
Extensible Compiler Construction

Torbjörn Ekman

Doctoral dissertation, 2006

Department of Computer Science
Lund University

ISBN 91-628-6839-X
ISSN 1404-1219
Dissertation 25, 2006
LU-CS-DISS:2006-2

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: tobbe@ekman.net

Typeset using LATEX 2ε
Printed in Sweden by Tryckeriet i E-huset, Lund, 2006

c© 2006 by Torbjörn Ekman

Abstract

Processing of programs is a core area in computer science. A compiler that
translates source text to machine language is the most well-known kind of tool
in this area, but there are numerous other kinds of related applications: source-
to-source translators, refactoring tools, reengineering tools, metrics tools, con-
sistency checkers, etc. These tools perform similar analyses and can therefore
benefit from shared infrastructure. This thesis addresses the problem of how to
build program-processing tools much more easily, providing high-level concise
ways of programming the tools, and providing good modularity and extensibil-
ity, allowing for a high degree of reuse between tools.

We present Rewritable Reference Attributed Grammars (ReRAGs), a tech-
nique that builds on well-known software development techniques such as
object-orientation, aspect-oriented software development, declarative program-
ming, attribute grammars, and transformation systems. ReRAGs combine mech-
anisms from these areas into one coherent framework with synergistic effects
on modularity and extensibility. These mechanisms support several different
decomposition criteria for modularization that enable re-use: asseparate com-
putationson the program model, as a base language andlanguage extensions,
and the same decomposition as used in alanguage specificationfor traceability.
ReRAGs allow such modules to be decoupled from each other and automati-
cally resolves complex context-sensitive dependences.

An evaluation algorithm for the formalism is presented and implemented
in the JastAdd tool which combines ReRAGs with Java. We have implemented
a complete Java 1.4 compiler to demonstrate the full potential of the JastAdd
system and to evaluate its mechanisms for modularization and extensibility.
We show how name analysis for Java with its complex visibility rules involv-
ing nested scopes, inheritance, qualified access, and syntactic ambiguities can
be modularized in the same way as the informal Java language specification.
We have also extended our Java compiler with non-null types for detection of
possible null-pointer violations at compile time. The extension is completely
modular and the technique allows for so called pluggable type systems that can
be enabled at will.

The techniques scale to real languages and large applications. Our gener-
ated Java compiler passes as many tests as production use compilers during
compliance testing, compiles applications larger than 100.000 lines of code,
and the executable specification is less than two-thirds the size of handwritten
compilers.

Acknowledgements

The work presented in this thesis has been carried out within theSoftware De-
velopment Environmentsgroup at the Department of Computer Science, Lund
University. I would like to thank my supervisors, Dr. Görel Hedin, Dr. Klas
Nilsson, and Professor Boris Magnusson, for giving me the freedom to pursue
research directions that I have found interesting. I am particularly grateful to
my main supervisor Görel Hedin. Much of the work presented in this thesis is
joint work with her.

I would also like to thank Ulf Hagberg at ABB Automation Technology
Products Malmö and Klas Nilsson for many rewarding discussions on the Con-
trol Modules language and automation technology in general.

The are a few people that I would like to thank for nice ideas, joint work,
and discussions on various topics: Anders Nilsson for numerous compiler re-
lated discussions and for using my Java front-end in his Java2c compiler, Eva
Magnusson for her work on CRAGs and initial implementation of JastAdd,
Roger Henriksson and Sven Gestegård Robertz for various GC related discus-
sions, Ulf Asklund and Lars Bendix for joint work on agile configuration man-
agement, and David Svensson for rewarding discussions within the PalCom
project.

Christian Andersson and Anders Ive deserve credit for showing me the
very different world outside the university, and I’m equally indebted to the
Wednesday breakfast club for putting things into perspective.

Finally, I am very grateful to Karin Wanhainen for her love, support, and
late night attribute grammar discussions. You will always be the root in my
abstract syntax tree.

This work has been performed within the Center for Applied Software Re-
search (LUCAS) at Lund University, and is partially funded by ABB Automa-
tion Technology Products, the PalCom integrated project in EU’s 6th Frame-
work Programme, and VINNOVA, the Swedish Agency for Innovation Systems.

List of Papers

The research papers included in this thesis are:

I. Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars.Proceedings of ECOOP 2004: 18th European Conference on Object-
Oriented Programming, Oslo, Norway, June 2004.

II. Torbjörn Ekman and Görel Hedin. The JastAdd System - modular extensi-
ble compiler construction.Submitted for publication, 2005.

III. Torbjörn Ekman and Görel Hedin. Benchmarking the JastAdd Extensible
Java Compiler.Unpublished manuscript, 2006.

IV. Torbjörn Ekman and Görel Hedin. Modular name analysis for Java using
JastAdd.Proceedings of the International Summer School on Generative
and Transformational Techniques in Software Engineering, Braga, Portu-
gal, LNCS, Springer, 2006. To appear.

V. Torbjörn Ekman and Görel Hedin. Pluggable non-null types for Java.Un-
published manuscript, 2006.

Papers related to the JastAdd project not included in this thesis

– A. Nilsson, A. Ive, T. Ekman and G. Hedin, Implementing Java Compilers
Using ReRAGs.Nordic Journal of Computing, Vol 11:3(213-234), 2004.

– T. Ekman, Design and Implementation of Object-Oriented Extensions to
the Control Module Language.In proceedings of the 11th Nordic Work-
shop on Programming and Software Development Tools and Techniques -
NWPER 2004, Turku, Finland, 2004.

– T. Ekman and G. Hedin. Reusable Language Specification Modules in Jas-
tAdd II. Position paper at ERLS 2004, Workshop on Evolution and Reuse
of Language Specifications for Domain-Specific Languages, Oslo, 2004.

– T. Ekman and G. Hedin. Automatic renovation of Java programs using
ReRAGs - examples and ideas.Position paper at 5th International Work-
shop on Object-Oriented Reengineering (OOR 2004), Oslo, 2004.

– T. Ekman, A case study of Separation of Concerns in Compiler Construc-
tion using JastAdd II.Proceedings of third AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (ACP4IS), Lancaster,
UK, March, 2004.

viii

Other peer-reviewed papers

– T. Ekman and U. Asklund, Refactoring-aware versioning in Eclipse.Electr.
Notes Theor. Comput. Sci., Vol 107, 2004.

– U. Asklund, L. Bendix, and T. Ekman, Software Configuration Manage-
ment Practices for eXtreme Programming Teams.In proceedings of the
11th Nordic Workshop on Programming and Software Development Tools
and Techniques - NWPER 2004, Turku, Finland, 2004.

– U. Asklund, L. Bendix, and T. Ekman, Configuration Management for eX-
treme Programming.In proceedings of the Third Conference on Software
Engineering Research and Practise in Sweden, Lund, Sweden, October
23-24, 2003.

– A. Nilsson, T. Ekman, and K. Nilsson, Real Java for Real Time – Gain and
Pain.In Proceedings of CASES-2002, pages 304-311. ACM, ACM Press,
October 2002.

– A. Nilsson and T. Ekman, Deterministic Java in Tiny Embedded Systems.
In Proceedings of The Fourth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC-2001), pages 60-68.
IEEE Computer Society, May 2001.

Contents

Extensible Compiler Construction . 1
1 Introduction . 1
2 Challenges in extensible compilers . 2
3 Background . 5
4 Contributions . 16
5 Conclusions and future work . 19

I Rewritable Reference Attributed Grammars

Rewritable Reference Attributed Grammars. 29
Torbjörn Ekman, Görel Hedin
1 Introduction . 29
2 Typical examples of AST rewriting . .. 31
3 Background . 33
4 Rewrite rules . 35
5 ReRAG evaluation . 41
6 Implementation algorithm . 45
7 Implementation evaluation . 51
8 Related work . 53
9 Conclusions and Future Work . 56

II The JastAdd System

The JastAdd System – modular extensible compiler construction. 61
Torbjörn Ekman, Görel Hedin
1 Introduction . 61
2 Application domain . 62
3 Features and Foundation . 63
4 The JastAdd evaluation engine . 68
5 Related tools and systems . 68
6 Conclusions . 71

x Contents

III Benchmarking the JastAdd Extensible Java Compiler

Benchmarking the JastAdd Extensible Java Compiler. 77
Torbjörn Ekman, Görel Hedin
1 Introduction . 77
2 Java compilers background . 78
3 Compiler compliance . 80
4 Compilation time . 80
5 Implementation size . 82
6 Conclusions . 83

IV Modular name analysis for Java using JastAdd

Modular name analysis for Java using JastAdd. 87
Torbjörn Ekman, Görel Hedin
1 Introduction . 87
2 JastAdd Background . 88
3 Name analysis for DemoJavaNames . 91
4 Related work . 101
5 Conclusions . 102

V Pluggable non-null types for Java

Pluggable non-null types for Java. 107
Torbjörn Ekman, Görel Hedin
1 Introduction . 107
2 Non-null types background . 109
3 JastAdd Background . 111
4 JavaDemoTypes Base language . 114
5 Non-null types extension . 122
6 Discussion . 128
7 Automatic non-null type refinement . 131
8 Evaluation . 135
9 Related work . 138
10 Conclusions and Future work . 139

Extensible Compiler
Construction

1 Introduction

Processing of programs is a core area in computer science. A compiler that
translates source text to machine language is the most well-known kind of tool
in this area, but there are numerous other kinds of related applications: source-
to-source translators, refactoring tools, reengineering tools, metrics tools, con-
sistency checkers, etc. These tools are usually complex and building them from
scratch requires a major effort. However, the different tools perform similar
analyses and can benefit from shared infrastructure. For example, a refactor-
ing tool for Java needs to do much of the same analysis as is done by a Java
compiler. And a compiler for a language similar to Java should be able to reuse
much of an existing Java compiler implementation. Today, creating new lan-
guages or new tools for an existing language is so costly that such an effort is
undertaken by few companies, and only when the new language or tool is to be
heavily used. By implementing compilers and other program-processing tools
in an extensible reusable manner, this could change. It might become afford-
able to build very special-purpose tools, intended to be used for a very lim-
ited purpose. For example, to do a special-purpose refactoring of a large body
of legacy code. Another interesting prospect is easily to build domain-specific
languages (DSLs) on top of existing general-purpose languages. Often, domain
logic is captured in frameworks written in a general-purpose language. Turn-
ing such framework APIs into domain-specific language constructs can make
programming more concise and easier to check statically for consistency.

This thesis addresses the problem of how to build program-processing tools
much more easily, providing high-level concise ways of programming the tools,
and providing good modularity and extensibility, allowing for a high degree
of reuse between tools. We present Rewritable Reference Attributed Gram-
mars (ReRAGs), a declarative technique for rewriting and analyzing abstract
syntax trees in order to simplify compilation. An evaluation algorithm for the
formalism is presented and implemented in the JastAdd tool which combines
ReRAGs with Java. To demonstrate the full potential of the JastAdd system
we implemented a full Java 1.4 compiler to evaluate its mechanisms for mod-
ularization and extensibility. We show how name analysis for Java with its
complex visibility rules involving nested scopes, inheritance, qualified access,

2 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

and syntactic ambiguities can be modularized in the same way as the infor-
mal Java language specification [GJSB00,GJSB05]. We have also extended
our Java compiler with support for non-null types for detection of possible
null-pointer violations at compile time. The extension is completely modular
and allows for pluggable type systems [Bra04], enabled at will. The gener-
ated compiler has been benchmarked against some popular Java compilers and
passes at least as many tests in the Jacks test suite as production use compilers
such as javac [jav06], the Eclipse Java compiler [ecl06], and jikes [jik06]. The
compilation time is well within a factor of four compared to the handwritten
compilers implemented in Java and the specification is only two-thirds the size
of the smallest handwritten compiler.

The rest of this thesis introduction is structured as follows. Section 2 presents
the challenges in extensible compiler construction addressed by this thesis.
Section 3 presents the foundation on which ReRAGs is built and compares
to related work. The contributions of this thesis are highlighted in Section 4
and Section 5 concludes the introduction and discusses future work.

2 Challenges in extensible compilers

While processing of programs is an old research topic, there are still plenty of
opportunities for improvement when is comes to extensibility. This is partic-
ularly true for industrial tools that need to support full languages and process
large bodies of code. Early stages in compilers such as scanning and pars-
ing, are well understood and there exist generative techniques for extensible
specifications [Vis97]. This thesis focuses on computations in later stages, e.g.,
name binding, type checking, and code optimization. Such computations rely
on context-sensitive analysis and are still often hand coded in an ad-hoc fash-
ion with little support for extensibility. The rest of this section describes the
challenges addressed by this thesis.

2.1 Context-sensitive computations

Program-processing tools provide great challenges for extensible computations
because of complex context-sensitive dependences in programming languages.
In particular, the meaning of a name depends on its context, e.g., there should
be a visible declaration that the name refers to. Object-oriented languages pose
extra challenges in that the meaning of a name often depends not only on the
immediate lexical context but also on other context-sensitive computations,
e.g., the meanings of other names. A name may, for instance, refer to an in-
herited member, declared in a different class. The inherited class is, however,
itself specified through a name. The single task of determining the meaning of

2. CHALLENGES IN EXTENSIBLE COMPILERS 3

a name thus introduces complex dependences to other names in other classes.
Such dependences need to be taken into account when implementing language
extensions. If new constructs interact with names they may even introduce ad-
ditional dependences between existing constructs.

To handle these complex problems, it is desirable to modularize computa-
tions and provide a uniform interface that abstracts from the implementation
details. Other computations, e.g., metrics and refactoring tools, can then use
such modules without knowing their internal details. This kind of abstraction
is important from an understandability point of view since it allows complex
problems to be decomposed into simpler ones. This also helps the developer to
focus on one task at a time.

2.2 Modularization

When talking about code artifacts, the termmodularity is often used to de-
scribe the possibility to decompose a system into modules [Par72]. Complex
problems are usually decomposed in subproblems that are solved one at a time
and then combined into a solution. The main purpose of modularity is to al-
low the code that solves each subproblem to be located in a separate module.
This allows each subproblem, or concern, to be studied in isolation, a property
which is known asseparation of concerns[Dij82]. This is important from both
an understandability point of view, i.e., to decompose the system into under-
standable modules, and from an extensibility point of view, i.e., to decompose
the system into a base system and extensions.

The description of modules has been very abstract so far, using terms such
as subproblem, code artifact, module, and concern to describe the individual
parts of a system. The reason is that several different criteria can be used when
decomposing a system into modules. One way to decompose a compiler is
to divide it into separatecomputationsthat each perform one subproblem of
the compilation process, e.g., scanning, parsing, static-semantic analysis, opti-
mization, and code generation. The system is then divided into a basic model
that represents the language constructs, and a set of computation modules that
operate on that basic model. New computations, e.g., metrics, can then eas-
ily be added in a modular fashion while reusing existing semantic analysis.
However, this kind of decomposition can be challenging when there are depen-
dences between the various computations, in particular the context-sensitive
computations described above.

Another way to decompose a compiler is into a base language and a set of
language extensionsthat each provide additional functionality. This decompo-
sition is useful when a language evolves and is extended with new language
constructs, e.g., domain-specific constructs are added to a general-purpose lan-
guage. The base language can then be composed with suitable extensions for

4 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

a particular domain, enabling a high degree of reuse between families of lan-
guages. However, it is likely that new language constructs affect both the lan-
guage model and individual computations such as name binding, type analyses,
and code generation. For instance, the enhancedfor statementin Java 5 extends
Java 1.4 with a new syntactic element and also refines the name binding module
since it declares a new variable. There is thus a need toextendexisting context-
sensitive computations in a modular fashion besides the need to add syntactic
elements and computations. It is worth noticing that the language constructs
cross-cut the computation modules.

Programming languages are often defined in a formal or informal language
specification. These specifications are rarely executable and a compiler needs
thus to be implemented in a separate language. A third useful decomposition
criterion is to use the same decomposition as in thelanguage specification
to provide traceability between the language specification and the executable
implementation. Traceability is of great importance when debugging compil-
ers. Programming languages are inherently complex and most compilers con-
tain subtle errors that are hard to detect. These errors are easier to trace to the
specification than to the implementation and the modularization helps locating
the corresponding source location. The same arguments are equally valid for
other kinds of specifications, e.g., formal proofs of type soundness or behavior
preservation of refactorings.

To summarize we have the following decomposition criteria, all of which
are desirable depending on the situation:

Separate ComputationsTo decompose a compiler or similar tool into sepa-
rate computations on the program model. The goal is to be able to reuse
and combine the different computations to obtain different tools, and to
express and understand each computation in isolation.

Language ExtensionTo decompose a compiler or similar tool into an imple-
mentation of a base language and extensions to the language. The goal is to
be able to reuse the base language implementation for many different ex-
tensions, to combine extensions, and to be able to express and understand
each extension in isolation.

Language SpecificationTo use the same decomposition of the compiler as is
used for the informal language specification. The goal is to provide trace-
ability between the language specification and the implemented compiler.

These criteria put challenging requirements on the used implementation lan-
guage to allow the developer to modularize the compiler according to the pre-
ferred criteria. In particular, when considering the complex dependences in
context-sensitive computations that occur naturally in programming languages.
There is thus a need for implementation languages with strong support for sep-
aration of concerns.

3. BACKGROUND 5

2.3 Scalability

It is important that a compiler technology is scalable both to full languages and
large sized applications to be of practical use. Mainstream programming lan-
guages are often complex and contain many corner cases. Research languages,
on the other hand, tend to be small and pure at the cost of practical applica-
bility. Our experience, from implementing a full Java compiler, tells us that a
subset of Java is fairly easy to support but that the full language is much more
challenging. This complexity manifests itself in that many research Java com-
pilers pass significantly fewer tests in test suites than production use compilers.
While a compiler for a subset of Java may be useful as a proof of concept for
the compiler technology, it is less suited as a platform for code analysis and
evaluation of language extensions. Class libraries and even fairly small appli-
cations tend to use most language features in Java and fail to compile if only
a subset is supported. It is also worth noticing that for a tool to be useful in
an industrial setting it needs to be able to analyze code bases in the range of a
hundred thousand lines of code or more.

3 Background

The foundation of our approach to extensible compiler construction is the
Rewritable Reference Attributed Grammars (ReRAGs) formalism developed
as part of this thesis. It builds on several well-known software development
techniques: object-orientation, aspect-oriented software development, declara-
tive programming, attribute grammars, and transformation systems. ReRAGs
combine mechanisms from these areas into one coherent framework with syn-
ergistic effects on modularity and extensibility. This section gives a background
to these techniques and highlights important differences between our approach
and other work on extensible compiler construction.

3.1 Object orientation

Object orientation provides a natural way of structuring data and computations.
The data can be categorized in a class hierarchy where each class provides the
state and behavior for a specific data element. A sample class hierarchy for
expressions is shown below.

6 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

The use of a hierarchy enables multiple levels of abstraction. Polymor-
phism allows a reference of a certain class to not only reference instances of
that class, but also instances of its subclasses. A suitable abstraction level, e.g.,
Expression, can then be used to hide internal details of expressions while a
more concrete level, e.g.,BinaryExpressionor evenAddExpression, can be
used where more detail is needed. Common behavior can be placed in an
abstract superclass, e.g.,Expression, and then inherited to the concrete sub-
classes. Type checking can for instance often be shared by allBinaryExpres-
sions. Inheritance with overriding allows for iterative refinement of behavior
until the right level of detail is reached. Object orientation provides a nice
modularization mechanism through the class concept that models both state
and behavior in a single module that can also be extended in a modular fash-
ion.

3.2 Abstract syntax trees

In the processing of programs, the typical core representation is a tree that
captures the composition of language constructs in the program. Typically, an
Abstract Syntax Tree (AST) is used, i.e., a tree where textual details have been
abstracted away. Such trees can result from parsing a source file or from be-
ing synthesized directly. This thesis mainly deals with challenges in extensible
analysis of programs represented by ASTs and relies on existing work in ex-
tensible parsing technology for building these trees [Vis97].

All possible forms of the ASTs can be described by anabstract grammar
[McC64] that captures the basic rules for how different language constructs
may be combined in a program. In many practical applications, e.g., compil-
ers, the AST is often represented in an ad-hoc manner, and the computations
are ordinary programs working on the ad-hoc representation. In our approach
the ad-hoc AST representation is replaced by one derived from an abstract
grammar.

The ASTs in this thesis have an object-oriented foundation where the AST
is a tree of objects, and links between tree nodes are references to other objects

3. BACKGROUND 7

in the tree. The objects are defined by classes in a specialization hierarchy,
like in normal object-oriented programming. This allows us to make use of
the typical object-oriented mechanisms such as inheritance and overriding as
a basic modularization mechanism. The figure below shows a sample AST for
the expression1*2+3 built from objects in the class hierarchy described above.
Computations can conveniently be modularized using the language constructs
as decomposition criteria, commonly known as the Interpreter design pattern
[GHJV95]. New language constructs can then be added by adding correspond-
ing AST classes, and extending existing computations with behavior for that
new construct.

Literal
2

Multiply

Literal
1

Add

Literal
3

3.3 The expression problem

Object-oriented ASTs allow modular extension of a language by defining new
node classes for new language constructs. A class can then implement the
desired computations for the language construct in a modular fashion. How-
ever, adding a new operation involves modifying every class in the system that
should support that operation. The implementation of the new operation is thus
scattered all over the system rather than being encapsulated in a single module.
This is a result of the typical data-centric modularization of compilers using
object-oriented ASTs. However, if we choose a more operation-centered mod-
ularization strategy, e.g., the Visitor design pattern [GHJV95], it is easy to add
new computations, but hard to add new language elements.

It turns out that this kind of extensibility problem is fundamental to recur-
sive data structures. While it is usually straightforward to add either new data
types or new operations in a modular fashion it is hard to do both simulta-
neously. While the issue has been known for many years [Rey75,Coo91], the
addition of parametric polymorphism to mainstream languages such as Java
and C# has shown renewed interest in the problem. The problem is commonly
known as theexpression problem(named by Phil Wadler in [Wad98]) when
requiring a solution to the following requirements:

– Extensibility in both dimensions, i.e., new data elements and new opera-
tions.

8 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

– Strong static type safety
– No modifications to existing source code
– Separate compilation

Proposed solutions for mainstream languages usually make clever use of gener-
ics [Tor04]. While solving the problem, a drawback is the relatively extensive
and complex programming protocol that the developer has to follow. Other ap-
proaches rely on extended type systems or add additional language constructs
to the language [OZ05,ZO01a,Ern04,NCM04,Bru03]. These extensions often
use language constructs and type systems inspired by virtual classes [MMP89].

There are also design pattern based solutions that can be implemented with-
out added language support but which give up the static type safety require-
ment. The traditional design pattern Visitor [GHJV95] is extended to support
the addition of new node types. [KFF98,PJ98,NCM03].

All of the above examples require advance planning from the developer
to allow for modular extensions. An alternative is provided byopen classes
[CLCM00] andinter-type declarations[KHH+01] which allow the developer
to add new methods and fields to an existing class hierarchy in a modular
fashion. Open classes support separate compilation by requiring the caller to
explicitly import added methods by naming the enclosing compilation unit
[CLCM00]. Inter-type declarations do not support separate compilation but
make the added methods visible throughout the system by default. Our ap-
proach to the expression problem is very similar to inter-type declarations
where we trade separate compilation for a convenient programming model
without the need for additional programming protocols and extended type sys-
tems. However, it is worth noticing that the ReRAGs formalism can be com-
bined with any object-oriented (data-centric) solution to the expression prob-
lem.

3.4 Aspect Oriented Software Development

Aspect oriented software development (AOSD) deals with modularization and
separation of various concerns for features that cross-cut the main class hierar-
chy. Most programming languages, as discussed in the context of the expres-
sion problem, suffer from a limitation often called thetyranny of the dominant
decomposition. This means that the program can only be modularized in one
way at the time, but that there are concerns that do not align well with that
modularization and therefore end up scattered across many modules and be-
come tangled with other concerns. The expression problem is a typical exam-
ple of this problem where, for instance, a computation cross-cuts the dominant
data-centric modularization. AOSD deals with languages, tools, and techniques
supporting alternative modularization concepts that allow state and behavior to

3. BACKGROUND 9

be extracted from the main class hierarchy into modules that form a separate
type hierarchy [KHH+01,TOHJ99,BA01,Lie96]. A computation, such as eval-
uating an expression, can thus be separated into a single module instead of
being scattered over multiple modules (classes).

Since the main challenges that AOSD addresses are very similar to the chal-
lenges in this thesis we relate our approach to the AspectJ language which is
the most commonly used aspect-oriented language in the AOSD community.
Aspects support static modularization features in the form of inter-type decla-
rations but also a dynamic model based on well-defined points in the execution
of a program. Ajoin-point is such a location in the program flow andpoint-
cutsare sets of join-points that can be defined using a dedicated pointcut lan-
guage, querying for instance the class hierarchy, control-flow graph, and more
primitive pointcuts. Cross-cutting behavior is implemented asadvice, which
is a piece of code that is executed at a set of join-points picked out using a
pointcut. There are several different kinds of advice, e.g.,before advice, after
advice, andaround advice. Before advice runs as a join point is reached, before
the program proceeds with the join point. After advice runs after the join-point
has been executed. Around advice is a combination of both before and after
advice but is also in control whether the program proceeds with the join-point
or not.

ReRAGs use declarative attributes defined by equations. Since the eval-
uation model is declarative it does not make sense to talk about join-points
at the attribute level. However, individual equations may be implemented us-
ing imperative code, as long as the code is free from external side-effects. It
may therefore be useful for an extension to use pointcuts to refine individ-
ual equations in the base language. However, our experience indicates that the
declarative model encourages fine grained attributes that solve small dedicated
problems, reducing the need for refining the code in an equation. Forthermore,
we do use a language construct for refining an entire equation, similar to an
around advice, at a single join-point.

3.5 Declarative computations with demand evaluation

While general-purpose object-oriented programming is imperative, many sub-
problems can be expressed at a higher level using declarative constructs. In an
imperative language the computable relationships are expressed in terms of se-
quences of operations. Declarative programs, on the other hand, are made up of
sets of equations describing the relations that specify what is to be computed.
Declarative constructs only express what to be computed and not in which or-
der it is to be computed. The actual order of the computations is then decided
automatically.

10 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

Compilers contain context-sensitive computations such as name analysis
and type checking where there are complex dependences between the vari-
ous analyses. For example, in object-oriented languages, name binding and
type analysis are mutually dependent: Consider a qualified accessa.b . To do
name binding ofb we need to first do type analysis ofa, to determine which
class to query for visible fields. To do type analysis ofa we need to do name
binding of a, to detect its declared type. Name binding and type analysis are
thus mutually dependent, and these computations need to be carefully sched-
uled if implemented imperatively. Extensible compilers add complexity to this
scheduling since new language constructs and analyses may introduce addi-
tional dependences between existing constructs. It is worth noticing that the
expression problem discussed earlier only deals with the modularization of
computations and not with dependences between the various computations. In
imperative programming, the scheduling of the computations is usually im-
plemented manually, as passes over the AST. In contrast, ReRAGs are based
on declarative executable specifications, allowing the scheduling of combined
computations to be automatically derived. Modular programming is about di-
viding a problem into sub-problems, solving each sub-problem, and then com-
bining the individual results into a complete solution. Declarative programming
allows that combination to be done automatically rather than programmed ex-
plicitly by the developer. The modularization is thus enhanced by the means in
which we can combine the solution from the individual sub-problems.

Modularity can be further enhanced by combining declarative program-
ming with demand evaluation. Demand evaluation attempts to delay a com-
putation until the result of that computation is known to be needed. If a sub-
problem is not needed to solve the full problem it will not be computed, re-
ducing the overall computation cost. This allows us to specify all facts about
a problem and then selectively solve only the needed sub-problems. Demand
evaluation makes this selection process automatic and we need not be con-
cerned with excessive computation cost. To exemplify, Java requires variables
that are declared final to be assigned once only. Demand-driven evaluation al-
lows us to define the "assigned once" property for all variable assignments, but
compute it only when the assigned variable is actually final.

3.6 Attribute Grammars

An attribute grammar (AG) supports declarative computations by decorating
an AST with attributes that are defined by equations. An evaluator automati-
cally solves the equation system for any AST following the abstract grammar.
Typical applications include the program analysis that is part of the front end
of a compiler, e.g., name binding and type analysis. The basic idea was intro-
duced by [Knu68] and a large amount of research has been done in this area.

3. BACKGROUND 11

Examples of influential systems include the Eli system by Kastens and Waite
[KPJ98] and the incremental Synthesizer Generator system by Teitelbaum and
Reps [RT84].

Synthesized and inherited attributes Attribute grammars attach attributes
to node types and define their values using equations. An attribute is either
synthesizedor inherited depending on if it is used for propagating informa-
tion upwards or downwards in the AST. Attribute grammars blend nicely with
object-oriented languages when using an object-oriented notation for attribute
grammars [Hed89]. Synthesized attributes are very similar to virtual methods
in this notation: Attribute declarations correspond to virtual methods in abstract
classes that are overridden by equations in subclasses. Consider the following
code snippet that defines an attribute calledpp() for all Expressions , defining
a pretty printed string for theExpression subtree.

/ / a l l e x p r e s s i o n s can be p r e t t y p r i n t e d
syn String Expression .pp ()
/ / l i t e r a l s are i n t e g e r v a l u e s
eq Literal .pp () = value ();
/ / c o n c a t e n a t e l e f t operand , ope ra to r , r i g h t operand
eq BinaryExpress ion .pp () = left (). pp ()+ op ()+ right (). pp ();

/ / d e f i n e t h e o p e r a to r f o r b i n a r y e x p r e s s i o n s
syn BinaryExpression .op ();
eq AddExpression .op () = "+" ;
eq SubExpression .op () = " -" ;

A notable difference between synthesized attributes and virtual methods is that
attributes may not contain side-effects. This allows the JastAdd system to trans-
late the attributes to virtual methods that cache the individual results for effi-
cient evaluation. Each attribute is then only computed once, even if its value is
demanded several times.

Inherited attributes are used for passing information downwards in an AST,
giving child nodes information about their context. Note that the term "in-
herited" attribute has different meanings in attribute grammars and object-
orientation. The use of inherited attributes decouples an AST node from its
parent: the AST node does not need to know which parent it has. All the in-
formation it needs is in the inherited attributes whose values are defined by the
parent. Allowing the parent to define the attribute for all its descendants, rather
than the direct child only, further decouples an AST node from its descendants
[KW94]. This is useful to model any nested structures. Consider the snippet
below that defines the name of the enclosing class for all expressions within
that class. The equation forclassName() is defined byClassDecl and is valid

12 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

for all inherited attributes namedclassName() in the subtree that is rooted in a
body declaration to thatClassDecl .

/ / a l l e x p r e s s i o n s are e n c lo s e d in a c l a s s
inh String Expr . className ();
/ / t h e c l a s s d e f i n e s th e name f o r t h e e n t i r e s u b t r e e
/ / t h a t i s r o o te d in a body d e c l a r a t i o n
eq ClassDecl . getBodyDecl (). className () = name ();

Extensions to attribute grammars There are numerous extensions to AGs
that enhance modularity [KW94,FMY92,GG84,dMJW00,DC90] and gener-
icity [SS99,dMBS00]. Other extensions include references to remote nodes
[Hed94,Hed00,Boy96,PH97], to dynamically change the structure of the AST
[VSK89,Sar99,EH04], and support for circular dependences between equa-
tions [Far86,MH03]. The most relevant formalisms in the context of our work
are concerned with references, circularities, and dynamic creation of trees that
can be attributed.

Reference Attributed Grammars (RAGs) are AGs augmented with the pos-
sibility for attributes to bereferencesthat refer to arbitrary syntax nodes. This
allows for very natural specification of many program analysis problems, like
name and type analysis for object-oriented languages (something that becomes
very convoluted when using plain AGs). For example, the class hierarchy in an
OO program can be represented by direct links between the class declaration
AST nodes. The basic idea has emerged independently from a few researchers,
described in [Hed94,Hed00,Boy96,PH97].

References to remote tree nodes can also make use of object-oriented ab-
straction mechanisms in that queries can be delegated to remote nodes through
their abstract interfaces without knowing implementation details. This has been
used successfully in name analysis to delegate lookup of members to the declar-
ing class [EH06a]. References also reduce coupling for remote dependences
where the computation of the remote location and the desired property of that
location can be separated. For instance, the reference to a super-class is decou-
pled from the lookup of inherited members in that class. This separation can
also remove circularities compared to attributes that hold an entire environment
[MH03].

The original definition of attribute grammars does not allowcircular depen-
dencesbetween attribute equations. However, mutually dependent equations
are very useful to specify many analyses, e.g., data-flow analysis and code op-
timization. Circular Attribute Grammars (CAGs) [Far86] allow circular depen-
dences between equations and compute well defined values when all attributes
in a cycle have a fix-point that can be computed with a finite number of itera-
tions. Circular Reference Attributed Grammars (CRAGs) combine both CAGs

3. BACKGROUND 13

and RAGs in one formalism with enhanced support for both non-local depen-
dences and fix-point computations [MH03]. CRAGs have been implemented
in the JastAdd tool.

The AST produced by a parser is seldom ideal for all analyses during
compilation. There is therefore a need todynamically change the tree struc-
ture after the AST is partially attributed. Higher Order Attribute Grammars
(HAGs) [VSK89,Sar99] allow attributes to be new ASTs, with applications
in, e.g., macro processing. ReRAGs provide an alternative approach where a
partially attributed subtree may be rewritten allowing for iterative refinement
of the AST. This is further discussed in the context of transformation systems
below.

Attribute evaluators Since attribute grammars are declarative they rely on an
attribute evaluator to derive a suitable computation order. Attribute evaluators
can be divided into two categories: static and dynamic evaluators.Static eval-
uatorsanalyze an attribute grammar and compute an evaluation order from the
dependences between attribute equations in the grammar. This evaluator can
then be used for any tree of that grammar. Static evaluators approximate the
actual dependences in an AST, and are therefore less powerful than dynamic
evaluators. In particular, it is difficult to use static evaluation for AGs with ref-
erence attributes, although there is some work in that direction [Boy05]. A sur-
vey of static evaluation algorithms, both batch oriented and incremental ones,
is available in [Alb91].

Dynamic evaluatorscompute a dependency graph, at run-time, for the equa-
tions in the AST to be attributed. This graph is then sorted in topological order
and the result is used as the evaluation order. This sort can either be doneex-
plicitly in a separate pass (before attribute evaluation) orimplicitly using the
following translation scheme: Each access to an attribute value is replaced
with a function call that computes the appropriate semantic function (equa-
tion right-hand side) for that value. This simple scheme results in an evaluation
in topological order [Mad80,Jal83,Jou84]. To increase efficiency, the results
of individual attribute computations are usuallycachedfor later accesses. This
implicit scheme is more powerful than computing the dependences before eval-
uation, because it allows the dependences themselves to depend on the attribute
values, and not only on the AST structure.

The JastAdd system uses this dynamic implicit evaluation scheme, com-
bined with attribute caching. The algorithm supports RAGs and a convenient
implementation using object-oriented programming is presented in [HM03].
Extended algorithms that support CRAGs and ReRAGs are presented in [MH03]
and [EH04] respectively. Dynamic evaluators are often considered slow, but our

14 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

work shows that they can be used successfully for complex languages such as
Java, processing bodies of code larger than 100kLOC.

Attribute grammars provide powerful techniques to decouple the declara-
tion of an attribute from its implementation. The support for references allows
the AST to be the only data structure in the compiler and further reduces cou-
pling between remote nodes. Combined with inter-type declarations, enabling
modularization of AST computations, they allow modular extension of com-
putations in compilers.

3.7 Transformation systems

Tree transformation systems use rewrite rules to specify how to transform a part
of an AST into another shape. An introduction to tree transformation systems is
available in [Klo92] and influential systems include ASF+SDF [vdBvDH+01]
and Stratego [Vis01] which are both based on algebraic specifications, and
TXL [Cor04] which is based on functional programming. Typical applications
are code optimizations and reengineering of program source code.

Transformation systems need to take contextual computations into account
when processing programs. A rewrite rule may have a condition that needs to
be true for that rule to fire. Contextual information may then be used to se-
lect appropriate rules and to compute the shape of the rewritten tree. Context-
sensitive data is often kept in an external database that is updated during the
transformation. This requires the user to explicitly associate updates with re-
write rules or distinct passes. Contextual computations can be embedded as
side-effects in rewrite rules. The application order of rewrite rules need then
to take contextual dependences, which can be highly nonlocal, into account.
The specification of rewrite rules and contextual dependences can be modular-
ized using user-defined transformation strategies. Separate rules are then used
to compose user-defined strategies from simpler ones using a set of combina-
tors. A survey on strategies in program transformation systems is available in
[Vis05].

ReRAGs support declarative context-sensitive conditional rewriting, com-
bining attribute grammars with transformation technology. An important dif-
ference between ReRAGs and transformation systems is the handling of con-
textual information. Attribute computations and rewriting are interleaved and
need not rely on manual scheduling of transformations and context-sensitive
computations. The fine-grained interaction between attribute computations and
rewriting is a powerful language mechanism to support extensibility through it-
erative refinement of the AST. Higher-order attribute grammars [VSK89,Sar99]
combined with forwarding [VWMBK02] allows similar fine-grained interac-
tion. Another important difference is how the transformation order is specified.

3. BACKGROUND 15

ReRAGs uses the dependences in contextual computations to automatically
schedule the transformation order while transformation systems usually use
traversal strategies to drive contextual computations. The Stratego system has
a mechanism for dependent dynamic transformation rules [OV05], supporting
certain context-dependent transformations, but it is not clear how this could
be used for mutually dependent computations such as name binding and type
checking in object-oriented languages.

3.8 Extensible Java compilers

The JastAdd Extensible Java Compiler is a full Java 1.4 compiler that has been
implemented as part of this thesis work. This section compares that work to
existing Java compilers from an extensibility point of view. There are quite
a few Java compilers publically available, some even licensed through a gen-
erous open-source license. However, while traditional compilers may provide
well-engineered APIs for adding additional analyses, e.g., the JDT model in
the Eclipse Java compiler [ecl06], they are often less suited for language ex-
tensions. For instance, the ajc compiler for AspectJ [asp06] is an excellent inte-
gration of AspectJ extensions and the Eclipse Java compiler, but the integration
is non-modular and requires manual synchronization of the two code bases.

There are Java source-to-source translators that provide support for exten-
sions at the syntactic level but that do not support extensible static-semantic
analysis, e.g., JavaBorg/MetaBorg [BV04], the Java Syntactic Extender [BP01]
and the Jakarta Tool Suite [SB02]. These tools translate an extended Java di-
alect to pure Java and rely on a separate compiler for the actual compilation to
bytecode. While this approach is attractive for its simple implementation it has
serious drawbacks when it comes to handling context-sensitive information.
The translation can not include context-sensitive properties such as the type
of an expression in the translation strategies. Since the approach is based on
source-to-source, a separate Java compiler is needed to perform error checking
and bytecode generation. Error checking is performed on the generated code,
and errors are rarely well aligned with the original source code.

There are also approaches that provide support for static-semantic analysis
but more limited support for syntactic extensions. OpenJava [TCIK00] adds
a macro system to Java that uses a meta-object protocol (MOP), similar to
Java’s reflection API, to manipulate the program structure. Macro programs
can access data structures representing a logical structure of a program from
which much of the semantic structure of the program is exposed. The MOP
can be used to add additional analyses on top of Java but there is little support
for refining existing analyses or for syntactic extension.

The most flexible solution for language extensiblity is to provide support
for extensions at both the syntactic and static-semantic analysis level. Polyglot

16 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

is an extensible source-to-source compiler framework implemented in Java that
relies on design patterns for extensibility, e.g., abstract factories, extensible vis-
itors based on delegation, and proxies [NCM03]. The base code is a Java 1.4
front-end which has been extended successfully for numerous language fea-
tures. The front-end has for instance been extended with the AspectJ language
in the AspectBench project [ACH+06]. The extension is modular and uses the
Soot optimization framework as a back-end to form a full AspectJ compiler
[VRHS+99]. The compiler is pass oriented (with extensible passes) and also
supports tree rewriting at the end of each pass.

JaCo is an extensible Java 1.4 compiler including both front-end and back-
end [ZO01b]. The first implementation of JaCo was done in a Java dialect sup-
porting algebraic types with defaults [ZO01a]. A set of object-oriented archi-
tectural patterns was used to further support extensiblity. JaCo has later been
implemented in Keris, an extension to Java that supports extensible modules
with explicit refinement and specialization mechanisms [Zen04]. Both compil-
ers are based on explicit scheduling of multiple passes.

The above compilers all rely on manual scheduling of dependences be-
tween analyses. In contrast, the JastAdd Extensible Java compiler is imple-
mented in the declarative ReRAGs formalism, combining the language mech-
anisms supporting modularity and extensibility described in the previous sec-
tions. The extensible specification is only two-thirds the size of the smallest
handwritten compiler. The generated compiler passes at least as many tests as
production compilers and the compilation times are well within a factor of four
compared to the fastest Java-based compiler.

4 Contributions

The goal of this thesis is to provide techniques and tools for high-level imple-
mentation of program-processing tools. Of particular importance is the modu-
larization and extensibility of complex context-sensitive computations in object-
oriented languages. We focus on the following three different decomposition
criteria for modularization:

Separate ComputationsTo decompose a compiler or similar tool into sepa-
rate computations on the program model.

Language ExtensionTo decompose a compiler or similar tool into an imple-
mentation of a base language and extensions to the language.

Language SpecificationTo use the same decomposition of the compiler as is
used for the informal language specification.

We notice the importance for techniques to scale to full languages as well as
large sized applications to be of practical use.

4. CONTRIBUTIONS 17

This section presents the contributions of this thesis where each subsection
corresponds to one of the five papers included in the thesis. The author of this
thesis is the primary author of all the included papers.

4.1 Rewritable Reference Attributed Grammars

Paper I presents an object-oriented technique for rewriting abstract syntax trees
in order to simplify compilation. The technique, Rewritable Reference At-
tributed Grammars (ReRAGs), is completely declarative and supports both
rewrites and computations through attributes. ReRAGs uses several synergis-
tic mechanisms for supporting separation of concerns: inheritance for model
modularization, inter-type declarations for cross-cutting concerns, and rewrites
that allow computations to be expressed on the most suitable model. The pa-
per presents the ReRAG formalism, its evaluation algorithm, and examples
of its use. We also present several typical ways to transform the AST that
we discovered when implementing the JastAdd extensible Java compiler in
ReRAGs. These transformations have substantially simplified the implementa-
tion as compared to having to program this by hand, or having to use a plain
RAG on the initial AST constructed by the parser.

4.2 The JastAdd System

Paper II presents the JastAdd system which enables open modular specifi-
cations of extensible compiler tools and languages using the ReRAGs and
CRAGs formalisms. This paper presents key language mechanisms and how
they support implementation of extensible compiler tools and languages. A key
design idea is to make use of declarative specification mechanisms in order to
allow a high degree of decoupling between different modules, thereby support-
ing reuse and extensibility. We demonstrate the full power of the tool using
the JastAdd extensible Java compiler, a complete Java 1.4 compiler, as a very
strong case. To demonstrate extensibility both forSeparate Computationsand
Language Extension, we have extended the compiler with new language con-
structs from Java 1.5 and extended the front-end with devirtualization analysis.
All these extensions have been done in a completely modular way.

The current version of the JastAdd system is implemented as part of the the-
sis work, and builds loosely on an older version implemented by Görel Hedin
and Eva Magnusson[HM03]. That system was implemented in Java and sup-
ported the CRAGs formalism only. The current system is a re-implementation
in ReRAGs, that has been bootstrapped in itself, and supports both ReRAGs
and CRAGs. The system has also been extended with improved support for
inter-type declarations, parameterized attributes, and various convenient short-
hands. The system is available at http://jastadd.cs.lth.se

18 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

4.3 The JastAdd Extensible Java Compiler

The JastAdd Extensible Java compiler is a full Java 1.4 compiler including
compile-time checks and bytecode generation implemented in the ReRAGs
specification formalism. Java 1.4 is a large complex language and implement-
ing a complete compiler for it is a substantial undertaking, both because the
language contains many idiosyncrasies that must be handled, and because it is
an object-oriented language with many non-trivial constructs. In paper III we
compare our compiler, generated from a ReRAGs specification, to other well-
known Java compilers in terms of language compliance, compilation time, and
implementation size. The generated compiler passes at least as many tests as
production compilers such as javac [jav06], the Eclipse Java Compiler [ecl06],
and jikes [jik06]. We demonstrate thescalabilityof the generated compiler by
compiling a subset of the JDK of over 100.000 lines of code. The compila-
tion time is well within a factor of four compared to the handwritten compilers
implemented in Java while the specification is only two-thirds the size of the
smallest handwritten compiler.

The JastAdd Extensible Java compiler has been implemented as part of the
thesis work. The scanner and parser are implemented using traditional parsing
technology. The lexical grammar in the Java Language Specification [GJSB00]
is used to generate a scanner. The parser is generated from the context-free
syntactic grammar which has been slightly modified to be LALR(1). Semantic
actions are used to build the initial tree according to an AST grammar. The
complete static-semantic analysis and byte-code generation is then specified
using ReRAGs. The compiler is available at http://jastadd.cs.lth.se

4.4 Modular name analysis for Java using JastAdd

Name analysis for Java is challenging with its complex visibility rules involv-
ing nested scopes, inheritance, qualified access, and syntactic ambiguities. In
paper IV we show how Java name analysis including ambiguities related to
names of variables, fields, and packages, can be implemented in a declar-
ative and modular manner using the JastAdd compiler construction system.
The techniques illustrate theLanguage Specificationdecomposition criterion,
where declarative attributes and context-dependent rewrites enable the imple-
mentation to be modularized in the same way as the informal Java Language
Specification. The individual rules in the specification transfer directly to equa-
tions in the implementation, enabling simple traceability between the specifi-
cation and the executable implementation.

5. CONCLUSIONS AND FUTURE WORK 19

4.5 Pluggable non-null types for Java

Static type systems allow for early detection of errors and enable developers
to clearly document their intent. This paper demonstrates how the JastAdd ex-
tensible Java compiler can be extended with a pluggable non-null type sys-
tem. Non-null types is a type-based approach to statically detect possible null-
pointer violations in code. A type refinement implementation that automati-
cally infers non-null types in legacy code is also presented. The implementation
constitutes a strong case for extensibility in the JastAdd system, demonstrat-
ing how the declarative features of reference attributes and circular attributes
can be taken advantage of to provide a compact modular implementation of
a non-trivial type-system addition. The type-system extension is an example
of Language Extensionwhile the inference module is an example ofSeparate
Computations. Both implementations are compact, the non-null extension be-
ing around 220 lines of code while the type refinement algorithm is less than
460 lines of code.

5 Conclusions and future work

We have presented Rewritable Reference Attributed Grammars, a high-level
formalism for developing program-processing tools, e.g., compilers, consis-
tency checkers, and reengineering tools. These tools perform similar analyses
and can therefore benefit from shared infrastructure. ReRAGs support several
different decomposition criteria for modularization that enable such re-use: as
separate computationson the program model, as a base language andlanguage
extensions, and the same decomposition as used in alanguage specificationfor
traceability. ReRAGs provide declarative attributes and rewriting to decouple
such modules from each other and to automatically resolve complex context-
sensitive dependences.

We have implemented the JastAdd extensible Java compiler to evaluate the
ReRAGs formalism and to provide a platform for Java extension and source
code analysis development. It is demonstrated how Java name analysis in-
cluding ambiguities related to names of variables, fields, and packages, can
be implemented in a declarative and modular manner while closely following
the informal language specification. We also show how to extend Java with a
pluggable non-null type system and also to add a separate computation that
conservatively infers that property in legacy code. All extensions are made in
a completely modular fashion.

The techniques scale to real languages and large applications. Our gen-
erated Java compiler passes as many tests as production use compilers during
compliance testing and compiles applications larger than 100.000 lines of code.

There are several interesting ways to continue this work:

20 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

Applications We are currently implementing Java 5 as modular language ex-
tensions to the JastAdd Extensible Java compiler. Our progress so far is very
promising, having implemented most parts of generics including wildcards in
a completely modular fashion. The implementation uses a similar technique as
described in [EH06b].

The analyses we have made so far are mostly concerned with static-semantic
analysis of object-oriented languages. We believe that the combination of context-
sensitive computations and rewriting can be equally useful in other areas as
well. Refactorings typically depend on context-sensitive computation when re-
structuring the source code, and ReRAGs should therefore be a suitable spec-
ification formalism. We would also like to explore more traditional code opti-
mization, particular by combining ReRAGs and CRAGs.

Traceability Our work on modular name analysis for Java shows that it is pos-
sible to modularize the implementation to provide traceability to a specification
[EH06a]. We believe that the same techniques can be used to implement a type
system that closely follows a formal proof of type soundness, or a refactoring
tool with traceability to a behavior preservation proof.

Abstractions The modularization mechanisms presented in this thesis provide
excellent support for extensible compiler implementation. They do, however,
break encapsulation compared to traditional object-oriented programming. To
improve abstraction, we therefore need new encapsulation mechanisms that al-
low us to selectively hide the implementation details of an analysis, when being
used by other analyses, while exposing enough detail to a language extension.

We have discovered several idioms that often occur in compiler implemen-
tation when using ReRAGs. Some of these may actually be useful to evolve
into language constructs. Such high-level constructs could further strengthen
the abstraction mechanisms in JastAdd.

Safety We have shown how to statically detect possible null-pointer violations
in Java by adding non-null types [EH06b]. Extended type systems can be used
to improve the JastAdd system as well. Non-null types would, for instance,
ensure that reference attributes always refer to AST nodes. Safety could be
further enhanced by adding immutable types, which can be used to guarantee
that code implementing attribute equations are free from side-effects.

Efficiency The evaluation algorithm in JastAdd relies heavily on caching of
attribute values for efficiency [EH04]. There is a penalty, both in terms of mem-
ory consumption and execution time, when storing a value in the cache. We

5. CONCLUSIONS AND FUTURE WORK 21

believe that it is possible to statically analyze the grammar and conservatively
detect attributes that are rarely accessed, and thus do not benefit from caching.
A selective caching strategy based on this analysis would lead to increased
efficiency.

A related optimization concerns flushing of attribute caches. The current
implementation never discards cached values, which can lead to high memory
consumption. However, it is safe to discard cached values, since the demand-
driven evaluator will re-compute the value the next time it is accessed. It would
thus be interesting to experiment with support for flushing caches to reduce
memory footprint.

The ReRAGs evaluation algorithm disables caching of attributes during
rewriting, since a transformation may cause attribute values to change. Incre-
mental evaluation of attributes would allow more attributes to be cached, and
re-evaluated only when needed by an incremental update. This could lead to
improved performance but also to better support for interactive systems based
on ReRAGs. However, incremental evaluation of attributes is quite tricky when
supporting references [Boy05] and rewriting would probably make it even
harder.

References

[ACH+06] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc: An extensible AspectJ
compiler.Transactions on Aspect-Oriented Software Development, 1(1),
2006.

[Alb91] Henk Alblas. Attribute evaluation methods. InProceedings on At-
tribute Grammars, Applications and Systems, pages 48–113, London,
UK, 1991. Springer.

[asp06] ajc in the AspectJ project, 1.5.0, 2006. http://www.eclipse.org/aspectj/.
[BA01] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting con-

cerns using composition filters.Commun. ACM, 44(10):51–57, 2001.
[Boy96] John Tang Boyland.Descriptional Composition of Compiler Compo-

nents. PhD thesis, University of California, Berkeley, September 1996.
Available as technical report UCB//CSD-96-916.

[Boy05] John Tang Boyland. Remote attribute grammars.J. ACM, 52(4):627–
687, 2005.

[BP01] Jonthan Bachrach and Keith Playford. The Java syntactic extender
(JSE). InOOPSLA ’01: Proceedings of the 16th ACM SIGPLAN con-
ference on Object oriented programming, systems, languages, and ap-
plications, pages 31–42, New York, NY, USA, 2001. ACM Press.

[Bra04] Gilad Bracha. Pluggable Type Systems. InOOPSLA’04 workshop on
revival of dynamic languages, 2004.

22 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

[Bru03] Kim B. Bruce. Some challenging typing issues in object-oriented lan-
guages.Electr. Notes Theor. Comput. Sci., 82(7), 2003.

[BV04] Martin Bravenboer and Eelco Visser. Concrete syntax for objects.
Domain-specific language embedding and assimilation without restric-
tions. In Douglas C. Schmidt, editor,Proceedings of the 19th ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Lan-
guages, and Applications (OOPSLA’04), pages 365–383, Vancouver,
Canada, October 2004. ACM Press.

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
Multijava: modular open classes and symmetric multiple dispatch for
java. InOOPSLA ’00: Proceedings of the 15th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and appli-
cations, pages 130–145, New York, NY, USA, 2000. ACM Press.

[Coo91] William R. Cook. Object-oriented programming versus abstract data
types. In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozen-
berg, editors,Foundations of Object-Oriented Languages, REX School/-
Workshop, Noordwijkerhout, The Netherlands, May 28 - June 1, 1990,
Proceedings, volume 489 ofLNCS, pages 151–178. Springer, 1991.

[Cor04] James R. Cordy. Txl: A language for programming language tools and
applications. InProceedings of the 4th Workshop on Language Descrip-
tions, Tools, and Applications (LDTA’04) at ETAPS 2004, 2004.

[DC90] G. D. P. Dueck and G. V. Cormack. Modular attribute grammars.Com-
put. J., 33(2):164–172, 1990.

[Dij82] Edsger W. Dijkstra.On the role of scientific thought, in Selected Writings
on Computing: A Personal Perspective. Springer, Secaucus, NJ, USA,
1982.

[dMBS00] Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class
attribute grammars.Informatica (Slovenia), 24(3), 2000.

[dMJW00] Oege de Moor, Simon L. Peyton Jones, and Eric Van Wyk. Aspect-
oriented compilers. InGCSE ’99: Proceedings of the First International
Symposium on Generative and Component-Based Software Engineer-
ing, pages 121–133, London, UK, 2000. Springer.

[ecl06] Eclipse java compiler, eclipse java development tools 3.1.2, 2006.
http://download.eclipse.org/eclipse/downloads/drops/R-3.1.2-
200601181600/

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable reference attributed gram-
mars. In Martin Odersky, editor,ECOOP 2004 - Object-Oriented Pro-
gramming, 18th European Conference, Oslo, Norway, June 14-18, 2004,
Proceedings, volume 3086 ofLNCS, pages 144–169. Springer, 2004.

[EH06a] Torbjörn Ekman and Görel Hedin. Modular name analysis for Java using
JastAdd. In Ralf Lämmel, João Saraiva, and Joost Visser, editors,Pro-
ceedings of the International Summer School on Generative and Trans-
formational Techniques in Software Engineering, Braga, Portugal, July
4–8, 2005, LNCS. Springer, 2006. To appear.

[EH06b] Torbjörn Ekman and Görel Hedin. Pluggable non-null types for java.
Technical report, 2006. Unpublished manuscript, http://jastadd.cs.lth.se.

5. CONCLUSIONS AND FUTURE WORK 23

[Ern04] Erik Ernst. The expression problem, scandinavian style. In Philippe
Lahire and et al., editors,Proceedings of MASPEGHI 2004, ISRN
I3S/RR-2004-15-FR, Oslo, Norway, June 2004. Laboratoire I3S, Sophia
Antipolis.

[Far86] Rodney Farrow. Automatic generation of fixed-point-finding evaluators
for circular, but well-defined, attribute grammars. InProceedings of
the SIGPLAN symposium on Compiler contruction, pages 85–98. ACM
Press, 1986.

[FMY92] Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. Composable
attribute grammars: Support for modularity in translator design and im-
plementation. In19th ACM Symp. on Principles of Programming Lan-
guages, pages 223–234, Albuquerque, NM, January 1992. ACM press.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. In
SIGPLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Com-
piler construction, pages 157–170, New York, NY, USA, 1984. ACM
Press.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Lan-
guage Specification Second Edition. Addison-Wesley, Boston, Mass.,
2000.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Lan-
guage Specification Third Edition. Addison-Wesley, Boston, Mass.,
2005.

[Hed89] Görel Hedin. An object-oriented notation for attribute grammars.
In the 3rd European Conference on Object-Oriented Programming
(ECOOP’89), BCS Workshop Series, pages 329–345. Cambridge Uni-
versity Press, July 1989.

[Hed94] Görel Hedin. An overview of door attribute grammars. In Peter A. Fritz-
son, editor,5th Int. Conf. on Compiler Construction (CC’ 94), volume
786 ofLNCS, pages 31–51, Edinburgh, April 1994.

[Hed00] Görel Hedin. Reference Attributed Grammars.Informatica (Slovenia),
24(3), 2000.

[HM03] Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler
construction system.Science of Computer Programming, 47(1):37–58,
2003.

[Jal83] Fahimeh Jalili. A general linear-time evaluator for attribute grammars.
SIGPLAN Not., 18(9):35–44, 1983.

[jav06] javac in java 2 platform, standard edition 5.0, 2006.
http://java.sun.com/j2se/1.5/.

[jik06] Jikes high performance java compiler, 1.22, 2006.
http://jikes.sourceforge.net/.

[Jou84] Martin Jourdan. An optimal-time recursive evaluator for attribute gram-
mars. InProceedings of the 6th Colloquium on International Symposium
on Programming, pages 167–178, London, UK, 1984. Springer.

24 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

[KFF98] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman.
Synthesizing object-oriented and functional design to promote re-use. In
ECOOP ’98: Proceedings of the 12th European Conference on Object-
Oriented Programming, pages 91–113, London, UK, 1998. Springer.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ.LNCS,
2072:327–355, 2001.

[Klo92] J.W. Klop. Term rewriting systems. InHandbook of Logic in Com-
puter Science, Volumes 1 (Background: Mathematical Structures) and
2 (Background: Computational Structures), Abramsky & Gabbay &
Maibaum (Eds.), Clarendon, volume 2. 1992.

[Knu68] Donald E. Knuth. Semantics of context-free languages.Mathematical
Systems Theory, 2(2):127–145, June 1968. Correction:Mathematical
Systems Theory5, 1, pp. 95-96 (March 1971).

[KPJ98] Uwe Kastens, Peter Pfahler, and Matthias Jung. The Eli System. In
Kai Koskimies, editor,Compiler Construction CC’98, volume 1383 of
LNCS, Portugal, April 1998. Springer.

[KW94] Uwe Kastens and William M. Waite. Modularity and reusability in at-
tribute grammars.Acta Informatica, 31(7):601–627, 1994.

[Lie96] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company, 1996.

[Mad80] Ole Lehrmann Madsen. On defining semantics by means of extended
attribute grammars. InSemantics-Directed Compiler Generation, Pro-
ceedings of a Workshop, pages 259–299, London, UK, 1980. Springer.

[McC64] John McCarthy. A formal description of a subset of ALGOL. In T. B.
Steele, Jr, editor,Formal Language Description Languages for Com-
puter Programming, Proceedings of an IFIP Working Conference, pages
1–12. Springer, 1964.

[MH03] Eva Magnusson and Görel Hedin. Circular reference attributed gram-
mars - their evaluation and applications.Electronic Notes in Theoretical
Computer Science, 82(3), 2003.

[MMP89] O. L. Madsen and B. Moller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. InProc. of the OOPSLA-
89: Conference on Object-Oriented Programming: Systems, pages 397–
406, Languages and Applications, New Orleans, LA, 1989.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for java. In Görel Hedin, editor,
Compiler Construction, 12th International Conference, CC 2003, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2622 ofLNCS, pages 138–152. Springer, 2003.

[NCM04] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. InOOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 99–115, New York,
NY, USA, 2004. ACM Press.

5. CONCLUSIONS AND FUTURE WORK 25

[OV05] Karina Olmos and Eelco Visser. Composing source-to-source data-flow
transformations with rewriting strategies and dependent dynamic rewrite
rules. In Rastislav Bodík, editor,Compiler Construction, 14th Interna-
tional Conference, CC 2005, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings, volume 3443 ofLNCS, pages 204–
220. Springer, 2005.

[OZ05] Martin Odersky and Matthias Zenger. Independently extensible solu-
tions to the expression problem. InProc. FOOL 12, January 2005.
http://homepages.inf.ed.ac.uk/wadler/fool .

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules.Commun. ACM, 15(12):1053–1058, 1972.

[PH97] A. Poetzsch-Heffter. Prototyping realistic programming languages
based on formal specifications.Acta Informatica, 34(10):737–772,
1997.

[PJ98] Jens Palsberg and C. Barry Jay. The essence of the visitor pattern. In
COMPSAC ’98: Proceedings of the 22nd International Computer Soft-
ware and Applications Conference, pages 9–15, Washington, DC, USA,
1998. IEEE Computer Society.

[Rey75] John C. Reynolds. User-defined types and procedural data as com-
plementary approaches to data abstractions. InS. A. Schuman, editor,
New Directions in Algorithmic Languages. IFIP Working Group 2.1 on
Algol, INRIA, 1975. Reprinted in: D. Gries, editor, "Programming-
Methodology", Springer, 1978, and in C. A. Gunter and J. C. Mitchell,
editors, "Theoretical Aspects of Object-Oriented Programming", MIT
Press, 1994.

[RT84] Thomas Reps and Tim Teitelbaum. The synthesizer generator. InACM
SIGSOFT/SIGPLAN Symp. on Practical Software Development Envi-
ronments, pages 42–48. ACM press, Pittsburgh, PA, April 1984.

[Sar99] Joao Saraiva.Purely functional implementation of attribute grammars.
PhD thesis, Utrecht University, The Netherlands, 1999.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based de-
signs.ACM Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[SS99] Joao Saraiva and Doaitse Swierstra. Generic Attribute Grammars. In
D. Parigot and M. Mernik, editors,Second Workshop on Attribute Gram-
mars and their Applications, WAGA’99, pages 185–204, Amsterdam,
The Netherlands, 1999. INRIA rocquencourt.

[TCIK00] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Kil-
lijian. Openjava: A class-based macro system for java. InProceedings
of the 1st OOPSLA Workshop on Reflection and Software Engineering,
pages 117–133, London, UK, 2000. Springer.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton
Jr. N degrees of separation: Multi-dimensional separation of concerns.
In International Conference on Software Engineering, pages 107–119,
1999.

26 CHAPTER 1. EXTENSIBLE COMPILER CONSTRUCTION

[Tor04] Mads Torgersen. The expression problem revisited. In Martin Oder-
sky, editor,ECOOP 2004 - Object-Oriented Programming, 18th Euro-
pean Conference, Oslo, Norway, June 14-18, 2004, Proceedings, volume
3086 ofLNCS, pages 123–143. Springer, 2004.

[vdBvDH+01] Mark G. J. van den Brand, Arie van Deursen, Jan Heering, H. A.
de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen,
Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and
Joost Visser. The ASF+SDF Meta-environment: A Component-Based
Language Development Environment. InCC ’01: Proceedings of the
10th International Conference on Compiler Construction, pages 365–
370, London, UK, 2001. Springer.

[Vis97] Eelco Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam, July
1997.

[Vis01] Eelco Visser. Stratego: A language for program transformation based
on rewriting strategies. System description of Stratego 0.5. InProceed-
ings of Rewriting Techniques and Applications (RTA’01), volume 2051
of LNCS, pages 357–361. Springer, 2001.

[Vis05] Eelco Visser. A survey of strategies in rule-based program transforma-
tion systems.Journal of Symbolic Computation, 40(1):831–873, 2005.
Special issue on Reduction Strategies in Rewriting and Programming.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-
enne Gagnon, and Phong Co. Soot - a Java Optimization Framework. In
Proceedings of CASCON 1999, pages 125–135, 1999.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. InProceedings of the SIGPLAN ’89 Programming language
design and implementation. ACM Press, 1989.

[VWMBK02] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. For-
warding in attribute grammars for modular language design. InPro-
ceedings of Compiler Construction Conference 2002, volume 2304 of
LNCS, pages 128–142. Springer, 2002.

[Wad98] Phil Wadler. The expression problem. Posted on the Java Genericity
mailing list, 1998.

[Zen04] Matthias Zenger.Programming Language Abstractions for Extensible
Software Components. Ph.D. thesis, Department of Computer Science,
EPFL, Lausanne, 2004.

[ZO01a] Matthias Zenger and Martin Odersky. Extensible algebraic datatypes
with defaults. InICFP ’01: Proceedings of the sixth ACM SIGPLAN
international conference on Functional programming, pages 241–252,
New York, NY, USA, 2001. ACM Press.

[ZO01b] Matthias Zenger and Martin Odersky. Implementing extensible compil-
ers. InWorkshop on Multiparadigm Programming with Object-Oriented
Languages, Budapest, Hungary, June 2001.

Paper I

Rewritable Reference Attributed Grammars

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Rewritable Reference Attributed Grammars

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract This paper presents an object-oriented technique for rewrit-
ing abstract syntax trees in order to simplify compilation. The tech-
nique, Rewritable Reference Attributed Grammars (ReRAGs), is com-
pletely declarative and supports both rewrites and computations through
attributes. We have implemented ReRAGs in our aspect-oriented com-
piler compiler tool JastAdd II. Our largest application is a complete
static-semantic analyzer for Java 1.4. ReRAGs uses three synergistic
mechanisms for supporting separation of concerns: inheritance for model
modularization, aspects for cross-cutting concerns, and rewrites that al-
low computations to be expressed on the most suitable model. This al-
lows compilers to be written in a high-level declarative and modular
fashion, supporting language extensibility as well as reuse of modules
for different compiler-related tools. We present the ReRAG formalism,
its evaluation algorithm, and examples of its use. Initial measurements
using a subset of the Java class library as our benchmarks indicate that
our generated compiler is only a few times slower than the standard
compiler, javac, in J2SE 1.4.2 SDK. This shows that ReRAGs are al-
ready useful for large-scale practical applications, despite that optimiza-
tion has not been our primary concern so far.

1 Introduction

Reference Attributed Grammars (RAGs) have proven useful in describing and
implementing static-semantic checking of object-oriented languages [Hed00].
These grammars make use ofreference attributesto capture non-local tree
dependences like variable decl-use, superclass-subclass, etc., in a natural, yet
declarative, way.

The RAG formalism is itself object-oriented, viewing the grammar as a
class hierarchy and the abstract syntax tree (AST) nodes as instances of these
classes. Behavior common to a group of language constructs can be specified
in superclasses, and can be further specialized or overridden for specific con-
structs in the corresponding subclasses.

In plain RAGs, the complete AST is built prior to attribute evaluation.
While this works well for most language constructs, there are several cases

30

where the most appropriate tree structure can be decided onlyafter evaluation
of some of the attributes. I.e., the context-free syntax is not sufficient for build-
ing the desired tree, but contextual information is needed as well. By providing
means for rewriting the AST based on a partial attribution, the specification of
the remaining attribution can be expressed in a simpler and more natural way.

This paper presents ReRAGs, Rewritable Reference Attributed Grammars,
which extend RAGs with the capability to rewrite the AST dynamically, dur-
ing attribute evaluation, yet specified in a declarative way. ReRAGs form a
conditional rewrite system where conditions and rewrite rules may use contex-
tual information through the use of attributes. We have implemented a static-
semantics analyzer for Java using this technique. Based on this experience we
exemplify typical cases where rewriting the AST is useful in practice.

ReRAGs are closely related to Higher-ordered Attribute Grammars (HAGs)
[VSK89], [Sar99] and to the technique of forwarding in HAGs [VWMBK02].
A major difference lies in the object-oriented basis of ReRAGs, where refer-
ence attributes are kept as explicit links in the tree and subtrees are rewritten
in place. HAGs, in contrast, have a functional programming basis, viewing the
AST as well as its attributes as structured values without identity.

ReRAGs also have similarities to tree transformation systems like Stratego
[Vis01b], ASF+SDF [vdBea01], and TXL[Cor04], but improves data acquisi-
tion support through the use of RAGs instead of embedding contextual data in
rewrite rules. Rewrite application strategies differ in that ReRAGs only support
the above described declarative approach while the above mentioned systems
support user defined strategies. In Stratego and AST+SDF the rewrite applica-
tion strategy is specified through explicit traversal strategies and in TXL the
rewrite application order is implicitly defined as part of the functional decom-
position of the transformation ruleset.

The plain RAG evaluation scheme is demand driven, evaluating an attribute
only when its value is read. The ReRAG evaluation scheme extends this basic
approach by rewriting parts of the AST as needed during the evaluation. We
have designed different caching strategies to achieve performance optimization
and evaluated the approach using a subset of the J2SDK 1.4.2 class library as
our benchmark suite.

ReRAGs are implemented in our tool JastAdd II, a successor to our previ-
ous tool JastAdd that supported plain RAGs [HM03]. Several grammars have
been developed for JastAdd II, the largest one being our Java grammar that
implements static-semantics checking as specified in the Java Language Spec-
ification [GJSB00].

In addition to RAG/ReRAG support, the JastAdd systems support static
aspect-oriented specification and integration with imperative Java code. Speci-
fications are aspect-oriented in that sets of attributes and equations concerning

2. TYPICAL EXAMPLES OF AST REWRITING 31

a particular aspect, such as name analysis, type checking, code generation, etc.,
can be specified in modules separate from the AST classes. This is similar to
the static introduction feature of AspectJ [KHH+01] where fields, methods,
and interface implementation clauses may be specified in modules separate
from the original classes.

Integration with imperative Java code is achieved by simply allowing or-
dinary Java code to read attribute values. This is useful for many problems
that are more readily formulated imperatively than declaratively. For example,
a code emission module may be written as ordinary Java code that reads at-
tribute values from the name and type analysis in order to emit the appropriate
code. These modules are also specified as static introduction-like aspects that
add declarations to the existing AST classes. The ReRAG examples given in
this paper are taken from our experience with the Java grammar and utilize the
separation of concerns given by the aspect-oriented formulation, as well as the
possibility to integrate declarative and imperative modules.

The rest of this paper is structured as follows. Section 2 introduces some
typical examples of when AST rewriting is useful. Section 3 gives background
information on RAGs and ASTs. Section 4 introduces ReRAG rewriting rules.
Section 5 discusses how ReRAGs are evaluated. Section 6 describes the algo-
rithms implemented in JastAdd II. Section 7 discusses ReRAGs from both an
application and a performance perspective. Section 8 compares with related
work, and Section 9 concludes the paper.

2 Typical examples of AST rewriting

From our experience with writing a static-semantics analyzer for Java, we have
found many cases where it is useful to rewrite parts of the AST in order to
simplify the compiler implementation. Below, we exemplify three typical situ-
ations.

2.1 Semantic specialization

In many cases the same context-free syntax will be used for language constructs
that carry different meaning depending on context. One example is names in
Java, likea.b , c.d , a.b.c , etc. These names all have the same general syntac-
tic form, but can be resolved to a range of different things, e.g., variables, types,
or packages, depending on in what context they occur. During name resolution
we might find out thata is a class and subsequently thatb is a static field.
From a context-free grammar we can only build genericNamenodes that must
capture all cases. The attribution rules need to handle all these cases and there-
fore become complex. To avoid this complexity, we would like to doseman-
tic specialization. I.e., we would like to replace the generalNamenodes with

32

more specialized nodes, likeClassName andFieldName , as shown in Figure 1.
Other computations, like type checking, optimization, and code generation, can
benefit from this rewrite by specifying different behavior (attributes, equations,
fields and methods) in the different specialized classes, rather than having to
deal with all the cases in the generalNameclass.

Figure 1. Semantic specialization of name references.

2.2 Make implicit behavior explicit

A language construct sometimes hasimplicit behaviorthat does not need to be
written out by the programmer explicitly. An example is the implicit construc-
tors of Java classes. If a class in Java has no constructors, this corresponds to an
implicit constructor taking no arguments. The implicit behavior can be made
explicit by rewriting the AST, see Figure 2. This simplifies other computations,
like code generation, which do not have to take the special implicit cases into
account.

2.3 Eliminate shorthands

Some language constructs are shorthands for specific combinations of other,
more basic, constructs. For example, string concatenation in Java can be written
using the binary addition operator (e.g.,a+b), but is actually implemented as
an invocation of theconcat method in theString class (e.g.,a.concat(b)).
The AST can be rewritten to eliminate such shorthands, as shown in Figure 3.
The AST now reflects the semantics rather than the concrete syntax, which
simplifies other computations like optimizations and code generation.

3. BACKGROUND 33

Figure 2. The implicit constructor in class “A” is made explicit.

Figure 3. Eliminate shorthand and reflect the semantic meaning instead.

3 Background

3.1 AGs and RAGs

ReRAGs are based on Reference Attributed Grammars (RAGs) which is an
object-oriented extension to Attribute Grammars (AGs) [Knu68]. In plain AGs
each node in the AST has a number ofattributes, each defined by anequation.
The right-hand side of the equation is an expression over other attribute values
and defines the value of the left-hand side attribute. In a consistently attributed
tree, all equations hold, i.e., each attribute has the same value as the right-hand
side expression of its defining equation.

Attributes can besynthesizedor inherited. The equation for a synthesized
attribute resides in the node itself, whereas for an inherited attribute, the equa-
tion resides in the parent node. From an OO perspective we may think of at-
tributes as fields and of equations as methods for computing the fields. How-
ever, they need not necessarily be implemented that way. Note that the term
inherited attributerefers to an attribute defined in the parent node, and is thus
a concept unrelated to the inheritance of OO languages. In this article we will
use the terminherited attributein its AG meaning.

Inherited attributes are used for propagating information downwards in
the tree (e.g., propagating information about declarations down to use sites)
whereas synthesized attributes can be accessed from the parent and used for

34

propagating information upwards in the tree (e.g. propagating type informa-
tion up from an operand to its enclosing expression).

RAGs extend AGs by allowing attributes to have reference values, i.e., they
may be object references to AST nodes. AGs, in contrast, only allow attributes
to have primitive or structured algebraic values. This extension allows very
simple and natural specifications, e.g., connecting a use of a variable directly
to its declaration, or a class directly to its superclass. Plain AGs connect only
through the AST hierarchy, which is very limiting.

3.2 The AST class hierarchy

The nodes in an AST are viewed as instances of Java classes arranged in a
subtype hierarchy. An AST class correponds to a nonterminal or a production
(or a combination thereof) and may define a number of children and their de-
clared types, corresponding to a production right-hand side. In an actual AST,
each node must betype consistentwith its parent according to the normal type-
checking rules of Java. I.e., the node must be an instance of a class that is the
same or a subtype of the corresponding type declared in the parent. Shorthands
for lists, optionals, and lexical items are also provided. An example definition
of some AST classes in a Java-like syntax is shown below.

// Expr corresponds to a nonterminal
ast Expr ;
// Add corresponds to an Expr production
ast Add extends Expr ::= Expr leftOp , Expr r ightOp ;
// Id corresponds to an Expr production, id is a token
ast Id extends Expr ::= <Str ing id >;

Aspects can be specified that define attributes, equations, and ordinary Java
methods of the AST classes. An example is the following aspect for very simple
type-checking.

// Declaration of an inherited attribute env of Expr nodes
inh Env Expr .env ();
// Declaration of a synthesized attribute type of Expr
// nodes and its default equation
syn Type Expr . type () = TypeSystem . UNKNOWN ;
// Overriding the default equation for Add nodes
eq Add . type () = TypeSystem . INT ;
// Overriding the default equation for Id nodes
eq Id . type () = env (). lookup (id ()). type ();

The corresponding Java API is shown in the following UML diagram. It
includes methods for accessing child nodes likeleftOp andrightOp , tokens

4. REWRITE RULES 35

like id and user-defined attributes likeenv and type . This API can be used
freely in the right-hand sides of equations, as well as by ordinary Java code.

4 Rewrite rules

ReRAGs extend RAGs by allowing rewrite rules to be written that automati-
cally and transparently rewrite nodes. The rewriting of a node is triggered by
the first access to it. Such an access could occur either in an equation in the
parent node, or in some imperative code traversing the AST. In either case,
the access will be captured and a reference to the final rewritten tree will be
the result of the access. This way, the rewriting process is transparent to any
code accessing the AST. The first access to the node will always go via the
reference to it in the parent node. Subsequent accesses may go via reference
attributes that refer directly to the node, but at this point, the node will already
be rewritten to its final form.

A rewrite step is specified by a rewrite rule that defines the conditions when
the rewrite is applicable, as well as the resulting tree. For a given node, there
may be several rewrite rules that apply, which are then applied in a certain
order. It may also be the case that after the application of one rewrite rule, more
rewrite rules become applicable. This allows complex rewrites to be broken
down into a series of simple small rewrite steps.

A rewrite rule for nodes of classN has the following general form:

rewrite N {
when (cond)
to R result ;

}

This specifies that a node of typeN may be replaced by another node of
typeR as specified in the result expressionresult. The rule is applicable if the
(optional) boolean conditioncondholds and will be applied if there are no other
applicable rewrite rules of higher priority (priorites will be discussed later).
Furthermore, all rewrite rules must be type consistent in that the replacement
will result in a type consistent AST regardless of the context of the node, as
will be discussed in Section 4.2. In a consistently attributed tree, all equations
hold and all rewrite conditions are false.

36

4.1 A simple example

As an example, consider replacing anAdd node with aStringAdd node in case
both operands are strings1. This can be done as follows.

ast StringAdd extends Expr ::= Expr leftOp , Expr r ightOp ;
rewrite Add {

when (chi ldType (). equals (TypeSystem . STRING))
to StringAdd new StringAdd (leftOp () , r ightOp ());

}
syn Type Add . chi ldType () = ... ;

Note that in the creation of the new right-hand side, the previous children
leftOp() andrightOp() are used. These accesses might trigger rewrites of
these nodes in turn.

Avoiding repeated applications. StringAdd nodes might have much in com-
mon withAdd nodes, and an alternative way of handling this rewrite would be
to defineStringAdd as a subclass ofAdd, rather than as a sibling class. In this
case, the rewrite should apply to allAdd nodes, except those that are already
StringAdd nodes, and can be specified as follows.

ast StringAdd extends Add ;
rewrite Add {

when (chi ldType (). equals (TypeSystem . STRING)
and !(this instanceOf Str ingAdd))

to StringAdd new StringAdd (leftOp () , r ightOp ());
}
syn Type Add . chi ldType () = ... ;

Note that the condition includes a type test to make sure that the rule is not
applied to nodes that are already of type StringAdd. This is necessary since the
rule would otherwise still be applicable after the rewrite, resulting in repeated
applications of the same rule and thereby nontermination. In general, whenever
the rewrite results in the same type or a subtype, it is advicable to reflect over if
the condition might hold also after the rewrite and in that case if the condition
should be tightened in order to avoid nontermination.

Solutions that refactor the AST class hierarchy.A third alternative solution
could be to keepAdd andStringAdd as sibling classes and to factor out the
common parts into a superclass as follows.

1 In Section 4.4 we will instead rewrite addition of strings as method calls.

4. REWRITE RULES 37

ast Expr :
ast GeneralAdd extends Expr ::= Expr leftOp , Expr r ightOp ;
ast Add extends GeneralAdd ;
ast StringAdd extends GeneralAdd ;

This solution avoids the type test in the rewrite condition. However, it re-
quires that the grammar writer has access to the original AST definition ofAdd
so that it can be refactored.

4.2 Type consistency

As mentioned above, rules must betype consistent, i.e., the replacing node
must always be type consistent with any possible context. This is checked stat-
ically by the JastAdd II system. Consider the rewrite rule that replaces anAdd
node by a siblingStringAdd node using the grammar described above. The
expected child type for all possible contexts forAdd nodes isExpr . Since both
Add andStringAdd are subclasses ofExpr the rule is type consistent. How-
ever, consider the addition of the following AST class.

ast A ::= Add:

In this case the rewrite rule would not be type consistent since the rewrite
could result in anA node having aStringAdd node as a child although anAdd
node is expected. Similarly, in the second rewrite example in Section 4.1 where
StringAdd is a subclass ofAdd, that rewrite rule would not be type consistent
if the following classes were part of the AST grammar.

ast B ::= C:
ast C extends Add ;

In this case, the rewrite rule could result in aB node having aStringAdd
node as a child which would not be type consistent.

Theorem 1. A rulerewriteA...toB... is type consistent if the following con-
ditions hold: Let C be the first common superclass of A and B. Furthermore,
let D be the set of classes that occur on the right-hand side of any production
class. The rule is type consistent as long as there is no class D inD that is a
subclass of C, i.e., D6< C.

Proof. The rewritten node will always be in a context where its declared type
D is either the same asC, or a supertype thereof, i.e.C≤ D. The resulting node
will be of a typeR≤ B, and sinceB ≤ C, then consequentlyR≤ D, i.e., the
resulting tree will be type consistent. ut

38

4.3 Rewriting descendent nodes

The tree resulting from a rewrite is specified as an expression which may freely
access any of the current node’s attributes and descendents. Imperative code is
permitted, using the syntax of a Java method body that returns the resulting
tree. This imperative code may reuse existing parts in the old subtree in order
to build the new subtree, but may have no other externally visible side effects.
This can be used to rewrite descendent nodes, returning an updated version of
the node itself as the result.

As an example, consider a Java class declarationclass A { ... } . Here,
A is given no explicit superclass which is equivalent to giving it the superclass
Object . In order to simplify further attribution (type checking, etc.), we would
like to change the AST and insert the superclass as an explicit node. This can
be done by the following rewrite rule:

ast ClassDecl extends Decl ::=
< Str ing classId >, [TypeRef superClass] , Body body ;

rewrite ClassDecl {
when (! hasSuperClass () && ! name (). equals (" Object "))
to ClassDecl {

setSuperClass (new TypeRef (" Object "));
return this ;

}
}

Note that the rewrite rule updates a descendent node and returns itself, as
illustrated in the figure below.

As seen from the specification above, the condition for doing this rewrite is
that the class has no explicit superclass already, and that it is another class than
the root classObject . The result type is the same as the rewritten type, which
means we should reflect on possible nontermination due to repeated applica-
tions of the same rule. However, it is clear that the rewrite will not be applicable
a second time since the rewrite will result in a node where the condition is no
longer met.

4.4 Combining rules

It is often useful to rewrite a subtree in several steps. Consider the following
Java-like expression:a+"x"

4. REWRITE RULES 39

Supposing thata is a reference to an non-nullObject subclass instance,
the semantic meaning of the expression is to converta into a string, convert the
string literal"x" into a string object, and to concatenate the two strings by the
methodconcat . It can thus be seen as a shorthand for the following expression.

a. toStr ing (). concat (new String (new char [] { ’x ’}))

To simplify code generation we would like to eliminate the shorthand no-
tation by rewriting the AST. This can be accomplished by a number of rewrite
rules, each taking care of a single subproblem:

1. replace the right operand of an Add node by a call totoString if the left
operand is a string, but the right is not

2. replace the left operand of an Add node by a call totoString if the right
operand is a string, but the left is not

3. replace an Add node by a method call toconcat if both operands are
strings

4. replace a string literal by an expression creating a new string object

Suppose the originalAdd node is accessed from its parent. This will cause
the AST to be rewritten in the following steps. First, it will be checked which
rules are applicable forAdd. This will involve accessing its left and right oper-
ands, which triggers the rewrite of these nodes in turn. In this case, the right
operand will be rewritten according to rule 4. It is now found that rule 2 is ap-
plicable forAdd, and it is applied, replacing the left operand by aMethodCall .
This causes rule 3 to become applicable forAdd, replacing it too by aMethod -
Call . Now, no more rules are applicable for the node and a reference is re-
turned to the parent. Figure 4 illustrates the steps applied in the rewrite.

Rule priority. In general, it is possible that more than one rule applies to
a node. Typically, this happens when there are two rewrite rules in a node,
each rewriting different parts of the substructure of the node. For example, in
a class declaration there may be one rewrite rule that takes care of making an
implicit constructor explicit, and another rule making an implicit superclass
explicit. Both these rules can be placed in theClassDecl AST class, and may
be applicable at the same time. In this particular case, the rules areconfluent,
i.e., they can be applied in any order, yielding the same resulting tree. So far,
we have not found the practical use for nonconfluent rules, i.e., where the order
of application matters. However, in principle they can occur, and in order to
obtain a predictable result also in this case, the rules are prioritized: Rules in
a subclass have priority over rules in superclasses. For rules in the same class,
the lexical order is used as priority.

40

Initial AST for thea + “x” expression

Rule 4: Replace the“x” string literal by a new string instance expression
new String(new char[] {’x’}) .

Rule 2: Make the implicit Object to String type conversion explicit by adding a
“toString” method call.

Rule 3: Replace add by a method call to“concat” .

Figure 4. Combine several rules to eliminate the shorthand for String addition and lit-
erals in a Java like language.

5. RERAG EVALUATION 41

5 ReRAG evaluation

5.1 RAG evaluation

An attribute evaluator computes the attribute values so that the tree becomes
consistently attributed, i.e., all the equations hold. JastAdd uses a demand-
driven evaluation mechanism for RAGs, i.e., the value of an attribute is not
computed until it is read [HM03]. The implementation of this mechanism is
straight-forward in an object-oriented language [Hed89]. Attributes are imple-
mented as methods in the AST classes where they are declared. Accessing
an attribute is done simply by calling the corresponding method. Also equa-
tions are translated to methods, and are called as appropriate by the attribute
methods: The method implementing an inherited attribute will call an equation
method in the parent node. The method implementing a synthesized attribute
calls an equation method in the node itself. JastAdd checks statically that all
attributes in the grammar have a defining equation, i.e., that the grammar is
well-formed. For efficiency, the value of an attribute is cached in the tree the
first time it is computed. All tree nodes inherit generic accessor methods to its
parent and possible children through a common superclass. As a simple exam-
ple, consider the following RAG fragment:

ast Expr ;
ast Id extends Expr ::= <Str ing id >;
inh Env Expr . env ();
syn Type Expr . type ();
eq Id . type () = env (). lookup (id ()). type ();

This is translated to the following Java code:

class Expr extends ASTNode { // inherit generic node access
Env env_value = null ; // cached attribute value
boolean env_cached = false ; // flag true when cached
Env env () { // method for inherited attribute

if (! env_cached) {
env_value = ((HasExprSon) parent ()). env_eq (this);
env_cached = true ; }

return env_value ; }
Type type_value = null ; // cached attribute value
boolean type_cached = false ; // flag true when cached
Type type () { // method for synthesized attribute

if (! type_cached) {
type_value = type_eq ();
type_cached = true ; }

return type_value ; }
abstract Type type_eq (); }

42

interface HasExprSon {
Env env_eq (Expr son); }

class Id extends Expr {
Str ing id () { ... }
Type type_eq () { // method for equation defining

return env (). lookup (id ()). type () // synthesized attr.
} }

This demand-driven evaluation scheme implicitly results in topological-
order evaluation (evaluation order according to the attribute dependences). See
[Hed00] for more details.

Attribute evaluation using this scheme will often follow complex tree traver-
sal patterns, often visiting the same node multiple times in order to evaluate all
the attributes that a specific attribute depends on. For example, consider the
evaluation of the attributeId.typeabove. This involves finding the declaration
of the identifier, then finding the declaration of the type of the identifier, and
during this process, possibly finding the declarations of classes in the super-
class chain where these declarations may be located. In this process, the same
block nodes and declaration nodes may well be visited several times. However,
once a certain attribute is evaluated, e.g., the reference from a class to its su-
perclass, that computation does not need to be redone since the attribute value
is cached. The traversals do therefore not always follow the tree structure, but
can also follow reference attributes directly, e.g., from subclass to superclass
or from variable to declaration.

5.2 Basic rewrite strategy

To handle ReRAGs, the evaluator is extended to rewrite trees in addition to
evaluating attributes, resulting in a consistently attributed tree where all equa-
tions hold and all rewrite conditions are false. A demand-driven rewriting strat-
egy is used. When a tree node is visited, the node is rewritten iteratively. In each
iteration, the rule conditions are evaluated in priority order, and the first appli-
cable rule will be applied, replacing the node (or parts of the subtree rooted at
the node). The next iteration is applied to the root of the new subtree. The iter-
ation stops when none of the rules are applicable (all the conditions are false),
and a reference to the resulting subtree is then returned to the visiting node.
The subtree may thus be rewritten in several steps before the new subtree is
returned to the visiting node. Since the rewrites are applied implicitly when
visiting a node, the rewrite is transparent from a node traversal point of view.

The figure below shows how the child nodeB of A is accessed for the first
time and iteratively rewritten into the resulting nodeD that is returned to the
parentA. The subscriptv indicates that a node has been visited andr that a

5. RERAG EVALUATION 43

rewrite is currently being evaluated. WhenB is visited a rewrite is triggered
and the node is rewritten to aC node that in turn is rewritten to aD node. No
rewrite conditions for theD node are true, and the node is returned to the parent
A that need not be aware of the performed rewrite.

5.3 Nested and multi-level rewrites

When evaluating a condition or a result expression in a rewrite rule, attributes
may be read that trigger a visit to another node. That visit may in turn trigger
a second rewrite that is executed before the first may continue its evaluation.
This nesting of rewrites results in several rewrites being active at the same
time. Since attributes may reference distant subtrees, the visited nodes could
be anywhere in the AST, not necessarily in the subtree of the rewritten tree.

The following figure shows an example of nested rewrites. The subscript
v indicates that a node has been visited andr that a rewrite is currently being
evaluated. The rewrites are numbered in the order they started.

An initial rewrite, r1, is triggered whenA visits its childB in stageI. A
visit to C, that is caused by accessing a synthesized attribute during rewrite
condition checking, triggers a second rewriter2 in stageII . That rewrite trig-
gers a visit to a distant nodeD by reading an inherited attribute and initiates
a third rewriter3 in stageIII . When no conditions inD are true the result of

44

the inherited attribute is calculated and returned toC in stageIV. The synthe-
sized attribute is calculated and returned toB in stageV. The resulting node
B is finally returned toA in stageVI. Notice that the rewrites terminate in the
opposite order that they were initiated.

As discussed in Section 5.1, most non-trivial attribute grammars are multi-
visit in that a node may have to be visited multiple times to evaluate an attribute.
A common situation is when a child node has an inherited attribute, and the
equation in the parent node depends on a synthesized attribute that visits the
child node again. The situation is illustrated in the figure below.A visits B
and a rewrite is initiated in stageI. During condition evaluation the inherited
attributey() is read andA is visited to evaluate its equation in stageII . That
equation contains the synthesized attributex() that in turn depends onz() in B
and a second visit is initiated in stageIII .

ast A ::= B child ;
inh Type B.y ();
eq A. chi ld (). y () = x ();
syn Type A.x () = chi ld (). z ();
syn Type B.z () = ... ;

Such multi-visits complicate the rewrite and attribute evaluation process
somewhat. Should the second visit to a node that is being rewritten start a
second rewrite? No. The attributes read in a node that is being rewritten should
reflect the current tree structure. Otherwise, the definition of rewrites would
be circular and evaluation would turn into an endless loop. Therefore, when
visiting a node that is already being rewritten, the current node is returned and
no new rewrite is triggered.

Note that attribute values that depend on nodes that are being rewritten,
might have different values during the rewrite than they will have in the fi-
nal tree. Therefore, such attributes will not be cached until all the nodes they
depend on have reached their final form. We will return to this issue in Sec-
tion 6.3.

Note also that a node may well be rewritten several times, provided that the
previous rewrite has completed. This can happen if the rewrites are triggered by
the rewriting of another node. For example, suppose we are rewriting a nodeA.
During this process, we visit its son nodeSwhich is then rewritten toS′. After
this rewrite ofS, the conditions ofS′ are all false (the rewrite of S completes).
We then complete one iteration of rewritingA, replacing it with a new node
A′(but keeping the sonS′). In the next iteration of rewritingA′, it may be found
that S′ needs to be rewritten again since the conditions ofS′ may give other
results after replacingA by A′. This will also be discussed more in Section 6.2.

6. IMPLEMENTATION ALGORITHM 45

6 Implementation algorithm

6.1 Basic algorithm

As discussed in Section 3.2, a Java class is generated for each node type in
the AST. All classes in the class hierarchy descend from the same superclass,
ASTNode, providing generic traversal of the AST by the genericparent()and
child(int index)methods. These methods are used in the implementation of
attribute and equation methods, as discussed in Section 5.1.

We have implemented our rewriting algorithm by extending the existing
JastAdd RAG evaluator as an AspectJ [KHH+01] aspect. In particular, the
child method is extended to trigger rewrites when appropriate. To start with,
we consider the case when no RAG attributes are cached. The handling of
cached attributes in combination with rewriting is treated in Section 6.3.

Rewrite rules for each node type are translated into a corresponding Java
method,rewriteTo(), that checks rewrite rule conditions and returns the pos-
sibly rewritten tree. This method is iteratively invoked until no conditions are
true. If all conditions in one node’s rewriteTo() method are false, then rewriteTo()
in the node’s superclass is invoked. The generated Java method for the first ex-
ample in Section 4 is shown below.

ASTNode Add . rewriteTo () {
if (ch i ldType (). equals (TypeSystem . STRING))

return new StringAdd (leftOp () , r ightOp ())
return super . rewri teTo ();

}

To determine when no conditions are true and iteration should stop, a flag
is set when the rewriteTo() method in ASTNode is reached, indicating that no
overriding rewriteTo method has calculated a result tree. A flag is used since
a simple comparison of the returned node is not sufficient because the rewrite
may have rewritten descendent nodes only. In order to handle nested rewrites,
a stack of flags is used.

Figure 5 shows an AspectJ aspect implementing the above described be-
haviour:

(1) The stack used to determine when no conditions are true
(2) Iteratively apply rewrite until no conditions are true
(3) Pushfalseon the stack to guess that a rewrite will occur
(4) Bind the rewritten tree as a child to the parent node.
(5) Set top value on stack totrue when rewriteTo in ASTNode is reached (no

rewrite occurred)
(6) Define a pointcut when the child method is called.
(7) Each call to child is extended to also call rewrite.

46

public aspect Rewrite {
(1) protected static Stack noRewrite = new Stack ();
(2) ASTNode rewrite (ASTNode parent , ASTNode child ,

int index) {
do {

(3) noRewrite . push (Boolean . FALSE);
chi ld = child . rewriteTo ();

(4) parent . setChi ld (index , c hi ld);
} while (noRewrite .pop () == Boolean . FALSE);
return chi ld ; }

(5) ASTNode ASTNode . rewr iteTo () {
noRewrite . pop ();
noRewrite . push (Boolean . TRUE);
return this ; }

(6) pointcut chi ld (int index , ASTNode parent) :
call (ASTNode ASTNode . chi ld (int)) &&
args (index) && target (parent);

(7) ASTNode around (int index , ASTNode parent) :
child (index , parent) {

ASTNode chi ld = proceed (index , parent):
return rewrite (parent , child , index); }

}

Figure 5. Aspect Rewrite: Iteratively rewrite each visited tree node

As discussed in Section 5.3 a tree node currently in rewrite may be visited
again during that rewrite when reading attributes. When a node that is in rewrite
is visited, the current tree state should be returned instead of initiating a new
rewrite. That behaviour is implemented in the aspect shown in Figure 6:

(1) A flag, inRewrite, is added to each node to indicate whether the node is in
rewrite or not.

(2) Add advice around each call to the rewriteTo method.
(3) The flag is set when a rewrite is initiated.
(4) The flag is reset when a rewrite is finished.
(5) Add advice around the rewrite loop in the previous aspect.
(6) When a node is in rewrite then the current tree is returned instead of initi-

ating a new rewrite.

6.2 Optimization of final nodes

As mentioned, a node may be rewritten several times. We are interested in
detecting when no further rewriting of it is possible so we know that it has

6. IMPLEMENTATION ALGORITHM 47

public aspect ReVisit {
(1) boolean ASTNode . inRewri te = false ;
(2) ASTNode around (ASTNode child)

: execution (ASTNode ASTNode +. rewriteTo ())
&& target (child) {

(3) chi ld . inRewrite = true ;
ASTNode newChild = proceed (child);

(4) chi ld . inRewrite = false ;
return newChild ; }

(5) ASTNode around (ASTNode child)
: execution (ASTNode Rewrite . rewrite (ASTNode , ASTNode ,

int)
&& args (* , child , *) {

(6) if (child . inRewr ite)
return child ;

return proceed (child);
}

Figure 6. Aspect ReVisit: Pass through re-visit to a node already in rewrite

reached its final identity. By detecting final nodes, we can avoid the needless
checking of their rewrite conditions (since they will all be false). This perfor-
mance improvement can be significant for nodes with expensive conditions,
e.g., when extracting a property by visiting all the children of the node. We can
also use the concept of final nodes to cache attributes, as will be discussed in
Section 6.3.

Definition 1. A node is said to befinal when i) all its rewrite conditions eval-
uate to false, and ii) future evaluations of its rewrite conditions cannot yield
other values, and iii) it cannot be rewritten by any other node.

Clearly, no further rewriting of final nodes is possible: i) and ii) guarantee
that the node itself cannot trigger any rewriting of it, and iii) that it cannot be
rewritten by any other node.

To find out when a node is final, we first recall (from Section 4) which
nodes may be changed by a rewrite rule. Consider a nodeN which is the root
of a subtreeT. The rewrite rule will result in replacingT by T ′, whereT ′
consists of a combination of newly created nodes and old nodes fromT. I.e.,
the rewrite may not change nodes outsideT. From this follows that a node can
only be rewritten by rules in the node itself or rules in nodes on the path to the
AST root node.

This allows us to state that

48

Lemma 1. If a node is final, all its ancestor nodes are final.

Proof. Otherwise the node may be rewritten by an ancestor node, in which
case it is not final.

From Lemma 1 follows that at any point during evaluation, the final nodes
of the AST will constitute a connected region that includes a path to the root,
thefinal region. Initially, the evaluator visits only nodes in the final region, and
is said to be innormalmode. But as soon as a non-final node is accessed from
normal mode, the evaluator entersrewritemode and that non-final node is said
to be acandidate. When the iterative rewriting of the candidate has finished
it turns out that it is final (see Theorem 2, and the evaluator returns to normal
mode, completing the rewrite session. This way the final region is successively
expanded. During a rewrite session, other non-final nodes may be visited and
rewritten, but these are not considered candidates and will not become final
during that rewrite session. There is only one candidate per rewrite session.

Note that during a rewrite session, the evaluator may well visit non-final
nodes outside of the candidate subtree, and non-final nodes may be visited
several times, the candidate included. For example, let us say we are rewrit-
ing a class String to add an explicit superclass reference to class Object. This
means we will visit and trigger a rewrite of class Object. The rewrite of Ob-
ject includes adding an explicit constructor. This involves searching through
the methods of Object for a constructor. Suppose there is a method String
toString() in Object. When this method is traversed, this will trigger rewrit-
ing of the identifier String to a type reference that directly refers to the String
class. This in turn will involve a second visit to the String class (which was the
candidate).

Theorem 2. At the end of a rewrite session, the candidate c is final.

Proof. At the end of the rewrite session, all rewrite conditions ofc have just
been evaluated to false. Furthermore, all ancestors ofc are final, so no other
node can rewritec. What remains to be shown (see Definition 1) is that fu-
ture evaluations of the rewrite conditions cannot yield other values. To see this
we must consider the set of all other non-final nodesN that were visited in
order to evaluate the rewrite conditions ofc. This has involved evaluating all
the rewrites conditions of these nodes in turn, also yielding false for all these
conditions, and without triggering any rewrites of those nodes. Otherwise, an-
other iteration of rewrite ofc would have been triggered and we would not be
at the end of the rewriting session. Since all these conditions evaluate to false,
and there is no other node that can rewrite any of the nodes inN (since their
ancestors outsideN are final), none of these conditions can change value, and
not onlyc, but in fact all nodes inN are final. ut

6. IMPLEMENTATION ALGORITHM 49

In keeping track of which nodes are final, we add a flag isFinal to each
node. In principle, we could mark bothc and all the nodes inN as final at
the end of the rewriting session. However, it is sufficient to markc since any
subsequent visits to a node inN will immediately mark that node as final, since
all its rewrite conditions are false. An aspect introducing the isFinal flag is
implemented in the aspect shown in Figure 7:

(1) A flag, isFinal, is added to each node to indicate whether the node is final
or not.

(2) Add advice around the rewrite loop in the Rewrite aspect.
(3) When a node is final no rule condition checking is necessary and the node

is returned immediately.
(4) When a node is entered during normal mode it becomes the next node to

be final and we enter rewrite mode. On condition checking completion the
node is final and we enter normal mode.

(5) A rewrite during rewrite mode continues as normal.

public aspect FinalNodes {
(1) boolean ASTNode . isFinal = false ;
(2) boolean normalMode = true ;
(2) ASTNode around (ASTNode p arent , ASTNode child)

: execution (ASTNode Rewrite . rewrite (ASTNode ,
ASTNode , int)) && args (parent , child , *) {

(3) if (chi ld . isFinal)
return chi ld ;

(4) if (normalMode) {
normalMode = false ;
child = proceed (parent , child);
child . isFinal = true ;
normalMode = true ;
return chi ld ; }

(5) return proceed (parent , c hi ld); }
}

Figure 7. Aspect FinalNodes: Detect final nodes and skip condition evaluation

6.3 Caching attributes in the context of rewrites

In plain RAGs, attribute caching can be used to increase performance by en-
suring that each attribute is evaluated only once. When introducing rewrites the

50

same simple technique cannot be used. A rewrite that changes the tree struc-
ture may affect the value of an already cached attribute that must then be re-
evaluated. There are two principle approaches to ensure that these attributes
have consistent values. One is to analyze attribute dependences dynamically in
order to find out which attributes need to be reevaluated due to rewriting. An-
other approach is to cache only those attributes that cannot be affected by later
rewrites. In order to avoid extensive run-time dependency analysis, we have
chosen the second approach.

We say that an attribute issafely cachablewhen its value cannot be affected
by later rewrites. Because final nodes cannot be further rewritten, an attribute
will be safely cachable if all nodes visited during its evaluation are final.

A simple solution is to only cache attributes whose evaluation is started
when the evaluator is in normal mode, i.e., not in a rewriting session. These
attributes will be safely cachable. To see this, we can note that

i) the node where the evaluation starts is final (since the evaluator is in
normal mode)

ii) any node visited during evaluation will be in its final form before its
attributes are accessed, since any non-final node encountered will cause the
evaluator to enter rewrite mode, returning the final node after completing that
rewriting session.

It is possible to cache certain attributes during rewriting, by keeping track
dynamically of if all visited nodes are final. However, this optimization has not
yet been implemented.

As mentioned earlier, the ReRAG implementation is implemented as as-
pects on top of the plain RAG implementation. The RAG implementation caches
attributes, so we need to disable the caching whenever not in normal mode in
order to handle ReRAGs. This is done simply by advice on the call that sets the
cached-flag. Figure 8 shows how this is done.

public aspect DisableCache {
Object around () : set (boolean ASTNode +.* _cached) {

if (! FinalNodes . normalMode)
return false ;

return proceed (); }
}

Figure 8.Aspect DisableCache: Disable caching of attributes when not in normal mode

7. IMPLEMENTATION EVALUATION 51

7 Implementation evaluation

7.1 Applicability

We have implemented ReRAGs in our tool JastAdd II and performed a number
of case studies in order to evaluate their applicability.

Full Java static-semantics checkerOur largest application is a complete sta-
tic-semantic analyzer for Java 1.4. The grammar is a highly modular spec-
ification that follows the Java Language Specificaton [GJSB00], second
edition, with modules like name binding, resolving ambiguous names, type
binding, type checking, type conversions, inheritance, access control, ar-
rays, exception handling, definite assignment and unreachable statements.
An LALR(1) parser using a slightly modified grammar from the Java Lan-
guage Specification [GJSB00], is used to build the initial abstract syntax
tree. The AST is rewritten during the analysis to better capture the seman-
tics of the program and simplify later computations. Some examples where
rewrites were useful are:

– for resolving ambiguous names and for using semantic specialization
for bound name references.

– for making implicit constructs explict by adding (as appropriate) empty
constructors, supertype constructor accesses, type conversions and pro-
motions, and inheritance fromjava.lang.Object.

– for eliminating shorthands such as splitting compound declarations of
fields and variables to a list of single declarations.

Java to C compiler Our collegue, Anders Nilsson, has implemented a Java
to C compiler in ReRAGs [Nil04], based on an older version of the Java
checker. The generated C code is designed to run with a set of special
C runtime systems that support real-time garbage collection, and is inter-
faced to through a set of C macros. ReRAGs are used in the back end for
adapting the AST to simplify the generation of code suitable for these run-
time systems. For example, all operations on references are broken down
to steps of only one indirection, generating the macro calls to the runtime
system. ReRAGs are also used for optimizing the generated code size by
eliminating unused classes, methods, and variables. They are also used for
eliminating shorthands, for example to deal with all the variants of loops
in Java.

Worst-case execution time analyzerThe Java checker was extended to also
compute worst-case execution times using an annotation mechanism. The
extension could be done in a purely modular fashion.

Automation Language The automation languageStructured Textin the IEC-
61131-3 standard has been modeled in ReRAGs and extended with an

52

object-oriented type system and instance references. The extended lan-
guage is translated to the base language by flattening the class hierarchies
using iterative rewriting. Details will appear in a forthcoming paper.

7.2 Performance

We have implemented ReRAGs in our aspect-oriented compiler compiler tool
JastAdd II. To give some initial performance measurements we benchmark our
largest application, a complete static-semantic analyzer for Java 1.4. After pars-
ing and static-semantic analysis the checked tree is pretty printed to file. Since
code generation targeted for the Java virtual machine, [LY99], is fairly straight
forward once static-semantic analysis is performed we believe that the work
done by our analyzer is comparable to the work done by a java to byte-code
compiler. We therefore compare the execution time of our analyzer to the stan-
dard java compiler, javac, in J2SE JDK.

Two types of optimizations to the basic evaluation algorithm were dis-
cussed in Section 6.2 and Section 6.3. The first disables condition checking
for nodes that are final and the second caches attribute values that only de-
pend on attributes in final nodes. To verify that these optimizations improve
performance we benchmark our analyzer with and without optimizations. The
execution times when analysing a few files of thejava.langpackage are shown
in Figure 9. These measurements show that both attribute caching and condi-
tion checking disabling provide drastic performance improvements when ap-
plied individually and even better when combined. Clearly, both optimizations
should be used to get reasonable execution times.

The execution times do not include parsing that took 3262ms without at-
tribute caching and slightly more, 3644ms, when caching attributes. We believe
the increase is due to the larger tree nodes used when caching attributes.

condition checkingno condition checking
no attribute caching546323 ms 61882 ms
attribute caching 21216 ms 2016 ms

Figure 9. Comparison of analysis execution time with and without optimizations

To verify that the ReRAG implementation scales reasonably we compare
execution times with a traditional Java compiler, javac, see Figure 10. We are
using a subset of the Java class library, thejava.lang, java.util, java.iopack-
ages, as our benchmarks. Roughly 100.000 lines of java source code from J2SE

8. RELATED WORK 53

JDK 1.4.2 are compiled, and the ReRAG-based compiler uses both the opti-
mizations mentioned above. The comparison is not completely fair because
javac generates byte code whereas the ReRAG compiler only performs static-
semantic analysis and then pretty-prints the program. However, generating byte
code from an analyzed AST is very straight-forward and should be roughly
comparable to pretty-printing. The comparison shows that the ReRAG-based
compiler is only a few times slower than javac. Considering that the ReRAG-
based compiler is generated from a declarative specification, we find this highly
encouraging. This shows that ReRAGs are already useful for large-scale prac-
tical applications.

total JVM init parsinganalysis and prettyprinting
ReRAG compiler22801ms 600ms 7251ms 14950ms
javac 6112ms

Figure 10. Compile time for thejava.lang, java.util, java.iopackages using the
ReRAG-based compiler and javac.

8 Related work

Higher-ordered Attribute Grammars ReRAGs are closely related to Higher-
ordered Attribute Grammars (HAGs) [VSK89], [Sar99] where an attribute
can behigher-order, in that it has the structure of an AST and can itself
have attributes. Such an attribute is also called anATtributable Attribute
(ATA). Typically, there will be one equation defining the bare AST (with-
out attributes) of the ATA, and other equations that define or use attributes
of the ATA, and which depend on the evaluation of the ATA equation.
In ReRAGs each node in the AST is considered to be the root of arewritable
attributeof its parent node and may be rewritten to an alternative subtree
during attribute evaluation. The rewriting is done conditionally, in place
(replacing the original subtree during evaluation), and may be done in sev-
eral steps, each described by an individual rewrite rule. This is contrast to
the ATAs of HAGs which are constructed unconditionally, in one step, and
where the evaluation does not change previously existing parts of the AST
(the new tree is stored as a previously unevaluated attribute).
A major difference lies in the object-oriented basis of ReRAGs, where
reference attributes are kept as explicit links in the tree and subtrees are

54

rewritten in place. HAGs, in contrast, have a functional programming ba-
sis, viewing the AST as well as its attributes as structured values without
identity. This is in our view less intuitive where, for instance, cross refer-
ences in the AST have to be viewed as infinite values.

HAGs + Forwarding Forwarding [VWMBK02] is an attribute grammar tech-
nique used to forward attribute equations in one node to an equation in
another node. This is transparent to other attribute equations and when
combined with ATAs that use contextual information it allows later com-
putations to be expressed on a more suitable model in a way similar to
ReRAGs. To simulate a nested and multi-level rewrite there would, how-
ever, conceptually have to be a new tree for each step in the rewrite.

Visitors The Visitor pattern is often used in compiler construction for separa-
tion of concerns when using object-oriented languages. Visitors can only
separate cross-cutting methods while the weaving technique used in Jas-
tAdd can be used for fields as well. This is superior to the Visitor pattern in
that there is no need to rely on a generic delegation mechanism resulting
in a cleaner more intuative implementation and also provide type-safe pa-
rameter passing during tree traversal. ReRAGs also differ in that traversal
strategies need not be specified explicitly since they are implicitly defined
by attribute dependences. The use of attributes provide better separation of
concerns in that contextual information need not be included in the traver-
sal pattern but can be declared separately.

Rewrite SystemsReRAGs also have similarities to tree transformation sys-
tems likeStratego[Vis01b], ASF+SDF[vdBea01], andTXL [Cor04] but
improves data acquisition support through the use of RAGs instead of em-
bedding contextual data in rewrite rules or as global variables.Stratego
uses Dynamic Rewrite Rules [Vis01a] to separate contextual data acqui-
sition from rewrite rules. A rule can be generated at run-time and include
data from the context where it originates. That way contextual data is in-
cluded in the rewrite rule and need not be propagated explicitly by rules
in the grammar. ReRAGs provide an even cleaner separation of rewrite
rule and contextual information by the use of RAGs that also are supe-
rior in modeling complex non-local dependences. The rewrite application
order differs in that ReRAGs only support the described declarative ap-
proach while the other systems support user defined strategies. InStratego
and ASF+SDF the user can define explicit traversal strategies that con-
trol rewrite application order. Transformation rules inTXL are specified
through a pattern to be matched and a replacement to substitute for it. The
pattern to be matched may be guarded by conditional rules and the re-
placement may be a defined as a function of the matched pattern. A func-
tion used in a transformation rule may in turn be a composed from other

8. RELATED WORK 55

functions. The rewrite application strategy inTXL is thus implicitly de-
fined as part of the functional decomposition of the transformation ruleset,
which controls how and in which order subrules are applied. Dora [BFG92]
supports attributes and rewrite rules that are defined using pattern match-
ing to select tree nodes for attribute definitions, equation, and as rewrite
targets. Attribute equations and rewrite results are defined through Lisp
expressions. Composition rules are used to define how to combine and re-
peat rewrites and the order the tree is traversed. The approach is similar to
ReRAGs in that attribute dependences are computed dynamically at run-
time but there is no support for remote attributes and it is not clear how
attributes read during rewriting are handled.

Dynamic reclassification of objectsSemantic specialization is similar to dy-
namic reclassification of objects, e.g. Wide Classes, Predicate Classes,
FickleII, and Gilgul. All of these approaches except Gilgul differ from
ReRAGs in that they may only specialize a single object compared to our
rewritten sub-trees.Wide Classes[Ser99] demonstrates the use of dynamic
reclassification of objects to create a more suitable model for compiler
computations. The run-time type of an object can be changed into a super-
or a sub-type by explicitly passing a message to that object. That way,
instance variables can be dynamically added to objects when needed by
a specific compiler stage, e.g., code optimization. Their approach differs
from ours in that it requires run-time system support and the reclassifica-
tion is explicitly invoked and not statically type-safe. InPredicate Classes
[Cha93], an object is reclassified when a predicate is true, similar to our
rewrite conditions. The reclassification is dynamic and lazy and thus simi-
lar to our demand-driven rewriting. The approach is, however, not statically
type-safe.FickleII [DDDCG02] has strong typing and puts restrictions on
when an object may be reclassified to a super type by using specific state
classes that may not be types of fields. This is similar to our restriction on
rewriting nodes to supertypes as long as they are not used in the right hand
side of a production rule as discussed in Section 4.2. The reclassification
is, however, explicitly invoked compared to our declarative style.Gilgul
[Cos01] is an extension to Java that allows dynamic object replacement.
A new type of classes, implementation-only classes, that can not be used
as types are introduced. Implementation-only instance may not only be re-
placed by subclass instances but also by instances of any class that has
the same least non implementation-only superclass. Object replacement in
Gilgul is similar to our appraoch in that no support from the run-time sys-
tem is needed. Gilgul uses an indirection scheme to be able to simultane-
ously update all object references through a single pointer re-assignment.
The ReRAGs implementation uses a different approach and ensures that

56

all references to the replaced object structure are recalculated dynamically
on demand.

9 Conclusions and Future Work

We have introduced a technique for declarative rewriting of attributed ASTs,
supporting conditional and context-dependent rewrites during attribution. The
generation of a full Java static-semantic analyzer demonstrates the practical
use of this technique. The grammar is highly modular, utilizing all three di-
mensions of separation of concerns: inheritance for separating the description
of general from specific behavior of the language constructs (e.g., general dec-
larations from specialized declarations like fields and methods); aspects for
separating different computations from each other (e.g., type checking from
name analysis); and rewriting for allowing the computations to be expressed on
suitable forms of the tree. This results in a specification that is easy to under-
stand and to extend. The technique has been implemented in a general system
that generates compilers from a declarative specification. Attribute evaluation
and tree transformation are performed automatically according to the specifi-
cation.The running times are sufficiently low for practical use. For example,
parsing, analyzing, and prettyprinting roughly 100.000 lines of Java code took
approximately 23 seconds as compared to 6 seconds for the javac compiler on
the same platform.

We have identified several typical ways of transforming an AST that are
useful in practice: Semantic Specialization, Make Implicit Behavior Explicit,
and Eliminate Shorthands. The use of these transformations has substantially
simplified our Java implementation as compared to having to program this by
hand, or having to use a plain RAG on the initial AST constructed by the parser.

Our work is related to many other transformational approaches, but differs
in important ways, most notably by being declarative, yet based on an object-
oriented AST model with explicit references beween different parts. This gives,
in our opinion, a very natural and direct way to think about the program repre-
sentation and to describe computations.

Many other transformational systems apply transformations in a predefined
sequence, making the application of transformations imperative. In contrast,
the ReRAG transformations are applied based on conditions that may read the
current tree, resulting in a declarative specification.

There are many interesting ways to continue this research.

Optimization The caching strategies currently used can probably be improved
in a variety of ways, allowing more attributes to be cached, resulting in
better performance.

9. CONCLUSIONS AND FUTURE WORK 57

Termination Our current implementation does not deal with possible non-
termination of rewriting rules (i.e., the possibility that the conditions never
become false). In our experience, it can easily be seen (by a human) that
the rules will terminate, so this is usually not a problem in practice. How-
ever, techniques for detecting possible non-termination, either statically
from the grammar or dynamically, during evaluation, could be useful for
debugging.

Circular ReRAGs We plan to combine earlier work on CRAGs [MH03] with
our work on ReRAGs. We hope this can be used for running various fixed-
point computations on ReRAGs, with applications in static analysis.

Language extensionsOur current studies on generics indicate that the basic
problems in GJ [BOSW98] can be solved using ReRAGs. Extending our
Java 1.4 to handle new features in Java 1.5 like generics, autoboxing, static
imports, and type safe enums is a natural next step.

Acknowledgements

We are grateful to John Boyland and to the other reviewers (anonymous) for
their valuable feedback on the first draft of this paper.

References

[BFG92] John Boyland, Charles Farnum, and Susan L. Graham. Attributed trans-
formational code generation for dynamic compilers. In R. Giegerich and
S. L. Graham, editors,Code Generation - Concepts, Tools, Techniques.
Workshops in Computer Science, pages 227–254. Springer-Verlag, 1992.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java pro-
gramming language. InProceedings of Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA, pages 183–200, 1998.

[Cha93] Craig Chambers. Predicate classes. InProceedings of ECOOP’93, vol-
ume 707 ofLNCS, pages 268–296. Springer-Verlag, 1993.

[Cor04] James R. Cordy. Txl: A language for programming language tools and
applications. InProceedings of the 4th Workshop on Language Descrip-
tions, Tools, and Applications (LDTA’04) at ETAPS 2004, 2004.

[Cos01] Pascal Costanza. Dynamic object replacement and implementation-only
classes. In6th International Workshop on Component-Oriented Pro-
gramming (WCOP 2001) at ECOOP 2001, 2001.

[DDDCG02] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Giannini. More dynamic object reclassification:
FickleII;. ACM Trans. Program. Lang. Syst., 24(2):153–191, 2002.

58

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Lan-
guage Specification Second Edition. Addison-Wesley, Boston, Mass.,
2000.

[Hed89] Görel Hedin. An object-oriented notation for attribute grammars.
In the 3rd European Conference on Object-Oriented Programming
(ECOOP’89), pages 329–345. Cambridge University Press, July 1989.

[Hed00] Görel Hedin. Reference Attributed Grammars.Informatica (Slovenia),
24(3), 2000.

[HM03] Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler
construction system.Science of Computer Programming, 47(1):37–58,
2003.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ.LNCS, 2072:327–
355, 2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages.Mathematical
Systems Theory, 2(2):127–145, June 1968. Correction:Mathematical
Systems Theory5, 1, pp. 95-96 (March 1971).

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[MH03] Eva Magnusson and Görel Hedin. Circular reference attributed gram-
mars - their evaluation and applications.Electronic Notes in Theoretical
Computer Science, 82(3), 2003.

[Nil04] Anders Nilsson. Compiling Java for Real-Time Systems. Licentiate
thesis, Department of Computer Science, Lund Institute of Technology,
2004.

[Sar99] Joao Saraiva.Purely functional implementation of attribute grammars.
PhD thesis, Utrecht University, The Netherlands, 1999.

[Ser99] Manuel Serrano. Wide classes. InProceedings of ECOOP’99, volume
1628 ofLNCS, pages 391–415. Springer-Verlag, 1999.

[vdBea01] M. van den Brand et al. The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. InProceed-
ings of Compiler Construction Conference 2001, volume 2027 ofLNCS.
Springer-Verlag, 2001.

[Vis01a] Eelco Visser. Scoped dynamic rewrite rules.Electronic Notes in Theo-
retical Computer Science, 59(4), 2001.

[Vis01b] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. InProceedings of
Rewriting Techniques and Applications (RTA’01), volume 2051 ofLNCS,
pages 357–361. Springer-Verlag, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. InProceedings of the SIGPLAN ’89 Programming language
design and implementation. ACM Press, 1989.

[VWMBK02] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forward-
ing in attribute grammars for modular language design. InProceedings of
Compiler Construction Conference 2002, volume 2304 ofLNCS, pages
128–142. Springer-Verlag, 2002.

Paper II

The JastAdd System - modular extensible compiler
construction

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

The JastAdd System – modular extensible
compiler construction

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract The JastAdd system enables open modular specifications of
extensible compiler tools and languages. Java has been extended with
the Rewritable Circular Reference Attributed Grammars formalism that
supports modularization and extensibility through several synergistic
mechanisms. Object-orientation and static aspect-oriented programming
are combined with declarative attributes and context-dependent rewrites
to allow highly modular specifications. The techniques have been veri-
fied by implementing a full Java compiler.

1 Introduction

We present the JastAdd system for development of compilers and related tools.
The system enables open modular specification of extensible compiler tools
and languages. JastAdd is an extension to Java that supports a specification
formalism called Rewritable Circular Reference Attributed Grammars (Re-
CRAGs). ReCRAGs raises the abstraction level for grammar-based compu-
tations using declarative object-oriented techniques to rewrite abstract syntax
trees.

Several synergistic mechanisms are combined to better support modularity
and extensibility; object-orientation, static aspects, declarative attributes, and
context-dependent rewrites. Object-orientation gives modularization benefits
like class hierarchies where behavior can be specialized and overridden. Static
aspect-oriented programming in the form of intertype declarations is used to
decouple behavior from the base class descriptions. Declarative attributes are
used when specifying behavior, allowing a high degree of decoupling between
different language constructs. Context-dependent rewrites allow the model, in
this case that abstract syntax tree (AST), to be dynamically changed to better
suit different computations, allowing improved modularization of many com-
putations.

The order in which the attribute computations and rewrites are carried out is
decided automatically through their implicit dependences instead of requiring

62

explicit ordering in the code. This implicit scheduling of computation is a major
reason why such a high degree of decoupling of the modules is possible.

The combination of these techniques enables specifications to be written in
a highly modular fashion which is important both for understanding the specifi-
cation, by breaking it down into simple steps, and for reuse. These mechanisms
also enable decomposition of the system according to different criteria, such as
functionality or language elements. For example, the static-semantic analysis
of a compiler can be reused in a source code metrics tool or extended to support
a new version of the language.

We have verified that the techniques scale to real languages by implement-
ing a full Java compiler using JastAdd. We have validated the generated com-
piler against the Jacks test suite[1], and it passes more tests than both the pop-
ular javac and jikes compilers. The size of the specification is roughly half the
size of the handwritten javac implementation and the generated compiler’s per-
formance is within a factor of four. The integration of the declarative attributes
and rewriting techniques with Java and its commonly used object-oriented fea-
tures, makes the system fairly easy to learn for software developers in industry,
thus not restricting its use to the computer science research community. Indeed,
the system has been used sucessfully in several undergraduate projects as well
as in industry.

The rest of this paper is structured as follows. Section 2 introduces the
intended application domain through a case study of a full java compiler im-
plemented in JastAdd. Section 3 describes how various features can be used
to specify modular and extensible descriptions. Section 4 briefly explains the
evaluation method used. Section 5 compares our system to related tools and
systems. Section 6 concludes the paper.

2 Application domain

The primary application domain for the JastAdd system is extensible compilers
and analysis tools. It has been used to implement full languages like Java; little
languages such as toy languages in an undergraduate course; as well as domain
specific languages such as robotics and automation languages. We have ver-
ified that the techniques scale to real languages by implementing a full Java
compiler using JastAdd and comparing it to popular handwritten compilers, as
mentioned above. The Java compiler has been modularized according to sev-
eral different criteria as a proof of concept, but also to build unrelated tools that
share common infrastructure.

The basis for the compiler is a front-end that performs static-semantic anal-
ysis for Java 1.4. This front-end is modularized according to the various con-
cerns in the analysis, e.g., name resolution, type checking, definite assignment,

3. FEATURES AND FOUNDATION 63

unreachable statements, and exception handling. It can be used as a stand-
alone tool and has also been extended with various experimental analysis mod-
ules such as devirtualization and metrics. The front-end is used by multiple
back-ends that target different run-time environments [2]: byte code for Java
Virtual Machines, byte code for the Palcom Runtime Environment[3], and C
source code. The initial decomposition criterion was functionality, but we have
also extended the compiler with new language constructs that crosscut existing
modules. The Java1.4 compiler, consisting of the front-end and java bytecode
back-end, has been extended with complex language features from Java 1.5,
including generics with wildcards that extend the type system significantly, as
well as with features from AspectJ, including intertype declarations that in-
clude highly non-local changes to name resolution. All extensions were imple-
mented in a completely modular, yet understandable way.

3 Features and Foundation

The JastAdd tool takes a set of components as input and generates ordinary
Java code. A component consists of abstract grammar modules, declarative Re-
CRAG modules, and imperative Java modules. From these specification mod-
ules the tool generates AST classes that contain woven generated code. The
AST is built using any Java-based parser generator, e.g., JavaCC, ANTLR,
CUP, or Beaver, using node constructors in the semantic actions.

There are numerous features in JastAdd that enable modular specifications.
This section describes how they can be combined to further enhance modular-
ity and extensibility. We also exemplify how they are used in our Java compiler
implementation. Please consult the system distribution for documentation of
the actual tool syntax and tutorial examples. In addition to the Java compiler,
the distribution contains a number of smaller examples that illustrate and doc-
ument typical use of the features.

3.1 Basic design

Attribute Grammars (AG) [4] have proven useful when describing context sen-
sitive information for programming languages. Their declarativeness makes it
easy to modularize grammars freely. They also integrate well with the object-
oriented programming paradigm both from a description and evaluation point
of view as shown in [5,6]. The main design behind JastAdd is to integrate
object-oriented AGs and Java and use the AST as the only data structure. Sev-
eral extensions to AGs have been combined into the system, to scale this design
to real languages. The AST is modelled as an object-oriented class hierarchy

64

that allows behavior to be specialized. In combination with intertype decla-
rations [7] (also known as open classes [8]), this enables good separation of
concerns between different computations. The computations can be further de-
coupled by expressing the computations using declarative attributes thus not
requiring explicit ordering of computations.

Synthesized attributes are, in the object-oriented notation for AGs, very
similar to traditional virtual methods in object-oriented programming. The main
difference is that synthesized attributes must be functions that may not have
side-effects. This allows for efficient evaluation through caching of the result.
That same result is then returned for each occurrence of that attribute in other
equations. The use of synthesized attributes decouples the specification of an
attribute from its actual implementation.

The use of inherited attributes decouples an AST node from its parent:
the AST node does not need to know which parent it has. All the information
it needs is in the inherited attributes whose values are defined by the parent.
This allows AST classes with all their behavior to be reused in many different
contexts. For example, expressions may occur inside many different kinds of
statements and declarations. The behavior of the expression depends only on
its inherited attributes, not on any specific surrounding node.

3.2 References add additional structure to the AST

Reference Attributed Grammars (RAGs) [9,10,11] allow graphs to be repre-
sented on top of the AST and allow attribute dependences to follow such graphs
rather than the tree structure. References can then be used to model various
language relations as bindings. Name resolution becomes the task of binding
a name to its declaration. Types can, in a similar way, be represented by their
declarations and then the type of an expression is simply a reference from an
expression node to a type declaration node. This reference can then be used
to compute further properties, e.g., binding names to members in structured
types.

References are used extensively in the Java compiler to model various
graph structures such as the inheritance hierarchy, recursive types, and the call
graphs. Relations can also be modelled as sets of references. For example, a
method overrides/hides a set of other methods; a type is a subtype of a set of
types. References are not only used for names and types but also for modelling
non-local transfer of control such as break, continue, and exception handling.
Break and continue are bound to a possibly labeled destination statement while
thrown exceptions are bound to a catch clause or a method that throws a com-
patile exception. Each control-changing statement also holds a list of references
to possible finally clauses that are visited on its way to its destination node.

3. FEATURES AND FOUNDATION 65

3.3 Broadcasting scope and parameterized attributes

Inherited attributes decouple the AST node from its parent. This can be im-
proved further by decoupling the parent from its child. Inherited attributes can
be broadcasted not only to a single child but to all its descendants. This feature
is very similar to theincludingfeature in [12]. The scope for the attribute equa-
tion is then widened from a single node to an entire subtree. The only require-
ment for an inherited attribute is then that there is a path from the declaration of
an attribute through its ancestors to an equation. By allowing a descendant to
redefine the equation for its subtree, the broadcasting mechanism is an excel-
lent way to describe nested scopes. It is highly desirable from a modularization
point of view that the modules defining scoped data need not be aware of the
modules using the scoped data and vice versa. This makes it easy to extend the
language with new constructs, both constructs that introduce new scopes, and
constructs that make use of scoped data.

This loose coupling can further be enhanced by allowing attributes to have
parameters. For example, the set of visible variables can be parameterized by
a name. Information can then flow both upwards, through the argument, and
downwards, by the broadcasted attribute, while keeping the modularization
benefits described above.

Broadcasting is used in the Java compiler to compute name binding and
many of the other relations described in the previous section. The attribute is
often parameterized with a name. This is used to broadcast scope to bind vari-
ous names in a modular way, e.g., variables, methods, types, and labels. Broad-
casting is also used to describe nesting in a simple way. For example, enclosing
type declaration, enclosing body declaration, and enclosing compilation unit.

3.4 Complex non-local dependences

The superimposed graph structures on top of the AST, in combination with
declarative attributes, makes it easy to decompose a complex computation into
several simpler ones. A combination of broadcasting of parameterized attributes
and delegation through a reference allows complex, highly non-local, depen-
dences to be expressed is a simple fashion. Object-oriented inheritance can, for
instance, be implemented by using broadcasting for nested scopes combined
with delegation to the superclass through a reference. If a member declaration
is not found inside a class, the class declaration node can delegate the search
to its superclasses. This implementation matches traditional object-oriented in-
heritance with overriding. The scheme can be extended to support nested types
through delegation to the enclosing broadcast when the superclass search is
fruitless. This supports, for instance, modelling of inner classes.

66

This technique has been used to implement the entire name resolution and
binding part in the Java compiler. The combination described above is com-
bined with filters to handle access control. Qualified names, such ascollec-
tion.size(), are implemented by delegating the binding for the right hand side,
size(), to the type of the left hand side,collection, which may bejava.util.-
Collection. The scheme has also been extended in a modular fashion to support
intertype declarations as in AspectJ or Open Classes.

3.5 Enhance tree structure

The initial context-free AST, often built by a parser, is not a perfect match for
most computations. Since the AST is the only data structure in the system it
would be quite limiting if the AST could not be changed. Rewritable RAGs
(ReRAGs) allow the initial AST to be rewritten to a more suitable form, based
on values of the context-dependent attributes. This allows the tree to not only
reflect context-free structure but also the context-sensitive information that has
been computed so far. For example, a name node can be rewritten to a spe-
cialized node to reflect its semantic meaning, like a field- or type-name, as
soon as that information is available. This allows later computations, like op-
timization and code generation, to be modularized according to the semantic
meaning of the name. For example, splitting the generation of code for field
accesses and type-name accesses into separate modules. Rewrites can thus be
used to make the tree more suitable for the other modularization features in
JastAdd. The rewriting is done iteratively, interleaved with attribute evaluation.
This allows complex rewrites to be broken down into many simple rewrites.
The fine-grained interaction between rewrites and attribute evaluation is fur-
ther discussed in [13].

Rewrites can also be used to normalize the AST into a kernel language.
This can be used for rewriting language extensions to constructs in the base
language, something which often requires contextual information. Yet another
use of context-dependent rewrites is to separate language constructs that are
ambiguous from a context-free perspective, such as the infamous typedef vs.
variable ambiguity in C.

The Java compiler uses rewrites to make implicit language behavior ex-
plicit in the AST. For example, to add default constructors to classes with no
constructors, and to add an explicitthis to unqualified invocations of instance
methods. A series of rewrites are also used to resolve syntactically ambiguous
names. Names are initially reclassified according to their position in the gram-
mar. For example, the name after an extends clause is expected to be a type
name. However, if the name is qualified, e.g.,a.b, we only know thatb is a
type name anda can either be a package name or a type name. That name is

3. FEATURES AND FOUNDATION 67

thus ambiguous and can be further reclassified by taking visible declarations
into account. The name is reclassified to a type name if there is a visible type
declaration nameda, and otherwise to a package name. Multiple names are
then grouped to form a semantic unit. For example, the individual parts of a
package name and a type name are combined into a fully qualified type name.
The use of rewrites for name analysis is described in more detail in [14]. Other
uses of rewrites include splitting variable declarations with multiple variables
and grouping scattered cardinality for array names.

3.6 Non terminal attributes

It is sometimes useful to expand an AST with additional nodes that are defined
by equations, rather than constructed by the parser or by a rewrite rule. These
nodes are called nonterminal attributes (NTAs) [15,16] since they are both sim-
ilar to nodes (nonterminals) and to attributes. An NTA is like a node in that it
can itself have attributes and it can be rewritten. It is also like an attribute in that
it is defined by an equation. Grammars with NTAs are considered higher-order
attribute grammars since attributes may themselves have attributes. There are
similarities between NTAs and context-dependent rewrites. In both cases, you
can declaratively define changes to the AST based on attribute values. The main
difference is that you should use rewrites when you are interested in replacing
some nodes with others, and NTAs when you want to keep existing nodes and
introduce some additional ones. NTAs in combination with a technique called
attribute forwarding [17] is similar to replacing a tree by a new one.

NTAs are used in the Java compiler to add predefined declarations, such as
primitive types, but more importantly to instantiate generic types in Java 1.5.
The NTA is then a function of the generic type declaration parameterized with
one or more type parameters.

3.7 Circular attributes

JastAdd supports circular attributes [18] which are useful for many analysis
problems, for example in code optimization. Attributes may then be mutually
dependent and the evaluator computes fixed-point solutions by iteration. The
use of circular attributes is particularly useful in combination with reference
attributes, since they can then be used to compute mutually recursive properties
on top of graphs [19].

We have used circular attributes in the Java compiler to detect circularities
in inheritance hierarchies and to determine definite assignment properties of
variables in loop constructs.

68

3.8 Imperative modules

Aspect modules with static introductions can be used not only for declara-
tive attributes but also for imperative Java code. Methods and fields can then
be introduced in existing classes in a modular fashion. Imperative code may
use declarative attributes by invoking them as if they were methods. Attribute
evaluation and rewriting of the AST is transparent to the imperative code. The
back-end of the Java compiler is a combination of declarative attributes and an
imperative traversal that outputs the tree to file.

4 The JastAdd evaluation engine

The evaluation algorithm in JastAdd is built on lazy dynamic evaluation with
attribute caching. Dependences are computed dynamically and on demand.
Since references may reference arbitrary nodes it is difficult (probably impos-
sible in general) to schedule the order statically. Lazy evaluation has some nice
properties for the execution time of attribute computations; only attributes that
are being used add cost to the execution time. For example, attributes used to
compute error messages do not add to the overall execution time as long as
there are no errors in the analyzed program. Similarly, an attribute can be de-
fined for a large set of node types even though only a few nodes actually depend
on the attribute value. This is useful for obtaining a simple specification, and
yet does not incur additional cost. For example, references to primitive types
can be broadcast throughout an entire AST, but may actually be used in only a
few places.

Conditional rewriting is also done lazily and is triggered implicitly when a
node is visited. When evaluating the condition for a rewrite, other nodes may
be visited. This will in turn trigger further rewrites. When no conditions are
true for rewrites in the visited nodes, the resulting tree node is returned. A nice
property of this evaluation technique is that a traversal of the tree need not
be aware of rewriting since the returned node is always a node for which no
rewrite conditions are true. A thorough description of the evaluation of rewrites
and its interaction with attribute evaluation is given in [13].

The combination of lazy evaluation and attribute caching works very well
in practice. The execution speed of our generated Java compiler is well within
a factor of four compared to the handwritten javac compiler.

5 Related tools and systems

The current version of the JastAdd system builds loosely on an older version
[20] which supported RAGs and intertype declarations. The current JastAdd

5. RELATED TOOLS AND SYSTEMS 69

system has added support for rewrites, parameterized attributes, broadcasting,
nonterminal attributes, and circular attributes, thereby enabling the concise im-
plementation of real programming languages like Java. The current system is
also bootstrapped in itself.

5.1 Imperative systems

The primary application domain for the JastAdd system is extensible compilers
and analysis tools. Our largest specification, the Java compiler, can be com-
pared to handwritten extensible Java compilers. The Polyglot system [21,22],
is a Java 1.4 front end supporting extending Java with new language constructs,
translating them to Java source code. In contrast to JastAdd, the extensions in
Polyglot are coded imperatively, making use of variants of the visitor design
pattern. A phase-oriented architecture with fixed AST traversals is used, so that
different computations need to be explicitly associated with different phases,
and it is the burden of the user to make sure that everything is computed in the
appropriate order. Preliminary experiments with extending Java with AspectJ-
like constructs indicate that using JastAdd leads to much more concise and
clear specifications as well as to a faster translation tool.

JastAdd is used to specify contextual computations on top of an AST. The
initial AST is usually built using a parser generator, e.g., JavaCC, ANTLR,
CUP, SableCC, or Beaver, using node constructors in semantic actions. Some
of these tools support limited contextual computations through the use of vis-
itors or semantic actions. Their imperative nature make these computations
inferior to JastAdd modules from a modularity and extensibility point of view.

5.2 Attribute grammar systems

There are many other attribute grammar systems, both commercial and licensed
systems like the Synthesizer Generator [23] and Cocktail [24], as well as freely
available systems like Eli [25], Elegant [26], LRC [27], and UAG [28]. While
all of these systems support synthesized and inherited attributes, and many of
them nonterminal attributes through higher-ordered grammars, there are many
differences as compared to JastAdd.

One important difference is that most of them do not support reference at-
tributes. One exception is the Elegant system that supports a notion similar to
reference attributes which is used for name bindings, but via a global symbol-
table data structure. Cocktail has a concept called tree-valued attributes which
also seems similar to reference attributes, but we have not found any exam-
ples that show how they are used. In systems based on non-strict functional
languages, like UAG, it should in principle be possible to use lazy evaluation

70

to emulate reference attributes. However, we have not seen any documented
examples that take advantage of this. In JastAdd, reference attributes consti-
tute the key mechanism to deal with non-local dependences, not only for name
bindings. AG systems that do not use reference attributes need to encode the
context into attributes and pass them around explicitly, resulting in coupled
specifications.

A very important difference between JastAdd and other systems is the
support of context-dependent rewrites interleaved with attribute computations.
This is a key mechanism that allows complex analysis problems like Java name
resolution and type analysis to be broken down into small simple steps. To our
knowledge, there are no other systems supporting similar mechanisms. Non-
terminal attributes combined with forwarding [17] would be similar, but as far
as we know, forwarding has only been implemented in prototypes built on top
of Haskell, and it is unclear how the practical performance would scale to full
languages like Java.

Another difference between JastAdd and the other mentioned AG systems
is the support for circular attributes and parameterized attributes, which is not
implemented in any of the other systems.

From a software engineering perspective there is an important difference
between JastAdd and other AG systems in the integrated use of Java. The syn-
tax for JastAdd specifications is a superset of Java, and constructs for attributes
and equations are very Java-like, allowing users to think of attributes and equa-
tions as method declarations and method implementations. The aspect-oriented
syntax used in JastAdd is very similar to that used in AspectJ. This is differ-
ent from most other AG systems which use their own specific syntax for the
attribution. This integration makes it straight-forward to combine the declara-
tive computations with imperative mainstream object-oriented programming in
Java, and makes it easy for Java programmers to learn the tool and the concepts.

5.3 Transformation Systems

The main focus of JastAdd is context-dependent computations on the AST,
but since rewriting is also supported we compare also to tree-transformation
systems that are used for generating language-based tools, e.g., ASF+SDF [29],
Stratego [30], and TXL [31].

An important difference between these systems and JastAdd is the way to
specify the order of transformations. Transformation systems specify the order
using implicit predefined traversals or explicit user-defined strategies. JastAdd,
on the other hand, uses fine-grained attribute dependences to drive the traversal
which in turn implicitly defines the order of transformations. Complex traversal
patterns can thus automatically follow dependences and do not have to be stated
explicitly.

6. CONCLUSIONS 71

Another important difference is that transformation systems typically han-
dle contextual information by using an external database that is updated during
the transformations. This requires the user to explicitly associate database up-
dates with particular transformation rules or phases. The traversal order must
thus take contextual dependences, which can be highly non local, into ac-
count. In contrast, JastAdd uses the contextual dependences to derive a suit-
able traversal strategy. The Stratego system has a mechanism for dependent
dynamic transformation rules [32], supporting certain context-dependent trans-
formations, but it is not clear how this could be used for implementing name
binding and similar problems in object-oriented languages.

6 Conclusions

We have presented the JastAdd tool and shown how it supports implementa-
tion of extensible compiler tools and languages. A key design idea is to make
use of declarative specification mechanisms in order to allow a high degree
of decoupling between different modules, thereby supporting reuse and ex-
tensibility. Another key design idea is to build on object-orientation and Java,
thereby both taking advantage of the support for modelling and reuse avail-
able in object-orientation, as well as making the declarative techniques easily
understood by Java programmers.

In addition to well-known specification features like inherited, synthesized,
and nonterminal attributes, JastAdd includes the very powerful feature of con-
text-dependent rewrites, allowing the AST to be modified taking context-sensi-
tive computations into account. A key feature is also that of reference attributes,
allowing the AST itself to be used as the fact database. Additional JastAdd fea-
tures like parameterized attributes and circular attributes also contribute sub-
stantially to the decoupling of modules and computations. Small examples are
provided that demonstrate the typical use of all the features.

To demonstrate the full power of the tool we have successfully imple-
mented a very strong case: a complete Java 1.4 compiler including compile-
time checks and bytecode generation. Java 1.4 is a large complex language
and implementing a complete compiler for it is a substantial undertaking, both
because the language contains many idiosyncrasies that must be handled, and
because it is an object-oriented language with many non-trivial constructs. We
are not aware of any other declarative implementation of a complete practical
object-oriented language. To demonstrate extensibility both for language con-
structs and tool functionality, we have extended the Java 1.4 compiler with new
language constructs from Java 1.5, and extended the Java 1.4 front end with
devirtualization analysis. All these extensions have been done in a completely
modular way.

72

References

1. The Jacks compiler test suite, http://sources.redhat.com/mauve/ (2006).
2. A. Nilsson, A. Ive, T. Ekman, G. Hedin, Implementing Java Compilers using

ReRAGs, Nordic Journal of Computing 11 (3) (2004) 213–234.
3. Palpable Computing, http://www.ist-palcom.org (2006).
4. D. E. Knuth, Semantics of context-free languages, Mathematical Systems Theory

2 (2) (1968) 127–145, correction:Mathematical Systems Theory5, 1, pp. 95-96
(March 1971).

5. G. Hedin, An object-oriented notation for attribute grammars, in: the 3rd Euro-
pean Conference on Object-Oriented Programming (ECOOP’89), BCS Workshop
Series, Cambridge University Press, 1989, pp. 329–345.

6. K. Koskimies, Object-orientation in attribute grammars, in: Proceedings on At-
tribute Grammars, Applications and Systems, Springer-Verlag, London, UK, 1991,
pp. 297–329.

7. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, Lecture Notes in Computer Science 2072 (2001) 327–355.

8. C. Clifton, G. T. Leavens, C. Chambers, T. Millstein, MultiJava: Modular open
classes and symmetric multiple dispatch for Java, in: Proceedings of OOPSLA
2000, Vol. 35(10), 2000, pp. 130–145.

9. G. Hedin, Reference Attributed Grammars, in: Informatica (Slovenia), 24(3), 2000,
pp. 301–317.

10. A. Poetzsch-Heffter, Prototyping realistic programming languages based on formal
specifications, Acta Informatica 34 (1997) 737–772.

11. J. T. Boyland, Descriptional composition of compiler components, Ph.D. thesis,
University of California, Berkeley, available as technical report UCB//CSD-96-916
(Sep. 1996).

12. U. Kastens, W. M. Waite, Modularity and reusability in attribute grammars, Acta
Informatica 31 (7) (1994) 601–627.

13. T. Ekman, G. Hedin, Rewritable reference attributed grammars., in: M. Odersky
(Ed.), ECOOP 2004 - Object-Oriented Programming, 18th European Conference,
Oslo, Norway, June 14-18, 2004, Proceedings, Vol. 3086 of Lecture Notes in Com-
puter Science, Springer, 2004, pp. 144–169.

14. T. Ekman, G. Hedin, Modular name analysis for Java using JastAdd, in: Post-
proceedings of GTTSE 2005, To appear in Lecture Notes in Computer Science,
Springer-Verlag, 2006.

15. H. H. Vogt, S. D. Swierstra, M. F. Kuiper, Higher order attribute grammars, in:
Proceedings of the SIGPLAN ’89 Conference on Programming language design
and implementation, ACM Press, 1989, pp. 131–145.

16. J. Saraiva, Purely functional implementation of attribute grammars, Ph.D. thesis,
Utrecht University, The Netherlands (1999).

17. E. Van Wyk, O. d. Moor, K. Backhouse, P. Kwiatkowski, Forwarding in attribute
grammars for modular language design, in: R. N. Horspool (Ed.), Compiler Con-
struction, 11th International Conference, CC 2002, Grenoble, France, April 8-12,
2002, Vol. 2304 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp.
128–142.

6. CONCLUSIONS 73

18. R. Farrow, Automatic generation of fixed-point-finding evaluators for circular, but
well-defined, attribute grammars, in: Proceedings of the SIGPLAN symposium on
Compiler contruction, ACM Press, 1986, pp. 85–98.

19. E. Magnusson, G. Hedin, Circular reference attributed grammars - their evaluation
and applications., Electr. Notes Theor. Comput. Sci. 82 (3).

20. G. Hedin, E. Magnusson, JastAdd: an aspect-oriented compiler construction sys-
tem, Science of Computer Programming 47 (1) (2003) 37–58.

21. N. Nystrom, M. R. Clarkson, A. C. Myers, Polyglot: An extensible compiler frame-
work for java, in: Proceedings of 12th International Conference on Compiler Con-
struction, CC 2003, Warsaw, Poland, Vol. 2622 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2003, pp. 138–152.

22. A. Myers, N. Nystrom, X. Qi, Polyglot - A compiler front end framework for build-
ing Java language extensions, http://www.cs.cornell.edu/Projects/polyglot/ (2006).

23. GrammaTech, The Synthesizer Generator, http://www.grammatech.com/products/sg/
(2006).

24. J. Grosch, Cocktail - compiler compiler toolkit Karlsruhe,
http://www.cocolab.com/en/cocktail.html (2006).

25. A. Sloane, W. M. Waite, U. Kastens, Eli - translator construction made easy,
http://eli-project.sourceforge.net/ (2006).

26. Lex Augusteijn, The Elegant Homepage,
http://www.research.philips.com/technologies/syst%5fsoftw/elegant/ (2006).

27. M. Kuiper, D. Swierstra, M. Pennings, H. Vogt, J. Saraiva, Lrc: A purely functional,
higher-order attribute grammar based system,
http://www.di.uminho.pt/ jas/Research/LRC/lrc.html (2006).

28. D. Swierstra, A. Baars, UAG - Utrecht Attribute Grammar System,
http://www.cs.uu.nl/wiki/Center/AttributeGrammarSystem (2006).

29. M. van den Brand, P. Klint, The ASF+SDF MetaEnvironment,
http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment (2006).

30. E. Visser, M. Bravenboer, R. Vermaas, Stratego: Strategies for Program Transfor-
mation, http://www.program-transformation.org/Stratego/WebHome (2006).

31. James R. Cordy, TXL - Source Transformation by Example, http://www.txl.ca
(2006).

32. K. Olmos, E. Visser, Composing source-to-source data-flow transformations with
rewriting strategies and dependent dynamic rewrite rules., in: R. Bodík (Ed.), Com-
piler Construction, 14th International Conference, CC 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings, Vol. 3443 of Lecture Notes in Com-
puter Science, Springer, 2005, pp. 204–220.

Paper III

Benchmarking the JastAdd Extensible Java
Compiler

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Benchmarking the JastAdd Extensible Java
Compiler

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract This paper compares the JastAdd Extensible Java Compiler
to other Java compilers. The compilers are tested for compliance by
using the Jacks test suite. Sample applications of various sizes are com-
piled to evaluate compilation speed. The source code for the various
compilers are then compared in terms of size. The JastAdd Extensible
Java Compiler matches the state of the art when it comes to compliance.
Its size is less than two-thirds of hand-written compilers, and its com-
pilation time is well within a factor of four compared to the fastest Java
based compiler.

1 Introduction

The JastAdd Extensible Java compiler [EH06c] is a full Java 1.4 compiler in-
cluding compile-time checks and bytecode generation implemented in the Re-
writable Reference Attributed Grammars (ReRAGs) specification formalism
[EH04]. ReRAGs is a high-level formalism for developing program-processing
tools, e.g., compilers and code analyzers, with focus on modularity and extensi-
bility. Previous work shows how to use ReRAGs to support several different de-
composition criteria for modularization: as separate computations on the pro-
gram model, as a base language and language extensions, and the same decom-
position as used in a language specification for traceability [EH06a,EH06b].
Several synergistic language mechanisms are combined in one coherent frame-
work to achieve the desired modularization: declarative attributes for automatic
scheduling of computations, inheritance for model modularization, inter-type
declarations for cross-cutting concerns, and rewrites that allow computations
to be expressed on the most suitable model. These mechanisms are further ex-
plained in [EH04,EH06d].

Java 1.4 [GJSB00] is a large complex language and implementing a com-
plete compiler for it is a substantial undertaking, both because the language
contains many idiosyncrasies that must be handled, and because it is an object-
oriented language with many non-trivial constructs. To evaluate our implemen-

78

tation we compare it to several well-known Java compilers in terms of language
compliance, compilation time, and implementation size.

The rest of this paper is structured as follows. Section 2 describes the com-
pilers that we compare our JastAdd based compiler to. The compilers are tested
for complience using the Jacks test suite in Section 3. Section 4 compares com-
pilation times and Section 5 compares the sizes of the various implementations.
Section 6 concludes the paper.

2 Java compilers background

This section describes the compilers that are used in the following compari-
son. We have included both industrial strength Java compilers as well as a few
research prototypes that target modular compiler implementation. If there ex-
ists both a Java 1.4 and a Java 5 version of the compiler we include both. The
reason is that we want to use the latest version to compare for compliance but
use the Java 1.4 version when comparing implementation size. Since our work
targets Java 1.4 it would be unfair to compare our code size to a full Java 5
compiler. However, we run all compilers in Java 1.4 mode during compliance
testing, even the Java 5 ones. We will use the shorthand in Figure 1 to name the
various compilers in the following comparison.

javac1.4
javac1.5
eclipse1.4
eclipse1.5
jikes
gcj
polyglot
jaco
jastadd

Sun javac version 1.4.2 (Java 1.4)
Sun javac version 1.5.0 (Java 5)
Eclipse 2.1.3 (Java 1.4)
Eclipse 3.1.2 (Java 5)
Jikes 1.22 (Java 1.4)
GNU Compiler for Java 4.0.2 (Java 1.4)
Polyglot 1.3.2 (Java 1.4 front-end)
JaCo 0.6.1 (Java 1.4)
JastAdd 1.0 (Java 1.4)

Figure 1. Compiler abbreviations used in the comparison

Sun javac The standard compiler in the Java Platform, Standard Edition, is
named javac [jav06]. It is implemented in Java and the source code is available
under either the Sun Community Source License or the Java Research License.
We have chosen to include two versions of the compiler, 1.4.2 and 1.5.0. The
source version of the 1.4.2 compiler is based on the Generic Java Compiler and

2. JAVA COMPILERS BACKGROUND 79

there may therefore be some generics related code even in the 1.4.2 version
even though generics are not supported until 1.5.0.

Eclipse compiler The Eclipse project contains an incremental Java compiler
[ecl06]. It is based on technology evolved from the VisualAge Java compiler.
Even though the compiler is incremental it is possible to run it in batch mode
which we have done in all comparisons. We have also removed IDE specific
compiler code to allow for a fair comparison to stand alone compilers. Version
2.1.3 of the compiler is included in the comparison since it is the last version
to support only Java 1.4. It is licensed under the Common Public License v.1.0.
The latest version that also supports Java 5 is 3.1.2, which is available under
the Eclipse Public License v1.0.

Jikes Compiler Jikes is a high-performance open-source Java 1.4 compiler
written in C++ [jik06]. It was originally developed by IBM at T. J. Watson
Research Center but is now maintained by an open source community. The
comparison is based on version 1.22 which is hosted by SourceForge under the
IBM public License.

The GNU Compiler for Java GCJ is the Java compiler in the GNU Compiler
Collection [gcj06]. It is written in C and generates either Java bytecode (class
files) or native machine code. We generate bytecode in this comparison and
used version 4.0.2 that is licensed under the GNU General Public License.

Polyglot extensible Java front-end Polyglot is a compiler front-end frame-
work for building Java language extensions [NCM03,MNQ06]. It is a Java
class library that can be extended through inheritance to create a compiler for a
language that is an extension to Java. The implementation uses a novel visitor
design that allows for modular extension of both static semantic analysis and
language structure. The comparison uses version 1.3.2 which is licensed under
the GNU Lesser General Public License. There is no back-end included in the
distribution but we include it for its extensibility support. Polyglot has been
combined with the Soot framework to form a full compiler [VRHS+99].

JaCo extensible Java compiler JaCo is an extensible compiler for version
1.4 of the Java programming language [jac06b]. The compiler is written in a
slightly extended Java dialect called Keris that supports extensible algebraic
data types with defaults [ZO01]. There is a compiler for Keris named KeCo

80

which is implemented as a modular extension to JaCo. The comparison in-
cludes version 0.6.1 of the system which is licensed under the Q Public License
version 1.0.

3 Compiler compliance

We have used the Jacks test suite to test the compilers for compliance. Jacks
is a free test suite designed to detect bugs in a Java compiler [jac06a]. It was
originally developed by IBM but is now maintaned by the Mauve project. The
suite structure mimics chapters from the Java Language Specification, Second
Edition [GJSB00]. It is worth noticing that Jacks tests the static semantic anal-
ysis of compilers and is not designed to test a Java runtime (JVM) or Java class
libraries.

We ran the full test suite on the compilers described in the previous section
and the result is shown in Figure 2. We have turned off warnings in all compil-
ers since they often give hints to common mistakes which are not errors strictly
speaking, e.g., a warning that a finally block can not complete normally. The
Java 5 compilers (javac1.5 and eclipse1.5) were running in 1.4 compability
mode.

Although JastAdd passes more tests than any of the other comnpilers, we
do not claim superiority to either compiler but merely use the number of failed
test cases as an indication of completeness of the compiler implementation. The
skipped tests are errors that cause the compiler to run into a never ending loop.
The test that is skipped for javac1.4, javac1.5, eclipse1.4, eclipse1.5 and jastadd
is due to a bug in the standard class library. A conversion method that converts a
string representation of a floating point number into its binary counterpart fails
to terminate. A weakness in the test suite is that it only tests the static semantics
of Java and not run-time behavior. It would have been nice to run the more
extensive JCK test suite that also tests the generated code, but current licensing
prevents us from running that suite [JCK06]. The following compilers in the
comparison have licensed and passed the JCK compiler test suite: javac1.4,
javac1.5, eclipse1.4, and eclipse1.5.

4 Compilation time

To evaluate the speed of our generated compiler we have compared compilation
times for various applications. These applications are described in Figure 3.
Each application was compiled five times and the shortest compilation time for
each compiler is shown in Figure 4. We have only included the compilation
time for an application if the compiler managed to compile the application
without false errors.

4. COMPILATION TIME 81

Compiler % passed # passed # skipped # failed
javac1.4 99.0 % 4446 1 44
javac1.5 99.2 % 4455 1 35

eclipse1.4 98.1 % 4409 1 81
eclipse1.5 98.6 % 4429 1 61

jikes 99.3 % 4461 0 30
gcj 87.3 % 3919 0 572

polyglot 90.5 % 4065 49 377
jaco 78.0 % 3505 3 983

jastadd 99.5 % 4468 1 22

Figure 2. Results from running the Jacks test suite. Skipped tests are errors that cause
the compiler to run into a never ending loop.

We use version 1.4.2 of javac as baseline when comparing compilation
times. The results indicate that our generated compiler is less than four times
slower than the fastest hand-written java compiler. We also notice that the
C/C++ based implementations are significantly faster than the Java based im-
plementations. The compilers that scored low in the compliance test failed to
compile one or more real applications. This result indicates that there is at least
some correlation between passing the synthetic test suite and real applications.

JUnit Version 3.8.1 of the JUnit testing framework. A small application that
all compilers pass, roughly 3.6 kLOC.

JDK A subset of the JDK class library. More than 112 kLOC including the
following packages: java.lang, java.util, java.io, java.math, java.net, and
java.awt.

JDTComp The Java compiler in Eclipse Java Developement Tools 3.1.2. A
substantial stand-alone Java application of 83 kLOC.

Polyglot The Polyglot Java front-end with buldled parser generator JavaCUP
consisting of 48 kLOC. Somewhat different coding style with extensive use
of visitors, polymorphism, and inheritance.

Figure 3. Applications used to benchmark compilation time. The application sizes are
measured using David A. Wheeler’s ’SLOCCount’.

82

Compiler JUnit (3.6) JDK (112) JDTComp (83) Polyglot (48)
javac1.4 1.06s (100 %) 5.05s (100 %) 3.44s (100 %) 3.34s (100 %)
javac1.5 1.38s (130 %) 6.07s (120 %) 4.41s (128 %) 4.48s (134 %)

eclipse1.4 1.74s (164 %) 6.70s (133 %) 5.20s (151 %) 4.90s (147 %)
eclipse1.5 1.46s (138 %) 6.23s (123 %) 4.74s (138 %) 4.40s (132 %)

jikes 0.21s (20 %) 1.80s (36 %) 1.21s (35 %) 1.09s (33 %)
gcj 0.39s (37 %) fail fail fail

polyglot 3.60s (340 %) fail fail 49.32s (1177 %)
jaco 1.57s (148 %) fail fail fail

jastadd 3.17s (299 %) 17.23 (341 %) 12.95s (376 %) 11.7 (350 %)

Figure 4. The compilation time for a few applications where the javac1.4 compiler is
used as baseline. The application size in thousand lines of code is included in the header.
An overview of the applications is shown in Figure 3

5 Implementation size

While the compilers are implemented in different language dialects or even
completely different languages it is still interesting to compare implementation
sizes to get a rough measure of implementation effort. We have used SLOC-
Count by David A. Wheeler to count the number of lines of code in the source
files [Whe06]. The tool compensates for differences in coding conventions by
removing comments and white-space for a number of languages. Since both
JastAdd and Jaco extend Java we use the built-in Java schema for these tools
as well as plain Java compilers.

Figure 5 shows the size for each measured compiler. We have included
lines of code, total number of tokens, and compressed size for each compiler.
The number of tokens and compressed size should should give a hint about the
overall implementation entropy. We have used javac1.4 as the baseline here as
well. We are somewhat surprised by the large differences in compiler source
size. Most compilers are more than twice as large as the base javac1.4 com-
piler. JastAdd and JaCo stand out being significantly smaller than the base
compiler. Both compilers use a Java dialect where the language has been ex-
tended to allow for implementation of extensible compilers. The complience
result for JaCo indicates that it is incomplete, which makes it hard to draw any
conclusions from its implementation size. However, the same complience test
indicates that JastAdd is a complete Java 1.4 compiler while being two-thirds
the size of the smallest complete handwritten compiler. This shows that the
ReRAGs formalism can lead to significantly smaller implementations.

6. CONCLUSIONS 83

Compiler # kLOC # kTokens # kbyte
javac1.4 21 (100 %) 106 (100 %) 156 (100 %)
javac1.5 30 (143 %) 155 (146 %) 247 (158 %)

eclipse1.4 57 (271 %) 288 (272 %) 356 (228 %)
eclipse1.5 83 (395 %) 411 (388 %) 508 (326 %)

jikes 70 (333 %) 342 (323 %) 437 (280 %)
gcj 63 (300 %) 348 (328 %) 500 (321 %)

polyglot 39 (186 %) 220 (208 %) 279 (178 %)
jaco 16 (76 %) 73 (67 %) 105 (82 %)

jastadd 14 (67 %) 58 (55 %) 82 (53 %)

Figure 5. The source code size of the compilers using javac1.4 as baseline. The kLOC
attribute is measured using David A. Wheeler’s ’SLOCCount’.

6 Conclusions

We have compared the JastAdd Extensible Java Compiler to other well-known
Java compilers. The generated compiler passes at least as many tests as produc-
tion compilers such as javac from Sun Microsystems, the Eclipse Project Java
Compiler, and the Jikes high-speed java compiler. The approach scales and can
be used for fairly large programs (> 100 kLOC). The generated compiler is less
than four times slower than a handwritten java compiler. The source code for
the JastAdd Extensible Java Compiler is only two-thirds the size of the smallest
hand-written complete Java compiler.

References

[ecl06] Eclipse Java Compiler, Eclipse Java Development Tools 3.1.2, 2006.
http://download.eclipse.org/eclipse/downloads/drops/R-3.1.2-
200601181600/.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. InProceedings of ECOOP 2004, volume 3086 ofLecture Notes in
Computer Science. Springer-Verlag, 2004.

[EH06a] Torbjörn Ekman and Görel Hedin. Modular name analysis for Java using
JastAdd. In Ralf Lämmel, João Saraiva, and Joost Visser, editors,Pro-
ceedings of the International Summer School on Generative and Transfor-
mational Techniques in Software Engineering, Braga, Portugal, July 4–8,
2005, Lecture Notes in Computer Science. Springer-Verlag, 2006. To ap-
pear.

[EH06b] Torbjörn Ekman and Görel Hedin. Pluggable non-null types for Java. Tech-
nical report, 2006. Unpublished manuscript, http://jastadd.cs.lth.se.

84

[EH06c] Torbjörn Ekman and Görel Hedin. The JastAdd compiler compiler system,
2006.
http://jastadd.cs.lth.se.

[EH06d] Torbjörn Ekman and Görel Hedin. The JastAdd System – modular exten-
sible compiler construction. Technical report, 2006. Submitted for publi-
cation, http://jastadd.cs.lth.se.

[gcj06] The GNU Compiler for the Java Programming Language, 2006.
http://gcc.gnu.org/java/.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[jac06a] The Jacks compiler test suite, the Mauve Project, 2006.
http://sources.redhat.com/mauve/.

[jac06b] JaCo Java Compiler, The Programming Language Keris, 2006.
http://lampwww.epfl.ch/ zenger/keris/.

[jav06] javac in Java 2 Platform, Standard Edition 5.0, 2006.
http://java.sun.com/j2se/1.5/.

[JCK06] JCK test suite - Technology Compability Kit for J2SE, 2006.
https://jck.dev.java.net/.

[jik06] Jikes high performance Java compiler, 1.22, 2006.
http://jikes.sourceforge.net/.

[MNQ06] Andrew Myers, Nathaniel Nystrom, and Xin Qi. Polyglot - A compiler
front end framework for building Java language extensions, 2006.
http://www.cs.cornell.edu/Projects/polyglot/.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for java. InProceedings of 12th
International Conference on Compiler Construction, CC 2003, Warsaw,
Poland, volume 2622 ofLecture Notes in Computer Science, pages 138–
152. Springer-Verlag, 2003.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot - a java optimization framework. InProceed-
ings of CASCON 1999, pages 125–135, 1999.

[Whe06] David A. Wheeler. Sloccount, 2006. http://www.dwheeler.com/sloccount/.
[ZO01] Matthias Zenger and Martin Odersky. Extensible algebraic datatypes with

defaults. InICFP ’01: Proceedings of the sixth ACM SIGPLAN interna-
tional conference on Functional programming, pages 241–252, New York,
NY, USA, 2001. ACM Press.

Paper IV

Modular name analysis for Java using JastAdd

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Modular name analysis for Java using JastAdd

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract Name analysis for Java is challenging with its complex vis-
ibility rules involving nested scopes, inheritance, qualified access, and
syntactic ambiguities. We show how Java name analysis including am-
biguities related to names of variables, fields, and packages, can be im-
plemented in a declarative and modular manner using the JastAdd com-
piler construction system.
Declarative attributes and context-dependent rewrites enable the imple-
mentation to be modularized in the same way as the informal Java lan-
guage specification. The individual rules in the specification transfer
directly to equations in the implementation. Rewrites are used to define
new concepts in terms of existing concepts in an iterative manner in the
same way as the informal language specification. This enables equa-
tions to use both context-free and context-dependent concepts and leads
to improved separation of concerns. A full Java 1.4 compiler has been
implemented to validate the technique.

1 Introduction

The computations done on abstract syntax trees in compilers and related tools
are often highly context sensitive. E.g., there are often symbolic names that
have different meanings depending on their context. The purpose of name anal-
ysis is to bind each name to a declaration and hence resolve the meaning of
that name. Name analysis for the Java programming language is challenging
with its complex visibility rules involving nested scopes, inheritance, qualified
access, and syntactic ambiguities. The purpose of this paper is to show how
ambiguities related to names of variables, types, and packages, can be solved
in a declarative and modular manner, using the JastAdd compiler construction
system.

Consider the qualified nameA.B.C and the task of binding each individual
simple name to its declaration. The meaning depends on thesyntactic context,
e.g.,C is expected to be aTypeName in theextends clause of a class declaration,
and anExpressionName when being the right hand side of an assignment. There
are alsocontextually ambiguousnames where the set of visible declarations are

88

required to resolve the name. For example,A.B can be thePackageName of the
top level classC, or A, B, and C can all be nestedTypeNames. Such ambiguities
should be resolved by reclassification toTypeNames if there are visible type
declarations and otherwise toPackageNames . The Java Language Specification
[3] defines the specific rules for visible declarations at each point in a program
and how to first classify context-free names according to their syntactic context
and then refine them by reclassifying contextually ambiguous names.

JastAdd supports declarative attributes and context-dependent rewrites that
enable the implementation to be modularized in the same way as the infor-
mal language specification. The individual rules in the specification transfer di-
rectly to equations in the implementation. The language specification contains
a set of basic language concepts captured by a context-free grammar. There
are, however, additional concepts that are context-dependent, e.g.,TypeNames.
Rewrites are used to refine the tree to use not only the basic concepts but also
the context-dependent ones. We present a transformational technique to grad-
ually define new concepts in terms of existing concepts, in the same way that
they are defined in the informal language specification. This allows for decom-
position of complex problems into simpler ones, and it also better supports
separation of concerns.

We define a tiny subset of Java namedDemoJavaNameswhich captures all
the characteristic problems in resolving contextually ambiguous names that
occur in full Java. A complete name analysis implementation for DemoJa-
vaNames is presented and included in this paper. We have implemented a full
Java 1.4 compiler based on the same technique to verify that the techniques
scale to full languages. The system has been validated against the Jacks test-
suite and passes more tests than the production quality compilers javac and
jikes [1]. While not claiming superiority over either compiler we claim that our
implementation is complete while being less then half the size of the handwrit-
ten javac compiler.

The rest of this paper is structured as follows. Section 2 introduces the fea-
tures of JastAdd that are used in the implementation of DemoJavaNames. Sec-
tion 3 describes the implementation of name lookup, syntactic classification,
and reclassification of contextually ambiguous names. Section 4 compares our
work to related work and Section 5 concludes the paper.

2 JastAdd Background

The JastAdd compiler construction system combines object-orientation and
static aspect-oriented programming with declarative attributes and context-dep-
endent rewrites to allow highly modular specifications. This section gives an

2. JASTADD BACKGROUND 89

introduction to the JastAdd system, needed to understand the source code list-
ings in Section 3. The evaluation algorithm is described in [7,2] and the system
is publically available [1].

2.1 Abstract grammar

The abstract grammar models an object-oriented class hierarchy from which
classes are generated that are used as node types in the abstract syntax tree
(AST). Consider the grammar in Figure 1. A class is generated for each pro-
duction in the grammar, e.g.,Prog, CompUnit, ClassDecl , and may inherit
another production by adding a colon followed by the super production, e.g.,
LocalVariableDecl : Stmt .

The right hand side of a production is a list of elements. The default name
of an element is the same as its type unless it is explicitly named by prefix-
ing the element with a name and a colon, e.g., theFieldDecl has an ele-
ment namedType which is of typeName. Elements enclosed in angle brackets
are values, e.g.,<name:String> in FieldDecl , while other elements are tree
nodes, e.g.,Type:Name andExpr in Field -Decl . The tree node element may
be suffixed by a star to specify a list of zero or more elements, e.g.,ClassDecl*
in CompUnit .

The system generates a constructor and accessor methods for value and tree
elements. The accessor method for a value element has the same name as the
element, e.g.,String name() , while the tree element is prefixed by get, e.g.,
Name getType() . List elements have an index to select the appropriate node,
e.g., getClassDecl(int index) , and there is an accessor for the number of
elements in the list, e.g.,int getNumClassDecl() .

2.2 Declarative attributes

Attribute Grammars [10] have proven useful when describing context-sensitive
information for programming languages. Their declarativeness makes it easy to
modularize grammars freely, and they integrate well with the object-oriented
programming paradigm, in particular when augmented withreference attributes,
allowing an attribute to be a reference to another tree node object [6]. This sec-
tion gives a very brief introduction tosynthesizedand inherited declarative
attributes.

A synthesizedattribute is similar to a virtual method without side-effects
which allows for efficient evaluation using caching. Consider the grammar in
Figure 1 and the task to determine whether aStmt node declares a local vari-
able namednameor not. This can be implemented through a synthesized at-
tribute using the following JastAdd syntax:

90

syn boolean Stmt . isLocalVar iableDecl (Str ing name);
eq Stmt . isLocalVariab leDecl (Str ing name) {

return false ;
}
eq LocalVar iableDecl . isLocalVar iableDecl (Str ing name) =

name (). equals (name);

Notice that the equation forLocalVariableDecl overrides the default equa-
tion for its superclassStmt . Notice also the functional styled short-hand for its
right-hand side: it uses an expression rather than a block with a return state-
ment. An additional shorthand is possible (but not shown): combining the at-
tribute declaration and the first equation into a single clause by inserting the
equation right-hand side before the semicolon in the declaration.

JastAdd supports inter-type declarations [9] where attributes can be added
to an existing class in a modular fashion. The target class for each attribute
and equation is specified by qualifying its name with the target class name, e.g
Stmt and Local -VariableDecl above. The attribute is then woven into the
class hierarchy generated from the abstract grammar.

An inherited attribute propagates the context downwards the AST. Con-
sider the task to determine the enclosingBlock for a Stmt node. A block can
tell all its enclosedStmts that it is the enclosingBlock declaration. This can
be implemented through an inherited attribute using the following syntax:

inh Block Stmt . enclosingBlock ();
eq Block . getStmt (). enclos ingBlock () = this ;

Equations for inherited attributes are broadcast to an entire subtree in a sim-
ilar way as for theincluding construct in the Eli attribute grammar system
[13]. This subtree is explicitly selected using a child accessor (getStmt() in
this case). The equation should thus be read as:define the value for the en-
closingBlock attribute in the entire subtree whose root is the node returned by
getStmt() in a block node. The value should bethis, i.e., a reference to the block
node defining the equation.

2.3 Context-dependent rewriting

JastAdd supports declarative context-dependent rewrites to dynamically change
the AST. A node of typeS is automatically rewritten to a node of typeT when
a certain condition is true using the syntax below:

rewrite S {
when(condit ion ())
to T new T (.. .) ;

}

3. NAME ANALYSIS FOR DEMOJAVANAMES 91

The rewrites are context-dependent in that the conditions may depend on syn-
thesized and/or inherited attributes. The rewrites are declarative in that they are
performed automatically by a rewrite evaluation engine. In the final tree, no
rewrite conditions are true. There may be multiple when-to clauses in which
case they are evaluated in lexical order. The evaluation engine is demand-driven
and rewrites nodes when they are being visited, interleaved with attribute evalu-
ation. The examples discuss the resulting transformation order for each rewrite
as well as interaction with other rewrites and attribute evaluation. The evalua-
tion algorithm is presented in [2].

3 Name analysis for DemoJavaNames

This section presents the implementation of name analysis for a tiny subset of
Java that only includes compilation units, packages, nested classes with inheri-
tance, fields, initializers, blocks, local variables, and names. We call this subset
DemoJavaNamesand, while being far from useful as a practical language, it
captures all the characteristic problems in resolving contextually ambiguous
names that occur in full Java.

The input of the name analysis is a context-free tree constructed by the
parser. The result is an attributed tree where all names have been resolved to
appropriate name kinds, and have reference attributes denoting the appropriate
declaration node. The purpose of the paper is to show how ambiguities related
to names of variables, types, and packages, can be solved in a declarative and
modular manner, using JastAdd. We will show how each of the rules in the
language maps to a specific equation in the attribute grammar.

DemoJavaNames keeps just enough language constructs to illustrate the
following name related concepts: multiple kinds of nested scopes, object-ori-
ented inheritance, qualified names, shadowing and hiding, and multiple kinds
of variables. To simplify the example we removed all language concepts un-
related to names and we also removed language concepts that duplicate name
analysis problems, e.g., we only use classes and not interfaces. For brevity, we
also removed some language constructs that do affect name binding, i.e., im-
ports of types and access control. While they are not included in the program
listings we discuss how the implementation can be extended to handle these
features as well.

Figure 1 presents the abstract grammar for DemoJavaNames. TheDot pro-
duction that represents a qualified name requires further explanation. The parser
is expected to build right recursive trees where theLeft child is always a
simple name while theRight child may be aDot or a simple name. It is
also worth noticing that the names in the grammar are context-sensitive, e.g.,

92

ast Prog ::= CompUni t *;
ast CompUnit ::= <packageName :Str ing > ClassDecl *;
ast ClassDecl ::= <name :Str ing > Super : Name BodyDecl *;

ast abstract BodyDecl ;
ast FieldDecl : BodyDecl ::= FieldType : Name

<name :String > Expr ;
ast MemberClassDecl : BodyDecl ::= ClassDecl ;
ast Ini t ial izer : BodyDecl ::= Block ;

ast abstract Stmt ;
ast Block : Stmt ::= Stmt *;
ast LocalVar iab leDecl : Stmt ::= VarType : Name

<name : String > Expr ;
ast abstract Expr ;
ast abstract Name : Expr ::= <name :String >;
ast Dot : Name ::= Left : Name Right : Name ;
ast ExpressionName : Name ;
ast PackageName : Name ;
ast TypeName : Name ;

Figure 1. DemoJavaNames abstract grammar. A minimal subset of Java used to illus-
trate the problems in resolving contextually ambiguous names.

ExpressionName , TypeName, Package . We introduce context-free names and
transformations into context-sensitive names in Section 3.3.

The type of names and variable declarations is needed to define qualified
lookups and inherited members in later modules. We therefore define the type
as an attribute of expressions and declarations. Figure 2 implements the type
attribute as a reference to the appropriate declaration. To simplify equations
in name binding modules we use a null object to represent unknown types.
That way it is always possible to query an expression for members instead of
handling the special case where the type is unknown.

The following sections present modules for name lookup and reclassifi-
cation of ambiguous names followed by a discussion on how to extend the
implementation to handle full Java.

3.1 Visible declarations

The most important contextual information used in name analysis is the set
of visible declarations at each point in a program. Those declarations are then
used to bind names in an actual context to their appropriate declarations. The

3. NAME ANALYSIS FOR DEMOJAVANAMES 93

syn ClassDecl Expr . type () = unknownType ();
eq Dot . type () = getRight (). type ();
eq ExpressionName . type () = lookupVariable (name ())!= null ?

lookupVariable (name ()). type () : unknownType ();
eq TypeName . type () = lookupType (name ()) != null ?

lookupType (name ()) : unknownType ();
syn ClassDecl LocalVar iableDecl . type () =

getVarType (). type ();
syn ClassDecl FieldDecl . type () = getFieldType (). type ();

Figure 2. Type binding for DemoJavaNames where each expression and variable decla-
ration is bound to a class declaration. A null object is used for unknown types to allow
for a unified member lookup.

name binding module in Figure 3 defines thelookupVariable(String name)

attribute inNamethat provides a binding through a reference to a named visible
variable-declaration.

Language constructs that change the set of visible declarations, e.g., in-
troduce new declarations or limit scope for an existing declaration, need to
provide an equation for the lookup attribute. DemoJavaNames has two kinds
of variables,LocalVariableDeclarations declared inBlocks , andField -
Declarations declared inClassDecls . The equations for lookup need thus
be placed in theBlock andClassDecl types.

Nested scopes with shadowingThe scope of a declaration is the region of the
program in which the declaration can be referred to using a simple name. The
scope of a declaration often involves nested language elements where declara-
tions in one element are in scope in enclosed elements as well. A declaration
may be shadowed in part of its scope by another declaration of the same name.

Both classes and blocks are allowed to be nested in DemoJavaNames and
both implement shadowing as well. In Figure 3 the delegation to enclosing
context, marked with➁, implements nested scopes. The eager return at first
match, marked with➀, implements shadowing.

Declarations in a block have adeclare before usepolicy. This is imple-
mented by limiting the range of the block that is searched for declarations at
➂. The equation is parameterized by theindex of theStmt in the element list
and the search stops at theStmt that encloses the name.

Inheritance The member fields of a class are not only the locally declared
fields but also fields inherited from the superclass. A field is inherited if there

94

/ / v i s i b l e v a r i a b l e or n u l l
inh Variable Name . lookupVar iable (Str ing name);
/ / l o c a l v a r i a b l e s i n b l o c k s
eq Block . getStmt (int index). lookupVariable (Str ing name) {

➂ for (int i = 0; i < index ; i++)
if (getStmt (i). isLocalVariab leDecl (name))

➀ return (LocalVar iableDecl) getStmt (i);
➁ return lookupVariable (name);

}
syn boolean Stmt . isLocalVar iableDecl (Str ing name) = false ;
eq LocalVar iableDecl . isLocalVar iableDecl (Str ing name) =

name (). equals (name);
inh Variable Block . lookupVar iable (Str ing name);
/ / member f i e l d s i n c l a s s e s
eq ClassDecl . getBodyDecl (). lookupVariable (String name) {

if (memberField (name) != null)
➀ return memberField (name);
➁ return lookupVariable (name);

}
/ / members i n c l u d i n g i n h e r i t a n c e
syn FieldDecl ClassDecl . memberFie ld (String name) {

for (int i = 0; i < getNumBodyDecl (); i++)
if (getBodyDecl (i). isField (name))

➃ return (FieldDecl) getBodyDecl (i);
➄ if (getSuper (). type (). memberField (name) != null)

return getSuper (). type (). memberField (name);
return null ;

}
syn boolean BodyDecl . isField (Str ing name) = false ;
eq FieldDecl . isField (Str ing name) = name (). equals (name);
inh Variable ClassDecl . lookupVariable (Str ing name);
/ / no more n e s te d d e c l a r a t i o n s
eq Prog . getCompUni t (). lookupVariable (Str ing name) = null ;
/ / a b s t r a c t i o n f o r F ie l d De c l and L o c a lVa r i a b le De c l
interface Variable {

Str ing name ();
ClassDecl type ();

}
FieldDecl implements Variable ;
LocalVariab leDecl implements Var iable ;

Figure 3. Variable binding for DemoJavaNames. Shadowing is implemented by eager
return statements marked➀. Nesting is implemented using delegation marked➁. De-
clare before use is implemented by limiting variable search to the current node index in
➂.

3. NAME ANALYSIS FOR DEMOJAVANAMES 95

is not a local field declaration that hides the field in the superclass. The ea-
ger return at➃ implements hiding and the delegation to the superclass at➄
implements inheritance.

Canonical type lookup The lookup of visible class declarations is imple-
mented in a similar fashion to variable lookup. The main difference is how the
lookup is handled at the compilation unit level. If the type is not found in the
current compilation unit then the top level types in compilation units belonging
to the same package are considered. This is implemented in Figure 4 by delega-
tion ➀ to a canonical lookup that takes both the package name and type name
into account➁. Inheritance of member classes is implemented in the same way
as for variables.

3.2 Qualified lookup

The set of visible declarations for a qualified name depends on the target
of the resolved name to the left of the dot. A validExpressionName can
be preceded by either aTypeName or an ExpressionName . Either way, the
ExpressionName refers to a member field in theClassDecl that represents
the type of the preceding expression. Figure 5 extends the name binding mod-
ule with qualified lookup. The equation at➀ defines the variable lookup to
search theClassDecl (that the qualifier’s type is bound to) for members.

The lookup attribute is an inherited attribute and thus defined by an equa-
tion in an ancestor node. The qualifier to the left of the dot in a qualified name
should provide the equation for the name on the right hand side of the dot. This
is done by the common ancestorDot which propagates the value of the equa-
tion from left to right for variables at➀ and types at➁, overriding the lookup
defined by an ancestor further up in the AST.

A valid TypeNamecan be preceded by either aPackageName or aTypeName.
If the qualifier is aPackageName then the qualified name is the canonical name
of the type. But if the qualifier is aTypeName then the name refers to a member
type. There are thus different rules for the lookup depending on the kind of ex-
pression that precedes the name. TheDot therefore delegates the lookup to the
expression at➁ and searches for member types at➂ as the default strategy for
expressions while thePackageName overrides the lookup at➃ to use canonical
type names.

3.3 Determine the meaning of names

The abstract syntax defined so far contains name nodes that are highly context
sensitive and can thus not be built by a context-free parser. We now extend

96

/ / v i s i b l e t y p e or n u l l o b j e c t
inh ClassDecl Name. lookupType (Str ing name);

/ / t op l e v e l t y p e s i n c o m p i l a t i o n u n i t
eq CompUnit . getClassDecl (). lookupType (Str ing name) {

if (topLevelType (name) != null)
return topLevelType (name);

/ / d e c l a r a t i o n s in same package
➀ return lookupCanonica l (packageName () , name);

}
syn ClassDecl CompUnit . topLevelType (String name) {

for (int i = 0; i < getNumClassDecl (); i++)
if (getClassDecl (i). name (). equals (name))

return getClassDecl (i);
return null ;

}
/ / l ookup a t y p e us in g i t s c a n o n i c a l name
inh ClassDecl Name. lookupCanonical (Str ing p , Str ing t);
eq Prog . getCompUni t (). lookupCanonica l (Str ing p , String t)
{

for (int i = 0; i < getNumCompUnit () ; i++)
➁ if (getCompUnit (i). packageName (). equals (p) &&

getCompUnit (i). topLevelType (t) != null)
return getCompUnit (i). topLevelType (t);

return null ;
}
/ / member c l a s s e s in c l a s s d e c l a r a t i o n
/ / ana loguous t o t h e member f i e l d s i m p le m e n t a t i o n
eq ClassDecl . getBodyDecl (). lookupType (Str ing name) {

... }
/ / no more n e s te d d e c l a r a t i o n s
eq Prog . getCompUni t (). lookupType (Str ing name) = null ;

Figure 4. Type lookup for DemoJavaNames.

the abstract syntax with additional context-free name nodes that are used for
gradually refining the names to reflect their semantic meaning.

The parser constructs unqualified name nodes only using the node type
ParseName . These nodes are then refined by the name analysis to the result-
ing nodes listed in Figure 1. To simplify this computation, some of the refine-
ments are done in intermediate steps, making use of two additional node types:
PackageOrTypeName andAmbiguousName , see Figure 6.

3. NAME ANALYSIS FOR DEMOJAVANAMES 97

eq Dot . getRight (). lookupVariable (Str ing name) =
➀ getLeft () . type (). memberField (name);

eq Dot . getRight (). lookupType (Str ing name) =
➁ getLeft () . qual i f iedLookupType (name);

syn ClassDecl Expr . qual i f iedLookupType (Str ing name) =
➂ type (). memberClass (name);

eq PackageName . qual i f iedLookupType (Str ing typeName) =
➃ lookupCanonical (name () , typeName);

Figure 5. Qualified lookup of types and fields.

Syntactic classification of namesThe first step in resolving names is to re-
classify theParseName nodes based on their immediate syntactic context. This
way some nodes can be directly refined to their final class:PackageName,
TypeName, or ExpressionName . However, for some names, the immediate
syntactic context is not sufficient, in which case theParseName is refined to
PackageOrTypeName (for names that must refer packages or types), orAmbig -
uousName (for names where the kind cannot yet be determined at all).

The Java language specification defines the classification process by de-
scribing a context and the expected name kind. For instance, a name is syntac-
tically classified as aTypeName in theextends clause of a class declaration.
We therefore introduce an inherited attributekind() that describes the syntac-
tic classification in a certain context by referring to an element in an enumera-
tion of the above name kinds. Figure 6 shows thekind() attribute declaration
at ➁, the enumeration at➅, and the sample classification description at➂.

A qualifier in a qualified name may depend on the classification of the name
it qualifies. For instance, a name is syntactically classified as aPackageOrType -
Name to the left of the dot in a qualifiedTypeName. However, we still have
the same requirement for equations in the ancestor as for qualified names. We
therefore introduce another attributepredKind() which is delegated from right
to left at➃ and the equation corresponding to the above example at➄.

The equations forkind() and predKind() complete the description of
classification context and the transformation is almost trivial. The conditional
rewrite at➀ transforms aParseName node into its syntactically classified coun-
terpart. It is worth noticing that the dependences introduced by thekind() at-
tribute equations in combination with demand driven rewriting causes qualified
names to be classified from right to left.

98

ast ParseName : Name ;
ast PackageOrTypeName : Name ;
ast AmbiguousName : Name;

➀ rewrite ParseName {
when(kind () == Kind . PACKAGE_NAME)
to Name new PackageName (name ());
when(kind () == Kind . TYPE_NAME)
to Name new TypeName (name ());
when(kind () == Kind . EXPRESSION_NAME)
to Name new Express ionName (name ());
when(kind () == Kind . PACKAGE_OR_TYPE_NAME)
to Name new PackageOrTypeName (name ());
when(kind () == Kind . AMBIGUOUS_NAME)
to Name new AmbiguousName (name ());

}

➁ inh Kind ParseName . kind ();
eq Prog . getCompUni t (). kind () = Kind . AMBIGUOUS_NAME ;

➂ eq ClassDecl . getSuper (). kind () = Kind . PACKAGE_NAME ;
eq FieldDecl . getFieldType (). kind () = Kind . TYPE_NAME ;
eq FieldDecl . getExpr (). kind () = Kind . EXPRESSION_NAME ;
eq LocalVar iableDecl . getVarType (). kind () = Kind . TYPE_NAME ;
eq LocalVar iableDecl . getExpr (). kind () = Kind . EXPRESSION_NAME ;

/ / p ropaga te i n f o r m a t i o n from r i g h t t o l e f t
➃ eq Dot . getLeft (). kind () = getRight (). predKind ();

syn Kind Name . predKind () = Kind . AMBIGUOUS_NAME ;
eq Dot . predKind () = getLeft (). predKind ();

eq PackageName . predKind () = Kind . PACKAGE_NAME ;
➄ eq TypeName . predKind () = Kind . PACKAGE_OR_TYPE_NAME ;

eq Express ionName . predKind () = Kind . AMBIGUOUS_NAME ;
eq PackageOrTypeName . predKind () = Kind . PACKAGE_OR_TYPE_NAME ;
eq AmbiguousName . predKind () = Kind . AMBIGUOUS_NAME ;

➅ class Kind {
static Kind PACKAGE_NAME =new Kind ();
static Kind TYPE_NAME = new Kind ();
static Kind EXPRESSION_NAME = new Kind ();
static Kind PACKAGE_OR_TYPE_NAME =new Kind ();
static Kind AMBIGUOUS_NAME =new Kind ();

}

Figure 6.Syntactic classification of names depending on their context. The context-free
ParseName names are classified and rewritten to any of the five name kinds defined in
Kind.

3. NAME ANALYSIS FOR DEMOJAVANAMES 99

Reclassification of contextually ambiguous namesThe next step is to reclas-
sify contextually ambiguous names, i.e.,AmbiguousName andPackageOrType -
Name, in the context of visible declarations. AnAmbiguousName is reclassified
as anExpressionName if there is a visible variable declaration with the same
name. Otherwise, as aTypeName if there is a visible type declaration with the
same name. Otherwise, as aPackageName if there is a visible package with the
same name. The corresponding implementation is shown in Figure 7.

rewrite AmbiguousName {
when(lookupVariable (name ()) != null)
to Name new ExpressionName (name ());
when(lookupType (name ()) != null)
to Name new TypeName (name ());
when(hasPackage (name ()))
to Name new PackageName (name ());

}
rewrite PackageOrTypeName {

when(lookupType (name ()) != null)
to Name new TypeName (name ());
when(hasPackage (name ()))
to Name new PackageName (name ());

}
inh boolean Name. hasPackage (String name);
eq Program . getCompUnit (). hasPackage (Str ing name) {

for (int i = 0; i < getNumCompUni t (); i++)
if (getCompUnit (i). packageName (). equals (name))

return true ;
return false ;

}
eq Dot . getRight (). hasPackage (Str ing name) =

getLeft (). qual i f iedHasPackage (name);
syn boolean Expr . qual i f iedHasPackage (Str ing name) = false ;
eq PackageName . qual i f iedHasPackage (Str ing name) =

hasPackage (name () + ’. ’ + name);

Figure 7. Reclassification of Contextually Ambiguous Names.

A contextually ambiguous name is resolved by binding it in the context
of its qualifier. There is thus a dependence that the qualifier must be resolved
before its right hand side can be resolved. We implement this dependence by
making sure that all rewrite conditions in Figure 7 are false when the qualifier

100

of a name is ambiguous. These conditions are false when there are no visible
names. The type of an ambiguous name isunknownType() which has no vis-
ible member fields or types. To make the property hold we add an attribute
hasPackage(String name) that is true when there is a visible package with
that name and no ambiguous qualifiers. A qualified namea.b.c is thus first
syntactically classified from right to left because of the dependences in the
kind() attribute, and then reclassified from left to right.

3.4 Extensions to handle full Java

The DemoJavaNames language lacks some important name-related language
constructs available in Java. This section describes the needed changes to the
implementation to support full Java.

The implementation can be extended with more nested scopes by providing
a new equation for the lookup attribute in each new scope. The various nested
scopes are totally decoupled from each other using inherited attributes with pa-
rameters. The only constraint is that a scope is nested in another scope if they
are on the same path to the root node. AForStmt may for instance provide
an equation (very similar to the equation forBlock in Figure 3) that searches
for LocalVariableDeclarations in its init-clause. Type imports extend the
scope of type declarations and can be implemented by inserting a search for
matching imports at➀ in Figure 4. Java 5 [4] constructs such asstatic im-
ports and theenhanced for statementcan be supported using the same tech-
nique by adding a search for imported fields in theCompUnit node type and a
lookup equation for local variable declarations in the enhanced for statement
AST node.

Java supports access control where modifiers impose visibility constraints
on names. Access control limits inheritance in that only non private accessi-
ble members are inherited from the superclass. This is easily implemented by
adding a filter at➄ in Figure 3 that removes private non accessible fields. Ac-
cess control also affects qualified lookups. The type of a qualifier must for
instance be accessible and there are also additional constraints when the qual-
ifier is anExpressionName . Such behavior can be implemented by filters at
➀ and➁ in Figure 5. The specialized rules forExpressionName may require
the qualified lookup for fields to be extended to the variant used for types. The
filter can then be placed on theExpressionName qualifier.

DemoJavaNames supports inheritance from classes only while Java also
supports interfaces. Interfaces complicate name analysis somewhat in that mul-
tiple inheritance may cause several fields with the same name to be inherited.
This is only an error if a name refers to the ambiguous fields and the error de-
tection can thus not occur in theClassDecl directly but needs to be deferred to

4. RELATED WORK 101

aNamenode. This can be implemented by turning the lookup attribute into a set
of references instead of a single reference. This does not affect the described
modularization, but a few equations need to be changed to handle sets. Lookup
equations defined to reference a single declaration are changed to a set of decla-
rations, e.g.,eq Block.getStmt(int index).lookupVariable(String name) in
Figure 3 should return a set with a single reference to a variable declaration.
Equations that expect a single reference need to ensure that the queried set con-
tains a single reference and then extract that reference, e.g., Figure 2 defines
eq ExpressionName.type() that should extract a single type-declaration refer-
ence or returnunknownType() . If a name binds to more than one element the
name is ambiguous and a compile-time error is reported.

4 Related work

Transformation technology is commonly used in compiler construction to re-
fine the AST to include context-sensitive information for later passes. Our ap-
proach differs from similar techniques in the use of context-dependent rewrites
interleaved with attribute computations. Rewrites allow us to gradually de-
fine new concepts in terms of existing concepts, in the same way commonly
used in informal language definitions. The fine-grained interaction between at-
tribute computation and rewriting enables the immediate use of these concepts
in equations without the need of defining separate passes. This is a key mech-
anism that allows complex analysis problems like Java name resolution to be
broken down into small simple steps. To our knowledge, there are no other sys-
tems supporting similar mechanisms. Higher-order attribute grammars [17,12]
allow the AST to be used as the only data structure, and combined with for-
warding [15] it may be possible to use in a similar fashion, but as far as we
know, forwarding has only been implemented in prototypes built on top of
Haskell, and it is unclear how the practical performance would scale to full
languages like Java.

The basic idea of name analysis for object-oriented languages based on ex-
plicit name bindings was used by ourselves earlier for simpler object-oriented
languages [5], [6], and by Vorthmann in his visibility graph technique [18].
Vorthmann also uses a filtering technique to take care of constructs that limit
declaration visibility. However, these approaches did not use context-dependent
node types, which contribute substantially to making the approach modular.
There is some other work aiming at separating the name analysis from other
phases of a compiler, most notably the work on Kastens and Waite on an ab-
stract data type for symbol tables [8]. The current version of Eli [13] contains
an extensible library of modules for a large variety of scope rules, e.g., single
inheritance, multiple inheritance, declare before use.

102

JastAdd lets context-dependent computations drive the transformations but
it is interesting to compare to the opposite approach: letting transformations
drive contextual computations commonly used in transformation systems such
as ASF+SDF [14] and Stratego [16]. An important difference is that transfor-
mation systems typically handle contextual information by using an external
database that is updated during the transformations. This requires the user to
explicitly associate database updates with particular transformation rules or
phases. The traversal order must thus take contextual dependences, which can
be highly nonlocal, into account. In contrast, JastAdd uses the contextual de-
pendences to derive a suitable traversal strategy. The Stratego system has a
mechanism for dependent dynamic transformation rules [11], supporting cer-
tain context-dependent transformations, but it is not clear how this could be
used for implementing name binding and similar problems in object-oriented
languages.

5 Conclusions

We have presented a technique to implement name analysis for the Java pro-
gramming language. The main contribution of the paper is to show how com-
plex problems in name analysis including ambiguities related to names of vari-
ables, types, and packages can be solved in a declarative and modular way. The
use of declarative attributes and contextual rewrites allow the implementation
to be modularized in the same way as the language specification. Context-free
as well as context dependent concepts in the language can be used directly in
attributes and equations. It is worth noticing that the implementation can be
freely modularized according to different criteria. A language extender may
for instance choose to define a module with all attributes and equations related
to a new language construct. The granularity of what can be modularized is a
single attribute or equation, thereby providing excellent support for separation
of concerns.

We have defined a small subset of Java that captures all the characteristic
problems in resolving contextually ambiguous names. The implementation us-
ing JastAdd is less than 200 lines of code, most of it included in the paper. The
source code and the JastAdd tool are available for download at [1]. The tech-
nique has been used to implement a full Java 1.4 compiler to verify that the
technique scales to the full language. The system has been validated against
the Jacks test-suite and passes more tests than the production quality compilers
javac and jikes [1] while being roughly half the size of the handwritten javac
compiler.

5. CONCLUSIONS 103

Acknowledgements

We are grateful to Calle Lejdfors and the anonymous reviewers for valuable
feedback and helpful comments.

References

1. T. Ekman and G. Hedin. The JastAdd II compiler compiler system.
http://jastadd.cs.lth.se.

2. T. Ekman and G. Hedin. Rewritable Reference Attributed Grammars. InProceed-
ings of ECOOP 2004, volume 3086 ofLNCS. Springer-Verlag, 2004.

3. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification
Second Edition. Addison-Wesley, Boston, Mass., 2000.

4. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification
Third Edition. Addison-Wesley, Boston, Mass., 2005.

5. G. Hedin. An overview of door attribute grammars. InProceedings of Compiler
Construction 1994, volume 786 ofLNCS, pages 31–51. Springer-Verlag, 1994.

6. G. Hedin. Reference attribute grammars. InInformatica (Slovenia), 24(3), 2000.
7. G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler construction

system.Science of Computer Programming, 47(1):37–58, 2003.
8. U. Kastens and W. M. Waite. An abstract data type for name analysis.Acta Infor-

matica, 28(6):539–558, 1991.
9. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An

overview of AspectJ. InECOOP 2001, volume 2072 ofLNCS, pages 327–355.
Springer-Verlag, 2001.

10. D. E. Knuth. Semantics of context-free languages.Mathematical Systems Theory,
2(2):127–145, June 1968. Correction:Mathematical Systems Theory5, 1, pp. 95-
96 (March 1971).

11. K. Olmos and E. Visser. Composing source-to-source data-flow transformations
with rewriting strategies and dependent dynamic rewrite rules. InProceedings of
Compiler Construction 2005, volume 3443 ofLNCS. Springer-Verlag, 2005.

12. J. Saraiva.Purely functional implementation of attribute grammars. PhD thesis,
Utrecht University, The Netherlands, 1999.

13. A. Sloane, W. M. Waite, and U. Kastens. Eli - translator construction made easy.
http://eli-project.sourceforge.net/.

14. M. van den Brand and P. Klint. The ASF+SDF MetaEnvironment.
http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment.

15. E. Van Wyk, O. d. Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in at-
tribute grammars for modular language design. InProceedings of Compiler Con-
struction 2002, volume 2304 ofLNCS, pages 128–142. Springer-Verlag, 2002.

16. E. Visser, M. Bravenboer, and R. Vermaas. Stratego: Strategies for Program Trans-
formation. http://www.program-transformation.org/Stratego/WebHome.

17. H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars.
In Proceedings of the SIGPLAN ’89 Conference on Programming language design
and implementation, pages 131–145. ACM Press, 1989.

104

18. S. A. Vorthmann. Modelling and specifying name visibility and binding semantics.
Technical Report CMU//CS-93-158, 1993.

Paper V

Pluggable non-null types for Java

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Pluggable non-null types for Java

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract Static type systems allow for early detection of errors and en-
able developers to clearly document their intent. This paper shows how
the existing type system of Java can be extended in a modular fash-
ion while reusing existing compiler infrastructure. This allows for plug-
gable type systems that can be enabled at will.
Non-null types is a type-based approach to statically detect possible null
pointer violations in code. Fähndrich and Leino showed how an object-
oriented language such as Java or C# could be extended with non-null
types and also implemented a prototype for C#.
We have extended the JastAdd Extensible Java Compiler, in a modular
way, to include non-null types. We also extend previous work by pre-
senting a type refinement algorithm that retrofits legacy code to include
non-null types. The algorithm has been used to infer non-null annota-
tions in the JDK standard class library. Both implementations are com-
pact, the non-null extension being around 220 lines of code while the
type refinement algorithm is less than 460 lines of code.

1 Introduction

Static typing allows for early detection of certain classes of errors and allows
developers to clearly document their intent in the form of type signatures. In
this paper we show how type system extensions to Java can be implemented in a
compact and modular way, by extending the JastAdd Extensible Java 1.4 Com-
piler [EH], using ReCRAGs (Rewritable Circular Reference Attributed Gram-
mars) [EH04,MH03]. This modularity is important from several perspectives.
First, it makes type system additions possible to implement with moderate ef-
fort, allowing reuse of existing compiler infrastructure. Second, it opens up for
so called pluggable types [Bra04], where an additional type system is run op-
tionally to statically detect additional errors in code. The base language (Java)
is not changed as such: Any program that is accepted by our extended compiler
will also be accepted by a standard Java compiler (ignoring the annotations),
and the runtime behavior is the same.

Non-null types are available in some newer object-oriented languages, e.g.,
Spec# [BLS04] and Nice [Bon]. The idea is to let the compiler detect that

108

certain expressions will never have the value null. These expressions can be
safely dereferenced without any risk of leading to null pointer exceptions at
runtime. To help the compiler in this analysis, the source code can be annotated
using modifiers on reference declarations. Fähndrich and Leino [FL03] showed
how an object-oriented language such as Java or C# could be extended with
non-null types and they also implemented a prototype for C#.

We use non-null types for Java as an example of how to extend the type
system in a modular fashion. A small kernel language capturing characteristic
type-checking properties of Java is designed, and we show how that language
can be extended with non-null types. The same technique is used in a full Java
1.4 implementation that is publically available.

When using this language extension a problem is that legacy code is not
annotated. Experiments by Fähndrich and Leino showed that if the default case
is that references are not allowed to be null, quite few annotations are needed
in practice. However, combined with legacy code the reverse default rule must
be used: references may possibly be null, e.g., legacy methods may return null
values. The annotated new code must always assume null values from legacy
code, and add extra checks against null when using such code in order to be
safe from possible run-time null pointer exceptions.

We suggest an improved approach by inferring annotations in legacy code
and thereby refine existing type declarations. The idea is to add annotations to
a library of legacy code, e.g., the JDK, to get a safe conservative approximation
of which references in the legacy code are always non-null. These inferred an-
notations can then be used by the explicitly annotated code to be able to safely
use much of the legacy code without extra guarding null-checks. The type re-
finement analysis over the legacy code is a whole program analysis since it
is necessary to take inheritance and overriding into account in order to obtain
good approximations that are useful (i.e., a safe but uninteresting approxima-
tion would be to infer that all references in the library code are possibly null).

The rest of this paper is structured as follows. Sections 2 and 3 present the
necessary background to non-null types and the JastAdd system to understand
the presented implementation techniques. Section 4 defines a base language
which is extended with non-null types in Section 5. Section 6 discusses exten-
sions to cover full Java 1.4, and how the technique can be used for other type
extensions. The type refinement algorithm and its implementation is presented
in Section 7. We evaluate the presented techniques in Section 8. Related work
is discussed in Section 9 and we conclude the paper and discuss future work in
Section 10.

2. NON-NULL TYPES BACKGROUND 109

2 Non-null types background

The non-null types extension is based on the work on non-null types for object-
oriented languages, as presented by Fähndrich and Leino [FL03]. Their ap-
proach differs from earlier work on non-null types by taking inheritance and
object initialization into account. Fähndrich and Leino made a non-modular
prototype implementation for C# while we present a modular extension to Java
and focus on implementation techniques. We also extend their approach by
adding a simple but effective inference algorithm in order to handle legacy
code that does not have non-null annotations.

The purpose of non-null types is to add the possibility to distinguishnon-
null references frompossibly-nullreferences in the type system. This enables
the compiler to statically detect null-related errors at compile-time. The pro-
grammer already needs to consider whether a value may be null or not and the
special handling of null values is error prone. It is clearer to make this design
explicit in the code, and making use of these type invariants in order to write
simpler and safer code. In particular, conditionals guarding against null can
safely be removed for non-null references, and the compiler can give warnings
or errors if there are missing null guards for expressions that are possibly null.

We therefore split reference types into possibly-null and non-null types.
For each possibly-null typeT there is a non-null counterpartT−. Where the
language requires an expression of reference typeT but stipulates that the VM
throws a null pointer exception when the expression evaluates to null, we in-
stead require an expression of reference typeT−.

The programmer typically annotates the type names of reference declara-
tions in order to specify a non-nullness property. The subtype relation is ex-
tended to include these new types. Consider the example in Figure 1. A newly
created instance is clearly non-null and thus allowed to be assigned to a non-
null typed variable. A possibly-null typed variable may be assigned an expres-
sion typed by its non-null counterpart, i.e.,T− is a subtype ofT. A conditional
statement that checks a possibly-null variable againstnull, automatically casts
the variable into its non-null counterpart, as long as it is not assigned a possibly-
null value in that branch. This is a conservative approximation that could be
improved by taking control-flow into account. However, the simple approach
described above works well in practice. A qualified variable or method-name
must be qualified by a value of a non-null type, otherwise a possible null pointer
violation is reported.

The (reference) type hierarchy can be modelled by the type lattice shown
in Figure 2. A typeT is a subtype of another typeS if there is a path in the
upward direction fromT to S. The subtype relation is extended to include the
new types using the rules in Figure 2.

110

T- t = new T (); / / a l l o c a t e a non−n u l l o b j e c t
T n = t ; / / t h i s d i r e c t i o n i s a l lowed
if (n != null) {

t = n; / / n i s o f t y p e T− i n t h i s c o n t e x t
}
int x = t . f ; / / t y p e o f t must be non−n u l l

Figure 1. Example of non-null types

T− <: T

T− <: S− i f f T <: S

null 6<: T−

Figure 2. Type lattice and extended subtype relation including non-null types.

The combination of non-null instance fields and object initialization com-
plicates matters. Instance fields are not always initialized at declaration, but of-
ten in a constructor body or instance initializer. To support such initializations,
we allow instance fields to be declared non-null as long as they are definitely
assigned at the end of each constructor. This guarantees that the variable has a
non-null value after the object has been initialized. However, the reference to
a newly constructed, not yet initialized object, is accessible through thethis

reference and may thus expose instance fields that may not yet have been ini-
tialized. Consider the listings in Figure 3. The left hand is actually equivalent
to the right hand side from a code generation point of view. There is an implicit
call to the super constructor and fields are not initialized until after that call is
completed. The constructor inA is thus reached beforet has been initialized
and the virtual call toprint() reaches the implementation inB that uses thet
field prior to its initialization.

The problem is thatthis within a constructor references a partially initial-
ized object. A type based solution to this problem is to introduce references to
partially initialized objects. The type system is extended with not only non-null
references but also with references to uninitialized objects. These references
are calledraw and when reading fields in raw objects we expect them to be
possibly-null regardless of their annotations. Since instance methods do not

3. JASTADD BACKGROUND 111

class A {
Str ing s = ‘ ‘s ’ ’;
A () {

print ();
}

void print () {
System .out . pr int ln (s);

}
}
class B extends A {

Str ing t = ‘ ‘ t ’ ’;
B () {
}

void print () {
System .out . pr int ln (s+t);

}
}

class A extends Object {
String s;
A() {

super ();
this .s = ‘‘s ’ ’ ;
this . pr int ();

}
void print () {

System . out . pr int ln (this .s);
}

}
class B extends A {

String t ;
B() {

super ();
this . t = ‘‘ t ’ ’ ;

}
void print () {

System . out . pr int ln (
this .s + this . t);

}
}

Figure 3.Access to fields in partially initialized objects. The generated code is identical
for both examples.

have an explicit declaration of thethis reference, the entire method may be
annotated as beingraw which implies that the type ofthis is its raw counter-
part in that method body.

The technique can be improved by further extending the type system to
gradually refine the rawness upto a class in the class hierarchy that is guaran-
teed to have been initialized. See [FL03] for further details onraw upto.

3 JastAdd Background

The JastAdd compiler construction system combines object-orientation and in-
tertype declarations with declarative attributes and context-dependent rewrites
to allow highly modular specifications. Behavior may be specified declaratively
using the Rewritable Circular Reference Attributed Grammars (ReCRAGs) for-
malism [EH04,MH03] or imperatively using Java code. This section gives an
introduction to the JastAdd system, needed to understand the source code list-

112

ings in this paper. The evaluation algorithm is described in [HM03,EH04,MH03]
and the system is publically available at http://jastadd.cs.lth.se

3.1 Abstract grammar

The abstract grammar models an object-oriented class hierarchy from which
classes are generated that are used as node types in the abstract syntax tree
(AST). Consider the grammar in Figure 4 in Section 4.1. A class is gener-
ated for each production in the grammar, e.g.,Program, TypeDecl, Expr ,
and may inherit another production by adding a colon followed by the super
production, e.g.,ClassDecl : TypeDecl .

The right hand side of a production is a list of elements. The default name
of an element is the same as its type unless it is explicitly named by prefix-
ing the element with a name and a colon. E.g., theTypeDecl has an element
namedExtends which is of typeTypeName. Elements enclosed in angle brack-
ets are values, e.g.,<Name:String> in TypeDecl , while other elements are tree
nodes, e.g.,Extends:TypeName andBodyDecl in TypeDecl . The tree node el-
ement may be suffixed by a star to specify a list of zero or more elements, e.g.,
BodyDecl* in TypeDecl .

The system generates a constructor and accessor methods for value and tree
elements. The accessor method is prefixed byget , e.g.,TypeName getExtends() .
List elements can be queried for the number of elements in the list using
int getNumBodyDecl() . Elements are selected using an index to specify the
appropriate child throughgetBodyDecl(int index) ,

3.2 Declarative attributes

Attribute Grammars [Knu68] have proven useful when describing context-
sensitive information for programming languages. Their declarativeness makes
it easy to modularize grammars freely, and they integrate well with the object-
oriented programming paradigm, in particular when augmented withreference
attributes, allowing an attribute to be a reference to another tree node object
[Hed00]. This section gives a very brief introduction tosynthesizedandinher-
ited declarative attributes.

A synthesizedattribute is similar to a virtual method without side-effects
which allows for efficient evaluation using caching. Consider the grammar in
Figure 4 in Section 4.1 and the task to determine whether anExpr node ac-
cesses a field namednameor not. This can be implemented through a synthe-
sized attribute using the following JastAdd syntax:

syn boolean Expr . isFieldName (Str ing name);
eq Expr . isFieldName (Str ing name) { return false ; }

3. JASTADD BACKGROUND 113

eq FieldName . isFieldName (Str ing name) =
getName (). equals (name);

Notice that the equation forFieldName overrides the default equation for its
superclassExpr . Notice also the functional styled short-hand for its right-hand
side: it uses an expression rather than a block with a return statement. An ad-
ditional shorthand is possible (but not shown): combining the attribute dec-
laration and the first equation into a single clause by inserting the equation
right-hand side before the semicolon in the declaration.

JastAdd supports inter-type declarations [KHH+01] where attributes can
be added to an existing class in a modular fashion. The target class for each
attribute and equation is specified by qualifying its name with the target class
name, e.g.,Expr andFieldName above. The attribute is then woven into the
class hierarchy generated from the abstract grammar.

An inherited attribute propagates the context downwards the AST. Con-
sider the task to determine the enclosingTypeDecl for a BodyDecl node. A
type declaration can tell all its enclosedBodyDecls that it is the enclosing
TypeDecl declaration. This can be implemented through an inherited attribute
using the following syntax:

inh TypeDecl BodyDecl . enc losingTypeDecl ();
eq TypeDecl . getBodyDecl (). enclos ingTypeDecl () = this ;

Equations for inherited attributes are broadcast to an entire subtree to elimi-
nate trivial copy-rules. This subtree is explicitly selected using a child accessor
(getBodyDecl() in this case). The equation should thus be read as:define the
value for the enclosingTypeDecl attribute in the entire subtree whose root is
the node returned by getBodyDecl() in a block node. The value should bethis,
i.e., a reference to the type declaration node defining the equation.

3.3 Circular attributes

Circular Reference Attributed Grammars [MH03] allow iterative fixed-point
computations to be expressed directly using recursive equations. Cyclic depen-
dences are allowed as long as there is a fixed-point that can be computed with
a finite number of iterations. This is for example guaranteed if the values for
each attribute on a cycle can be organized in a lattice of finite height and all se-
mantic functions involved in the computation of these attributes are monotonic
on the respective lattice.

Consider the code snippet below that detects circular class hierarchies. A
ClassDecl optionally extends another class through explicit naming. The dec-
laration of that superclass is reached through the type of the extends clause.
We define a boolean attributeisCircular() which is circular if for instance

114

a classA extends B andB extends A. The values in this computation form
a trivial lattice wheretrue is bottomand false is top. The semantic func-
tion (equation) is monotonic since the result stays at bottom, unless a class is
reached that does not extend another class in which case the value is raised to
top.

ast ClassDecl ::= <Name : String > [Extends : TypeName];
syn boolean ClassDecl . isCircular () circular [true] =

hasExtends () ? getExtends (). type (). isCircular () : false ;

3.4 Refine attributes and methods

A common way to extend functionality in a modular fashion is to define new
node types for language extensions and provide new equations that override
existing behavior in a superclass. While this feature is extensively used in our
compiler there is sometimes the need to refine an equation or method definition
in a module. This is similar to overriding but the new behavior affects the same
class instead of a subclass. Consider the code snipped below that refines the
equation forFieldName.isFieldName(String name) in module Base. This is
similar to around advicein AspectJ [KHH+01]. The new definition invokes
the base implementation usingBase.FieldName.isFieldName(name) .

refine Base eq FieldName . isFieldName (Str ing name) =
name . equals ("?") ?

true : Base . FieldName . isFieldName (name);

4 JavaDemoTypes Base language

The focus of this paper is to present a technique to implement and extend the
type system for Java 1.4. However, we believe that many of the ideas trans-
fer directly to any statically typed object-oriented language. The technique is
demonstrated by defining a tiny language, JavaDemoTypes, that captures the
essence of the Java 1.4 type system while using only a few type checking re-
lated constructs. We have, however, used the same technique to successfully
implement the extion for full Java 1.4 cover full Java 1.4.The same techniques
have been used successfully to cover full Java 1.4 and there is a publically
available implementation. JavaDemoTypes is presented as a small base lan-
guage with reference and primitive types only. The language is then extended
with new kinds of types such as array types and non-null types in a modular
fashion. The implementation for the base language with modular extensions is
publically available as well.

4. JAVADEMOTYPES BASE LANGUAGE 115

The main design principle behind the static semantic analyser is to use the
AST as the only data structure and describe all computations as declarative at-
tributes. This is the key to implementing modular extensions to static semantic
analysis such as type checking, name analysis, definite assignment, and reacha-
bility analysis. We represent a type by its declaration which can then be used to
lookup members in name analysis, and to compute the subtype relation during
type checking. There is thus no need for separate symbol tables. We present
modular name analysis and how to resolve contextually ambiguous names for
Java 1.4 in another paper [EH06].

The JavaDemoTypes language allows type declarations, primitive types,
null values, object instantiation, member fields, and access to the current object
throughthis. JavaDemoTypes allows us to write a very scaled-down version of
Java that demonstrates our techniques while still keeping the language small
enough to be presented in the paper. We first describe the abstract grammar of
the language and the parts of its API that are used during type checking. The
base language is then extended with new kinds of types: firstarray typesand
thennon-null types. We extend it later in the paper, as needed, to capture more
language concepts used by the array type and non-null type extensions.

4.1 Language structure

The base grammar in Figure 4 has a few different kinds of type declarations.
Besides user defined class declarations there are primitive types, the null type,
and we also introduce a specialunknowntype that serves as the top type and is
the supertype of all types. Each type declaration inherits a single type declara-
tion and provides a list of body declarations. A type declaration may thus only
define a single direct supertype but we describe an extension based on multiple
supertypes in Section 6.

The base grammar allows member fields as the only kind of body declara-
tion but has an implicit constructor with no arguments in the same way as Java
1.4. Later examples include explicit constructors and method declarations as
well. The fields are initialized where declared and the assignment is checked
using the subtype relation to ensure that the assignment is type safe. A class
instance expression is used to create an object and there is an explicit null lit-
eral. Basic support for names include field names that can be qualified by this
or another field. Primitive integer literals are supported as well.

We represent the type of an expression by a reference attribute from each
expression node to a corresponding type declaration node. These references
are then used to express other properties, e.g., a qualified name lookup may use
such a reference to delegate the lookup of member fields to the type declaration
matching the qualifier’s type. All types used in a program must thus have a
corresponding type declaration node in the AST.

116

ast Program ::= TypeDecl *;

ast abstract TypeDecl ::= <Name :Str ing > Extends : TypeName
BodyDecl * DynamicTypeDecl : TypeDecl *;

ast ClassDecl : TypeDecl ;
ast Pr imi t iveDecl : TypeDecl ;
ast NullDecl : TypeDecl ;
ast UnknownDecl : TypeDecl ;

ast BodyDecl : := < Modif iers : String >;
ast FieldDecl : BodyDecl ::= TypeName <Name :Str ing > Expr ;

ast abstract Expr ;
ast QualName : Expr ::= Left : Expr Right : Expr ;
ast TypeName : Expr ::= <Name : String >;
ast FieldName : Expr ::= <Name :St ring >;

ast This : Expr ;

ast ClassInstanceExpr : Expr ::= TypeName ;
ast NullLi tera l : Expr ::=;
ast IntLi teral : Expr ::= <Value : int >;

Figure 4. Abstract grammar for the JavaDemoTypes base language.

4.2 Name binding and type system API

For brevity we only include the implementation of the base system that is con-
cerned with types. The full implementation including name analysis, is avail-
able at [EH]. This section presents the API to base code that is used but not
included in the paper. Figure 5 shows the relevant parts for this paper. The first
two attributes are concerned with the type of an expression. Each expression
has a type and that type is represented by a reference to its corresponding type
declaration➀. There is a singleton type declaration used to indicate that there
is a type error➁. That declaration is used as a null-object to automatically
handle propagation of type errors. The next four equations deal with names.
Each FieldName is bound to a FieldDecl➂. Some names are qualified by an
expression➃. If this is the case, then there is a reference to that expression➄.
There is also a reference from each Expr to the TypeDecl it is enclosed by➅.
A type declaration can be queried for all member fields with a certain name➆

which is used for qualified lookup of names.

4. JAVADEMOTYPES BASE LANGUAGE 117

/ / each Expr i s bound to a t y p e d e c l a r a t i o n
➀ syn TypeDecl Expr . type ();

/ / t h e r e i s a s i n g l e t o n n u l l−o b j e c t named
/ / unknown t h a t i n d i c a t e s a t y p e e r r o r

➁ inh TypeDecl Expr . unknown ()

/ / a FieldName i s bound t o a d e c l a r a t i o n
➂ syn Fie ldDecl F ieldName . decl ()

/ / e x p r e s s i o n s can be q u a l i f i e d . . .
➃ inh boolean Expr . isQual i f ied ();

/ / . . . and the n have a q u a l i f i e r
➄ inh Expr Expr . qual i f ier ();

/ / a l l Expr a re e n c l o s e d in a t y p e d e c l a r a t i o n
➅ inh TypeDecl Expr . enclosingType ();

/ / a t y p e may have a member f i e l d named n
➆ syn Fie ldDecl TypeDecl . memberField (Str ing n);

Figure 5. The base language API that is used by the type extension.

4.3 Subtype computation for error checking

.
Thesubtype relationis used when typechecking object-oriented programs.

Subsumption allows a subtypeS of T to be used at all places where a typeT
is expected. A typical example is assignment where an expression is assigned
to a variable and the type of that expression must be a subtype of the declared
variable type. The JavaDemoTypes implementation performs error checking by
collecting errors during a generic traversal of the AST and then presenting pos-
sible errors to the user. Figure 6 shows sample error checking forFieldDecl
where the initialization is type checked➀ and forFieldName where the name
binding is checked➁. In the full Java compiler the error method adds location
information to the error message, e.g., filename and row number.

Extensible subtype tests The typechecker uses an attributesubtype that
checks whether two types are in the subtype relation.

syn boolean TypeDecl . subtype (TypeDecl type);

We use a straight-forward implementation of the subtype test forS<: T that
searches the direct supertypes ofStransitively forT to determine ifSandT are
in a subtype relation. This works well in practice due to the automatic caching
of previous subtype tests.

118

public void FieldDecl . errorCheck () {
➀ if (! getExpr (). type (). subtype (getTypeName (). type ()))

error (" Field " + getName () + " assignment error ");
}
public void FieldName . errorCheck () {

➁ if (decl () == null)
error (" Undefined field " + getName ());

}

Figure 6. Typical type checking and name binding error detection.

It is not always necessary to do this search since some combinations of
types can not be in a subtype relation, e.g., aClassDecl type can not be a sub-
type of aPrimitiveDecl type. It would also be somewhat inefficient to make
theNullType have a set of direct supertypes that include all leafClassDecls
in the system. We thus need to provide different equations for the subtype at-
tribute depending on the kinds of types that are involved in the computation.
Since both the receiver and the argument affect the selection of equation we
need to dispatch not only on the run-time type of the receiver, but also on the
the run-time type of the argument. We solve this problem by simulating a multi-
dispatch mechanism to allow for modular specification of equations and also
to allow extensibility when introducing new kinds of types.

We use the classical solution of two message dispatches, one to resolve the
polymorphism of each involved type [Ing86]. Figure 7 shows the implementa-
tion of the subtype relation for the base language using double dispatch. The
first invocation, subtype➀, reduces the polymorphic receiver to a monomor-
phic one by the type dispatch inherent in method invocations. The target method,
e.g.,➁, reduces the polymorphic argument into a monomorphic one by a sec-
ond dispatch on that argument. Notice that this second dispatch reverses the
relation fromsubtypeto supertypewhile also selecting a specific supertype
computation based on the run-time receiver type, e.g.,➂ or ➃.

It is also worth noticing that while the traditional use of double dispatch
lacks modularity since multiple classes are affected, the use of inter-type dec-
larations allows the double dispatch implementation to be modularized. We can
thus provide a specific equation for an arbitrary combination of type kinds in
the subtype relation.

4.4 Adding array types

Before we describe the non-null extension we will demonstrate how the base
language can be extended with another kind of type:array types. This demon-

4. JAVADEMOTYPES BASE LANGUAGE 119

/ / doub le d i s p a t c h p a t t e r n to imp lement b in a ry methods
➀ syn boolean TypeDecl . subtype (TypeDecl type);

eq ClassDecl . subtype (TypeDecl type)
= type . supertypeClassDecl (this);

➁ eq NullDecl . subtype (TypeDecl type)
= type . super typeNullDecl (this);

eq Primit iveDecl . subtype (TypeDecl type)
= type . supertypePr imit iveDecl (this);

eq UnknownDecl . subtype (TypeDecl type)
= type . supertypeUnknownDecl (this);

/ / t h e s u b t yp e r e l a t i o n i s r e f l e x i v e and t r a n s i t i v e
syn boolean TypeDecl . supertypeClassDecl (ClassDecl type)

= this == type || type . superclass (). subtype (this);

/ / a l l t y p e s are s u p e r t y p e s o f Nu l lDe c l . . .
➂ syn boolean TypeDecl . super typeNullDecl (Nul lDecl type)

= true ;
/ / . . . e x c e p t f o r P r i m i t i v e D e c l s

➃ eq Primit iveDecl . super typeNul lDecl (Nul lDecl type)
= false ;

/ / a l l t y p e s are s u b t y p e s o f UnknownDecl (t op)
syn boolean TypeDecl . supertypeUnknownDecl (UnknownDecl t)

= this == t ;
eq UnknownDecl . supertypeClassDecl (ClassDecl t) = true ;
eq UnknownDecl . super typeNullDecl (Nul lDecl t) = true ;
eq UnknownDecl . supertypePr imit iveDecl (Primit iveDecl t)

= true ;

syn boolean TypeDecl . supertypePr imit iveDecl (
Primit iveDecl type) = this == type ;

Figure 7. Base language subtype relation computation.

strates a general technique to extend the typechecker in a modular fashion and
will be used for the non-null types as well. A Java array is an object that con-
tains a number of variables that do not have names but are selected using an
index instead. These variables are called the components of the array and have
the same static type which is called thecomponent typeof the array. If the com-
ponent type of an array isT, then the type of the array itself is writtenT[] . The
component type of an array may itself be an array type and thus provide arrays

120

of arbitrary dimension. The type declaration that is reached when there are no
more component types of an array type is called theelement typeof the array
type.

The base language is extended with arrays through the following exten-
sions:

– An array creation expression
– An expression to access components in an array
– Type names to represent array types
– A type declaration representing array types
– Extend the subtype relation to handle array types

The first three extensions correspond to new syntactic constructs, while the last
two concern extensions to the type checking and name analysis modules in the
compiler. There are also a few attributes that need to be given equations for the
new syntactic contructs to integrate with existing computations, e.g., to define
the type of the new expressions.

Array type representation The abstract grammar for the base language is
extended with the following array specific node types:

ArrayCreationExpr : Expr ::= TypeName Expr *;
ArrayAccess : Expr ::= Expr Index : Expr ;
ArrayTypeName : TypeName ::= TypeName ;
ArrayDecl : ClassDecl ;

There is an important difference betweenArrayDecls and other compiler
added type declarations. The maximum dimension of an array is not a static
property but varies from program to program. NewArrayDecls are therefore
added lazily when a particular dimension is requested. Figure 8 provides two
operations that relate a component type to its array type. ThearrayType() at-
tribute➁ of a type declaration returns the array declaration with a component
type that is the type of the attribute receiver. ThecomponentType() attribute➀
decreases the dimension of the receiving array type declaration by one. Since
array type declarations in a sense are a function of another type declaration we
add the lazily createdArrayDecl as a child to theDynamicTypeDecl list in
the type declaration for its component type➂.

These operations are then used to define the type attribute for the new ex-
pressions as shown in Figure 9. AnArrayTypeName is a TypeName followed
by a pair of brackets. The type of anArrayTypeName is the array type of its
component type➀. Since anArrayTypeName is itself aTypeName, this lan-
guage construct allows forArrayTypeNames of arbitrary dimension. The type
of anArrayAccess is the component type of the array object that is accessed

4. JAVADEMOTYPES BASE LANGUAGE 121

➀ inh TypeDecl TypeDecl . componentType ();
/ / t h e component t y p e o f an ar ray i s t h e t y p e o f t h e
/ / d e c l a r a t i o n i t i s based on
eq TypeDecl . getDynamicTypeDecl (). componentType () = this ;
/ / t h e component t y p e o f a c l a s s d e c l i s t h e unknown t y p e
eq Program . getTypeDecl (). componentType () = unknown ();

➁ syn lazy TypeDecl TypeDecl . ar rayType () {
/ / c r e a t e an ar ra y d e c l w i t h a
/ / member f i e l d i n t l e n g t h
TypeDecl typeDecl = new ArrayDecl (...);

➂ addDynamicTypeDecl (typeDecl);
return typeDecl ;

}

Figure 8. Operations to increase and decrease the arity of an array type.

➁. An ArrayCreationExpr specifies an element type and then a list of ex-
pressions in brackets that define the size and dimension of the array. Each pair
of brackets increases the dimension by one➂.

/ / b ind to an ar ray t y p e match ing t h i s name
/ / each b r a c k e t p a i r i n c r e a s e s t h e d imens ion by one

➀ eq ArrayTypeName . type () = getTypeName (). type (). arrayType ();

/ / t h e t y p e i s t h e t y p e o f t h e ar ray component
➁ eq ArrayAccess . type () = getExpr (). type (). componentType ();

/ / a name f o l l o w e d by a l i s t o f b ra c k e t e d i n t v a l u e s
/ / each b r a c k e t p a i r i n c r e a s e s t h e d imens ion o f t h e ar ray
eq ArrayCreationExpr . type () {

TypeDecl typeDecl = getTypeName (). type ();
➂ for (int i = 0; i < g etNumExpr (); i ++)

typeDecl = typeDecl . arrayType ();
return typeDecl ;

}

Figure 9. Type equations for array related expressions.

122

The final step is to extend the subtype relation to handle array types with
new equations as shown in Figure 10.

/ / doub le d i s p a t c h
eq ArrayDecl . subtype (TypeDecl type)

= type . supertypeArrayDecl (this);
syn boolean TypeDecl . supertypeArrayDecl (ArrayDecl type)

= false ;

/ / SC [] i s a su b t y p e o f TC[] i f SC i s a s u b t y p e o f TC
eq ArrayDecl . super typeArrayDecl (ArrayDecl type) =

this == type
|| type . componentType (). subtype (componentType ());

/ / a r ray t y p e s are s u b t y p e s o f UnknownDecl (top)
eq UnknownDecl . supertypeArrayDecl (ArrayDecl type)

= true ;

Figure 10.Modular extension of the subtype relation to include array types.

5 Non-null types extension

This section presents a modular non-null type extension to Java based on the
work by Fähndrich and Leino [FL03] introduced in Section 2. The main pur-
pose is to detect dereferenced null pointers but also to allow the developer to
better show his or her intent explicitly through annotations in the code.

The base language is extended with non-null types through the following
extensions:

– A type declaration representing non-null types
– Extend the subtype relation to handle non-null types
– Annotate a declaration with the non-null property
– Refine type binding rules
– Detect possible null pointer violations

A new kind of type declaration, non-null type declaration, is added to describe
a type that represents class declarations but not the null type. The subtype re-
lation computation is extended to cope with this new kind of type declaration.
Non-null types are specified in the source code by annotating field declarations

5. NON-NULL TYPES EXTENSION 123

with a modifier[NotNull] . The type binding rules need to be refined to take
these modifiers into account and also to bind the type of newly instantiated
objects to a non-null type declaration since they are guaranteed to be non-null.
Finally the error checker needs to be extended to detect possible null pointer
violations. This is done by adding a check with an appropriate error message
for a possibly-null type at each expression where the language stipulates the
VM to throw a null pointer exception if the expression evaluates to null.

5.1 Non-null type representation

Each type in the system is required to have a corresponding type declaration.
Classes are explicitly declared and can thus be used as is to represent types. A
non-null type is not explicitly declared but need to be added by the compiler.
We new show how to dynamically build a suitable structure to represent the
non-null counterpart of each user-defined class declarations. A non-null coun-
terpart to each user-defined class declaration is built in a way very similar to
the array type declaration in Section 4.4. Figure 11 shows how to find a non-
null counterpart of a possibly-null declaration➁ and vice versa➀. Since a
field declared to be of an array type may have a non-null modifier as well there
is interaction between array types and non-null types. We choose to always
keep array types closest to the element type and then add the non-null decla-
ration node below all array specifiers. To keep this invariant thearrayType()

and componentType() attributes are overridden forNonNullDecl . When cre-
ating anarrayType() of a NonNullDecl we first take its possibly-null coun-
terpart and then increase its dimension and finally add the non null property
again to group all array declarations closest to the element type➂. Array types
only have a single member, the length field, besides the members inherited
from Object.NonNullTypes , on the other hand, have the same members as
its possibly-null counterpart. We therefore delegate all member lookups to the
possibly-null type➃.

5.2 Extend subtype relation to non-null types

The subtype relation needs to be extended to handle the new non-null types as
shown in Figure 12. The equation forsupertypeNullDecl(NullDecl type) ➀
is overridden forNonNullDecl to be false, effectively removing theNullDecl
andNonNullDecl pair from the subtype relation.

5.3 Refine type binding and error checking

With the subtype relation in place and attributes to find the non-null counter-
part of a possibly-null type and vice versa, the final step is to refine a few

124

/ / l i n k p o s s i b l y−n u l l t y p e and th e non−n u l l c o u n t e r p a r t
➀ inh TypeDecl TypeDecl . possib lyNul l ();

eq TypeDecl . getDynamicTypeDecl (). possib lyNul l () = this ;
eq Program . getTypeDecl (). possiblyNul l () = unknown ();

➁ syn lazy TypeDecl TypeDecl . nonNull () {
TypeDecl typeDecl = new NonNul lDecl (getName () + " -" ,

new TypeName (getExtends (). getName ()) , new List () ,
new List ()

);
addDynamicTypeDecl (typeDecl);
return typeDecl ;

}

/ / p r e s e r v e i n v a r i a n t t h a t Ar rayDec l nodes are c l o s e r
/ / t o t h e e leme n t t y p e d e c l a r a t i o n than t h e NonNul lDecl

➂ eq NonNullDecl . arrayType ()
= possib lyNul l (). arrayType (). nonNull ();

syn TypeDecl NonNul lDecl . componentType ()
= possib lyNul l (). componentType (). nonNull ();

/ / d e l e g a t e member f i e l d lookup t o p o s s i b l y−n u l l t y p e
➃ eq NonNullDecl . memberField (Str ing name)

= possib lyNul l (). memberFie ld (name);

Figure 11.Compute the non-null counterpart of a possibly-null type and vice versa.

type equations and to add checks for possible null-pointer volations. Figure 13
shows the implementation of refined type equations for bothFieldDecl and
Class -InstanceExpr . The type of a field declaration is non null if there is an
explicit [NotNull] modifier➀. The base type is reached through theTypeName
and rebound to its non-null counterpart using thenonNull() attribute. All newly
instantiated objects are guaranteed to be non null and therefore bound to a non-
null type in a similar manner➁. These new types are then used to check for pos-
sible dereferenced null pointers in field names. If the qualifier to a field name
is of a possible-null type there might be a null pointer violation at run-time
and we instead raise a compile-time error➂. The extended subtype attribute
ensures that a field declared non-null can not be assigned a possibly-null typed
value.

5. NON-NULL TYPES EXTENSION 125

/ / s u b t y p e r u l e s
eq NonNullDecl . subtype (TypeDecl type)

= type . supertypeNonNullDecl (this);
syn boolean TypeDecl . supertypeNonNullDecl (NonNul lDecl t)

= false ;

/ / a t y p e S− i s a s u b t y p e o f a t y p e T
/ / i f i t s c o u n t e r p a r t S i s a su b t y p e o f T
eq ClassDecl . super typeNonNul lDecl (NonNullDecl type)

= type . possiblyNul l () . subtype (this);
/ / a t y p e S− i s a s u b t y p e o f a t y p e T−
/ / i f t y p e S i s a s u b t y p e o f t y p e T
eq NonNullDecl . supertypeNonNullDecl (NonNul lDecl type)

= type . possiblyNul l () . subtype (possiblyNul l ());
/ / a p o s s i b l y−n u l l t y p e i s no t a s u b t y p e o f a non−n u l l
eq NonNullDecl . supertypeClassDecl (ClassDecl type)

= false ;
/ / non−n u l l t y p e s are s u b t y p e s to th e unknown t y p e
eq UnknownDecl . supertypeNonNullDecl (NonNul lDecl type)

= true ;
/ / n u l l i s no t a su b t y p e to a non−n u l l t y p e

➀ eq NonNullDecl . super typeNullDecl (Nul lDecl type) = false ;

Figure 12.Modular extension of the subtype relation to include non-null types.

5.4 Raw types

The extensions done so far assume that all fields have been assigned non-null
values before they are accessed. This may seem like a safe assumption since
the fields in the language described so far require immediate initialization and
there is a subtype check that verifies that the assigned value is non null. How-
ever, constructors in combination with virtual methods complicates the prob-
lem as illustrated by the example in Figure 3 discussed in Section 2. Figure 14
shows the abstract grammar for the constructor and method declarations as
well as expressions and statements required to implement a similar example in
JavaDemoTypes.

The problem in the example is thatthis references a partially initialized
object within a constructor. We introduce a raw type to reference partially ini-
tialized object for which we can not assume that any fields are non-null (or even
initialized). A raw object originates in a constructor asthis but can escape the
constructor when being the receiver of a method invocation, an argument in a
method invocation, or the right hand side in an assignment. We allow methods

126

/ / d e t e c t [No tNu l l] m o d i f i e r
➀ refine Base eq FieldDecl . type ()

= modif ier (" [NotNul l] ") ?
getTypeName (). type (). nonNull () : getTypeName (). type ();

syn boolean BodyDecl . modif ier (Str ing s)
= getModif iers (). indexOf (s) != -1;

/ / i n s t a n t i a t e d o b j e c t s are non−n u l l
➁ refine Base eq ClassInstanceExpr . type ()

= Base . ClassInstanceExpr . type (). nonNull () ;

/ / d e t e c t a t t e m t to d e r e f e r e n c e p o s s i b l y−n u l l t y p e s
refine BaseErrorCheck void FieldName . errorCheck () {

BaseErrorCheck . FieldName . errorCheck ();
➂ if (isQual i f ied () && qual i f ier (). type (). mayBeNul l ())

error (" Qual i f ier may be null ");
}
syn boolean TypeDecl . mayBeNull () = true ;
eq NonNullDecl . mayBeNull () = false ;

Figure 13.Refine type binding and error checking when using non-null types.

ConstrDecl : BodyDecl ::= <Name :Str ing > Block ;
MethodDecl : BodyDecl ::= TypeName <Name : String >

ParamDecl * Block ;
ParamDecl ::= <Modif iers :St ring > TypeName <Name :String >;

ParamName : Expr ::= <Name: String >;
MethodInv : Expr ::= <Name: String > Arg : Expr *;
AssignExpr : Expr ::= LValue : Expr Expr ;

abstract Stmt ;
Block : Stmt ::= Stmt *;
ExprStmt : Stmt ::= Expr ;

Figure 14.Extend the base language with constructors, methods, and a few statements.

to be declared raw which means that the type ofthis is raw in that context
which in turn means that fields read in the current object should be consid-
ered possibly null. We introduce a new type declaration,RawDecl : TypeDecl

and extend the subtype relation for raw types (using the same implementation

5. NON-NULL TYPES EXTENSION 127

technique as for non-null types and array-types) with the following rules:

A <: Araw

Braw <: Araw i f f B <: A

Both possibly-null and non-null types are thus subtypes of the corresponding
raw type. This also means that raw types are not subtypes ofOb jectbut rather
theOb jectraw type.

In the example in Figure 3 discussed in Section 2 theprint() method
would have to be declared[Raw] or else the call from the constructor inA would
result in a type error sinceAraw is not a subtype ofA. If we had dereferenceds
in that context there would be a possible null pointer violation and we would
have to guard that operation with an explicit not-null comparisons != null .

Detect partially initialized objects The type of the implicit and explicitthis

expression differs depending on its context, e.g., in a constructor body or ex-
plicitly declared raw method body. Figure 15 shows the implementation of the
refined type ofthis ➀ for various contexts. ThethisType() attribute➁ is
defined to reference the type declaration ofthis in a particular context. Equa-
tion ➂ sets the type to be raw in the constructor body. Equation➃ delegates to
equation➅ which defines the raw property for a method declaration. The Java
language specification prescribes that fields in the same class can not be used
in an initialization of another field unless they are declared before that field.
This actually allows us to to consider the type ofthis in the initialization of a
field not to be raw➄.

➀ refine Base eq This . type () = thisType ();

➁ inh TypeDecl This . thisType ();
➂ eq ConstrDecl . getBlock (). thisType ()

= enclosingType (). raw ();
➃ eq MethodDecl . getBlock (). thisType () = methodThisType ();
➄ eq FieldDecl . getExpr (). thisType () = enclosingType ();

eq Program . getTypeDecl (). thisType () = null ;

➅ syn TypeDecl MethodDecl . methodThisType ()
= modif ier (" [Raw]") ?

enclosingType (). raw () : enclosingType (). nonNull () ;

Figure 15.Compute the rawness state ofthis in a certain context.

128

A raw-typed reference may only be used as the receiver of a method if it is
a subtype of thethisType() of that method. This constraint is implemented by
a check➂ in Figure 16. The type of a field name needs to be refined as well to
take rawness into account. If the qualifier for a field name is raw then the field is
always possibly null regardless of the declared type of that field. However, this
rule only applies to field names that do not act aslvalues(the left hand side) in
an assignment since we never assign a possibly-null value to a variable declared
non-null. The type of a field name is refined by equation➀ in Figure 16 and the
lvalue detection by equation➁. This ensures that as soon as a non-null field is
assigned it can never reference null. Since the initalization of a field is actually
done within a constructor we do not have to require immediate initialization of
non-null fields but merely require them to be definitely assigned at the end of
every constructor. This kind of computation needs to be performed by a Java
compiler anyway and can thus be reused in this new context.

5.5 Casts using explicit null comparisons

Explicit casts are useful to allow the developer to provide hints to a type system
that he or she considers too restrictive. This is usually combined with a dynamic
check to ensure safe execution. When introducing non-null types it would cer-
tainly be useful to convert a possibly-null value into its non-null counterpart.
Instead of introducing new syntax to the language, we use an explicit compari-
son with null to change the type of a parameter or local variable in a particular
context. Consider the non-null example in Figure 1. The comparison ensures
thatn is non-null at the beginning of the conditional block. We can then safely
assume thatn is non-null in this context, as long asn is not assigned a possibly-
null value. This is only vaild for parameters and local variables since they can
only be changed locally in the current method. The guard is only valid as long
as the variable is not assigned possibly-null values in the guarded branch.

Figure 17 defines an inherited attributeguardedByNullCheck(String n) ➁

that is true when there is an explicit comparison to not null and no possibly-null
assignments in the executed branch➂. That attribute is then used to refine the
type of ParamName taking its context into account➀. The attribute delegates
to the nested environment to allow nested guards for different variables➃. To
check for possibly-null assignments we do a generic traversal that does not take
control flow into account which may be unnecessarily convervative but which
is simple to implement➄.

6 Discussion

The same technique as described in the previous sections have been used to
implement a full non-null type extension to Java 1.4. The complete implemen-

6. DISCUSSION 129

refine Base eq FieldName . type () {
TypeDecl qual i f ierType = isQuali f ied () ?

qual i f ier (). type () : thisType ();
TypeDecl type = Base . FieldName . type ();

➀ if (! type . mayBeNull ()
&& (qual i f ierType instanceof RawDecl)
&& ! isLValue ()) {

type = type . possiblyNul l ();
}
return type ;

}

➁ inh boolean FieldName . isLValue ();
eq AssignExpr . getLValue (). isLValue () = true ;
eq AssignExpr . getExpr (). isLValue () = false ;
eq QualName . getLeft (). isLValue () = false ;
eq Program . getTypeDecl (). isLValue () = false ;

refine BaseErrorCheck void MethodInv . errorCheck () {
BaseErrorCheck . MethodInv . errorCheck ();
if (decl () != null) {

TypeDecl qual i f ierType = isQual i f ied () ?
qual i f ier (). type () : thisType ();

if (! qual i f ierType . subtype (decl (). methodThisType ()))
➂ error (" Qual i f ier not compat ible ");

}
}

Figure 16.Refine type rules to take rawness into account.

tation is roughly 220 lines of code. The main differences are that we need to
extend error checking, e.g., overriding of methods with the new rules, and to
deal with interfaces. Interfaces complicates the subtype relation in that a class
may have several direct supertypes. The implementation needs to be changed
to check not only a single supertype but a set of supertypes. We add interfaces
as a new kind of node type and provide equations for that node type similar to
the equations in Figure 7 in Section 4.3.

The combination of declarative attributes and using the AST as the only
data structure has proven useful from a modularity point of view for both name
analysis and type checking purposes. We have shown how to extend the sub-
type relation in a modular fashion, dynamically create new types that are not
explicitly declared and refine existing compuations to use these new kinds of

130

refine Base eq ParamName . type () {
TypeDecl type = Base . ParamName . type ();

➀ if (type . mayBeNull ()&& guardedByNullCheck (getName ())){
type = type . nonNull () ;

}
return type ;

}
➁ inh boolean ParamName . guardedByNul lCheck (Str ing name);

inh boolean I fStmt . guardedByNullCheck (Str ing name);
eq I fStmt . guardedByNul lCheck (Str ing name) {

➂ if (getCond (). isVarNotEqualNul l (name)
&& ! getThen (). ass ignsVarToPossib lyNul l ())

return true ;
➃ return guardedByNul lCheck (name);

}
eq MethodDecl . getBlock (). guardedByNullCheck (Str ing n)

= false ;
eq ConstrDecl . getBlock (). guardedByNullCheck (Str ing n)

= false ;

/ / t r a v e r s e t h e s u b t r e e and d e t e c t n u l l a s s i g n m en t s
➄ boolean ASTNode . ass ignsVarToPossib lyNul l (ParamDecl p){

for (int i = 0; i < getNumChild (); i ++)
if (getChi ld (i). assignsVarToPossib lyNul l (p))

return true ;
return false ;

}
boolean AssignExpr . assignsVarToPossib lyNul l (ParamDecl p) {

if (getLValue (). decl () == p && ! getExpr (). isNonNull ())
return true ;

return super . ass ignsVarToPossiblyNul l (p);
}

/ / t r u e when th e e x p r e s s i o n i s a compar ison t h a t
/ / a v a r i a b l e named name does no t equa l n u l l
syn boolean Expr . isVarNotEqualNul l (Str ing name);

Figure 17.Cast a possibly-null typed variable into a non-null typed variable by explicit
comparison to not-null.

types.
We believe the same techniques can be used with minor modifications to

implement other type based extensions. Javari [TE05] is a type system that

7. AUTOMATIC NON-NULL TYPE REFINEMENT 131

is capable of expressing and enforcing immutability constraints. The state of
the object to which an immutable reference refers cannot be modified using
that reference. This property is enforced transitively, i.e., an object referenced
through an immutable reference only exposes immutable references to other
objects. The subtype relation and an immutable counterpart to each mutable
type can be built similar to the non-null example. However, the dynamically
built immutable type declaration should not delegate lookups to the base type
declaration directly, but should rather create new method and field signatures
with immutable type declarations. This will implement the transitive property
of Javari described above. We are currently implementing Java 5 generics in-
cluding wildcards using the same technique. Generic types are instantiated with
type arguments and we build method and type signatures that reflect the instan-
tiated type parameters.

7 Automatic non-null type refinement

This section presents a technique to refine types in library legacy code, e.g.,
the JDK, to include non-null annotations. The inclusion of legacy code in the
approach is important for several reasons. First, it allows the user to start us-
ing non-null types on new code, while reusing existing non-annotated libraries,
and at the same time not having to guard all uses of the legacy code with null-
checks. Second, it allows the user to gradually refactor legacy code to explicitly
annotated code, moving the barrier between annotated and non-annotated code.
The approach can also be used to detect possible null pointer related errors in
the legacy code: If a reference that is inferred to be possibly null is derefer-
enced, this might be the source of runtime errors.

We first describe how types are automatically refined to non-null types
without violating the extended subtype rules, not taking partially initialized
objects into account. We then extend the implementation to infer raw types and
finally add support for casts using explicit null comparisons.

7.1 Infer the non-null type property

The purpose of the non-null type refinement is to infer the non-null property
for declarations instead of the explicit annotations used in Section 5. The goal
is to turn as many possibly-null references into non-null references as possible
while not violating the extended type system.

The implementation in Figure 18 provides an inferred property that corre-
sponds to each annotation in the non-null extension. There is a direct corre-
spondence between the implementation of that property and the extended type
checking rules in the extended type system. EachParamDecl has an attribute

132

isNonNull() ➀ that infers the non-nullness property instead of explicit dec-
laration through modifiers. This property is only valid when all its assigned
values are non null➁. This corresponds to the new subtype rules in Figure 12.
The FieldDecl is somewhat more complicated since it has additional type
checking rules besides the new subtype rules. AFieldDecl can thus only be
non-null if it is guaranteed to be definitely assigned after each constructor➂

besides the limits caused by subtype rules.

We do allow violations of the refined error check that detects dereferenced
possibly-null references. If we could statically prove the absence of this kind of
error using non-null type refinement, there would be no need for annotations.
Since this is not the case, we accept possible null-pointer exceptions in legacy
code. The main purpose of automatic type refinement is to allow new prop-
erly annotated code to use legacy code without the need for type casts through
comparisons with null.

Both ParamDecl andFieldDecl depend on the non-null property of the
expression values that they are assigned to. That property needs therefore to be
computed for expressions as well➃. Newly created objects are non-null and
use a direct equation➄ similar to Figure 13.FieldNames need the rawness
property to be computed to allow for safe refinement to non-null types➅. The
rawness property computation is described in Figure 19.ParamNames that are
not refined to non-null may still be considered non-null when guarded by an
explicit null comparison➆. This property is described in Figure 7.3.

TheisNonNull() computation often leads to circular dependences. The Jas-
tAdd evaluation engine has direct support for circular attributes through itera-
tion until a fixed point is reached. Consider the following code snippet for an
element in a linked list:

class Element {
Element next ;
Element pred ;
void remove () {

pred .next = next ;
}

}

The assignment of the fieldnext depends directly on itself and the nullness
computation is thus circular. The boolean nullness property can be represented
as a trivial lattice of height two. The finite height of the lattice guarantees that
the compuation will terminate and reach a fix-point. TheisNonNull() attribute
is declared to be circular and itsbottomvalue is set totrue . A single possibly
null value will raise the attribute value tofalse which istop.

7. AUTOMATIC NON-NULL TYPE REFINEMENT 133

➀ syn boolean ParamDecl . isNonNull () circular [true] {
for (I terator iter = assignedValues (); iter . hasNext ();){

Expr expr = (Expr) i ter . next ();
➁ if (! expr . isNonNull ())

return false ;
}
return true ;

}

syn boolean FieldDecl . isNonNull () circular [true] {
for (I terator iter = assignedValues (); iter . hasNext ();){

Expr expr = (Expr) i ter . next ();
if (! expr . isNonNull ())

return false ;
}
for (I terator iter = enclosingType (). constructors ();

i ter . hasNext ();) {
ConstrDecl constr = (ConstrDecl) i ter . next ();

➂ if (! constr . def in i telyAssigns (this))
return false ;

}
return true ;

}

➃ syn boolean Expr . isNonNull () circular [true];
➄ eq ClassInstanceExpr . isNonNul l () = true ;
➅ eq FieldName . isNonNull () = decl (). isNonNull ()

&& ! qual i f ier (). isRaw ();
➆ eq ParamName . isNonNull () = decl (). isNonNull ()

|| guardedByNul lCheck (getName ());

/ / a s s i g n e d i n a l l p a t hs th rough t h e c o n s t r u c t o r
syn boolean ConstrDecl . def in i te lyAssigns (FieldDecl f);
/ / r e f e r e n c e s to a l l a s s i g n e d e x p r e s s i o n v a l u e s
syn Set FieldDecl . assignedValues ();
syn Set ParamDecl . assignedValues ();

Figure 18. Infer the non-null property.

7.2 Infer raw types for partially initialized objects

Raw types need to be computed to make the use of fields refined to be non-null
safe. Instead of annotating a method as raw when it is accessed from a con-

134

structor or a raw context we infer that property automatically. AMethodDecl
is raw if there is at least one receiver that it is invoked from that is raw. Fig-
ure 19 shows the implementation of this property which is circular, similar
to the isNonNull() property. This equation corresponds to the explicit sub-
type check extended with raw types. Since the receiver is an expression it also
needs to have its raw property computed. The computation forthisTypeRaw()

is very similar to the implementation in Figure 15 and differs in that a boolean
property is computed rather than an actual type and also in the possibility of
circularities.

syn boolean MethodDecl . isRaw () circular [false] {
for (I terator i ter = receiverExprs (); i ter . hasNext ();){

Expr expr = (Expr) iter . next ();
➀ if (expr . isRaw ())

return true ;
}
return false ;

}

➁ syn boolean Expr . isRaw () circular [false];
eq This . isRaw () = thisTypeRaw ();

➂ inh boolean This . thisTypeRaw () circular [false];
eq MethodDecl . getBlock (). th isTypeRaw () = isRaw ();
eq ConstructorDecl . getBlock (). thisTypeRaw () = true ;

/ / r e f e r e n c e s t o a l l e x p r e s s i o n v a l u e s t h a t
/ / q u a l i f i e s i n v o c a t i o n s o f t h i s method
syn Set MethodDecl . receiverExprs ();

Figure 19. Infer the raw property.

7.3 Infer type casts through explicit null comparisons

An explicit comparison with null is used as a cast in the new type system to con-
vert a possibly-null type into its non-null counterpart. However, we believe that
this syntax is quite natural and probably used in legacy code for the same pur-
pose. Therefore, the property is computed using the same conservative require-
ments as in Section 5.5 when refining parameter types. The only difference

8. EVALUATION 135

compared to Figure 17 is that theguardedByNullCheck(String name) attribute
is circular.

8 Evaluation

We have presented JavaDemoTypes and shown how to extend its type system
with non-null types. We have also shown a type refinement implementation that
infers non-null types in legacy code. This section evaluates these techniques
from a code size, execution time, and inference result point of view.

8.1 Code size

JavaDemoTypes was presented as a small kernel language, suitable to illustrate
type system extensions. The same implementation technique is however used
to implement the corresponding extension to the JastAdd Extensible Java com-
piler. We therefore compare the size of the implementations to illustrate how
the techniques scale up to a full language.

Figure 20 compares the size of the modules in the base langauge for JavaDe-
moTypes to the corresponding implementation in the JastAdd extensible Java
compiler. It is worth noticing that only a small subset of the full compiler is in-
cluded in the comparison. The complete Java compiler is close to 14.000 lines
of code.

Name Demo JavaResponsibility

TypeSystem 85 755 Compute subtype relation and expression types.
Add run-time representation of primitive types.

NameBinding 65 1397Simple name binding for types, fields, and
methods including inheritance.

ErrorCheck 62 806 Detect undeclared names. Perform type check-
ing of assignments, method invocations, etc.

Figure 20.The base compiler modules. The Demo column shows the size for JavaDe-
moTypes while the Java column shows the size for the corresponding functionality in
the JastAdd Extensible Java compiler.

The implementation of the non-null language extension was presented in
Section 5. Figure 21 compares that implementation to the full non-null exten-
sion for Java. The full implementation includes checks that ensures that mod-
ifiers are only used in valid contexts, and also include support forraw-upto

136

types. Even when this functionality is included, the full extension is only 56%
larger than the extension for JavaDemoTypes. The extra effort to support the
full language compared to the demo subset is relatively small compared to the
huge difference in base system size.

Name DemoJavaResponsibility

NonNull 43 72 Add run-time representation of non-null types. Extend sub-
type relation. Include non-null modifiers in type computa-
tions. Detect unsafe dereferences.

Raw 73 99 Add run-time representation of raw types. Extend subtype
relation. Include raw modifiers in type computations.

Guard 26 30 Check if a possibly-null variable is guarded by explicit com-
parison to null.

Check n/a 20 Check for valid modifiers. Not included in JavaDemo-
Types..

Total 142 221

Figure 21.The non-null type extension. The Demo column shows the size for the mod-
ules presented for JavaDemoTypes while the Java column shows the size for the corre-
sponding extension to the JastAdd Extensible Java compiler.

Section 7 presents a type refinement algorithm that infers non-null types in
legacy code. That code is compared to the corresponding code for the full com-
piler in Figure 22. While still being fairly compact (< 3.3 % of the full compiler
size), the refinement algorithm for full Java is roughly ten times larger than for
JavaDemoTypes. The reason is that the type refinement extension is not as
deeply integrated in the compiler as the non-null type extension, but merely
adds additional computations on top of exisiting analyses. The base compiler
converts and propagates types according to the operations in an expression tree.
The type extension reuses that code for new types as well, e.g., null-null types
and raw types. When we infer the non-null property, on the other hand, we
need to implement that propagation in all language constructs in the base Java
compiler. This is the main reason why the refinement algorithm is so much
larger for the full compiler than for the demo subset. Some significant compu-
tations, e.g., the references from definitions to uses, were not included in the
presentation but are included in the comparison for completeness.

8. EVALUATION 137

Name DemoJavaResponsibility

NonNull 19 112 Infer the non-null property.
Raw 14 134 Infer the raw property.

Guard 8 45 Detect variables guarded by explicit null check.
Output n/a 30 Include inferred properties in pretty printer.

Def-Use n/a 113 Compute references from definitions to uses. This includes
assignments, return values, method arguments, etc.

Flatten n/a 24 Flatten the method hierarchy by conservatively merging
methods with the same signature.

Total 41 458

Figure 22. The type refinement extension. The Demo column shows the size for the
modules presented for JavaDemoTypes. That code is for illustration purposes and not
complete. The Java column shows the size for the full extension to the JastAdd Exten-
sible Java compiler.

8.2 Inference performance

We have evaluated the type refinement algorithm using a substantial part of the
JDK standard class library as a benchmark and measured the inferred non-null
property in that body of code. Roughly 100.000 source lines from the follow-
ing packages in JDK 1.4.2 were included in the analysis;java.lang, java.util,
java.io.

Our primary use of the inference algorithm is to automatically detect non-
nullness properties of the APIs in legacy code. When we annotate new code
we would otherwise have to assume all legacy code to return possibly-null
types. We are thus mostly interested in the non-nullness property for return
values. The% Non-null returncolumn in Figure 23 shows the percentage of
reference typed return values that the inference algorithm concludes are non
null. A substantial part of the return values can thus be considered non null
when used by annotated code instead of assumed possibly null.

However, additional insights can be gained from the analysis. We can use
the inferred types of expressions to find possible null-pointer violations in the
legacy code. We thus partition the code into blocks that are safe from null-
pointer violations and blocks where null pointers may occur. The% Safe deref-
erencescolumn in Figure 23 shows the percentage of locations in the code
where the language prescribes a possible null pointer exception, but where the
inference algorithm inferred the non-nullness property. The# Safe dereferences
column shows the actual number of dereferenced non-null references.

Raw types allow for safe non-null declaration of instance fields. Without
this analysis all fields would have to be considered possibly-null. To see if

138

Non-null return Safe dereferendes
% # % #

Non-null + raw 24 % 259 71 % 8580
Non-null 24 % 252 69 % 8354

Figure 23.The result from non-null inference in terms of sucessful type refinements

we benefit from this analysis we compute the same property with raw types
disabled and consider all fields possibly-null. The first line shows the results
with raw types enabled while the second line shows the result without raw
types. Only a few fields are inferred non-null but they do affect the number of
non-null return values, although this is only a minor effect. For this analysis
to be safe we are required to also infer the raw property, to detect fields that
can possibly be accessed prior to their initialization. Otherwise we assume that
no non-null fields are accessed before they are initialized. This is not safe for
partially initialized objects.

8.3 Refinement speed

To evaluate the speed of our inference algorithm we compare the execution
times for our inference implementation, the base compiler, and the standard
javac compiler for reference. Figure 24 shows the execution times for our
benchmark as described above. We included the time for javac as a reference to
show that the JastAdd design to structure the compiler is reasonably fast while
still providing excellent support for modularity and extensibility. We conclude
that the execution speed for the analysis is reasonably high even for fairly large
programs.

NonNull + Raw Non Null Base Compiler javac

time 9.1 s 9.0 s 6.4 s 2.5 s

Figure 24.Execution speed with and without various type refinement computations

9 Related work

The focus of this paper is to show how the type system in a Java 1.4 compiler
can be extended in a modular fashion using JastAdd. Another tool for extend-

10. CONCLUSIONS AND FUTURE WORK 139

ing Java is the Polyglot Extensible Compiler Framework [NCM03]. The base
compiler has been extended with various type related concepts, e.g., param-
eterized types [BLM97] and predicate dispatch [Mil04]. This is a tool based
on imperative programming and visitor patterns and relies on explicit passes
to schedule computations. In contrast, we base our work on the JastAdd sys-
tem which supports declarative extensions through attribute grammars. To our
knowledge, there is no implementation of non-null types in Polyglot.

We base our type extension on the work on non-null types for object-
oriented languages, as presented by Fähndrich and Leino [FL03]. Their ap-
proach differs from earlier work on non-null types by taking inheritance and
object initialization into account and they did a prototype implementation for
C#. We have implemented a modular extension of non-null types for Java and
extend their approach by adding a simple but effective inference algorithm in
order to handle legacy code that does not have non-null annotations.

Type qualifiers [FFA99] allow types to be refined by adding a qualifier to
a type name, e.g., non-null. This is a simple but highly useful form of subtyp-
ing. A framework is presented that extends the type rules in C to propagate
the qualifiers through a program. There are publically available systems with
extensible type qualifiers without any automatic soundness proofs with im-
plementations for C (CQUAL) and Java (JQUAL). Semantic Type Qualifiers
[CMM05] provide an impressive framework and language to specify and au-
tomatically prove soundness of extended types by refining types using type
qualifiers. An automatic therorem prover is used to prove soundness of various
properties including non-null types for C. Our implementation is larger than
the corresponding type qualifier definitions but we can take other properties
than propagation of types into account when refining types, e.g., definite as-
signment, null comparisons, etc. We are not aware of any support for non-null
types for object-oriented languages that take partially initialized objects into
account in these systems.

10 Conclusions and Future work

We have shown how the JastAdd extensible Java compiler can be extended with
non-null types in a modular fashion. The implementation as well as the core
langugage used to demonstrate the techniques are publically available at the
JastAdd website [EH]. A type refinement implementation that automatically in-
fers non-null types in legacy code has also been presented. Our implementation
constitutes a strong case for ReCRAGs and the JastAdd system, demonstrating
how the declarative features of reference attributes and circular attributes can
be taken advantage of to provide a compact modular implementation of a non-
trivial type-system addition. The resulting implementation, including both the

140

type system extension and the automatic refinement, is only around 700 lines
of JastAdd code, and is available at the JastAdd website.

Future work includes some refinements of the implementation. Currently,
raw upto is used in the non-null type extension, but not yet in the automatic
type refinement implementation. The implementation will also be extended to
support elements in arrays as described by Fähndrich and Leino [FL03]. Ref-
erences to arrays are handled in the same way as other references but the com-
ponents of an array are always possibly null in our implementation. Fähndrich
and Leino use a dynamic cast to convert an array with possibly-null compo-
nent references into its non-null counterpart. This requires a run-time check
with comparison to null for each array component.

There are other approaches than type systems that can detect possible deref-
erenced null references. Points-to-analysis for Java computes the set of objects
that a reference can point to [Ste96,BLQ+03,SGSB05]. That analysis can thus
be used to detect whether a reference may be null or not. These computations
usually take a lot more context into account than the type based approach with
non-null types and thus require more resources. However, it would be inter-
esting to combine points-to-analysis with our type refinement computation to
refactor legacy code. There will certainly be references that are considered non-
null by the points-to-analysis and possibly-null by the less precise type refine-
ment algorithm. It would be easy to change the refinement algorithm to return
the reason why a certain reference is not refined to non-null. The code could
then be refactored manually to fulfil that condition and be declared non-null.

It would also be interesting to use the presented techniques to implement
other type system extensions, e.g., reference immutability in Javari [TE05].
We are currently evaluating the approach on a more demanding type system
extension by extending the base Java 1.4 compiler with Generics including
wildcards from Java 5.

References

[BLM97] Joseph A. Bank, Barbara Liskov, and Andrew C. Myers. Paramterized types
and java. InPOPL’97, 1997.

[BLQ+03] Marc Berndl, Onďrej Lhoták, Feng Qian, Laurie Hendren, and Navindra
Umanee. Points-to analysis using bdds. InProceedings of the ACM SIG-
PLAN 2003 Conference on Programming Language Design and Implemen-
tation, pages 103–114. ACM Press, 2003.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An overview. InCASSIS 2004, volume 3362 ofLNCS.
Springer, 2004.

[Bon] Daniel Bonniot. Why programs written in Nice have less bugs.
http://nice.sourceforge.net/safety.html.

10. CONCLUSIONS AND FUTURE WORK 141

[Bra04] Gilad Bracha. Pluggable Type Systems. InOOPSLA’04 workshop on re-
vival of dynamic languages, 2004.

[CMM05] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers.
SIGPLAN Notices, 40(6), 2005.

[EH] Torbjörn Ekman and Görel Hedin. The JastAdd compiler compiler system.
http://jastadd.cs.lth.se.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. InProceedings of ECOOP 2004, volume 3086 ofLNCS. Springer-
Verlag, 2004.

[EH06] Torbjörn Ekman and Görel Hedin. Modular name analysis for java using
jastadd. InSubmitted for publication, 2006.

[FFA99] Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A theory of type
qualifiers. InSIGPLAN Conference on Programming Language Design and
Implementation, pages 192–203, 1999.

[FL03] M. Fahndrich and K. Rustan M. Leino. Declaring and checking non-null
types in an object-oriented language. InProceedings of OOPSLA’03, pages
302–312, 2003.

[Hed00] Görel Hedin. Reference attribute grammars. InInformatica (Slovenia),
24(3), 2000.

[HM03] Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58,
2003.

[Ing86] Daniel H. H. Ingalls. A simple technique for handling multiple polymor-
phism. InOOPSLA, pages 347–349, 1986.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ.LNCS, 2072:327–355,
2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages.Mathematical Sys-
tems Theory, 2(2):127–145, June 1968. Correction:Mathematical Systems
Theory5, 1, pp. 95-96 (March 1971).

[MH03] Eva Magnusson and Görel Hedin. Circular reference attributed grammars -
their evaluation and applications.Electronic Notes of Theoretical Computer
Science, 82(3), 2003.

[Mil04] Todd Millstein. Practical predicate dispatch. InOOPSLA, 2004.
[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot:

An extensible compiler framework for java. InProceedings of 12th Inter-
national Conference on Compiler Construction, CC 2003, Warsaw, Poland,
volume 2622 ofLNCS, pages 138–152. Springer-Verlag, 2003.

[SGSB05] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-
driven points-to analysis for java.SIGPLAN Not., 40(10), 2005.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. InSymposium
on Principles of Programming Languages, pages 32–41, 1996.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference im-
mutability to Java. InObject-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2005), pages 211–230, San Diego, CA, USA,
October 18–20, 2005.

