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ABSTRACT

The advent of safe languages like Java on the real-time systems scene
motivates further research on efficient strategies for non-intrusive gar-
bage collection and especially GC scheduling. This thesis presents new
approaches to flexible and robust memory management from an engi-
neering perspective and is a step towards write once — run anywhere with
hard real-time performance.

The traditional approach to incremental GC scheduling, to perform
garbage collection work in proportion to the amount of allocated mem-
ory, has drawbacks and in order to remedy this, a scheduling strategy,
time-triggered GC, based on assigning a deadline for when the GC must
complete its current cycle is proposed. It is shown that this strategy can
give real-time performance that is equal to, or better than, that of an
allocation-triggered GC. It is also shown that by using a deadline-based
scheduler, the GC scheduling and, consequently, the real-time perfor-
mance, is independent of a complex and error-prone work metric.

Time-triggered GC also allows a more high-level view on GC sched-
uling as the GC cycle level rather than on each individual increment is
considered. This makes it possible to schedule GC as any other thread.
It also makes the time-triggered strategy well suited for auto-tuning and
it is shown how an adaptive GC scheduler can be implemented.

A novel approach of applying priorities to memory allocation is in-
troduced and it is shown how this can be used to enhance the robustness
of real-time applications. The proposed mechanisms can also be used to
increase performance of systems with automatic memory management
by limiting the amount of garbage collection work.

The ideas brought forward in this thesis have been implemented and
validated in an experimental real-time Java environment.
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CHAPTER 1

INTRODUCTION

Memory management in real-time and embedded systems is handled
in a very conservative manner. For reasons of safety and predictabil-
ity, static memory management is often the technology of choice, but
as embedded systems grow in complexity, dynamic memory manage-
ment becomes increasingly desirable. Although more flexible than static
memory management, manually managed dynamic memory tends to
inflict new problems of predictability, robustness, and maintainability
— important properties of embedded systems. Many of these prob-
lems can be overcome by automatic memory management, or garbage
collection (GC). With the advent of type-safe languages like Java on the
real-time systems scene it becomes increasingly important to develop
reliable, predictable and non-intrusive garbage collectors which are ca-
pable of meeting the memory allocation demands of our applications at
all times. The garbage collector should also be transparent to the appli-
cation developer and not require cumbersome manual tuning to be ef-
fective on any particular platform. This thesis proposes a new approach
to garbage collection scheduling aimed at meeting these demands.

The focus of this thesis is on GC scheduling rather than algorithm
design. Using either knowledge of the worst-case allocation need of the
application, or by using auto-tuning techniques, it is possible to calcu-
late a deadline for when garbage collection must be completed and new
memory made available for allocation. Having an explicit deadline for
the GC cycle implies that it would be possible to schedule GC using stan-
dard scheduling techniques, such as rate monotonic or earliest deadline
first scheduling. This thesis investigates the feasibility of such an ap-
proach. Since the elapsed time determines when to run the garbage col-
lector, we call the approach time-triggered garbage collection.
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Another area of growing research interest and recent development
is that of handling non-determinism in real-time systems, and an ap-
proach that has been successful is feedback scheduling. By using feed-
back control, the period times of the processes are dynamically altered in
order to keep the total CPU utilization at a safe level. This is particularly
useful in control systems, where it is the resulting control performance,
rather than real-time performance, that is the ultimate goal. By getting
the process scheduler into the loop, this allows co-design of control and
real-time systems. Furthermore, worst-case analysis is not always fea-
sible, due to non-determinism in modern computers, lack of engineer-
ing resources or simply that a design based on worst-case assumptions
would be too pessimistic and therefore yield too low average resource
utilization to be economically feasible. For these reasons, it is interest-
ing to study adaptive memory management. This thesis presents two
approaches aimed at enhancing the robustness of memory management
for systems run in an unknown or changing environment.

1.1 Problem statement

This work comes from a practical engineering perspective and is aimed
towards developing techniques that facilitate the production of embed-
ded and real-time systems without the need for rigorous analysis and
huge engineering effort that is currently required to develop hard real-
time systems. This thesis addresses two categories of problems: The first
is adding flexibility to embedded systems without jeopardizing their
real-time properties. The second is how to implement hard real-time
garbage collection in an actual run-time system.

Adding flexibility to hard real-time systems

In this thesis, the focus is on memory management. The reason is that
the previous research on flexible real-time systems has focused on pro-
cess scheduling and little attention has been given to memory manage-
ment issues and their impact on process scheduling. Also, while many
of the problems are generic to all kinds of resource allocation, memory
allocation differs from CPU allocation in a major way in that preemp-
tion is not possible!. Therefore, running out of memory is likely to cause
the entire system to fail while requesting too high CPU utilization may

In systems with virtual memory, swapping and paging may be viewed as memory
preemption, but this is uncommon in embedded systems as they typically lack secondary
storage.
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cause some or all processes to miss deadlines but the system may be able
to continue executing with decreased performance.

Let us start by making three observations on real-time and embed-
ded systems: The first one is that the need for flexibility in hard real-time
systems is increasing. Component based software development helps fa-
cilitate code reuse and makes it possible to build systems quickly by
composing and configuring components. While it is possible, in theory,
to perform worst case and schedulability analysis on each configuration,
constraints on the amount of available engineering resources may pro-
hibit such analysis. Therefore, adaptive techniques like feedback sched-
uling are increasing in popularity as they allow a system to adapt its
resource utilization in order to keep the system from overload while still
producing an acceptable quality of service.

Another technique that is gaining interest is dynamic reconfiguration
and code exchange where communicating devices may send pieces of
code to each other in order to perform some cooperative task. In such a
system, an introduction of a new device may cause pieces of code that
were not part of the original design to be executed on other devices.
This is facilitated on the programming language level by e.g., dynamic
loading of code, but the run-time system aspects need further studies.
For instance, in an environment where code is dynamically loaded and
replaced at run-time, static worst-case analysis (and scheduling based
thereupon) is not possible. Yet, it is desirable to include such techniques
in hard real-time systems.

The second observation is that not all hard real-time systems are safety
critical. A system is a hard real-time system if it fails or suffers major
performance degradation if deadlines are missed. But, for some systems,
that may be acceptable if the probability is low enough. This is also
motivated by the high cost of the engineering effort required to make
absolute guarantees that a system will never fail.

The final observation is that a problem with the current methods for
real-time systems development is the gap between theory and practice; the
real-time theory requires hard worst case calculations in order to guar-
antee schedulability. However, it is very common to use measurements
or “gut feeling” estimates rather than exact analysis to obtain the worst
case memory and CPU requirements and then, the quality of the real-
time guarantees is no better than that of the worst case estimates. For
those reasons, it may be better, both in terms of development costs and
run-time performance, to reserve the hard, a priori analysis based meth-
ods for the development of systems which are safety critical and to use
adaptive techniques for systems which are not.
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Motivated by these observations, the high level goal of this work is to
develop techniques for implementing hard real-time run-time systems,
particularly memory managers, that are independent of a priori analysis
of the application. That is, if an application is schedulable, the run-time
system should be able to guarantee real-time performance — write once,
run anywhere for hard real-time systems.

Making hard real-time memory management feasible in practice

The second problem addressed in this work is that previous research on
hard real-time garbage collection may not be directly applicable when
implementing actual real-time systems.

Firstly, one problem is the metric used to measure garbage collection
work. A good metric is essential to both schedulability analysis and for
the actual scheduling at run-time. Unfortunately, in much of the existing
literature, the problem is either neglected or the reasoning is done on a
too abstract level to be practically applicable.

Secondly, non-intrusiveness is a fundamental requirement on a hard
real-time garbage collector as GC work must not cause processes to miss
their deadlines. However, the common way of implementing real-time
GC is to use an incremental garbage collector that performs small por-
tions of work at each memory allocation — in line with the application
processes — and previous research has often been content with show-
ing that it is possible to find tight upper bounds on the lengths of each
increment. That is not a good strategy if one wants to minimize latency
and jitter due to garbage collection; even though each increment has a
small upper bound, if a process makes many allocations the total delay
caused by garbage collection will be large. Therefore, it is not enough to
prove predictability — in actual product development it is equally im-
portant to have a scheduling model that allows maximum utilization of
available resources.

Finally, previous real-time garbage collectors have required very fine
grained analysis in order to tune them to a particular application, and
the run-time scheduling has been done at the individual increment level.
This has made the utilization of real-time GC difficult and tedious and
the whole concept of automatic memory management in real-time sys-
tems has often been shunned.

This work is an attempt to provide a conceptual framework and tech-
niques that are independent of the GC implementation and allow rea-
soning about garbage collection scheduling at a higher level, without
abstracting away the difficulties. The goal is to make it possible to sched-
ule garbage collection as any other task.
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1.2 About the thesis

Outline

The rest of the thesis is organized as follows:

Chapter 2: Preliminaries describes the fundamental concepts of the
areas of real-time computing and memory management and
presents previous research on which this thesis is based.

Chapter 3: Time-triggered garbage collection introduces the idea of
time-triggered garbage collection and discusses its impact in fixed-
priority and earliest deadline first scheduled systems.

Chapter 4: Adaptive garbage collection scheduling discusses how a
time-triggered garbage collector can be made auto-tuning and
presents techniques for estimating the GC cycle length and the
amount of work required to perform a GC cycle.

Chapter 5: Priorities for memory allocation presents a novel notion of
applying priorities to memory allocations and shows how that can
increase robustness and performance of real-time systems.

Chapter 6: Experimental verification presents experimental support
for the proposed techniques.

Chapter 7: Future work outlines our plans for future research and
points out possible areas of application for these ideas.

Chapter 8: Related work relates the work presented in this thesis with
previous results in the areas of garbage collection scheduling,
memory management for real-time Java and worst case analysis.

Chapter 9: Conclusions summarizes the contributions of this thesis.

Publications

This thesis is largely based on published papers. The exception is the
GC work estimation presented in Chapter 4 which is work in progress
and has not yet been submitted for publication.

Chapter 3 and part of Chapter 4 are based on the paper

Sven Gestegard Robertz and Roger Henriksson, Time-Triggered
Garbage Collection — Robust and Adaptive Real-Time GC Scheduling for
Embedded Systems, which will appear in Proceedings of the ACM
SIGPLAN Langauges, Compilers, and Tools for Embedded Systems
—2003 (LCTES'03) [45].



6 1. INTRODUCTION

Chapter 5 and the corresponding experiments was published as

Sven Gestegard Robertz, Applying Priorities to Memory Allocation
in Proceedings of the 2002 International Symposium on Memory
Management (ISMM'02) [44].

The prototype implementations used in the experimental verification are
closely related to the development of the garbage collector interface which
was presented in

Anders Ive, Anders Blomdell, Torbjorn Ekman, Roger Henriksson,
Anders Nilsson, Klas Nilsson and Sven Gestegard Robertz, Garbage
Collector Interface, in Proceedings of NWPER’'(02 [24].



CHAPTER 2

PRELIMINARIES

This chapter briefly presents the fundamental concepts of real-time sys-
tems, scheduling and memory management. Previous research in the
fields of scheduling and automatic memory management for real-time
systems, which forms a base for the remainder of this thesis, is presented
and discussed.

2.1 Real-time systems

The task of a computer program is to produce some output based on
its input values. The fundamental definition of correctness is, of course,
that the program produces the right output for any valid input values
but for some systems, typically those that interact with an external envi-
ronment in some way, this is not enough. In addition to producing the
right output, the definition of correctness is strengthened to also require
that such a system produces the output before a given time, the dead-
line. Such systems are called real-time systems and typical examples are
found in the areas of automatic control, communications, audio/ video,
interactive computer programs, etc.

2.1.1 Timing requirements

The term real-time systems represent a wide range of applications with
widely varying timing requirements, and the consequences of failing to
meet deadlines also range from minor inconveniences to total failures.
Computer systems can be categorized based on their real-time require-
ments and a brief overview of the taxonomy is given here.
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Batch systems

Most computer programs do not have any real-time requirements other
than that it, naturally, is desirable that the result is produced as quickly
as possible in order to make the program practically usable. Examples
of such programs are compilers, mathematical programs, etc. Such pro-
grams are called batch systems, as they typically take a batch of input,
perform some processing, and output the result. In batch systems, the
correctness of the system is completely independent of the time it takes
to produce the output.

Interactive systems

The next class of systems are systems where a human user interacts with
the system in the sense that the user gives a command, the system pro-
cesses it and presents the result, the user issues another command, and
so on. Typical examples are window systems, word processors and other
desktop applications. Here, the response time of the system must not be
too long if the interaction should work well. If the system takes sec-
onds or more to respond to the users commands, the user tends to be
annoyed, but as long as the response times are of the same order as the
human response time — typically one or two tenths of a second — the
system is perceived to respond instantly, and delays up to half a second
are usually tolerable. Therefore, while interactive systems have some
degree of real-time requirements, they are quite relaxed and also, the
consequences of excessive delays are merely an inconvenience.

Real-time systems

Computer systems that interact with external electrical or mechanical
devices or communicate via some shared medium typically have tighter
timing requirements. The term real-time systems is used to denote sys-
tems where timeliness is required for correct operation.

Systems that need to meet deadlines in order to function correctly,
but where a failure to do so only causes a temporary decrease in the
quality of service and does not cause the whole system to fail are called
soft real-time systems. One example is audio/video systems, where a
missed deadline causes a glitch but the playback still continues. Another
example is embedded systems, e.g, a computer controlling the electric
windows or the cabin lighting in a car, where occasional small delays
will not have any severe consequences.



2.2 SCHEDULING 9

If missing a deadline may cause the whole system to fail, we have a
hard real-time system. Continuing the car example, the engine control
system is a hard real-time system, as it is critical to the operation of the
engine that the fuel injection and ignition are performed at exactly the
right time.

It is common that embedded systems consist of both hard and soft
real-time tasks, and then techniques like e.g. priority based scheduling
are used to guarantee that the hard tasks always get the resources they
need, possibly at the expense of the soft tasks.

2.1.2 Predictability

A key attribute of proper real-time systems is predictability; if we want
to make real-time guarantees, we must know how long each task may
take to execute in the worst case, the worst case execution time (WCET).
This is one big difference between interactive and real-time systems; in
an interactive system, it is the average case performance that usually is the
most interesting, as the worst case typically is quite unlikely to occur and
it is possible to achieve much better performance on a given platform by
disregarding the worst case and optimizing for the common case.

In real-time systems, on the other hand, predictability is paramount
as the system must not fail even in the unlikely event that the worst
case does occur. Therefore, in hard real-time systems it is often neces-
sary to trade off performance for predictability; in the average case we
may have a low CPU utilization in order to guarantee that there will be
enough CPU time for every process in the worst case.

In order to meet these requirements on predictability, it is necessary
to perform worst case analysis on execution time and memory usage
and, based on this, do a priori schedulability analysis — a theoretical anal-
ysis aimed at determining whether it can be guaranteed that a given
set of processes always can be scheduled in a way that they meet their
deadlines under a given scheduling model. This is a well understood
area and the theoretical foundation is well built.

2.2 Scheduling

The scheduling problem is, simply put, this: Given a set of processes
that should execute on a shared processor, find an execution order that
ensures that all processes meet their deadlines. This can be done in a
number of ways. The oldest, which is still widely used in safety-critical
systems, is static cyclic scheduling; the CPU time is divided into time
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slots and then each process invocation is statically assigned to a partic-
ular time slot. The run-time scheduling is simple; the processes of each
time slot are executed in due order and when the end of the schedule is
reached, execution is restarted from the top. As both execution and com-
munication is statically scheduled, it is easy to verify that a schedule will
work. The drawback is that it may be difficult to create the schedule and
small changes to the processes may require that a whole new schedule
is created from scratch. Also, a static schedule may result in low CPU
utilization since the execution times of the different tasks are not equal
and therefore, there will often be unused time in some of the time slots.
If the execution times of the tasks are not constant, the length of the time
slots has to be long enough to accommodate the worst case execution
time, as tasks may not overrun their time slot. This further decreases the
maximum safe CPU utilization.

An alternative scheduling strategy, which adds more flexibility and
transfers the low-level scheduling decisions from the programmer to the
run-time system is dynamic scheduling; the process scheduler dynami-
cally selects which process that should be allowed to execute at any
given instant based on whether that process has work to perform and
the relative importance compared to other processes in the system. The
rest of this thesis will assume dynamic scheduling and now a brief in-
troduction to various approaches to selecting which process that should
be run will be given.

2.2.1 Fixed priority scheduling

In a fixed-priority scheduler, a priority value is assigned to each process.
If more than one process is ready to execute, the scheduler always gives
precedence to the process with the highest priority. Usually, the sched-
uler also allows preemption, i.e., if a process is executing when another
process with higher priority becomes ready, the lower priority process
will be interrupted in order to allow the higher priority process to exe-
cute without delay.

With fixed priority scheduling, it is usually not possible to have 100%
processor utilization without missing deadlines. However, due to the
strict priorities, such overload is handled in a way that lets the high prior-
ity processes continue executing unaffected while those with low prior-
ities are delayed. In cases of severe overload, the low priority processes
may not get any CPU time at all. This is called starvation.

A problem with fixed priority scheduling is how to assign priorities
to processes. The most common approach is Rate Monotonic Scheduling
(RMS), which says that the shorter the period time a process has, the
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higher its priority should be. If priorities are assigned in this way, stan-
dard methods for schedulability analysis exist [34, 46]. It can be proved
that for an arbitrary number of independent, periodical processes, a
RMS system is guaranteed to be schedulable if the total CPU utilization
is less than 69%.

2.2.2 Earliest deadline first scheduling

Another approach to dynamic scheduling is earliest deadline first (EDF).
Here, instead of assigning fixed priorities to processes, the scheduling is
done based directly on the deadlines of processes; the process with the
shortest time left to its deadline is scheduled to run. Thus, this strategy
requires no scheduling decisions, other than the deadline assignment, to
be made by the developer — all scheduling decisions are taken by the
scheduler, at run-time.

An interesting property of EDF scheduling is that 100% CPU utiliza-
tion is possible and, thus, EDF scheduling is optimal in the sense that if
the system is not schedulable using EDF, it will not be schedulable us-
ing any other scheduling strategy. However, the handling of overload is
drastically different from a fixed priority scheduler; in an EDF system,
if the requested CPU utilization is greater than 100%, all processes will
miss their deadlines. In effect, the period times will be scaled so that
the CPU utilization is 100% and this may be fatal to processes with hard
deadlines.

2.2.3 Co-existence of hard and soft processes

In order to overcome the problems with handling overload, especially in
EDF scheduled systems, techniques for letting hard real-time processes
run with guaranteed deadlines while process with soft or no deadlines
may be delayed in order to keep the total CPU utilization at a safe level
have been developed.

Constant bandwidth servers

One approach to handling the problem with running both determinis-
tic and non-deterministic processes on the same processor using EDF
scheduling is is the constant bandwidth server (CBS) model [1]. For
each process or group of processes, a limit on the maximum fraction of
the CPU time, the CPU bandwidth, is assigned and this is enforced by the
scheduler: If a server has used up its CPU quota in the current period
it is delayed. A set of constant bandwidth servers running on a single



12 2. PRELIMINARIES

CPU can be viewed as a if each process were running on dedicated CPU
with a given fraction of the original CPU speed.

The CBS model combines the advantages of fixed priority and EDF
scheduling; it is possible to guarantee that the hard real-time processes
always meets their deadlines by isolating them from non-deterministic
processes while still allowing 100% CPU utilization.

Feedback scheduling

Another approach to handling non-determinism is based on that the
main goal is to optimize the resulting quality of service rather than some
aspect of scheduling like, for instance, minimizing the number of missed
deadlines. By using feedback control theory, the scheduling parameters
are automatically adjusted at run-time in order to keep the CPU utiliza-
tion at a safe level while optimizing the quality of service of the appli-
cation. This is called feedback scheduling [2, 12, 13]. One area where this
approach is useful is control systems, where it has been shown that the
total quality of control can be dramatically increased if the real-time re-
quirements are relaxed.

Figure 2.1 shows the structure of a basic feedback scheduler. A set
of tasks generate jobs that are passed to a run-time dispatcher. The exe-
cution times of the jobs and the total CPU utilization, U, are measured.
Based on this, the scheduler adjusts the period times of the tasks, T}, in
order to keep the CPU utilization at the setpoint, Us,.

If a system contains both hard and soft real-time tasks, it is reason-
able that the CPU utilization of the soft processes should be decreased
more than that of the hard processes. This can be done by using elastic
scheduling [11], where a stiffness value is assigned to each process and
the scaling of period times is done in proportion to that value.

Us .
—p> {E } {.] ObS} . Ci, U
Scheduler Tasks Dispatcher

Figure 2.1: The structure of a basic feedback scheduler.
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2.3 Memory management

The oldest form of memory management is static memory management,
where the space required for all variables and data structures of the pro-
gram is allocated statically by the programmer or compiler. As with all
static techniques, this makes it easy to verify that a program will work
and requires no run-time decisions regarding memory management but
the limitations are severe when it comes to writing programs that e.g.,
build dynamic data structures depending on input.

Dynamic memory management [30, 51] overcomes these limitations by
making it possible to allocate memory at any time in the program. How-
ever, this comes at the cost of having to manage memory at run-time;
when the program wants to allocate more memory, the run-time system
must find a suitable space in memory where the requested object will
fit. As the amount of physical memory is limited, it is also necessary to
reuse the memory occupied by objects that will no longer be used. This
can be done manually, by explicitly inserting instructions to deallocate
a certain memory area (as free and delete in C/C++) in the code or
automatically by the run-time system.

There are two major problems with manual memory management;
failing to deallocate objects that will no longer be used, causing memory
leaks and deallocating objects too soon, causing dangling pointers. The
effects of the former is obvious: Failure to deallocate objects that are
no longer needed causes excessive memory usage and may cause the
system to run out of memory. The latter problem, dangling pointers, is
more insidious. It arises when one part of the program deallocates an
object, O, that is still used by another part of the program. The memory
occupied by O; may then be used to allocate a new object, Os. Then, the
situation where one part of the program modifies O; and another part
modifies O2 may arise. As both O; and O, refer to the same address,
this will result in memory corruption and failure.

The problem of determining when an object should be allocated in
order to avoid both memory leaks and dangling pointers is non-trivial
in a complex system, and rigid coding conventions and protocols for
how pointers may be passed are required. Another way to handle these
problems is to let the the run-time system keep track of when an ob-
ject is no longer reachable and can be deallocated and thereby freeing
the programmer from this complex and error-prone task. This is called
automatic memory management and the techniques used to reclaim un-
reachable objects are called garbage collection (GC). Examples of early
programming languages that use garbage collection are LISP [35] and
Simula [15].



14 2. PRELIMINARIES

2.3.1 Garbage collection

There are different approaches to implementing GC [27]. In this thesis,
we will focus on tracing collectors — collectors that traverse the reference
graph in order to determine which objects are live and which are not.
Examples are mark-sweep [35] and copying [36, 20] collectors. Another
approach to garbage collection is reference counting [14], where the idea
is to keep a count of how many references there are to each object and
reclaiming objects when the reference count reaches zero.

Most (tracing) garbage collectors need to make multiple passes in or-
der to identify the live objects and reclaim the garbage. For example,
a mark-sweep collector first scans all root pointers!, then traverses the
pointer graph starting at these roots, marking all object it encounters and
finally sweeps the heap, reclaiming the memory occupied by unmarked
objects. This can be followed by a compaction phase, where the live ob-
jects are moved to one end of the heap in order to form a contiguous area
of free memory. We call all the activities required to identify and reclaim
garbage a GC cycle. E.g., in the mark-sweep-compact case, a GC cycle
consists of root scanning, pointer traversal, sweeping and compaction.

It should be noted that during some of the phases (e.g., root scan-
ning and pointer traversal), performing GC work does not cause any
memory to be reclaimed. Thus, a generic GC model must assume that
no memory is reclaimed until at the end of the GC cycle. Compacting or
copying garbage collectors typically have this behaviour, whereas a non-
compacting mark-sweep frees memory continuously during the sweep
phase.

In the first systems with automatic memory management, the ap-
plication program (mutator) allocated memory until there was no more
free memory. Then, the mutator was suspended and the garbage col-
lector performed a full GC cycle, reclaiming the unused memory. This
is commonly known as stop the world garbage collection, as the whole
application is stopped when the garbage collector is running. Another
term is batch GC. The obvious drawback of batch GC, from a real-time
perspective, is that the GC pauses, although infrequent, may be very
long, which is unacceptable in a system with hard timing constraints.

IThe roots of the object graph are objects that are, by definition, live. The roots are
identified through root pointers — pointers located outside the garbage collected heap that
reference objects on the heap. Typical examples are pointers located in global variables or
variables on the stack.
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2.3.2 Incremental and real-time GC

Research within the field of incremental and real-time garbage collection
has been going on since the late sixties [9, 49, 50, 16, 7]. The earliest at-
tempts to implement non intrusive garbage collectors used a technique
called incremental GC. Here, the GC work is split into a number of very
small increments which can be performed interleaved with the execu-
tion of the application. In order to guarantee progress of the garbage
collector, a number of increments of GC work are performed in connec-
tion with each memory allocation request. An example of such an algo-
rithm is Baker’s algorithm [7]. Let F},;,, denote the minimum amount of
memory available for allocation during a GC cycle, a denote the amount
of memory requested, and W,,,, denote the maximum amount of GC
work (according to a given metric and corresponding unit) that might
be required to complete a GC cycle. Then, the size w of the GC work
increment that must be performed in connection with the allocation in
order to guarantee that we do not run out of memory before the GC cycle
is complete is:

a
> R
w > Winas - (2.1)

Incremental GC triggered by allocation requests has at least two ma-
jor disadvantages. Firstly, even if the overhead incurred by a single GC
increment is small, a burst of allocation requests can lead to long accu-
mulated delays. Secondly, in order to keep the cost of each GC incre-
ment within a low upper bound we might need to use a complex GC
work metric in order to decide when to end each increment, since a sim-
ple metric often gives a poor approximation of the temporal behaviour
of the garbage collector. For instance, if a metric based on measuring the
number of evacuated objects in a copying garbage collector is used , an
increment which should be short according to the metric can take a long
time to perform. The problem is that we might have to scan a significant
amount of pointers in order to find just one object to evacuate. Thus in-
creasing the performed amount of work according to the metric by one
unit may require a virtually unbounded amount of time.

Performing GC at the time of allocation does make it easy to prove
that the garbage collector will always keep up with the application, but
it also means that it suffers from the inherent problem of GC work al-
ways being performed when application threads run — thus causing
interference. The problem of GC work always being performed when
application threads run can be overcome by making the GC work con-
current, i.e. assigning the GC work to a separate GC thread executing
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in parallel with the application threads. This is a strategy applied by a
number of garbage collectors, e.g. the Appel-Ellis-Li collector [5], but
it has not been much used in real-time settings. Typically, no provision
is made for guaranteeing that the collector keeps up with the allocation
demands of the application.

In order to satisfy the demands of hard real-time systems, a tech-
nique must be found to schedule the GC work of a concurrent GC such
that the application is guaranteed to meet all of its hard deadlines. Such
a scheduling technique was presented by Henriksson in [22]. That work
focuses on embedded systems which are assumed to have a number of
high-priority (typically periodic) threads that must meet hard deadlines.
It can be observed that in most embedded systems, a relatively small
number of such threads exist. Apart from these, low-priority (periodic
or background) threads are often executing with more relaxed dead-
line requirements. This leads to the fundamental idea of Henriksson’s
work, which is as follows: Do not perform any GC work when the high-
priority threads are executing. Instead, assign the work motivated by
high-priority allocations to a separate GC thread which is run when no
high-priority thread is executing. When invoked, it performs an amount
of GC work proportional to the amount of memory allocated by the
high-priority threads. Since the garbage collector may temporarily get
behind with its work in this way, there must always be an amount of
memory reserved for the high-priority threads. Slightly modified gen-
eralized rate monotonic analysis [46] can be used both for calculating
the amount of memory which need to be reserved and to verify that
the garbage collector thread will always keep up with the high-priority
threads. Garbage collection work motivated by low-priority threads are
performed incrementally at allocation time. Since GC work is partly
performed concurrently and partly incrementally in such a system the
approach is called semi-concurrent scheduling. A system using this sched-
uling strategy can be described as having three levels of priority:

1. High priority processes
2. Garbage collection required to satisfy the high priority processes

3. Low priority processes and incremental garbage collection

Figure 2.2 shows how the CPU time will be used in a system with one
periodic high priority process and one low priority process.
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Figure 2.2: Dividing the CPU time between processes. The system consists
of one periodic high priority process (HP) and one low priority process (LP).
Whenever a high priority process is suspended, and no other HP process is
eligible for execution, the garbage collector (GC) is run. GC work is also in-
terleaved with the low priority process using traditional incremental garbage
collection.

The effect of this scheme is that it makes it possible to guarantee hard
real-time performance for threads that actually require it in a system
scheduled by a fixed-priority scheduler. Since garbage collection work
is not performed while high-priority threads run we can allow ourselves
to use a more course garbage collection work metric without affecting
real-time performance. An unnecessarily conservative metric will only
prevent low-priority threads without hard deadlines to execute as often
as they would prefer.

The approach still has some drawbacks, however. One drawback is
that it is not immediately suitable for systems with EDF schedulers. An-
other drawback is that we always have to do an amount of scheduling
analysis in order to tune the collector to a specific target platform.






CHAPTER 3

TIME-TRIGGERED GARBAGE
COLLECTION

Traditionally, incremental garbage collectors have been scheduled based
on the allocations of the application — for each unit of allocation, a corre-
sponding amount of garbage collection work is performed. In this work,
a different approach where we use time, instead of allocation, as the trig-
ger for GC work is proposed. That is, garbage collection is scheduled to
make the GC cycle finish at a certain time, rather than after a certain
amount of allocation.

In [44] the idea of time-based GC and having a fix GC cycle length
was introduced. That made it possible to determine how much memory
will be allocated during a cycle or to reserve a certain amount of mem-
ory for the next cycle while still making it possible to perform schedula-
bility analysis and give real-time guarantees on the run-time system in a
straight-forward manner. In that work, we used a hybrid approach, with
time-triggered GC that was scheduled using a traditional work metric in
a fixed-priority scheduled system.

This chapter presents time-triggered garbage collection more thor-
oughly. It is argued that time should be used as the unit for garbage
collection work and that this is practically feasible. It is shown how
the GC cycle time can be calculated in order to guarantee enough GC
progress. It is discussed how the process scheduling strategy affects a
time-triggered GC scheduler and shown how time-triggered GC can be
used to achieve the same objectives using a deadline-based scheduler as
the semi-concurrent scheduling strategy does in a fixed-priority system.
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The main areas where time-triggered garbage collection scheduling has
impact are:

Concurrent GC in deadline-based systems: In order to schedule GC in
a way that we can give real-time guarantees while still disturbing
the mutator (application) threads as little as possible in a deadline-
based system, we want to be able to schedule the GC just as any
other thread. With time-triggered GC, this property is inherent in
the model, as the only scheduling parameter is the deadline, and
we explicitly specify the deadline of each garbage collection cycle.

GC work metric concerns: A traditionally scheduled incremental GC
relies on some kind of work metric to determine whether it is in
sync with the mutator or needs to perform more GC work. There-
fore, such a GC relies on the accuracy of the metric and using a
poor metric may cause poor real-time performance. Errors caused
by a poor metric can be avoided by using the optimal GC work
metric — the actual CPU time required to complete a GC cycle.
Additionally, with time-triggered GC, the actual scheduling is in-
dependent of the work metric! and thus a poor metric does not af-
fect the real-time properties of the run-time system. This allows us
to separate the problems of schedulability analysis® and run-time
scheduling.

Bursty allocation: Applications often show bursty allocation patterns.
This means that an allocation-triggered GC would have a bursty
execution pattern. Time-triggered GC scheduling does not have
this problem as GC work is scheduled so that each GC cycle fin-
ishes before its deadline, regardless of when the application per-
forms its allocations.

Unified GC scheduling: Garbage collection schedulers based on a tra-
ditional GC work metric are tightly coupled to the actual garbage
collector implementation. By using a time-based approach to GC
scheduling, it would be possible to separate the GC scheduler from
the GC algorithm; using time as both the trigger and the GC work
metric provides a simple interface between the GC and the sched-
uler. Also, as time is easy to measure directly, time-based GC
scheduling fits very well into a feedback scheduling framework.

IThis is not the case for semi-concurrent scheduling, see Section 3.3.
2That, of course, still requires worst-case execution time analysis.
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3.1 GC cycle time calculation

With time-triggered garbage collection, there is no direct connection be-
tween the GC scheduling and the application, so the GC cycle time is the
only parameter that controls the progress of the garbage collector. Thus,
a time-triggered GC needs correct (or conservative) cycle time estimates
in order to make real-time guarantees as each garbage collection cycle
must be completed before the application runs out of memory. This sec-
tion shows how an upper bound on the GC cycle time, which guarantees
that the application never runs out of memory, can be calculated.

The following symbols will be used in this section: period time (7'),
frequency (f), heapsize (H), total amount of allocated memory on the
heap (A), amount of memory allocated during this cycle (a), free mem-
ory (F), live objects (L), floating garbage® (G), amount of memory re-
claimed this cycle (r), the set of threads (), and the allocation per period
of thread j (a;).

Lemma 1 For a set of processes, P, with frequencies f;, allocation require-
ments of a; bytes per period and F bytes of memory available at the start of the
GC cycle, an upper bound on the GC cycle time that guarantees that the cycle
will be completed before the available memory is exhausted is

- Zjel{” a;
>jer fia;

Proof A GC cycle must finish before the available memory at the start
of the cycle has been allocated. That is,

a= Z [T;C—‘ ca; < F (3.2)

JEP J

Tae < (3.1)

where the ceiling is to cover the worst case schedule. A stronger condi-
tion is

3 (T;C + 1> ca; <F (33)

jer ~ 77
Substituting f; = - we get
J

Z(TGC'fj+1>'aj =

jEP

SFloating garbage is objects that are no longer reachable by the mutator but are still
believed to be live by the collector. For example, objects that die shortly after they have
been marked will not be reclaimed until in the next GC cycle.
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ZTgc-fj'aj+Zaj =

JEP jEP
TGCij-aj—i—Zaj < F (34)
JEP jEP
Teo < _Zjeﬂ”aj
T e tiay
O

The amount of free memory needs some further discussion. Since
any incremental garbage collector suffers from the problem of floating
garbage, we must take that into account when calculating the worst case
amount of memory available at the start of a GC cycle (F,,;,). Or put
differently, we may not be able to use all the free memory during a cycle
if we want to be sure that there is also enough memory for the next
cycle as the amount of memory that is reclaimed by the garbage collector
can vary from one cycle to another due to floating garbage. Let us now
examine floating garbage in more detail.

Lemma 2 Let a™ be the amount of memory that is allocated during the nth GC
cycle and Ly, q, be the maximum amount of live memory. Then, the sum of live
memory and floating garbage at the start of cycle n + 1 satisfies the inequality

L 4+ G < Logw + 0™ (3.5)
Proof Let 0" be the net change in live memory during cycle n:
Lt =" 45" (3.6)

Let u™ be the amount of memory that becomes unreachable during cycle
n. Then,
M=ad"-u" = u'=d" - (3.7)

which gives

n+1< n._ n _ sn
an;z +§n 0 } — "l grtl<In gt (3.8)

But Vn, L™ < Lyyaq, which concludes the proof. O

In order to make hard guarantees, we must determine the maximum
amount of memory that can be allocated during a GC cycle without risk-
ing that the system runs out of memory due to floating garbage.
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Lemma 3 Let H be the heapsize and L, be the maximum amount of live
memory. Then, the maximum amount of memory that can be safely allocated
during a GC cycle is

H— Lmam
Umaz = =5 (3.9)

Proof The heap contains allocated and free memory
H=A4+F=L+G+F (3.10)

and therefore,
F=H-(L+G) (3.11)

Applying Lemma 2 to (3.11) gives that, at the start of any GC cycle,
F>H- (Lmax =+ amax) = Fnin (3.12)

Thus, the worst case occurs when L = L,,4., and the remainder of the
proof makes this assumption. Then the system has to be in steady state*
and the maximum amount of floating garbage during a worst case cycle
is

Gnmmfg = Qmaz (313)

An upper bound on the amount of memory allocated during a GC cycle
must, of course, not be greater than the minimum amount of available
memory so the trivial bound is amaz < Finin. We will now prove the
equality. Objects that are floating garbage at the start of cycle n will
have been reclaimed by the start of cycle n + 1, which means that

Frtt > gn (3.14)
The amount of available memory at the start of cycle n + 1 is
Frntl —pn g 4y (3.15)

Cycle n is a worst case cycle (F" = F,;;) iff the amount of floating
garbage at the start of the cycle is at the maximum (G = GI¥). In the
worst case, 7" = G", which corresponds to equality in (3.14). Applying
this to Equation (3.15) gives

Fn+1 = szn —a” + GWC = GWO - a” = len (316)

max max

4Le.,, for each allocated object, another object becomes unreachable.
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Consequently, we can allocate all available memory during a worst case
cycle while still guaranteeing that the amount of available memory at
the start the following cycle is no less than F,,;,. Le.,

Omaz = Fmin (317)
Finally, equations (3.12) and ( 3.17) give
_ H — Lmax
a/m(lil) - 2
(|

Because the amount of floating garbage may vary, depending on
how the execution of the application and the garbage collector are in-
terleaved, the amount of memory reclaimed will also vary from cycle to
cycle. Therefore, we cannot always allocate all of the available memory
if we want to guarantee that the system never will run out of memory.
Consequently, the length of the garbage collection cycles must be calcu-
lated based on the worst case amount of available memory.

Theorem 1 An upper bound on the GC cycle time that gquarantees that we
always will have enough memory available for allocation is

(H=Lwaz) _ Z . a;
Toe < —= S (3.18)
djer fi-aj
Proof The theorem follows from lemmas 1 and 3. O

For an example of how varying amounts of floating garbage affects
the amount of available memory, see Figure 3.1. Note that, somewhat
counter-intuitively, the dangerous case is when there is less than the
worst case amount of floating garbage, as this could lead to a situation
where we allocate too much memory if care is not taken to avoid that.

It may seem that the limit on the amount that may be allocated dur-
ing a garbage collection cycle may cause unnecessarily low memory uti-
lization but this isn’t the case; the limit on the amount of memory that
may be allocated during a GC cycle expressed in Equation (3.9) only af-
fects the cycle time calculations. It is true that in the best case (when we
have no floating garbage) at most half of the available memory is allo-
cated during a cycle, but this has nothing to do with the total memory
utilization. If the GC cycle time is reduced, the amount of allocation per
cycle — and, consequently, the maximum amount of floating garbage —
is also reduced. This means that if both high allocation rates and high
memory utilization is required, the GC cycles will be short, but as long
as Lyq. < H and there is enough CPU time to accommodate both ap-
plication and GC, the system is guaranteed to work.
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Assume that at the start of the nth GC cycle there is L., = 50%
live memory (black), G = 25 % floating garbage (dark gray) and
Frin = 25 % (white) available memory:

When the free memory has been allocated, the floating garbage and
some of the objects that died during this cycle has been marked as
garbage that will be reclaimed in this cycle (light gray) and some of
the old objects become floating:

The GC cycle is concluded (i.e., the objects that are not to be reclaimed
are compacted and a continuous area of available memory is formed):
Note that during this cycle, we reclaimed more than F,,,;,:

Therefore, we cannot use all the free memory during cycle n + 1 as
that might result in less than F,,;,, available memory in cycle n + 2.
The solution is to reserve a part of the memory (striped) so that we
only allocate a0 = Finin.

A

at the end of cycle n + 1:
[ ] A

the cycle is finished and the reserved memory is made available:

This cycle, we reclaimed less than F},,;,, but the amount of reclaimed
memory + the reserved memory = F,,;,,. Thus, the amount of avail-
able memory at the start of cycle n + 2 is F,;, and our worst case
assumptions hold.

Figure 3.1: Example of a how the amount of floating garbage may vary between
cycles and how our reservation strategy quarantees that there always will be at
least Fy,;,, available memory at the start of a cycle.
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3.2 Using time as the GC work metric

The purpose of a GC work metric is to use quantities that can be directly
measured to approximate the temporal behaviour of the garbage collec-
tor as closely as possible. However, somewhat surprisingly, the real-
time GC literature does not pay much attention to work metrics, and
is often content with using some high level abstraction, e.g., the num-
ber of “scanned objects”, to measure GC progress. Scanning the heap
is defined as doing all the GC work to complete a GC cycle. Thus, for
a multi-pass GC, like for instance a mark-sweep collector, scanning in-
volves both the mark and sweep phases. This is a way of dodging the
metric problem altogether, as it does not define which quantities that
should be measured in order to calculate the GC work.

When studying incremental garbage collectors without hard real-
time requirements, the focus is on ensuring GC progress while keeping
the average GC pause time reasonably short. In a traditional, allocation
triggered garbage collector, when garbage collection work is performed
in conjunction with each allocation and in proportion to the size of the
requested object, it is enough to prove that the metric is conservative.
Unfortunately, when applying the same incremental techniques to real-
time systems, it is not enough that the GC work metric is conservative;
if we want upper bounds on GC pause times, we must also have upper
bounds on how conservative the work metric is.

As an example, let us examine a common work metric used in copy-
ing collectors: the amount of evacuated memory. Let AB denote the
amount of evacuated memory (the position of the evacuation pointer
relative to the start of tospace) and E, 4. the maximum amount of mem-
ory that may need to be evacuated. Then, the amount of performed
work, W, and the maximum amount of work during a cycle, W, is

W = AB
Wmax = Ema:n

respectively. With that metric, computing W is trivial and so is ensuring
progress if, for each allocation, a corresponding number, according to
Equation (2.1), of objects are evacuated.

Unfortunately, this metric does not model the temporal behaviour
of the garbage collector very well. For each allocation, an amount of
garbage collection work, according to the metric, has to be performed.
However, since GC progress is measured in the amount of evacuated
objects, any GC activity that doesn’t cause new objects to be evacuated
will not be captured by the metric. For example, tracing objects that
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only contains pointers to already evacuated objects will not increase W.
In a worst case scenario, evacuating one single object may require scan-
ning all remaining objects on the heap. Thus, what seems like a small
increment under this metric may take a virtually unbounded amount of
actual CPU time to perform. This shows how this metric may, in the
worst case, cause an incremental collector to have a temporal behaviour
close to that of a batch GC and thereby rendering it unsuitable for use in
real-time systems.

This problem is described in [22], and Henriksson presents an im-
proved evacuation pointer metric which also takes scanning of objects
and roots as well as initialization of reclaimed memory into account.
The problem with such a fine-grained metric is that it is much more de-
pendent on details in both garbage collector implementation and appli-
cation, and therefore requires some amount of manual tuning in order to
give good approximations of the CPU time required to perform a certain
amount of GC work.

As the purpose of a GC work metric is to approximate the execution
time required to complete a GC cycle as closely as possible, the opti-
mal GC work metric is the actual execution time used and this is the
approach chosen here; using time as both the trigger for the garbage col-
lector and as the GC work metric (Le., the total GC work of a cycle is the
CPU time the system has to spend on performing garbage collection.) in
the actual run-time system. This has, to our knowledge, not previously
been done.

By using time as the GC work metric, the amount of performed work
can be measured directly, which eliminates all errors in the performed
work metric. The total amount of CPU time required to complete a GC
cycle, has to be calculated using standard worst case execution time
analysis techniques®. Then the GC scheduling will be independent of
both the application and GC implementation and the problems with
bursty allocation patterns and imperfect GC work metrics are avoided.
An additional advantage is that no assumptions about the GC algorithm,
implementation or application behaviour are hard-wired into the GC
work metric®.

5Note that this requirement is no restriction in relation to traditional real-time garbage
collection techniques; if we want to be able to make hard real-time guarantees, we have
to do worst case analysis. If this is not possible, it may be better to use some adaptive
technique, as described in Chapter 4.

60f course, these aspects affect the GC workload and has to be taken into account when
calculating the GC workload, but having a generic metric allows us to separate e.g., the
GC scheduler from the GC algorithm.
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Another important result of using CPU time as the GC work metric
is that the GC work calculations are made on a per cycle instead of a per
increment basis. Thus, if the W,,,,, estimates are conservative, the addi-
tional overhead will be distributed evenly across the GC cycle instead of
causing individual increments to be too long as described above. Hence,
using time as the GC work metric helps mitigate the negative effects of
using a conservative GC work metric when using an incremental GC.

Also, using execution time as the GC work metric together with time-
triggered garbage collection scheduling makes it easier to integrate the
GC scheduling with the application process scheduler, since the two
scheduling parameters, execution time and deadline, are explicit in the
model. Thus, the GC thread can be scheduled like any other thread in
EDF as well as fixed-priority systems. It also fits well into a feedback
scheduling system, as it makes the execution time requirements of the
garbage collector explicit. Finally, it has the advantage that it makes it
possible to incorporate other factors that affect the GC execution time,
but are not directly tied to the garbage collection algorithm (e.g., caches,
pipelines, etc.) into the GC work calculations and measurements.

3.3 Scheduling

This section discusses how time-triggered GC scheduling can be imple-
mented in fixed priority and deadline based systems, respectively and
how the general process scheduling policy affects the garbage collec-
tion scheduling. It also relates time-triggered GC scheduling to semi-
concurrent scheduling and handling of background tasks.

Based on the cycle time calculations presented in Section 3.1, we can
use standard scheduling techniques (e.g., RMS or EDF) and schedule
the GC as any other thread since the scheduling of individual GC in-
crements is implicit; the only real requirement is that the GC cycle has
ended and enough memory is made available before the application
runs out of memory. As the deadline is the sole scheduling parameter,
this means that the GC work calculations are only needed for schedula-
bility analysis and not for ensuring GC progress at run-time. Hence an
error in the metric alone cannot cause the GC to run too slowly, which
gives a more robust system. If the system is schedulable, the GC will
finish on time, without causing any other thread to miss its deadline.

In systems where hard real-time tasks co-exist with background tasks
without timing requirements, we want hard guarantees that the GC al-
ways will make memory available to the real-time tasks on time but we
also want to avoid unnecessary disturbance of the background tasks.
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Conversely, we want to protect the GC from the background tasks in
the sense that allocations performed by a background task must not
cause the GC to miss its deadline or fail to make enough memory avail-
able. These problems are addressed by the semi-concurrent GC sched-
uling strategy. The effects of incorporating time-triggered GC and semi-
concurrent scheduling will now be examined.

When implementing a semi-concurrent garbage collector under the
aforementioned scheduling policies, the main difference is that in a fixed
priority system we must explicitly schedule each GC increment in or-
der to spread the garbage collection overhead evenly across the cycle.
That is, each time the garbage collector is invoked, it has to determine
how long that increment should be (according to the metric used) and,
when enough work has been performed, the GC must suspend itself
until the next increment is triggered. Otherwise, the garbage collector
thread might starve low priority threads for long periods of time. In an
EDF system, the scheduling of GC increments can be left to the process
scheduler, as there are no fixed priorities and, thus, no risk of starvation.

A consequence of the requirement that the garbage collector must
determine the length of each increment is that the actual scheduling will
depend on both the cycle time and the work metric. In an EDF system,
the only scheduling parameter is the deadline, and the garbage collec-
tion thread can be scheduled like any other thread. Therefore the run-
time scheduling is independent of the work metric and worst-case anal-
ysis, which is a big advantage in practice, as worst-case analysis often is
based on measurements rather than exact analysis.

A problem with using allocation-triggered, concurrent GC in hard
real-time systems is that it is necessary to reserve a certain amount of
memory for allocations of the high priority processes. Without a safety
margin it is impossible to guarantee that schedulability will not be jeop-
ardized due to special effects near the end of GC cycles [22].

The reason that a safety margin is required is that when using fixed-
priority scheduling, the garbage collector is never allowed to interrupt a
high priority thread. Without a safety margin, the system could reach a
state when there is memory left (and, thus, the cycle not yet finished) but
not enough memory for all of the allocations of a high priority thread
during its execution. Since GC work is suspended during the execu-
tion of high priority threads, activating a high priority thread at such an
instant would cause the system to run out of memory which, in turn,
causes “panic” stop-the-world GC. Therefore it was necessary to reserve
enough memory for the worst case allocation requirements of the HP
threads during the maximum response time of the GC thread.
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With time-triggered GC, on the other hand, this would not be a prob-
lem. As the deadline of the GC thread is explicit in the model, traditional
schedulability analysis could be performed and the safety margin would
not be necessary.

3.3.1 Fixed priority scheduling

In a fixed priority system, a higher priority thread always get prece-
dence over lower priority threads. Therefore, a semi-concurrent GC
must spread the GC work evenly across the whole cycle and not do more
work in each increment than absolutely necessary, in order to avoid sub-
jecting threads that run with a lower priority than the GC thread to un-
necessary starvation and excessive jitter. Thus, some GC work metric
has to be used to determine if the garbage collector has made enough
progress.

Naturally, for a given GC cycle time, T¢ ¢, all the garbage collection
work required to complete a GC cycle has to be performed before T
seconds have elapsed. In order to ensure sufficient GC progress, the GC
scheduler should maintain the invariant

Z w > Wmaz . t— ﬁcycle start (319)
Tae

That is, the fraction of GC work performed should be greater than or
equal to the fraction of the cycle time elapsed. This corresponds to Equa-
tion (2.1) with time instead of allocations as the trigger, on the right hand
side. Scheduling garbage collection according to this invariant ensures
that progress will be made at a well-defined rate regardless of if, and
when, the application allocates memory.

3.3.2 EDF scheduling

The first property of semi-concurrent scheduling, non-intrusiveness, is
inherent in the EDF model; if the requested CPU utilization is less than
100%, all deadlines will be met.

The second property of the semi-concurrent model, isolating the high
priority threads from the low priority ones, and thus not having to do
worst-case analysis on the LP threads, can in an EDF system be achieved
by using Constant Bandwidth Servers (CBS) with the addition of a prior-
ity, or importance, attribute for the servers. Then, the HP and LP threads
in the semi-concurrent model would correspond to HP and LP servers.

In such a model, the threads running on HP servers would just do
allocations without any GC penalty, while the threads on the LP servers
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would do incremental GC at allocation time. When incremental GC is
performed due to a LP allocation, both the deadline and execution time
of the GC thread should be decreased as the memory allocation has re-
duced the amount of available memory and the incremental GC work
has brought the GC cycle closer to its finish. Moving deadlines to an
earlier point in time is, however, not allowed in an EDF system in the
general case as this causes a temporary increase in the requested CPU
utilization and might lead to missed deadlines. This could be solved by
temporarily reducing the bandwidth of the LP server with a correspond-
ing amount or, if the remaining CPU time in the LP server’s budget is
too low, delaying the allocation that would cause incremental GC work
until the next CBS period. In practice, however, this is not a problem as
the GC cycles typically are much longer than the period times of the ap-
plication threads and therefore the deadlines and/ or server bandwidths
can be adjusted at the thread release times when it is safe to do so.

Another way to make sure that the memory management overhead
never may cause the critical parts of the application to miss their dead-
lines is presented in Chapter 5. By introducing priorities for memory al-
locations, the run-time system is able to automatically prioritize memory
allocation requests (i.e., deny non-critical allocations) in order to guaran-
tee that the system will not run out of memory or become unschedulable
because of a too high GC workload. In essence, this can be viewed as di-
viding the application into critical aspects, which are guaranteed to be
executed on time and non-critical aspects, which are only executed if it
is safe to do so.

3.4 Summary

A new way of scheduling garbage collection work in real-time systems
was presented; instead of using allocation as the trigger for GC work,
time is used, and instead of ensuring that every GC cycle finishes before
all available memory has been allocated, garbage collection is scheduled
in a way that gives a fixed GC cycle time.

This approach leads to a number of desirable properties: It makes it
easy to spread the garbage collection work evenly across the GC cycle.
Consequently, a time-triggered GC does not suffer from the bursty exe-
cution pattern, due to the application performing allocations in bursts,
that an allocation-triggered GC does.

As the most important scheduling parameter, the deadline, is explicit
in the model, a time-triggered GC can be scheduled as any other pro-
cess in both fixed-priority and EDF systems with real-time requirements.
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It is shown how a GC cycle time that guarantees that the application
never runs out of memory can be calculated based on the amount of live
memory and allocation rate of the application.

The metrics used to measure garbage collection work in previous
real-time garbage collectors often fail to model the temporal behaviour
of the garbage collector which may cause poor real-time performance.
By using time as the GC work metric, such inaccuracies can be avoided,
as time can be measured directly. This also makes it suitable for use in a
feedback scheduling environment.



CHAPTER 4
ADAPTIVE GARBAGE
COLLECTION SCHEDULING

Feedback control is a good way to cope with model uncertainty, and
has successfully been used in process schedulers for real-time control
systems with non-deterministic execution times. Feedback scheduling
is very suitable for systems which changes between different operat-
ing modes with different resource utilization patterns where using worst
case assumptions would yield an unacceptably low CPU utilization. A
feedback / feed-forward system can adapt to the changing requirements
of the application and tune e.g. the period times of the threads in order
to keep the CPU utilization at a safe level while optimizing the quality
of service delivered by the system.

This chapter investigates if and how a time-triggered GC can be made
auto-tuning and how it can be incorporated in a feedback scheduling
system in order to make the memory management overhead explicit
and let the process scheduler take this into account when scheduling
the application threads. Section 4.1 gives an introduction to the problem
and motivates the work. Section 4.2 gives an overview of the proposed
architecture. In order to schedule a task, we need two parameters; its
execution time and its deadline. Section 4.3 shows how the cycle time
can be estimated and Section 4.4 discusses how the amount of CPU time
required to complete a GC cycle can be determined.

4.1 Introduction
Worst case analysis is, in the general case, difficult even for relatively

small programs and for a garbage collector it can be even harder, as the
execution time of the garbage collector not only depends on the applica-
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tion but also on the thread scheduling (which affects both how the appli-
cation and GC are interleaved and in what order memory allocations are
performed and consequently where on the heap the objects are placed.)
Furthermore, the execution time of the memory manager relies heavily
on memory performance which is a big source of non-determinism on a
modern computer system with caches, etc.

Even if worst-case analysis could be performed it may be quite pes-
simistic which leads to unacceptably low CPU utilization. Using feed-
back control, on the other hand, lets us exploit varying resource utiliza-
tion among the application threads, allowing us to achieve better overall
utilization of both CPU and memory.

Manual tuning of GC scheduling parameters is based on certain as-
sumptions about the heap usage pattern of a particular application. Tun-
ing a real-time GC thus requires a great engineering effort and is there-
fore usually only practically feasible for safety-critical, hard real-time
systems with a small number of simple processes and not for larger sys-
tems or systems with less rigorous safety requirements.

In order to achieve greater flexibility and allow a larger number of
diverse applications to run with adequate performance without requir-
ing huge engineering efforts to tune the GC, we investigate whether it is
possible to make the GC scheduler auto-tuning, which would let us run
applications with real-time performance without any a priori analysis.

We should also not forget that hard real-time guarantees are only as
good as the worst case assumptions they are based on so if the worst
case estimates are wrong the system will fail even if the scheduling al-
gorithms and GC work metrics used are correct.

Previous work on feedback scheduling and automatic identification
of (soft) real-time systems [2] has showed how self-tuning regulators can
be used to control resource allocation without a priori knowledge about
the task requirements. However, in the existing feedback scheduling
systems we are aware of the memory management overhead is either
ignored or treated implicitly as a part of the application’s execution. It
would be desirable to make the memory management overhead explicit
in the model in order to make it possible to handle it more efficiently.

The problem with GC scheduling is that the GC has to finish each
cycle before the available memory is exhausted or else it will stop-the-
world to complete the cycle, which is a bad thing for the hard real-time
tasks. Thus, care has to be taken to make sure that the GC is always given
the CPU time (or bandwidth) it needs. This implies that we cannot use
standard feedback scheduling on the garbage collection thread, as mak-
ing the GC cycles longer (to reduce the GC’s CPU utilization) may be
fatal. In the proposed approach, the deadline and CPU utilization calcu-
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lated by the GC scheduler cannot be changed by the feedback scheduler,
but it must take them into account when calculating the period times of
the application threads. This corresponds to a rigid task in [11].

Another approach to keeping the system schedulable is to limit the
memory allocation rate. This supplements the auto-tuning of the GC
by making it possible to control the allocation rates of the application
threads. This is addressed in Chapter 5.

4.2 Overview of an adaptive GC scheduler

The proposed adaptive garbage collection scheduling model consists of
two orthogonal auto-tuners; the GC cycle time (deadline) and the GC
work (execution time) estimations. The cycle time estimation is used
directly to determine the deadline of the GC thread (which is used by
the scheduler for the actual scheduling). The execution time estima-
tion is only needed if the GC is to be used in a semi-concurrent system,
where it is needed to determine the length of the increments, or in a
feedback scheduling system, where the execution time is used to per-
form the on-line schedulability analysis required to guarantee that the
system remains schedulable.

Figure 4.1 shows a block diagram of the cycle time and execution
time estimation. In the cycle time estimation, we use a black-box view on
the application; the estimates do not depend on any information about
the application other than the allocation rate, which can be measured
directly!. The state of the memory manager, on the other hand, is quite
important for the execution time estimation and might therefore be nec-
essary to take into account, either through manual or automatic tun-
ing. Section 4.4 discusses both a black box and a clear box approach to
garbage collection work estimation.

Figure 4.2 shows how the garbage collection scheduler fits into a gen-
eral feedback scheduling system. The GC thread is scheduled as a nor-
mal application thread, but with the important difference that it is al-
lowed to set its own deadline whereas the feedback scheduler changes
the application threads’ deadlines in order to optimize CPU utilization.
As mentioned, the special treatment of the GC thread is necessary since
the GC will stop all application threads if the system runs out of memory
and that must be avoided as it leads to long GC pauses and unacceptable
real-time performance.

1A clear-box approach is discussed briefly in Section 7.1.
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Figure 4.1: Block diagram of an adaptive GC. Based on measurements of the
amount of available memory, the allocation rate of the application, the heap state
and the previous execution of GC, the cycle time and execution time of the GC

is estimated.
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Figure 4.2: Feedback scheduling of both application tasks and GC. The GC
task issues jobs which are dispatched just as any other jobs. The only difference
between the GC task and the application tasks is that the GC is allowed to set
its own period time while the feedback scheduler changes the application tasks’
period times in order to keep U < Ug,.
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4.3 Automatic GC cycle time estimation

As we have seen, the GC cycle length can be calculated at design-time
based on the allocation requirements of the high priority threads. If this
is not practical for some reason (for instance that the application’s ex-
ecution pattern varies greatly depending on operating mode or that it
should be run on many different platforms and we do not want to do
analysis for all possible target platforms or even know which platform
it will run on) or if we want the GC scheduler to be completely transpar-
ent to the developer we have to use some adaptive technique to measure
and control the GC scheduling parameters on-line.

A very simple model is to measure or estimate the allocation rate (a)
of the application. We can then calculate at which time all the currently
remaining free memory (F) will have been allocated — the GC cycle’s
deadline.

F
Tremaining this cycle — E (41)

which, T¢iqpseq seconds into the GC cycle, gives the cycle time

F
TGC = Z + Telapsed (42)

As memory allocations typically are bursty, the measurement of the
allocation rate may need to be low-pass filtered in some way to keep
the deadline estimates more stable, which in turn helps to reduce the
update frequency for the scheduling parameters. However, we must
never underestimate the allocation rate, as this might lead to an out-of-
memory situation. Therefore, we must react quickly to actual changes
in allocation rate while avoiding chatter due to bursty allocations.

The simple model of Equation (4.2) performs well if roughly the same
amount of memory is reclaimed in each GC cycle but it suffers from
the same problems with floating garbage as described in Section 3.1 al-
though the symptoms are a bit different. In the fixed deadline case, the
system might run out of memory if the GC cycle time was too long. In
an adaptive system, the cycle time will be tuned to ensure that this does
not happen so the problem in this case is that the system might become
unschedulable.

One example of this that we encountered in our experiments with
this simple model is that if there, for some reason, is much floating
garbage during one cycle, little memory will be reclaimed during that
cycle. Then, the following cycle will have to be very short and we get
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a memory trace like the one shown in Figure 4.3. This could cause real-
time problems since the required CPU utilization of the GC will be much
higher during the short cycles than during the long ones, as the amount
of GC work is roughly the same? in all cycles, but it has to be done in a
much shorter time in the short cycles.

Free memory

Time

Figure 4.3: Example of a very short GC cycle caused by large amounts of
floating garbage.

In order to handle the worst case amount of floating garbage, we
need to reserve memory so that the allocations during the next cycle can
be satisfied even if no objects are reclaimed during the current cycle. Let
a be the estimated allocation rate and a"*** be the allocation rate for the
next cycle. Then T - a"** will be allocated during the next GC cycle
and we get

R F _ T ac - dnezt
TGC = - - + Telapsed (43)
a
F+ (Al : Telapsed

& + gnewt
If we assume that the mutator will continue at the measured allocation
rate, i.e,, a"**" = q, we get

— TGC = (44)

. 1 /F
TGC = 5 <T + Telapsed> (45)
a

which is the adaptive equivalent to Equation (3.18). If the allocation
rate is constant, this means that we should reserve half of the available

20f course, this depends on the garbage collection algorithm as well as on implemen-
tation details. However, the execution time of a garbage collector typically depends on
both the amount of retained and reclaimed memory. Even algorithms where there is no
explicit free operation, like for instance a copying collector, have a fraction of the cost that
is proportional to the amount of reclaimed memory if, e.g., the initialization of memory is
taken into account.
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memory at the start of the current cycle for the allocations during the
next GC cycle. Doing so guaran’cees3 that we can handle the worst case,
when all the objects that die during a cycle becomes floating garbage and
will not be reclaimed until at the end of the next GC cycle. Figure 4.4
shows how the memory trace of the floating garbage example would
look with the reservation strategy in place; the cycles are shorter and the
floating garbage anomaly in the first cycle has much less impact on the
GC cycle lengths.

As we shorten the GC cycles, the number of GC cycles increase and
consequently the incurred GC overhead increases. However, as we do
not use all of the heap, the additional overhead is not as big as it would
seem.

Free memory

Time

Figure 4.4: Example of how reserving memory for the next cycle mitigates the
problems of floating garbage depicted in Figure 4.3.

Only allocating at most half of the available memory each GC cy-
cle might seem wasteful, but this is the price we pay for incrementality.
Note that this reservation strategy only affects the length of the GC cy-
cles and not the overall memory utilization. If, for instance, the amount
of allocated memory is 80% of the heap, the GC cycle length would be
set so that 10% of the total memory is reserved for the next cycle.

It should also be noted that a copying collector [7] by design has
the property of reserving a part of the available memory for the next
cycle so this is only a concern with mark-sweep type collectors and it
is not a problem to implement a mark-sweep collector so that it only
makes memory available at the GC cycle boundaries. There also exist
mark-sweep type algorithms with more than one allocation area that, by
design, have this behaviour (e.g., Bengtsson’s [8]).

3Given, of course, that the total amount of live memory is smaller than the heap-size.
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44 GC workload estimation

As discussed in Chapter 3, using semi-concurrent GC in a fixed-priority
system requires good estimates on the total amount of GC work that
must be performed to complete a GC cycle as the scheduling of the in-
crements depend on it. Also, in feedback scheduling systems, online
schedulability analysis is performed and some technique is used to limit
the maximum allowed CPU time utilization of the application threads
if the total requested CPU utilization is too large. Therefore, in such
systems, it must be possible to determine how much CPU time that is
required in order to complete a GC cycle. This section discusses how
the execution time required to complete a GC cycle, given a certain heap
state, can be estimated at run time.

It is important that the GC work estimates are not too low since this
might cause us to allocate too large a fraction of the CPU time to the
application threads, causing the GC thread to miss its deadline, which
might, in turn, cause an out-of-memory situation and stop-the-world
GC. The estimates should also not be too high in order to avoid un-
necessarily low CPU utilization and undue disturbance of low priority
threads.

When implementing the estimation, one can choose either a black or
clear box approach. A black box model doesn’t require any information
of the internals of the memory manager and only tries to predict the
future execution times based on the history. This has the advantages
that it is fairly easy to implement and that it, by design, is independent
of the actual garbage collector used.

The drawback is that it cannot take advantage of any information
the memory manager has about application behaviour or system state
and thus will react poorly to transients. That could be handled by intro-
ducing feed-forward of mode changes. That is, the applications could
inform the memory manager that they are about to change their mem-
ory allocation rate which would allow the GC scheduler to change its
GC work estimates to avoid adverse effects at the transients.

The clear box approach requires a more detailed interface between
the GC scheduler and the memory management system as well as a dy-
namic model of the memory system. We want to be able to measure as
many parameters (live memory, dead memory, number of live objects,
etc) as possible on the heap and find how each of these parameters affect
the execution time of the GC using some automatic system identification
technique. We also want to take the application behaviour into account
by e.g. measuring the allocation rate.
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In order to estimate the amount of CPU time required to perform the
GC work that needs to be performed in order to finish a GC cycle, there
are a number of problems; we need to

Measure or estimate the heap state: In its most simple form, we only
measure the amount of available memory. However, to obtain bet-
ter estimates, the amount of live memory, dead objects and other
quantities that affect the execution time of the GC (e.g., the num-
ber of pointers that need to be traversed, the number of objects that
will be relocated, etc.) must be determined, either through direct
measurements, calculations, or feedback control.

Estimate the accumulated GC workload: Based on the heap state, we
must estimate how much GC work needs to be performed in or-
der to complete a GC cycle on the heap in its current state. For an
empty heap, the accumulated GC workload is zero, and the accu-
mulated workload increases monotonously, due to allocations and
pointer updates.

Measure the amount of performed GC work: This can be done in a
quite straight-forward manner if we use time as the GC work met-
ric, provided that we have control over the process scheduler and
have access to a high resolution timer.

Estimate the total amount of GC work in a cycle: Finally, based on the
other estimates, the total amount of work required to complete a
GC cycle is estimated.

4.4.1 Estimating accumulated GC workload

This section discusses measuring and estimating the amount of garbage
collection work, W, that has to be performed given the heap state at
a certain instant. The accumulated GC workload at time ¢, W, is the
amount of work the garbage collector would have to do if a new GC cy-
cle was started at time ¢ and the GC was allowed to run exclusively until
it had finished that cycle. By definition, W will increase monotonously
during the GC cycle (due to object allocations and pointer updates), and
we will use the rate at which TV increases to estimate the total amount of
GC work that will have to be performed to complete this cycle.
The GC work can be expressed as a function of the state of the heap

W = f(Sh). (4.6)
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It is not practically feasible to use the state of the heap per se when
calculating the amount of GC work and therefore an abstract model is
required. Objects allocated on the heap are either live or dead, which
leads us to the following abstract representation of the heap state:

# GC roots
# allocated objects
# allocated bytes
Sy = # live objects 4.7)
# live bytes
# dead objects
# dead bytes

The main factor this model fails to capture is the actual placement of the
objects on the heap. The placement of objects affect the GC workload
since it affects which objects needs to be moved in a compacting collector
or the degree of fragmentation in a non-moving GC. However, taking
object placement into account would essentially mean using the entire
heap itself as the heap state representation.

It is reasonable to approximate the work required to perform a GC
cycle with a linear combination of the components of S;,. For instance,
the time required to scan root pointers is proportional to the number
of roots, the time required to mark all objects are proportional to the
amount of live objects, etc. Thus, the GC workload can be expressed as

W =AS5, (4.8)

for some matrix A. We can then identify the coefficients of A using some
numerical method like least square approximation.

When we have identified the function f, or the identified coefficient
matrix A, the GC work estimate only depends on the heap state, and
not on any internal state of the GC. This facilitates the development of a
well-defined interface between the memory manager and the GC sched-
uler, which makes it possible to separate the two problems and, hence,
implement a generic GC scheduler that can be tuned to fit different GC
algorithms.

This identification requires quite a lot of computation, so it is not fea-
sible to do the full identification at each sample. However, the problem
can be divided into two parts: GC algorithm (implementation) depen-
dent and application dependent factors. The former does not change
rapidly during execution, whereas the latter may do so, e.g. at mode
changes. Thus, a cascade structure can be used: The more demanding
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optimization problem of identification of the GC implementation depen-
dent parameters can be solved either ahead-of-time or in a background
process while the inner loop that handles the application dependent dy-
namics can be made much simpler and thus run at a higher rate.

One way to make the inner loop simple is to identify two aspects
of the GC work and then express the total amount of work as a linear
combination of those two terms.

W = aW,+(1-a)W, (4.9)
W, = A, Sh (4.10)
W, = A, S, (4.11)

The inner loop then only has to estimate one parameter, o, which can
be done using some simple filtering. The outer loop, that has to find
the matrices A, and A, requires much more computation, but can be
run at a much lower rate. It is also possible to do the identification of
the GC implementation dependent parameters ahead of time and not
at run-time. Figure 4.5 shows a block diagram of the described auto-
tuner. The estimation of the GC cycle execution time (Cac) is described
in Section 4.4.2.

Ccc,Sh
GC identification
Cac .
Application
identification Az, Ay
| o
Execution time Wace —
GC/Scheduler < estimation Wao=aWo+(1—a)W, W=A S,
Cac W, Wy
{Sn}

Figure 4.5: GC work estimation. The application dependent dynamics are cap-
tured by the inner loop which estimates the parameter « using simple filtering
and is run at a high rate. The GC implementation dependent matrices A, and
A, are identified using some numerical optimization method which requires
more computation but can be run at a lower rate.
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For example, in a mark-sweep collector the GC work could be di-
vided into two phases, mark and sweep. The total amount of GC work
required to complete a cycle can then be written

W =oa- - Wnhark + (1 - Oé) : Wsweep (412)

with
Wnark = Amark Sh (413)

and
Wsweep = Asweep Sh (414)

The division into phases (e.g., mark and sweep) is common when cal-
culating the amount of GC work using some traditional, ad hoc, metric
and fits naturally with the operation of the garbage collector. However,
that may not be the best way to capture the variations of the application.
Perhaps a division into Wy;,. (the part of work that is due to live objects,
e.g. tracing and moving) and Wy..q (e.g., freeing, coalescing, memory
initialization, etc.) is better as that more directly reflects the variations in
the application which affect the GC workload.

Another division may be into Wy;.. (part of work proportional to the
amount, in bytes, of the allocated memory) and W,,ymper (part of work
proportional to the number of allocated objects). The rationale behind
that division is that e.g., the time spent moving objects is proportional
to the number of bytes that has to be moved, but that the time spent
marking the object graph is proportional to the number of live objects
rather than their size.

Of course, for any approximative model there is a pathological ex-
ample which breaks that model, but by using feedback control we can
achieve a greater degree of tolerance to model error.

While the proposed division of garbage collection work into two
terms, W, and W, makes it possible to perform the identification of the
application dependent dynamics by estimating a single parameter, «,
it is still an open problem how the aspects = and y should be selected.
More studies are required and experiments with different partitionings
has to be carried out.

4.4.2 Estimating total GC work

Now we need to put it all together in order to estimate the total amount
of work required to complete a GC cycle. One way of doing this is to use
feedback control with a (time-variant) PD-controller.

By looking at 44 (the rate at which the GC work increases) and 4
(the rate at which GC work is performed), it is possible to extrapolate
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1) how much work that will need to be performed to complete the cycle
and 2) how much that actually will have been performed at the end of
the cycle if continuing at the current rate. If it is found that the GC will
not be finished in time, the GC work estimate (C) is increased with the
difference (e). If GC is performed at too fast a rate, the work estimate is
decreased correspondingly.

This can be expressed more formally as follows: At some point dur-
ing a GC cycle, at time ¢; (t; < t < t., where t, is the start time of this GC
cycle, and t. is the finish time.) the amount of work that needs to, and
has been performed, respectively, at the end of the cycle is

dw
We = Wi + tremain—; (415)
dt
dC
e — remain 35 4.16
C.=0Cs+t o (4.16)
tremain - te - t; (417)
Then, the GC work estimate is
C=C+K-B-e (4.18)
where
€= We - Ce (419)
and
| Bup ife>0
p= { Biown Otherwise (4.20)

The scaling by £ is used to obtain good adaptive behaviour. Since we
want to avoid underestimating the amount of GC work, the estimate is
increased faster than it may decrease for a given error. Figure 4.6 shows
how the estimation error e in Equation (4.19) is defined.

Figure 4.7 shows a simulation of the C' estimation. Notice the step at
t = 3200 and how the feedback handles it; the execution time estimation
is increased at a faster rate than it is decreased. Therefore, a step causes
the GC to overestimate the work, and thus to perform more GC work
than necessary, leading to a premature finish of the GC cycle. This may
cause the GC to temporarily starve low priority processes, but ensures
that the high priority processes will not be affected (i.e., the GC cycle
will finish on time and stop-the-world panic GC will be avoided.) In this
example we assume that the GC increments are scheduled according to
Equation (3.19). The results would be the same if using earliest deadline
first scheduling with CBS and the CPU utilization was 100%.
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GC cycle
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Figure 4.6: Calculation of GC work estimation error by using 4
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extrapolate the values of W and C' at the end of the GC cycle. In this example,
garbage collection is performed at too slow a rate, and the GC work estimation,
C, has to be increased.
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Figure 4.7: Simulation of the GC work estimation. The estimated GC cy-
cle work, C is the dash-dotted line. The dashed line is the accumulated GC
workload (W) and the solid line is performed GC work (C). The GC work is

scheduled based on C.
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4.5 Summary

An approach to making a time-triggered garbage collection scheduler
auto-tuning based on the observation that we need to estimate the two
scheduling parameters deadline and execution time was presented. It
was argued that the two problems are orthogonal and techniques for
both estimations were proposed and discussed. When using an EDF
scheduler, only the deadline estimation is required, and it was found
that this can be implemented in a straight-forward way with adequate
real-time performance.

The cycle time estimation is based on simply measuring the current
allocation rate and, based on this allocation rate, calculating when the
currently available memory will have been used up. In order to handle
varying amounts of floating garbage, a strategy to reserve a portion of
the memory for the allocations of the following GC cycle. Experiments*
support the feasibility of this approach.

The execution time estimation is more demanding, and particularly
to estimate the current GC workload is still an open problem. More
studies on how to express the GC work and how to factor the GC work
into different phases or aspects have to be carried out.

Given an estimate of the current GC workload, the total work re-
quired to complete a GC cycle can be estimated by using feedback con-
trol, and simulations support the feasibility of this approach. However,
this is preliminary results and the adaptive techniques used in the sim-
ulation are quite simplistic, so more work is required.

“Experimental verification of the adaptive GC cycle length calculations is presented in
Section 6.2.






CHAPTER 5
PRIORITIES FOR MEMORY
ALLOCATION

This chapter presents a novel approach of applying priorities' to mem-
ory allocation and it is shown how this can be used to enhance the ro-
bustness of real-time applications. The proposed mechanisms can also
be used to increase performance of systems with automatic memory
management by limiting the amount of garbage collection work.

A way of introducing priorities for memory allocation in a Java sys-
tem without making any changes to the syntax of the language is also
proposed and this has been implemented in an experimental Java virtual
machine and verified in an automatic control application.

5.1 Introduction

With the recent development in small, cheap and fast processors for em-
bedded systems and the emerging trend of writing embedded applica-
tions in high level object oriented languages, the performance limiting
bottleneck may no longer be CPU time but rather memory and memory
management. This is accentuated by the high relative cost of memory in
embedded systems and systems on chip.

Memory management is a system-global problem and currently puts
a great responsibility on programmers. For instance, a memory leak or
excessive memory allocation in one module, or component, of a system
will eventually cause the entire system to run out of memory and fail.
Therefore it is interesting to study whether it is possible to apply priori-
ties to memory as well as CPU time allocation; just as we don’t want an

1Here, we use the words “memory priority” in a sense that may correspond better to
the RTS] notion of “importance” than the real-time sense of the word priority.
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important process to be delayed because a less important one is execut-
ing we don’t want an unimportant memory allocation to cause a critical
process to fail or be delayed, because the system runs out of memory or
has to do a large amount of garbage collection work to satisfy its alloca-
tion needs.

Therefore, a novel approach is proposed which addresses two prob-
lems: firstly, how to increase program robustness by avoiding out-of-
memory problems and secondly, how to increase application perfor-
mance in systems with automatic memory management by reducing the
garbage collection workload. Section 5.2 briefly describes both aspects,
whereas the rest of the chapter will focus on the robustness issue.

While this chapter focuses on object oriented systems with garbage
collection, especially Java, the robustness issues should be equally ap-
plicable to any memory allocator.

A note on terminology; in order to avoid confusion we will use the
terms high priority (HP) and low priority (LP) to denote the CPU time
priority of a process and the terms critical and non-critical (NC) for our
new notion of priorities for memory allocations.

5.2 Applying priorities to memory allocations

It is desirable to be able to view memory allocation as any other resource
allocation. The goal of this work is to provide run-time system support
for doing the most important memory allocation if the system has lim-
ited memory in analogy with how the process scheduler makes sure that
the most important process is run and less important ones are delayed if
CPU time is scarce.

5.2.1 Avoiding out-of-memory situations

Ahigh priority process in an embedded system may perform other tasks?
in addition to its core functionality. For example, a digital controller pro-
cess may produce log data in addition to calculating and outputting its
control signal. In such a process, memory allocations by the less impor-
tant tasks (e.g., producing log data) must never interfere with the core
functionality (calculating the control signal).

This can be achieved by manually ensuring that the amount of log
data never exceeds a certain value, e.g., by using a bounded buffer for

2The word task is used in the sense “a piece of work to be done” and not in the real-time
programming sense. For the latter, the words process and thread are used.
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delivering it to the logger process. Doing this manually has the draw-
back that the size of the buffer has to be calculated and this calcula-
tion is highly platform and application dependent. (Le., each time a
change that affects the application’s memory allocation behaviour or the
amount of memory available to the application is made, the maximum
amount of non-critical memory has to be recalculated.) If more than one
process does unrelated non-critical memory allocations, the complexity
of managing this increases rapidly. Thus, manual solutions require a lot
of work and risk being unnecessarily conservative, error prone, or both.

The proposed approach to this problem is to transfer the responsibil-
ity for making the decisions about when to allow non-critical memory
allocations from the programmer to the run time system. Then, the only
a priori calculation that has to be done is to calculate the amount of criti-
cal allocations done by each (high priority) process during its period and
this depends only on the application and not on target platform proper-
ties like memory size.

This approach can also be used to provide a “limp home” mode, i.e.,
a mode of operation with lesser performance but radically lower mem-
ory consumption that will allow the application to continue executing
in an out of memory situation, facilitating a more graceful degradation.
This may be useful for adding some amount of predictability to applica-
tions with non-predictable memory requirements.

Finally, non-critical memory allocation gives programmers the pos-
sibility to add more features to a system without risking that these ad-
ditions cause the system to run out of memory and jeopardize the core
functionality of the system even if it is moved to a smaller platform. E.g.,
a low priority process with only non-critical memory allocations cannot
cause a system to fail since, if the CPU load is dangerously high it will
not get any CPU time and if the amount of memory is too low, it will not
be allowed to allocate any memory.

This also has the advantage that it makes it easier to make hard real-
time guarantees since worst case and schedulability analysis only has to
be done on the critical parts of the system. Such analysis still has to be
done using existing techniques [28, 46, 39].

5.2.2 Improving performance by reducing GC work

Another reason to limit non-critical memory allocations is to reduce the
amount of garbage collection work needed and thereby increasing the
amount of CPU time available to the application. This can, in turn, im-
prove the application’s performance by, e.g., allowing more advanced
algorithms to be used.
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Furthermore, in a real-time GC system, such as the one devised by
Henriksson [22], additional memory allocations done by a high priority
process may cause starvation of low priority processes; either directly,
through increased execution time, or indirectly, due to the increase in
GC work caused by these allocations (since the garbage collector for the
high priority processes run at a higher priority than the system’s low
priority processes). In complex systems, however, the LP process may
be more important for good system performance than a secondary task
of the high priority process.

By using priorities for memory allocations, the application may be
written so that, if the system runs low on memory, the primary tasks of
both the HP and the LP processes are performed, but the less important
task of the HP process is not. Hence, for the quality of service of the
system, performance can be tuned in a more flexible and appropriate
manner.

5.3 Non-critical allocations

The semi-concurrent garbage collection scheduling model introduces a
special garbage collection scheduling for the high priority processes in
order to guarantee that they are never delayed. Here, this is taken one
step further by also considering the behaviour of the memory alloca-
tor and the risk of running out of memory, due to, for instance, unpre-
dictable application behaviour or even wrong worst case estimates. This
is done by introducing the notion of non-critical memory allocation re-
quests, i.e., requests for memory that the run-time system may choose to
deny without causing the program to fail.

Ultimately, what we want to do is to keep the amount of live non-
critically allocated memory below a certain limit in order to make guar-
antees that critical allocations never will fail. Unfortunately, live mem-
ory amount is not a very suitable measurement, since keeping track of
this is not always practically possible.

Particularly, in automatically managed memory systems, where we
have the problem with floating garbage®, there is no real way of knowing
how much live memory there is in the system. The only factor we can
be sure of is the amount of memory available for allocation, so we need
to base our decisions on that.

3Floating garbage is memory that is no longer reachable from the application but has
not yet been reclaimed by the garbage collector.
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5.3.1 Non-critical allocation limit

The decision whether to grant or deny a non-critical memory allocation
request has to be as simple as possible if it is to be used in high per-
formance applications. That is accomplished by introducing an alloca-
tion limit for non-critical allocations; if there is less free, or allocatable®,
memory than this limit, no non-critical allocations may be done. This
limit will vary over time; at the start of a GC cycle, we have to reserve
memory for all the (critical) HP memory allocations needed during this
GC cycle and then, as the HP process runs and does its allocations, the
amount of reserved memory is reduced accordingly. Figure 5.1 shows
schematically how the amount of allocated, reserved and free memory
varies over a GC cycle.

When deciding whether to grant or deny a non-critical memory re-
quest, we look at how much allocatable memory there is, and how much
memory we need to reserve for the HP process so that all its remaining
memory allocations during this GC cycle will succeed. Let n be the num-
ber of HP periods in a GC cycle, and m  p the amount of critical memory
allocated during each period by the HP process. Then, i HP periods into
a GC cycle we need to reserve Ry p, = (n— i) mpy p bytes for the remain-
ing HP periods during this GC cycle. Non-critical memory allocations
should only be allowed if they won’t cause the amount of allocatable
memory to drop below Ry p.

5.3.2 Fixed GC cycle length

In order to be able to guarantee that the HP process always will get the
memory it requests, we need to make sure that the GC always keeps up
with the application. Le., after each invocation of an HP process, the GC
must do enough GC work so that all the allocations during the next HP
process invocation will succeed. Given the amount of memory allocated
by the HP process each period and the amount of memory reserved for
HP allocations, we can calculate the GC cycle time expressed in number
of HP process periods. We call this time the nominal GC cycle time.

To ensure that no HP allocation fails, we need to complete each GC
cycle within this time, even if the actual amount of allocations done dur-
ing the current GC cycle are less than the worst case. Otherwise, the

* Allocatable memory is memory that is immediately available for allocation. We prefer
the term allocatable memory to free memory since, depending on the memory allocator
or garbage collection algorithm used, the term free memory may be difficult to define or
even irrelevant. E.g., in a non-compacting system, the amount of free memory may be
much larger than the amount of allocatable memory due to fragmentation.
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Figure 5.1: Schematic illustration of the limit for non-critical allocations. The
dotted lines indicate the times where the non-critical limit is equal to the amount
of allocatable memory, i.e., when the system starts to deny non-critical alloca-
tion requests.
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situation may arise that there is allocatable memory left, but not enough
for another complete HP process invocation. If a HP process is started
at that time, it will require more memory than currently available and
thus, that HP process will be delayed by panic garbage collection.

5.4 Detailed description

This section describes the suggested approach in more detail. We dis-
cuss how the garbage collection cycle length can be calculated, how the
decisions about when to deny non-critical memory allocation requests
are taken, how the scheduling can be done and finally we give an exam-
ple of how such a system may work.

5.4.1 Calculating the GC cycle length

Since we want to be able to make guarantees that the application never
will run out of memory while still having hard real time constraints, we
need a simple model so that we can make e.g., schedulability analysis.
This is done by using a fixed GC cycle time which is calculated at appli-
cation design-time.

The GC cycle time, the allocation rate of the HP process and the
amount of memory available for non-critical allocation all affect each
other and there are several ways to calculate the cycle length. One ap-
proach is to define how much memory should be reserved for HP alloca-
tions each GC cycle, My p. If the HP process allocates m g p each period
we get the GC cycle length expressed in HP periods:

Mpp

mpp

Tec =n-Tup; n= (5.1)
Here, the GC cycle length will be the same regardless of how much total
memory the system has and changes to the amount of memory will only
affect how much non-critical allocation that can be made.

Another way is to define the ratio of memory reserved for HP pro-
cesses to non-critical memory. This has the advantage that the appli-
cation will behave in the same way, with respect to non-critical alloca-
tions, independent of how much memory the system it’s running on
has. This is preferable since while non-critical allocation cannot cause
an out of memory situation, they add to the amount of GC work that
has to be done and thus affect the schedulability analysis. Using the ra-
tio of critical to non-critical memory instead of a fixed amount for one of
the quantities has the property that the (amortized) amount of GC work
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per allocated object is independent of the total size of the memory —
the memory size only affects the length of the GC cycles. Thus, this ap-
proach reduces the platform dependency of the schedulability analysis.

5.4.2 Live memory and floating garbage

In all calculations we must account for the amount of memory that lives
across GC cycle boundaries and floating garbage that may exist in the
worst case. This can be viewed as a reduction of the (usable) heap size
with a constant. If this isn’t taken into account, there will be less avail-
able memory at the start of each GC cycle than we have calculated with
and the application will run out of memory.

Less obviously, it is also a problem if there is more allocatable memory
at the start of a GC cycle than in the worst case, since this leads to the
amount of memory available for non-critical allocations becoming too
large, which could cause problems later. Therefore, we need to compen-
sate for this, so that we always assume the worst case (i.e., we reserve
a portion of memory to allow the amount of live memory or floating
garbage to increase in the future).

With this taken into consideration, the least amount of free mem-
ory required for non-critical allocations during period ¢ can now be ex-
pressed as

Lyc, = (n—i)mup + f(Astart,C) ;1 <i<n (5.2)

where A, is the amount of allocated memory at the start of this cycle,
C the maximum amount of live and floating objects, and

- ) < 3
fan={ 47" LSy 5.3

5.4.3 GC for the low priority processes

When we add LP processes to the system, they will also allocate mem-
ory but the GC work corresponding to their allocations will be done at
allocation time using traditional incremental GC. When LP allocations
are done, the actual GC cycle time will be less than the nominal cycle
time. In a traditional incremental garbage collector, this happens natu-
rally; the extra GC work done by the LP process advances the current
GC cycle.

In our system where GC work is triggered by time, however, we have
to explicitly shorten the current GC cycle. Furthermore, the new, shorter
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cycle time still has to be a whole number of HP process periods to ensure
that there always is enough allocatable memory for one full HP process
invocation. This is done by decreasing the current cycle time by | HP

periods, where
I = [ Arp W (5.4)

mpgp

and Aprp is the amount of memory allocated by the low priority pro-
cesses. Thus, if the nominal GC cycle length is n HP periods, the effec-
tive GC cycle length due to LP memory allocations will be n’ HP periods,
where n’ =n — 1.

Note that this should only affect the effective GC cycle length (i.e.,
the scheduling) and not the NC limit calculations. If we were to adjust
the NC limit accordingly when the GC cycle was shortened, it would
be possible for non-critical allocations in a HP process to “steal” the GC
work done for a critical allocation in a LP process, and that is not what
we want.

On the other hand, we do need to change the NC limit due to the
actual LP allocations made, because if we don’t, we would effectively
reduce the amount of memory available for NC allocations. This may
seem counter-intuitive but bear in mind that the purpose of the NC limit
is to limit the amount of non-critical allocations and has nothing to do
with controlling the critical allocations in the low priority processes.

As described above, when an allocation is made in a LP process, the
corresponding GC work is done incrementally and the GC cycle is short-
ened so that there still will be memory for a whole number of HP process
activations. Also, when a LP allocation is done, the amount of allocat-
able memory is decreased and in order to maintain the same amount of
memory available to non critical allocations we have to reduce the NC
limit with the same amount as the size of the LP allocation.

If we have allocated A, p bytes of memory in the LP processes during
this GC cycle, the NC limit can be written

Lyc, = (n—i)mup + f(Astart,C) — ALp (5.5)

5.4.4 Non-critical limit calculations in the real world.

In all the previous calculations in this chapter, we have assumed that a
GC cycle can easily be divided into a number of HP process periods and
that the memory allocations of each period are done instantaneously at
the start of the period. This model is well suited for reasoning about
systems and off-line analysis but doesn’t lend itself well to actual imple-
mentation.
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In real systems, the high priority processes often have different pe-
riod times, and real programs do allocations more or less sporadically
during their execution rather than at the start of a well defined period.
For these reasons, among others, a NC limit based on the number of
elapsed HP periods is not a very practical one for run-time calculations.
Instead, we will use the following algorithm:

o At the start of each GC cycle, the amount of memory needed by all
the critical allocations by HP processes is calculated®. This is the
amount of memory reserved for HP allocations (compensated for
floating garbage, etc), Ryp = Mup + f(Astart, C)

e Whenever a critical HP allocation is done, Ry p is decreased by the
size of the allocated object. When an allocation is done by a low
priority process, Arp is increased. The non-critical limit is then
updated; LNC = RHP — ALP-

e If the amount of allocatable memory is less than or equal to Lyc,
non-critical allocation requests will be denied.

This way, the NC limit will always be correct, regardless of how much
memory the HP processes actually allocates and at what time during
their execution they perform the allocations.

Another implementation issue is that our calculations assume that
the garbage collector only frees memory at the very end of each GC cy-
cle. This simplifies the non-critical limit calculations as each cycle can be
viewed independently but when implementing support for non-critical
allocations, care must be taken to assure that this assumption holds.

Mark-sweep collectors, of course needs some attention as they, by
nature, free memory continuously during the sweep phase. A copying
collector has this behaviour in principle, but still might have to be mod-
ified; it does free all memory after the last object has been moved, but
this could happen before the full GC cycle time has elapsed.

Thus, in any case the memory manager must be designed so that it
does not make any memory available to the allocator until at the start of
the next GC cycle. Otherwise, too many non-critical allocations might
be allowed in the current cycle, which might cause problems later. This
also means that if the GC work metric is conservative and the garbage
collector finishes early, the freed memory should not be made available
to the allocator until at the start of the next cycle.

5The actual calculation of the worst-case memory requirements for each process could
be done either manually or at compile time. Another possibility for soft real time systems
is that it could be estimated by the run-time system based on measurements from previous
GC cycles.
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5.4.5 Time-based GC scheduling

Traditionally, incremental garbage collectors have been implemented so
that GC work has been triggered by memory allocation, and done in
proportion to the amount of allocated memory. Le., when half of the
memory available at the start of the cycle has been allocated, half of the
GC work required to complete the cycle has been done and when all the
memory has been allocated the GC cycle is completed.

That approach to GC scheduling is does not fit well into a system
with non-critical allocations. The problem is that it may cause low mem-
ory utilization; If the application does less critical allocations than its
worst case the GC cycle will be longer. The limit for non-critical alloca-
tions, on the other hand, is not affected, so when the amount of allocat-
able memory reaches the non-critical limit, no more non-critical alloca-
tions are allowed during that GC cycle. Thus, the less critical memory
the application allocates, the longer the GC cycle gets and the less non-
critical allocations are allowed, which is not what we want.

Therefore, we use time, rather than allocation, as the trigger for GC
work and do GC work in proportion to how large a fraction of the GC
cycle time has elapsed. Le., when half of the GC cycle time has elapsed,
the GC should have done (at least) half the work needed to complete
the cycle. This ensures that each GC cycle finishes within the fixed time,
even if there is allocatable memory left. Thus, time-triggered GC ensures
the same non-critical memory behaviour regardless of how much critical
memory the application actually allocates (as long — of course — as the
allocated amount is less than the assumed worst case).

5.4.6 Example

As an example, we take a system with one high priority process doing
both critical and non-critical memory allocations and a set of low prior-
ity processes doing critical memory allocations.

In figure 5.2 you see how the amount of allocated and allocatable
memory, respectively, varies over three GC cycles. In the first GC cycle,
the amount of memory reserved for critical HP allocations (or rather, the
non-critical limit) is larger than in the other two. This is because we must
compensate for the fact that there is less than the maximum amount of
allocated memory at the start of the GC cycle (see Section 5.4.2).

The second GC cycle shows how the system behaves when there are
no allocations (and thus no incremental GC work) done by the low pri-
ority process. The first and third cycles are shorter than the nominal
cycle length since low priority allocations are done.
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Figure 5.2: An example showing how the amounts of allocated and allocatable
memory vary over time. Allocation requests for non-critical memory are denied
when the amount of allocatable memory is less than or equal to the non-critical
allocation limit (Ryp — Arp). This happens at the end of the second GC cycle.
Note that the first and third GC cycles are shorter than the nominal length
due to low priority memory allocations. Also note how the non-critical limit is
lowered when LP allocations are done so that the amount of memory available
for non-critical allocations is not changed.
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Since we have a fixed nominal GC cycle length and use time, rather
than memory allocation, to trigger GC work the GC cycles may end be-
fore all available memory has been allocated. This can happen if the
application uses less memory than in the worst case or due to quantiza-
tion when low priority allocations are made (see section 5.4.3).

5.5 Non-critical memory in Java

The main objective when implementing these ideas in a Java environ-
ment was that no changes to the syntax of the Java language should
be made, and that programs written for our system should work on
any Java platform (but, of course, without the added semantics of non-
critical memory allocations).

The proposed approach is to use the exception mechanism of Java,
so we define an exception class, NoNonCriticalMemoryException,
with the added special semantics that all allocations that are done in a
block which catches that exception are non-critical. Figure 5.3 shows
a simple program which does both critical and non-critical memory al-
locations. This program will run on any Java platform with the only
addition of an (empty) exception class.

1 void example(){

2 Object aCriticalObject = new Object();

3 foo(aCriticalObject); // do something important
4 try{

5 Object aNonCriticalObject = new Object();
6 foo(aNonCriticalObject);

7 doSomething();

8 // do something

9 // if the non-critical

10 // allocation was successful

11 } catch(NoNonCriticalMemoryException e){
12 // non-critical allocation failed

13 }

14 }

Figure 5.3: Small example program. The allocation of aCriticalObject
is always done, but the allocation of aNonCriticalObject may be denied.
If the allocation fails, a NoNonCriticalMemoryExceptionis thrown and
may be handled in the catch-clause.
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Non-criticality is transitive, i.e., memory allocations in a method that
is called from a non-critical region, like the calls to the methods foo ()
and doSomething () onlines 6 and 7 in Figure 5.3, are also non-critical.
Note, however, that the first call to foo( ), on line 3, is not non-critical
since the call is not made from a non-critical block. This behaviour is
preferable since an auxiliary function could be called both from criti-
cal and non-critical contexts. In order to make such transitivity possi-
ble without having to litter the code with try and catch clauses, the
exception class NoNonCriticalMemoryException is an unchecked
exception. An instance of this class can be statically allocated to avoid
wasting memory.

An experimental implementation has been made using the IVM (In-
finitesimal Virtual Machine) [23], a very compact real-time Java virtual
machine. Currently, non-critical allocations are explicitly turned on and
off using a native method IVM. setMemoryPriority (). This is, how-
ever, not fundamentally different from our proposed approach since the
setMemoryPriority () calls could be inserted automatically by the
class loader as the exception table is set up (much in the same way as
monitorenter and monitorexit byte codes are inserted for synchro-
nized methods).

5.6 Summary

The idea of applying priorities to memory allocation was introduced and
it was shown shown how this can be used to enhance the robustness of
real-time applications. The advantage this approach gives is twofold:

Firstly, it provides run-time support for prioritizing memory alloca-
tions if there is not enough available memory to safely accommodate
for all allocation requests. Secondly, but equally important, it makes it
easier to provide hard guarantees since the worst case memory usage
calculations only has to be done for the critical parts of the system as
non-critical allocations cannot cause the system to fail. Furthermore, it
is suggested that the same mechanisms could be used to increase per-
formance by limiting the amount of memory allocation and, consequen-
tially, GC work.

It is observed that memory priority and CPU time priority needs to
be treated separately. The logging example shows that a process having
high CPU time priority doesn’t necessarily mean that all of its memory
allocations are critical.

The presented approach is based on the notion of non-critical mem-
ory allocation requests, which can be used by the programmer to indi-
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cate that the memory allocations done in a certain part of the program
are less important than the rest. Such non-critical allocations may be
allowed to fail if the run-time system decides that that memory could
be of better use elsewhere or that the increased garbage collection work
would degrade system performance.

The incorporation of priorities for memory allocations in an object
oriented language is studied and a way of introducing non-critical mem-
ory allocation in a Java system without making any changes to the syn-
tax of the Java language is proposed. This has successfully been imple-
mented in the IVM experimental Java virtual machine.

Preliminary experiments® show that the mechanism is fairly easy to
implement and can improve the robustness and performance of a control
application by restricting its operation to the critical tasks if the system
runs low on memory. It allows the programmer to write a system that
performs better if run on a faster and larger system but whose critical
tasks won't fail if it is run on a system with less than ideal amount of
memory. Instead, the non-critical features of the system will automat-
ically be turned off if there isn’t enough memory for them to be safely
executed.

The experiments with priorities for memory allocations are presented in Section 6.3.






CHAPTER 6

EXPERIMENTAL
VERIFICATION

This chapter presents experimental support for the proposed techniques.
As a test platform, a simple control system for a lab process which bal-
ances a ball on a beam was used. The angular velocity of the beam is
controlled in order to roll the ball to a given position on the beam. A
photo of the lab process is shown in Figure 6.1.

Figure 6.1: The ball-on-beam process. The beam can be rotated to roll the ball
to the desired position. Sensors measure the position of the ball.
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The control was performed by a Java application consisting of three
threads; a user interface, a reference generator, and a controller. In ad-
dition to doing the actual control, the controller thread sends log data
back to the user interface thread as illustrated in Figure 6.2. The refer-
ence generator and controller are run at a much higher rate than the Ul
thread.

setpoint reference

- Process

log data

Figure 6.2: The ball-on-beam control application consists of three threads; user
interface, reference generator and controller. The data communicated between
the threads is indicated by the arrows.

In the plots showing the thread scheduling, the threads are num-
bered as follows: idle (-2), GC (-1), main (0), controller (1), reference
generator (2) and UI (3).

The garbage collector used is an incremental mark-compact collector.
The traces were collected by instrumenting the RT-kernel and the Java
virtual machine, respectively, with logging calls at memory operations
and context switches. Logging was done to a dedicated memory area
and uploaded via a serial line after each experiment. The time-triggered
and adaptive GC experiments were performed using compiled Java [37]
on a 350 MHz PowerPC and the memory allocation priority experiments
were done using the IVM virtual machine [23] on a STORK [3]/Linux
platform.
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6.1 Time-triggered GC

This section illustrates the run-time behaviour of allocation-triggered
and time-triggered garbage collection and shows the difference between
traditionally scheduled incremental GC, where each increment is sched-
uled individually and the work is spread evenly across the GC cycle,
and EDF-scheduled time-triggered GC.

Figure 6.3 shows an execution trace of a run with allocation triggered
increments, in Figure 6.4 the same program is run with time-triggered
GC with metric-scheduled increments and Figure 6.5 shows the corre-
sponding trace with time-triggered, EDF scheduled garbage collection.
At the macro level, the executions are almost the same; the memory
traces are nearly identical and the mutator threads get to run when they
should. The big difference is between the versions where the individ-
ual increments are scheduled separately, in order to spread the work
evenly across the cycle, and the EDF-scheduled version. Figure 6.6 and
Figure 6.7 show a close-up view of the thread graphs. Here, you can
see that the allocation-driven garbage collector performs a much larger
number of miniscule increments as it spreads the GC work more evenly
across the GC cycle even though there is idle time in the schedule. The
deadline-scheduled version, on the other hand, finishes as quickly as
possible, which is shown by the longer GC invocation without any idle
time.

If the application has a bursty allocation pattern, the difference be-
tween allocation- and time-triggered scheduling gets more discernible.
A simple experiment where the low frequency UI thread was modi-
fied to allocate a large number of objects at each invocation was per-
formed. Memory traces of this execution is shown in Figure 6.8 and
Figure 6.9, and close-ups of the thread graph is shown in Figure 6.10
and Figure 6.11. In this case, both the memory trace and the scheduling
are different.

The difference between allocation-triggered and time-triggered GC
when it comes to handling bursty allocations is shown in the scheduling
graphs. When the UI thread (number 3) has executed and made the
large allocation, the following GC increment is much longer than the
other increments. As the GC locks the heap when running, the controller
thread (number 2) gets blocked by the GC thread, causing jitter. Also
notice that, by necessity, the cycle length of the time-triggered GC has
been shortened in order to accommodate the higher allocation rate.
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Figure 6.3: Memory trace and schedule for the ball on beam application using
allocation-triggered GC.
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Figure 6.4: Time-triggered with individually scheduled increments.
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Figure 6.5: Time-triggered, EDF scheduled.
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Figure 6.6: Thread scheduling with the allocation-triggered GC. As the al-
locations performed during each thread period is small, the corresponding GC
increment is also very short. The schedule of the time-triggered, metric-based
scheduler is quite similar as both schedulers spread the GC work evenly across
the cycle and the constant allocation rate of the application makes it possible to
tune the work metric used in the allocation-triggered GC.
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Figure 6.7: Thread plot with the EDF scheduled GC. When a GC cycle is
started, the garbage collector uses all idle time in order to perform the work
required to finish the GC cycle as quickly as possible and then remains idle
until the start of the next cycle. Each increment is, however, still very short in
order to avoid disturbing the application threads more than necessary. This can
be seen at t = 10 s. Here, the GC thread is released just before the application
threads. Thread number 2 preempts the GC, but since the GC has locked the
heap, when thread 2 attempts a heap operation it is blocked until the GC finishes
its current increment. Thread 2 was blocked for 0.4 milliseconds.
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Figure 6.8: Memory trace of an application with bursty allocations and
allocation-triggered GC.
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Figure 6.9: Memory trace of an application with bursty allocations and time-
triggered GC.
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Figure 6.10: Part of the thread graph corresponding to Figure 6.8. Note how
a large allocation in thread 3 causes a long GC increment.
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Figure 6.11: Part of the thread graph corresponding to Figure 6.9. As GC
work is not triggered by allocations, the GC work is spread evenly across the
GC cycle, and long increments are avoided.
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6.2 GC cycle time auto-tuning

This section examines the adaptive GC cycle time estimates described in
Section 4.3. In the experiments presented in this section, EDF scheduling
was used for the GC thread.

Figure 6.12 shows a memory trace of the system with the auto-tuner
enabled. The fast threads run at 100 Hz. Figure 6.13 shows how the auto-
tuner reacts to changes in allocation rate. At¢ = 10 s, the frequency of
the high priority threads is increased from 20 to 100 Hz and at t = 20 s
the frequency is lowered to 20 Hz. The GC is scheduled so that it will
work even if all the dead objects in one cycle would be floating garbage.
Le., we reserve a part of the available memory for the next GC cycle as
expressed in Equation (4.5).

As memory allocations typically are bursty, the measurement of the
allocation rate is filtered in order to keep the deadline estimates more
stable and reduce the update frequency for the scheduling parameters.
Care must be taken not to underestimate the allocation rate, as this might
lead to an out-of-memory situation, so we must react quickly to actual
changes in allocation rate while avoiding chatter due to bursty alloca-
tions. The rise time in the allocation rate plots are due to such filtering.
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Figure 6.12: Memory trace of the system with adaptive GC cycle length.
The topmost plot shows the amount of available memory (in bytes), the mid-
dle plot shows the estimated GC cycle length (in milliseconds) and the bottom
plot shows the LP filtered allocation rate measurement (in bytes/second).
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Figure 6.13: How the GC scheduler reacts to changes in allocation rate; At
t = 10 s, the frequency of the high priority threads is increased from 20 to
100 Hz and at t = 20 s the frequency is lowered to 20 Hz.

6.3 Priorities for memory allocation

It was claimed that introducing priorities for memory allocations and
run-time system support for denying unimportant memory allocations
if memory is scarce can help increasing both the robustness (by avoid-
ing out-of-memory situations) and performance (by limiting the amount
of garbage collection work) of real-time systems. This section presents
experimental support for those claims.

6.3.1 Avoiding out-of-memory situations

Two scenarios where non-critical memory allocations can help making
sure that a change to a previously working system doesn’t risk breaking
it was encountered: increasing the sampling rate of the controller and
reducing the amount of memory available to the application.

When the sampling rate is increased, the controller both uses a larger
part of the CPU time and allocates log data at a higher rate until we get to
a point where the user interface thread doesn’t get the CPU time needed
for consuming all the log data and the application runs out of memory
and fails. By making the log data allocations non-critical, this cannot
happen and the control is not affected.
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Reducing the available memory! will, obviously, at some point cause
the application to fail. However, by making the allocation of log data
non-critical, the minimum memory requirement for the application may
be significantly reduced compared to the original version.

The following traces illustrate the first scenario. In these experi-
ments, the period of the reference generator and the controller was both
20 ms, and a log data object about 60 bytes. Figure 6.14 shows a run
of the ball-on-beam system without non-critical memory. The high al-
location rate causes a large GC workload and the UI process is starved,
eventually leading to failure.
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Figure 6.14: A sample run of the ball-on-beam system without non-critical
memory. The Ul thread (3) doesn’t get enough CPU time to consume all plot
data that is produced. After t = 75 it is totally starved by the GC. Then, less
and less memory is available and more and more CPU time is spent doing panic
GC.

|
L

In the first half of the run the controller(1) and reference generator(2)
threads run unimpeded, and the control was OK until ¢ = 90. After that
the frequent panic stop-the-world GC cycles caused so long delays that
the controller dropped the ball. The CPU load is almost 100% and the
idle thread (0) is not run except in the very beginning. The reason that
the maximum amount of allocatable memory increases in the middle is
that when the GC cycles get shorter there is less floating garbage.

Figure 6.15 shows the same system where the allocation of log data
has been made non-critical, and the log data allocation is kept at a sus-

IThis could occur either by actually running the system on a smaller platform or, per-
haps more likely, by adding more threads to the system.
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Figure 6.15: A run of the ball-on-beam system with log-data allocations made
non-critical. In the thread plot you see that the Ul thread gets CPU time
throughout the run. The third plot shows the amount of memory allocated by
low priority processes during this cycle. The fourth plot shows if non-critical
allocations succeed or not; high level means success and low level is deny.
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Figure 6.16: Close-up to show the non-critical memory behaviour. The dotted
line in the free memory plot is the non-critical limit. Note how the GC cycles

are shortened when low priority allocations are made.
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tainable level. In this experiment, more than half of the log data alloca-
tion requests were allowed. Figure 6.16 shows a close-up of Figure 6.15
where you can see the non-critical behaviour more clearly.

6.3.2 Improving performance

The experiments also indicate that it is possible to achieve better control
performance by limiting the amount of non-critical memory allocations.
The plots in Figure 6.17 show two runs of the ball-on-beam application
without and with non-critical memory allocations enabled, respectively.
The position of the ball is in the interval [—10, 10].

In the version without non-critical allocations, the high allocation
rate occasionally forces the garbage collector to do a full garbage col-
lection cycle in order to reclaim enough memory to satisfy the allocation
needs. This delays the high priority controller process so that it misses
its deadline which, in turn, degrades the control performance.

When the allocation of log data is made non-critical, the allocation is
kept below the safe limit and the system runs as designed, with more
consistent control performance.

() 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

a) log data are always

1000 2000 3000 24000 5000 6000 7000 8000 9000 10000
b) allocation of log data is non—critical

Figure 6.17: Plots showing the reference value and the measured position for
the ball-on-beam process. Plot a shows the system without non-critical memory
allocations and plot b shows the system where the allocation of plot data is non-
critical. The irregular behaviour in a, around samples 2500, 4000, 6000, and
8500, is caused by the controller process being delayed by the garbage collector
due to the program running out of allocatable memory and forcing a complete
garbage collection cycle.






CHAPTER 7

FUTURE WORK

The results presented in this thesis are preliminary and many open prob-
lems remain to be examined, mainly in the areas of adaptive GC sched-
uling and priorities for memory management. Proof-of-concept imple-
mentations which supports the feasibility of the respective techniques
have been presented, but a prototype which integrates all of the ideas of
this thesis in a feedback scheduling system should be implemented in
order to study the synergy effects that could be obtained. This chapter
outlines our plans for future research.

7.1 Adaptive GC scheduling

The auto-tuning of the garbage collection cycle length presented in this
thesis uses a black-box approach; we do not require any knowledge of
the internals of the garbage collector or mutator — the only quantity that
is measured is the amount of available memory. This has the advantage
that it is very easy to plug this kind of auto-tuner into an existing system
or to change garbage collectors, as very little communication with the
memory subsystem, and none at all with the mutator, is required. The
drawback is of course that we cannot react to changes in allocation rate
until they occur.

A more sophisticated model would take knowledge about the appli-
cation program into account. For instance, if some threads are periodic,
we could take advantage of the knowledge that each thread does a cer-
tain amount of allocation during each invocation and then is idle until
its next invocation. Then we could measure and estimate how much
each thread allocates during each invocation which might even further
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mitigate the problems with apparently bursty and random allocation
patterns. Another improvement could be to use information about the
execution patterns of the threads, for instance through feed-forward of
changed sampling periods, etc.

The experiments presented are of a preliminary nature and the per-
formance requirements of the application were modest. In the near fu-
ture, we plan to evaluate the real-time performance of our time-triggered
garbage collector prototype under more challenging conditions in a high
performance robotics application. The execution time estimation dis-
cussed in Section 4.4 requires more work and must be implemented in a
real run-time system.

Another interesting research issue is raised by the difference in how
the GC increments are scheduled in the fixed priority and EDF systems
described in this thesis: Is it desirable to spread GC work evenly across
the cycle even if that means leaving idle time at the start of the cycle?
One advantage of that approach is that it may give objects allocated at
the start of the cycle time to die, which decreases the average amount of
floating garbage. The major drawback is that it leaves less slack in the
schedule towards the end of the cycle and therefore makes the system
more vulnerable to changes in CPU utilization. This may be of partic-
ular importance in an adaptive system where robustness to variation in
resource utilization is one of the key factors.

7.2 Priorities for memory allocation

Preliminary experiments indicate that having run-time support for di-
viding memory allocations into critical or non-critical can increase both
robustness and performance of real-time software. However, more ex-
periments on larger systems and systems with high performance re-
quirements (e.g. low latency) will have to be done.

It would also be interesting to study whether additional advantages
may be gained from having an arbitrary number of memory priority
levels compared to having just two (critical and non-critical).

7.2.1 Configurable behaviour

Models for controlling when to fail non-critical allocations should be
studied. In the logging example the optimal behaviour of the system
depends on what the intended use of the log data is; if it is for system
identification we want as long consecutive series of data as possible but
the amount of time between the series is of less importance. Therefore,
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in such an application, we want every non-critical allocation request to
be granted up to a point where no more non-critical requests are granted
during that cycle. On the other hand, if the data is to be used for plotting,
we want the samples to be equally spaced, i.e., every nth non-critical al-
location request should be granted. Furthermore, usually a set of alloca-
tions is needed in order to perform a certain task. If the last allocation of
such a set is denied, the whole task has to be abandoned for that time.
That should also be taken into account when deciding whether to grant
or deny an allocation request.

Also, would it be possible to have different profiles to let the pro-
grammer choose among to get the one that fits a particular application
best? Could such profiles co-exist in one application, i.e., different parts
of the application having different non-critical memory policies?

7.2.2 Non-critical memory using aspects

In this work, focus is on embedded real-time systems and the approach,
as presented here, relies on the fact that we can modify the memory al-
locator. For systems without hard real-time constraints, however, it may
be possible to achieve the same advantages without having to do any
modifications to the Java platform. One way of doing this could be by
using aspect oriented software development[4]. The cross-cutting con-
cern in this case is the handling of low-on-memory situations. It should
be investigated whether it is suitable to e.g. divide the tasks into critical
and non-critical aspects and dynamically weave in the non-critical parts
only if the system has enough memory. We believe that it is possible to
use e.g., the property-based cross-cutting of Aspect] [29] to insert a test
whether an allocation should be done before each call to a constructor.

7.3 GC scheduling interface

The experimental platforms were implemented using the garbage col-
lection interface (GCI) [24] developed by our research group. The GCI
is a programmer’s interface consisting of a well-defined set of memory
operations and the goal of the GCI is to make it possible to separate
the GC implementation from its usage even in a hard real-time system
and in an uncooperative environment like an optimizing compiler back
end that is unaware of garbage collection. The GCI makes it possible
to change GC algorithms without making any changes to the rest of the
run-time system or the code generation.
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This scheduling principles presented in this thesis makes it possible
to separate the GC scheduling from the GC implementation. As a black
box approach to GC cycle time estimation is used in the current proto-
type implementation it is possible to change garbage collector without
modifying the scheduler. However, if we want to allow a clear box ap-
proach, it is necessary to specify a GC scheduling interface that defines
how the communication between the GC algorithm and the GC sched-
uler is done and that requires further investigation. Furthermore, the
communication between the process scheduler and the GC scheduler
must be studied and formalized.

7.4 Feedback scheduling and QoS

We believe that the ideas presented in this thesis make it easier to handle
memory management issues in the feedback scheduling and quality-of-
service (QoS) areas. For instance, by treating memory allocations just
like any other resource allocation, it is possible to optimize the trade-
off between memory usage and CPU time. Le., increasing the allocation
rate increases the GC workload which, in turn, reduces the application’s
CPU time and vice versa. It should be studied how this can be used in
practise to optimize quality-of-service.

In a feedback scheduling based system, like the one described in [12]
and [13], bringing the memory system into the loop coupled with the
possibility to dynamically change an application’s memory allocation
behaviour depending on the system’s current memory status could be
used to get better overall performance. This is a very complex matter
and strategies for when to deny non-critical memory allocations in order
to optimize performance as well as adaptive GC scheduling strategies
need further studies.

7.5 Distributed hard real-time systems

Another area where the presented techniques may have impact are tem-
porally predictable distributed systems. In a distributed system, the
nodes can be seen as components and the whole system as being con-
structed by composition of node components. When designing such
systems, one important factor is the ease of composing systems out of
components, composability . The time-triggered architecture [31, 32] ad-
dresses the composability problem and important features of that model
are time-triggered communication and temporal firewalls — interfaces
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between the components specifying what data should be available or
communicated at what time. Such interfaces makes it possible to guar-
antee that if the individual components conform to their specified inter-
faces, the resulting system will work as intended. They also solve prob-
lems of safety critical systems like, for instance, maintaining a global
time base and determining data validity.

In order utilize automatic memory management in such temporally
predictable components, it seems as it would be helpful, if not necessary,
to be able to guarantee that also the memory manager is temporally pre-
dictable. As time-triggered GC scheduling has the property that ithas an
explicit deadline and therefore makes it possible to guarantee that a GC
cycle finishes and makes a certain amount of memory available at a cer-
tain time, it would be interesting to study the impact of time-triggered
GC in this field of application.






CHAPTER 8

RELATED WORK

This chapter presents related work in the areas of GC scheduling, mem-
ory management for real-time Java, and worst case analysis.

8.1 Time-based garbage collection scheduling

Henriksson

Using time as the GC work metric was discussed in [22] as this would
solve the problem of traditional GC work metrics failing to capture the
temporal behaviour of the garbage collector. The approach was, how-
ever, dismissed as impractical, since it requires a high resolution clock.
However, most current embedded platforms (even smaller ones, such as
the Atmel AVR) have timers with resolution of the same magnitude as
the CPU clock, which is more than adequate for these purposes. Thus,
we believe that using time as the fundamental garbage collection work
metric both offers advantages over ad hoc metrics and is practically pos-
sible.

Bacon et al

The problems of allocation-triggered GC scheduling in real-time sys-
tems, particularly the uneven GC overhead and consequentially, muta-
tor CPU utilization, caused by variances in allocation rate, are addressed
by David F. Bacon et al in a recent paper [6]. To achieve even and pre-
dictable mutator CPU utilization, time-based scheduling, where the col-
lector and mutator are interleaved using fixed time quanta, is proposed.
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The work of Bacon et al is largely motivated by the same concerns
and has much in common with the work presented in this thesis. One
fundamental feature of time-based GC scheduling common to both ap-
proaches is that they turn garbage collection into a periodic activity in-
stead of a sporadic one as allocation-triggered GC does.

The main difference between the model proposed by Bacon et al and
the time-triggered GC scheduling model presented in this thesis lies in
the level at which GC scheduling is considered; the period time of their
model is at the quantum level while the period of the time-triggered GC
is the GC cycle. Also, the fixed time quanta of [6] explicitly state how the
GC work should be scheduled while the time-triggered model specifies
a deadline and leaves the actual scheduling decisions to the underlying
process scheduler.

The behaviour of the approach of Bacon et al is, at a large time scale,
similar to that of a semi-concurrent GC or a time-triggered GC in that
the CPU utilization of the mutator is predictable and consistent and in-
dependent of bursty allocation rate of the mutator. ! However, at a more
fine-grained level, the garbage collector may still preempt the mutator
as the GC is scheduled to run for one GC quantum after each mutator
quantum. Here, the design goals behind their collector differ from the
ones driving the work in this thesis; they focus on low overhead and
consistent utilization while non-intrusiveness and low GC induced la-
tency and jitter are the key issues behind this thesis.

Qian et al

Time-triggered GC was also proposed in [52] as a means to spread GC
work more evenly and minimize the number of GC invocations and
heap usage when the application’s allocation pattern is bursty. The focus
on that work is on measuring object lifetimes but they note that similar
concerns are relevant in server applications.

Previous object life span studies have used an allocation-triggered
approach, calling the GC every n KB of allocation. Qian et al supplement
this with a time based approach by periodically performing a GC cycle,
e.g., every 100 ms. In their paper, no effort is made to ensure that the
collector keeps up with the mutator since this is not a problem in their
application; it is sufficient that the GC cycle time can be manually tuned
to suit a particular application.

IThe interleaving of GC and background processes in the semi-concurrent model may
be almost identical; quantization effects due to atomic GC primitives make a GC sched-
uled according to Equation (3.19) behave as a time-based GC with small GC and mutator
quanta.
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They also hint that the time-triggered approach can be applicable to
embedded systems by using the timing information of the processes to
run the GC when the number of live objects is small. The focus is still
on efficiency and minimizing the number of GC invocations and they do
not address any real-time issues.

8.2 Adaptive GC scheduling

An approach to adaptive GC scheduling aimed at minimizing the GC
overhead is suggested by Henriksson [21]. The idea is that at the start
of the GC cycle, garbage collection is performed at a rate that will allow
the GC to finish on time in the average case. Then, at a certain (a priori
calculated) point, if the GC workload in the current cycle was more than
the average, the GC rate is increased to the maximum rate in order to
finish on time. Thus, this adaptive GC rate improves the average perfor-
mance while still guaranteeing that the GC will not stop the application
from meeting its deadlines in the worst case.

Engelstad and Vandendorpe [19] mention using a heuristic for con-
trolling the “steal rate” of their garbage collector. A GC increment is
performed every n allocations and GC progress is measured. If forward
progress is not made, n is decreased and vice versa.

Siebert [48] also use use an adaptive scheme to minimize GC over-
head; based on the current memory utilization, a proper value for how
much GC work to be performed for every allocated byte is determined.
The fundamental difference between that work and the adaptive sched-
uling presented in this thesis is that Siebert requires an upper bound
on the fraction of allocated memory to be known and the adaptivity is
an optimization to avoid unnecessarily long GC increments if the actual
amount of allocated memory is less than the worst case. The adaptive
scheduling presented in this thesis requires no a priori analysis and is
purely based on measuring the state of the memory system. This gives
increased flexibility at the cost of a priori guarantees.

8.3 Memory Management in Real-Time Java

There are two specifications for real-time Java; The Real-Time Specifica-
tion for Java (RTSJ) [10] and the Real-Time Core Extensions (RTCE) [25].
Both try to solve the real-time garbage collection problem by avoiding it.
They assume that garbage collection is not feasible in real-time systems
and instead propose region-based approaches to memory management
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for the real-time threads. The non-real-time threads do their memory
allocation on a heap with traditional garbage collection.

RTSJ uses scoped memory areas for high priority threads. Objects allo-
cated in scoped memory areas are not garbage collected but instead the
whole memory area is reclaimed when the program exits the scope in
which the memory area was allocated. The access restrictions associated
with scoped memory (e.g., objects allocated on the heap may not refer-
ence objects in scoped memory, and real time threads aren’t allowed to
access the heap?) make inter-thread communication more difficult. Real-
time threads, however, may share scoped memory areas.

In RTCE, real-time objects are allocated in core memory, and may not
access objects on the garbage collected baseline heap. Objects on the heap
may, with some restrictions, access core objects through special method
calls. Core objects are allocated in an allocation context. When an alloca-
tion context is released, all objects in it may be eligible for reclamation
but, since there might be references from the baseline heap, the actual
reclamation is done by the baseline garbage collector when all of the
objects in the allocation context are unreachable. Thus, a non-real-time
garbage collector is used to reclaim the memory used by the real-time
processes.

In RTCE, there are no limitations on which allocation contexts objects
may reference so it is up to the programmer not to release an allocation
context when it is still referenced.

RTCE also specifies stack allocation of real-time objects, which are
to be automatically reclaimed as the scope is exited. To allocate stack
objects, a set of restrictions apply and the reference must explicitly be
declared stackable.

Under both of these specifications, behaviour similar to our non-
critical allocations can be achieved by using one memory area (or al-
location context) for critical memory and another (or the heap) for the
non-critical objects. The drawbacks of these approaches compared to
the one proposed in this thesis are firstly that a much higher responsi-
bility is placed on the programmer by removing the safety that garbage
collection provides, from the most critical parts of the system. Secondly,
the access restrictions between the different types of memory make com-
munications between low and high priority threads more complicated.

2Since the heap is garbage collected, real-time threads with hard time constraints must
be of the type NoHeapRealTimeThread in order to avoid interference from the garbage col-
lector.
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8.4 Soft references

The notion of non-critical allocation is somewhat related to the soft refer-
ences found for instance in Java [26] in that they both aim to prevent out
of memory errors due to too many objects not absolutely needed for the
correct operation of the program. In analogy with the Java terminology,
non-critical allocations could be called “soft allocations”.

The difference lies in when the system decides that it is running low
on memory and starts trying to limit memory usage. With the approach
presented here, the decision is taken at allocation time, preventing a low
on memory situation from arising. When using soft references, on the
other hand, all allocations are carried out, and the decision about when
to reclaim softly reachable objects are left to the garbage collector. There
is also a difference in the intended usage; soft references were introduced
to facilitate the implementation of e.g. caches, where objects’ lifetimes
are nondeterministic (i.e., you never know whether a cached value will
be accessed again in the future or not, but it’s best to keep it as long as the
memory permits). Thus, while soft references may be used to achieve a
similar logical behaviour as our non-critical allocations, the increase in
the amount of required GC work when the system is already low on
memory makes this use of soft references unsuitable for for real-time
applications.

8.5 Worst case and schedulability analysis

Good worst case estimates for execution time and memory usage are
crucial for making any kind of real-time guarantees. In order to make
such analysis feasible in industry, tool support is required

Alan C. Shaw has developed a technique, timing schema [47], for for-
malizing execution time analysis. A timing tool for a subset of C has also
been developed [38].

In order to give continuous feedback to the developer, an interac-
tive programming environment with worst case analysis functionality
is desirable. The experimental tool Skanerost [41] developed at our de-
partment provides interactive worst case execution time [40] and mem-
ory [39] consumption analysis based on timing schema and source code
annotations for (currently a subset of) the Java language.

The WCET group at Uppsala University has presented research on
and tool support for worst case analysis on C code without the require-
ment for programmer annotations based on flow analysis and pipeline
simulation [18, 17].
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Another approach to schedulability analysis and automatic verifica-
tion of real-time systems based on timed automata has been developed
in the UPPAAL project [33, 42].

Current approaches to worst case analysis are often highly complex
when applied to life-size programs. A different approach to temporally
predictable software is proposed by Puschner [43]. That approach is
based on trading off performance for predictability by writing (or au-
tomatically transforming) programs in a way that they are inherently
predictable; single path programming. It is not clear how this approach
affects dynamic memory management.



CHAPTER 9

CONCLUSIONS

Motivated by the desire for greater flexibility in real-time systems, and
the need to handle non-determinism and variations in resource utiliza-
tion, new approaches to memory management have been presented.

A model for scheduling garbage collection work, time-triggered GC
scheduling, that has several benefits compared to previous techniques is
proposed. The single scheduling requirement that the garbage collector
must finish before its deadline makes it especially suitable for earliest
deadline first (EDF) systems, for which we have not seen any similar
systems.

The handling of non-determinism and the desire to enable the run-
time system to provide real-time performance without requiring worst
case analysis motivated two approaches to adaptive memory manage-
ment. Firstly, techniques to accomplish auto-tuning of a concurrent, real-
time, time-triggered garbage collector were examined. Adaptive GC
scheduling contains two orthogonal problems: to determine the sched-
uling parameters of the GC process and to keep a task set with vary-
ing resource utilization schedulable. Much work has been done in the
feedback scheduling community on the latter problem so this thesis has
focused on the former.

Another approach to handling non-determinism and increase robust-
ness — applying priorities to memory allocation — was presented. The
motivation for this is that if the computer is running low on memory, we
want run-time system support for selecting the most important memory
allocations, just as the process scheduler makes sure that the most im-
portant processes get precedence over less important ones if CPU time
is scarce.
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9.1 Contributions

Time-triggered garbage collection scheduling

A number of problems related to GC scheduling was addressed:

e Using time rather than allocation as the trigger for GC work solves
the problem of bursty allocations causing long GC pauses. It also
allows us to spread the GC work evenly across the GC cycle. In
essence, by turning GC work into a periodic activity rather than a
sporadic one, the scheduling of GC is simplified.

e The metric used to measure GC work has a big impact on the GC
scheduling. The optimal GC work metric is the CPU time required
to perform the GC work and it is proposed that it is practically
possible to use time as the GC work metric at run-time.

¢ Implementing non-intrusive concurrent GC with guaranteed prog-
ress in an EDF scheduled system has been problematic. Time-
triggered GC scheduling provides an explicit deadline for each GC
cycle and therefore fits nicely into an EDF system.

e Time-triggered GC makes it possible to schedule the GC thread as
any other thread. The GC work metric is only used for schedula-
bility analysis and therefore, the problems of poor real-time per-
formance caused by a poor metric are avoided.

These ideas form a novel approach to non-intrusive, concurrent garbage
collection scheduling in real-time systems.

Adaptive garbage collection scheduling

As the time-triggered approach to garbage collection scheduling allows
us to make scheduling decisions at the GC cycle level rather than in-
dividual increments, it lends itself well to auto-tuning. Techniques for
estimating both the GC cycle time and the amount of GC work required
to complete a cycle was presented and their applicability was experi-
mentally verified.

Using time as the GC work metric facilitates the integration of the
GC scheduler with a general feedback scheduler as time can be mea-
sured directly. Since the same parameters are used to schedule both
GC and application threads the memory management overhead can be
taken into account when performing on-line schedulability analysis in a
straight-forward manner.
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The proposed techniques can facilitate the implementation of more
flexible real-time systems as they make is possible to use GC in a real-
time system without the need for tedious manual tuning.

Priorities for memory allocations

Based on the observation that not all of the code in a hard real-time sys-
tem is critical, the idea of applying priorities to memory allocation was
presented. This can be used to enhance the robustness of real-time and
embedded systems in two ways:

e It provides run-time support for prioritizing memory allocations if
there is not enough memory for all allocation requests and thereby
facilitates development of robust applications.

e It makes it easier to provide hard guarantees since the worst case
memory usage only has to be analyzed for the critical parts of the
system as non-critical allocations cannot cause the system to fail.

Furthermore, experiments also show that the same mechanisms can be
used to increase performance by limiting the amount of memory alloca-
tion and, consequentially, garbage collection work.

9.2 Reflections

In the introduction, it was stated that an important property of a mem-
ory manager to be used in a flexible real-time system is that it should
provide real-time performance without the need for a priori analysis.
That is, if the total requested CPU utilization of mutator and collec-
tor is low enough that the system is schedulable, the actual schedule
produced by the run-time system should allow all tasks to meet their
deadlines. The inherent robustness of the time-triggered GC scheduling
model and the property that low-level scheduling decisions are left to
the process scheduler combined with the presented approaches to adap-
tive GC scheduling and memory allocation helps resolve the memory
management issues of flexible real-time software.

The second goal was to develop a model that makes it possible to
schedule garbage collection as any other thread while still guaranteeing
sufficient progress. This thesis shows that time-triggered GC scheduling
has this property under both fixed priority and EDF scheduling.

Garbage collection is essential to the use of safe object oriented lan-
guages in real-time systems and the contributions of this thesis are a step
towards making real-time garbage collection practically feasible.






BIBLIOGRAPHY

(1]

(2]

(6]

[7]

Luca Abeni and Giorgio Buttazzo. Integrating multimedia appli-
cations in hard real-time systems. In Proceedings of the 1998 IEEE
Real-Time Systems Symposium, Madrid, Spain, December 1998.

Luca Abeni and Luigi Palpoli. On adaptive control techniques in
real-time resource allocation. In Proceedings of the IEEE Euromicro
Conference on Real-Time Systems, Stockholm, Sweden, June 2000.

Leif Andersson and Anders Blomdell. A real-time programming
environment and a real-time kernel. In Lars Asplund, editor, Na-
tional Swedish Symposium on Real-Time Systems, Technical Report No
301991-06-21. Dept. of Computer Systems, Uppsala University, Up-
psala, Sweden, 1991.

Aspect-oriented software development web site;
http:/ / www.aosd.net.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concur-
rent collection on stock multiprocessors. In Proceedings of the SIG-
PLAN’88 Conference on Programming Language Design and Implemen-
tation, Atlanta, Georgia, June 1988.

David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Proceed-
ings of POPL’03, New Orleans, Louisiana, USA, January 2003.

Henry G. Baker. List processing in real time on a serial computer.
Communications of the ACM, 21(4):280-294, April 1978.



94 BIBLIOGRAPHY

[8] Mats Bengtsson. Real-Time Compacting Garbage Collection Algorithms.
Lic. eng. thesis, Department of Computer Science, Lund University,
1990.

[9] D. G. Bobrow. Managing re-entrant structures using reference
counts. ACM Transactions on Programming Languages and Systems,
11(3), July 1968.

[10] Greg Bollella et al. The Real-Time Specification for Java. Addison-
Wesley, 2001.

[11] Giorgio Buttazzo, Giuseppe Lipari, and Luca Abeni. Elastic sched-
uling for flexible workload management. IEEE Transactions on Com-
puters, 51(3), March 2002.

[12] Anton Cervin. Integrated Control and Real-Time Scheduling. PhD the-
sis, Department of Automatic Control, Lund Institute of Technol-
ogy, Sweden, April 2003.

[13] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Arzén.
Feedback-feedforward scheduling of control tasks. Real-Time Sys-
tems, 23(1), July 2002.

[14] G.E. Collins. A method for overlapping and erasure of lists. Com-
munications of the ACM, 3(12), December 1960.

[15] Ole Johan Dahl and Kristen Nygaard. SIMULA — A language for
Programming and Description of Discrete Event Systems. Norwegian
Computing Center, Oslo, Norway, 5th edition, September 1976.

[16] E. W. Dijkstra, L. Lamport, A.]. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
Communications of the ACM, 21(11), November 1978.

[17] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution
Time Analysis. PhD thesis, Department of Information Technology,
Uppsala University, 2002.

[18] Jakob Engblom, Andreas Ermedahl, and Friedhelm Stappert. A
worst-case execution-time analysis tool prototype for embedded
real-time systems. In Proceedings of the Workshop on Real-Time Tools
(RT-TOOLS 2001), August 2001.

[19] Steven L. Engelstad and James E. Vandendorpe. Automatic storage
management for systems with real time constraints. In OOPSLA "91
GC Workshop, 1991.



BIBLIOGRAPHY 95

[20] R. Fenichel and J. Yochelson. A lisp garbage collector for virtual
memory computer systems. Communications of the ACM, 12(11),
November 1969.

[21] Roger Henriksson. Adaptive scheduling of incremental copying
garbage collection for interactive applications. In Proceedings of the
1996 Nordic Workshop on Programming Environment Research (NW-
PER’96), Aalborg, Denmark, 1996.

[22] Roger Henriksson. Scheduling Garbage Collection in Embedded Sys-
tems. PhD thesis, Department of Computer Science, Lund Institute
of Technology, Lund University, 1998.

[23] Anders Ive. Implementation of an Embedded Real-Time Java Virtual Ma-
chine Prototype. Lic. eng. thesis, Department of Computer Science,
Lund Institute of Technology, Lund University, 2003. (in prepara-
tion).

[24] Anders Ive, Anders Blomdell, Torbjorn Ekman, Roger Henriks-
son, Anders Nilsson, Klas Nilsson, and Sven Gestegard Robertz.
Garbage collector interface. In Proceedings of NWPER'02, Copen-
hagen, Denmark, August 2002.

[25] J-Consortium. Real-time core extensions for the java platform. In-
ternational ] Consortium Specification, 2000.

[26] Java 2 platform, standard edition, API specification. Sun Microsys-
tems. http:/ /java.sun.com.

[27] Richard Jones and Raphael Lins. Garbage Collection. Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, 1996.

[28] M Joseph and P Pandya. Finding response times in a real-time sys-
tem. The Computer Journal, 29(5), 1986.

[29] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An overview of Aspect]. In
Jorgen Lindskov Knudsen, editor, Proceedings of the Europeean Con-
ference on Object Oriented Programming (ECOOP). Springer-Verlag,
2001.

[30] Donald E. Knuth. The Art of Computer Programming. Fundamental
Algorithms. Addison-Wesley, 1973.

[31] Hermann Kopetz. Time-triggered real-time computing. IFAC World
Congress, Barcelona, July 2002, IFAC Press, July 2002.



96 BIBLIOGRAPHY

[32] Hermann Kopetz and Guinther Bauer. The time-triggered architec-
ture. Proceedings of the IEEE, 91(1):112 — 126, January 2003.

[33] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nut-
shell. Int. Journal on Software Tools for Technology Transfer, 1(1-2):134—
152, October 1997.

[34] C.L.Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard real-time enviro nment. Journal of the ACM,
20(1), 1973.

[35] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Communications of the ACM, 3(4), April
1960.

[36] M. L. Minsky. A lisp garbage collector algorithm using serial sec-
ondary storage. Memo 58 (rev.) Project Mac, M.L.T., Cambridge,
Mass., December 1963.

[37] Anders Nilsson, Torbjérn Ekman, and Klas Nilsson. Real Java for
real time — gain and pain. In Proceedings of CASES-2002, pages 304—
311. ACM Press, October 2002.

[38] Chang Yun Park and Alan C. Shaw. Experiments with a program
timing tool based on source-level timing schema. Computer, 24(5),
May 1991.

[39] Patrik Persson. Live memory analysis for garbage collection in em-
bedded systems. In Proceedings of the ACM SIGPLAN 1999 Workshop
on Languages, Compilers, and Tools for Embedded Systems (LCTES’99),
Atlanta, Georgia, May 1999.

[40] Patrik Persson and Gorel Hedin. Interactive execution time pre-
dictions using reference attributed grammars. In Proceedings of
WAGA'99: Second Workshop on Attribute Grammars and their Appli-
cations, Amsterdam, The Netherlands, March 1999.

[41] Patrik Persson and Gorel Hedin. An interactive environment for
real-time software development. In Proceedings of the 33rd Interna-
tional Conference on Technology of Object-Oriented Languages (TOOLS
Europe 2000), St. Malo, France, June 2000.

[42] Paul Pettersson. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Uppsala Univer-
sity, 1999.



BIBLIOGRAPHY 97

[43] Peter Puschner. Is worst-case execution-time analysis a non-
problem? — Towards new software and hardware architectures. In
Proceedings of the 2nd International Workshop on Worst-Case Execution
Time Analysis (WCET 2002), Vienna, Austria, June 2002.

[44] Sven Gestegard Robertz. Applying priorities to memory allocation.
In Proceedings of the 2002 International Symposium on Memory Man-
agement (ISMM’02), Berlin, Germany, June 2002. ACM Press.

[45] Sven Gestegard Robertz and Roger Henriksson. Time-triggered
garbage collection — robust and adaptive real-time GC scheduling
for embedded systems. In Proceedings of the ACM SIGPLAN Lan-
gauges, Compilers, and Tools for Embedded Systems — 2003 (LCTES03),
San Diego, California, USA, June 2003. To appear.

[46] Lui Sha, Ragunathan Rajkumar, and John. P. Lehoczky. Generalized
rate-monotonic scheduling theory. Proceedings of the IEEE, 82(1),
1994.

[47] Alan C. Shaw. Reasoning about time in higher-level language soft-
ware. IEEE Transactions on Software Engineering, 15(7), 1989.

[48] Fridtjof Siebert. Hard Realtime Garbage Collection in Modern Object
Oriented Programming Languages. PhD thesis, Fakultét fir Infor-
matik, Universitat Karlsruhe, 2002.

[49] G.R. Steele, Jr. Multiprocessing compactifying garbage collection.
Communications of the ACM, 18(9), September 1975.

[50] P. L. Wadler. Analysis of an algorithm for real time garbage collec-
tion. Communications of the ACM, 19(9), September 1976.

[51] Paul R. Wilson, Mark S. Johnstone, Michal Neely, and David Boles.
Dynamic storage allocation: A survey and critical review. In Proc.
1995 International Workshop on Memory Management, Kinross, Scot-
land, September 1995.

[52] Qian Yang, Witawas Srisa-an, Therapon Skotiniotis, and J. Morris
Chang. Java virtual machine timing probes — a study of object
life span and GC. In Proceedings of 21th IEEE International Perfor-
mance, Computing and Communications Conference (IPCCC), Phoenix,
Arizona, April 2002.



