
Rewritable Reference
Attributed Grammars

design, implementation, and
applications

Torbjörn Ekman

Licentiate Thesis, 2004

Department of Computer Science
Lund Institute of Technology

Lund University

ISSN 1652-4691
Licentiate Thesis 3, 2004
LU-CS-LIC:2004-3

Thesis submitted for partial fulfillment of
the degree of licentiate.

Department of Computer Science
Lund Institute of Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: torbjorn.ekman@cs.lth.se
WWW: http://www.cs.lth.se/˜torbjorn

Typeset using LATEX 2ε
Printed in Sweden by Media-Tryck, Lund, 2004

c© 2004 by Torbjörn Ekman

Abstract

This thesis presents an object-oriented technique for rewriting abstract syn-
tax trees in order to simplify compilation. The technique, Rewritable Refer-
ence Attributed Grammars (ReRAGs), is completely declarative and supports
both rewrites and computations by means of attributes. We have implemented
ReRAGs in our aspect-oriented compiler compiler tool JastAdd II. We present
the ReRAG formalism, its evaluation algorithm, and examples of its use.

JastAdd II uses three synergistic mechanisms for supporting separation of
concerns: inheritance for model modularization, aspects for cross-cutting con-
cerns, and rewrites that allow computations to be expressed on the most suit-
able model. This allows compilers to be written in a high-level declarative and
modular fashion, supporting language extensibility as well as reuse of modules
for different compiler-related tools. Each technique is presented using a series
of simplified examples from static semantic analysis for the Java programming
language.

A case study is presented where ReRAGs are used extensively to imple-
ment a compiler for the Control Module extension to the IEC61131-3 automa-
tion languages. That Control Modules concept is further extended, in a modular
fashion, with object-oriented features to improve encapsulation, composition
mechanisms, code re-use, and type safety.

Preface

This thesis is for the Licentiate degree which is a Swedish degree between the
MSc and PhD. It consists of an introductory part and three papers.

The research papers included in this thesis are:

I. Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. Proceedings of ECOOP 2004: 18th European Conference on Object-
Oriented Programming, Oslo, Norway, June 2004.

II. Torbjörn Ekman, A case study of Separation of Concerns in Compiler
Construction using JastAdd II. Proceedings of third AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
Lancaster, UK, March 2004.

III. Torbjörn Ekman, Design and Implementation of Object-Oriented Exten-
sions to the Control Module Language. Submitted for publication.

Acknowledgements

The work presented in this thesis has been carried out within the Software De-
velopment Environments group at the Department of Computer Science, Lund
University. I would like to thank my three supervisors: Professor Boris Mag-
nusson, Dr. Klas Nilsson, and Dr. Görel Hedin. I am particularly grateful to
Görel Hedin who introduced me to reference attribute grammars. Much of the
work on ReRAGs has been carried out jointly with her. I would also like to
thank Ulf Hagberg at ABB Automation Technology Products Malmö and Klas
Nilsson for many rewarding discussions on the Control Modules language and
automation technology in general.

I would like to thank Anders Nilsson for various compiler related discus-
sions and for using my Java front-end in his Java2c compiler, Anders Ive for
being a great roommate and his work on byte-code generation using ReRAGs,
and Eva Magnusson for her initial implementation of JastAdd.

The are also quite a few people that I would like to thank for nice ideas, joint
work, and discussions on various topics; Roger Henriksson and Sven Gestegård
Robertz for various GC related discussions, Ulf Asklund and Lars Bendix for
joint work on agile configuration management, and Christian Andersson for all
those rewarding discussions on computer related topics and life in general.

vi

Finally, I am very grateful to Karin Wanhainen for her love, support, and
late night attribute grammar discussions. You will always be the root in my
abstract syntax tree.

This work has been performed within the Center for Applied Software Re-
search (LUCAS) at Lund Institute of Technology, funded by ABB Automation
Technology Products and VINNOVA, the Swedish Agency for Innovation Sys-
tems.

Contents

Introduction . 1
1 Thesis overview. 2
2 Background . 3
3 Contributions . 6
4 Conclusions and future work . 8

I Rewritable Reference Attributed Grammars

Rewritable Reference Attributed Grammars . 15
Torbjörn Ekman, Görel Hedin
1 Introduction . 15
2 Typical examples of AST rewriting . 17
3 Background . 19
4 Rewrite rules . 21
5 ReRAG evaluation . 27
6 Implementation algorithm . 31
7 Implementation evaluation . 37
8 Related work . 39
9 Conclusions and Future Work . 42

II A case study of Separation of Concerns in Compiler
Construction using JastAdd II

A case study of separation of concerns in compiler construction using
JastAdd II . 47
Torbjörn Ekman
1 Introduction . 47
2 JastAdd II Background . 48
3 Inheritance for model modularisation . 50
4 Aspects for cross-cutting concerns . 51
5 Rewrites to create the most suitable model . 53
6 Aspect interaction . 55
7 Related work . 55
8 Conclusions and future work . 56

viii Contents

III Design and implementation of object-oriented
extensions to the Control Module language

Design and implementation of object-oriented extensions to the
Control Module language . 61
Torbjörn Ekman
1 Introduction . 61
2 Control Modules . 62
3 Extended Control Modules . 68
4 JastAdd II Background . 76
5 Implementation . 79
6 Conclusions and future work . 92

Introduction

Processing of programs is a core area in computer science. A compiler that
translates source text to machine language is the most well-known kind of tool
in this area, but there are numerous other kinds of related applications: source-
to-source translators, refactoring tools, reengineering tools, metric tools, con-
sistency checkers, etc. These tools are usually complex and building them from
scratch requires a major effort. This thesis addresses the problem of how to
build such tools much more easily, providing high-level concise ways of pro-
gramming the tools, and providing good modularity, allowing a high degree of
reuse between tools.

The similarities between different program-processing tools are obvious.
For example, a refactoring tool for Java needs to do much of the same analysis
as is done by a Java compiler. And a compiler for a language similar to Java
should be able to reuse much of an existing Java compiler implementation. To-
day, creating new languages or new tools for an existing language is so costly
that such an effort is undertaken by few companies, and only when the new
language or tool is to be heavily used. By implementing compilers and other
program-processing tools in a modular reusable manner, this could change. It
might become affordable to build very special-purpose tools, intended to be
used for a very limited purpose. For example, to do a special-purpose refactor-
ing of a large body of legacy code. Another interesting prospective is to be able
to easily build domain-specific languages (DSLs) on top of existing general-
purpose languages. Often, domain logic is captured in frameworks written in a
general-purpose language. Turning such framework APIs into domain-specific
language constructs can make programming more concise and easier to check
statically for consistency.

The main contribution of this thesis is a new specification formalism, Re-
writable Reference Attributed Grammars (ReRAGs), that raises the program-
ming level for processing programs, and which is highly modular, supporting
reuse among language tool implementations. ReRAGs have been implemented
in the tool JastAdd II as a domain specific language extension on top of the Java
programming language. Three synergistic mechanisms are used for supporting
modularization: inheritance for model modularization, aspects for concerns
cross-cutting the class hierarchy, and rewrites that allow computations to be
expressed on the most suitable model. This enables specifications to be writ-
ten in a highly modular fashion which is important both for understanding the
specification, for breaking it down into simpler steps, and for reuse.

2 CHAPTER 1. INTRODUCTION

The rest of this introduction is structured as follows. Section 1 gives an
overview of the papers included in the thesis. Section 2 gives a background to
the various techniques that have served as inspiration when designing ReRAGs.
Section 3 summarizes the contributions and Section 4 concludes the thesis and
discusses some future work.

1 Thesis overview

This section gives a brief overview of the three papers included in this thesis.

1.1 Paper I: Rewritable Reference Attributed Grammars

This paper presents the ReRAG formalism, its evaluation algorithm, and exam-
ples of its use. Our largest application is a complete static-semantic analyzer for
Java 1.4. Initial measurements using a subset of the Java class library as bench-
marks indicate that our generated compiler is only a few times slower than the
standard compiler, javac, in J2SE 1.4.2 SDK. This shows that ReRAGs are al-
ready useful for large-scale practical applications, despite that optimization has
not been our primary concern so far.

1.2 Paper II: A case study of Separation of Concerns in Compiler
Construction using JastAdd II

This paper presents a case study of separation of concerns in compiler con-
struction using the JastAdd II compiler compiler [Ekm04]. The ReRAG mech-
anisms of inheritance, aspects, and rewrites all support separation of concerns.
This is illustrated through a series of simplified examples from static semantic
analysis for the Java programming language.

1.3 Paper III: Design and Implementation of Object-Oriented
Extensions to the Control Module Language

This paper presents a case study on language extensibility using ReRAGs. A
DSL for programmable logic controllers is extended with language constructs
that improve encapsulation, code reuse, and type safety. The paper presents
both the design and the implementation of the language extensions.

2. BACKGROUND 3

2 Background

ReRAGs is a specification formalism that is inspired by several well known
software development techniques: object-orientation, abstract syntax trees, as-
pect-oriented software development, declarative programming, attribute gram-
mars, and rewriting systems. This section gives a brief introduction to these
techniques.

2.1 Object orientation

Object orientation provides a natural way of structuring data and thinking about
computations. The data can be categorized in a class hierarchy where each class
provides the state and behavior for a specific data element. A sample class hi-
erarchy for expressions is shown below. Common behavior can be placed in
an abstract superclass, e.g. Expression, and then inherited to the concrete sub-
classes. Overriding allows specialization of the inherited behavior if necessary.
Object orientation provides a nice modularization mechanism through the class
concept that models both state and behavior in a single module.

Expression

Literal Binary
Operator

Add Multiply

2.2 Abstract syntax trees

In the processing of programs, the typical core representation is a tree that
captures the composition of language constructs in the program. Typically, an
Abstract Syntax Tree (AST) is used, i.e., a tree where textual details have been
abstracted away. Such trees can result from parsing a source file or from be-
ing synthesized directly. All possible forms of the ASTs can be described by
an abstract grammar [McC64] that captures the basic rules for how different
language constructs may be combined in a program.

In many practical applications, e.g. compilers, the AST is often represented
in an ad-hoc manner, and the computations are ordinary programs working on
the ad-hoc representation. In our approach the ad hoc AST representation is
replaced by one derived from an abstract grammar.

4 CHAPTER 1. INTRODUCTION

The ASTs in this thesis have an object-oriented foundation where the AST
is a tree of objects, and links between tree nodes are references to other objects
in the tree. The objects are defined by classes in a specialization hierarchy,
like in normal object-oriented programming. This allows us to make use of the
typical object-oriented mechanisms such as inheritance and overriding. The
figure below shows a sample AST for the expression 1*2+3 built from objects
in the class hierarchy described above.

Literal
2

Multiply

Literal
1

Add

Literal
3

2.3 Aspect oriented software development

Object orientation provides a classification hierarchy that allows us to modu-
larize both state and behavior of a single language element. However, certain
computations tend to cross-cut this classification hierarchy, e.g., evaluating the
expression modeled by the AST above. To evaluate the expression it is natural,
from an object-oriented perspective, to add a small piece of code in each class
that performs the evaluation of that particular type. The computation would
therefore cross-cut the entire class hierarchy.

Aspect oriented software development (AOSD), supported by tools such as
AspectJ [KHH+01], deals with modularization and separation of concerns for
features that cross-cut the main class hierarchy. It introduces new modulariza-
tion concepts that allows state and behavior to be extracted from the main class
hierarchy into modules that form a separate type hierarchy. A computation,
such as evaluating an expression, can thus be separated into a single module
instead of being scattered over multiple modules.

Within plain object-oriented programming without support for AOSD, the
Visitor pattern [GHJV95], is often used to modularize such crosscutting com-
putations. However, AOSD is much more powerful than the Visitor pattern, and
provides a more direct and safer way to program such computations.

2.4 Declarative programming

While general purpose object oriented programming is usually imperative, many
subproblems can be expressed at a higher level using declarative constructs. In

2. BACKGROUND 5

an imperative language the computable relationships are expressed in terms of
sequences of operations. Declarative programs, in turn, are made up of sets of
equations describing the relations that specify what is to be computed. Declar-
ative constructs thus only express what to be computed and not in which order
it is to be computed. The actual order of the computations are then decided by
the compiler. The combination of object oriented programming and declara-
tive constructs can be very fruitful, both easy to work with and useful for large
practical problems as will be described later in this thesis.

2.5 Attribute grammars

An attribute grammar (AG) supports declarative AST computations by deco-
rating an AST with attributes that are defined by equations. An evaluator auto-
matically solves the equation system for any AST following the base abstract
grammar. Typical applications include the program analysis that is part of the
front end of a compiler, e.g., name analysis and type analysis. The basic idea
was introduced by [Knu68] and a large amount of research has been done in
this area. Examples of influential systems include the Eli system by Kastens
and Waite [KPJ98] and the incremental Synthesizer Generator system by Teit-
elbaum and Reps [RT84]. Later developments within attribute grammars in-
clude the development of Higher Order Attribute Grammars (HAGs) [VSK89]
that allow attributes to be new ASTs, with applications in, e.g., macro process-
ing.

Reference Attributed Grammars (RAGs) are AGs augmented with the pos-
sibility for attributes to be links to arbitrary syntax nodes. This allows for very
natural specification of many program analysis problems, like name and type
analysis for object-oriented languages (something that becomes very convo-
luted when using plain AGs). For example, the class hierarchy in an OO pro-
gram can be represented by direct links between the class declaration AST
nodes. The basic idea has emerged independently from a few researchers, de-
scribed in [Hed94] [Hed00] [Boy96] [PH97].

2.6 Rewrite systems

There are several systems based on AST rewriting, i.e., where rules are used
for specifying how to transform a part of an AST to another form. Typical
applications are code optimizations and reenginering of program source code.
Influential systems include ASF+SDF [vdBea01] and Stratego [Vis01b] which
are both based on algebraic specifications, and TXL [Cor04] which is based on
functional programming. The figure below shows a rewrite that evaluates the
expression and transforms the AST into the resulting value.

6 CHAPTER 1. INTRODUCTION

Literal
2

Multiply

Literal
1

Literal
2

3 Contributions

The main contribution of this thesis is the development of the ReRAGs specifi-
cation formalism. The formalism has been implemented in the JastAdd II tool
and used to implement several langauge applications, including the full static
semantics of the Java programming language. This section describes the contri-
butions of this thesis from a ReRAGs design, implementation, and application
perspective.

3.1 Design

We have introduced a technique for declarative rewriting of attributed ASTs,
supporting conditional and context-dependent rewrites during attribution. In
plain RAGs, the complete AST is built prior to attribute evaluation. While this
works well for most language constructs, there are several cases where the
most appropriate tree structure can only be decided after evaluation of some
of the attributes. I.e., the context-free syntax is not sufficient for building the
desired tree, but contextual information is needed as well. By providing means
for rewriting the AST based on a partial attribution, the specification of the
remaining attribution can be expressed in a simpler and more natural way.

ReRAG specifications are highly modular supported by three synergistic
mechanisms for separation of concerns. Inheritance separates the description
of general behavior from specific behavior of the language constructs, e.g.,
general declarations from specialized declarations like fields and methods. As-
pects separate different computations from each other, e.g., type checking from
name analysis. Rewriting allows the computations to be expressed on the most
suitable forms of the tree.

We have also identified several typical ways of transforming an AST that
have proven useful in practice: Semantic Specialization, Make Implicit Behav-
ior Explicit, and Eliminate Shorthands. These transformations have substan-
tially simplified the implementation of an actual Java compiler in JastAdd II
compared to having to program this by hand, or having to use a plain RAG on
the inital AST constructed by a parser. Their use have been demonstrated by
concrete examples from challenging static-semantic analysis computations for
the Java programming language.

3. CONTRIBUTIONS 7

3.2 Implementation

The ReRAG technique has been implemented in our compiler compiler tool
JastAdd II that generates compilers from a declarative specification. Attribute
evaluation and tree transformation are performed automatically according to
the specification. The rewrite and attribute evaluation engine allows partial
caching of attributes. This caching is essential in gaining acceptable perfor-
mance, as shown in [EH04]. The implementation has then been benchmarked
using a ReRAGs specification of a full static-semantic analyzer for Java. The
running times are sufficiently low for practical use. For example, parsing, an-
alyzing, and prettyprinting roughly 100.000 lines of Java code took approx-
imately 23 seconds as compared to 6 seconds for the javac compiler on the
same platform.

3.3 Applications

ReRAGs have been used as the main language specification formalism in sev-
eral research compilers and master thesis projects. The largest applications are
described below:

Full Java static-semantics checker The largest application we have written
is a complete static-semantic analyzer for Java 1.4. The grammar is a
highly modular specification that follows the Java Language Specifica-
ton, second edition [GJSB00], with modules like name binding, resolving
ambiguous names, type binding, type checking, type conversions, inheri-
tance, access control, arrays, exception handling, definite assignment and
unreachable statements.
An LALR(1) parser using a slightly modified grammar from the Java Lan-
guage Specification, is used to build the initial abstract syntax tree. The
AST is then rewritten during the analysis to better capture the semantics
of the program and simplify later computations. Some examples where
rewrites were useful are:

– for resolving ambiguous names and for using semantic specialization
for bound name references.

– for making implicit constructs explict by adding (as appropriate) empty
constructors, supertype constructor accesses, type conversions and pro-
motions, and inheritance from Object.

– for eliminating shorthands such as splitting compound declarations of
fields and variables to a list of single declarations.

Java to C compiler Our collegue, Anders Nilsson, has implemented a Java to
C compiler in ReRAGs [Nil04] [NEN02] [NE01], using an older version
of the Java checker as a front end. The generated C code is designed to

8 CHAPTER 1. INTRODUCTION

run with a set of special C runtime systems that support real-time garbage
collection, and is interfaced to through a set of C macros. ReRAGs are
used in the back end for adapting the AST to simplify the generation of
code suitable for these runtime systems. For example, all operations on
references are broken down to steps of only one indirection, generating the
macro calls to the runtime system. ReRAGs are also used for optimizing
the generated code size by eliminating unused classes, methods, and vari-
ables. They are also used for eliminating shorthands, for example to deal
with all the variants of loops in Java.

Extended Control Modules The domain-specific Control Module language
used to implement programmable logic controllers is extended with object-
oriented features to improve encapsulation, code reuse, and type safety.
Common object-oriented features from general purpose languages are tai-
lored to suit the modularization concepts and run-time model of the Con-
trol Module base language. The AST in the extended language is then
translated into the base language. That tree is in turn exported to the exisit-
ing ControlModule development environment and can thus benefit from
existing infrastructure such as native compilers and run-time system.

Modular Tiger In a master’s thesis project, a typechecker was developed for
Andrew Appel’s toy language Tiger, and extensions for object-orientation
and generics were added as separate modules [San04].

Modular Java 1.5 extensions An ongoing master’s thesis project investigates
if it is possible to extend Java 1.4 in a modular fashion with the Java 1.5
extensions, e.g. generics, autoboxing, static imports, and an enhanced for-
statement.

Finally, the JastAdd II tool have been implemented using ReRAGs and
bootstrapped in itself.

4 Conclusions and future work

This thesis presents the ReRAGs specification formalism including its design,
implementation, and various applications. The formalism raises the abstrac-
tion level for grammar-based computations using a declarative object-oriented
technique to rewrite attributed abstract syntax trees. The rewrites support con-
ditional and context-dependent rewrites. ReRAGs have been combined with
aspect-oriented techniques in the JastAdd II tool that has been used to imple-
ment complex complete programming languages. ReRAGs support three syn-
ergistic mechanisms for separation of concerns: inheritance for module modu-
larization, aspects for concerns cross-cutting the class hierarchy, and rewrites

4. CONCLUSIONS AND FUTURE WORK 9

that allow computations to be expressed on the most suitable model. This re-
sults in a compiler compiler that enables a high degree of separation of con-
cerns and modularity for compiler phases such as name binding, type check-
ing, and code generation. ReRAGs have been used to implement numerous
languages, the largest being a full static semantic analyzer for Java.

4.1 Future work

ReCRAGs We plan to combine ReRAGs with Circular Reference Attributed
Grammars [MH03]. This would result in grammars that support both re-
writes and fixed-point computations. We think this will provide a useful
basis for declarative specification of many problems in static analysis.

Integrated Development Environment We plan to integrate the JastAdd II
tool into the open integrated development environment Eclipse. Besides
a language sensitive editor it would be interesting to investigate how to
support source level ReRAGs debugging and automated unit-testing.

Pattern Language During the design of ReRAGs we discovered several use-
ful transformational patterns, e.g. Semantic Specialization, Make Implicit
Behavior Explicit, and Eliminate Shorthands. Our various language imple-
mentations also share common design of name binding and type checking
modules. It would be interesting to evaluate all these techniques and work
towards a pattern language for compiler construction using JastAdd II.

Optimizations Our Java compiler, generated using JastAdd II, is a few times
slower that traditional handwritten compilers. It would be interesting to
further refine current caching strategies and evaluation strategies in Jas-
tAdd II to optimize performance. We are also interested in profiling the
generated compiler and try to remove bottlenecks in the compiler specifi-
cation to achieve performance closer to handwritten compilers.

Dynamic AOSD Features JastAdd II currently only uses static aspect ori-
ented features in the form of inter type declarations also known as static in-
troductions. This allows us to modularize concerns that crosscut the main
classification hierarchy. Since rewrites are triggered by a child visit, the
rewrites can be seen as dynamic features similar to the pointcuts in AspectJ
[KHH+01]. It would be interesting to further investigate this relationship
and to introduce other dynamic pointcuts as well.

10 CHAPTER 1. INTRODUCTION

References

[Boy96] John Tang Boyland. Descriptional Composition of Compiler Components.
PhD thesis, University of California, Berkeley, September 1996. Available
as technical report UCB//CSD-96-916.

[Cor04] James R. Cordy. Txl: A language for programming language tools and ap-
plications. In Proceedings of the 4th Workshop on Language Descriptions,
Tools, and Applications (LDTA’04) at ETAPS 2004, 2004.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. In Proceedings of ECOOP 2004: 18th European Conference on
Object-Oriented Programming, 2004.

[Ekm04] Torbjörn Ekman. A case study of Separation of Concerns in Compiler Con-
struction using JastAdd II. In Proceedings of the Third AOSD workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
2004.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[Hed94] Görel Hedin. An overview of door attribute grammars. In Peter A. Fritzson,
editor, 5th Int. Conf. on Compiler Construction (CC’ 94), volume 786 of
LNCS, pages 31–51, Edinburgh, April 1994.

[Hed00] Görel Hedin. Reference Attributed Grammars. Informatica (Slovenia),
24(3), 2000.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. LNCS, 2072:327–355,
2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems
Theory 5, 1, pp. 95-96 (March 1971).

[KPJ98] Uwe Kastens, Peter Pfahler, and Matthias Jung. The eli system. In Kai
Koskimies, editor, Compiler Construction CC’98, volume 1383 of LNCS,
portugal, April 1998. Springer-verlag.

[McC64] John McCarthy. A formal description of a subset of ALGOL. In T. B.
Steele, Jr, editor, Formal Language Description Languages for Computer
Programming, Proceedings of an IFIP Working Conference, pages 1–12.
Springer-Verlag, 1964.

[MH03] Eva Magnusson and Görel Hedin. Circular reference attributed grammars -
their evaluation and applications. Electronic Notes in Theoretical Computer
Science, 82(3), 2003.

[NE01] Anders Nilsson and Torbjörn Ekman. Deterministic java in tiny embedded
systems. In Proceedings of the Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing. IEEE Computer Society, 2001.

[NEN02] Anders Nilsson, Torbjörn Ekman, and Klas Nilsson. Real java for real time -
gain and pain. In Proceedings of the international conference on Compilers,

4. CONCLUSIONS AND FUTURE WORK 11

architecture, and synthesis for embedded systems, pages 304–311. ACM
Press, 2002.

[Nil04] Anders Nilsson. Compiling Java for Real-Time Systems. Licentiate thesis,
Department of Computer Science, Lund Institute of Technology, 2004.

[PH97] A. Poetzsch-Heffter. Prototyping realistic programming languages based on
formal specifications. Acta Informatica, 34(10):737–772, 1997.

[RT84] Thomas Reps and Tim Teitelbaum. The synthesizer generator. In ACM SIG-
SOFT/SIGPLAN Symp. on Practical Software Development Environments,
pages 42–48. ACM press, Pittsburgh, PA, April 1984.

[San04] Martin Sandin. Extending a Type Checker with Object Orientation and
Generic Typing in a modular way using Higher-Order Reference Attributed
Grammars. Master’s thesis, Department of Computer Science, Lund Insti-
tute of Technology, 2004.

[vdBea01] M. van den Brand et al. The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. In Proceedings of Compiler
Construction Conference 2001, volume 2027 of LNCS. Springer-Verlag,
2001.

[Vis01] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In Proceedings of
Rewriting Techniques and Applications (RTA’01), volume 2051 of LNCS,
pages 357–361. Springer-Verlag, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute gram-
mars. In Proceedings of the SIGPLAN ’89 Programming language design
and implementation. ACM Press, 1989.

Paper I

Rewritable Reference Attributed Grammars

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Rewritable Reference Attributed Grammars

Torbjörn Ekman and Görel Hedin

Department of Computer Science, Lund University, Sweden
(torbjorn|gorel)@cs.lth.se

Abstract This paper presents an object-oriented technique for rewrit-
ing abstract syntax trees in order to simplify compilation. The tech-
nique, Rewritable Reference Attributed Grammars (ReRAGs), is com-
pletely declarative and supports both rewrites and computations through
attributes. We have implemented ReRAGs in our aspect-oriented com-
piler compiler tool JastAdd II. Our largest application is a complete
static-semantic analyzer for Java 1.4. ReRAGs uses three synergistic
mechanisms for supporting separation of concerns: inheritance for model
modularization, aspects for cross-cutting concerns, and rewrites that al-
low computations to be expressed on the most suitable model. This al-
lows compilers to be written in a high-level declarative and modular
fashion, supporting language extensibility as well as reuse of modules
for different compiler-related tools. We present the ReRAG formalism,
its evaluation algorithm, and examples of its use. Initial measurements
using a subset of the Java class library as our benchmarks indicate that
our generated compiler is only a few times slower than the standard
compiler, javac, in J2SE 1.4.2 SDK. This shows that ReRAGs are al-
ready useful for large-scale practical applications, despite that optimiza-
tion has not been our primary concern so far.

1 Introduction

Reference Attributed Grammars (RAGs) have proven useful in describing and
implementing static-semantic checking of object-oriented languages [Hed00].
These grammars make use of reference attributes to capture non-local tree
dependences like variable decl-use, superclass-subclass, etc., in a natural, yet
declarative, way.

The RAG formalism is itself object-oriented, viewing the grammar as a
class hierarchy and the abstract syntax tree (AST) nodes as instances of these
classes. Behavior common to a group of language constructs can be specified
in superclasses, and can be further specialized or overridden for specific con-
structs in the corresponding subclasses.

In plain RAGs, the complete AST is built prior to attribute evaluation.
While this works well for most language constructs, there are several cases

16

where the most appropriate tree structure can be decided only after evaluation
of some of the attributes. I.e., the context-free syntax is not sufficient for build-
ing the desired tree, but contextual information is needed as well. By providing
means for rewriting the AST based on a partial attribution, the specification of
the remaining attribution can be expressed in a simpler and more natural way.

This paper presents ReRAGs, Rewritable Reference Attributed Grammars,
which extend RAGs with the capability to rewrite the AST dynamically, dur-
ing attribute evaluation, yet specified in a declarative way. ReRAGs form a
conditional rewrite system where conditions and rewrite rules may use contex-
tual information through the use of attributes. We have implemented a static-
semantics analyzer for Java using this technique. Based on this experience we
exemplify typical cases where rewriting the AST is useful in practice.

ReRAGs are closely related to Higher-ordered Attribute Grammars (HAGs)
[VSK89], [Sar99] and to the technique of forwarding in HAGs [VWMBK02].
A major difference lies in the object-oriented basis of ReRAGs, where refer-
ence attributes are kept as explicit links in the tree and subtrees are rewritten
in place. HAGs, in contrast, have a functional programming basis, viewing the
AST as well as its attributes as structured values without identity.

ReRAGs also have similarities to tree transformation systems like Stratego
[Vis01b], ASF+SDF [vdBea01], and TXL[Cor04], but improves data acquisi-
tion support through the use of RAGs instead of embedding contextual data in
rewrite rules. Rewrite application strategies differ in that ReRAGs only support
the above described declarative approach while the above mentioned systems
support user defined strategies. In Stratego and AST+SDF the rewrite applica-
tion strategy is specified through explicit traversal strategies and in TXL the
rewrite application order is implicitly defined as part of the functional decom-
position of the transformation ruleset.

The plain RAG evaluation scheme is demand driven, evaluating an attribute
only when its value is read. The ReRAG evaluation scheme extends this basic
approach by rewriting parts of the AST as needed during the evaluation. We
have designed different caching strategies to achieve performance optimization
and evaluated the approach using a subset of the J2SDK 1.4.2 class library as
our benchmark suite.

ReRAGs are implemented in our tool JastAdd II, a successor to our previ-
ous tool JastAdd that supported plain RAGs [HM03]. Several grammars have
been developed for JastAdd II, the largest one being our Java grammar that
implements static-semantics checking as specified in the Java Language Spec-
ification [GJSB00].

In addition to RAG/ReRAG support, the JastAdd systems support static
aspect-oriented specification and integration with imperative Java code. Speci-
fications are aspect-oriented in that sets of attributes and equations concerning

2. TYPICAL EXAMPLES OF AST REWRITING 17

a particular aspect, such as name analysis, type checking, code generation, etc.,
can be specified in modules separate from the AST classes. This is similar to
the static introduction feature of AspectJ [KHH+01] where fields, methods,
and interface implementation clauses may be specified in modules separate
from the original classes.

Integration with imperative Java code is achieved by simply allowing or-
dinary Java code to read attribute values. This is useful for many problems
that are more readily formulated imperatively than declaratively. For example,
a code emission module may be written as ordinary Java code that reads at-
tribute values from the name and type analysis in order to emit the appropriate
code. These modules are also specified as static introduction-like aspects that
add declarations to the existing AST classes. The ReRAG examples given in
this paper are taken from our experience with the Java grammar and utilize the
separation of concerns given by the aspect-oriented formulation, as well as the
possibility to integrate declarative and imperative modules.

The rest of this paper is structured as follows. Section 2 introduces some
typical examples of when AST rewriting is useful. Section 3 gives background
information on RAGs and ASTs. Section 4 introduces ReRAG rewriting rules.
Section 5 discusses how ReRAGs are evaluated. Section 6 describes the algo-
rithms implemented in JastAdd II. Section 7 discusses ReRAGs from both an
application and a performance perspective. Section 8 compares with related
work, and Section 9 concludes the paper.

2 Typical examples of AST rewriting

From our experience with writing a static-semantics analyzer for Java, we have
found many cases where it is useful to rewrite parts of the AST in order to
simplify the compiler implementation. Below, we exemplify three typical situ-
ations.

2.1 Semantic specialization

In many cases the same context-free syntax will be used for language constructs
that carry different meaning depending on context. One example is names in
Java, like a.b, c.d, a.b.c, etc. These names all have the same general syntac-
tic form, but can be resolved to a range of different things, e.g., variables, types,
or packages, depending on in what context they occur. During name resolution
we might find out that a is a class and subsequently that b is a static field.
From a context-free grammar we can only build generic Name nodes that must
capture all cases. The attribution rules need to handle all these cases and there-
fore become complex. To avoid this complexity, we would like to do seman-
tic specialization. I.e., we would like to replace the general Name nodes with

18

more specialized nodes, like ClassName and FieldName, as shown in Figure 1.
Other computations, like type checking, optimization, and code generation, can
benefit from this rewrite by specifying different behavior (attributes, equations,
fields and methods) in the different specialized classes, rather than having to
deal with all the cases in the general Name class.

Figure 1. Semantic specialization of name references.

2.2 Make implicit behavior explicit

A language construct sometimes has implicit behavior that does not need to be
written out by the programmer explicitly. An example is the implicit construc-
tors of Java classes. If a class in Java has no constructors, this corresponds to an
implicit constructor taking no arguments. The implicit behavior can be made
explicit by rewriting the AST, see Figure 2. This simplifies other computations,
like code generation, which do not have to take the special implicit cases into
account.

2.3 Eliminate shorthands

Some language constructs are shorthands for specific combinations of other,
more basic, constructs. For example, string concatenation in Java can be written
using the binary addition operator (e.g., a+b), but is actually implemented as
an invocation of the concat method in the String class (e.g., a.concat(b)).
The AST can be rewritten to eliminate such shorthands, as shown in Figure 3.
The AST now reflects the semantics rather than the concrete syntax, which
simplifies other computations like optimizations and code generation.

3. BACKGROUND 19

Figure 2. The implicit constructor in class “A” is made explicit.

Figure 3. Eliminate shorthand and reflect the semantic meaning instead.

3 Background

3.1 AGs and RAGs

ReRAGs are based on Reference Attributed Grammars (RAGs) which is an
object-oriented extension to Attribute Grammars (AGs) [Knu68]. In plain AGs
each node in the AST has a number of attributes, each defined by an equation.
The right-hand side of the equation is an expression over other attribute values
and defines the value of the left-hand side attribute. In a consistently attributed
tree, all equations hold, i.e., each attribute has the same value as the right-hand
side expression of its defining equation.

Attributes can be synthesized or inherited. The equation for a synthesized
attribute resides in the node itself, whereas for an inherited attribute, the equa-
tion resides in the parent node. From an OO perspective we may think of at-
tributes as fields and of equations as methods for computing the fields. How-
ever, they need not necessarily be implemented that way. Note that the term
inherited attribute refers to an attribute defined in the parent node, and is thus
a concept unrelated to the inheritance of OO languages. In this article we will
use the term inherited attribute in its AG meaning.

Inherited attributes are used for propagating information downwards in
the tree (e.g., propagating information about declarations down to use sites)
whereas synthesized attributes can be accessed from the parent and used for

20

propagating information upwards in the tree (e.g. propagating type informa-
tion up from an operand to its enclosing expression).

RAGs extend AGs by allowing attributes to have reference values, i.e., they
may be object references to AST nodes. AGs, in contrast, only allow attributes
to have primitive or structured algebraic values. This extension allows very
simple and natural specifications, e.g., connecting a use of a variable directly
to its declaration, or a class directly to its superclass. Plain AGs connect only
through the AST hierarchy, which is very limiting.

3.2 The AST class hierarchy

The nodes in an AST are viewed as instances of Java classes arranged in a
subtype hierarchy. An AST class correponds to a nonterminal or a production
(or a combination thereof) and may define a number of children and their de-
clared types, corresponding to a production right-hand side. In an actual AST,
each node must be type consistent with its parent according to the normal type-
checking rules of Java. I.e., the node must be an instance of a class that is the
same or a subtype of the corresponding type declared in the parent. Shorthands
for lists, optionals, and lexical items are also provided. An example definition
of some AST classes in a Java-like syntax is shown below.

// Expr corresponds to a nonterminal
ast Expr;
// Add corresponds to an Expr production
ast Add extends Expr ::= Expr leftOp , Expr rightOp;
// Id corresponds to an Expr production, id is a token
ast Id extends Expr ::= <String id>;

Aspects can be specified that define attributes, equations, and ordinary Java
methods of the AST classes. An example is the following aspect for very simple
type-checking.

// Declaration of an inherited attribute env of Expr nodes
inh Env Expr.env();
// Declaration of a synthesized attribute type of Expr
// nodes and its default equation
syn Type Expr.type() = TypeSystem.UNKNOWN;
// Overriding the default equation for Add nodes
eq Add.type() = TypeSystem.INT;
// Overriding the default equation for Id nodes
eq Id.type() = env().lookup(id()).type();

The corresponding Java API is shown in the following UML diagram. It
includes methods for accessing child nodes like leftOp and rightOp, tokens

4. REWRITE RULES 21

like id and user-defined attributes like env and type. This API can be used
freely in the right-hand sides of equations, as well as by ordinary Java code.

4 Rewrite rules

ReRAGs extend RAGs by allowing rewrite rules to be written that automati-
cally and transparently rewrite nodes. The rewriting of a node is triggered by
the first access to it. Such an access could occur either in an equation in the
parent node, or in some imperative code traversing the AST. In either case,
the access will be captured and a reference to the final rewritten tree will be
the result of the access. This way, the rewriting process is transparent to any
code accessing the AST. The first access to the node will always go via the
reference to it in the parent node. Subsequent accesses may go via reference
attributes that refer directly to the node, but at this point, the node will already
be rewritten to its final form.

A rewrite step is specified by a rewrite rule that defines the conditions when
the rewrite is applicable, as well as the resulting tree. For a given node, there
may be several rewrite rules that apply, which are then applied in a certain
order. It may also be the case that after the application of one rewrite rule, more
rewrite rules become applicable. This allows complex rewrites to be broken
down into a series of simple small rewrite steps.

A rewrite rule for nodes of class N has the following general form:

rewrite N {
when (cond)
to R result;

}

This specifies that a node of type N may be replaced by another node of
type R as specified in the result expression result. The rule is applicable if the
(optional) boolean condition cond holds and will be applied if there are no other
applicable rewrite rules of higher priority (priorites will be discussed later).
Furthermore, all rewrite rules must be type consistent in that the replacement
will result in a type consistent AST regardless of the context of the node, as
will be discussed in Section 4.2. In a consistently attributed tree, all equations
hold and all rewrite conditions are false.

22

4.1 A simple example

As an example, consider replacing an Add node with a StringAdd node in case
both operands are strings 1. This can be done as follows.

ast StringAdd extends Expr ::= Expr leftOp , Expr rightOp;
rewrite Add {

when (childType ().equals(TypeSystem.STRING))
to StringAdd new StringAdd(leftOp(), rightOp());

}
syn Type Add.childType() = ...;

Note that in the creation of the new right-hand side, the previous children
leftOp() and rightOp() are used. These accesses might trigger rewrites of
these nodes in turn.

Avoiding repeated applications. StringAdd nodes might have much in com-
mon with Add nodes, and an alternative way of handling this rewrite would be
to define StringAdd as a subclass of Add, rather than as a sibling class. In this
case, the rewrite should apply to all Add nodes, except those that are already
StringAdd nodes, and can be specified as follows.

ast StringAdd extends Add;
rewrite Add {

when (childType ().equals(TypeSystem.STRING)
and !(this instanceOf StringAdd))

to StringAdd new StringAdd(leftOp(), rightOp());
}
syn Type Add.childType() = ...;

Note that the condition includes a type test to make sure that the rule is not
applied to nodes that are already of type StringAdd. This is necessary since the
rule would otherwise still be applicable after the rewrite, resulting in repeated
applications of the same rule and thereby nontermination. In general, whenever
the rewrite results in the same type or a subtype, it is advicable to reflect over if
the condition might hold also after the rewrite and in that case if the condition
should be tightened in order to avoid nontermination.

Solutions that refactor the AST class hierarchy. A third alternative solution
could be to keep Add and StringAdd as sibling classes and to factor out the
common parts into a superclass as follows.

1 In Section 4.4 we will instead rewrite addition of strings as method calls.

4. REWRITE RULES 23

ast Expr:
ast GeneralAdd extends Expr ::= Expr leftOp , Expr rightOp;
ast Add extends GeneralAdd;
ast StringAdd extends GeneralAdd;

This solution avoids the type test in the rewrite condition. However, it re-
quires that the grammar writer has access to the original AST definition of Add
so that it can be refactored.

4.2 Type consistency

As mentioned above, rules must be type consistent, i.e., the replacing node
must always be type consistent with any possible context. This is checked stat-
ically by the JastAdd II system. Consider the rewrite rule that replaces an Add
node by a sibling StringAdd node using the grammar described above. The
expected child type for all possible contexts for Add nodes is Expr. Since both
Add and StringAdd are subclasses of Expr the rule is type consistent. How-
ever, consider the addition of the following AST class.

ast A ::= Add:

In this case the rewrite rule would not be type consistent since the rewrite
could result in an A node having a StringAdd node as a child although an Add
node is expected. Similarly, in the second rewrite example in Section 4.1 where
StringAdd is a subclass of Add, that rewrite rule would not be type consistent
if the following classes were part of the AST grammar.

ast B ::= C:
ast C extends Add;

In this case, the rewrite rule could result in a B node having a StringAdd
node as a child which would not be type consistent.

Theorem 1. A rule rewriteA...toB... is type consistent if the following con-
ditions hold: Let C be the first common superclass of A and B. Furthermore,
let D be the set of classes that occur on the right-hand side of any production
class. The rule is type consistent as long as there is no class D in D that is a
subclass of C, i.e., D 6< C.

Proof. The rewritten node will always be in a context where its declared type
D is either the same as C, or a supertype thereof, i.e. C ≤ D. The resulting node
will be of a type R ≤ B, and since B ≤ C, then consequently R ≤ D, i.e., the
resulting tree will be type consistent. ut

24

4.3 Rewriting descendent nodes

The tree resulting from a rewrite is specified as an expression which may freely
access any of the current node’s attributes and descendents. Imperative code is
permitted, using the syntax of a Java method body that returns the resulting
tree. This imperative code may reuse existing parts in the old subtree in order
to build the new subtree, but may have no other externally visible side effects.
This can be used to rewrite descendent nodes, returning an updated version of
the node itself as the result.

As an example, consider a Java class declaration class A { ... }. Here,
A is given no explicit superclass which is equivalent to giving it the superclass
Object. In order to simplify further attribution (type checking, etc.), we would
like to change the AST and insert the superclass as an explicit node. This can
be done by the following rewrite rule:

ast ClassDecl extends Decl ::=
<String classId >, [TypeRef superClass], Body body;

rewrite ClassDecl {
when (!hasSuperClass() && !name().equals("Object"))
to ClassDecl {

setSuperClass(new TypeRef("Object"));
return this;

}
}

Note that the rewrite rule updates a descendent node and returns itself, as
illustrated in the figure below.

As seen from the specification above, the condition for doing this rewrite is
that the class has no explicit superclass already, and that it is another class than
the root class Object. The result type is the same as the rewritten type, which
means we should reflect on possible nontermination due to repeated applica-
tions of the same rule. However, it is clear that the rewrite will not be applicable
a second time since the rewrite will result in a node where the condition is no
longer met.

4.4 Combining rules

It is often useful to rewrite a subtree in several steps. Consider the following
Java-like expression: a+"x"

4. REWRITE RULES 25

Supposing that a is a reference to an non-null Object subclass instance,
the semantic meaning of the expression is to convert a into a string, convert the
string literal "x" into a string object, and to concatenate the two strings by the
method concat. It can thus be seen as a shorthand for the following expression.

a.toString().concat(new String(new char[] {’x’}))

To simplify code generation we would like to eliminate the shorthand no-
tation by rewriting the AST. This can be accomplished by a number of rewrite
rules, each taking care of a single subproblem:

1. replace the right operand of an Add node by a call to toString if the left
operand is a string, but the right is not

2. replace the left operand of an Add node by a call to toString if the right
operand is a string, but the left is not

3. replace an Add node by a method call to concat if both operands are
strings

4. replace a string literal by an expression creating a new string object

Suppose the original Add node is accessed from its parent. This will cause
the AST to be rewritten in the following steps. First, it will be checked which
rules are applicable for Add. This will involve accessing its left and right oper-
ands, which triggers the rewrite of these nodes in turn. In this case, the right
operand will be rewritten according to rule 4. It is now found that rule 2 is ap-
plicable for Add, and it is applied, replacing the left operand by a MethodCall.
This causes rule 3 to become applicable for Add, replacing it too by a Method-
Call. Now, no more rules are applicable for the node and a reference is re-
turned to the parent. Figure 4 illustrates the steps applied in the rewrite.

Rule priority. In general, it is possible that more than one rule applies to
a node. Typically, this happens when there are two rewrite rules in a node,
each rewriting different parts of the substructure of the node. For example, in
a class declaration there may be one rewrite rule that takes care of making an
implicit constructor explicit, and another rule making an implicit superclass
explicit. Both these rules can be placed in the ClassDecl AST class, and may
be applicable at the same time. In this particular case, the rules are confluent,
i.e., they can be applied in any order, yielding the same resulting tree. So far,
we have not found the practical use for nonconfluent rules, i.e., where the order
of application matters. However, in principle they can occur, and in order to
obtain a predictable result also in this case, the rules are prioritized: Rules in
a subclass have priority over rules in superclasses. For rules in the same class,
the lexical order is used as priority.

26

Initial AST for the a + “x” expression

Rule 4: Replace the “x” string literal by a new string instance expression
new String(new char[] {’x’}).

Rule 2: Make the implicit Object to String type conversion explicit by adding a
“toString” method call.

Rule 3: Replace add by a method call to “concat”.

Figure 4. Combine several rules to eliminate the shorthand for String addition and lit-
erals in a Java like language.

5. RERAG EVALUATION 27

5 ReRAG evaluation

5.1 RAG evaluation

An attribute evaluator computes the attribute values so that the tree becomes
consistently attributed, i.e., all the equations hold. JastAdd uses a demand-
driven evaluation mechanism for RAGs, i.e., the value of an attribute is not
computed until it is read [HM03]. The implementation of this mechanism is
straight-forward in an object-oriented language [Hed89]. Attributes are imple-
mented as methods in the AST classes where they are declared. Accessing
an attribute is done simply by calling the corresponding method. Also equa-
tions are translated to methods, and are called as appropriate by the attribute
methods: The method implementing an inherited attribute will call an equation
method in the parent node. The method implementing a synthesized attribute
calls an equation method in the node itself. JastAdd checks statically that all
attributes in the grammar have a defining equation, i.e., that the grammar is
well-formed. For efficiency, the value of an attribute is cached in the tree the
first time it is computed. All tree nodes inherit generic accessor methods to its
parent and possible children through a common superclass. As a simple exam-
ple, consider the following RAG fragment:

ast Expr;
ast Id extends Expr ::= <String id>;
inh Env Expr.env();
syn Type Expr.type();
eq Id.type() = env().lookup(id()).type();

This is translated to the following Java code:

class Expr extends ASTNode {// inherit generic node access
Env env_value = null; // cached attribute value
boolean env_cached = false; // flag true when cached
Env env() { // method for inherited attribute
if(!env_cached) {

env_value = ((HasExprSon)parent()).env_eq(this);
env_cached = true; }

return env_value; }
Type type_value = null; // cached attribute value
boolean type_cached = false; // flag true when cached
Type type() { // method for synthesized attribute
if(!type_cached) {

type_value = type_eq();
type_cached = true; }

return type_value; }
abstract Type type_eq(); }

28

interface HasExprSon {
Env env_eq(Expr son); }

class Id extends Expr {
String id() { ... }
Type type_eq() { // method for equation defining
return env().lookup(id()).type() // synthesized attr.

} }

This demand-driven evaluation scheme implicitly results in topological-
order evaluation (evaluation order according to the attribute dependences). See
[Hed00] for more details.

Attribute evaluation using this scheme will often follow complex tree traver-
sal patterns, often visiting the same node multiple times in order to evaluate all
the attributes that a specific attribute depends on. For example, consider the
evaluation of the attribute Id.type above. This involves finding the declaration
of the identifier, then finding the declaration of the type of the identifier, and
during this process, possibly finding the declarations of classes in the super-
class chain where these declarations may be located. In this process, the same
block nodes and declaration nodes may well be visited several times. However,
once a certain attribute is evaluated, e.g., the reference from a class to its su-
perclass, that computation does not need to be redone since the attribute value
is cached. The traversals do therefore not always follow the tree structure, but
can also follow reference attributes directly, e.g., from subclass to superclass
or from variable to declaration.

5.2 Basic rewrite strategy

To handle ReRAGs, the evaluator is extended to rewrite trees in addition to
evaluating attributes, resulting in a consistently attributed tree where all equa-
tions hold and all rewrite conditions are false. A demand-driven rewriting strat-
egy is used. When a tree node is visited, the node is rewritten iteratively. In each
iteration, the rule conditions are evaluated in priority order, and the first appli-
cable rule will be applied, replacing the node (or parts of the subtree rooted at
the node). The next iteration is applied to the root of the new subtree. The iter-
ation stops when none of the rules are applicable (all the conditions are false),
and a reference to the resulting subtree is then returned to the visiting node.
The subtree may thus be rewritten in several steps before the new subtree is
returned to the visiting node. Since the rewrites are applied implicitly when
visiting a node, the rewrite is transparent from a node traversal point of view.

The figure below shows how the child node B of A is accessed for the first
time and iteratively rewritten into the resulting node D that is returned to the
parent A. The subscript v indicates that a node has been visited and r that a

5. RERAG EVALUATION 29

rewrite is currently being evaluated. When B is visited a rewrite is triggered
and the node is rewritten to a C node that in turn is rewritten to a D node. No
rewrite conditions for the D node are true, and the node is returned to the parent
A that need not be aware of the performed rewrite.

5.3 Nested and multi-level rewrites

When evaluating a condition or a result expression in a rewrite rule, attributes
may be read that trigger a visit to another node. That visit may in turn trigger
a second rewrite that is executed before the first may continue its evaluation.
This nesting of rewrites results in several rewrites being active at the same
time. Since attributes may reference distant subtrees, the visited nodes could
be anywhere in the AST, not necessarily in the subtree of the rewritten tree.

The following figure shows an example of nested rewrites. The subscript
v indicates that a node has been visited and r that a rewrite is currently being
evaluated. The rewrites are numbered in the order they started.

An initial rewrite, r1, is triggered when A visits its child B in stage I. A
visit to C, that is caused by accessing a synthesized attribute during rewrite
condition checking, triggers a second rewrite r2 in stage II. That rewrite trig-
gers a visit to a distant node D by reading an inherited attribute and initiates
a third rewrite r3 in stage III. When no conditions in D are true the result of

30

the inherited attribute is calculated and returned to C in stage IV. The synthe-
sized attribute is calculated and returned to B in stage V. The resulting node
B is finally returned to A in stage VI. Notice that the rewrites terminate in the
opposite order that they were initiated.

As discussed in Section 5.1, most non-trivial attribute grammars are multi-
visit in that a node may have to be visited multiple times to evaluate an attribute.
A common situation is when a child node has an inherited attribute, and the
equation in the parent node depends on a synthesized attribute that visits the
child node again. The situation is illustrated in the figure below. A visits B
and a rewrite is initiated in stage I. During condition evaluation the inherited
attribute y() is read and A is visited to evaluate its equation in stage II. That
equation contains the synthesized attribute x() that in turn depends on z() in B
and a second visit is initiated in stage III.

ast A ::= B child;
inh Type B.y();
eq A.child().y() = x();
syn Type A.x() = child().z();
syn Type B.z() = ... ;

Such multi-visits complicate the rewrite and attribute evaluation process
somewhat. Should the second visit to a node that is being rewritten start a
second rewrite? No. The attributes read in a node that is being rewritten should
reflect the current tree structure. Otherwise, the definition of rewrites would
be circular and evaluation would turn into an endless loop. Therefore, when
visiting a node that is already being rewritten, the current node is returned and
no new rewrite is triggered.

Note that attribute values that depend on nodes that are being rewritten,
might have different values during the rewrite than they will have in the fi-
nal tree. Therefore, such attributes will not be cached until all the nodes they
depend on have reached their final form. We will return to this issue in Sec-
tion 6.3.

Note also that a node may well be rewritten several times, provided that the
previous rewrite has completed. This can happen if the rewrites are triggered by
the rewriting of another node. For example, suppose we are rewriting a node A.
During this process, we visit its son node S which is then rewritten to S′. After
this rewrite of S, the conditions of S′ are all false (the rewrite of S completes).
We then complete one iteration of rewriting A, replacing it with a new node
A′(but keeping the son S′). In the next iteration of rewriting A′, it may be found
that S′ needs to be rewritten again since the conditions of S′ may give other
results after replacing A by A′. This will also be discussed more in Section 6.2.

6. IMPLEMENTATION ALGORITHM 31

6 Implementation algorithm

6.1 Basic algorithm

As discussed in Section 3.2, a Java class is generated for each node type in
the AST. All classes in the class hierarchy descend from the same superclass,
ASTNode, providing generic traversal of the AST by the generic parent() and
child(int index) methods. These methods are used in the implementation of
attribute and equation methods, as discussed in Section 5.1.

We have implemented our rewriting algorithm by extending the existing
JastAdd RAG evaluator as an AspectJ [KHH+01] aspect. In particular, the
child method is extended to trigger rewrites when appropriate. To start with,
we consider the case when no RAG attributes are cached. The handling of
cached attributes in combination with rewriting is treated in Section 6.3.

Rewrite rules for each node type are translated into a corresponding Java
method, rewriteTo(), that checks rewrite rule conditions and returns the pos-
sibly rewritten tree. This method is iteratively invoked until no conditions are
true. If all conditions in one node’s rewriteTo() method are false, then rewriteTo()
in the node’s superclass is invoked. The generated Java method for the first ex-
ample in Section 4 is shown below.

ASTNode Add.rewriteTo() {
if(childType().equals(TypeSystem.STRING))
return new StringAdd(leftOp(), rightOp())

return super.rewriteTo();
}

To determine when no conditions are true and iteration should stop, a flag
is set when the rewriteTo() method in ASTNode is reached, indicating that no
overriding rewriteTo method has calculated a result tree. A flag is used since
a simple comparison of the returned node is not sufficient because the rewrite
may have rewritten descendent nodes only. In order to handle nested rewrites,
a stack of flags is used.

Figure 5 shows an AspectJ aspect implementing the above described be-
haviour:

(1) The stack used to determine when no conditions are true
(2) Iteratively apply rewrite until no conditions are true
(3) Push false on the stack to guess that a rewrite will occur
(4) Bind the rewritten tree as a child to the parent node.
(5) Set top value on stack to true when rewriteTo in ASTNode is reached (no

rewrite occurred)
(6) Define a pointcut when the child method is called.
(7) Each call to child is extended to also call rewrite.

32

public aspect Rewrite {
(1) protected static Stack noRewrite = new Stack();
(2) ASTNode rewrite(ASTNode parent , ASTNode child ,

int index) {
do {

(3) noRewrite.push(Boolean.FALSE);
child = child.rewriteTo();

(4) parent.setChild(index , child);
} while(noRewrite.pop() == Boolean.FALSE);
return child; }

(5) ASTNode ASTNode.rewriteTo() {
noRewrite.pop();
noRewrite.push(Boolean.TRUE);
return this; }

(6) pointcut child(int index , ASTNode parent) :
call(ASTNode ASTNode.child(int)) &&
args(index) && target(parent);

(7) ASTNode around (int index , ASTNode parent) :
child(index , parent) {

ASTNode child = proceed(index , parent):
return rewrite(parent , child , index); }

}

Figure 5. Aspect Rewrite: Iteratively rewrite each visited tree node

As discussed in Section 5.3 a tree node currently in rewrite may be visited
again during that rewrite when reading attributes. When a node that is in rewrite
is visited, the current tree state should be returned instead of initiating a new
rewrite. That behaviour is implemented in the aspect shown in Figure 6:

(1) A flag, inRewrite, is added to each node to indicate whether the node is in
rewrite or not.

(2) Add advice around each call to the rewriteTo method.
(3) The flag is set when a rewrite is initiated.
(4) The flag is reset when a rewrite is finished.
(5) Add advice around the rewrite loop in the previous aspect.
(6) When a node is in rewrite then the current tree is returned instead of initi-

ating a new rewrite.

6.2 Optimization of final nodes

As mentioned, a node may be rewritten several times. We are interested in
detecting when no further rewriting of it is possible so we know that it has

6. IMPLEMENTATION ALGORITHM 33

public aspect ReVisit {
(1) boolean ASTNode.inRewrite = false;
(2) ASTNode around(ASTNode child)

: execution(ASTNode ASTNode+.rewriteTo())
&& target(child) {

(3) child.inRewrite = true;
ASTNode newChild = proceed(child);

(4) child.inRewrite = false;
return newChild; }

(5) ASTNode around(ASTNode child)
: execution(ASTNode Rewrite.rewrite(ASTNode , ASTNode ,

int)
&& args(*, child , *) {

(6) if(child.inRewrite)
return child;

return proceed(child);
}

Figure 6. Aspect ReVisit: Pass through re-visit to a node already in rewrite

reached its final identity. By detecting final nodes, we can avoid the needless
checking of their rewrite conditions (since they will all be false). This perfor-
mance improvement can be significant for nodes with expensive conditions,
e.g., when extracting a property by visiting all the children of the node. We can
also use the concept of final nodes to cache attributes, as will be discussed in
Section 6.3.

Definition 1. A node is said to be final when i) all its rewrite conditions eval-
uate to false, and ii) future evaluations of its rewrite conditions cannot yield
other values, and iii) it cannot be rewritten by any other node.

Clearly, no further rewriting of final nodes is possible: i) and ii) guarantee
that the node itself cannot trigger any rewriting of it, and iii) that it cannot be
rewritten by any other node.

To find out when a node is final, we first recall (from Section 4) which
nodes may be changed by a rewrite rule. Consider a node N which is the root
of a subtree T . The rewrite rule will result in replacing T by T ′, where T ′

consists of a combination of newly created nodes and old nodes from T . I.e.,
the rewrite may not change nodes outside T . From this follows that a node can
only be rewritten by rules in the node itself or rules in nodes on the path to the
AST root node.

This allows us to state that

34

Lemma 1. If a node is final, all its ancestor nodes are final.

Proof. Otherwise the node may be rewritten by an ancestor node, in which
case it is not final.

From Lemma 1 follows that at any point during evaluation, the final nodes
of the AST will constitute a connected region that includes a path to the root,
the final region. Initially, the evaluator visits only nodes in the final region, and
is said to be in normal mode. But as soon as a non-final node is accessed from
normal mode, the evaluator enters rewrite mode and that non-final node is said
to be a candidate. When the iterative rewriting of the candidate has finished
it turns out that it is final (see Theorem 2, and the evaluator returns to normal
mode, completing the rewrite session. This way the final region is successively
expanded. During a rewrite session, other non-final nodes may be visited and
rewritten, but these are not considered candidates and will not become final
during that rewrite session. There is only one candidate per rewrite session.

Note that during a rewrite session, the evaluator may well visit non-final
nodes outside of the candidate subtree, and non-final nodes may be visited
several times, the candidate included. For example, let us say we are rewrit-
ing a class String to add an explicit superclass reference to class Object. This
means we will visit and trigger a rewrite of class Object. The rewrite of Ob-
ject includes adding an explicit constructor. This involves searching through
the methods of Object for a constructor. Suppose there is a method String
toString() in Object. When this method is traversed, this will trigger rewrit-
ing of the identifier String to a type reference that directly refers to the String
class. This in turn will involve a second visit to the String class (which was the
candidate).

Theorem 2. At the end of a rewrite session, the candidate c is final.

Proof. At the end of the rewrite session, all rewrite conditions of c have just
been evaluated to false. Furthermore, all ancestors of c are final, so no other
node can rewrite c. What remains to be shown (see Definition 1) is that fu-
ture evaluations of the rewrite conditions cannot yield other values. To see this
we must consider the set of all other non-final nodes N that were visited in
order to evaluate the rewrite conditions of c. This has involved evaluating all
the rewrites conditions of these nodes in turn, also yielding false for all these
conditions, and without triggering any rewrites of those nodes. Otherwise, an-
other iteration of rewrite of c would have been triggered and we would not be
at the end of the rewriting session. Since all these conditions evaluate to false,
and there is no other node that can rewrite any of the nodes in N (since their
ancestors outside N are final), none of these conditions can change value, and
not only c, but in fact all nodes in N are final. ut

6. IMPLEMENTATION ALGORITHM 35

In keeping track of which nodes are final, we add a flag isFinal to each
node. In principle, we could mark both c and all the nodes in N as final at
the end of the rewriting session. However, it is sufficient to mark c since any
subsequent visits to a node in N will immediately mark that node as final, since
all its rewrite conditions are false. An aspect introducing the isFinal flag is
implemented in the aspect shown in Figure 7:

(1) A flag, isFinal, is added to each node to indicate whether the node is final
or not.

(2) Add advice around the rewrite loop in the Rewrite aspect.
(3) When a node is final no rule condition checking is necessary and the node

is returned immediately.
(4) When a node is entered during normal mode it becomes the next node to

be final and we enter rewrite mode. On condition checking completion the
node is final and we enter normal mode.

(5) A rewrite during rewrite mode continues as normal.

public aspect FinalNodes {
(1) boolean ASTNode.isFinal = false;
(2) boolean normalMode = true;
(2) ASTNode around(ASTNode parent , ASTNode child)

: execution(ASTNode Rewrite.rewrite(ASTNode ,
ASTNode , int)) && args(parent , child , *) {

(3) if(child.isFinal)
return child;

(4) if(normalMode) {
normalMode = false;
child = proceed(parent , child);
child.isFinal = true;
normalMode = true;
return child; }

(5) return proceed(parent , child); }
}

Figure 7. Aspect FinalNodes: Detect final nodes and skip condition evaluation

6.3 Caching attributes in the context of rewrites

In plain RAGs, attribute caching can be used to increase performance by en-
suring that each attribute is evaluated only once. When introducing rewrites the

36

same simple technique cannot be used. A rewrite that changes the tree struc-
ture may affect the value of an already cached attribute that must then be re-
evaluated. There are two principle approaches to ensure that these attributes
have consistent values. One is to analyze attribute dependences dynamically in
order to find out which attributes need to be reevaluated due to rewriting. An-
other approach is to cache only those attributes that cannot be affected by later
rewrites. In order to avoid extensive run-time dependency analysis, we have
chosen the second approach.

We say that an attribute is safely cachable when its value cannot be affected
by later rewrites. Because final nodes cannot be further rewritten, an attribute
will be safely cachable if all nodes visited during its evaluation are final.

A simple solution is to only cache attributes whose evaluation is started
when the evaluator is in normal mode, i.e., not in a rewriting session. These
attributes will be safely cachable. To see this, we can note that

i) the node where the evaluation starts is final (since the evaluator is in
normal mode)

ii) any node visited during evaluation will be in its final form before its
attributes are accessed, since any non-final node encountered will cause the
evaluator to enter rewrite mode, returning the final node after completing that
rewriting session.

It is possible to cache certain attributes during rewriting, by keeping track
dynamically of if all visited nodes are final. However, this optimization has not
yet been implemented.

As mentioned earlier, the ReRAG implementation is implemented as as-
pects on top of the plain RAG implementation. The RAG implementation caches
attributes, so we need to disable the caching whenever not in normal mode in
order to handle ReRAGs. This is done simply by advice on the call that sets the
cached-flag. Figure 8 shows how this is done.

public aspect DisableCache {
Object around() : set(boolean ASTNode+.*_cached) {
if(!FinalNodes.normalMode)
return false;

return proceed(); }
}

Figure 8. Aspect DisableCache: Disable caching of attributes when not in normal mode

7. IMPLEMENTATION EVALUATION 37

7 Implementation evaluation

7.1 Applicability

We have implemented ReRAGs in our tool JastAdd II and performed a number
of case studies in order to evaluate their applicability.

Full Java static-semantics checker Our largest application is a complete sta-
tic-semantic analyzer for Java 1.4. The grammar is a highly modular spec-
ification that follows the Java Language Specificaton [GJSB00], second
edition, with modules like name binding, resolving ambiguous names, type
binding, type checking, type conversions, inheritance, access control, ar-
rays, exception handling, definite assignment and unreachable statements.
An LALR(1) parser using a slightly modified grammar from the Java Lan-
guage Specification [GJSB00], is used to build the initial abstract syntax
tree. The AST is rewritten during the analysis to better capture the seman-
tics of the program and simplify later computations. Some examples where
rewrites were useful are:

– for resolving ambiguous names and for using semantic specialization
for bound name references.

– for making implicit constructs explict by adding (as appropriate) empty
constructors, supertype constructor accesses, type conversions and pro-
motions, and inheritance from java.lang.Object.

– for eliminating shorthands such as splitting compound declarations of
fields and variables to a list of single declarations.

Java to C compiler Our collegue, Anders Nilsson, has implemented a Java
to C compiler in ReRAGs [Nil04], based on an older version of the Java
checker. The generated C code is designed to run with a set of special
C runtime systems that support real-time garbage collection, and is inter-
faced to through a set of C macros. ReRAGs are used in the back end for
adapting the AST to simplify the generation of code suitable for these run-
time systems. For example, all operations on references are broken down
to steps of only one indirection, generating the macro calls to the runtime
system. ReRAGs are also used for optimizing the generated code size by
eliminating unused classes, methods, and variables. They are also used for
eliminating shorthands, for example to deal with all the variants of loops
in Java.

Worst-case execution time analyzer The Java checker was extended to also
compute worst-case execution times using an annotation mechanism. The
extension could be done in a purely modular fashion.

Automation Language The automation language Structured Text in the IEC-
61131-3 standard has been modeled in ReRAGs and extended with an

38

object-oriented type system and instance references. The extended lan-
guage is translated to the base language by flattening the class hierarchies
using iterative rewriting. Details will appear in a forthcoming paper.

7.2 Performance

We have implemented ReRAGs in our aspect-oriented compiler compiler tool
JastAdd II. To give some initial performance measurements we benchmark our
largest application, a complete static-semantic analyzer for Java 1.4. After pars-
ing and static-semantic analysis the checked tree is pretty printed to file. Since
code generation targeted for the Java virtual machine, [LY99], is fairly straight
forward once static-semantic analysis is performed we believe that the work
done by our analyzer is comparable to the work done by a java to byte-code
compiler. We therefore compare the execution time of our analyzer to the stan-
dard java compiler, javac, in J2SE JDK.

Two types of optimizations to the basic evaluation algorithm were dis-
cussed in Section 6.2 and Section 6.3. The first disables condition checking
for nodes that are final and the second caches attribute values that only de-
pend on attributes in final nodes. To verify that these optimizations improve
performance we benchmark our analyzer with and without optimizations. The
execution times when analysing a few files of the java.lang package are shown
in Figure 9. These measurements show that both attribute caching and condi-
tion checking disabling provide drastic performance improvements when ap-
plied individually and even better when combined. Clearly, both optimizations
should be used to get reasonable execution times.

The execution times do not include parsing that took 3262ms without at-
tribute caching and slightly more, 3644ms, when caching attributes. We believe
the increase is due to the larger tree nodes used when caching attributes.

condition checking no condition checking
no attribute caching 546323 ms 61882 ms
attribute caching 21216 ms 2016 ms

Figure 9. Comparison of analysis execution time with and without optimizations

To verify that the ReRAG implementation scales reasonably we compare
execution times with a traditional Java compiler, javac, see Figure 10. We are
using a subset of the Java class library, the java.lang, java.util, java.io pack-
ages, as our benchmarks. Roughly 100.000 lines of java source code from J2SE

8. RELATED WORK 39

JDK 1.4.2 are compiled, and the ReRAG-based compiler uses both the opti-
mizations mentioned above. The comparison is not completely fair because
javac generates byte code whereas the ReRAG compiler only performs static-
semantic analysis and then pretty-prints the program. However, generating byte
code from an analyzed AST is very straight-forward and should be roughly
comparable to pretty-printing. The comparison shows that the ReRAG-based
compiler is only a few times slower than javac. Considering that the ReRAG-
based compiler is generated from a declarative specification, we find this highly
encouraging. This shows that ReRAGs are already useful for large-scale prac-
tical applications.

total JVM init parsing analysis and prettyprinting
ReRAG compiler 22801ms 600ms 7251ms 14950ms
javac 6112ms

Figure 10. Compile time for the java.lang, java.util, java.io packages using the
ReRAG-based compiler and javac.

8 Related work

Higher-ordered Attribute Grammars ReRAGs are closely related to Higher-
ordered Attribute Grammars (HAGs) [VSK89], [Sar99] where an attribute
can be higher-order, in that it has the structure of an AST and can itself
have attributes. Such an attribute is also called an ATtributable Attribute
(ATA). Typically, there will be one equation defining the bare AST (with-
out attributes) of the ATA, and other equations that define or use attributes
of the ATA, and which depend on the evaluation of the ATA equation.
In ReRAGs each node in the AST is considered to be the root of a rewritable
attribute of its parent node and may be rewritten to an alternative subtree
during attribute evaluation. The rewriting is done conditionally, in place
(replacing the original subtree during evaluation), and may be done in sev-
eral steps, each described by an individual rewrite rule. This is contrast to
the ATAs of HAGs which are constructed unconditionally, in one step, and
where the evaluation does not change previously existing parts of the AST
(the new tree is stored as a previously unevaluated attribute).
A major difference lies in the object-oriented basis of ReRAGs, where
reference attributes are kept as explicit links in the tree and subtrees are

40

rewritten in place. HAGs, in contrast, have a functional programming ba-
sis, viewing the AST as well as its attributes as structured values without
identity. This is in our view less intuitive where, for instance, cross refer-
ences in the AST have to be viewed as infinite values.

HAGs + Forwarding Forwarding [VWMBK02] is an attribute grammar tech-
nique used to forward attribute equations in one node to an equation in
another node. This is transparent to other attribute equations and when
combined with ATAs that use contextual information it allows later com-
putations to be expressed on a more suitable model in a way similar to
ReRAGs. To simulate a nested and multi-level rewrite there would, how-
ever, conceptually have to be a new tree for each step in the rewrite.

Visitors The Visitor pattern is often used in compiler construction for separa-
tion of concerns when using object-oriented languages. Visitors can only
separate cross-cutting methods while the weaving technique used in Jas-
tAdd can be used for fields as well. This is superior to the Visitor pattern in
that there is no need to rely on a generic delegation mechanism resulting
in a cleaner more intuative implementation and also provide type-safe pa-
rameter passing during tree traversal. ReRAGs also differ in that traversal
strategies need not be specified explicitly since they are implicitly defined
by attribute dependences. The use of attributes provide better separation of
concerns in that contextual information need not be included in the traver-
sal pattern but can be declared separately.

Rewrite Systems ReRAGs also have similarities to tree transformation sys-
tems like Stratego [Vis01b], ASF+SDF [vdBea01], and TXL [Cor04] but
improves data acquisition support through the use of RAGs instead of em-
bedding contextual data in rewrite rules or as global variables. Stratego
uses Dynamic Rewrite Rules [Vis01a] to separate contextual data acqui-
sition from rewrite rules. A rule can be generated at run-time and include
data from the context where it originates. That way contextual data is in-
cluded in the rewrite rule and need not be propagated explicitly by rules
in the grammar. ReRAGs provide an even cleaner separation of rewrite
rule and contextual information by the use of RAGs that also are supe-
rior in modeling complex non-local dependences. The rewrite application
order differs in that ReRAGs only support the described declarative ap-
proach while the other systems support user defined strategies. In Stratego
and ASF+SDF the user can define explicit traversal strategies that con-
trol rewrite application order. Transformation rules in TXL are specified
through a pattern to be matched and a replacement to substitute for it. The
pattern to be matched may be guarded by conditional rules and the re-
placement may be a defined as a function of the matched pattern. A func-
tion used in a transformation rule may in turn be a composed from other

8. RELATED WORK 41

functions. The rewrite application strategy in TXL is thus implicitly de-
fined as part of the functional decomposition of the transformation ruleset,
which controls how and in which order subrules are applied. Dora [BFG92]
supports attributes and rewrite rules that are defined using pattern match-
ing to select tree nodes for attribute definitions, equation, and as rewrite
targets. Attribute equations and rewrite results are defined through Lisp
expressions. Composition rules are used to define how to combine and re-
peat rewrites and the order the tree is traversed. The approach is similar to
ReRAGs in that attribute dependences are computed dynamically at run-
time but there is no support for remote attributes and it is not clear how
attributes read during rewriting are handled.

Dynamic reclassification of objects Semantic specialization is similar to dy-
namic reclassification of objects, e.g. Wide Classes, Predicate Classes,
FickleII, and Gilgul. All of these approaches except Gilgul differ from
ReRAGs in that they may only specialize a single object compared to our
rewritten sub-trees. Wide Classes [Ser99] demonstrates the use of dynamic
reclassification of objects to create a more suitable model for compiler
computations. The run-time type of an object can be changed into a super-
or a sub-type by explicitly passing a message to that object. That way,
instance variables can be dynamically added to objects when needed by
a specific compiler stage, e.g., code optimization. Their approach differs
from ours in that it requires run-time system support and the reclassifica-
tion is explicitly invoked and not statically type-safe. In Predicate Classes
[Cha93], an object is reclassified when a predicate is true, similar to our
rewrite conditions. The reclassification is dynamic and lazy and thus simi-
lar to our demand-driven rewriting. The approach is, however, not statically
type-safe. FickleII [DDDCG02] has strong typing and puts restrictions on
when an object may be reclassified to a super type by using specific state
classes that may not be types of fields. This is similar to our restriction on
rewriting nodes to supertypes as long as they are not used in the right hand
side of a production rule as discussed in Section 4.2. The reclassification
is, however, explicitly invoked compared to our declarative style. Gilgul
[Cos01] is an extension to Java that allows dynamic object replacement.
A new type of classes, implementation-only classes, that can not be used
as types are introduced. Implementation-only instance may not only be re-
placed by subclass instances but also by instances of any class that has
the same least non implementation-only superclass. Object replacement in
Gilgul is similar to our appraoch in that no support from the run-time sys-
tem is needed. Gilgul uses an indirection scheme to be able to simultane-
ously update all object references through a single pointer re-assignment.
The ReRAGs implementation uses a different approach and ensures that

42

all references to the replaced object structure are recalculated dynamically
on demand.

9 Conclusions and Future Work

We have introduced a technique for declarative rewriting of attributed ASTs,
supporting conditional and context-dependent rewrites during attribution. The
generation of a full Java static-semantic analyzer demonstrates the practical
use of this technique. The grammar is highly modular, utilizing all three di-
mensions of separation of concerns: inheritance for separating the description
of general from specific behavior of the language constructs (e.g., general dec-
larations from specialized declarations like fields and methods); aspects for
separating different computations from each other (e.g., type checking from
name analysis); and rewriting for allowing the computations to be expressed on
suitable forms of the tree. This results in a specification that is easy to under-
stand and to extend. The technique has been implemented in a general system
that generates compilers from a declarative specification. Attribute evaluation
and tree transformation are performed automatically according to the specifi-
cation.The running times are sufficiently low for practical use. For example,
parsing, analyzing, and prettyprinting roughly 100.000 lines of Java code took
approximately 23 seconds as compared to 6 seconds for the javac compiler on
the same platform.

We have identified several typical ways of transforming an AST that are
useful in practice: Semantic Specialization, Make Implicit Behavior Explicit,
and Eliminate Shorthands. The use of these transformations has substantially
simplified our Java implementation as compared to having to program this by
hand, or having to use a plain RAG on the initial AST constructed by the parser.

Our work is related to many other transformational approaches, but differs
in important ways, most notably by being declarative, yet based on an object-
oriented AST model with explicit references beween different parts. This gives,
in our opinion, a very natural and direct way to think about the program repre-
sentation and to describe computations.

Many other transformational systems apply transformations in a predefined
sequence, making the application of transformations imperative. In contrast,
the ReRAG transformations are applied based on conditions that may read the
current tree, resulting in a declarative specification.

There are many interesting ways to continue this research.

Optimization The caching strategies currently used can probably be improved
in a variety of ways, allowing more attributes to be cached, resulting in
better performance.

9. CONCLUSIONS AND FUTURE WORK 43

Termination Our current implementation does not deal with possible non-
termination of rewriting rules (i.e., the possibility that the conditions never
become false). In our experience, it can easily be seen (by a human) that
the rules will terminate, so this is usually not a problem in practice. How-
ever, techniques for detecting possible non-termination, either statically
from the grammar or dynamically, during evaluation, could be useful for
debugging.

Circular ReRAGs We plan to combine earlier work on CRAGs [MH03] with
our work on ReRAGs. We hope this can be used for running various fixed-
point computations on ReRAGs, with applications in static analysis.

Language extensions Our current studies on generics indicate that the basic
problems in GJ [BOSW98] can be solved using ReRAGs. Extending our
Java 1.4 to handle new features in Java 1.5 like generics, autoboxing, static
imports, and type safe enums is a natural next step.

Acknowledgements

We are grateful to John Boyland and to the other reviewers (anonymous) for
their valuable feedback on the first draft of this paper.

References

[BFG92] John Boyland, Charles Farnum, and Susan L. Graham. Attributed trans-
formational code generation for dynamic compilers. In R. Giegerich and
S. L. Graham, editors, Code Generation - Concepts, Tools, Techniques.
Workshops in Computer Science, pages 227–254. Springer-Verlag, 1992.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java pro-
gramming language. In Proceedings of Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA, pages 183–200, 1998.

[Cha93] Craig Chambers. Predicate classes. In Proceedings of ECOOP’93, vol-
ume 707 of LNCS, pages 268–296. Springer-Verlag, 1993.

[Cor04] James R. Cordy. Txl: A language for programming language tools and
applications. In Proceedings of the 4th Workshop on Language Descrip-
tions, Tools, and Applications (LDTA’04) at ETAPS 2004, 2004.

[Cos01] Pascal Costanza. Dynamic object replacement and implementation-only
classes. In 6th International Workshop on Component-Oriented Pro-
gramming (WCOP 2001) at ECOOP 2001, 2001.

[DDDCG02] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Giannini. More dynamic object reclassification:
FickleII;. ACM Trans. Program. Lang. Syst., 24(2):153–191, 2002.

44

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification Second Edition. Addison-Wesley, Boston, Mass.,
2000.

[Hed89] Görel Hedin. An object-oriented notation for attribute grammars.
In the 3rd European Conference on Object-Oriented Programming
(ECOOP’89), pages 329–345. Cambridge University Press, July 1989.

[Hed00] Görel Hedin. Reference Attributed Grammars. Informatica (Slovenia),
24(3), 2000.

[HM03] Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37–58,
2003.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. LNCS, 2072:327–
355, 2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127–145, June 1968. Correction: Mathematical
Systems Theory 5, 1, pp. 95-96 (March 1971).

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[MH03] Eva Magnusson and Görel Hedin. Circular reference attributed gram-
mars - their evaluation and applications. Electronic Notes in Theoretical
Computer Science, 82(3), 2003.

[Nil04] Anders Nilsson. Compiling Java for Real-Time Systems. Licentiate
thesis, Department of Computer Science, Lund Institute of Technology,
2004.

[Sar99] Joao Saraiva. Purely functional implementation of attribute grammars.
PhD thesis, Utrecht University, The Netherlands, 1999.

[Ser99] Manuel Serrano. Wide classes. In Proceedings of ECOOP’99, volume
1628 of LNCS, pages 391–415. Springer-Verlag, 1999.

[vdBea01] M. van den Brand et al. The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. In Proceed-
ings of Compiler Construction Conference 2001, volume 2027 of LNCS.
Springer-Verlag, 2001.

[Vis01a] Eelco Visser. Scoped dynamic rewrite rules. Electronic Notes in Theo-
retical Computer Science, 59(4), 2001.

[Vis01b] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In Proceedings of
Rewriting Techniques and Applications (RTA’01), volume 2051 of LNCS,
pages 357–361. Springer-Verlag, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. In Proceedings of the SIGPLAN ’89 Programming language
design and implementation. ACM Press, 1989.

[VWMBK02] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forward-
ing in attribute grammars for modular language design. In Proceedings of
Compiler Construction Conference 2002, volume 2304 of LNCS, pages
128–142. Springer-Verlag, 2002.

Paper II

A case study of Separation of Concerns in
Compiler Construction using JastAdd II

Torbjörn Ekman

Department of Computer Science, Lund University, Sweden
torbjorn.ekman@cs.lth.se

A case study of separation of concerns in compiler
construction using JastAdd II

Torbjörn Ekman

Department of Computer Science, Lund University, Sweden
torbjorn.ekman@cs.lth.se

Abstract This paper presents a case study of separation of concerns
in compiler construction using the JastAdd II compiler compiler. A
domain-specific specification language, Rewritable Reference Attributed
Grammars (ReRAGs), is combined with Java to implement compilers in
a high-level declarative and modular fashion. Three synergistic mecha-
nisms for separations of concerns are described: inheritance for model
modularisation, aspects for cross-cutting concerns, and rewrites that al-
low computations to be expressed on the most suitable model. Each
technique is presented using a series of simplified examples from static
semantic analysis for the Java programming language.

1 Introduction

We present a case study of separation of concerns in compiler construction us-
ing the JastAdd II compiler compiler. Simplified examples from static semantic
analysis for the Java programming language [GJSB00] are used to demonstrate
the mechanisms for separation of concerns provided in JastAdd II. This work
is part of a larger project where the entire static semantics of Java 1.4 have
been implemented. We believe that Java is a suitable language implementation
for experimenting on language modularisation because of its advanced scope
rules with nested types and inheritance as well as need for reclassification of
contextually ambiguous names during name analysis.

JastAdd II uses a declarative compiler specification in the form of Re-
writable Reference Attributed Grammars (ReRAGs) [EH04] combined with
imperative Java code. ReRAGs provide three synergistic mechanisms for sep-
arations of concerns: inheritance for model modularisation, aspects for cross-
cutting concerns, and rewrites that allow computations to be expressed on the
most suitable model. This allows compilers to be written in a high-level declar-
ative and modular fashion.

The rest of this paper is structured as follows. Section 2 describes JastAdd
II and its specification language. The three mechanisms for separation of con-
cerns are demonstrated in sections 3, 4, and 5. Section 6 discusses how the

48

three mechanisms are used to deal with interaction between aspects. Section 7
points out some related work and Section 8 concludes this paper and discusses
some future work.

2 JastAdd II Background

JastAdd II is an aspect-oriented compiler compiler tool using declarative Re-
writable Reference Attributed Grammars (ReRAGs) and Java as its specifica-
tion languages. The grammars define attributes and equations to specify com-
putations and information propagation in the abstract syntax tree (AST). The
formalism is object-oriented viewing the grammar as a class hierarchy and the
AST nodes as instances of these classes. Behavior common to a group of lan-
guage constructs can be specified in a common superclass and specialized or
overridden for specific constructs in the corresponding subclasses. Often the
most appropriate AST structure can only be decided after parial attribution of
the AST. Rewrites allow restructuring of the tree to simplify the specification
of the remaining attribution. The following sections give an introduction to
JastAdd II compiler specifications.

2.1 The AST class hierarchy

The nodes in an Abstract Syntax Tree (AST) are viewed as instances of Java
classes arranged in a subtype hierarchy similar to the one used in the Interpreter
pattern, [GHJV95]. An AST class corresponds to a nonterminal or a produc-
tion (or a combination thereof) and may define a number of descendents and
their declared types, corresponding to a production right-hand side. In an ac-
tual AST, each node must be type consistent with its ancestor according to the
normal type-checking rules of Java. I.e., the node must be an instance of a
class that is the same or a subtype of the corresponding type declared in the an-
cestor. Shorthands for lists, optionals, and lexical items are also provided. All
node types implicitly inherit the common ancestor type ASTNode that sup-
ports generic access to node children. This is particular useful for generic tree
traversals. An example definition of some AST classes is shown below.

// Expr corresponds to a nonterminal
ast Expr;

// Add corresponds to an Expr production
ast Add : Expr ::= Expr leftOp , Expr rightOp;

// Id corresponds to an Expr production
// id is a token
ast Id : Expr ::= <String id>;

2. JASTADD II BACKGROUND 49

2.2 Reference Attributed Grammars

ReRAGs are based on Reference Attributed Grammars (RAGs) which is an
object-oriented extension to Attribute Grammars (AGs) [Knu68]. In plain AGs
each node in the AST has a number of attributes, each defined by an equation.
The right-hand side of the equation is an expression over other attribute values
and defines the value of the left-hand side attribute.

Attributes can be synthesized or inherited. The equation for a synthesized
attribute resides in the node itself, whereas for an inherited attribute, the equa-
tion resides in an ancestor node. Note that the term inherited attribute refers
to an attribute defined in the ancestor node, and is thus a concept unrelated to
the inheritance of OO languages. In this article we will use the term inherited
attribute in its AG meaning, unless explicitly stated otherwise.

Inherited attributes are used for propagating information downwards in the
tree, e.g. propagating information about declarations down to use sites, whereas
synthesized attributes can be accessed from the ancestor and used for propa-
gating information upwards in the tree, e.g. propagating type information up
from an operand to its enclosing expression.

RAGs extend AGs by allowing attributes to have reference values, i.e., they
may be object references to AST nodes. AGs, in contrast, only allow attributes
to have primitive or structured algebraic values. This extension allows very
simple and natural specifications, e.g., connecting a use of a variable directly
to its declaration, or a class directly to its superclass. Plain AGs connect only
through the AST hierarchy, which is very limiting.

In the JastAdd II implementation of RAGs attributes can be seen as meth-
ods where the method declaration and method body may be separated. Inher-
ited attributes have their method body that defines the behavior in an ancestral
node. An inherited attribute equation defines the behavior for a correspond-
ing declaration of the same attribute in the subtree where the targeted equation
node is the root. That way the only dependency on tree structure for that at-
tribute is that the node holding the equation must be an ancestor to the node
holding a declaration.

Aspects can be specified that define attributes, equations, and ordinary Java
methods of the AST classes. An example is the following aspect for very simple
type-checking.

// Declaration of an inherited attribute env
// of Expr nodes
inh Env Expr.env();

// Declaration of a synthesized attribute
// type of Expr nodes and its default equation
syn Type Expr.type() = TypeSystem.UNKNOWN;

50

// Overriding default equation for Add nodes
eq Add.type() = TypeSystem.INT;

// Overriding default equation for Id nodes
eq Id.type() = env().lookup(id()).type();

The notation for method invocation is used when accessing descendent
nodes like leftOp and rightOp, tokens like id and user-defined attributes like
env and type. This API can be used freely in the right-hand sides of equations,
as well as by ordinary Java code.

2.3 Rewrite rules

ReRAGs extends RAGs with rewrite rules that automatically and transparently
rewrite nodes. The rewriting of a node is triggered by the first access to it. Such
an access could occur either in an equation in the ancestor node, or in some
imperative code traversing the AST. In either case, the access will be captured
and a reference to the final rewritten tree will be the result of the access. This
way, the rewriting process is transparent to any code accessing the AST.

A rewrite step is specified by a rewrite rule that defines the conditions when
the rewrite is applicable, as well as the resulting tree. After the application
of one rewrite rule, more rewrite rules may become applicable. This allows
complex rewrites to be broken down into a series of simple small rewrite steps.

A rewrite rule for nodes of class N has the following general form:

rewrite N {
when {cond}
to R result;

}

This specifies that a node of type N may be replaced by another node of
type R as specified in the result expression result. The rule is applicable if the
(optional) boolean condition cond holds. Both the rewrite rule application order
and the tree traversal order are implicitly defined by attribute dependencies. A
thorough description of ReRAGs implementation and application will appear
in [EH04].

3 Inheritance for model modularisation

The subtype hierarchy generated from the grammar production rules provide
excellent support for model modularisation. Generic behavior is defined in the
possibly abstract node types and then specialized in the concrete node types. A

4. ASPECTS FOR CROSS-CUTTING CONCERNS 51

small example adding a reference attribute to each expression referencing its
corresponding type declaration node is shown below. The production rule hier-
archy is in itself specialized in multiple steps, e.g binary operands, arithmetic
expressions, and additive expressions are all successive specializations from
the generic language element expression. The type reference is defined to be
boolean for all relational types while the type of arithmetic expressions is the
widest type of both operands. The approach is generic in the sense that adding
another arithmetic expression, e.g. subtraction, does not affect type propagation
but merely requires implementation of the unique behavior, e.g. code genera-
tion.

ast Expr ;
ast BinOp : Expr ::= Expr left , Expr right ;

ast ArithmeticExpr : Binop ;
ast AddExpr : ArithmeticExpr ;

ast RelationalExpr : Binop ;
ast LessThanExpr : RelationalExpr ;

syn Decl Expr.type() ;
eq ArithmeticExpr.type() =

widestType(left().type(), right().type());
eq RelationalExpr.type() = TypeSystem.BOOLEAN;

4 Aspects for cross-cutting concerns

The examples shown so far are actually feature aspects where attributes that
cross-cut the AST subtype hierarchy are grouped into separate modules. This
technique is very similar to static introduction techniques used in AspectJ
[KHH+01], Hyper/J [OT01], and Multi Java [CLCM00].

The example below is a simple name binding module that binds a use-site
to its declaration site through the inherited attribute bind taking a name as its
parameter. A block of statements is modeled as a list of statements and a list
of declarations for simplicity. Each block introduces a new scope to search for
declarations and there are nested scopes since each statement in a block can
be a block itself. The inherited attribute bind must thus have an equation in
each scope, i.e. the Block node, and if a matching declaration is not found the
search must be delegated to the surrounding scope.

ast Block : Stmt ::= Stmt stmt*, Decl decl*;
ast Name : Expr ::= <String name >;
ast Decl ::= <String name >;

52

protected inh Decl Name.bind(String name);
protected inh Decl Block.bind(String name);

eq Block.stmt().bind(String name) {
for(int i = 0; i < numDecl(); i++)

if(decl(i).name().equals(name))
return decl(i);

return bind(name);
}

public syn Decl Name.decl = bind(name());

To limit coupling between aspects such as name binding and type checking
it is useful to limit visibility of certain attributes outside the defining aspect.
The only attribute that needs to be exported outside a name binding aspect is
for instance the binding from a use-place to its declaration, e.g. decl in Name.
Attributes that define scope rules, e.g. bind, only affect the name binding and
should thus be private to name binding modules.

Aspects have proven a very powerful technique to implement design pat-
tern roles, [HK02], [NK01]. The same technique can be used in JastAdd II
to implement reusable modules, illustrated below where the name binding ap-
proach described above is generalized in a generic module for nested scopes.
The involved actors are nodes that need to lookup declarations and nodes that
define new scopes. These actors are specified as interfaces and later used to
tag each tree node that takes the role of an actor defined in the module. These
interfaces also specify the equations that the implementors must supply to de-
fine non-generic behavior, e.g. finding declarations in its scope that matches
the provided name. In the example, Scope represents nodes that define a new
scope and the non generic behavior is to match a name to a declaration while
Bind represents the node that receives a reference to a declaration.

aspect NestedScopes {
interface Scope {

protected syn Decl lookup(String name);
}

interface Bind {
protected inh Decl bind(String name);

}

eq Scope.child().bind(String name) =
lookup(name) != null ?

lookup(name) : bind(name);

5. REWRITES TO CREATE THE MOST SUITABLE MODEL 53

}

The module is generic in the sense that the only requirement on the AST
structure is that an enclosing scope is defined by an ancestral node. It can be
further generalized by adding more scope types, e.g. inheritance from super
classes, and declare before use. Below is a name binding module that uses the
module with the previously defined concrete node types Block and Name. The
only behavior that needs to be implemented is the matching attribute lookup
in Block and the use of the provided attribute bind in Name. In Java several
nodes implement a scope, e.g. block, class, interface, and for statement, and
thus share common properties.

aspect NameBinding extends NestedScopes {
declare parents: Block implements Scope;

declare parents: Name implements Bind;

eq Block.lookup(String name) {
for(int i = 0; i < numDecl(); i++)

if(decl(i).equals(name))
return decl(i);

return null;
}

public syn Decl Name.decl = bind(name());
}

5 Rewrites to create the most suitable model

Rewrites can improve separation of concerns by allowing computations to be
expressed on the most suitable model. The information acquired during the
early stages of static semantic analysis can be used to rewrite the model to
make that information explicitly visible in the model structure for later stages.

We use an example from Java name analysis to demonstrate the technique.
When parsing an expression containing qualified names, e.g. java.lang.Sys-
tem.out, it is syntactically undecidable if a part of a name is a reference to a
package, type, field, or variable unless their context is taken into account. In the
above example, java is most often a package, but only as long as there is no
variable-, field-, or type-declaration named java that would shadow the pack-
age according to the Java scope rules. Thus, a context-free grammar can only
build generic name nodes that capture all cases. The attribution will need to
handle all these cases and therefore becomes complex. To avoid this complex-
ity we would like to do semantic specialization, i.e. we would like to replace

54

the general name nodes with more specialized ones. Other computations, like
type checking, optimization, and code generation, can benefit from this rewrite
by specifying different behavior in the specialized classes rather than having to
deal with all the cases in the general name node.

An aspect that models Java names and resolves syntactically ambiguous
names as described is shown below. There are two different types of names
in Java from a syntactic point of view, simple names and qualified names. A
simple name is a single identifier and a qualified name consists of a name, a
"." token, and an identifier. During parsing a context-free grammar is used and
thus general unbound names have to be built during AST creation. Semantic
specialization is used to rewrite these general nodes into more specific ones,
e.g. variable- or type-names. The ast-declarations in the aspect below model
the described name structure.

Semantic specialization is implemented using a rewrite that rewrites an am-
biguous UnboundName node into a VariableName-node or TypeName-node de-
pending on the type of the binding received from the name binding module.
Finally the QualifiedName nodes changes the scope rules for its right child to
search the type of its left child to provide, e.g. when trying to bind out in the
System.out expression the class System should be searched for a field named
out.

ast Name : Expr;

ast SimpleName : Name ::= ID id;
ast QualifiedName : Name ::=

Name left , SimpleName right;

ast UnboundName : SimpleName ;
ast VariableName : SimpleName ;
ast TypeName : SimpleName ;

// Resolve names depending on bound entity
rewrite UnboundName {

when (bind().isVariableDecl ())
to SimpleName new VariableName(id());
when (bind().isTypeDecl())
to SimpleName new TypeName(id());

}

// The left name in a QualifiedName changes
// the scope for the name to the right
eq QualifiedName.right().bind(String name) {

if(left() instanceof TypeName)
return left().decl().lookup(name);

6. ASPECT INTERACTION 55

if(left() instanceof VariableName)
return left().type().lookup(name);

}

6 Aspect interaction

While the aspects demonstrated so far define static features we also use more
pluggable aspects, e.g. a declare before use aspect to complement the name
binding module in Section 4 and optional code optimization aspects. Pluggable
aspects define rewrites that change a run-time node instance to a subtype node
with extended behavior. That way an aspect can be added to the system in a
way transparent to other aspects.

The examples demonstrated so far deal with equations that cross-cut the
type hierarchy only and not cross-cutting concerns within equations. To over-
ride and extend attribute equations we use inheritance of the model structure in
combination with rewrites that change the type of a node instance at run-time.
I.e. we may have different/extended equations for UnboundName and Vari-
ableName defined in the example in Section 5. This technique, using run-time
rewriting and inheritance, is more powerful than static compile-time point-cuts
within equations in that it may take run-time information into account but less
powerful in that each node may only be changed by a single aspect. Therefore
it would be interesting to combine the current approach with more fine-grained
static point-cuts within equations.

7 Related work

The introduction of attribute definitions and equations to an exisiting class hi-
erarchy in a modular fashion used in JastAdd II is very similar to static in-
troduction in AspectJ [KHH+01], hyperslices in Hyper/J [OT01], and open
classes in MultiJava [CLCM00]. A functional approach to attribute grammar
aspects using the same technique is presented in [dPJV00] where aspects are
first-class objects that can be freely combined using a combinator library in
Haskell. ReRAGs further improved modularisation support in that the current
model instance may be rewritten during run-time to a more suitable model al-
lowing each computation to be expressed on the most suitable model and more
fine-grained separation of concerns within equations.

The Visitor pattern, [GHJV95], is often used in compiler construction for
separation of concerns when using object-oriented languages. Visitors can only
separate cross-cutting methods while static introductions can be used for fields

56

as well. AOP implementations of the Visitor pattern need not rely on a delega-
tion mechanism resulting in a cleaner more intuative implementation, [HK02].
ReRAGs aspects differ from AOP implementations of the Visitor pattern in
that an explicit traversal strategy in the form of a Visitor is not specified but
merely implicitly defined by attribute dependences. Rewrites further improve
modularisation in that the underlying structure may change during run-time to
better fit the current computation.

Higher order attribute grammars (HAGs) [VSK89] allow trees as attributes
that are defined as a function of the partially attributed existing AST at run-
time and can thus provide a more suitable model. The process is, however, not
transparent to other computations and is thus less flexible from a separation
of concerns view. The use of attribute grammars and forwarding for modular
language implementation is discussed in [VWMBK02]. Forwarding overrides
attribute equation dynamically at run-time and forwards equation to a different
part of the tree. Since it is based on HAGs the target tree can be computed at
run-time and the approach is thus similar to semantic specialization.

8 Conclusions and future work

We have demonstrated three synergistic mechanisms for separations of con-
cerns supported by ReRAGs in the JastAdd II compiler compiler: inheritance
for model modularisation, aspects for cross-cutting concerns, and rewrites that
allow computations to be expressed on the most suitable model. Examples in-
spired by static semantic analysis of the Java programming languages have
been used to illustrate and motivate each technique. We believe that this allows
compilers to be written in a high-level declarative and modular fashion.

Our experiences indicate that the implementation leads to flexible solu-
tions to several traditional compiler construction problems, and we hope to
generalize some of these techniques and document them as design patterns or
frameworks for compiler construction using ReRAGs.

We would also like to investigate the interaction between pluggable as-
pects and also how to better support fine-grained cross-cutting within equations
combining AspectJ-like point-cuts with run-time rewriting implemented using
ReRAGs in JastAdd II.

8. CONCLUSIONS AND FUTURE WORK 57

References

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch for
Java. In Proceedings of OOPSLA 2000, volume 35(10), pages 130–145,
2000.

[dPJV00] Oege de Moor, Simon Peyton-Jones, and Eric Van Wyk. Aspect-oriented
compilers. Lecture Notes in Computer Science, 1799, 2000.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed
Grammars. In Proceedings of ECOOP 2004: 18th European Conference
on Object-Oriented Programming, 2004.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification Second Edition. Addison-Wesley, Boston, Mass.,
2000.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementation in
Java and AspectJ. In Cindy Norris and Jr. James B. Fenwick, editors,
Proceedings of OOPSLA-02, volume 37, 11 of ACM SIGPLAN Notices,
pages 161–173, New York, November 4–8 2002. ACM Press.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072:327–355, 2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127–145, June 1968. Correction: Mathematical
Systems Theory 5, 1, pp. 95-96 (March 1971).

[NK01] N. Noda and T. Kishi. Implementing design patterns using advanced sep-
aration of concerns. In OOPSLA2001 workshop on Advanced Separation
of Concerns in Object-Oriented Systems, 2001.

[OT01] Harold Ossher and Petri Tarr. Hyper/j: multi-dimensional separation of
concerns for java. In Proceedings of the 23rd international conference
on Software engineering, pages 821–822. IEEE Computer Society, 2001.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. In Proceedings of the SIGPLAN ’89 Conference on Program-
ming language design and implementation, pages 131–145. ACM Press,
1989.

[VWMBK02] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. For-
warding in attribute grammars for modular language design. In R. N.
Horspool, editor, Compiler Construction, 11th International Conference,
CC 2002, Grenoble, France, April 8-12, 2002, volume 2304 of Lecture
Notes in Computer Science, pages 128–142. Springer-Verlag, 2002.

Paper III

Design and implementation of object-oriented
extensions to the Control Module language

Torbjörn Ekman

Department of Computer Science, Lund University, Sweden
torbjorn.ekman@cs.lth.se

Design and implementation of object-oriented
extensions to the Control Module language

Torbjörn Ekman

Department of Computer Science, Lund University, Sweden
torbjorn@cs.lth.se

Abstract The Control Module language is a domain-specific language
used to implement programmable logic controllers. This paper presents
the design and implementation of a set of language extensions that im-
prove encapsulation, code re-use, and type safety. The extensions as
well as the base language are implemented using Rewritable Reference
Attributed Grammars supported by the JastAdd II tool. Static semantic
analysis and code generation are implemented in a modular declarative
fashion using the abstract syntax tree as the only data structure. To bet-
ter reflect the semantics of the language the tree structure is dynamically
rewritten during compilation. The extensions are finally translated into
the base language to re-use existing compilers and run-time system.

1 Introduction

This paper presents the design and implementation of object-oriented language
extensions to the domain-specific Control Module language from ABB. Con-
trol Modules are used to implement programmable logic controllers (PLCs)
and are in turn an extension to the IEC61131-3 standard [JT01].

Since this paper focuses on both the design of language extensions as well
as the techniques used to implement them the contribution is twofold. The first
contribution is a case study where a domain-specific language (DSL) is ex-
tended to benefit from popular features in general-purpose programming lan-
guages while preserving unique properties of the DSL such as execution model
and run-time system. The second contribution is a detailed explanation of how
the static semantics and code generation for the extended Control Module lan-
guage can be expressed in a natural way using Rewritable Reference Attributed
Grammars (ReRAGs) [EH04].

The Control Module language is extended to improve encapsulation, code
re-use, and safety. Common object-oriented features from general purpose lan-
guages are tailored to suit the modularization concepts and run-time model of
the domain-specific Control Module language. The extensions are motivated
and demonstrated through a set of code examples.

62

The abstract syntax as well as the static semantics for the base language
are modeled using ReRAGs in the JastAdd II tool. The description of this part
serves as an introduction in how to write a compiler in JastAdd II with mod-
ularity and separation of concerns in mind. The extensions are then modeled
separately in a similar manner with separate modules for name binding, type
checking, and code generation. The implementation has been done with two
important design principles in mind. The abstract syntax tree (AST) should be
the only data structure, i.e. no external data structures such as symbol tables
are used, and all program elements should be explicitly visible in the AST, i.e.
all declarations including implicit elements such as primitive type declarations
are included in the tree structure. Since all computations are performed on a
single data structure it is important that the chosen structure suits various com-
putations such as name binding, type checking, and code generation. This is
achieved by dynamically rewriting the tree into a form suitable for the current
computation phase. This also allows information gathered during a previous
phase, e.g. the type of an expression, to be reflected in the tree structure. The
final tree is then translated from the extended language into the base language.
That tree is in turn exported to the existing ControlModule development envi-
ronment and can thus benefit from existing infrastructure such as native com-
pilers and run-time system.

The rest of the paper is structured as follows. Section 2 describes the Con-
trol Module language from a code organization and execution model perspec-
tive. Section 3 introduces some language extensions and describes how these
features affect encapsulation and composition. ReRAGs and the JastAdd II tool
are introduced in Section 4. Section 5 describes how the base language and the
extended language features can be implemented in a modular fashion. Section 6
concludes the paper.

2 Control Modules

The Control Module concept from ABB Automation Technology Products is
an extension to the the IEC61131-3 standard. The languages in IEC61131-3
are often used in Programmable Logic Controllers (PLCs). The early PLCs
were intended to replace relay based control systems, but current PLCs are
used for most types of control systems in all kinds of industry plants. These
systems are real-time systems where the programs must respond to changes in
the environment within a specified time limit. A typical program reads input
signals, performs some computation using these values as well as historic data,
and finally updates the output signals. This cycle is then repeated with a speci-
fied frequency. There are usually several concurrent programs that may execute
with different cycle times.

2. CONTROL MODULES 63

ABB’s control modules extend the traditional modularization facilities and
execution model in the IEC61131-3 standard. A control module is a container
for both application programs and graphical objects but this paper will only
discuss the application aspect of the control module.

This section gives a brief introduction to both the IEC61131-3 languages
and the Control Modules from a code organization and execution model per-
spective.

2.1 The IEC61131-3 standard

The IEC61131 standard is a specification for programmable controllers where
IEC61131-3 specifies the syntax and semantics of a unified suite of program-
ming languages. This section gives a very brief introduction to the standard
from a code organization, communication model, and typing perspective. A
detailed description of the standard is given in [JT01].

The standard describes five languages:

Instruction List (IL) Textual language similar to low-level assembly language.
Ladder Diagram (LD) Inspired by electrical wiring diagrams describing re-

lay based control systems.
Structured Text (ST) Textual language with a Pascal-like syntax.
Function Block Diagram (FBD) Graphical language where complex functions

are composed from a set of function blocks connected with flow signals.
Sequential Function Chars (SFC) Graphical language to describe sequential

behavior that has evolved from Grafcet [TC79].

All languages have a static structure with no dynamic memory allocation
and type instantiation. Since we mainly deal with code organization in this pa-
per there will be very few examples with code. When needed, simple snippets
of Structured Text will be used for illustration purposes.

Control applications are divided in program organization units (POUs).
POUs may be nested to provide support for hierarchical structuring of the code.
However, the standard states that POUs shall not be recursive in the sense that
an invocation of a POU shall not cause the invocation of another POU of the
same type. This ensures that the size of the code as well as the data structures
in the POUs is statically computable at compile-time.

There are three different types of POUs:

Program Each declared program is a single instance that defines a set of in-
put/output parameters, local variables, and a code block. The code block
is implemented in one of the five previously described languages and exe-
cuted each cycle. A program may also contain nested function blocks, and
functions. Parameters in these nested POUs are initialized by the enclosing
program using parameters, local variables, or constant values.

64

Function Block A function block declaration is a type declaration encapsulat-
ing state as well as behavior. The state is specified by input/output param-
eters and local variables. The behavior is specified by a code block imple-
mented in one of the five described languages. Each POU using a specific
function block must instantiate that function block and give it a unique
name. That name is used later to explicitly invoke the function block. Dur-
ing invocation the input and output parameters must be bound to local vari-
ables or parameters. Function blocks support nested POUs in a way similar
to programs except that function blocks may not contain nested programs.

Function A function is a stateless operation that must return the same value
each time it is invoked with the same parameters. The function evaluates
a code block and returns a single value and may thus be used as an ex-
pression in any of the five IEC61131-3 languages. The function does not
support nested POUs.

2.2 ABB’s Control Module language

The Control Module is an extension to the IEC61131-3 languages that intro-
duces a fourth POU, the Control Module. Control modules are similar to Func-
tion Blocks in that they are instantiable types with both state and behavior.
Control modules also support composition of POUs through nested modules,
function blocks, and functions. The main difference between control modules
and function blocks, except for the graphical objects, is a enhanced execution
model. This section describes the Control Modules language through a series
of examples to illustrate the code organization, execution model, and typing
facilities supported by the language.

A first example defining a Control Module named consumer is shown be-
low. The consumer has a need to consume a certain amount of an unspecified
entity. This amount is specified by the need parameter. There is a producer that
offers the consumer the amount specified in offer to be consumed each scan.
There is, however, a limit in how much the consumer can consume each exe-
cution scan. Therefore, the actual consumed quantity by the consumer during
this scan is set to be the lowest value of the limit and the offered request.

CONTROLMODULETYPE CONSUMER
VAR_IN_OUT

need : INT; // Total need
quantity : INT; // Consumed during the latest scan
offer : INT; // Offered amount during current scan

END_VAR_IN_OUT

VAR

2. CONTROL MODULES 65

limit : INT := 5; // Limits the amount to
END_VAR // consume each scan

CODEBLOCK EVAL // Executed once each scan
quantity := MIN(limit, offer);

END_CODEBLOCK
END_CONTROLMODULETYPE

The consumer module contains both state and behavior where the state is
implemented by parameter variables and local variables while the behavior is
implemented in a single code block named eval. The module has three parame-
ters that are initialized when the control module is instantiated. The reason that
the need variable is supplied as a parameter instead of a local variable as the
limit variable will be explained in the next section. The parameters are passed
by name and the change of the quantity parameter may thus affect other vari-
ables bound to the same entity as that parameter. There is also a local variable
limit, initialized at the declaration site, that can not be accessed outside the
module.

Communication model Control Modules communicate with each other by ex-
changing data through parameters. The reason for this communication scheme
is that a variable is only accessible from the program organization unit where
it is declared, but can be shared with a nested POU through a parameter. Since
parameters are call by name the same variable can be assigned in any nested
POU that receives the variable as a parameter. If there are two POUs that have
a sibling relationship but still need to share data, that common data must be
placed in a common ancestor and propagated to both POUs through parame-
ters.

Consider the example below that extends the before mentioned Consumer
example. A new control module Producer is added that is responsible for pro-
ducing the unspecified entity that the consumer needs. The producer offers the
consumer the amount found when subtracting the already delivered amount
from the total needed amount. The delivered amount is then updated to include
the quantity actually consumed by the consumer.

CONTROLMODULETYPE PRODUCER
VAR_IN_OUT
delivered : INT;
offer : INT;
quantity : INT;
need : INT;

66

END_VAR_IN_OUT

CODEBLOCK
offer := need - delivered;
delivered := delivered + quantity;

END_CODEBLOCK
END_CONTROLMODULETYPE

The producer and consumer need to communicate data and that can only
be done through common parameters, e.g. delivered, offer, quantity, and need
in this case. This results in a situation where data whose state is defined by a
module (and therefore logically belongs to the module) cannot be declared in
that module, but needs to be passed around as a parameter. It would be desir-
able to encapsulate that data in the module instead of in an unrelated module
that happens to be an ancestor node in the composition hierarchy. In the ex-
ample the variables delivered and offer logically belong to the Producer while
quantity and need logically belong to the Consumer module. But since both
modules need to access the data, the variables must be located in a common
ancestor module and passed to the Consumer and Producer as parameters. This
is illustrated by the System module below. Furthermore, the need parameter is
initialized in the System module instead of in the consumer module for which it
defines the state. The example also illustrates hierarchical composition through
the instantiation of the Producer and Consumer control module types.

CONTROLMODULETYPE SYSTEM
VAR

delivered : INT;
offer : INT;
quantity : INT;
need : INT := 100;

END_VAR

CONTROLMODULE
prod : PRODUCER (deliviered, offer, quantity, need);
con : CONSUMER (need, quantity, offer);

END_CONTROLMODULE
END_CONTROLMODULETYPE

There are also global variables that can be used to propagate information
between any program or function blocks. This leads, however, to very poor
encapsulation and is not further discussed in this paper.

2. CONTROL MODULES 67

Execution model The main difference between control modules and function
blocks, except for the graphical objects, is the execution model. While function
blocks are explicitly invoked, the execution model for control modules is partly
declarative in that it is based on static data flow analysis. The order that the code
blocks are executed is thus not explicitly specified in the code but evaluated at
compile-time taking data dependences into account. The goal is to allow data
that is modified during one execution scan to be available during the following
scan. The flow analysis is global in the sense that all code blocks scheduled on
the same task are sorted as a group to find a suitable order. Each code block is
then executed sequentially in the pre-determined order each execution scan.

Control modules may have multiple code blocks that enable bi-directional
communication between POUs during a single scan. In the Producer-Consumer
example the code block in the Producer can be divided into two separate parts.
The first part calculates how much to offer the consumer and the second part
updates the amount actually consumed. If a single code block is used in the
consumer, the update part will read the amount from the previous scan instead
of the current scan. However, if the producer is implemented as shown below
the compute block in producer can be executed first, followed by the block in
consumer, and finally the update block in producer, resulting in an execution
order where all values that are used in the computation are the values computed
during the current scan.

CONTROLMODULETYPE PRODUCER
VAR_IN_OUT
delivered : INT;
offer : INT;
quantity : INT;
need : INT;

END_VAR_IN_OUT

CODEBLOCK COMPUTE
offer := need - delivered;

END_CODEBLOCK
CODEBLOCK UPDATE
delivered := delivered + quantity;

END_CODEBLOCK
END_CONTROLMODULETYPE

Type system The IEC61131-3 standard defines both primitive data types and
user defined structured data types. The primitive types are traditional types like
boolean, signed and unsigned integers of various lengths, floating point types,

68

etc. There are also some generic primitive data types, e.g. all integers, that can
be used to define functions with overloaded parameters that operate on sev-
eral data types. There is no corresponding type hierarchy for the user-defined
structured data types. These form a flat type system with no type substitution.

Control Modules and Function Blocks are user defined types that may be
instantitated. The instantiation is, however, the only operation that take the type
of these entitites into account. There is no way to specify how two modules re-
late to each other from a type perspective, only what kind of data each module
can operate on. It is thus possible to verify, at compile-time, that two mod-
ules are connected through parameters that are of the correct type, but there is
no way to ensure that the two module types are compatible. In the Producer-
Consumer case we can verify that the parameters that are connecting the two
modules to each other are correctly typed, but not that the Producer is actually
connected to a Consumer module. The possibility to express these types of re-
lations between modules would improve the compile-time safety of the system.
This could be further enhanced by introducing type hierarchies with type sub-
stitutability where the Consumer type constraint could represent a whole class
of types.

3 Extended Control Modules

This section presents extensions to the Control Module concept to enhance
encapsulation, composition mechanisms, code re-use, and static analysis for
better safety. The extensions are heavily influenced by strongly typed OO lan-
guages such as Simula [DMN68], Beta [MMPN93], and Java [GJSB00], but
tailored to ensure that the static nature of Control Modules is preserved. That
implies that only static instantiation of modules is allowed and that there is no
dynamic allocation of data structures. The extensions also preserve the declara-
tive communication model and the code block sorting used in Control Modules.

All extensions are expressible in the base language, and code generation is
implemented by transforming into the base language. The extensions can thus
be combined with other POUs in IEC61131-3 and also benefit from existing
infrastructure such as compilers and run-time systems. The code generation is
described in Section 5.

In the following discussion we will use terminology from object-oriented
languages to describe the extended Control Modules. A module type corre-
sponds to a class and local variables declared in a module correspond to in-
stance variables. Control modules that are instantiated within another Control
Module are part objects of that module.

3. EXTENDED CONTROL MODULES 69

3.1 References to access remote control modules

References are added to provide non local access between Control Modules.
A module may have a reference to another control module and access remote
instance variables by dereferencing a reference and access the variables di-
rectly in the target control module. A reference can either be a remote reference
passed around the tree as a parameter or a local part object reference that holds
the reference to instance part objects.

References are single assignment variables that may only be assigned once
and that is during the creation of a control module. The references are thus
declarative in the same sense as parameters. References may, however, be
dereferenced multiple times in any desired code block.

References improve encapsulation and strengthen the composition of mod-
ules. To access data from multiple module instances, using traditional Con-
trol Modules, the variables that need to be accessed must to be located in an
ancestor node common to all involved modules. This leads to an encapsula-
tion problem where the data can not be located in the logical module but must
change location depending on the actual application’s module composition.
The variables are then explicitly propagated down the subtree where the an-
cestor declaring the variables is the root node. Even if the propagation can
be somewhat simplified by grouping several variables into a single data type,
modules in the subtree that are not accessing the variables must propagate the
data down to children accessing those variables. By allowing references for
non local access, the data can be placed in the conceptually logical module and
still be accessed by remote modules, thus leading to better encapsulation.

The Consumer control module implemented with references is shown be-
low. Data that belongs logically to the Producer is placed directly in the Pro-
ducer and accessed through remote access by dereferencing the prod reference
instead of through parameters. The System module need not hold the common
data as local variables but can merely provide references between the producer
and consumer when they are being instantiated.

Since local variables can be accessed from a remote location through ref-
erence access, the limit variable that used to be private to the Consumer is now
visible to all modules that have a reference to the Consumer. This problem is
further discussed in 3.4.

CONTROLMODULETYPE CONSUMER
VAR_IN
prod : PRODUCER; // Reference

END_VAR_IN

VAR

70

limit : INT := 5; // Instance variable
quantity : INT; // Instance variable
need : INT := 100; // Instance variable

END_VAR

CODEBLOCK EVAL // Dereferenced reference
quantity := MIN(limit, prod.offer);

END_CODEBLOCK
END_CONTROLMODULETYPE

CONTROLMODULETYPE PRODUCER
VAR_IN

con : CONSUMER; // Reference
END_VAR_IN

VAR
delivered : INT; // Instance variable
offer : INT; // Instance variable

END_VAR

CODEBLOCK COMPUTE // Dereferenced reference
offer := con.need - delivered;

END_CODEBLOCK

CODEBLOCK UPDATE // Dereferenced reference
delivered := delivered + con.quantity;

END_CODEBLOCK
END_CONTROLMODULETYPE

CONTROLMODULETYPE SYSTEM
CONTROLMODULE

prod : PRODUCER (con); // Part object
con : CONSUMER (prod); // Part object

END_CONTROLMODULE;
END_CONTROLMODULETYPE

3.2 Type System

The type system is improved with a subtype relationship for control module
types and not only for primitive types. A subtype must implement the same
interface as the supertype but may add additional specifications as well. The

3. EXTENDED CONTROL MODULES 71

interface for a control module type is the entities of that type that are visible to
another module, e.g. part object references, references variables, and instance
variables. The subtype relationship is specified in the Control Module Type
declaration explicitly by letting the new type extend an existing type and that
way become a direct subtype of that type.

Remote instance references have a static qualified type that constrains the
instance of the module that the reference binds to, i.e. the target module must
be a subtype of the static qualified type. When accessing a module remotely
through a reference only those properties that are visible in the static type
are accessible when dereferencing that reference. This improves encapsulation
during composition since the target module can be replaced by any subtype of
the reference’s static qualified type without changing any code that uses that
reference.

The example below implements a SubConsumer that is a subtype of the
Consumer type. When the producer is being instantiated the reference con
refers to a SubConsumer instead of the Consumer used in the previous ex-
amples. Since SubConsumer is a subtype of Consumer the argument is valid
and the producer is not affected by the changed consumer.

CONTROLMODULETYPE SUBCONSUMER EXTENDS CONSUMER
...

END_CONTROLMODULETYPE

CONTROLMODULETYPE SUBSYSTEM
CONTROLMODULE
prod : PRODUCER (con); // Part object
con : SUBCONSUMER (prod); // Part object

END_CONTROLMODULE;
END_CONTROLMODULETYPE

3.3 Inheritance

The type system is also extended with inheritance to re-use specification and
implementation from a supertype module. When a control module inherits a
supertype the module becomes a subtype of that supertype and automatically
receives the same specification and implementation as the supertype. The in-
herited elements are the type, remote references, part objects references, in-
stance variables, and code blocks. This is not only a powerful way to extend
type hierarchies but also avoids duplication of code.

72

Inheritance for behavior Inheriting the default behavior in a subtype from
the supertype is a nice way to avoid duplication of code, but often the behavior
needs to be specialized in the subtype. The extended control modules provide
two different techniques to specialize code blocks, overriding and extension.
When overriding a code block the implementation in the supertype is discarded
and the entire implementation is provided in the subtype. The SubConsumer
can be implemented, as shown below, by extending the Consumer and overrid-
ing the eval code block. This particular implementation can consume unlimited
amounts and therefore accepts any offer from the producer. The developer is
free to override the code block in the supertype with an arbitrary code block
written in any IEC61131-3 language, e.g. Structured Text. It is thus up to the
developer to ensure that the SubConsumer can replace any Consumer to allow
type substitutability.

CONTROLMODULETYPE SUBCONSUMER EXTENDS CONSUMER
OVERRIDE CODEBLOCK EVAL

quantity := prod.offer; // Dereferenced reference
END_CODEBLOCK

END_CONTROLMODULETYPE

When a code block is extended, the implemented behavior in the supertype
is extended with additional behavior implementation in the subtype. The su-
pertype is responsible for defining where the additional implementation should
execute within the sequential code block using the keyword inner [DMN68]
[MMPN93]. The additional behavior specified in the subtype is then executed
sequentially when inner is reached in the supertype. This is particularly useful
when the existing implementation must ensure some minimal behavior. The
example below declares an abstract ControlModuleType DeltaConsumer that
tracks the change of the accepted quantity each scan in the delta variable. The
type is abstract since the Eval code block has an inner statement that requires
extension in a subtype. The LimitedConsumer extends the eval code block and
updates the quantity variable. The supertype thus defined some minimal start
and end behavior that is then specialized in the subtype.

CONTROLMODULETYPE DELTACONSUMER EXTENDS CONSUMER
VAR

delta : INT; // Instance variable
temp : INT; // Instance variable

END_VAR

CODEBLOCK EVAL
temp := quantity;

3. EXTENDED CONTROL MODULES 73

inner;
delta := quantity - temp;

END_CODEBLOCK
END_CONTROLMODULETYPE

CONTROLMODULETYPE LIMITEDCONSUMER EXTENDS DELTACONSUMER
EXTEND CODEBLOCK EVAL
quantity := MIN(limit, offer);

END_CODEBLOCK
END_CONTROLMODULETYPE

Inheritance for composition Inheritance in combination with overriding is
not only useful to specialize behavior but also to specialize hierarchical com-
position as noted in [MMPN93]. The extended Control Modules allow the in-
herited declaration of a part object to be overridden with a part object declara-
tion that is a subtype of the type declared in the extended control module, i.e.,
co-variant part object specialization. Co-variant types have been the subject of
much debate within the object-oriented community because they may cause the
need for run time type checks in certain situations when references are passed
as parameters to methods. However, this is not a problem here because refer-
ences are used only in static configurations of Control Modules, and are never
passed as parameters to methods.

This co-variant part object specialization turns out to be a powerful way to
specialize the hierarchical composition of a Control Module Type. The imple-
mentation of SubSystem below extends the System module and overrides the
con part object to be a SubConsumer. This is in effect the same module as the
changed system in Section 3.2 when implemented using specialized composi-
tion.

CONTROLMODULETYPE SUBSYSTEM EXTENDS SYSTEM
CONTROLMODULE
con : SUBCONSUMER (prod); // Part object

END_CONTROLMODULE;
END_CONTROLMODULETYPE

When a module accesses instance references and parameter references in
a remote module through dereferencing a reference, those two types of refer-
ences are identitcal from the accessors viewpoint. The local part object ref-
erence is accessed in the same way as a parameter to a remote instance. A
local part object reference in a supertype may thus be overridden with a re-
mote instance reference parameter in a subtype and vice versa. This further

74

improves the composition mechanisms when specializing control module type
hierarchies. The example below specializes the system in that the consumer is
accessed through a parameter instead of a part object instantiated in the System
module.

CONTROLMODULETYPE SUBSYSTEM EXTENDS SYSTEM
VAR_IN_OUT

con : SUBCONSUMER; // Remote reference parameter
END_VAR_IN_OUT

END_CONTROLMODULETYPE

3.4 Protection mechanisms

The new features introduced in control modules may be too flexible in certain
situations and therefore a protection mechanism inspired by Java [GJSB00] is
added. This ensures that the developer can put limitations on how to specialize
a module and also ensure that not too much of the internal implementation is
exposed to other modules.

The implementation status of each code block declaration can be set to
abstract or final when declared. An abstract entity is not implemented in the
module but must be implemented in each concrete control module extending
the supertype behavior. A module containing abstract code blocks may not be
instantiated and an attempt to do so will result in a compile-time error. This
allows generic behavior to be located in an abstract type while ensuring that
concrete behavior is provided before instantiation. A final code block indicates
that the implementation is final and may not be overridden or extended in any
subtype. This is also verified at compile-time.

There are three protection levels that define which parts of a module im-
plementation are exposed to other modules. These levels apply to all entities
that may be reached from a remote module, i.e. parameters and local variables.
A public entity may be accessed through remote module invocation from any
other module, a protected entity may only be accessed locally from the declar-
ing module and its subtypes, and a private entity may only be accessed from
the declaring module.

The example below shows an enhanced Consumer implementation that
uses the protection mechanisms. As discussed in 3.1. the introduction of refer-
ences made the limit variable visible to other modules. The protected keyword
makes that variable visible only to the declaring module and its subtypes and
may thus be overridden but not accessed from other modules. The reference
to the producer is considered private to the declaring module and may not be
accessed from other modules. The computation of the quantity attribute is re-

3. EXTENDED CONTROL MODULES 75

quired for the module and possible submodules and therefore declared final to
ensure that it is not extended nor overridden.

CONTROLMODULETYPE CONSUMER
VAR_IN
PRIVATE prod : PRODUCER; // Reference

END_VAR_IN

VAR
PROTECTED limit : INT := 5; // Instance variable
quantity : INT; // Instance variable
need : INT := 100; // Instance variable

END_VAR

FINAL CODEBLOCK EVAL // Dereferenced reference
quantity := MIN(limit, prod.offer);

END_CODEBLOCK
END_CONTROLMODULETYPE

3.5 Language extension summary

This section has described some language extensions to the Control Module
language. The extensions have been designed to provide better encapsulation,
promote code re-use and improve the static compile-time safety. The following
extensions, inspired by object-oriented techniques but tailored to fit the control
module language, have been proposed:

– References for remote access between control modules
– Hierarchical type system with type substitutability
– Inheritance to promote re-use and specialization of behaviour and compo-

sition
– Protection mechanisms to limit the externally exposed interface to a mod-

ule

Each extension has been demonstrated using small code examples and its
effect on the above described design criteria is motivated. The examples so far
have been very small and mainly used to describe the new language features. It
would be interesting to evaluate the extensions on some realistic examples and
compare the result to existing designs. We leave a thorough evaluation of the
extended control modules as future work and go on to discuss the implementa-
tion.

76

4 JastAdd II Background

This section gives an introduction to the JastAdd II tool used to implement the
language extensions proposed in the previous section. JastAdd II [Ekm04] is an
aspect-oriented compiler compiler tool using declarative Rewritable Reference
Attributed Grammars (ReRAGs) and Java as its specification languages. The
grammars define attributes and equations to specify computations and infor-
mation propagation in the abstract syntax tree (AST). The formalism is object-
oriented, viewing the grammar as a class hierarchy and the AST nodes as in-
stances of these classes. Behavior common to a group of language constructs
can be specified in a common superclass and specialized or overridden for spe-
cific constructs in the corresponding subclasses. Often the most appropriate
AST structure can only be decided after partial attribution of the AST. Higher
order attributes allow new parts of the tree to be defined as a function of the
existing, partially attributed tree. These attributes are higher-order in that the
new created trees may contain new attributes. Rewrites allow restructuring of
the tree to simplify the specification of the remaining attribution. The following
sections give an introduction to JastAdd II compiler specifications.

4.1 The AST class hierarchy

The nodes in an Abstract Syntax Tree (AST) are viewed as instances of Java
classes arranged in a subtype hierarchy similar to the the hierarchy used in the
Interpreter pattern [GHJV95]. An AST class corresponds to a nonterminal or a
production (or a combination thereof) and may define a number of descendants
and their declared types, corresponding to a production right-hand side.

The ControlModuleType declaration below defines a ControlModuleType
AST node that has a list of children where each child is an instance of the
Member type. The Member production corresponds to a nonterminal while
CodeBlock, Parameter, PartObject, and LocalVariable correspond to a Member
production.

ast ControlModuleType ::= Member member*;
ast Member ::= <String name >;
ast CodeBlock : Member ::= Stmt stmt*;
ast Parameter : Member ::= <String typeName >, Expr expr;
ast PartObject : Member ::= <String typeName >, Expr arg*;
ast LocalVar : Member ::= <String typeName >, Expr expr;

In an actual AST, each node must be type consistent with its parent accord-
ing to the normal type-checking rules of Java. I.e., the node must be an instance
of a class that is the same or a subtype of the corresponding type declared in the

4. JASTADD II BACKGROUND 77

parent. A CodeBlock node or any other node that is a production of Member
can thus be a child of the ControlModuleType node.

The star indicates that there is a list of elements while the angle brackets
indicate an lexical item that should be initialized at node construction time,
e.g., initialize an identifier with the actual token. Each element on the right
hand side of a production has a name that is used to access that element from
the parent node. E.g., the arguments of the PartObject are nodes of the Expr
type that can be accessed using the arg name from the PartObject node.

4.2 Reference Attributed Grammars

ReRAGs are based on Reference Attributed Grammars (RAGs) [Hed00] which
is an object-oriented extension to Attribute Grammars (AGs) [Knu68]. In plain
AGs each node in the AST has a number of attributes, each defined by an equa-
tion. The right-hand side of the equation is an expression over other attribute
values and defines the value of the left-hand side attribute. RAGs extend AGs
by allowing attributes to have reference values, i.e., they may be object refer-
ences to AST nodes. AGs, in contrast, only allow attributes to have primitive
or structured algebraic values. This extension allows very simple and natural
specifications, e.g., connecting a use of a variable directly to its declaration,
or a class directly to its superclass. Plain AGs connect only through the AST
hierarchy, which is very limiting.

Attributes can be synthesized or inherited. The equation for a synthesized
attribute resides in the node itself, whereas for an inherited attribute, the equa-
tion resides in an ancestor node. Note that the term inherited attribute refers
to an attribute defined in the ancestor node, and is thus a concept unrelated to
the inheritance of object-oriented languages. In this article we will use the term
inherited attribute in its AG meaning, unless explicitly stated otherwise.

Inherited attributes are used for propagating information downwards in the
tree, e.g. propagating information about declarations down to use sites, whereas
synthesized attributes can be accessed from the ancestor and used for propa-
gating information upwards in the tree, e.g. propagating type information up
from an operand to its enclosing expression.

In the JastAdd II implementation of RAGs the declaration of a synthesized
attribute can be seen as an abstract method declared in the node holding the at-
tribute. The equations are implemented as overridden methods in the subclasses
that originate from productions of the node declaring the attribute.

// Declaration of a synthesized attribute
// type of Expr nodes and its default equation
syn Type Expr.type() = TypeSystem.UNKNOWN;

78

// Overriding default equation for Add nodes
eq Add.type() = TypeSystem.INT;

// Overriding default equation for Id nodes
eq Id.type() = env().lookup(id()).type();

An inherited attributes can be seen as methods where the method declara-
tion and method body may be separated. Inherited attributes have their method
body, that defines the behavior, in an ancestral node. An inherited attribute
equation defines the behavior for a corresponding declaration of that same at-
tribute in the subtree where the targeted equation node is the root. That way the
only dependency on tree structure for that attribute is that the node holding the
equation must be an ancestor to the node holding a declaration.

The example below defines an inherited attribute moduleName in each Expr
node. The name of each ControlModuleType is propagated down to each ex-
pression from an equation in the ControlModuleType node that is defined for
each subtree rooted at each member child.

inh String Expr.moduleName();
eq ControlModuleType.member(). moduleName() = name();

Higher order attributes [VSK89] allow new parts of the tree to be defined as
a function of the existing, partially attributed tree. That way, the tree can reflect
properties of the tree that are context dependent and can not be built until some
semantic analysis has been done. These attributes are higher-order in that the
new created trees may contain attributes themselves.

4.3 Rewrite rules

ReRAGs [EH04] extend RAGs with rewrite rules that automatically and trans-
parently rewrite nodes. The rewriting of a node is triggered by the first access
to it. Such an access can occur either in an equation in the ancestor node, or
in some imperative code traversing the AST. In either case, the access will be
captured and a reference to the final rewritten tree will be the result of the ac-
cess. This way, the rewriting process is transparent to any code accessing the
AST.

A rewrite step is specified by a rewrite rule that defines the conditions when
the rewrite is applicable, as well as the resulting tree. After the application
of one rewrite rule, more rewrite rules may become applicable. This allows
complex rewrites to be broken down into a series of simple small rewrite steps.

A rewrite rule for nodes of class N has the following general form:

rewrite N {
when {cond}

5. IMPLEMENTATION 79

to R result;
}

This specifies that a node of type N may be replaced by another node of
type R as specified in the result expression result. The rule is applicable if the
(optional) boolean condition cond holds. Both the rewrite rule application order
and the tree traversal order are implicitly defined by attribute dependences.

5 Implementation

This section describes the implementation of the extended control modules
language. The abstract syntax as well as the static semantics for the language
are modeled using ReRAGs in the JastAdd II tool. An architecural overview
of the compiler is first given, and then the base language followed by the ex-
tended control modules language. The base language implementation serves as
an introduction in how to write a compiler in JastAdd II with modularity and
separation of concerns in mind. The implementation has been done with two
important design principles in mind. The abstract syntax tree (AST) should be
the only data structure, i.e. no external data structures such as symbol tables
are used, and all program elements should be explicitly visible in the AST, i.e.
all declarations including implicit elements such as primitive type declarations
are included in the tree structure.

5.1 Architecture

The lexical analysis and the parsing phase of the compiler have been imple-
mented using traditional tools, e.g. JavaCUP and JFlex. The parser emits an
AST that is built according to the abstract grammar specified using JastAdd II.
The semantic analysis and code generation of the base language as well as the
extended language are implemented in a modular fashion using ReRAGs op-
erating on the tree emitted from the parser. A short overview of the modules
in the base langauge is first given, followed by the modules implementing the
extended language.

Base language The base language is divided into three modules performing
static semantic analysis and code generation. The static semantic analysis of the
language is divided in two modules, Basic name binding and Basic type system.
The code generation is then performed by a separate XML code generation
module.

80

Basic name binding The basic name binding module is part of the semantic
analysis phase. It tries to bind each identifier use-site to its corresponding
declaration. An analysis phase then verifies that each identifier has been
bound correctly and that there are no multiple defined identifiers.

Basic type system The basic type system module is also part of the semantic
analysis phase. It computes the type for each expression and verifies that
all operations that work on types have compatible types.

XML code generation This module emits an XML representation of the AST
that is compatible with the XML Schema used in the Control Builder tool
by ABB Automation Technology Products. The translation from an AST
in the base language to the XML representation is trivial and not further
discussed in this paper.

Extended language The language extensions are implemented by five sepa-
rate modules that depend on the semantic analysis modules for the base lan-
guage. Three of these modules implement semantic analysis for the language
extensions: Extended name binding, Extended type system, and Protection mech-
anisms. The remaining two modules implement the translation from the ex-
tended language to the base language: Inheritance flattening and Eliminate ref-
erences.

Extended name binding Extends the basic name binding module with scope
rules for inherited scopes and a new scope caused by dereferenced refer-
ences.

Extended type system Extends the basic type system with type hierarchies
and extends the type checker to use the subtype relation where appropriate.

Protection mechanisms Adds an additional set of semantic checks that en-
force the protection rules.

Inheritance flattening Flattens the inheritance structure by explicitly adding
inherited members to type declarations.

Eliminate references Eliminates references by statically computing the target
of each reference and replacing all remote reference accesses with direct
local accesses.

The following sections presents the design and implementation of each
module.

5.2 Basic name binding

This section describes the implementation of name analysis for the base lan-
guage. The purpose of the name analysis phase is to define the scope rules of

5. IMPLEMENTATION 81

the language and bind each use-site of a name to its corresponding declaration.
The name binding implementation for control modules with nested scopes is
shown below. Each use-site node has an attribute decl() which is a reference
to the bound declaration site. That binding mechanism is implemented by let-
ting each node that affects the scope rules define an equation for each use-site
within that scope. A parameterized attribute lookup(String name) is added to
each Name and ControlModuleType. The equation provided in ControlModule-
Type scans its Members for declarations with a matching name and delegates
the lookup to the enclosing scope if none is found. The delegation using the
lookup attribute requires that attribute to be declared in ControlModulesType
as well and not only in Name. Finally the decl attribute is added to each Name
and implemented by calling the lookup attribute with the actual name as the pa-
rameter. The same technique is used to provide the type scope to lookup type
declarations.

syn VariableDecl Name.decl() = lookupVar(name());

inh VariableDecl Name.lookupVar(String name);
inh VariableDecl ControlModuleType.lookupVar(String name);

eq ControlModuleType.member().lookupVar(String name) {
for(int i = 0; i < numMember(); i++)
if(member(i).isVariableDecl() &&

member(i).name().equals(name))
return (VariableDecl)member(i);

return lookupVar(name);
}

The scope rules are not only affected by ControlModuleType nodes but
also by the common dot notation used to access elements in a record. This
is easily implemented by allowing the Dot node type change the scope rules
for the lookupVar attribute as illustrated below. The lookup is delegated to the
type declaration for the type of the element on the dot left hand side, i.e. the
RecordType declaration. If no declaration is found the unknownVariable() dec-
laration is returned that enables later stages to assume all names are bound to a
declaration.

ast Dot : Expr ::= Expr left , Expr right;
eq Dot.right(). lookupVar(String name) =

left().type().lookupVar(name);
syn VariableDecl RecordType.lookupVar(String name) {

for(int i = 0; i < numElement(); i++)
if(element(i).isVariableDecl() &&

element(i).name().equals(name))
return (VariableDecl)element(i);

82

return unknownVariable ();
}

To verify that there are no name binding errors, the decl attribute in each
Name is compared to the unknownVariable() declaration. As long as there are
no unknownVariable() bindings, all binding resolve to proper name declara-
tions. There is also a check to find multiple declarations of the same name by
verifying that when looking up a name from a declaration that same declara-
tion is returned. If there were multiple declarations with the same name, both
lookups would have been bound to the first declaration.

5.3 Basic type system

Type analysis involves the tasks of determining the type of every expression
and to check that the types involved in an operation are compatible. An attribute
type and equations to propagate type information is added to each expression.
The figure below shows an example where the type attribute as well as the
equations for integer literals and binary operations are included.

syn TypeDecl Expr.type();
eq IntLiteral.type() = lookupType("String");
eq BinOp.type() = left().type() == right().type() ?

left.type() : illegalType();

The second task is to ensure that when two types are involved in an oper-
ation those two types are compatible. This is implemented by adding a type
constraint to each node that involves types expressions or declarations. That
constraint must be fulfilled for the operation to be correct from a type perspec-
tive. For instance, for an assignment statement the type constraint is that the
type of the left hand side must be the same as the right hand side, while a func-
tion call must ensure that each argument is of the same type as the declared
parameter type. An implementation of the described behavior is shown below.

syn boolean Assignment.typeError() =
!source().type() == dest().type();

syn boolean FunctionCall.typeError() {
for(int i = 0; i < numArgument(); i++)

if(!argument(i).type() == decl().parameter(i).type())
return true;

return false;
}

5. IMPLEMENTATION 83

5.4 Extended name binding

When extending the language with inheritance and references, some changes
need to be done to the existing name binding implementation. The scope rules
are changed since inherited members need to be considered when no matching
member is found in the current type. First after all inherited members from the
supertypes have been searched the lookup may be delegated to the enclosing
scope to allow global variables and nested types. This extension is shown below
where a new attribute, findMember(String name), that only looks up members
in the current type and possible supertypes, is added to the ControlModuleType.
The lookupVar attribute described in Section 5.2 is changed to use findMember
and delegate the lookup to the enclosing scope if no proper declaration is found.

syn VariableDecl ControlModuleType.findVar(String name) {
for(int i = 0; i < numMember(); i++)
if(member(i).isVariableDecl() &&

member(i).name().equals(name))
return (VariableDecl)member(i);

return hasSuperType() ?
superType().findVar(name) : unknownVariable();

}
eq ControlModuleType.member().lookupVar(String name) {

VariableDecl decl = findVar(name);
return decl != unknownVariable() ?

decl : lookupVar(name);
}

The introduction of dereferenced references adds a new scope to the lan-
guage similar to the dot notation for records. Since dereferencing a reference
and element access in a record share the same syntactic notation both oper-
ations build identical trees during the context free parsing phase. When the
names have been bound and contextual information is taken into account, a
rewrite is used to reflect that knowledge in the tree structure. The generic Dot
node is rewritten to a specialized node type, RecordAccessDot or Dereference-
Dot, that reflects the semantic meaning of the operation. This simplifies later
stages like type checking and code generation where different equations may
be provided for the semantically different operations. The same technique is
used on the name nodes to specialize a generic names to variable name or pa-
rameter name nodes.

rewrite Dot {
when(left().type(). isRecordType ())
to Dot new RecordAccessDot(left(), right());
when(left(),type(). isControlModuleType())
to Dot new DereferenceDot(left(), right()); }

84

5.5 Extended type system

The extended type system does not affect binding of types but the type attribute
and type constraints need to be changed from a strict equality to a subtype rela-
tionship. The example in Section 2.2 is changed in that the type constraint for
assignment is changed from equality to use the subtype relationship and type
propagation for binary operations is modified to propagate the least specific
type of the two involved expression or the illegal type if there is not a subtype
relationship between the types.

eq Assignment.typeError =
source().type(). isSubtypeOf(dest.type());

eq BinOp.type() {
if(left().type().isSubtypeOf(right().type()))

return right().type();
if(right().type().isSubtypeOf(left().type()))

return left().type();
return illegalType();

}

The subtype relationship is explicitly visible in the source code in that a
type declaration that is a direct subtype of another type explicitly inherits that
supertype directly through the extends keyword. In the AST the specified su-
pertype is bound to its declaration and the direct subtype relationship can thus
be modeled through a reference attribute from the subtype declaration to the
declaration of its direct supertype. Primitive types that share a subtype rela-
tionship have the same attribute and the same computation is used for both
primitive types and user defined types. These reference attributes form an al-
ternative tree within the AST. The tree is turned into a type lattice by adding
the null type that is a subtype of every other ControlModuleType. An example
type lattice of the control module types that were declared in Section 2.2 and
Section 3 is shown below.

Object

System

Producer

Consumer

SubSystem SubConsumer

Null

The type lattice is used to calculate the subtype relationship by iteratively
comparing the closest direct supertype with the target supertype until either the
desired type is found or the top type Object is found. The described strategy

5. IMPLEMENTATION 85

can not handle an erroneous declared circular inheritance hierarchy and results
in an non-terminating loop. The subtype equation is therefore guarded with
a circularity test that ensures that the current TypeDecl is not involved in a
circular declaration.

syn boolean TypeDecl.isSubtypeOf(TypeDecl decl) {
if(isCircular ()) return illegalType();
return decl == this ? true : hasSuperType() ?

superType(). isSubtypeOf(decl) : false;
}

syn boolean TypeDecl.isCircular() = testCircular(this);
syn boolean TypeDecl.testCircular(TypeDecl type) =

hasSuperType() ? type == this :
superType(). testCircular(type);

eq TypeDecl.typeError() = isCircular();

5.6 Protection mechanisms

The protection mechanisms does not affect name analysis and type analysis
behavior but is merely implemented as a set of additional checks to verify that
each access complies to the given protection constraints. An example where
each variable access is verified is shown below. The protection level private al-
lows only those accesses that originate in the same type as the accessed variable
is declared in. To decide in which context an attribute is used or declared, the
attribute hostType is added, which is a reference to the declaring ControlMod-
uleType for each declaration and variable access. A protection test then uses
that attribute to verify that the host type is the same for each variable access
as its corresponding variable declaration. The protection level protected is im-
plemented in a similar manner but the subtype relation is used instead of strict
equality.

inh ControlModuleType VariableDecl.hostType();
inh ControlModuleType VariableAccess.hostType ();
eq ControlModuleType.member().hostType() = this;

syn boolean VariableAccess.protectionError() {
VariableDecl decl = decl();
if(decl.isPrivate() && hostType() != decl.hostType()) {
return true;

}
else if(decl.isProtected() &&

hostType(). isSubtypeOf(decl().hostType())) {

86

return true;
}
return false;

}

Similar protection constraints are introduced for code blocks that inherit
or override existing code blocks in the supertypes. An example where these
constraints are enforced for extended code blocks is shown below. The test
ensures that there is a code block in the supertype that is not final and that it has
an inner statement. A similar technique is used to ensure that all instantiations
are valid, i.e. the instantiated type does not contain abstract code blocks.

syn String ControlModuleType.hasCodeBlock(String name)
= lookupCodeBlock(name) != unknownCodeBlock();

syn boolean ExtendedCodeBlock.protectionError() {
if(!superClass(). hasCodeBlock(name())

return true;
else {

if(superClass ().codeBlock(name()).isFinal())
return true;

if(!superClass ().codeBlock(name()). hasInner())
return true;

}
return false;

}

5.7 Inheritance flattening

The existing control module run-time system has no support for inherited mem-
bers from another ControlModuleType. Therefore, the inheritance structure is
flattened by explicitly adding each member that is inherited from a supertype
to the subtype. One may argue that the extended name binding implementation
is not needed when all inherited members are added to the subtype. The main
reason the implementation is still needed is that the structure is only flattened if
there are no compile-time errors, so during error checking the inherited mem-
bers have thus not been added yet. The rewrite that flattens the class hierarchy
is shown below. The rewrite adds all non final members that are not overridden
in the subtype as long as there are no static semantic errors. Notice that each
added member is duplicated before attached to the ControlModuleType since
the AST is a tree and not a graph.

rewrite ControlModuleType {
when(noErrors() && !hasAllInheritedMembers())

5. IMPLEMENTATION 87

to ControlModuleType {
for(int i = 0; i < superType().numMembers (); i++) {

Member m = superType().member(i);
if(!m.isPrivate() &&

findMember(m.name()) != unknownMember())
addMember((Member)m.fullCopy());

}
return this;

}
}

syn boolean ControlModuleType.hasAllInheritedMembers() {
for(int i = 0; i < superType(). numMembers(); i++) {

Member m = superType().member(i);
if(!m.isPrivate() &&

findMember(m.name()) != unknownMember ())
return false;

}
return true;

}

5.8 Eliminate references

The existing run-time system only allows local variable access except for non
local access between parent and child modules through parameters. To be able
to generate the base language all remote references must thus be removed. This
is done by resolving all dereferenced references and replacing those remote
variable accesses by local accesses. All kinds of references, i.e. parameter-,
local-, and part object-references, are removed and the primitive instance vari-
ables that were accessed remotely by dereferencing a reference are instead
accessed through a parameter holding each primitive instance variable. This
section describes the technique used to resolve references at compile-time and
transform the code to use local accesses instead of remote accesses. To gain
local access to any remote instance variable a user defined data type that holds
each primitive instance variable is created. A singleton instance of that type,
environment, will be created in the root node of the hierarchical system at run-
time and then propagated down to all module instances through a parameter.
The target module of each reference assignment, used to bind a reference to
its target module, can be computed at compile-time since the language is static
and due to the single assignment nature of reference assignment.

The following code fragment will be used throughout this section to visu-
alize the various stages in the reference elimination process. A System consists
of a Consumer part object con, a Producer part object prod, and a Consumer

88

remote reference remote. A Producer has a parameter reference con to a Con-
sumer and the Producer prod in the System is initialized to reference the Con-
sumer part object con in that same System. The remote reference remote in
System is initialized by dereferencing two references. The prod part object ref-
erence in first dereferenced. A remote reference con in the first dereferenced
reference target module is then dereferenced and the remote reference remote
is bound to the found target.

CONTROLMODULETYPE SYSTEM
VAR

con : Consumer (); // Part Object Reference
prod : Producer (con); // Part Object Reference
remote : Consumer := prod.con; // Remote Reference

END_VAR
END_CONTROLMODULETYPE

CONTROLMODULETYPE PRODUCER
VAR_IN

con : CONSUMER; // Reference
END_VAR_IN

END_CONTROLMODULETYPE

CONTROLMODULETYPE CONSUMER
END_CONTROLMODULETYPE

Instance composition structure To evaluate the target module, a hierarchi-
cal Control Module instance structure is built that represents the static com-
position of Control Module instances in the actual program instance. The in-
stance structure contains all instantiated ControlModuleTypes as well as all
reference operations, i.e. declarations, assignments, and dereferences. The ab-
stract grammar shown below models the instance tree. There are two different
kinds of declarations, References and Instances. References are remote binding
to other References and Instances. The references are initialized with a single
Reference assignment that is dereferencing other references. An Instance is
an instantiated ControlModuleType that has a set of children that are either
references or nested ControlModule instances. Reference assignment contains
dereferences that are modeled through Dereferences node holding simple and
complex names. A simple name is a single dereferenced reference while a com-
plex name is constructed from multiple dereferences.

ast Decl ::= <String name >;
ast Reference : Decl ::= Dereference deref;

5. IMPLEMENTATION 89

ast Instance : Decl ::= <String typeName >, Decl decls*;

ast abstract Dereference;
ast DerefName : Dereference ::= <String name >;
ast DerefDot : Dereference ::= Name left , Name right;

The figure below shows the instance structure that corresponds to the Sys-
tem code fragment. The subtree is built dynamically during compile-time and
attached to the main tree as an higher-order attribute in the root node.

DerefName
"con"

Reference
con : CONSUMER

Instance
prod : PRODUCER

DerefName
"prod"

DerefName
"con"

DerefDot

Instance
con : CONSUMER

Reference
remote : CONSUMER

Instance
system : SYSTEM

The environment data type holds all instance variables that can be found
in the instance structure of the actual program. Each instance variable receives
a unique name by concatenating the names of the part object references that
are describing the path from the root to the instance variable with the variable
name itself. The example below implements this concatenation by adding the
name of each Instance node through an inherited attribute. The instances in the
above example will thus be named system, systemprod, systemcon.

syn String Instance.fullName() = parentName() + name();
inh String Instance.parentName();
eq Instance.instance().fullName() = fullName() + name();

Reference binding To resolve the reference in the instance structure each
dereferenced reference needs to be bound to its corresponding declaration. An
example implementation modeled in a very similar fashion as the name bind-
ing described in Section 5.4 is shown below. Each instance has a parameterized
lookup attribute that searches the declarations for a declaration matching the
name parameter. At this level there are no nested scopes and delegation is not
needed and an illegalDecl is returned directly if the declaration is not found.
The declaration is propagated as an inherited attribute to child instances that

90

need to lookup the references used in the right hand side of reference assign-
ments. The same attribute is used when complex names are used to directly
access a name used in the right child of a DerefDot node.

syn Decl Instance.instance().lookup(String name) {
for(int i = 0; i < numDecls(); i++)

if(decls(i).name().equals(name()))
return decls(i);

return illegalDecl();
}

inh Decl Reference.lookup(String name);
eq Instance.instance().lookup(String name) =

lookup(name);

eq DerefDot.right().lookup(String name) =
left().decl().lookup(name);

syn Decl Dereference.decl();
eq DerefName.decl() = lookup(name());
eq DerefDot.decl() = right().decl();

The figure below show the instance structure after each name has been
bound the its corresponding declaration. Notice how the changed scope rules
in the DerefDot node has affected the binding of the right DerefName con.

DerefName
"con"

Reference
con : CONSUMER

Instance
prod : PRODUCER

DerefName
"prod"

DerefName
"con"

DerefDot

Instance
con : CONSUMER

Reference
remote : CONSUMER

Instance
system : SYSTEM

decl()

decl()

decl()

Compute reference target When all names have been bound to a correspond-
ing declaration site the target Control Module instance can be computed. The

5. IMPLEMENTATION 91

target for an Instance node is trivial since it is the Instance node itself, while
References need to find the target by computing the target of the dereferenced
references in the right hand side of each reference assignment. The attributes
that implement this final stage in resolving references is shown below. The fi-
nal stage uses these attributes to rewrite the code locks to use these attributes
effectively replacing each dereferenced reference with an access to the corre-
sponding element in the environment structure.

syn Instance Decl.target();
eq Reference.target() = deref().decl().target();
eq Instance.target() = this;

The final figure shows how the target() attribute binds each remote refer-
ence initialization to an actual Control Module instance.

DerefName
"con"

Reference
con : CONSUMER

Instance
prod : PRODUCER

DerefName
"prod"

DerefName
"con"

DerefDot

Instance
con : CONSUMER

Reference
remote : CONSUMER

Instance
system : SYSTEM

target()

target()

target()

target()

target()

The previous examples are somewhat simplified since they do not handle
reference circularities, which are illegal, and local references. Circularity in
reference assignments can be handled by adding a test similar to the one used
for the isSubtypeOf attribute in Section 5.5 to break circularity and generate
a compile-time error. Local references are not included because of their sim-
ilarity to parameter references. They only differ in the scope rules used when
binding references in the right hand side in reference assignments. Parameter
references look up references in the parent of the instance declaring the param-
eter while local references look up references in the declaring instance itself.

Replace reference with local access During code generation a new Control
Module type in the base language is created for each instantiated module in

92

the instance structure. These types are uniquely named using a similar strat-
egy as for the local instance variables. Each created type instantiates the part
objects derived from the original model and initializes the parameters for each
part object. All remote accesses to instance variables through dereferencing a
reference are turned into parameters that are named using the same concatena-
tion technique as for local variables. There will thus be a parameter for each
instance variable that is accessed through remote access. Each reference has
been resolved and bound to a specific module instance through the target at-
tribute and the parameters can thus easily be initialized to access the correct
target element in the environment instance. Initialization of the environment
instance parameter is a simple argument copy and the parameters of primitive
types from the original model are left unchanged. Local instance variables are
transformed into parameters and initialized to use the target instance in the
environment data type. Since this is all done at compile-time the remote refer-
ences are completely removed during code generation.

6 Conclusions and future work

The Control Module language has been extended with object-oriented features
improving encapsulation, code re-use, and static type safety. Encapsulation is
improved in that implementation details, such as instance variables, can be
kept local in a control module instead of the more global approach needed
when data must be placed in a common ancestor module. Code is effectively
re-used through inheritance of both behavior and composition. The object-
oriented type system improves safety in that a larger set of semantic errors
can be found at compile-time.

The base language as well as the language extensions were modeled using
ReRAGs in the JastAdd II tool. Using the AST as the sole data structure was
successful but relied heavily on dynamic tree construction through rewrites and
higher-order attributes. The dynamic restructuring of the AST also simplified
computations in that context-sensitive semantic properties of the AST could be
made explicit in the tree structure. The various phases in semantic analysis, e.g.
name binding and type checking, as well as the language extensions, e.g. in-
heritance and protection, could be implemented in separate modules providing
good separation of concerns.

All the extended langauge features are translated into base language con-
structs and the AST for the extended language is thus transformed into an AST
in the base language. That tree is exported to the ControlModule development
environment and can thus benefit from existing infrastructure such as native
compilers and run-time system.

6. CONCLUSIONS AND FUTURE WORK 93

There are several interesting topics for future work:

– We have implemented a full static semantic analyzer for Java 1.4 using a
similar strategy as the one described in this paper and are currently ex-
tending the implementation with Java 1.5 features like generics, improved
for-stmt, static imports, etc. Our current results indicate the we are able
to create modular extensions for the new Java 1.5 language features using
techniques similar to the ones described in this paper and generate Java 1.4
code through tree transformations.

– By transforming the extended language to the base language we can re-use
the existing infrastructure such as compilers and run-time system. There
is, however, no support for debugging code in the extended source code
language. It would be interesting to provide the debugger with a mapping
from the extended language to the base language to enable source level
debugging in the extended language as well. This could probably be done
in a manner similar to the "JSR-45 - Debugging support for other lan-
guages" proposal that supports source level debugging for other languages
than Java as long as they generate Java virtual machine byte-code.

References

[DMN68] O. J. Dahl, B. Myrhaug, and K. Nygaard. SIMULA 67 Common Base Lan-
guage. Norwegian Computer Center, Oslo, 1968.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. In Proceedings of ECOOP 2004: 18th European Conference on
Object-Oriented Programming, 2004.

[Ekm04] Torbjörn Ekman. A case study of Separation of Concerns in Compiler Con-
struction using JastAdd II. In Proceedings of the Third AOSD workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS),
2004.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[Hed00] Görel Hedin. Reference Attributed Grammars. Informatica (Slovenia),
24(3), 2000.

[JT01] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Programming In-
dustrial Automation Systems. Concepts and Programming Languages, Re-
quirements for Programming Systems, Decision-Making Tool. Springer-
Verlag, 2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems
Theory 5, 1, pp. 95-96 (March 1971).

94

[MMPN93] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-oriented Pro-
gramming in the BETA language. Addison-Wesley, 1993.

[TC79] B. Taconet and B. Challot. Grafcet programming on programmable logic
controller with logical, ladder and boolean language. Revue Nouvel Au-
tomatisme, 24(1-2), 1979.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute gram-
mars. In Proceedings of the SIGPLAN ’89 Programming language design
and implementation. ACM Press, 1989.

