collection attribute to check if the target of the method access is a method belong-
ing to a class with no subclasses. The specification of this attribute uses values of
some other attributes: isQualified, qualifier and hostType in order to
establish the formal type of the receiver of the method access.

It is also possible to devirtualize a method access a.m () if A has subclasses
but m () is not overridden in any of them. In Fig. 10 part of a devirtualization
analysis based on this criteria is specified. It is assumed that the synthesized at-
tribute overrides for a method declaration is specified to contain references to
all method declarations that it overrides. A collection attribute overriders is
then simple to model as a collection attribute cross-referencing overrides. In
VirtualMethodAccess the critera for devirtualization is modelled as a syn-
thesized attribute NOMdevirt (No Overriding Methods devirtualization) check-
ing if the target of the access is overridden in subclasses below A.

Devirtualization can be improved if reachability is taken into account as in the
RTA (Rapid Type Analysis) algorithm [2]. This algorithm uses information about
global class instantiation and class hierarchy. In order to decide whether a class
is instantiated we need to find new expressions inside reachable methods. The
property for a method of being reachable can be defined in a recursive manner: the
main method is reachable and other methods are reachable if any of their callers
are reachable. This can be modelled as a circular attribute reachable using
an auxiliary attribute callers for its specification. The callers attribute is
naturally expressed as a collection attribute cross-referencing an ordinary attribute
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class ClassDecl {
syn HashSet superClasses() = ...;

coll HashSet subClasses() [new HashSet()] with add;

}

ClassDecl contributes this
to ClassDecl.subClasses()
for each superClasses();

class VirtualMethodAccess {
syn boolean ZSdevirt() {
TypeDecl F = isQualified()
? qualifier() .type()

: hostType(); // Formal type of receiver

if (F instanceof ClassDecl)

return ((ClassDecl) F) .subclasses().size()==0;

else return false;
}
}

Figure 9: Checking the zero subclasses criterion for devirtualization

class MethodDecl {
syn HashSet overrides() = ...;

coll HashSet overriders() [new HashSet()] with add;

}

MethodDecl contributes this
to MethodDecl.overriders()
for each overrides();

class VirtualMethodAccess {
syn boolean NOMdevirt () {
TypeDecl F = isQualified()
? qualifier() .type()
: hostType(); // Formal type of receiver

for (Iterator itr=decl() .overriders() .iterator(); itr.hasNext();)

MethodDecl mo = (MethodDecl) itr.next();
if (mo.hostType() .instanceOf (F) )
return false;
}
return true;
}
}

{

Figure 10: Checking the no overriding methods criterion for devirtualization.
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calls modelling the set of methods called from inside a method body. This is
shown in Fig. 11.

class MethodDecl {
syn HashSet calls() = ...;
coll HashSet MethodDecl.callers [new HashSet ()] with add;

syn boolean reachable() circular [false] {
if (name() .equals("main")) return true;
for (Iterator itr = callers() .iterator(); itr.hasNext();) {
MethodDecl m = (MethodDecl) itr.next();
if (m.reachable()) return true;

}
return false;

}
}

MethodDecl contributes this
to MethodDecl.callers()
for each calls();

Figure 11: Collection attribute used in reachability computation.

5.2 Metrics

To evaluate the use of collection attributes in a real-life application we imple-
mented Chidamber and Kemerer’s set of object-oriented metrics [6]. These met-
rics include structural properties such as the height of the inheritance tree and the
number of subclasses, but also more global properties such as the coupling be-
tween classes. Internal properties such as the lack of cohesion of methods within
a class and the number of weighted methods per class are also computed.

The metrics are implemented as a modular extension to our Java 1.4 checker
and consists of 7 collection attributes, 17 contribution declarations, and 12 syn-
thesized utility attributes. The entire specification, including code for printing the
metrics for each type, is 165 lines of code excluding comments, and is available
on the JastAdd web site [1]. We compare our implementation to the program
ckjm [22] which provides an alternative implementation for the same set of met-
rics but that is using a set of visitors on top of the Byte Code Engineering Library
(BCEL). That implementation is also completely modular but more than twice as
large, being 380 lines of code without comments. The collection attribute based
implementation has a number of improvements compared to the visitor based so-
lution. The implementation is not as tangled, i.e., each attribute computes a single
metric rather than interleaving multiple ones within a visitor. Another improve-
ment is that each metric is implemented by a set of equations in a single module
rather than being scattered across multiple visitors. The declarative attributes also
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alleviates the programmer from the manual scheduling of visitor passes, and the
temporary storage of intermediate state.

6 Circular Collection Attributes

In [20] we showed how the combined formalism CRAG (Circular Reference At-
tributed Grammar) supporting reference attributes and circularly defined attributes
enhances the expressiveness of AGs. Having introduced collection attributes it is
therefore natural also to explore the possibility to handle collection attributes in-
volved in circular dependencies. In this section we will discuss this extension and
illustrate with an example of its use.

6.1 Circular specifications in Attribute Grammars

In traditional AGs circular dependencies are considered an error. The requirement
for non-circularity is, however, a sufficient but not necessary condition to guaran-
tee that the AG is well defined, i.e., that all semantic rules can be satisfied. As
Farrow showed [11], it actually suffices that all attribute instances involved in cir-
cular dependencies have a fixed point that can be computed with a finite number
of iterations. Farrow showed that one way to ensure that this is possible for or-
dinary synthesized and inherited attributes is by requiring that the domains of the
circularly dependent attributes can be arranged in a lattice of finite height and that
all semantic functions are monotonic.

The requirement concerning lattices can be directly carried over to collec-
tion attributes. The requirement concerning the semantic functions of ordinary
attributes corresponds to a requirement of monotonicity for the composed appli-
cation of the combination operation to the contributions. If these requirements are
met, it is possible to evaluate collection attribute instances involved in cycles by
applying an iterative technique until a fixed point is reached.

In JastAdd, the user can state that a collection attribute might be involved in
cycles by simply adding the keyword circular to its declaration. The default-
value given in the declaration will then serve as the start value for iterations in
the generated evaluator code. Contributions to circular collection attributes are
expressed in the same manner as for non-circular ones.

6.2 Application Example

In this subsection we will give an example of an application involving recursive
circular specifications. First, a solution using ordinary circular attribute will be
presented. Then, we show how this specification becomes shorter and much more
concise when circular collection attributes are used.

Consider the problem of computing the nullable property and the first and fol-
low sets for nonterminals of a context free grammar. As is shown in [20] the
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definitions of all these are recursive with possible circularities. For example, a
nonterminal N is nullable if the empty string can be derived from it. Therefore it is
nullable if the empty string can be derived from the right-hand side of at least one
of its productions. A necessary condition is thus that all the nonterminals appear-
ing on the right-hand side of one of its productions are nullable. The definition
is recursive with possible circularities as N might be one of these nonterminals or
might be derivable from one of them.

The abstract grammar of a simple language for context-free grammars (CFGs)
is shown in Fig. 12. A context-free grammar (CFG) is here defined as a list of
Rules. A Rule corresponds to all productions for a certain nonterminal symbol
NDecl. Prod models the right-hand side of an individual production. Uses of
nonterminals, occurring in production right-hand sides, is modelled by NUse. As
shown in Fig. 13 the concrete grammar uses the symbol | to separate alternative
right-hand sides and the character € to denote the empty string. An example of a

CFG ::= Rulex;

Rule ::= NDecl Prodsx;
Prod ::= Symbolx;
abstract Symbol;

Terminal: Sympol ::= <TERMINAD>;
NUse: Symbol ::= <ID>;
NDecl ::= <ID>;

Figure 12: Abstract grammar for a simple language for context-free grammars.

CFG belonging to this language is found in Fig. 13, where capital letters are used
for nonterminals. The AST of this grammar is shown in Fig. 14.

<
[
X O
— a0

Figure 13: Example of a grammar belonging to the language of Fig. 12.

Specification using ordinary circular attributes

As shown in [20] the nullable property as well as the first and follow sets for a
context-free grammar can be modelled as circular attributes in an AG. For nul-
lable and first this is straightforward, more or less directly translating their recur-
sive definitions into equations. These specifications will not be shown here. For
follow, the specification is more complicated. The reason is that all places where a
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Prod

NUse Terminal Terminal NUse NUse NUse
Y a b X Y z

Figure 14: AST of the grammar in Fig. 13.
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nonterminal is used in productions contribute to its follow set and these places are
distributed all over the grammar.

The specification of follow presented here, using ordinary circular attributes,
assumes that the property nullable and the set first have been modelled and spec-
ified as circular attributes nullable and first for node class NDecl as was
shown in [20].

A specification of a circular attribute follow declared in class NDec1 relies
on retrieving all places in the grammar where a certain nonterminal is used. For
this reason an auxiliary attribute occurrences (String name) is declared
in class NDecl. It models the set of all NUse instances where the nonterminal is
used. Its specification is shown in Fig. 15. The specification relies on the value of
the auxiliary set-valued attribute findUses (String name) for the root node.
This auxiliary attribute is declared in ASTNode where its default specification
performs a tree traversal collecting uses from sub-trees. This default behavior is
overridden in class NUse. Here it is checked if the parameter matches the name
of the NUse instance. If this is the case, the instance is added to the set before the
tree traversal continues. For example, when all use sites for the nonterminal Y of
example CFG in Fig. 13 are needed, the value of the attribute findUses ("Y")
for the root node is demanded. The evaluation traverses the AST (see Fig. 14) and
collects all nodes of type NUse with the name "Y".

The follow set for a nonterminal A is defined as the set of all terminal sym-
bols that can immediately follow A in a derivation. For our CFG language as
defined in Fig. 12 this can be expressed as the collection of all terminals that dur-
ing derivations can follow a NUse named "A". Fig. 16 shows the core part of the
specification for the circular follow attribute of NDec1 based on this definition.
The value of follow is expressed as the union of all follow symbol sets for its
use sites.

The auxiliary circular attribute NUse . follow, used in Fig. 16, models the
set of all terminal symbols that can follow a particular use of a nonterminal. A
node of type NUse with the name A corresponds to A appearing in a production
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class NDecl {
syn HashSet occurrences(String name) =
root () .findUses (getID()) ;
}
class ASTNode {
syn HashSet findUses (String name) {
HashSet h = new HashSet();
for (int i=0; i<getNumChild() ;i++)
h.addAll (getChild(i) .findUses (name) ) ;
return h;
}
}
class NUse {
eq findUses (String name) {
HashSet h = new HashSet();
if (name.equals(getID()))
h.add(this) ;
h.addAll (super.findUses (name) ) ;
}
}

Figure 15: Finding all uses of a nonterminal.

class NDecl {
syn HashSet follow() circular [new HashSet()]{
HashSet h = new HashSet() ;
for (Iterator iter = occurrences() .iterator(); iter.hasNext();) {
NUse u = (NUse) iter.next();
h.addAll (u.follow());
}
return h;
}
}

Figure 16: Specification of follow using ordinary circular attributes.
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as:
B::=... 1| oAy |

Here o and ~ denote strings of terminal and nonterminal symbols. Assume that
v = $1S2...S wWhere s1, So... sy are single nonterminal or terminal symbols. The
value of follow for this use of A then includes the first set of s;. If s is nullable,
it also includes the first set of s5 and so on. Should all symbols of v be nullable,
then the follow set of A also includes the follow set of the nonterminal of the left-
hand side of the production, in this case B. This is modelled by the specification of
NUse.follow in Fig. 17.

The equation for follow in Fig. 17 uses the auxiliary attributes nullable-
Suffix and firstSuffix, also declared in class NUse. For a particular use
of a nonterminal as in the production

B:ii=... 1] oAy |

nullableSuffix models the property that the empty string can be derived
from the string . The attribute £irstSuffix models the set of terminals that
can start strings derived from ~.

The specification for circularly defined properties shown in this section does
not use collection attributes. In Section 2.2 we showed how non-circular cross-
referencing problems can be specified without collection attributes (see Fig. 1). It
is important to stress that these solutions use different approaches. For the circu-
lar attributes, shown in this section, we have introduced an auxiliary non-circular
attribute occurrences modelling the set of cross-references from use sites to
declaration sites. Its value is used to specify the circular attribute follow. In this
way iterations will cover only the elements of the occurrences set. It is also
possible to specify a solution for the circular case based on the solution shown
in Section 2.2. In this case, the occurrences attribute should be omitted. In-
stead, follow should be specified as an access to a circular attribute in the root
(corresponding to the attribute collectUses in Fig. 1). This attribute should be
specified to traverse the tree and collect the contributions from use sites. In this
way iterations will cover the complete AST. In a later section we will discuss per-
formance issues and show some experimental results. It will then become evident
that the solution shown in this section for the circular attribute follow is much
faster than a solution based on the ideas of Section 2.2.

Specification using circular collection attributes

Fig. 18 shows the declaration of follow in class NDecl as a circular collec-
tion attribute and its specification in class NUse. The contribution from NUse is
expressed using the same auxiliary attribute fol1low for class NUse as in the pre-
vious specification using an ordinary circular attribute, i.e., the full specification
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class NUse {
syn HashSet follow() circular [new HashSet()];
eq follow() {
HashSet h = new HashSet();
h.addAll (firstSuffix());
if (!'nullableSuffix()) return h;
h.addAll (enclosingRule() .getNDecl() .follow()) ;
return h;
}
inh boolean nullableSuffix();
inh HashSet firstSuffix();
inh Rule enclosingRule() ;
}

class Rule {
eq getProd(int index) .enclosingRule() = this;
}

class Prod {
eq getSymbol (int index) .nullableSuffix() {
for (int i=index+l; i< getNumSymbol(); i++)
if (!getSymbol (i) .nullable()) return false;
return true;
}
eq getSymbol (int index) .firstSuffix() {
HashSet h = new HashSet();
for (int i=index+l; i< getNumSymbol(); i++) {
h.addAll (getSymbol (i) .first());
if (!getSymbol (i) .nullable()) return h;
}

return h;

Figure 17: Auxiliary attributes for specifying follow.
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must also include the code of Fig. 17. However, using collection attributes, the so-
Iution no longer relies on explicitly finding all contributing sites. A specification
based on collection attributes thus include the code of figures 17 and 18 while a
solution based on non-collection attributes must include the code of figures 15, 16
and 17.

class NDecl {

coll HashSet follow() circular [new HashSet ()] with addAll;
}
class NUse

NUse contributes

follow()

to NDecl.follow()

for decl();

Figure 18: Specification of follow using circular collection attributes.

The specification of the follow set as a circular collection attribute is thus much
simpler and more concise than a specification using ordinary circular attributes and
demonstrates how collection attributes raise the abstraction level and the expres-
siveness of AGs.

7 Evaluation of Circular Collection Attributes

Evaluation algorithms that work well for circular collection attributes can be built
by combining the ideas for CRAGs as in [20] and the ideas for evaluating non-
circular collection attributes as described in the previous section. As a background,
we will therefore briefly describe the iterative technique used in CRAGs and then
show how this technique can be combined with the collection attribute algorithms
presented in a previous section.

7.1 Evaluation of ordinary circular attributes

Assume that we have declared and specified an ordinary synthesized circular at-
tribute of type T in a class A as follows:

class A {
syn T s circular [init_value()];
eqs = f(...);

}
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In Fig. 19 an outline of the evaluator code for s is shown. The algorithm makes
use of two global variables: IN_CIRCLE keeps track of if we are already inside
a cyclic evaluation phase. CHANGE is used to check if any changes of iterative
values of the attributes on the cycle have taken place during an iteration. The
expressions f (...) correspond to the semantic function for the attribute s. It thus
involves calls for evaluation of attributes on which s is dependent, some of which
will be in the same cycle as s. The code shows the basic algorithm for circular
attributes. Improvements of this algorithm are described in [20].

class A {

T s_value = init_value();
boolean s_computed = false;
boolean s _visited = false;
T s() {
if (s_computed) return s_value;
if ( ! IN_CIRCLE) ({
IN_CIRCLE = true;
s_visited = true;
do {
CHANGE = false;
Set new_s value = f(...);
if ( ! new_s_value.equals(s_value))
CHANGE = true;
s_value = new_s_value;
while (CHANGE);
s_visited = false;
s_computed = true;
IN_CIRCLE = false;
return s_value;
}
if (! s_visited ) {
s_visited = true;
T new_s value = f(..);
if ( ! new_s_value.equals(s_value))
CHANGE = true;
s_value = new_s_value;
s_visited = false;
return s_value;
}
return s_value;
}
}

—

Figure 19: Evaluation of circular attribute s in class A.
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7.2 Naive technique for Circular Collection Attributes

We first present a naive technique for evaluation of circular collection attributes.
This technique builds on the ideas of the naive technique for non-circular col-
lection attributes combined with the technique for ordinary circular attributes de-
scribed above. When an instance of a circular collection attribute is demanded a
tree traversal is triggered to look up and combine all its contributions. Traversal is
repeated until a fixed point has been reached. An outline of the evaluator code is
given in Fig. 20. Here s is assumed to be a circular collection attribute declared
and specified as follows:

class A{
coll T s() circular [init_value] with op;
}

B contributes
f(..)

to A.s()

for ref();

When an instance of s in a node n is demanded, it is checked whether an
iterative process has already been started. This could be the case if, for example,
s is used for defining another circular attribute, which could be either a collection
attribute or a non-collection attribute. A global flag IN_CIRCLE is used for this
purpose. If the flag is false, iterations are started and the flag is set to indicate
this. In each iteration a new value of s is computed by traversing the tree by
calling the method nextIteration with n as the parameter. The new and
old values are then compared and if they are not equal, the global flag CHANGE
is set. Iterations are continued until no changes appear. If an iterative process
has already been started when s is demanded there are two alternatives. If it is
the first time we demand s during an iteration (which is checked using the flag
s_visited), a new value is computed by next Iteration and returned. If,
instead, s is revisited during an iteration, its currently cached value is returned.
The default behavior of the method nextIteration in class ASTNode is to
perform a simple tree traversal. It is overridden in the contributing class B, where
a contribution is combined with the current value of s_new_ wvalue if the ref
attribute references the same node as the parameter.

The naive algorithm is a general method. It is always applicable when cycles
occur, provided that the necessary conditions for iterations to reach a fixed point
are fulfilled. It is the responsibility of the user to ensure that these conditions hold
as no such checks are performed by the evaluator code.

7.3 One-phase technique for Circular Collection Attributes

It is also possible to evaluate all instances of a circular collection attribute together
as in the corresponding technique for non-circular collection attributes. Using this
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class A {
boolean s visited = false;
boolean s_computed = false;
T s_value = init_value;
T new_s_value;

public T s() {
if (s_computed)

return s_value;

if (!IN_CIRCLE) {

}

IN_CIRCLE = true;

s_visited = true;

do {

CHANGE = false;

new_s_value = init_value;

root () .A_s_nextIteration(this);

if ( !'new_s_value.equals(s_value))
CHANGE = true;

s_value = new_s_value;

while (CHANGE) ;

s_visited = false;

s_computed = true;

IN_CIRCLE = false;

return s_value;

-

if(!s visited) {

}

s_visited = true;

T new_s_value = init_value;

root () .A_s_nextIteration(this);

if ( !new_s_value.equals(s_value))
CHANGE = true;

s_value = new_s_value;

s_visited = false;

return s_value;

return s_value;

}
}

class ASTNode {
void A s nextIteration(A n) {
for(int i = 0; i < getNumChild(); i++)

}
}

getChild(i) .A_s_nextIteration(n);

class B {
void A s nextIteration(A n) {
if(ref() == n)

n.new_s_value.op(f(...));

super.A s nextIteration(n);

}

Figure 20: Naive evaluation of circular collection attribute s in class A.
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technique, tree traversals will be repeated until there are no changes of the values of
any instance. We have, however, not implemented this algorithm in JastAdd. One
reason is that it may enforce evaluation of instances belonging to different strongly
connected components in the dependency graph. As was shown in [20] for circular
attributes it is desirable to iterate over different components in separate iteration
processes. Such components most probably require different number of iterations
to reach a fixed point. If two or more are iterated together, it will be necessary
to perform iterations for all of them until the component requiring the maximum
number of iterations has converged. Efficiency will thus deteriorate. For ordinary
circular attributes we have therefore introduced an optimization technique which in
some cases can detect different strongly connected components during iterations.
When a new component is entered, iterations of the previous one is suspended.
When the second component has been iterated, fixed point iteration in the first
component is resumed.

Assume that the one-phase technique is implemented by simply repeating tree
traversals until the fixed points for all instances involved have been reached. Then,
during traversal ordinary circular attributes may be demanded. The evaluator code
for such attributes involves code to detect separate components and to suspend it-
erations temporarily. It also includes code to detect if components that have been
suspended are incorrectly re-entered. This can happen if the AG author has forgot-
ten to declare a circularly defined attribute as circular, and it may cause incorrect
values to be returned if it is not detected. In the one-phase technique, however, we
must allow certain separate components to be evaluated together, namely those to
which the instances of the collection attribute under computation belong. Further
investigations are needed to find out how a robust one-phase technique, detecting
errors of the type mentioned, can be designed in combination with the optimization
technique for non-collection attributes.

We have tested the algorithm for cases where no interactions with ordinary
circular attributes take place. Results indicate that the efficiency of the one-phase
technique is inferior to the two-phase technique which will be described below.
This, of course, makes it less interesting to make an effort to design a robust one-
phase algorithm.

7.4 Two-phase technique for Circular Collection Attributes

This algorithm builds on the ideas of the two-phase joint evaluation technique used
for non-circular collection attributes. The survey phase is carried out as before
while the combination phase is iterated until a fixed point is reached. As for non-
circular attributes the algorithm has two variants. One evaluates conditions during
the survey phase and the other postpones these computations until the combination
phase. In Fig. 21 the evaluator code for the declaring class A is shown. Evaluator
code for the root class Program, the base class ASTNode and the declaring class
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B is identical with the code for these classes for the two-phase algorithm for non-
circular collection attributes as shown previously in Fig. 7.

Applicability of the two-phase circular algorithms

For both variants of the two-phase technique, the survey phase is carried out in a
non-iterative manner. As described before, in connection with the two-phase tech-
nique for non-circular collection attributes, dependencies between instances of the
collection attribute under computation appearing during this phase will cause a
looping behavior. For the 2Ph-LC variant this occurs when any of the reference at-
tributes used for giving contributions is dependent on an instance of the collection
attribute. In these cases one has to resort to the naive algorithm. Thus, the 2Ph-LC
algorithm for circular collection attributes is not equivalent to the naive technique
with respect to applicability as was the case for their non-circular counterparts.
For the 2Ph-EC variant, looping behavior also occurs if any of the conditions in-
troduces this type of dependency.

It is worth mentioning that, for un-grouped evaluation techniques, we have not
found any practical cases where circularities arise due to the reference attributes.
For practical use, we therefore think it is not likely that the faster 2Ph-LC needs to
be replaced by the general naive algorithm.

The evaluator code can be modified to detect and report failure during the
survey phase in the same manner as for the two-phase technique for non-circular
collection attributes, shown earlier.

8 Performance of Collection Attribute Algorithms

In this section, we first compare efficiency for solutions using ordinary attributes
with those using collection attributes. Then, in the following subsections the dif-
ferent evaluations schemes for collection attributes are compared for efficiency.

8.1 Comparing solutions using ordinary attributes with
those using collection attributes

In Section 2 we showed how an attribute, collecting the set of use sites for local
variables, could be specified using ordinary attributes. After describing evalua-
tion techniques in previous sections it should now be obviuos that this solution
emulates the naive technique for evaluation of collection attributes. We will there-
fore refer to the specification using ordinary attributes as an emulated collection
attribute solution.

As an extension to the front end of our JastAdd extensible Java compiler [9],
we have specified two cross-reference attributes: varUses which is similar to
the computation of uses in Section 3.2, but uses a condition in the contribution
to cover uses of variables only; and subClasses as shown in Section 5.1. To
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class A {
boolean s_visited = false;
boolean s_computed = false;
T s_value = init_value;
HashSet s_contributors = new HashSet () ;

public T s() {
if (s_computed)
return s _value;
root () .collect_contributors_A s();
if (!IN_CIRCLE) {
IN_CIRCLE = true;
s_visited = true;
do {
CHANGE = false;
T new_s_value = init_value;
combine s_contributions(new_s_value) ;
if ( !new_s value.equals(s_value))
CHANGE = true;
s_value = new_s_value;
} while (CHANGE);
s_visited = false;
IN_CIRCLE = false;
return s_value;
}
if(!s visited) {
s_visited = true;
T new_s_value = init_value;
combine_s contributions (new_s_value) ;
if ( !new_s_value.equals(s_value))
CHANGE = true;
s_value = new_s_value;
s_visited = false;
return s_value;

}
return s_value;

}

private T combine_s_contributions(T c) {
for (Tterator iter = s_contributors.iterator(); iter.hasNext(); ) {
ASTNode contributor = (ASTNode) iter.next();
contributor.contributeTo A s(c);
}
return c;
}
}

Figure 21: Two-phase evaluation of circular collection attribute s in class A.
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measure performance, we have run a number of Java programs in this extended
front end. Table 1 shows the results for demanding all instances of varUses, and
Table 2, the same for subClasses.

The tests have been run on three sample Java programs. The first one is a
typical student program (stud) with about 750 lines of code. The second program
is an artificial test program (art test) of 15k lines specially constructed to test a case
with several contributions for each collection attribute instance. The third program
is the source code for the javac compiler which comprises about 36k lines.

Time is measured in milliseconds and is given for the following different eval-
uation alternatives: Emulated collection attributes (Emul attrs), naive algorithm
(Naive alg), two-phase joint evaluation with late evaluation of conditions (2Ph-
LC) and one-phase joint evaluation (1Ph).

For each test, the following information concerning the size is given: the num-
ber of lines of Java code in the program (lines), the number of collection attribute
instances (coll inst), the total number of potential contributors for all instances of
the collection attributes, i.e., the number of instances of the contributing node class
(contr inst) and the number of valid contributions (valid contr), i.e., the number of
contributions for which the attached condition, if any, is true. Note that the number
of valid contributions can be greater than the number of contributing nodes when
there are for-each clauses or when-clauses in the contributions.

Improvement factors (Impr factor) are given for the emulated algorithm versus
the naive algorithm and for the naive algorithm versus the 2Ph-LC algorithm.

Table 1: Computation of varUses

Size Time (ms) Impr factor
Pro- lines coll contr appl Emul Naive 2Ph- 1Ph Emul/ Naive/
gram inst inst contr attrs alg LC Naive 2Ph-LC
stud 750 73 337 184 4100 1050 50 23 3.9 21
art test 15000 30 14565 14565 3100 730 135 55 42 5.4
javac 36500 1969 | 29180 6464 675000 165000 210 215 4.1 786
Table 2: Computation of subClasses
Size Time (ms) Impr factor
Pro- lines coll contr appl Emul Naive 2Ph- 1Ph Emul/ Naive/
gram inst inst contr attrs alg LC Naive 2Ph-LC
stud 750 8 8 0 550 160 35 30 3.4 4.6
art test 15000 77 77 126 6300 1600 60 50 3.9 27
javac 36500 180 180 153 110000 15000 200 220 7.3 75

As is evident from the execution times given in the tables, the naive tech-
nique substantially improves the performance as compared to the emulated solu-
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tion, speeding up evaluation by a factor of 3-7 for the given tests. The main reason
being that the synthesized and inherited attributes in the latter specification must
use declarative specifications of partial results, whereas the generated code for the
naive algorithm can represent partial results as variables that are updated during
the traversal. Also, the naive technique for collection attributes is outperformed by
the alternative techniques. This will be further discussed and motivated in the next
section.

8.2 Comparing techniques for non-circular collection at-
tributes

It will, in general, not be possible to state that a certain algorithm for evaluating
collection attributes is always faster than another algorithm. Some applications
may, for example, not require all instances of an attribute to be evaluated while
others do. In the former case an algorithm using a pure demand-driven technique
might be the fastest while in the latter case an algorithm deviating from pure de-
mand evaluation might be more efficient. When discussing individual algorithms
and variants of algorithms below, we will therefore limit the description to re-
sults obtained for practical applications. In some cases we will also briefly discuss
performance for extreme cases, for example when only a single instance of a col-
lection attribute is needed .

Naive versus one-phase techniques. In the naive technique, a complete tree traver-

sal is performed for each demanded instance of a collection attribute. It is
a pure demand-driven technique as nothing is computed until it is needed.
The one-phase technique, on the other hand, performs only one tree traversal
during which all instances are computed and cached. These computations
are carried out when, for the first time, an instance of the collection attribute
is needed. The one-phase technique is thus not purely demand driven. As a
consequence, difference in efficiency between the two techniques depends
on how many instances of the attribute are actually needed.

In many applications only o few instances are needed. But since traversal
cost dominates, the one-phase technique will be faster as soon as a few in-
stances are demanded. The experiments shown in Tables 1 and 2, where all
instances are demanded, verify this.

For an extreme case, when only one instance is needed, the naive technique
is the fastest. Both algorithms perform one tree traversal in this case. The
one-phase technique, however, performs many unnecessary computations
during this traversal.

Two-phase techniques versus the naive technique. The two-phase technique is
not purely demand driven. When, for the first time, an instance is demanded
it also prepares for subsequent computations of other instances in its first
phase.
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If all n instances are demanded, the naive technique performs n tree traver-
sals while the two-phase techniques traverses the tree only once. If n is
sufficiently large, the two-phase techniques therefore outperforms the naive
technique, which is verified by the results in Tables 1 and 2.

Clearly, if only one instance is needed, then the two-phase algorithm, (es-
pecially its 2Ph-EC variant) performs unnecessary computations during the
first phase and will therefore be slower than the naive technique.

2Ph-LC versus 2Ph-EC. First, consider each of the two phases separately:

e When there are conditions, it is reasonable to expect the survey phase
of the 2Ph-EC variant to be slower than that of 2Ph-LC. If there are
no conditions the survey phase of both variants are equivalent. Thus,
the survey phase of the 2Ph-EC is never faster than that of the 2Ph-LC
variant.

e During the second phase, the value of an instance is computed by iter-
ating over the contributor set. If the 2Ph-EC variant is used the contrib-
utor sets will always be smaller than or equal to those of the 2Ph-LC
variant. The second phase of the 2Ph-EC technique will therefore al-
ways be faster than or equally fast as the corresponding phase of the
2Ph-LC technique.

To summarize, it is not possible to generally state which of the two vari-
ants is the fastest. For cases where the first phase of the 2Ph-EC variant is
considerably slower than that of the 2Ph-LC while their second phases are
equally fast, the 2Ph-L.C variant is the most efficient. On the other hand, for
cases where conditions are simple to evaluate and are extremely filtering, the
2Ph-EC technique can be expected to be the fastest since its second phase
will iterate over much smaller sets and thereby perform significantly fewer
method calls.

We have measured the two variants, and found the differences in execution
times to be very marginal.

Two-phase versus one-phase technique. If all instances are demanded, then both
variants perform one tree traversal and compute all conditions and all valid
contributions. In addition, the two-phase algorithms compute auxiliary sets
of contributors and iterate over these. It might therefore be expected that
the one-phase algorithm is somewhat faster in this case. However, for large
ASTs the tree traversal dominates the execution time and the additional work
carried out by the two-phase techniques becomes insignificant. Actual ex-
ecution times can then be due to details in the implementation of the algo-
rithms. For the examples shown in Tables 1 and 2, where all instances are
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demanded, the one-phase algorithm is the fastest for the two smallest pro-
grams while the two-phase technique seems to be a little faster for the largest
of the programs.

If only one of several instances is needed, then clearly the one-phase joint
technique performs many unnecessary computations as all attribute instances
are fully evaluated.

The two-phase technique will remain the most efficient as long as suffi-
ciently few instances of a collection attribute are demanded. A reason why
instances can be un-demanded is that for some analysis tasks only instances
appearing in certain contexts are of interest. This is the case, for example,
in devirtualization analysis.

Table 3 shows results for a very simple devirtualization analysis. It checks
the two simple conditions for possible devirtualization described in Sec-
tion 5.1 (Zero subclasses and No overriding methods). The specification
involves two collection attributes modelling the set of subclasses for a class
and the set of overriders of a method. As indicated in the table, only a sub-
set of these attribute instances are demanded. If a method is never called or
if it only appears in static method calls, the value of its collection attribute
instance is not needed. As a consequence, the 2Ph-LC is somewhat faster in

this case.
Table 3: Devirtualization computations
Size Time (ms)
Coll attr instances Demanded instances 2Ph | 1Ph
subClasses | overriders | subClasses | overriders | LC
[ 645 [ 6769 ] 130 [ 1219 [ 700 [ 760 |

Grouped versus ungrouped techniques. We have implemented grouped variants
for both the two-phase and the one-phase joint technique.

When there are several attribute instances and all or a majority are de-
manded, the grouped variants are faster. The reason being that only one sin-
gle tree traversal will be performed during evaluation while the ungrouped
variants perform one traversal for each member of the group.

We have performed measurements on our implementation of the Chidamber
and Khemerer metrics, described in Section 5.2. Since these are defined
using seven different collection attributes, this gives the opportunity to mea-
sure grouped evaluation, i.e., evaluating several different collection attributes
jointly.
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As a sample application to compute the metrics on, we have used the source
code of the Jigsaw web server. Jigsaw is the W3C’s web server platform,
consisting of more than 100k lines of Java code excluding comments.

We have performed one suite of tests computing metrics for all types in the
Jigsaw application, and another suite of tests for only the types that are in
packages starting with org.w3c.www. While this subset of types accounts
for roughly a fifth of the source code, all source code for Jigsaw is needed
to perform the computations, since some of the metrics take contributions
from types in other Jigsaw packages.

This allows us to evaluate whether we can exploit the demand driven evalu-
ation of the collection attributes for this particular application: For the first
suite, all collection attribute instances are demanded. For the org.w3c.www
case, only a subset of the instances are demanded.

Table 4 shows the results of our experiments for different evaluation algo-
rithms. We see that the one-phase algorithm (1Ph) is somewhat faster than
the two-phase algorithm (2Ph-LC), even in the org.w3c.www case when not
all collection attribute instances are demanded. The number of demanded
instances is thus not small enough for the two-phase algorithm to get an ad-
vantage. The contributions are actually all very simple, typically adding one
to a counter or adding a reference to a set. The main execution cost is thus
related to AST traversal.

The times in Table 4 are in milliseconds and improvement factor (Impr fac-
tor) is the quota between the execution times for ungrouped and grouped
evaluation. Times include only the execution time for computing the met-
rics. The entire analysis also includes lexing, parsing, AST building, and
error checking, which adds another 12 seconds to the overall analysis time.
It is somewhat unfair to compare this result to ckjm [22], which takes 3.4
seconds, since it processes bytecode which requires much less static analy-
sis, e.g., all names are bound beforehand. Processing source will therefore
always be more expensive than bytecode, but we still find the performance
perfectly reasonable for a fairly large project, and we notice that for this
particular application the bottleneck is not the collection attributes.

Table 4: Metrics computation

Time (ms) Impr factor Time (ms) Impr factor
Jigsaw 1Ph 1Ph- 1Ph/ 2Ph- | 2Ph- 2Ph/
types Grp 1Ph-Grp LC Grp | 2Ph-LC-Grp
all 2207 | 1535 14 2585 | 1948 1.3
org.w3c.www | 1320 693 1.9 1639 | 1002 1.6
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8.3 Comparing techniques for circular collection attributes

We have implemented two algorithms for evaluation of circular collection at-
tributes, the naive technique and the two-phase technique. As for the non-circular
case the latter has two variants, one where conditions are evaluated during the first
phase and one where these computations are postponed until the second phase.

Naive versus two-phase techniques. It is reasonable to assume that the iterative
process dominates the execution time of the algorithms. In most cases, the
number of contributing nodes are significantly smaller than the number of
nodes of the AST. Iterations will then cover smaller sets in the two-phase al-
gorithms than in the naive algorithm. The two-phase algorithm can therefore
be expected to be the fastest.

2Ph-LC versus 2Ph-EC. Again we will assume that the iterative process domi-
nates execution times. In the EC algorithm, the contributor sets are always
smaller than or equal to the corresponding sets in the LC variant. Iterations
will cover the elements in these sets. Therefore the LC variant will be less
efficient or equally efficient as the EC variant. The latter case occurs when
contributor sets are of equal size for both methods and this will be the case
when there are no conditions attached to contributions or when all such con-
ditions evaluate to true.

We have compared different solutions for computation of the follow set for
context-free grammars (see Section 6). Table 5 shows execution times for the
2Ph-LC and the naive techniques used to compute the follow sets for the Java
grammar.

For comparison, we also show results for three solutions using ordinary circu-
lar synthesized attributes.

Emul-naive specifies the fol1low attribute through a tree traversal during which
contributions to follow sets are collected. It is based on the emulated tech-
nique used in Section 2.2. The evaluator will in this case perform iterations
over the entire AST.

Emul-improved1 is the solution shown in Section 6. It uses an auxiliary non-
circular attribute occurrences to model the cross-reference sets contain-
ing references from nonterminal use sites to their corresponding declaration
sites. The circular attribute is specified as the union of the follow sets for all
elements in occurrences. As a consequence, iterations will only include
contributing nodes.

Emul-improved2 is the one used in [20]. It uses the same technique as Emul-
improved1, but tree traversal is expressed in an imperative manner as out-
lined in Fig.22. Here collectUses (HashSet h, String name)
is an ordinary Java method declared in class ASTNode. Its default behavior,
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performing a tree traversal, is overridden in class NUse where a use instance
adds itself to h if its name matches the parameter name. By using impera-
tive code in this way (which is allowed in JastAdd) there is no longer a need
to expose the partial collections of use sites as attributes and to represent
them as separate objects. Letting equations use imperative code might, in
general, be unsafe. However, in this case (Fig. 22) the usage of imperative
code is safe since the code affects only local data inside the equation, i.e., it
has no externally visible side-effects.

class NDecl {
syn HashSet occurrences(String name) =
root () .findUses (name) ;
}
class CFG {
syn HashSet findUses(String name) {
HashSet h = new HashSet() ;
collectUses (h,name) ;
return h;
}
}
class ASTNode {
protected void collectUses(HashSet h, String name) {
for (int i=0; i<getNumChild();i++)
getChild(i) .collectUses (h,name) ;
}
}
class NUse {
protected void collectUses (HashSet h, String name) {
if (name.equals(getID()))
h.add (this) ;
super.collectUses (h,name) ;
}
}

Figure 22: Finding all uses of a nonterminal using an ordinary Java method.

The Emul-naive and the Emul-improved1 solutions are outperformed by solu-
tions using collection attributes. When comparing the Emul-improvedl with the
naive technique for collection attribute this might be surprising, since the latter
performs iterations the entire AST while the former iterates over smaller sets. The
explanation is that the declarative approach in Emul-improvedl makes it neces-
sary to represent partial sets as separate objects. The generated evaluator code for
the naive technique, on the other hand, uses ordinary Java methods to update sets
during tree traversals.

The Emul-improved2 specification is, however, faster than the naive algorithm
for collection attributes. The reason is that it does not need to represent partial
sets by separate objects. This, together with the fact that it iterates over smaller
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sets than the naive technique for collection attributes, explains the result. Also,
Emul-improved?2 solution is only marginally slower than the 2Ph-LC algorithm.
The experiment thus indicates that circular collection attributes give modest per-
formance improvement in comparison with solutions based on non-collection at-
tributes when parts of their specification are realized by ordinary methods. Their
main advantage in these cases, is that solutions using collection attributes yield
much simpler specifications.

Solutions involving circular set-valued attributes are particularly sensitive to
choice of data structure. The reason is that many set operations are performed dur-
ing iterations. In Table 5 we show execution times for two alternative set represen-
tations: HashSet from the java.util class library and the more efficient BitSet
which is based on bit vectors. As is evident from the table, a more efficient data
structure results in substantially shorter execution times for all alternative solu-
tions.

Table 5: Circular collection attributes

Size Time (ms)
Data Coll | Contr | Emul- Emul- Emul- Naive | 2Ph-
structure | inst inst naive improvedl | improved2 LC
HashSet 155 280 22500 4900 320 480 270
BitSet 155 280 13500 2200 170 270 70

8.4 Choice of algorithm

The algorithms presented for non-circular and circular collection attributes differs
with respect to applicability as was pointed out in Section 4.6 and 6 and with
respect to performance as described earlier in this section.

JastAdd allows the user to choose algorithm for individual attributes or groups
of attributes by annotating their declarations. If no annotation is given, the 2Ph-
LC algorithm is used for non-circularly declared attributes and its corresponding
fixed-point iterating variant for attributes declared as circular.

Choice of algorithm must first and foremost be based on applicability. If one
algorithm works well for a certain application, then another less general algorithm
might be tried in order to speed up computations. For example, if no dependencies
exist between instances of a collection attribute and if all instances are expected
to be demanded during computations, then the 1Ph-Joint is a good choice. The
grouped variant might speed up computations further. Should there be any inter-
dependencies between instances in the group, the evaluator will report this.
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9 Related Work

Restricted forms of collection attributes were introduced by Knuth [18] who al-
lowed global sets in the start symbol, and by Kaiser [15] and Beshers [3] who al-
lowed collection attributes associated with subtrees. Hedin introduced general col-
lection attributes with contributions via reference attributes, but with partly manual
implementation techniques [12].

The collection attributes as presented in this paper were introduced by Boyland
in his PhD-thesis, [4]. His APS system also supports circular collection attributes.

The focus of Boyland’s thesis is on the attribute specification mechanisms and
how they can be applied. There is only a brief sketch of the implementation, and
no performance results are reported. Just like JastAdd, the APS system uses a
demand-driven evaluation technique. The APS technique for evaluating collec-
tion attributes is based on a concept called guards, i.e., artificial attributes that are
added by the APS compiler. Consider a collection attribute ¢ in node type N. Each
instance of ¢ is made dependent on a guard, and the guard is in turn made depen-
dent on all the reference expressions of type N. Each instance of c is evaluated
on demand, but not until all reference expressions of type N are evaluated. The
implementation sketch does not give the details of how this is done, but the effect
seems similar to our two-phase algorithm.

In his later work on collection attributes, e.g., [5], Boyland investigates static
evaluation algorithms and incremental versions of them. In this work, circular
dependencies are no longer supported, and the evaluation technique is based on
static analysis of the grammar rather than demand evaluation. This work focuses
on theory and contains no reports on practical applications or performance results.

Silver [24] is a recent AG system supporting collection attributes. It supports
several extensions to traditional AGs such as higher-order attributes, forwarding
and pattern matching. There is, however, no support for circular attributes. In Sil-
ver, attributes are evaluated by translating the AG specifications into Haskell. The
system is modular, consisting of a core attribute grammar language which serves as
the host language for specifying extensions. Collection attributes have been imple-
mented as one such language extension. The work focuses on the composability of
language constructs and the application of Silver to extensible and domain-specific
languages. No performance results or specific evaluation algorithms are reported.

10 Conclusions

We have shown how cross-reference-like properties can be specified very concisely
using collection attributes. We have presented several evaluation algorithms, and
found that the joint evaluation and two-phase algorithms work very well for large
practical applications. Our implementation of the Chidamber and Kemerer metrics
increased the compilation time with only 1-2 seconds for Java programs of 100 k
lines of code. As shown by our smaller examples, the naive algorithm is several
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orders of magnitude slower. Emulation, using ordinary inherited and synthesized
attributes, is much slower still.

We have presented a series of variants on joint evaluation algorithms. The
2Ph-LC variant is a general algorithm and can handle all non-circular collection
attributes. It is used by default in the JastAdd system. The other variants: 1Ph
and 2Ph-EC, can be faster for some applications, but they are not completely gen-
eral: contrived non-circular examples can be constructed that these algorithms
cannot handle. For our example applications, the 2Ph-EC variant was only very
marginally faster than the 2Ph-LC algorithm. The 1Ph variant was marginally
slower on some examples and marginally faster on others. These variants can be
selected by annotating individual collection declarations.

Using grouped joint evaluation, performance improved by a factor of between
1.3 and 1.9 on the metrics application, depending on source program and on algo-
rithm variant. However, grouping cannot be done automatically: the user has to
explicitly annotate the collection attribute declarations with the desired group.

We have also extended the algorithms to circular variants that can handle col-
lection attributes explicitly declared as circular. The 2Ph-LC circular algorithm
is used as the default. On our example application in grammar flow analysis, the
use of circular collection attributes gave a much simpler specification than the
corresponding non-collection attribute solution, without leading to decreased per-
formance.
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