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Abstract

 

This thesis deals with techniques for raising the programming level for a
particular kind of computations, namely those on abstract syntax trees.
Such computations are central in tools that manipulate programs, e.g.,
compilers, smart language-sensitive editors, software metric tools, etc.
Our work is based on Reference Attributed Grammars (RAGs) which com-
bines object-oriented features with declarative programming to specify
computations on abstract syntax trees. RAGs have proven useful, e.g., for
performing static-semantic analysis of object-oriented languages. We
investigate new applications of RAGs, extensions of RAGs in order to
cover yet more applications, modularization issues for RAGs, and imple-
mentation of RAG evaluators.

The thesis consists of an introduction and three papers. The first paper
deals with the application of RAGs to a new problem area: program visu-
alization. The second paper describes JastAdd, a practical system for
RAGs, based on aspect-oriented programming and which supports the
combination of imperative Java programming with declarative RAG pro-
gramming. JastAdd has been used for developing practical compilers for
full-scale languages. The third paper describes CRAGs, an extension of
RAGs allowing circular dependencies and where the evaluator computes
fixed-point solutions by iteration. CRAGs open up RAGs for new applica-
tion areas such as grammar and data flow analyses. The techniques have
all been implemented and tested in practice.
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Introduction

 

An important goal in computer science is to raise the level of program-
ming, providing languages that are closer to the way the programmer
thinks and reasons. The development of object-oriented programming lan-
guages is one important step in this direction, providing abstraction
mechanisms for real-world modelling containing both data and computa-
tion aspects. Declarative programming is another important principle,
allowing the programmer to describe what to be computed without having
to explicitly state in which order the computations should take place.
Modularization is a third important principle, allowing reuse and separa-
tions of concerns.

This thesis deals with techniques for raising the programming level for
a particular kind of computations, namely those on abstract syntax trees
(ASTs). Such computations are central in tools that manipulate programs,
e.g., compilers, smart language-sensitive editors, software metric tools,
etc., where the basic data structure is an abstract syntax tree. 

Our basis is Reference Attributed Grammars (RAGs) [7], which com-
bines object-oriented features with declarative programming to specify
computations on abstract syntax trees. RAGs have proven useful, e.g., for
performing static-semantic analysis of object-oriented languages. A RAG
is an extension of traditional or classical attribute grammars (AGs) [16]
which is a formalism in which the static semantics of a programming lan-
guage can be specified using a declarative approach. Traditional AGs are
often considered clumsy and difficult to use for some aspects of compiler
related tasks, for example name- and type-analysis of languages with
complex scope rules. By allowing references between distant nodes in the
AST, the RAG formalism facilitates these tasks. The object-oriented view
of the grammar used in RAGs is a conceptual extension of AGs which
make it possible to apply all the object-oriented advantages such as inher-
itance and method overriding.

In the thesis we deal with extensions of RAGs and how they can be
combined to facilitate tasks further for the attribute grammar author. We
also explore applications of the combined extensions. Furthermore, we
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discuss evaluation techniques for extended AG formalisms. Some exten-
sions are formal, e.g., allowing cyclic dependencies between attribute
instances, while others can be characterized as conceptual. Conceptual
extensions include the object-oriented modelling of the grammar and
modularization concepts.

Even in extended AG formalisms, some computations can be compli-
cated to express while their equivalent imperative style implementations
are almost trivial. Another objective of this thesis is therefore to show
how the declarative approach used in attribute grammars can be com-
bined with imperative techniques in a tool using aspect-oriented modular-
ization and where modules can be implemented in either imperative or
declarative style.

The thesis consist of an introduction and three papers. The objectives
of the research presented in the papers can be summarized in the follow-
ing way:

•

 

Application areas 

 

for RAGs and their extensions, especially outside
the traditional compiler-related area. 

•

 

Modularization

 

 of attribute grammars as a way to separate sub-
tasks according to aspect, to support reuse and open up the possibil-
ity to combine imperative and declarative style modules.

•

 

Extensions of RAGs

 

, how they widen their applicability and facili-
tate for the grammar author.

•

 

Evaluator implementation 

 

for the extended formalisms. 

The first paper deals with the application of RAGs to a new problem area;
program visualization. The second paper describes JastAdd, a practical
system for RAGs, based on aspect-oriented programming and the combi-
nation of imperative and declarative programming. The third paper
describes a formal extension of RAGs supporting circular dependencies
(CRAGs). The extended formalism opens up new application areas which
is also discussed in the paper.

The techniques have all been implemented and tested in practice. Our
tool JastAdd incorporates the extended AG formalisms. Its modulariza-
tion concept also allows imperative style modules to be freely combined
with AG modules. An automatic evaluator construction capability that
can handle the extended formalisms has also been developed.

The aim of this chapter is to describe and motivate the objectives fur-
ther and to present our contributions. In order to do so, we first need to
give an overview of the attribute grammar formalisms and their corre-
sponding evaluation techniques. Then we are in a position to present the
objectives of our research in a more detailed manner and to give short
descriptions of each paper. Finally, we summarize our contributions and
discuss possible directions for future work.

The rest of this chapter is organized as follows: Section 1 introduces
traditional attribute grammars and some extended formalisms. Section 2
is devoted to evaluation techniques. In Section 3 we discuss the objectives
of our work and present the papers. Finally, in Section 4, we conclude and
discuss some possible future work.
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1 Attribute Grammars

 

1.1 Traditional Attribute Grammars

 

Traditional attribute grammars (AGs) were introduced by Knuth [16] in
1968 as a formalism to specify the syntax and semantics of a program-
ming language. An AG is a context-free grammar, a set of 

 

attributes

 

 asso-
ciated with its nonterminals, and a set of 

 

equations

 

 specifying the values
of the attributes. 

The nodes of an abstract syntax tree (AST) are instances of nontermi-
nals. The attributes 

 

A(X)

 

 of a nonterminal 

 

X

 

 consists of two subsets: the

 

synthesized attributes

 

 and the 

 

inherited attributes

 

. Each attribute is spec-
ified by an 

 

equation

 

. Synthesized attributes propagate information
upwards in the abstract syntax tree and inherited attributes propagate
information downwards. For example, a synthesized attribute 

 

type

 

 of a
nonterminal 

 

Identifier

 

 can be used to propagate information upwards to
check for correct use of identifiers in expressions. An inherited attribute

 

env

 

 containing information about declarations can be used to propagate
information downwards and be used to look up information about the type
of an identifier.

AGs use a declarative formalism, i.e., it specifies what to do but with-
out imposing any explicit order of computations. Declarative specifica-
tions are clear and concise and help avoiding errors common in
imperative style programming.

Consider a production

 

 X

 

0

 

 ::= X

 

1

 

 X

 

2

 

...X

 

k

 

 

 

of a context-free grammar.

 

 

 

An
equation specifying the value of an attribute 

 

a

 

0

 

 is written 

 

a

 

0

 

 = f(a

 

1

 

, a

 

2

 

,
....a

 

n

 

)

 

. The equation defines the value of 

 

a

 

0

 

 in terms of its 

 

semantic func-
tion f

 

. Here 

 

a

 

0

 

 must be either a synthesized attribute of 

 

X

 

0

 

 or an inherited
attribute of 

 

X

 

j

 

, 1 

 

≤

 

 j 

 

≤

 

 k

 

. The arguments of the semantic function, 

 

a

 

1

 

, ...,
a

 

n

 

, are attributes of 

 

X

 

j

 

, 0

 

≤

 

 j 

 

≤

 

 k

 

. Each equation thus only involves informa-
tion associated with the symbols of the production. An equation defines
either a synthesized attribute of the nonterminal of the left-hand side or
an inherited attribute of one of the right-hand side nonterminals. 

In order for the AG to be 

 

well-formed

 

 there must be exactly one equa-
tion defining each attribute of any syntax tree. This requirement is ful-
filled if for each production there is one equation for each synthesized
attribute of 

 

X

 

0

 

 and one for each inherited attribute of all the right-hand-
side nonterminals 

 

X

 

j

 

, 1 

 

≤

 

 j 

 

≤

 

 k

 

. The start symbol of the grammar must not
have any inherited attributes.

A semantic function introduces dependencies between attributes. If 

 

a

 

1

 

is used to define 

 

a

 

0

 

, then 

 

a

 

0

 

 

 

is dependent of 

 

a

 

1

 

. Traditional AGs consider
cyclic dependencies as an error, i.e., for any syntax tree derivable from the
grammar there must not be any cyclic dependencies between instances of
attributes.

Attribute 

 

evaluation

 

 means assigning values to attribute instances. An
attribute instance is said to be 

 

consistent

 

 if its value is equal to the appli-
cation of its semantic function, or, in other words, if its equation is satis-
fied. An attributed abstract syntax tree is consistent if all its attribute
instances are consistent, i.e., the equations of all its attribute instances
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are satisfied. The values of the attribute instances of a consistent AST is a

 

solution

 

 to the equational system made up of all the equations of its
attribute instances. An attribute grammar is said to be 

 

well-defined

 

 if
every possible AST has exactly one solution.

An 

 

attribute evaluation scheme

 

 is a method for obtaining consistent
attribute assignments. Some schemes evaluate all attribute instances and
obtain consistently attributed ASTs. Other schemes evaluate individual
attributes on demand by evaluating only the subset of attribute instances
of the AST of which the demanded attribute is dependent. We will
describe some evaluation techniques further in Section 2.

 

1.2 Reference Attributed Grammars

 

Traditional AGs provide a concise way of specifying local dependencies.
However, many tasks require information to be transmitted between dis-
tant nodes in the abstract syntax tree. One example is name analysis of
programming languages, especially those with advanced scope rules. To
specify name analysis in the traditional AG formalism you need to repli-
cate large complex aggregate attributes containing the necessary declara-
tion information to all nodes representing use sites. For languages with
complex scope rules, like object-oriented languages, the task becomes very
cumbersome.

Several researchers, e.g., [2,7,20], have suggested extensions to AGs by
allowing attributes to be references to remote nodes in the syntax tree
and to use those references to access attributes of the remote nodes. When
specifying name analysis you may then link each use site directly to its
corresponding declaration site by a reference attribute. Information
needed for example in type analysis can then be accessed from use sites.
The syntax tree itself is in this way used as a symbol table and there is no
longer any need to replicate information all around the tree.

There has also been suggestions of allowing remote attribution, i.e., to
define attributes in distant nodes. Boyland [2] has a system allowing
remote access and remote definition for collection-valued attributes like
sets and dictionaries.

In our work we have used Reference Attributed Grammars (RAGs) as
suggested by Hedin [7]. This extension supports attribute access via refer-
ences but not remote attribution. Attributes are allowed to reference
nodes in the abstract syntax tree and collection-valued attributes may
contain reference values. A reference attribute may be dereferenced to
access attributes in the remote node. RAGs facilitate specification of prob-
lems where non-local dependencies are common and they have been used
in problem areas such as program visualization (described in the first
paper of this thesis), specification of object-oriented languages [7], design
pattern checking [3], and prediction of worst case execution times [19].

RAGs were initially implemented in a tool APPLAB [1], developed at
our department. APPLAB is an interactive environment based on lan-
guage-sensitive editing, aimed at the interactive design of domain-specific
languages. We used APPLAB for the implementation of the work
described in the first paper of this thesis. In our second paper we describe
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our new tool JastAdd, which is an aspect-oriented compiler construction
tool supporting RAGs, aspect-oriented modularization, as well as the com-
bination of imperative style and declarative style modules. The JastAdd
tool has also later been enhanced to handle circular grammars as
described in the third paper.

 

1.3 Circular Attribute Grammars

 

Many computations on abstract syntax trees are easily specified using
recursive equations, often broadly distributed over the tree and introduc-
ing circular dependencies. Examples come from different problem areas
like data-flow analysis and live analysis in optimizing compilers and
properties of circuits in hierarchical VLSI design systems, e.g., see [5,10]. 

In a traditional AG it is considered an error if cyclic dependencies
between attribute instances occur for any derivable syntax tree. However,
as several researchers have pointed out, attribute grammars with circular
dependencies can under certain constraints be considered well defined in
the sense that all equations can be satisfied [5,10]. 

The most common way to ensure that circular AGs are well defined is
to require that the domain of attributes involved in cyclic definitions are
lattices of finite height and that the semantic functions defining the
attributes involved are monotonic with respect to these lattices. If these
conditions are fulfilled a least fixed point can be calculated using an itera-
tive process as in Figure 1. 

Allowing circular dependencies under proper constraints makes many
specifications easy to write for the AG author and easy to read and under-
stand. The specifications involving circular dependencies are often a
direct translation of their mathematical recursive definitions. Farrow [5]
uses as an example the specification of a language where the use of a con-
stant is allowed before its declaration. He shows how its alternative non-
circular specification, in contrast, adds huge complexity using, e.g., higher
order functions one of which in essence captures the iterative process
used in Figure 1.

In the third paper of this thesis we address the possibility and advan-
tages of combining circular attribute grammars with reference attributed
grammars.

initialize all attributes x involved in the cycle to a bottom value;
do {

for each attribute xi in the cycle
xi = fi(...);

} while (some computation changes the value of an attribute);

Figure 1 Iterative algorithm for computing the least 
fixed point for attributes on a cycle. fi denotes the semantic 
function of the attribute xi.
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1.4 Object-Oriented Attribute Grammars and Modularization 

 

From an object-oriented perspective the nodes of a syntax tree can be
viewed as objects of classes corresponding to the productions of a gram-
mar. These objects have children corresponding to production right-hand
sides [6]. Each nonterminal 

 

X

 

 can be modelled as an abstract class and its
different alternative productions can be modelled as concrete subclasses.
Attribute declarations are in traditional AGs associated with nontermi-
nals and their defining equations with productions. A synthesized
attribute 

 

a

 

 of 

 

X

 

 can in the object-oriented perspective be modelled as a
virtual function 

 

a() and a semantic function of a production defining a is
modelled as an implementation of the function a(). 

From the object-oriented perspective it is also desirable to allow equa-
tions to be associated with nonterminals. They then model the default
behavior, which may be overridden by equations in some of their sub-
classes. It is also convenient to allow the introduction of abstract super-
classes not corresponding to any of the nonterminals of the grammar. For
example, it might be convenient to introduce an abstract class Any and
make this the root class of the class hierarchy. Behavior common to all
node classes can then be modelled by attributes of the class Any. Figure 2
shows how these object-oriented concepts are used to equip every node in
an abstract syntax tree with a reference attribute env referencing the
Block node corresponding to the closest enclosing block. Equations of type

sons Any.env = ...; are so called collective equations, expressing that the
definition applies to all son nodes of type Any. The default behavior is that
child nodes inherit their parent’s environment as stated by the equation
for the nonterminal Any. This definition is then overridden for the start
nonterminal Program whose child of type Block has no environment. It is
also overridden in the equation of Block, whose children have the block
node (this) as their environment. 

Object-oriented AGs (OOAGs) is not an extension of traditional AGs –
any OOAG can trivially be reformulated as a traditional AG. Rather, the
difference is conceptual. By formulating the underlying context-free
grammar as a class model, the syntax tree can be directly understood as a

Figure 2 Specifying a env attribute for all nodes in an AST

abstract Any;

inh Block env;
sons Any.env = env;

Program ::= Block;

Block.env = null;

Block ::= Decl* Stmt*;

sons Any.env = this;
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tree of objects, and all the object-oriented advantages of inheritance and
overriding can be applied, yielding concise specifications that are easy to
understand and write by people with an object-oriented programming
background. Furthermore, the object-oriented model of AGs allows easy
integration with imperative object-oriented program code, as is discussed
further in the second paper.

In object-oriented programming, class hierarchies are used for modu-
larization purposes. For many tasks, for example compiler construction,
this type of modularization is not sufficient. Each node class will contain
code related to several different subtasks such as name analysis, type
checking, code generation etc. Attribute grammar systems normally intro-
duce another type of separation mechanism by allowing specifications to
be textually split into modules. The AG author may then specify appropri-
ate attributes and their equations in different modules, e.g., according to
different aspects of the actual problem. The union of all modules consti-
tute the attribute grammar. The combination of object-oriented attribute
grammars with a mechanism supporting such aspect-oriented modular-
ization has many advantages. Features from object-orientation, like
inheritance and overriding, make many specifications easier to express
and a modularization mechanism supports reuse, modification and exten-
sion of existing modules in different applications. These issues are further
addressed in the second paper.

2 Evaluation Techniques for Attribute Grammars

As mentioned earlier evaluating an attribute instance means assigning it
a value so that its equation is satisfied. In the following subsections we
will describe some general techniques for traditional AGs and how they
can be adapted to handle extended AG formalisms.

2.1 Evaluation of Traditional Attribute Grammars

Evaluators for traditional attribute grammars can be constructed auto-
matically by several techniques. These techniques all have in common
that they evaluate attributes in an order based on the attribute depen-
dencies: an attribute is not evaluated until all the attributes it depends on
have been evaluated. This allows optimal evaluation, meaning that each
attribute is evaluated at most once. 

Many techniques construct dependency graphs and use these to com-
pute the evaluation order. An evaluation technique is usually classified as
static or dynamic depending on when the dependency graph is con-
structed. For static techniques, the dependency graphs are constructed at
evaluator construction time, based on the attribute grammar. For
dynamic techniques, the dependency graphs are constructed at evalua-
tion time, based on the AST. The static dependency graphs are pessimistic
approximations of all possible dynamic dependency graphs, and are there-
fore usually less general than dynamic techniques, but usually they yield
faster evaluators.
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Another way of characterizing an evaluation technique is if it is data-
driven or demand-driven. A data-driven evaluation technique stores
attribute instances in memory cells and evaluates them in an order corre-
sponding to the topological sort of the dependency graph. In a demand-
driven technique each attribute is replaced by its semantic function.
Accessing an attribute is here realized by calling its semantic functions. 

More detailed descriptions of the different groups of evaluation tech-
niques for traditional AGs are given in the following subsections.

2.1.1 Static techniques
Static techniques use the grammar to derive information about possible
dependencies between attribute instances in order to construct a proper
evaluation scheme. Evaluators constructed with this technique therefore
do not perform any run time analysis. An example of a static method
designed to handle noncircular AGs is the one proposed independently by
Katayama [14] and Courceller & Franchi-Zannettacci [4]. In their scheme
all possible dependencies between attributes of each production are
derived. Using these graphs, a set of mutually recursive functions to eval-
uate the attributes are constructed. The technique is not completely gen-
eral in that it sometimes fails to build an evaluator even if the AG is
noncircular. This is because the derived dependency graphs may contain
circularities introduced by spurious edges that could not appear in any
syntax tree. 

There are also a number of subclasses of traditional AGs for which
there exists static construction techniques that produce especially simple
and fast evaluators, e.g., Ordered Attribute Grammars [13]. 

2.1.2 Dynamic techniques
Dynamic techniques analyze dependencies between attribute instances at
evaluation time for the abstract syntax tree at hand. 

An example of a general dynamic technique is the one proposed by
Jones [10]. The dependency graph is derived at evaluation time and is
used as a basis for evaluating the attributes in proper order. If the AG is
noncircular the dependency graphs for all possible ASTs are acyclic.
Attributes can therefore be evaluated by simply applying their respective
semantic functions according to the topological ordering of the depen-
dency graph. The scheme is optimal in the sense that every attribute
instance is evaluated only once.

2.1.3 Demand-driven techniques
For demand-driven evaluation there is a simple and general evaluation
technique which replaces each attribute by its semantic function. Access-
ing an attribute is realized by calling its semantic function. This evalua-
tion technique does not construct any explicit dependency graphs, but
makes use of the fact that the semantic functions define the dependency
graph implicitly. This technique was described in [8,11,17]. The drawback
is that it can be non-optimal since the same semantic function might be
called many times. In the worst case, the time complexity is exponential
in the number of attributes. To overcome this problem attributes may be
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cached when they are evaluated for the first time. When an attribute is
demanded for evaluation it is checked if it has already been computed. In
that case its cached value is returned. Otherwise its semantic function is
called, the resulting value is cached, and a flag is set to mark the attribute
as computed. If all attributes are cached, optimal evaluation is achieved
but the amount of memory space needed might be substantial. An alter-
native is to let the AG author decide which attributes to cache.

The object-oriented view on attribute grammars presented in Section
1.4 makes it very easy to automatically generate demand-driven evalua-
tors. In fact, the evaluator is implicitly constructed directly by the model-
ling of the attributes and their equations as virtual functions and their
implementations. This is discussed in more detail in the second paper.

2.2 Evaluation of Reference Attributed Grammars

The static technique of Katayama and the dynamic technique of Jones
described earlier cannot be applied to RAGs. In a RAG the dependency
graph is not known completely before evaluation. Dependencies are intro-
duced by reference attributes and their values will not be known until
they have been evaluated.

The demand-driven technique described in Section 2.1.3 requires no
initial dependency analysis, and is immediately applicable to RAGs. It
automatically traverses the dependency graph depth-first, evaluating the
attributes in topological order. This evaluation technique is used both by
the APPLAB tool [1] and by our new JastAdd tool described in paper 2, as
well as by other systems for similar formalisms, e.g., [2,20].

2.3 Evaluation of Circular Attribute Grammars

Farrow [5] showed that the static technique of Katayama can easily be
generalized to handle circularities. The possibly circularly defined
attributes are detected by identifying the strongly connected components
of the production dependency graphs. Components consisting of one
attribute instance only are treated as in the original algorithm. A compo-
nent with more than one vertex corresponds to attribute instances that
are all dependent of each other and they are evaluated together by an
iterative process as described in Figure 1.

Jones [10] showed that his dynamic technique can also easily be
adapted to handle circular AGs. The strongly connected components of the
dependency graph are identified. A new graph is constructed by contract-
ing each component into a single vertex. The new graph is acyclic and can
be ordered topologically. A vertex corresponding to a single vertex in the
original graph is evaluated by applying its semantic function. Attribute
instances of a vertex corresponding to more than one vertex in the origi-
nal graph are evaluated together by a fixed-point iteration.

In the third paper we show that it is possible to adapt the demand-
driven technique to handle also circular attribute grammars. Since the
demand-driven technique is also applicable to reference attributed gram-
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mars it thereby becomes a technique that is capable of evaluating gram-
mars of the combined extended formalism, circular reference attributed
grammars (CRAGs).

3 Objectives of this Work and Description of the Papers

The research presented in the papers of this thesis have the following
objectives:

• Applications 
The traditional application area for AGs is related to compiler con-
struction. Our aim has been to explore new applications outside the
traditional ones and how different extensions of attribute gram-
mars open up new areas of applications. This aspect of our work is
addressed in papers 1 and 3.

The first paper focuses on a new application for RAGs; program
visualization. In the third paper we show how extending the for-
malism to allow circular dependencies further strengthens the
expressiveness and applicability.

• Modularization 
By modularization we here mean the textual separation of different
parts of the attribute specification. Modularization of the underly-
ing context-free grammar is also an important topic, but it is not
addressed in this thesis. 

RAGs introduces an object-oriented view of the grammar, model-
ling nonterminals as abstract classes and productions as concrete
subclasses. In object-oriented programming, class hierarchies are
used for modularization purposes. Classes will often contain code
related to several different subtasks. An additional modularization
concept allowing the code of a class to be textually split over several
modules is therefore desirable. 

In RAGs the object-oriented view is used to model the abstract
syntax tree. The computations within each class of the resulting
model are still specified in a declarative manner. Declarative pro-
gramming has many advantages. It renders concise problem specifi-
cations and it helps the user to avoid many of the errors that are
common in imperative programming. There are, however, tasks
which are cumbersome to specify declaratively while their corre-
sponding imperative style solutions are almost trivial. Therefore, a
system allowing the combination of modules using imperative style
programming with declarative attribute grammar modules would
be desirable.

Our first paper uses a tool that supports textual modularization
of RAGs and it is demonstrated how this facilitates and supports
reusing and extending specifications. The second paper stresses the
advantage of modularization from an aspect-oriented perspective
and also the combination of modules written in imperative as well
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as declarative styles. The techniques have been implemented in a
practical tool for RAGs, JastAdd.

• Extensions of RAGs 
As has been mentioned earlier, RAGs facilitate tasks within tradi-
tional compiler-related applications. One example is name and type
analysis of languages with complex scope rules. They have also
proven useful in a number of applications outside the traditional
application areas of attribute grammars. An interesting question is
then to what extent further extensions enhances the expressiveness
of attribute grammars and facilitates tasks for the grammar author. 

The second paper focuses on conceptual extensions such as the
object-oriented view of attribute grammars and the combination of
imperative and declarative programming code. A practical tool,
JastAdd, that incorporates the extensions has been developed and
tested. 

In the third paper we deal with a formal extension: circular ref-
erence attributed grammars (CRAGs) and show how this widens
the application area and makes specifications easier to write for
many problems. The JastAdd tool has been enhanced to deal with
circular dependencies and thereby we have been able to test the
extended formalism in practice.

• Evaluator implementation 
In Section 2 we mentioned that some of the evaluation techniques
for traditional attribute grammars can easily be adapted to handle
also circularities while others can be used for the RAG formalism.
The question is then what evaluation technique is suitable for com-
bined formalisms.

In paper 2, we describe the basic demand-driven algorithm used
for RAGs and show how it can be implemented in a very simple way
in Java. In paper 3 this basic algorithm is extended to deal with the
circular dependencies that may occur in CRAGs. 

The rest of this section briefly introduces the three included papers.

3.1 Paper 1: Program Visualization using Reference Attributed 
Grammars

Traditional applications for attribute grammars are related to compiler
construction. One of our objectives has been to explore new application
areas. This paper describes how RAGs can be used to integrate program
visualization in language-based environments and how it can be specified
and generated from grammars. It is shown how a general solution for a
simple grammar can be reused in grammars for other specific languages.

As our experimental platform, we used an interactive language devel-
opment tool APPLAB [1] that has been developed earlier at our depart-
ment. The tool supports interactive development of application-specific
languages and is based on structure-oriented editing and makes use of
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RAGs. The user can organize the RAG specifications in several modules,
thus separating different grammar aspects.

It is described how a reusable visualization specification can be
obtained by using the modularization concept. Ideally, the visualization
can be organized in three parts (each of which might be separated into
modules). One part, the visualization front-end, captures the essence of
the visualization by introducing node classes matching the main concepts
of the visualization. For example, for a state transition language the node
classes could be State and Transition. Attributes for these classes are
introduced and specified to model the properties of the visualization. The
second part, the visualization back-end, then ties the first part to a cer-
tain visualization tool by specifying attributes to generate the representa-
tion required by the tool. The third part ties the front-end to a specific
language. This part, the visualization glue module, can make use of static-
semantic modules for the language at hand. If, for example, a new state
transition language is to be visualized, only the glue module has to be
rewritten. The visualization front-end can be reused for all state transi-
tion languages and all visualization tools. Likewise, if a new visualization
tool is to be used only the visualization back-end part needs to be rewrit-
ten.

The paper exemplifies the technique by using a state transition lan-
guage as a running example. It is first shown how the visualization front-
end, backend and glue module for a very simple toy language, TinyState,
can be specified. Then it is shown how a visualization of a more compli-
cated state transition language, ExSpecState, can be realized by writing a
new glue module only.

The scope of this application is restricted to static code visualization. It
is language independent in the sense that it can be reused for different
languages by specifying different glue modules. It is also visualization
tool independent in the sense that if a new tool is to be used only one mod-
ule needs to be rewritten.

The essence of the visualization specification is facilitated by reference
attributes. For state transition languages, for example, the visualization
is based on a state-transition graph which can be directly modelled as a
RAG by tying nodes of the AST representing states to each other by refer-
ence attributes according to the transitions declared in the program at
hand. RAGs are also used implicitly by the glue module which uses the
static semantics module of the language at hand. This will typically
include a name analysis module which uses reference attributes to tie use
sites to declaration sites.

The work on which this paper is based was done before the implemen-
tation of the tool JastAdd, described in the next paper. Some of the specifi-
cations for the visualization were difficult to express in the declarative
paradigm while their corresponding imperative implementations would
have been almost trivial. Specifying program visualization would thus
have been facilitated if combining the two paradigms had been possible.
This observation supports one of the conclusions of the second paper,
namely the advantage of combining imperative and declarative code. 
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3.2 Paper 2: JastAdd - an aspect-oriented compiler construc-
tion system

The paper describes JastAdd, a Java-based system for compiler construc-
tion built on top of the JavaCC parser generator [9]. The tool is centered
around the object-oriented representation of the AST and supports modu-
larized compiler implementation. 

Usually, an abstract grammar is only a simplification of the corre-
sponding parsing grammar leaving out tokens that do not carry semantic
values and extra nonterminals introduced to resolve parsing ambiguities.
In many cases, however, it is useful to impose different structures in the
abstract and parsing grammars for some constructs. In JastAdd, the user
specifies the abstract grammar independently of the underlying parsing
grammar. JastAdd uses JavaCC and its underlying tree-building system
JJTree for parser construction but its design is not tied to JavaCC. The
abstract grammar in JastAdd is object-oriented (see Section 1.4) and
defines a class hierarchy augmented with subcomponent information cor-
responding to production right-hand sides. 

Different aspects of a compiler can in JastAdd be specified in separate
modules. In imperative style modules (jadd-modules) fields and methods
can be added to different node classes introduced by the abstract gram-
mar. These modules use ordinary Java syntax. In declarative modules
(jrag-modules), attributes and their equations can be added to the node
classes. These modules use a somewhat extended Java syntax. The jrag-
modules are translated into a jadd-module by the tool. The translated
module implicitly defines a demand-driven evaluator for the attribute
grammar of the jrag modules implemented as fields and methods. Jast-
Add generates node classes according to the abstract grammar and
weaves into each node class the additions made in all the different jadd-
modules (one of which might be a translation of jrag-modules).

We have quite substantial experience of using JastAdd both in educa-
tion and in research. The combination of object-oriented ASTs, aspect
modularization and the capability of combining imperative and declara-
tive code has proven very useful. Other systems for RAGs and similar for-
malisms (for example APPLAB used in the previous paper) often have
their own formal languages for specification. JastAdd, in contrast, is
based on Java which makes the system easily accessible for many users.

The JastAdd version presented in this paper supports reference attrib-
uted grammars. It has later been generalized to support circular refer-
ence attributed grammars. This is described in the next paper.

3.3 Paper 3: Circular Reference Attributed Grammars – their 
Evaluation and Applications

In traditional attribute grammars, all direct dependencies between
attributes must be local involving only attribute instances of AST nodes of
one production. As has been mentioned before, reference attributed gram-
mars, RAGs, lifts this restriction. RAGs therefore facilitates, e.g., the task
of specifying name and type analysis for languages with complex scope
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rules. Many problems include name analysis as a subproblem on which
further analyses can be built. Their specifications are, as a consequence,
also facilitated by RAGs.

Some researchers have pointed out that allowing circular dependen-
cies between attributes (under proper constraints to guarantee that the
grammar is well defined) makes it easy for the AG author to specify prob-
lems that are naturally solved using mathematical recursion. In many
cases the recursive solutions can be directly translated into a circular
attribute grammar.

In the third paper we propose the combined formalism circular refer-
ence attributed grammars, CRAGs. We show how an evaluator for CRAGs
can be automatically generated. We also explore the expressiveness of
CRAGs by application examples. They include classical examples for
CAGs as well as problems from new areas. 

Our compiler construction tool JastAdd, described in the previous
paper, is used as experimental platform. Its evaluator generator capabil-
ity has been generalized to include the necessary iterative process for cir-
cularly defined attributes. For performance reasons, as well as for
robustness, the evaluator code for non-circular attributes has also been
modified.

Two classical examples for circular attribute grammars are revisited:
live analysis in optimizing compilers and the analysis of languages where
constants can be used before declaration. In the first case we show that a
larger class of languages can be handled by CRAGs given the possibility
to use reference attributes. In the second case we show that reference
attributes make it possible to specify the solution in a straight-forward
way without introducing any circular dependencies.

We also exemplify the applicability of CRAGs by a highly recursive
problem: the computation of nullable, first and follow used in parser con-
struction. This is a problem that to our knowledge has not been solved
using attribute grammars before and is typical for a large class of prob-
lems dealing with properties of grammars, so called grammar flow analy-
sis [18,12]. The specification of these computations clearly shows how the
mathematical definitions of these concepts can be almost directly formu-
lated as an attribute grammar. The task of computing the fixed points is
the responsibility of the evaluator and is completely hidden from the AG
author.

Many problems include name analysis of some kind as a subproblem
and many analysis problems are inherently circular and need to be com-
puted by iterating to a fixed point. We therefore expect CRAGs to be use-
ful in a number of practical problems. We have also compared our
demand-driven evaluator with handwritten imperative code implement-
ing fixed-point iterations (in JastAdd) and found that there seems to be
little difference in performance.

4 Contributions and Future Work

The main contributions of this thesis are connected to the experience of
applying combined extended AG formalisms to different application
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areas. This work has included the development of a tool, JastAdd, which
incorporates formal as well as conceptual extensions of AGs: reference
attributes, circular dependencies, an object-oriented view of the grammar,
and modularization concepts. It also allows the user to separate the
abstract grammar from the parsing grammar and to combine imperative
implementation code with attribute grammars. As a part of the JastAdd
implementation, an evaluator generation technique capable of handling
the combined formalism was developed.

In the following subsections we summarize our contributions and dis-
cuss some possible directions for future work.

4.1 Contributions

In this subsection the contributions of the research presented in the
papers are summarized and related to the list of objectives given in Sec-
tion 3.

Paper 1

We, as well as other researchers [3,19], have exemplified new areas, out-
side the traditional compiler-related ones, where RAGs can be applied.
The program visualization application described in paper 1 is one exam-
ple of how RAGs can be used outside the traditional compiler-related area
for AGs. 

The paper also demonstrates the advantages of modularization. The
object-oriented view of the grammar is combined with the possibility to
separate specifications in modules according to different aspects of the
problem. 

Based on our example applications, we conclude that the combination
of RAGs with a modularization concept supports separation of concerns
and makes it easy to understand and also to reuse and extend the specifi-
cations.

Paper 2

The advantages of modularization techniques are again stressed in this
paper. The concept of modularization is generalized to also include the
possibility of combining declarative attribute grammar modules with
imperative style modules using ordinary Java syntax. The most appropri-
ate technique for each subproblem can thus be used. 

Even in extended formalisms, there are some computations that do not
lend themselves easily to declarative specification, while they are trivial
to express using imperative style programming. Our conclusion is there-
fore that the possibility to combine imperative and declarative aspects is
very useful.

It is shown how the generalized modularization technique can be
implemented in a Java-based system. This includes the implementation of
a demand-driven evaluator for the attribute grammar modules. The con-
struction of the evaluator is straight-forward, given the object-oriented
view of the grammar. Furthermore, the demand-driven technique facili-
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tates the integration of attribute grammar modules and imperative mod-
ules. Attributes defined in declarative aspects can be accessed by
imperative aspects. The access of an attribute causes the demand for its
evaluation.

In our experience, the combination of declarative and imperative mod-
ules is very useful. JastAdd has been used quite extensively in research
projects at our department and also in education.

Paper 3

Circular Reference Attributed Grammars (CRAGs) are introduced in this
paper. A CRAG is a combination of two formal extensions of AGs; allowing
attributes to be references to nodes in the AST and allowing circular
dependencies between attribute instances under proper constraints.

The results described indicate that CRAGs have a number of practical
application areas and significantly widens the application area of AGs. It
is exemplified by the computation of nullable, first and follow introduced
in the context of parser construction. This problem is representative for a
large class of so called grammar flow problems, which to our knowledge
has not been specified using the attribute grammar formalism before.

Many problems have solutions that can be expressed using mathemat-
ical recursion including circular dependencies. We have demonstrated
how these solutions can be almost directly formulated as CRAG specifica-
tions. 

Furthermore, CRAGs widens the scope of specifications for some clas-
sical problems where CAGs have been used before. Live analysis in opti-
mizing compilers is one example. This is a classical example used to
demonstrate the usefulness of CAGs. In a CRAG, where attributes are
allowed to reference remote nodes in the AST, the specification can be gen-
eralized to handle a larger class of languages.

An evaluator for CRAGs has been implemented by generalizing the
evaluator construction mechanism in our tool JastAdd. We have found
that the demand-driven technique can be adapted to handle CRAGs. We
have compared our demand-driven evaluation algorithm with handwrit-
ten imperative code implementing fixed-point iterations. The results indi-
cate that there is little difference in performance.

4.2 Future work

There are many interesting ways in which this research may be contin-
ued:

Modularization

The modularization concept used in our work has so far only been a com-
putational modularization, i.e., a way to textually separate computations.
An interesting field for further research is extending the modularization
concept to include support for language extensions and language modu-
larization.
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Aspect-oriented programming, e.g., as in AspectJ [15], covers both
static and dynamic aspects. Our tool JastAdd presently only covers static
aspect-oriented programming by allowing fields, method and interface
implementations to be added in separate modules. The joinpoint model of
AspectJ allows also code written in separate modules to be inserted
dynamically at selected execution points. It is a very interesting area for
future research to investigate further the benefits of adding dynamic
aspects, especially for compiler construction.

Evaluation of RAGs

The evaluation technique we use for RAGs can probably be improved in
several ways. One possibility would be to support automatic caching of
attributes. The tools used in our work, APPLAB and JastAdd, both allow
the user to declare which attributes to cache. Optimal evaluation is
achieved by caching all attributes. It would be desirable to develop a tech-
nique for automatically deciding which attributes to cache for best perfor-
mance and memory usage.

The technique used in our tool JastAdd is based on a straight-forward
translation of attributes and their equations into methods and fields in
Java and the resulting evaluator perform many method calls. Possible
optimizations of the evaluator implementation include declaring methods
final when possible and to explore the possibility of inlining methods.

Another possibility would be to apply some of the faster static evalua-
tion techniques based on dependency graphs described in Section 2
instead of demand-driven evaluation. That would, however, require an
initial dependency analysis. It is an open question to what extent it is pos-
sible to perform a realistic dependency analysis for RAGs.

Continued work on CRAGs

Future work also includes improving the CRAG evaluator. As is pointed
out in paper 3 the evaluator does not always detect that circularly depen-
dent attribute instances belong to different strongly connected compo-
nents of the dependency graph. As a result, iterations are sometimes
performed over more than one component at a time. It might be possible
to improve component detection by using the underlying modularity of the
specifications. 

Another issue concerns detecting circularities. In the present version of
JastAdd the user must declare which attributes are circular. The tool will
detect undeclared circularities during evaluation and treat these as
exceptions which cause termination of the evaluation process. It would be
desirable to have a tool that detects all possible circularities before evalu-
ation and then generates an evaluator that performs the necessary itera-
tions for the detected possible cycles. It is, however, an open question to
what extent it is possible to detect possible cyclic structures statically for
RAGs. Such analysis would need to be conservative and it would be inter-
esting to look into possible approaches and their applicability.

We also plan to explore new application areas for CRAGs, by looking
into grammar flow analysis work [18,12].
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Combining CRAGs with higher-order attribute grammars

Current work of other members of our research team includes adding sup-
port for higher-order attribute grammars (HAGs) [22]. Torbjörn Ekman is
developing JastAdd in this direction. We believe that there are application
areas where the combination of CRAGs and HAGs would prove useful. In
the near future we hope to merge the HAG and the CRAG extensions in
our tool JastAdd.
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Abstract

This paper describes how attribute grammars can be used to integrate
program visualization in language-based environments and how program
visualizations can be specified and generated from grammars. It is dis-
cussed how a general solution for a simple grammar can be reused in
grammars for other specific languages. As an example we show how dia-
gram generation for a very simple state transition language can be inte-
grated in a more complex specific state transition language. We use an
extended form of attribute grammars, RAGs, which permits attributes to
be references to nodes in the syntax tree. An external graph drawing tool
is used to visualize the diagrams. The solution is modularized to support
reuse for different languages and exchange of the external drawing tool
for different types of visualization. 



22 Program Visualization using RAGs

1 Introduction

Program visualization is an important technique useful to gain under-
standing of the structure of a program. Meaningful visualizations can be
built from several different types of elements (words, images, ..) but graph
drawing is the most popular way to present structural relationships. One
example is call-graphs where functions are presented as nodes in a
directed graph and possible calls between functions as edges. Other exam-
ples are UML class diagrams, where design is expressed through graphi-
cal notations, and state transition diagrams used to visualize finite state
machines.

In this paper we discuss integrating program visualization in lan-
guage-based environments and how such program visualizations can be
specified and generated from grammars. We deal with static code visual-
izations, i.e., visualizations of the program code, in contrast to, e.g.,
dynamic code visualization (visualizations of an executing program) and
algorithm visualization. We have an interactive environment, APPLAB
(APPlication language LABoratory) supporting language-based editing of
the grammars of a language as well as language-based editing of pro-
grams in the language [1,2,3]. APPLAB is based on structure-oriented
editing and reference attributed grammars [11] (an object-oriented
extended form of attribute grammars).

The main representation of the program is an abstract syntax tree
(AST), but a program visualization is often based on some kind of graph.
We use reference attributed grammars to describe how these graphs can
be generated from the syntax tree. External visualization tools can then
be integrated provided that they have an import mechanism for graphs
from text files in some documented format. The generation of the text files
on the format required by the tool is also specified using reference attrib-
uted grammars.

We show how it is possible to modularize the solution for a particular
kind of visualization so that both the underlying programming language
and the external visualization tool can easily be exchanged. In this arti-
cle, we use state-transition visualizations as a running example and show
how the solution can be reused for different state-based languages. A sim-
ilar technique could be used for other visualizations, e.g. to obtain UML
class diagrams for different object-oriented programming languages.

The rest of this article is organized as follows. Section 2 presents the
environment architecture. Section 3 describes a general solution for a
simple state transition language and section 4 gives an overview of how
the representation for an external tool can be generated. In section 5 we
show how the solution can be integrated in a more complex specific state
transition language. Comparison of our approach to some related work is
done in section 6. Section 7, finally, gives a concluding discussion of our
technique and how it can be developed further.
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2 Environment architecture

The environment architecture consists of two parts; a language environ-
ment supporting language specification and language-based editing of
programs in the specified languages, and a visualization tool, i.e., an
external graph drawing tool used for visualizing programs. In our experi-
mental platform we use our interactive language development tool
APPLAB as the language environment, and the tool daVinci [6] from Uni-
versity of Bremen as the visualization tool. See Fig. 1.

2.1 The interactive language development tool APPLAB

The language environment is implemented using our interactive tool
APPLAB (APPlication language LABoratory) [1,2]. The main goal of
APPLAB is to support interactive development of application-specific lan-
guages, allowing the user to simultaneously work on the language defini-
tions and experiment with the resulting language. Changes in the
language are immediately reflected in the program editor. The system is
based on structure-oriented editing and an object-oriented extension to
attribute grammars. 

An attribute grammar [12] is an extension of a context-free grammar
where a set of attributes A(X) are associated with each non-terminal sym-

Figure 1 Overall architecture. To the left, the language environment APPLAB 
with the language specification in several aspects (icons ABSTRACT, CON-
CRETE, OOSL-NameAnalysis, ...) and an example program in the specified lan-
guage (window PROGRAM). To the right, the daVinci tool is used to visualize the 
program as a state-transition diagram.
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bol X. A set of equations E(p) are associated with every production p.
There are two kinds of attributes, synthesized and inherited. Synthesized
attributes are used to propagate information upwards in the syntax tree
and inherited attributes to propagate information downwards. For each
production p: X0 ::= X1...Xn, E(p) should have equations defining all the
synthesized attributes of X0 and all the inherited attributes of Xi, i=
1,2,...n. 

In the extended attribute grammars used in APPLAB, the context-free
syntax is modeled as an object-oriented inheritance hierarchy of node
classes, where the leaf classes correspond to productions and their super-
classes to nonterminals. The class hierarchy allows attribute grammars to
be written in a compact way by using the inheritance hierarchy to avoid
much of the repetition of attributes and equations that is otherwise com-
mion in classical attribute grammars [9]. 

The root of the class hierarchy is the node class ANYNODE which can
be used to model behavior common to all nodes in the AST. Every node in
the syntax tree is an instance of a subclass of ANYNODE. Equations
defining attributes can be viewed as parameterless virtual functions. It is
therefore possible to make a default definition of an attribute in a super-
class and then override it in a subclass. APPLAB also supports the defini-
tion of virtual functions with parameters.

APPLAB makes use of object-oriented concepts to organize the specifi-
cation, but in contrast to object-oriented programming languages, the
specification contains only declarative constructs (no assignments or
other imperative constructs). The attribute evaluation method used is
demand evaluation, a simple but general evaluation method based on
recursion [14]. When an attribute value is demanded, the right-hand side
of its defining equation is evaluated (similar to a function call) and this
will in turn lead to the demand evaluation of the attributes used in that
equation. Optimal evaluation is achieved by caching evaluated attributes
in the AST and cyclic definitions of attributes can be detected at evalua-
tion time by setting a flag for each cached attribute. In APPLAB the user
can demand an attribute value to be displayed or written to a file.

In addition to the object-oriented style of specifying the attribute
grammar, APPLAB supports reference attributed grammars, i.e., the abil-
ity to let an attribute be a reference to an arbitrary node in the syntax tree
[11]. Reference attributes are similar to ordinary reference variables in
object-oriented programming languages in that they can refer to other
objects and be used to obtain arbitrary linked data structures (including
cyclic structures). However, reference attributes differ from reference
variables by beeing defined declaratively by equations. This is in contrast
to ususal programming language approach of writing an imperative
mutating computation to obtain the linked structure.

Reference attributes are useful for describing arbitrary relations
between nodes in a syntax tree, in addition to the syntactic (tree-struc-
tured) relations that ordinary attribute grammars support. For example,
call graph relations, inheritance relations, and state-transition relations
are easily described using reference attributes. A few built-in structured
data types like dictionaries mapping strings to node references (NodeDic-
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tionary) and sets/bags of node references (NodeBag) have been added to
APPLAB in order to allow such relations to be described effectively.

A language is specified in APPLAB in a document containing several
grammar aspects, see also Fig. 1. The ABSTRACT aspect defines the
abstract context-free syntax of the language and the CONCRETE aspect
defines the concrete syntax (how to unparse an AST as text in a window).
The OOSL (Object-Oriented Specification Language [1,2,10]) aspect
defines an attribute grammar. An OOSL specification can be split in a
number of modules thus textually separating attributes and equations for
different purposes, e.g., static-semantic checking and code generation.
Similar possibilities for modularizing the attribution specification is
available also in non-object-oriented attrbute grammar systems such as
the Synthesizer Generator [19]. From an object-oriented viewpoint, the
OOSL modules are orthogonal to the class hierarchy. Similar modulariza-
tion techniques are available also for some object-oriented languages, in
particular the fragment system for the BETA language [13] and in sub-
ject-oriented programming [8].

Fig. 2 shows an OOSL example of how to add an inherited attribute
root referencing the root node in the AST to every node. The equation is an
example of a so called collective equation which defines the value of an
inherited attribute of all sons of a given type, in this case of any type [9].
The example also shows an example of an overriding equation: the equa-
tion in Program overrides the default definition in ANY-NODE since Pro-
gram is a subclass of ANYNODE.

2.2 The graph drawing tool daVinci

The external tool used for the graph visualization is daVinci [6], an inter-
active visualization system for drawings of directed graphs, developed at
the Computer Science Department at the University of Bremen. An appli-
cation program can access the operations of daVinci by using its API. The
communication between daVinci and the application is realized with
UNIX pipes. There is also a Graph Editor Application which is an interac-
tive tool to create and modify graphs. The editor in this case acts as an

Non-
terminal

Attributes Equations and functions

ANYNODE inh root: 
ref Program

eq son ANYNODE.root := root

Program eq son ANYNODE.root := this Program

Figure 2 Adding an inherited reference attribute root to all nodes. The default 
definition in ANYNODE defines the root attribute of all son nodes to be the same 
as for the current node. In Program (the root production), the definition is overrid-
den, defining the root attribute of all sons to the Program node to be a reference to 
the Program node.
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application program which communicates with the daVinci API. Cur-
rently, we use the daVinci editor only to display graphs, not to edit them.
Graphs can be loaded in the editor from text files with a special format,
the term representation, described in more detail in Section 4.1.

After loading a graph into daVinci it can be processed in different
ways. For example edge crossing minimization and edge bending minimi-
zation can be performed. It is also possible to create a survey view of the
graph and zoom into different part of it and to change the orientation of
the graph.

In our experimental platform, an attribute grammar is specified in
APPLAB which defines the representation required by daVinci as a string
attribute. Thus, to visualize a program, this attribute is evaluated and
saved on a text file which is then loaded into daVinci, and displayed on
the program window of the daVinci editor. See Fig 1. Our ambition is to
improve the integration of the language environment and the visualiza-
tion tool. Preferably it should be possible to connect to the external graph
drawing tool directly from APPLAB.

2.3 Obtaining a reusable visualization specification

In order to obtain a general reusable solution, it is useful to organize the
specification of a visualization according to the following different aspects:
First, the essence of the visualization can be specified by introducing node
classes that match the main concepts in the visualization. For example,
for a state diagram, the node classes could be State and Transition.
Attributes of these node classes are introduced for modelling the essential
properties of the visualization. We call this part of the specification the
visualization front-end. Second, to tie this specification to a certain visual-
ization tool, a visualization back-end module is introduced which specifies
the computations needed to generate the representation required by the
external visualization tool. If the visualization tool is exchanged, another
back-end is written for that tool. Third, a visualization glue module is
written which ties the front-end to the specific language to be visualized.
Typically, the glue module can make use of a static-semantics module
which defines the name analysis (identifier declaration/use sites) for the
language at hand. To visualize another language with the same kind of
diagrams, a new glue module is written. The front-end module can be
reused for all languages and visualization tools. This module organization
is shown in Fig. 3. 

APPLAB currently supports this module organization, with the
restriction that the front-end must use the node classes that correspond to
states and transitions in the ABSTRACT syntax. As future work, we plan
to generalize the module system of APPLAB in order to allow the front-
end to introduce its own node classes, and let the glue module tie these
node classes to the corresponding ones appearing in the ABSTRACT syn-
tax. 
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3 Visualization for a simple state transition language

We will use state-transition diagrams as our running example. In this sec-
tion, we introduce a very simple state transition language, TinyState, and
the front-end and glue of our solution, i.e., how to specify the essence of
the state-transition graph on which visualizations of programs written in
TinyState are based, and how to tie this to the syntax of TinyState.

3.1 The language TinyState

The abstract grammar for a very simple state transition language, TinyS-
tate, is given in Fig. 4. Production (2) is a list production stating that a
StateDecls consists of a number of StateDecl nodes. Production (5) is a
construction production stating that TransitionDecl is a construction of
three IDs (the name of the transition, the name of the source state and the
name of the target state).

The concrete syntax of TinyState becomes evident from the example pro-
gram of Fig. 5. The program can be visualized as a directed graph, where
vertices correspond to states and edges to transitions.

ABSTRACT

CONCRETE

OOSL-
Static-
Semantics

OOSL-
Visualization-
Front-end

OOSL
Visualization-
Back-end

OOSL-
Visualization-
Glue

Output to 
visualiza-
tion tool

Figure 3 Internal architecture in APPLAB showing module dependencies for a 
general reuasable specification of the visualization.

A B A uses or defines attributes declared in B

Program ::= StateDecls TransitionDecls
StateDecls ::= StateDecl*
StateDecl ::= ID
TransitionDecls ::= TransitionDecl*
TransitionDecl ::= ID ID ID

Figure 4 The ABSTRACT grammar of TinyState, a 
simple state transition language

(1)
(2)
(3)
(4)
(5)
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3.2 Visualization front-end

The visualization front-end defines a representation of the state-transi-
tion graph that is independent of the programming language syntax and
which is easy to traverse for the back-end. The representation is realized
using reference attributes that link together declarations of transitions
and declaration of their source and target states .

In every TransitionDecl node we add two attributes sourceState and tar-
getState referencing the StateDecl nodes in the tree corresponding to the
source and target states. Every StateDecl node has an attribute outgo-
ingTrs defined to be a set of references to the transitions having the actual
state as its source. There is also a corresponding attribute incomingTrs for
transitions having the state as their target. In this way we get a descrip-
tion of the graph resembling an ordinary adjacency list representation
which makes it easy to traverse. In Fig. 6 the connections between State-

state a
state b
state c
trans t1(a,b)
trans t2(a,a)
trans t3(b,c)
trans t4(c,a)

a b

c

t2

t4

t1

t3

Figure 5 A simple program and a possible visualization

Program

StateDecls TransitionDecls

StateDecl (a)

outgoingTrs

StateDecl (b)
TransitionDecl (t)

sourceState

targetState

Figure 6 Connections between states and transitions for a small program

Program:
state a
state b
trans t (a,b)

reference attribute

syntax tree link

incomingTrs
outgoingTrs
incomingTrs
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Decl nodes and TransitionDecl nodes in the AST for a small program are
shown.

To define the attributes sourceState and targetState, detailed knowl-
edge about the programming language syntax is needed, and the equa-
tions defining these attributes are therefore placed in the glue module.
The attributes outgoingTrs and incomingTrs can then be computed in a
syntax-independent way, using the values of sourceState and targetState.
E.g., outgoingTrs can be defined by searching the AST for TransitionDecl
nodes where sourceState references the actual state. A function outTrs is
defined which recursively searches the tree for nodes matching this condi-
tion. To be able to start the search at the root of the AST, a reference
attribute ASTroot is introduced which must be defined by the glue module.
The attribute incomingTrs is defined in a similar way. Fig. 7 shows the
front-end module.

The outTrs function in Fig. 7 makes use of the foreach-construct in
OOSL. In this case it is used to iterate over all the sons of an arbitrary
AST-node. The same construct can be used to iterate over the elements in
a NodeBag. (Despite its imperative appearance, the foreach construct is a
declarative language construct equivalent to a special case of a tail-recur-
sive function.) The function outTrs may seem unnecessarily complicated
for our simple language. Since we know that all TransitionDecl nodes in
the AST are sons of the TransitionDecls node iterating over these would be
sufficient. Implementing this function (and others) in a more general way
means, however, that we are able to reuse them when adding visualiza-
tion aspects to other languages with completely different syntax tree
structures.

We also declare two string attributes stateLabel and transitionLabel in
the front-end module. They denote the text to be attached to nodes and
edges respectively in the visualization graph and are to be defined by the
glue module.

3.3 Static-semantics of TinyState

It is often useful to base the glue module on the static-semantics module,
because this module already contains the name analysis needed for the
glue module. The static-semantic analysis of TinyState is very simple.
One of its goals is to check that the names of states used in transition dec-
larations are declared in the program. For this purpose an aggregate
attribute stateDict (a NodeDictionary) is defined as a mapping from state
names to references to their respective declaration nodes. Checking that a
transition declaration is correct means checking that the names of the
source and target states can be retrieved from the dictionary. The dictio-
nary is an attribute defined in the root node of the syntax tree. All other
nodes of the AST are given access to the dictionary via an attribute root
referencing the root node and defined as was shown in Fig. 2. The defini-
tion of stateDict is shown in the table of Fig. 8.

The function buildDict() in node class StateDecls uses the foreach con-
struct in OOSL. In this case a table is built containing association pairs
(key,element) for all sons (all of which are StateDecl nodes) where key is
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the name of the son and element is a reference to the son node. If the same
key is added more than once to a NodeDictionary the previous association
is overridden. The table stateDict can therefore also be used when check-
ing that all state names in a program are unique. To each StateDecl node
an equation can be added where a lookup for the state name is performed.
The corresponding element should refer to the actual state. If not, a viola-
tion of the uniqueness requirement has been detected. The complete
static-semantics is available in a separate report [16].

Attributes to be defined in the glue module

Non-
terminal

Attributes
Equations and 

functions

TransitionDecl syn sourceState: ref StateDecl;
syn targetState: ref StateDecl;
syn transitionLabel: string;

StateDecl syn stateLabel: string;

ANYNODE syn ASTroot: ref ANYNODE;

Additional attributes and definitions

Non-
terminal

Attributes Equations and functions

ANYNODE outTrs: func ref NodeBag
(n: ref StateDecl)
foreach $X: ANYNODE in this ANYNODE do

$N := (init new NodeBag)
inspect $Y := $X
when TransitionDecl do

if $Y.sourceState=n
then $N.add( $Y )
else $N

otherwise $N.union( $Y.outTrs( n ))

StateDecl syn outgoingTrs: 
ref NodeBag;

syn incomingTrs:
ref NodeBag

eq outgoingTrs :=
ASTroot.outTrs(this StateDecl)

eq incomingTrs :=
ASTroot.inTrs(this StateDecl)

Figure 7 Front-end module. The function inTrs used in the defintion of 
incomingTrs is similar to outTrs and not shown.
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3.4 The glue module

Fig. 9 shows the glue module. It should implement some of the attributes
declared in the front-end according to Fig. 7. The attributes sourceState

and targetState can be defined simply by doing a lookup in the dictionary
stateDict defined in the static-semantics module. The ASTroot attribute
can be defined simply using the root attribute (as defined in Fig. 2). For
stateLabel and transitionLabel there is little choice in TinyState but to
define them as the names of the corresponding state and transition
respectively.

Non-
terminal

Attributes Equations and functions

Program syn stateDict: 
ref NodeDictionary

eq stateDict := a_StateDecls.buildDict()

StateDecls buildDict func ref NodeDictionary :=
foreach $X : StateDecl in this StateDecls do

$D := (init new NodeDictionary)
$D.add($X.stateName, $X)

StateDecl syn stateName: string eq stateName := a_ID.val

Figure 8 Part of the static-semantics of TinyState. A table stateDict, mapping 
state names to state declarations is defined

Non-terminal Attributes Equations and functions

TransitionDecl eq sourceState := root.stateDict.lookup(a_ID_2.val)
eq targetState := root.stateDict.lookup(a_ID_3.val)
eq transitionLabel := a_ID_1.val

StateDecl eq stateLabel := a_ID.val

ANYNODE eq ASTroot := root

Figure 9 The glue module. The indexing on the identifiers (a_ID_1, a_ID_2 etc.) 
refers to the different occurences of the ID nonterminal int the TransitionDecl pro-
duction. See Fig. 4.
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4 Visualization back-end for a state transition visualization

Once the graph has been described in the front-end, by linking together
StateDecl and TransitionDecl AST nodes via reference attributes, the rep-
resentation required by the external graph drawing tool can be specified
independently from the actual underlying language. In this section we
give an example of such a back-end, by showing how code is generated for
output to the daVinci tool. The daVinci tool represents graphs as nodes
and edges, and the goal of the back-end is thus to map the StateDecl-Tran-
sitionDecl graph of the program to the format for nodes and edges
required by daVinci. This mapping is non-trivial because daVinci repre-
sents graphs as trees with special treatment of edges that cannot be
mapped to a tree and special treatment of cyclic structures in the graph.

4.1 The daVinci term representation

When graphs are loaded in daVinci a special format called the term repre-
sentation is used. The term representation is defined by a context-free
grammar. A term is a structure of type parent[child1, child2,...]. Brackets
are used around a list of elements of the same type. The scheme is applied
recursively. The term representation is plain text, so it can be created
manually using a text editor. Typically, however, it is created automati-
cally by some application program. In our case the input to daVinci is cre-
ated by defining a string attribute of the program to be visualized.

Identifiers and references are used to identify daVinci nodes and edges.
If a child node has more than one parent the subgraph of the child
appears only once in the term representation (as a child of one of the par-
ents). This subterm is given an identifier, the identifier of the child node.
The other parents have only a reference to this identifier. For example the
node C in the graph of Fig. 10 has two parents A and B. When generating
the code the node A will be treated as parent of C and when visiting C on
a traversal coming from A we will continue recursively to generate the
code of the subgraph of C. Coming from B, however, we will stop the tra-
versal at C and just return the code of a reference to the child C. 

One task of the back-end is to generate unique identifiers for all
daVinci nodes and edges. This is done by adding an integer attribute pre-

C

D

A B

Figure 10 A node (C) with more than one parent
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fixNbr to all nodes in the AST and defining this attribute as the number of
the node when traversing the tree in prefix order starting with number 1
in the root node. The relationship between the number of a node and the
number of its parent can be expressed as

prefixNbr := parent.prefixNbr + 1 + nbrOfNodesInLeftSiblings

where the last term denotes the total number of nodes in the subtrees
rooted in the left siblings of the actual node. This number can be com-
puted using auxiliary functions implemented in ANYNODE, in a manner
completely independent of the underlying programming language. Since
daVinci requests its unique identifiers to be strings, another string
attribute nodeId is defined in each node. Its value is simply the prefixNbr
attribute translated into its corresponding string. See [16] for the specifi-
cation of these computations. 

The term representation uses attributes to specify the visualization of
individual daVinci nodes and edges. We call these attributes daVinci
attributes to distinguish them from attributes of an attribute grammar.
All daVinci attributes have default values. The following example shows
daVinci attributes for a graph node which should be drawn as a box (a
default shape value) with blue background and text “hello” written using
the default font (“a” is the constructor for string pairs defining daVinci
attributes in the term representation):

[a(“OBJECT”,”hello”), a(“COLOR”,”blue”)]

All daVinci attributes that need to be defined have their corresponding
attributes in our grammar. We have chosen to draw the nodes as ovals
and edges as lines with an arrow pointing to the target state.

4.2 Code generation by graph traversal

The daVinci term representation (in the following called simply the code)
can be generated by using information propagated along the reference
attributes describing the graph, corresponding to depth-first graph tra-
versal. There are however two problems which need to be dealt with.

The first problem concerns cycles in the graph. In an imperative lan-
guage you usually perform depth-first traversal by adding an extra bool-
ean attribute “visited”, initially false and changed to true when visiting
the node for the first time. In a declarative language it is not possible to
change the value of an attribute once defined. The usual solution is to use
sets to keep track of which nodes to visit next and which nodes to avoid to
visit again. A simpler technique for the problem at hand is to avoid cycles
by inverting edges and then draw them reinverted. Since all nodes in the
AST are numbered (the prefixNbr attribute) we can introduce an order
between states. We define a state S1 to be declared before another state
S2 if S1.prefixNbr < S2.prefixNbr. An attribute inverse is added to Transi-
tionDecl nodes. If the source of a transition is not declared before its target
the value of inverse is true, otherwise false. In the code generation phase a
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transition where inverse is true will be treated as a transition from its tar-
get state to its source state. One of the daVinci attributes for edges speci-
fies the way the edge should be drawn. If inverse is true then the
corresponding daVinci attribute is defined to draw the edge inverted i.e. it
appears with its original orientation in the visualization. Selfedges need
special treatment.

When cycles are removed the code can be generated by appending the
code representation of all StateDecl nodes with indegree 0. The code of a
StateDecl is constructed by appending the code of all transitions in its out-
goingTrs attribute where inverse is false and all transitions in its incom-
ingTrs attribute where inverse is true. The code of a transition is in turn in
principle the code of its target state. daVinci attributes are inserted in
appropriate places as stated by the grammar of the term representation.
Thus the generation of the code of a state corresponds to a depth-first tra-
versal of the graph starting in the actual state. 

The second problem originates from the requirement to describe a sub-
graph only once in the term representation as explained in section 4.1.
For this purpose we add an attribute theTransition to each StateDecl node
defined to be a reference to one of the transitions having the actual state
as its target. In the code generation we continue to recursively visit and
generate the code of a target state node if the transition node being
treated equals its theTransition attribute. Otherwise we just return the ref-
erence code (the unique identifier) of the target state node.

The complete back-end specification is available in [16].

5 Reusing the visualization specification 

The state-transition visualization specified by the front-end and back-end
modules can be used for any state-transition language simply by exchang-
ing the glue module. In another research project at our department, an
application-specific language has been developed to support executable
state-transition based specifications for devices communicating over
short-distance radio. This project is done in cooperation with Ericsson
Mobile Communications [7]. We have used this language, ExSpecState, as
an example of how to integrate the diagram generation in a specific state
transition language. In this section we will discuss the glue module for
ExSpecState.

5.1 Differences between the languages

The ABSTRACT grammar of ExSpecSate contains approximately 90 pro-
ductions. It comes equipped with OOSL grammar aspects for name and
type analysis. As a state transition language it differs from TinyState in
two ways. The states are hierarchical and the transitions have no names.
An excerpt from the ABSTRACT grammar showing only the productions
affecting state and transition declarations is given in Fig. 11. and part of a
program using ExSpecState is shown in Fig. 12.
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5.2 Integrating the diagram generation

The reuse of the front-end and back-end modules currently relies on that
all programming languages use the names StateDecl and TransitionDecl
for the non-terminals modelling states and transitions.

In the glue module for ExSpecState, definitions for the attributes
sourceState and targetState in a TransitionDecl node are added. The
attribute targetState could be defined using the lookup facilities provided
by the name analysis of ExSpecState (as was done in the glue module of
TinyState). In fact it doesn’t need to be looked up since each Use node is
already equipped with an attribute (decl) referencing its corresponding
declaration. The sourceState is in ExSpecState a reference to the declara-
tion of the state in which the transition is declared i.e. we have to look for
the closest ancestor node of type StateDecl in the AST. The principal part
of the glue module for ExSpecState is shown in Fig. 13 with equations for
sourceState, targetState, stateLabel, transitionLabel and ASTroot. The
attribute parentState used in the definitions is declared in StateDecl nodes
and defined to reference the closest ancestor of type StateDecl in the AST.
If there is no such ancestor it references the ancestor of type Process
instead. Labels for states are in principle defined by appending the labels
of its parent states (the symbol “&” is used for appending). If a process

Root ::= Process*
Process ::= ID OptComment StateSpecification
StateSpecification ::= DeclList
DeclList ::= Decl*
Decl :: = StateDecl | TransitionDecl | VarDecl | ChannelDecl
StateDecl ::= ID OptFormalParamList OptCommentList OptStateSpecification
OptStateSpecification :: =NoStateSpecification | StateSpecification
TransitionDecl ::= EventDecl OptCommentList OptLocalDecls OptActionList Use

Figure 11 Some of the productions for the ExSpecState language

process MP: (* Mobile Phone *) {
state DeInitalized {

when GUI event GUI_REQ_INIT (BSid: integer, BSPinCode: integer)
(* User requests init with specific BS id and PIN code *)
actions

L2CAP request connection to id (BSid) with 
protocol (“CLT”) returning (channel ch)

transfer to Initializing(ch,BSpinCode)
}
state Initializing {

state WaitingForChannel(BSch: channel, BSpinCode: integer) {
when L2CAP connection response from (BSch) is (false)

(* No such BS found *)
transfer to DeInitialized

when L2CAP connection response from (BSch) is (true)
(* Channel established to BS *)
transfer to WaitingForBSInitReply(BSch)

state WaitingForBSInitReply(BSch: channel) {
....

Figure 12 Part of a program in ExSpecState
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named P contains a declaration of a state named S1 which in turn con-
tains a declaration of a state named S2 then the label of S2 will be
P_S1_S2. For transitions the label is the comment attached to its declara-
tion if present otherwise the name of the event causing the transition.

6 Related work

Our visualization technique can be characterized as follows:
• Static code visualization: the scope of our technique is restricted to

static code visualizations, i.e., visualizations that can be derived
from the program code (in contrast to dynamic visualizations like
execution visualization and algorithm animation).

• Open system: visualizations are not built into the environment, but
can be added as desired.

• Declarative specifications: visualizations are specified using a
declarative formalism, rather than explicitly programmed.

• Language independent: the visualizations can be specified indepen-
dently of the programming language used, and reused for different
programming languages by specifying different glue modules

• Visualization tool independent: different visualization tools can be
used by specifying different back-end modules

There are many systems that have support for some kind of program visu-
alization. However, most systems are not open, but provide support only
for a set of built-in visualizations. They are usually also language depen-
dent and provide support only for a predefined set of programming lan-

Figure 13 Part of the glue module for ExSpecState

Non-terminal Attributes Equations and functions

TransitionDecl eq sourceState := parentState
eq targetState := 

inspect $X := a_Use.decl
when StateDecl do $X
otherwise none

eq transitionLabel := 
inspect $X := a_OptCommentList
when CommentList do $X.commentText
otherwise a_Event_Decl.eventName

StateDecl eq stateLabel := 
inspext $X := parentState
when StateDecl do

$X.stateLabel&”_”&a_ID.val
otherwise processName&”_”&a_ID.val

ANYNODE eq ASTroot := root;
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guages. One example is Panorama, a visual environment for Java/C/C++
which supports visualizations like call graphs and flow diagrams [18].
Other examples include Rational Rose [21] and TogetherJ [24]. These lat-
ter systems provide support not only for program visualization, but also
for visual programming, i.e., the possibility to edit the diagrams. They
support round-trip engineering where the user can edit diagrams with
auto-updating source code and also edit source code with auto-updating
diagrams. Dedicated visual programming environments include Prograph
[4]. Language-based approaches to visual programming includes graph-
grammar based environments, such as Progres [23]. A fundamental dif-
ference between these tools and ours is that they use graphs as the main
program representation, whereas in our approach the main representa-
tion is an abstract syntax tree described by a context-free grammar.

Pavane [20] is a tool that, like ours, takes a declarative and language-
independent approach to visualization. However, the scope of Pavane is
algorithm animation rather than static code visualization. The animator
defines a mapping from program states to graphical objects. For some lan-
guages, like C++, some annotation of the program code is needed.

In [22], another language-based approach for using attribute gram-
mars for visualization is described. However, this approach is restricted to
tree-structured visualizations of syntax trees. The system integrates the
language-based editor generator CENTAUR with a visualization tool
FIGUE which is capable of displaying trees specified as Lisp lists. An
example of its use is in visualizing mathematical formulas in their stan-
dard mathematical form. Attribute grammars are used, but only in the
integration process of the tools. A given visualization can be reused for all
languages specified in CENTAUR but the only structural aspect of a pro-
gram that can be visualized is its abstract syntax tree. The solution seems
to closely couple the tools with no intention of possible exchange of the
visualization tool.

A language independent program visualization technique is described
in [5]. Control structure diagrams (CSD) are generated automatically
from source code. CSD diagrams add some graphical notations to pretty-
printed source code in order to depict control structures and levels of nest-
ing. The tool works in two phases. During the first phase markup tags are
inserted in the source code to identify all control structures. In the second
phase the tags are used to render the visualization. The renderer is com-
pletely language independent but a new tagger must be developed for
every language. The separation of a language dependent phase from a
language independent one resembles our modularization technique. The
scope of the visualization is restricted to CSD diagrams, and diagrams
with arbitrary relationships between program structures can thus not be
handled. 

7 Conclusions and future work

We have described a technique to integrate visualizations in language-
based environments and how they can be specified declaratively in RAGs.
We have also shown how the solution can be modularized to facilitate
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reuse for different programming languages and exchange of the external
drawing tool.

Attribute grammars allow specification of context-sensitive aspects of
a language such as semantic checking and code generation. The specifica-
tions are declarative and thus potentially clearer and more concise than
imperative code since they only state facts about the final computation
results and not the order of computation. The extension of canonical
attribute grammars to RAGs makes it easy to define grammar aspects
where non-local dependencies play an important role. An example is the
visualization aspects as shown in sections 3 and 4. Reference attributes
permit a clear and concise way of describing the non-local dependencies in
the AST that constitute the graph on which the visualization is based.
Information can be propagated along the reference attributes describing
the graph structure thus facilitating the generation of a correct represen-
tation for an external drawing tool.

For the definition of an individual attribute, one can always argue if an
imperative procedure or a declarative function is easiest to understand.
This was touched upon in section 4.2 where different techniques for han-
dling cycles in the graphs were discussed. In principle, it would be possi-
ble to allow imperative definition of an attribute, provided this code does
not produce any net side effects (i.e., side effects that remain after execu-
tion of the code). To support such imperative specification in a safe way
could be a topic of future work.

It is straightforward to express a solution in general terms in
APPLAB. Rather than using information about the structure of the syn-
tax tree for a certain language, a more general approach can be taken by
representing the important structures using reference attributes. This
allows the front-end and back-end of the specification to be reused for dif-
ferent programming languages.

The APPLAB specification language currently supports modulariza-
tion by allowing attribute definitions for a certain aspect of the grammar
to be textually separated from other grammar aspects of the language
being specified. As mentioned in section 2.3, a generalization of the mod-
ule system is needed to make the front-end of our solution completely
reusable for all programming languages. Currently, the essence of the
front-end is reusable but relies on grammars to use the same names for
its node classes. We plan to generalize this by extending the OOSL for-
malism with a possibility to declare syntactic part objects, similar to part
objects in BETA [15] or anonymous inner classes in Java [17]. The back-
end is concerned solely with the generation of a proper representation for
an external tool. Using different tools for different kinds of visualizations
can thereby be achieved by exchanging this module.

In the near future, we also plan to improve our tool integration so that
visualizations in external drawing tools can be opened and updated more
conveniently; in the current solution the user has to print an attribute to
an explicit text file and start the drawing tool by a shell command.

A more long-term challenge is to try to extend the technique so that
external visualization tools that support editing, like daVinci, can be used
for actually editing the visualized program, and propagate those edits
back to the original syntax tree. Preferably, the external tool should
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include an event propagation mechanism so that each individual editing
step could be propagated back to APPLAB. A main challenge in making
such integration work is to devise a mechanism that allows the change of
a reference attribute value to induce a corresponding change to the AST.
For example, changing an edge in the visualization graph means chang-
ing the value of reference attributes in the AST. The proper change of the
AST to make it consistent must then be found.
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Abstract

We describe JastAdd, a Java-based system for compiler construction. Jas-
tAdd is centered around an object-oriented representation of the abstract
syntax tree where reference variables can be used to link together differ-
ent parts of the tree. JastAdd supports the combination of declarative
techniques (using Reference Attributed Grammars) and imperative tech-
niques (using ordinary Java code) in implementing the compiler. The
behavior can be modularized into different aspects, e.g. name analysis,
type checking, code generation, etc., that are woven together into classes
using aspect-oriented programming techniques, providing a safer and
more powerful alternative to the Visitor pattern. The JastAdd system is
independent of the underlying parsing technology  and supports any non-
circular dependencies between computations, thereby allowing general
multi-pass compilation. The attribute evaluator (optimal recursive evalu-
ation) is implemented very conveniently using Java classes, interfaces,
and virtual methods.
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1 Introduction

Many existing parser generators have only rudimentary support for fur-
ther compilation. Often, the support is limited to simple semantic actions
and tree building during parsing. Systems supporting more advanced pro-
cessing are usually based on dedicated formalisms like attribute gram-
mars and algebraic specifications. These systems often have their own
specification language and can be difficult to integrate with handwritten
code, in particular when it is desired to take full advantage of state-of-the-
art object-oriented languages like Java. In this paper we describe Jas-
tAdd, a simple yet flexible system which allows compiler behavior to be
implemented conveniently based on an object-oriented abstract syntax
tree. The behavior can be modularized into different aspects, e.g., name
analysis, type checking, code generation, etc., that are combined into the
classes of the abstract syntax tree. This technique is similar to the intro-
duction feature of aspect-oriented programming in AspectJ [15]. A com-
mon alternative modularization technique is to use the Visitor design
pattern [6,24]. However, the aspect-oriented technique has many advan-
tages over the Visitor pattern, including full type checking of method
parameters and return values,and the ability to associate not only meth-
ods but also fields to classes.

When implementing a compiler, it is often desirable to use a combina-
tion of declarative and imperative code, allowing results computed by
declarative modules to be accessed by imperative modules and vice versa.
For example, an imperative module implementing a print-out of compile-
time errors can access the error attributes computed by a declarative
module. In JastAdd, imperative code is written in aspect-oriented Java
code modules. For declarative code, JastAdd supports Reference Attrib-
uted Grammars (RAGs) [9]. This is an extension to attribute grammars
that allows attributes to be references to abstract syntax tree nodes, and
attributes can be accessed remotely via such references. RAGs allow
name analysis to be specified in a simple way also for languages with com-
plex scope mechanisms like inheritance in object-oriented languages. The
formalism makes it possible to use the Abstract Syntax Tree (AST) itself
as a symbol table, and to establish direct connections between identifier
use sites and declaration sites by means of reference attributes. Further
behavior, whether declarative or imperative, can be specified easily by
making use of such connections. The RAG modules are specified in an
extension to Java and are translated to ordinary Java code by the system.

Our current version of the JastAdd system is built on top of the LL
parser generator JavaCC [11]. However, its design is not specifically tied
to JavaCC: the parser generator is used only to parse the program and to
build the abstract syntax tree. The definition of the abstract syntax tree
and the behavior modules are completely independent of JavaCC and the
system could as well have been based on any other parser generator for
Java such as the LALR-based system CUP [4] or the LL-based system
ANTLR [1].

The JavaCC system includes tree building support by means of a pre-
processor called JJTree. JJTree allows easy specification of what AST
nodes to generate during parsing, and also supports automatic generation
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of AST classes. However, there is no mechanism in JJTree to update AST
classes once they have been generated, so if the AST classes need more
functionality than is generated, it is up to the programmer to modify the
generated classes by hand and to update the classes after changes in the
grammar. In JastAdd, this tedious and error-prone procedure is com-
pletely avoided by allowing handwritten and generated code to be kept in
separate modules. JastAdd uses the JJTree facility for annotating the
parser specification with tree-building actions, but the AST classes are
generated directly by JastAdd, rather than relying on the JJTree facility
for this. SableCC [5] and JTB [12] are other Java-based systems that have
a similar distinction between generated and handwritten modules. While
both SableCC and JTB support the Visitor pattern for adding behavior,
neither one supports aspect-oriented programming nor declarative speci-
fication of behavior like attribute grammars.

The attribute evaluator used in JastAdd is an optimal recursive evalu-
ator that can handle arbitrary acyclic attribute dependencies. If the
dependencies contain cycles, these are detected at attribute evaluation
time. The evaluation technique is in principle the same as the one used by
many earlier systems such as Madsen [20], Jalili {10], and Jourdan [13]:
an access to an attribute value is replaced by a function call which com-
putes the appropriate semantic function for the value and then caches the
computed value for future accesses to the same attribute. A cache flag is
used to keep track of whether the value has been computed before and is
cached. A cycle flag is used to keep track of attributes involved in an eval-
uation so that cyclic dependencies can be detected at evaluation time.
While these earlier systems used this evaluation algorithm for traditional
attribute grammars, it turns out that this algorithm is also applicable to
reference attribute grammars [9]. Our implementation in JastAdd differs
from earlier implementations in its use of object-oriented programming
for convenient coding of the algorithm.

The rest of the paper is outlined as follows. Section 2 describes the
object-oriented ASTs used in JastAdd. Section 3 describes how imperative
code can be modularized according to different aspects of compilation and
woven together into complete classes. Section 4 describes how RAGs can
be used in JastAdd and Section 5 how they are translated to Java. Section
6 discusses related work and Section 7 concludes the paper.

2 Object-oriented abstract syntax trees

2.1 Connection between abstract and parsing grammars

The basis for specification in JastAdd is an abstract context-free gram-
mar. An abstract grammar describes the programs of a language as typed
trees rather than as strings. Usually, an abstract grammar is essentially a
simplification of a parsing grammar, leaving out the extra nonterminals
and productions that resolve parsing ambiguities (e.g., terms and factors)
and leaving out tokens that do not carry semantic values. In addition, it is
often useful to have fairly different structure in the abstract and parsing
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grammars for certain language constructs. For example, expressions can
be conveniently expressed using EBNF rules in the parser, but are more
adequately described as binary trees in the abstract grammar. Also, pars-
ing-specific grammar transformations like left factorization and elimina-
tion of left recursion for LL parsers are undesirable in the abstract
grammar.

Most parsing systems that support ASTs make use of various auto-
matic rules and annotations in order to support abstraction of the parsing
grammar. In JastAdd, the abstract grammar is independent of the under-
lying parsing system. The parser is simply a front end whose responsibil-
ity it is to produce abstract syntax trees that follow the abstract grammar
specification.

2.2 Object-oriented abstract grammar

When using an object-oriented language like Java, the most natural way
of representing an AST is to model the language constructs as a class
hierarchy with general abstract classes like Statement and Expression,
and specialized concrete classes like Assignment and AddExpression.
Methods and fields can then be attached to the classes in order to imple-
ment compilation or interpretation. This design pattern is obvious to any
experienced programmer, and documented as the Interpreter pattern in
[6].

Essentially, this object-oriented implementation of ASTs can be
achieved by viewing nonterminals as abstract superclasses and produc-
tions as concrete subclasses. However, this two-level hierarchy is usually
insufficient from the modelling point of view where it is desirable to make
use of more levels in the class hierarchy. For this reason, JastAdd makes
use of an explicit object-oriented notation for the abstract grammar, simi-
lar to [8], rather than the usual nonterminal/production-based notation.
This allows nonterminals with a single production to be modelled by a
single class. It also allows additional superclasses to be added that would
have no representation in a normal nonterminal/production grammar, but
are useful for factoring out common behavior or common subcomponents.
Such additional superclasses would be unnatural to derive from a parsing
grammar, which is yet another reason for supplying a separate specifica-
tion of the abstract grammar.

The abstract grammar is a class hierarchy augmented with subcompo-
nent information corresponding to production right-hand sides. For exam-
ple, a class Assignment typically has two subcomponents: an Identifier
and an Expression. Depending on what kind of subcomponents a class
has, it is categorized as one of the following typical kinds (similar to many
other systems): 

• List: The class has a list of components of the same type.
• Optional: The class has a single component which is optional.
• Token: The class has a semantic value extracted from a token.
• Aggregate: The class has a set of components which can be of 

different types.
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The subcomponent information is used for generating suitable access
methods that allow type safe access to methods and fields of subcompo-
nents.

2.3 An example: Tiny

We will use a small toy block-structured language, Tiny, as a running
example throughout this paper. Blocks in Tiny consist of a single variable
declaration and a single statement. A statement can be a compound state-
ment, an if statement, an assignment statement, or a new block.

Figure 1 shows the object-oriented abstract grammar for Tiny. (The
line numbers are not part of the actual specification.) All the different
kinds of classes are exemplified: An aggregate class IfStmt (line 5), a list
class CompoundStmt (line 8), an optional class OptStmt (line 6), and a
token class BoolDecl (line 10). The classes are ordered in a single-inherit-
ance class hierarchy. For example, BlockStmt, IfStmt, AssignStmt, and
CompoundStmt (lines 4, 5, 7, and 8) are all subclasses to the abstract
superclass Stmt (line 3).

From this abstract grammar, the JastAdd system generates a set of
Java classes with access methods to their subcomponents. Figure 2 shows
some of the generated classes to exemplify the different kinds of access
interfaces to different kinds of classes. Note that for an aggregate class
with more than one subcomponent of the same type, the components are
automatically numbered, as for the class ASTAdd.

Behavior can be added to the generated classes in separate aspect-ori-
ented modules. Imperative behavior is added in Jadd modules that con-
tain methods and fields as described in Section 3. Declarative behavior is
added in Jrag modules that contain equations and attributes as described
in Section 4. Figure 3 shows the Jastadd system architecture. The jadd
tool generates AST classes from the  abstract grammar and weaves in the
imperative behavior defined in Jadd modules. The jrag tool translates the
declarative Jrag modules into an imperative Jadd module, forming one of

1  Program ::= Block;
2  Block ::= Decl Stmt;
3  abstract Stmt;
4  BlockStmt : Stmt ::= Block;
5  IfStmt : Stmt ::= Exp Stmt OptStmt;
6  OptStmt ::= [Stmt];
7  AssignStmt : Stmt ::= IdUse Exp;
8  CompoundStmt : Stmt ::= Stmt*;
9  abstract Decl;
10 BoolDecl: Decl ::= <ID>;
11 IntDecl : Decl ::= <ID>;
12 abstract Exp;
13 IdUse : Exp ::= <ID>;
14 Add : Exp ::= Exp Exp;
...

Figure 1 Abstract grammar for Tiny
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the inputs to the jadd tool. This translation is described in more detail in
Section 5.

 abstract class ASTStmt {
}

class ASTIfStmt extends ASTStmt {
ASTExp getExp() { ... }
ASTStmt getStmt() { ... }
ASTOptStmt getOptStmt() { ... }

}

class ASTOptStmt {
boolean hasStmt() { ... }
ASTStmt getStmt() { ... }

}

class ASTCompoundStmt extends ASTStmt {
int getNumStmt() { ... }
ASTStmt getStmt(int k) { ... }

}

class ASTBoolDecl extends ASTDecl {
String getID() { ... }

}

class ASTAdd extends ASTExp {
ASTExp getExp1() { ... }
ASTExp getExp2() { ... }

}

Figure 2 Access interface for some of the generated AST classes

Figure 3 Architecture of the JastAdd system.
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2.4 Superclasses and interfaces

When adding behavior it is often found that certain behavior is relevant
for several classes although the classes are unrelated from a parsing point
of view. For example, both Stmt and Exp nodes may have use for an env
attribute that models the environment of visible identifiers. In Java, such
sharing of behavior can be supported either by letting the involved classes
inherit from a common superclass or by letting them implement a com-
mon interface. JastAdd supports both ways. Common superclasses are
specified in the abstract grammar. Typically, it is useful to introduce a
superclass Any that is the superclass of all other AST classes. For the
example in Figure 1, this would be done by adding a new class "abstract
Any;" into the abstract grammar and adding it as a superclass to all other
classes that do not already have a superclass. Figure 4 shows the corre-
sponding class diagram.

Such common superclasses allows common default behavior to be spec-
ified and to be overridden in suitable subclasses. For example, default
behavior for all nodes might be to declare an attribute env and to by
default copy the env value from each node to its components by adding an
equation to Any. AST classes that introduce new scopes, e.g. Block, can
then override this behavior by supplying a different equation.

Java interfaces are more restricted in that they can include only
method interfaces and no fields or default implementations. On the other
hand, they are also more flexible, allowing, e.g., selected AST classes to
share a specific interface orthogonally to the class hierarchy. Such
selected interface implementation is specified as desired in the behavior
modules and will be discussed in Section 3.4.

2.5 Connection to the parser generator

2.5.1 Building the tree
JastAdd relies on an underlying parsing system for parsing and tree-
building. The abstract grammar is not tied to any specific parsing gram-
mar or parsing algorithm and there is thus normally a gap between these
grammars that must be bridged. To aid the compiler writer, the JastAdd

Figure 4 Class diagram after adding the superclass Any.

BlockStmt

Any

Program Block Stmt OptStmt ...

IfStmt ...
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system generates a method syntaxCheck() which can be called to check
that the built tree actually follows the abstract grammar.

Currently, JastAdd uses JavaCC/JJTree as its underlying parsing and
tree-building system. JJTree allows easy specification of what AST nodes
to generate during parsing. A stack is used to give the programmer con-
trol over the order in which to insert the individual nodes, so that the
structure of the constructed AST does not have to match the structure of
the parse. For example, expressions that are parsed as a list can easily be
built as a binary AST. In this way, JJTree allows the gap between the
parsing and abstract grammars to be bridged fairly easily.

2.5.2 Token semantic values
When building the AST, information about the semantic values of tokens
needs to be included. To support this, JastAdd generates a set-method as
well as a get-method for each token class. For example, for the token class
BoolDecl in Figure 1, a method void setID(String s) is generated. This
method can be called as an action during parsing in order to transmit the
semantic value to the AST.

3 Adding imperative behavior

Object-oriented languages lend themselves very nicely to the implementa-
tion of compilers. It is natural to model an abstract syntax tree using a
class hierarchy where nonterminals are modelled as abstract superclasses
and productions as specialized concrete subclasses, as discussed in Sec-
tion 2. Behavior can be implemented easily by introducing abstract meth-
ods on nonterminal classes and implementing them in subclasses.
However, a problem is that to make use of the object-oriented mecha-
nisms, the class hierarchy imposes a modularization based on language
constructs whereas the compiler writer also wants to modularize based on
aspects in the compiler, such as name analysis, type checking, error
reporting, code generation, and so on. Each AST class needs to include the
code related to all of the aspects and in traditional object-oriented lan-
guages it is not possible to provide a separate module for each of the
aspects. This is a classical problem that has been discussed since the ori-
gins of object-oriented programming.

3.1 The Visitor pattern

The Visitor design pattern is one (partial) solution to this problem [6]. It
allows a given method that is common to all AST nodes to be factored out
into a helper class called a Visitor containing an abstract visit(C) method
for each AST class C. To support this programming technique, all AST
classes are equipped with a generic method accept(Visitor) which dele-
gates to the appropriate visit(C) method in the Visitor object. For example,
a Visitor subclass TypeCheckingVisitor can implement type checking in its
visit methods. Type checking of a program is started by calling accept on
the root node with the TypeCheckingVisitor as a parameter.
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There are several limitations to the Visitor pattern, however. One is
that only methods can be factored out; fields must still be declared
directly in the classes, or be handled by a separate mechanism. For exam-
ple, in type checking it is useful to associate a field type with each applied
identifier, and this cannot be handled by the Visitor pattern. Another
drawback of the Visitor pattern is that the parameter and return types can
not be tailored to the different visitors—they must all share the same
interface for the visit methods. For example, for type checking expres-
sions, a desired interface could be

Type typecheck(Type expectedType)

where expectedType contains the type expected from the context and the
typecheck method returns the actual type of the expression. Using the
Visitor pattern, this would have to be modelled into visit methods

Object visit(C node, Object arg)

to conform to the generic visit method interface.

3.2 Aspect-oriented programming

A more powerful alternative to the Visitor pattern is to introduce an
explicit modularization mechanism for aspects. This is the approach used
in JastAdd. Our technique is similar to the introduction feature of the
aspect-oriented programming system AspectJ [15].

For each aspect, the appropriate fields and methods for the AST
classes are written in a separate file, a Jadd module. The JastAdd system
is a class weaver: it reads all the Jadd modules and weaves the fields and
methods into the appropriate classes during the generation of the AST
classes. This approach does currently not support separate compilation of
individual Jadd modules, but, on the other hand, it allows a suitable mod-
ularization of the code and does not have the limitations of the Visitor pat-
tern.

The Jadd modules use normal Java syntax. Each module simply con-
sists of a list of class declarations. For each class matching one of the AST
classes, the corresponding fields and methods are inserted into the gener-
ated AST class. It is not necessary to state the superclass of the classes
since that information is supplied by the abstract grammar. Figure 5
shows an example. The typechecker.jadd module performs type checking
for expressions and computes the boolean field typeError. The
unparser.jadd module implements an unparser which makes use ot the
field typeError to report type-checking errors.

The Jadd modules may use fields and methods in each other. This is
illustrated by the unparser module which uses the typeError field com-
puted by the type checking module. The Jadd modules may freely use
other Java classes. This is illustrated by the unparsing module which
imports a class Display. The import clause is transmitted to all the gener-
ated AST classes. Note also that the Jadd modules use the generated AST
access interface described in Section 2. An example of a complete AST
class generated by the JastAdd system is shown in Figure 6. In the cur-
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rent JastAdd system, the names of the generated classes are by default
prefixed by the string “AST'' as in the JavaCC/JJTree system.

typechecker.jadd unparser.jadd

... import Display;
class IfStmt {                          

void typeCheck() { class Stmt {
getExp().typeCheck("Boolean"); abstract void unparse (Display d);
getStmt().typeCheck(); } 
getOptStmt().typeCheck(); class Exp {

} abstract void unparse (Display d);
} }
class Exp { class Add {       
  abstract void typeCheck(String expectedType); void unparse (Display d) {              
} ...
class Add { if (typeError)

boolean typeError; d.showError("type error");
void typeCheck(String expectedType) { }

getExp1().typeCheck("int"); }
getExp2().typeCheck("int"); ...
typeError = expectedType != "int";               

}                                                 
}  
...

Figure 5 Jadd modules for type checking and unparsing.

 ASTAdd.java

class ASTAdd extends ASTExp {
// Access interface
ASTExp getExp1() { ... }
ASTExp getExp2() { ... }

// From typechecker.jadd
boolean typeError;
void typeCheck(String expectedType) {

getExp1().typeCheck("int");
getExp2().typeCheck("int");
typeError = expectedType != "int";

}

// From unparser.jadd
void unparse(Display d) {

...
if (typeError)

d.showError("type error");
...

}
}  

Figure 6 Woven complete AST class
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3.3 Using the AST as a symbol table

In traditional compiler writing it is common to build symbol tables as
large data structures, separate from the parse tree. The use of object-ori-
ented ASTs makes it convenient to use another approach where the AST
itself is used as a symbol table, connecting each AST node that serves as
an applied identifier to the corresponding AST node that serves as the
declaration. This technique is particularly powerful in combination with
aspect-oriented programming. Each part of the compiler that computes a
certain part of the "symbol table" can be separated into a specific aspect,
imperative or declarative.

Consider the language Tiny in Figure 1. Name analysis involves con-
necting each applied identifier (IdUse node) to its corresponding declared
identifier (Decl node). For example, taking an imperative approach, this
can be implemented by declaring a field Decl myDecl in class IdUse and by
writing methods that traverse the AST and set each such field to the
appropriate Decl node. Typically, this computation will make use of some
efficient representation of the declarative environment, e.g., a hash table
of references to the visible Decl nodes. But once the myDecl fields are com-
puted, the hash table is no longer needed. 

Other aspects can add fields and methods to the Decl nodes and access
that information from the IdUse nodes via the myDecl field. For example,
a type analysis aspect can add a type field to each Decl node and access
that field from each IdUse node during type checking. A code generation
aspect can add a field for the activation record offset to each Decl node
and access that field from each IdUse node for generating code.

More complex type information such as structured and recursive types,
class hierarchies, etc. is available more or less directly through the
myDecl fields. For example, a class declaration node will contain a subn-
ode that is an applied identifier referring to the superclass declaration
node. More direct access to the superclass can easily be added as an extra
field or method of the class declaration nodes. In this way, once the myDecl
fields are computed, the AST itself serves as the symboltable.

The different compiler aspects can be implemented as either impera-
tive or declarative aspect modules. Section 4 describes how to implement
the name analysis declaratively, defining myDecl as a synthesized
attribute rather than as a field and specifying its value using equations
rather than computing it with imperative methods.

3.4 Adding interface implementations to classes

As mentioned in Section 2.4, aspect modules may add interface imple-
mentations to the AST classes. One use of this is to relate AST classes
that are syntactically unrelated. As an example, consider implementing
name analysis for a language which has many different block-like con-
structs, e.g., class, method, compound-statement, etc. Each of these block-
like constructs should have a method lookup which looks up a name
among its local declarations, and if not found there, delegates the call to
some outer block-like construct. This can be implemented in a name anal-
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ysis aspect by introducing an interface Env with the abstract method
lookup and adding this interface implementation to each of the involved
AST classes.

Another use of interfaces is to relate AST classes to other externally
defined classes. One use of this is in order to apply the Null pattern for
references within the AST. The Null pattern recommends that null refer-
ences are replaced by references to real (but usually empty) objects,
thereby removing the need for specific handling of null references in the
code [25]. For example, in the case of an undeclared identifier, the myDecl
field could refer to a special object of type NotDeclared, rather than being
null. This can be implemented in a name analysis aspect by introducing an
interface Declaration whose implementation is added both to the class Not-
Declared and to the involved AST classes. Naturally, the type of myDecl
should in this case be changed to Declaration as well. 

3.5 Combining visitors with aspect-oriented programming

Visitors have serious limitations compared to aspect-oriented program-
ming as discussed earlier. They support modularization only of methods
and not of fields, and they do not support type checking of the method
arguments and return values. However, there are certain applications
where visitors actually may be slightly simpler to use than Jadd modules,
namely when the computation can be formulated as a regular traversal
and when the untyped method arguments can be replaced by typed visitor
instance variables. This is illustrated in Figure 7 where the visitor imple-
mentation is slightly simpler than the corresponding Jadd module. In the
visitor implementation, the traversal method has been factored out into a
superclass DefaultTraversingVisitor which can be reused for other visitors.
Furthermore, the ErrorCollector object which is used by all visit methods is
declared directly in the visitor, rather than supplied as an argument as in
the Jadd module.

Visitors and aspect-oriented programming can be freely combined so
that each subproblem is solved by the most suitable implementation tech-
nique. For example, the visit(IdUse) method in the visitor in Figure 7
accesses the field myDecl that can be supplied by a Jadd (or Jrag) module.

JastAdd stays backward compatible with JavaCC/JJTree by generat-
ing the same visitor support as JJTree (the same "accept" methods),
thereby allowing existing JJTree projects to be more easily migrated to
JastAdd. The visitor support has also been useful for bootstrapping the
JastAdd system.

4 Adding declarative behavior

In addition to imperative modules it is valuable to be able to state compu-
tations declaratively, both in order to achieve a clearer specification and to
avoid explicit ordering of the computations, thereby avoiding a source of
errors that are often difficult to debug.
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JastAdd supports the declarative formalism Reference Attributed
Grammars (RAGs) which fits nicely with object-oriented ASTs. In
attribute grammars, computations are defined declaratively by means of
attributes and equations. Each attribute is defined by an equation and
can be either synthesized (for propagating information upwards in the
AST) or inherited (for propagating information downwards in the AST).
An equation defines either a synthesized attribute in the same object, or
an inherited attribute in a child object. An attribute can be thought of as a
read-only field whose value is equal to the right-hand side of its defining
equation. 

The important extension in RAGs (as compared to traditional attribute
grammars) is the support for reference attributes. The value of such an
attribute is a reference to an object. In particular, a node q can contain a
reference attribute referring to another node r, arbitrarily far away from q
in the AST. This way arbitrary connections between nodes can be estab-
lished, and equations in q can access attributes in r via the reference
attribute. Typically, this is used for connecting applied identifiers to their
declarations.

In a Java-based RAG system, the type of a reference attribute can be
either a class or an interface. The interface mechanism gives a high
degree of flexibility. For example, to implement name analysis, the envi-
ronment of visible declarations can be represented by a reference
attribute env of an interface type Env. Each language construct that intro-
duces a new declarative environment, e.g., Block, Method, Class, and so
on, can implement the Env interface, providing a suitable implementation
of a function lookup for looking up declarations.

 visitor - ErrorChecker.java

class ErrorChecker extends DefaultTraversingVisitor {
ErrorCollector errs = new ErrorCollector();

void visit(IdUse node) {
if (node.myDecl==null) errs.add(node, "Missing declaration");

}

void visit(...
}

Jadd modules - errorchecker.jadd

class Any {
void errorCheck(ErrorCollector errs) {

for (int k=0;k<getNumChildren();k++)
getChild(k).errorCheck(errs);

}
}

class IdUse {
void errorCheck(ErrorCollector errs) {

if (myDecl==null) errs.add(this, "Missing declaration");
}

}

class ...

Figure 7 Two alternative implementations of error checking.
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RAGs are specified in separate files called Jrag modules. The Jrag lan-
guage is a slightly extended and modified version of Java. A Jrag module
consists of a list of class declarations, but instead of fields and methods,
each class contains attributes and equations. Ordinary methods may be
declared as well and used in the equations. However, in order to preserve
the declarative semantics of attribute grammars, these methods should in
effect be functions, containing no side effects that are visible outside the
method.

The syntax for attributes and equations is similar to Java. Attribute
declarations are written like field declarations, but with an additional
modifier "syn" or "inh" to indicate if the attribute is synthesized or inher-
ited.  Java method call syntax is used for accessing attributes, e.g., a()
means access the value of the attribute a.  Equations are written like
Java assignment statements. Equations for synthesized attributes can be
written directly as part of the attribute declaration (using the syntax of
variable initialization in Java). For access to components, the generated
access methods for ASTs is used, e.g., getStmt() for accessing the Stmt com-
ponent of a node.

Jrag modules are aspect-oriented in a similar way as Jadd modules:
they add attributes and equations to AST classes analogously to how Jadd
modules add fields and methods. The JastAdd system translates the Jrag
modules to Java and combines them into a Jadd module before weaving.
This translation is described in Section 5.

4.1 An example: name analysis and type checking

Figure 8 shows an example of a Jrag module for name analysis of the lan-
guage Tiny. (Line numbers are not part of the actual specification.) All
blocks, statements, and expressions have an inherited attribute env rep-
resenting the environment of visible declarations. The env attribute is a
reference to the closest enclosing Block node, except for the outermost
Block node whose env is null, see the equations on lines 2 and 6.
All other env definitions are trivial copy equations, e.g., on lines 22 and
23.

The goal of the name analysis is to define a connection from each IdUse
node to the appropriate Decl node (or to null if there is no such declara-
tion). This is done by a synthesized reference attribute myDecl declared
and defined at line 37. Usual block structure with name shadowing is
implemented by the method lookup on Block (lines 7–13). It is first
checked if the identifier is declared locally, and if not, the enclosing blocks
are searched by recursive calls to lookup.

The lookup method is an ordinary Java method, but has been coded as
a function, containing only a return statement and no other imperative
code. As an alternative, it is possible to code it imperatively using ordi-
nary if-statements. However, it is good practice to stay with function-ori-
ented code as far as possible, using only a few idioms for simulating, e.g.,
let-expressions. Arbitrary imperative code can be used as well, but then it
is up to the programmer to make sure the code has no externally visible
side effects.
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Figure 9 shows a type checking module that uses the myDecl attribute
computed by the name analysis. This is a typical example of how conve-
nient it is to use the AST itself as a symbol table and to extend the ele-
ments as needed in separate modules. The type checking module extends
Decl with a new synthesized attribute type (line 1). This new attribute is
accessed in IdUse in order to define its type attribute (lines 6–7). The
types of expressions are then used as usual to do type checking as shown
for the AssignStmt (line 11).

The examples are written to be self-contained and straight-forward to
understand. For a realistic language several changes would typically be

nameanalysis.jrag

1 class Program { 25 class Decl {
2 getBlock().env = null; 26 syn String name;
3 } 27 } 
4 class Block { 28 class Exp {
5 inh Block env; 29 inh Block env;
6 getStmt().env = this; 30 } 
7 ASTDecl lookup(String name) { 31 class Add {
8 return 32 getExp1().env = env();
9 (getDecl().name().equals(name)) 33 getExp2().env = env();
10 ? getDecl()                         34 } 
11 : (env() == null) ? null             35 class IdUse {
12 : env().lookup(name);                36 inh Block env;
13 }                                        37 syn Decl myDecl=

env().lookup(name());
14 }                                          38 syn String name = getID();         
15 class Stmt {                               39 }
16 inh Block env;                          40 class IntDecl {
17 }                                         41 name = getID();
18 class BlockStmt {                          42 }
19 getBlock().env = env();                  43 class BoolDecl { 
20 }                                          44 name = getID();
21 class AssignStmt {                         45 }
22 getIdUse().env = env();                  
23 getExp().env = env();
24 }

Figure 8 A Jrag module for name analsis.

typechecker.jrag
1 class Decl     { syn String type; }
2 class BoolDecl { type = "boolean"; };
3 class IntDecl  { type = "int"; };
4 class Exp { syn String type; };
5 class IdUse {
6 type = (myDecl()==null)
7 ? null : myDecl().type();
8 };
9 class Stmt { syn boolean typeError; };
10 class AssignStmt {
11 typeError = !getIdUse().type().equals(getExp().type());
12 };
...

Figure 9 A Jrag module for type checking
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done. The copy equations for env would be factored out into a common
superclass Any, thereby making the specification substantially more con-
cise. The type for env attributes would typically also be generalized. In the
example we simply used the class Block from the abstract grammar as the
type of the env attribute. For a more complex language with several differ-
ent kinds of block-like constructs, an interface Env can be introduced to
serve as the type for env. Each different block-like construct (procedure,
class, etc.) can then implement the Env interface in a suitable way. The
Null pattern could be applied, both for the env and the myDecl attributes,
in order to avoid null tests such as on line 11 in Figure 8 and on line 6 in
Figure 9. A more realistic language would also allow several declarations
per block, rather than a single one as in Tiny. Typically, each block would
be extended with a hash table or some other fast dictionary data type to
support fast lookup of declarations. Types would be represented as objects
rather than as strings, and the type checker would support better error
handling, e.g., not considering the use of undeclared identifiers as type
checking errors.

It is illustrative to compare the Jrag type checker in Figure 9 with the
imperative one sketched in Figure 5. By not having to code the order of
computation the specification becomes much more concise and simpler to
read than the imperative type checker.

4.2 Combining declarative and imperative aspects

An important strength of the JastAdd system is the ease with which
imperative Jadd aspects and declarative Jrag aspects can be combined. A
compiler can be divided into many small subproblems and each be solved
declaratively or imperatively depending on which paradigm is most suit-
able. For example, the name analysis and type analysis can be solved by
declarative aspects that define the myDecl and type attributes. Code gen-
eration can be split into a declarative aspect that defines block levels and
offsets and an imperative aspect that generates the actual code.

It is always safe for an imperative aspect to use attributes defined in a
declarative aspect. Usually, this is the natural way to structure a compiler
problem: a core of declarative aspects defines an attribution which is used
by a number of imperative aspects to accomplish various tasks such as
code generation, unparsing, etc.

In principle, it is also possible to let a declarative aspect use fields com-
puted by an imperative aspect. However, for this to be safe it has to be
manually ensured that these fields behave as constants with respect to
the declarative aspect, i.e., that the computation of them is completed
before any access of them is triggered. For example, it would be possible to
write an imperative name analysis module that computes myDecl fields
and let a declarative type-checking module access those fields, provided
that the name analysis computation is completed before any other compu-
tations start that might trigger accesses from the type-checking module.

In some attribute-grammar systems, equations are allowed to call
methods in order to trigger desired side-effects, e.g., code generation. This
technique is used in systems with evaluation schemes that evaluate all
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attributes exactly once and where the order of evaluation can be pre-
dicted. In JastAdd, this technique is not applicable because of the demand
evaluation scheme used which will delay the computation of an attribute
until its value is needed. This results in an order of evaluation which is
not always possible to predict statically and which does not necessarily
evaluate all attributes. 

5 Translating declarative modules

The JastAdd system translates Jrag modules to ordinary Java code, weav-
ing together the code of all Jrag modules and producing a Jadd module.
Attribute evaluation is implemented simply by realizing all attributes as
functions and letting them return the right-hand side of their defining
equations, caching the value after it has been computed the first time, and
checking for circularities during evaluation. This implementation is par-
ticularly convenient in Java where methods, overriding, and interfaces
are used for the realization. In the following we show the core parts of the
translation, namely how to translate synthesized and inherited attributes
and their defining equations for abstract and aggregate AST classes.

5.1 Synthesized attributes

Synthesized attributes correspond exactly to Java methods. A declaration
of a synthesized attribute is translated to an abstract method declaration
with the same name. For example, recall the declaration of the type
attribute in class Decl of Figure 9.

class Decl { syn String type; }

This attribute declaration is translated to

class Decl { abstract String type(); }

Equations defining the attribute are translated to implementations of the
abstract method. For example, recall the equations defining the type
attribute in IntDecl and BoolDecl of Figure 9.

class IntDecl { type = "int"; }

class BoolDecl { type = "boolean"; }

These equations are translated as follows.

class IntDecl {
String type() { return "int"; }

}

class BoolDecl {
String type() { return "boolean"; }

}
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5.2 Inherited attributes

An inherited attribute is defined by an equation in the parent node. Sup-
pose a class X has an inherited attribute ia of type T. This is implemented
by introducing an interface ParentOfX with an abstract method T X_ia(X)}.
Any class which has components of type X must implement this interface.
If a class has several components of type X with different equations for
their ia attributes, the X parameter can be used to determine which equa-
tion should be applied in implementing the X_ia method. To simplify
accesses of the ia attribute (e.g. from imperative Jadd modules), a method
T ia() is added to X which simply calls the X_ia method of the parent node
with itself as the parameter.

For example, recall the declaration of the inherited attribute env in
class Stmt in Figure 8. Both Block and IfStmt have Stmt components and
define the env attribute of those components:

class Stmt {
inh Block env;

}

class Block {
getStmt().env = this;

}

class IfStmt {
getStmt().env = env();

}

Since Stmt contains declarations of inherited attributes, an interface is
generated as follows:

interface ParentOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt);

}
The Block and IfStmt classes must implement this interface. The imple-
mentation should evaluate the right-hand side of the appropriate equa-
tion and return that value. The translated code looks as follows.

class Block implements ParentOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {

return this;
}

}

class IfStmt implements ParentOfStmt {
ASTBlock Stmt_env(ASTStmt theStmt) {

return env();
}

}

The parameter theStmt was not needed in this case, since both these
classes have only a single component of type Stmt. However, in general, an
aggregate class may have more than one component of the same type and
equations defining the inherited attributes of those components in differ-
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ent ways. For example, an aggregate class Example ::= Stmt Stmt could
have the following equations:

class Example {
getStmt1().env = env();
getStmt2().env = null;

}

The translation of Example needs to take the parameter into account to
handle both equations:

class Example implements ParentOfStmt{
ASTBlock Stmt_env(ASTStmt theStmt) {

if (theStmt==getStmt1())
return env();

else
return null;

}
}

Finally, a method env() is added to Stmt to give access to the attribute
value. The method getParent() returns a reference to the parent node. The
cast is safe since all AST nodes with Stmt components must implement
the ParentOfStmt interface (this is checked by the JastAdd system).

class Stmt {
ASTBlock env() {

return ((ParentOfStmt) getParent()).Stmt_env(this);
}

}

5.3 Generalizations

The translation described above can be easily generalized to handle lists
and optionals. It is also simple to add caching of computed values (to
achieve optimal evaluation) and circularity checks (to detect cyclic
attribute dependencies and thereby avoid endless recursion) using the
same ideas as in other implementations of this algorithm [10,13,20].

6 Related work

Recent developments in aspect-oriented programming [14] include the
work on AspectJ [15], subject-oriented programming [7], and adaptive
programming [19].

AspectJ covers both static aspects through its introduction feature and
dynamic aspects through its notion of joinpoints. The introduction feature
allows fields, methods, and interface implementations to be added to
classes in separate aspect modules, similar to how our Jadd modules
work. Now that a stable release of AspectJ is available and seems to gain
wide-spread use it would be attractive to build JastAdd on top of AspectJ
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rather than using our own mechanism. The focus in AspectJ is, however,
on the dynamic aspects rather than the static aspects. The joinpoint
model in AspectJ allows code written in aspects to be inserted at dynami-
cally selected execution points. We do not employ such dynamic aspects in
JastAdd, but it is a very interesting area of future work to investigate
their benefits in compiler construction.

Subject-oriented programming supports static aspects called subjects
where each subject provides a (possibly incomplete) perspective on a set of
classes. There is a strong focus on how to merge subjects that are devel-
oped independently. Explicit composition code is used to specify how to
merge subjects, allowing, e.g., different subjects to use different names for
the same program entity. This approach is powerful, but also more heavy-
weight than the technique used in JastAdd.  

Adaptive programming focuses on factoring out traversal code and
making it robust to structural changes in the class hierarchy. This separa-
tion is similar to what can be accomplished by visitors where default tra-
versal strategies can be factored out in superclasses (as in our example in
Figure 7). However, adaptive programming goes beyond visitors in several
ways. In particular, they do not require the classes involved to be related
in a class hierarchy, and they employ generative techniques to generate
traversal code from high-level descriptions.

The fragment system is a technique for aspect-oriented modularization
which predates the above approaches [17,16]. It provides a general
approach to static aspect modularization based on the syntax of the sup-
ported language. By using this mechanism for entities in imperative code,
dynamic aspect modularization is also supported to a certain extent. The
BETA language uses the fragment system as its modularization mecha-
nism.

There are many compiler tools that generate object-oriented ASTs. An
early example was the BETA meta programming system (MPS) [21]
which also supported aspect modularization to a certain extent via the
fragment system mentioned above. However, due to limitations of the sep-
arate compilation mechanism it was only possible to factor out methods
and not fields.

The Visitor pattern is supported by many recent compiler tools includ-
ing JJTree [11], SableCC [5], Java Tree Builder [12], and JJForester [18].
These systems generate AST classes and abstract visitor classes that sup-
port various traversal schemes.

There are a few other experimental systems for reference attributed
grammars or similar formalisms: the MAX system by Poetzsch-Heffter
[23], Boyland's prototype system for the compiler description language
APS [3], and our own predecessing system Applab [2]. Similar to JastAdd,
these systems stress the modularity with which specifications can be writ-
ten. In contrast to JastAdd, they all have their own formal languages for
specification and do not easily integrate with imperative object-oriented
programming in standard languages. 
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7 Conclusion

We have presented JastAdd, a simple yet flexible and safe system for con-
structing compilers in Java. Its main features are

• object-oriented ASTs (decoupled from parsing grammars)
• typed access methods for traversing the AST
• aspect modularization for imperative code in the form of fields,

methods, and interface implementations
• aspect modularization for declarative code in the form of RAG

attributes and equations
• seamless combination of imperative and declarative code

We find this combination very useful for writing practical translators in
an easy way. The use of object-oriented ASTs with typed access methods is
a natural way of modelling the program. The aspect-modularization is
easy to use and makes it easy to change and extend the compiler. We have
found it very useful to be able to combine the declarative and imperative
techniques for coding a compiler, making it possible to select the most
appropriate technique for each individual subproblem. While subsets of
these features exist in other systems we are not aware of other systems
that combine them all. In particular, we have not found other Java-based
compiler tools that are based on aspect-oriented programming or refer-
ence attributed grammars.

We have quite substantial experience from using JastAdd in research
and education, and also from bootstrapping the system in itself.

Research projects using JastAdd include a Java-to-C compiler and a
tool for integrating Java with automation languages. As a part of these
projects a general name analyzer for Java has been developed as a Jrag
component. Additional ongoing projects using JastAdd involve translators
for robot languages and support for extensible languages. 

The JastAdd system is used in our department's undergraduate course
on compiler construction. The students work in pairs and use JastAdd to
implement a compiler for a small procedural language of their own design
and producing SPARC assembly code as output. The course has covered
both visitors and aspect-oriented programming using Jadd modules, but
not Jrags or attribute grammars. 

JastAdd is being bootstrapped in itself. This process has proceeded in
several steps. Our starting point was the JavaCC/JJTree system which
generates AST classes with untyped access methods and a simple default
visitor. The first step was to implement the generation of AST classes with
typed access methods to allow us to use visitors in a safer way. This step
was itself bootstrapped by starting with hand coding the would-be gener-
ated AST classes for the abstract grammar formalism (a small amount of
code), allowing us right away to use the typed access methods when ana-
lyzing abstract grammars. The next step was to use this platform (JJTree-
generated visitors and our own generated AST classes with typed access
methods) to implement the class weaving of Jadd modules. Once this was
implemented we started to use Jadd modules for further implementation,
adding the translator for Jrag modules (which generates a Jadd module),
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and improving the system in general. We are now continuing to improve
the system and are also gradually refactoring it to use Jadd and Jrag
modules instead of visitors.

The implementation of the JastAdd system is working successfully but
we have many improvements planned such as generation of various con-
venience code, better error reporting, and extensions of the abstract gram-
mar formalism.

There are several interesting ways to continue this research. One is to
support modularization not only along phases, but also along the syntax.
I.e., it would be interesting to develop the system so that it is possible to
supply several abstract grammar modules that can be composed. Another
interesting topic is to explore how dynamic aspect-modularization, for
example using joinpoints in AspectJ, can be exploited in compiler con-
struction. Yet another interesting direction is to investigate how emerging
aspect-oriented techniques can be applied to achieve language-indepen-
dent compiler aspects, e.g., name analysis and type analysis modules that
can be parameterized and applied to many different abstract grammars.
Work in this direction has been done by de Moor et al. for attribute gram-
mars within a functional language framework [22]. We also plan to con-
tinue the development of reference attributed grammars and to applying
them to new problem areas. 

Acknowledgments

We are grateful to Anders Ive and to the anonymous reviewers for their
constructive comments. Torbjörn Ekman and Anders Nilsson imple-
mented the Java name analyzer. Many thanks also to the compiler con-
struction students who provided valuable feedback on the system.

References

1. ANTLR Translator Generator, http://www.ANTLR.org/.

2. Bjarnason, E., G. Hedin, K. Nilsson. Interactive Language Development for Embedded
Systems. Nordic Journal of Computing 6(1):36–54 (1999).

3. Boyland, J. T. Descriptional Composition of Compiler Components. Ph.D. thesis.
University of California, Berkeley, 1996.

4. CUP, LALR Parser Generator for Java, http://www.cs.princeton.edu/~appel/modern/java/
CUP/

5. Gagnon, E. M., L. J. Hendren, SableCC, an Object-Oriented Compiler Framework. In
Proceedings of Tools 26–USA'98. IEEE Computer Society (1998).

6. Gamma, E. et al., Design Patterns, Addison Wesley, 1995.

7. Harrison, W., H. Ossher, Subject-Oriented Programming (A Critique of Pure Objects),
OOPSLA 1993 Conference Proceedings. ACM SIGPLAN Notices, ACM Press, 28(10)
(1993), 411–428.

8. Hedin, G., An object-oriented notation for attribute grammars, ECOOP'89. BCS Workshop
Series, Cambridge University Press (1989), 329–345.

9. Hedin, G., Reference Attributed Grammars, Informatica (Slovenia) 24(3): (2000).

10. Jalili, F., A general linear time evaluator for attribute grammars, ACM SIGPLAN Notices,
ACM Press, {\bf 18(9)} (1983), 35–44.



Conclusion 63

11. JavaCC, The Java Parser Generator, http://www.metamata.com/

12. JTB, Java Tree Builder, http://www.cs.purdue.edu/jtb/

13. Jourdan, M., An optimal-time recursive evaluator for attribute grammars. In M. Paul and
B. Robinet, editors, International Symposium on Programming, 6th Colloquium, LNCS 167
(1984), 167–178. Springer Verlag.

14. Kiczales, G., et al. Aspect-Oriented Programming, ECOOP'97, LNCS 1241 (1997), 220–
242. Springer Verlag.

15. Kiczales, G., et al. An Overview of AspectJ. In J. L. Knudsen, ed., Proceedings of ECOOP
2001, 327–353, Budapest, June 2001. LNCS 2072. Springer-Verlag.

16. Knudsen. J. L. Aspect-Oriented Programming in BETA using the Fragment System. In
Proceedings of the Aspect-Oriented Programming Workshop at ECOOP'99.

17. Kristensen, B. B., et al. Syntax-Directed Program Modularization. In P. Degano, E.
Sandewall (eds.): Integrated Interactive Computing Systems, North-Holland Publishing
Company, 1983.

18. Kuipers T., Visser J. Object-oriented tree traversal with JJForester. In Proceedings of
LDTA'01. Genova, Italy, April 2001. Electronic Notes of Theoretical Computer Science,
Elsevier

19. Lieberherr, K., Adaptive Object-Oriented Software, PWS Publishing Company, 1996.

20. Madsen, O. L. On defining semantics by means of extended attribute grammars. In
Semantics-Directed Compiler Generation, LNCS 94 (1980), 259–299. Springer Verlag.

21. Madsen, O. L., C. N¢rgaard. An Object-Oriented Metaprogramming System. In
proceedings of Hawaii International Conference on System Sciences 21, (1988).

22. de Moor, O., S. Peyton-Jones, E. van Wyk. Aspect-Oriented Compilers. In Generative and
Component-Based Software Engineering, First International Symposium. LNCS 1799,
(1999), 121–133. Springer Verlag.

23. Poetzsch-Heffter, A. Prototyping Realistic Programming Languages Based on Formal
Specifications. Acta Informatica 34(10):737–772 (1997).

24. Watt, D. A., D. F. Brown. Programming Language Processors in Java, Prentice Hall, 2000.

25. Woolf, B. The Null Object Pattern. In R. Martin et al. (eds.): Pattern Languages of Program
Design, Addison-Wesley, 1997.





Circular Reference Attributed Grammars
– their Evaluation and Applications

Eva Magnusson and Görel Hedin

To appear in ENTCS, Electronic Notes of Theoretical Computer Science, Elsevier.

Abstract

This paper presents a combination of Reference Attributed Grammars
(RAGs) and Circular Attribute Grammars (CAGs). While RAGs allow the
direct and easy specification of non-locally dependent information, CAGs
allow iterative fixed-point computations to be expressed directly using
recursive (circular) equations. We demonstrate how the combined formal-
ism, Circular Reference Attributed Grammars (CRAGs), can take advan-
tage of both these strengths, making it possible to express solutions to
many problems in an easy way. We exemplify with the specification and
computation of the nullable, first, and follow sets used in parser construc-
tion, a problem which is highly recursive and normally programmed by
hand using an iterative algorithm. We also present a general demand-
driven evaluation algorithm for CRAGs and some optimizations of it. The
approach has been implemented and experimental results include compu-
tations on a series of grammars including that of Java 1.2. We also revisit
some of the classical examples of CAGs and show how their solutions are
facilitated by CRAGs.
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1 Introduction

Attribute grammars (AGs), as introduced by Knuth [15], allow computa-
tions on a syntax tree to be defined declaratively using attributes where
each attribute is defined by a semantic function of other attributes in the
tree. An attribute is either used to propagate information upwards in the
tree (synthesized attribute) or downwards in the tree (inherited
attribute). In the original form of AGs, the definition of an attribute may
depend directly only on attributes of neighbor nodes in the tree. Further-
more, the dependencies between attributes may not be cyclic. The first of
these restrictions is lifted by Reference Attributed Grammars (RAGs) [7]
and similar formalisms, e.g., [19], [2]. In these formalisms, an attribute
may be a reference to an arbitrarily distant node in the tree, and an
attribute may be defined in a semantic function by directly accessing
attributes of the reference (remote access). It has been shown earlier how
RAGs support the easy specification and automatic implementation of
many practical problems, for example, name- and type analysis of object-
oriented languages [7], execution time prediction [18], program visualiza-
tion [17], and design pattern checking [4].

The second of the restrictions mentioned above, circular definitions, is
lifted by Circular Attribute Grammars (CAGs) such as those of Farrow [5]
and Jones [11]. The traditional AG requirement of non circularity is a suf-
ficient but not necessary condition to guarantee that an AG is well defined
in the sense that all semantic rules can be satisfied. It suffices that all
attributes involved in cyclic dependencies have a fixed point that can be
computed with a finite number of iterations. In CAGs, circular dependen-
cies between attributes are allowed provided that such a fixed point is
available for all possible trees. This is guaranteed if the values for each
attribute on a cycle can be organized in a lattice of finite height and if all
the semantic functions involved in computing these attributes are mono-
tonic on the respective lattices. Several authors (e.g., [5,11,20]) have
shown how the possibility of circular definitions of attributes allows sim-
ple AG specifications for some well-known problems from different areas.
Examples include data-flow analysis, code optimizations, and properties
of circuits in a hierarchical VLSI design system. Farrow [5] also demon-
strates how alternative non-circular specifications in some cases can be
constructed with additional huge complexity, including, e.g., the use of
higher-order functions. The circular specifications, in contrast, are both
easy to read and understand and easy for the AG author to write.

In this paper, we combine Reference Attributed Grammars (RAGs) and
Circular Attribute Grammars (CAGs) into Circular Reference Attributed
Grammars (CRAGs). We demonstrate how CRAGs can take advantage of
both the combined formalisms, making it possible to express many new
problems in a concise and straight-forward way. To exemplify, we show
how to specify the nullable, first, and follow sets used in parser construc-
tion. These sets are traditionally defined using recursive equations and
computed imperatively by iteration. We demonstrate in this paper how
the recursive definitions can be expressed directly using CRAGs. We also
revisit some of the classical examples of CAGs, in particular, constant
evaluation and live analysis, and show how their solutions are facilitated
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by CRAGs. We have developed a general recursive evaluation algorithm
for CRAGs and implemented it in our tool JastAdd [8], which is an aspect-
oriented compiler construction tool supporting RAGs. For evaluation, we
present some experimental results of the CRAG evaluation of the nul-
lable, first, and follow problems as compared to the corresponding hand-
coded iterative implementation.

There is some previous work on combining RAG-like formalisms with
CAGs. Boyland has also suggested this general combination, but the eval-
uation algorithm presented in his thesis is unclear [2]. Sasaki & Sassa
present Circular Remote Attribute Grammars (also abbreviated CRAGs),
which on the surface is similar to our CRAGs [20]. However, Sasaki &
Sassa assume that the remote links are computed separately outside the
attribute grammar.

The rest of this paper is structured as follows: Section 2 reviews exist-
ing evaluation algorithms for CAGs and RAGs. Section 3 introduces our
demand-driven algorithm for CRAGs. In Section 4 we focus on some
example applications and our experience of using CRAGs for their specifi-
cations. Section 5 summarizes the contributions and provides some direc-
tions for future work.

2 Existing evaluation algorithms

Dependencies between attribute instances in a syntax tree can be mod-
elled as a directed graph. The vertices of the graph correspond to attribute
instances and if the specification of an attribute a1 uses another attribute
a2 there will be an edge from a2 to a1. If the dependency graph is acyclic
for every possible derivable syntax tree for a certain grammar, the gram-
mar is said to be noncircular. For noncircular grammars it is always possi-
ble to topologically order the dependency graphs and optimal evaluation
is achieved by applying the semantic functions in that order. 

Traditional AGs are required to be noncircular, but, as has been shown
by, e.g., Farrow [5] and Jones [11], grammars with circular dependencies
under certain constraints can be considered well defined in the sense that
it is possible to satisfy all semantic rules for all possible syntax trees. One
way to formulate the constraints is to require that the domain of all
attributes involved in cyclic chains can be arranged in a lattice of finite
height and that all semantic functions for these attributes are monotonic.
The evaluation of circularly defined attributes can be regarded as a spe-
cial case of solving the equation X = f(X) for the value of X. By giving X the
bottom of the lattice as start value the iterative process Xi+1= f(Xi) will con-
verge to a least fixed point for which all involved semantic rules are satis-
fied. 

The values of the attributes involved in a cycle can be computed by the
iterative algorithm shown in Fig. 1. The arguments of the semantic func-
tions fi are to be the values from the previous iteration of all attributes on
which xi depends.
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2.1 Evaluation of circular attribute grammars

Jones [11] proposes a dynamic evaluation algorithm derived from the
underlying attribute dependency graph. Optimal dynamic evaluation for
circular AGs is obtained by analyzing the dependency graph dynamically
to identify its strongly connected components. A strongly connected com-
ponent is a maximal set of vertices in which there is a path from any one
vertex in the set to any other vertex in the set. All attribute instances
belonging to the same strongly connected component are thus dependent
of each other. Each strongly connected component is contracted into a sin-
gle node to obtain a new graph C(G), which is acyclic and can be ordered
topologically and evaluation can follow this order. A vertex in C(G) corre-
sponding to more than one vertex in the original graph represents a set of
attribute instances that are all dependent of each other and they will be
evaluated in a single fixed-point evaluation. The graphs must be con-
structed initially. When the attribute grammar is acyclic, Jones’ algorithm
reduces to a standard optimal algorithm for noncircular evaluation. His
scheme is not immediately applicable to RAGs since the reference
attributes introduce dependencies that are not known until they have
been evaluated. 

Farrow [5] introduced a static evaluation technique based on the one
by Katayama [14], but modified to compute the fixed point for attributes
which potentially have circular dependencies. His scheme is also limited
to traditional AGs without remote references since it depends on deriving
the attribute dependencies statically from the productions of the gram-
mar. Sasaki & Sassa [20] have elaborated on the technique of Farrow in
the presence of remote references. However, these references are not con-
sidered to be a part of the attribute grammar and must be evaluated sep-
arately in an initial phase. They also make the additional assumption
that cycles do not appear without remote references, a constraint that
facilitates the check for convergence.

The static evaluation technique used by Farrow and Sasaki & Sassa is
realized with a group of mutually recursive functions along the AST. Inef-
ficiency arises when iterative evaluation of a group of attribute instances
includes other iterative evaluations further down the tree. Fig. 2 illus-
trates this: Attribute instances belonging to a strongly connected compo-
nent with more than one vertex are indexed, e.g., a1, a2, a3, and a4, and the
corresponding component will be called A. Consider case (I). An iterative
evaluation of the four ai attributes will in each iteration call a function
evaluating the bi attributes belonging to another cyclic component B. A

initialize all attributes xi involved in the cycle to a bottom value;
do {

foreach attribute xi in the cycle
xi = fi(...);

} while (some computation changes the value of an attribute);

Figure 1 Iterative algorithm for computing the least fixed 
point for attributes on a cycle. 
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new iterative process will thus be started bringing B to a fixed point in
each iteration of A. Case (II) gives rise to the same kind of inefficiency. 

Sasaki & Sassa have shown how to overcome this shortcoming and
avoid inner loops by using a global variable to keep track of whether the
computation is already within an iterative phase. Iterations will in their
case, as a consequence, take place over a larger number of attribute
instances belonging to more than one strongly connected component of
the dependency graph. For case (I), iterations will span over components
A and B, and in case (II) components A, B, and C will be part of the same
iterative process.

The static techniques of Farrow as well as that of Sasaki & Sassa have
another shortcoming in that iterative evaluation will include a possibly
large number of noncircular attribute instances below the AST node asso-
ciated with the circularly defined attributes that started the iterative pro-
cess. Case (III) in Fig. 2 is an example. The noncircular attributes b, c and
d will then be evaluated during each iteration of the evaluation of compo-
nent A. 

2.2 Demand-driven evaluation of AGs

We will base the evaluation of CRAGs on a general demand-driven evalu-
ator for non-circular AGs where each attribute is implemented by a
method that recursively calls the methods implementing other attributes.
By caching evaluated attribute values in the syntax tree, the evaluator is
optimal in that it evaluates each attribute at most once. (Our experimen-
tal system allows the user to choose which attributes are to be cached. In
the rest of this paper we will, however, assume that all attributes are
cached in order to achieve optimality.) Circular dependencies can be
checked at evaluation time by keeping track of which attributes are being
evaluated. In principle, this evaluator is the same as the ones used for
traditional AGs by Madsen [16], Jalili [9], and Jourdan [12], although we
use an object-oriented implementation [8]. The evaluator is dynamic in
that dependencies are not analyzed statically. In fact, the dependencies
between attributes need not be analyzed at evaluation time either since
the call structure of the recursive evaluation automatically results in an
evaluation in topological order. The evaluator is implemented in Java
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which provides a straight-forward implementation of the algorithm. Fig. 3
shows a fragment of an AG and the corresponding evaluator code in Java.  

The abstract syntax is translated to classes and fields modelling an
abstract syntax tree (AST). A general class Node models the general
aspects of all AST nodes. For instance, each AST node has an ancestor
node. Each nonterminal, like Exp, is translated to an abstract class, and
each of its productions, like AddExp, is translated to a concrete subclass. A
right-hand side is translated to fields in the production class (e.g., Exp
exp1, exp2;).

Each synthesized attribute declaration (e.g., syn int val) is translated to
an abstract method specification (e.g., abstract int val();), a field for storing
the cached value (e.g., val_value), and two additional boolean fields for
keeping track of if the attribute is already computed (val_computed) and if
it is under computation (val_visited). Each equation that defines a synthe-
sized attribute is translated to a corresponding method implementation
(e.g., int val() { ... }). If the value is already computed, the method simply
returns the cached value. If not, it computes the value, which involves
calling methods corresponding to other attributes (e.g., val_value :=
exp1.val() + exp2.val();). The val_visited field is used in order to check for circu-
lar dependencies, thereby avoiding endless recursion, and raises an
exception if a circularity is found.

AG Evaluator code

abstract class Node {
Node ancestor;

}

Exp {
syn int val;

}

abstract class Exp extends Node {
int val_value;
boolean val_computed = false;
boolean val_visited = false;
abstract int val();

}

AddExp: Exp ::= Exp1 Exp2 {
val = Exp1.val + Exp2.val;

}

class AddExp extends Exp {
Exp exp1, exp2;
int val() {

if (val_computed) return val_value;
if (!val_visited) {

val_visited = true;
val_value = exp1.val() + exp2.val();
val_computed = true;
val_visited = false;
return val_value;

}
else throw new RuntimeException

(”Circular definition of attribute”);
}

}

Figure 3 Demand-driven evaluator for noncircular AG
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Inherited attributes are implemented in a similar, although slightly
more involved, manner, making use of the ancestor field to call methods of
the ancestor node. See [8] for details.

2.3 Demand-driven evaluation of RAGs

RAGs can be evaluated using the same demand-driven algorithm as for
AGs with the extension of allowing attributes to be references to other
nodes in the AST [8]. A typical use of reference attributes is in name anal-
ysis, where applied occurrences of identifiers are linked to declared occur-
rences. Fig. 4 shows fragments of a typical RAG with such links. For
example, the IdExp production contains a reference attribute decl which is
a reference to the appropriate Decl node in the AST. The implementation
of the evaluator is a straight-forward extension of the demand-driven AG
evaluator. An access to a reference attribute is translated to a call to the
corresponding method computing the reference value. For example, the
decl() method in IdExp computes the decl reference value. This is done by
first computing the value of the env attribute (also a reference attribute)
and then calling the lookup method of the env object.

The example also illustrates a number of additional features of RAGs:
A production may occur directly in the right-hand side of another produc-
tion. E.g., Decl is used in the right-hand side of Block. General nontermi-
nals that do not appear on any right-hand side are allowed (e.g., Any).
These can be used to capture attributes and equations applying to many

RAG Evaluator code

Any {
inh Block env;
sons Any.env = env; }

class Any extends Node {
... Block env() { ... } ...

}

Block: Any ::= Decl* Stmt* {
Decl lookup(String name) { ...}
sons Any.env = this; }

class Block extends Any {
... Decl lookup(String name) { ... } ...

}

Decl: Any::= Type <ID> { } class Decl extends Any {
Type type;
String ID; }

Exp: Any {
syn Type tp; }

class Exp extends Any {
... abstract Type tp(); ...}

IdExp: Exp ::= <ID> {
syn Decl decl = 

env.lookup(<ID>);
syn Type tp =

decl != null ? decl.type : null;
}

class IdExp extends Exp {
String ID;
Decl decl() {

... decl_value = env().lookup(ID); ... }
Type tp() { ...tp_value =

decl() != null ? decl().type : null; ... }
}

Figure 4 Example of a RAG and corresponding evaluator
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other classes, e.g., the env attribute and its default equation. Equations
may be overridden in subclasses, e.g., the equation for env is overridden in
Block. The sons clause used in these equations means that the equation
applies to all sons of a specific type. The right hand sides may contain lists
(as in Block) or String tokens (like <ID>). Classes in the RAG may contain
ordinary methods in addition to attributes (like lookup in Block). These
methods must be side-effect free, however.

3 An evaluator for CRAGs

We now turn to CRAGs and their evaluation. The CRAG fragment in Fig.
5 declares a synthesized set-valued attribute s. The attribute is explicitly
declared as circular and the bracketed expression encloses the bottom
value (an empty set in this case).

3.1 Basic algorithm

We will now extend the demand-driven evaluator from Sections 2.2 and
2.3 to handle CRAGs. Fig. 6 shows a basic evaluation algorithm for the
circular attribute s.

The algorithm makes use of two global variables: IN_CIRCLE keeps
track of if we are already inside a cyclic evaluation phase. CHANGE is used
to check if any changes of iterative values of the attributes on the cycle
have taken place during an iteration. The right-hand sides of the two
assignment statements for new_s_value are the expressions corresponding
to the semantic function for the attribute s. It thus involves calls for eval-
uation of attributes on which s is dependent, some of which will be in the
same cycle as s.

CRAG Evaluator code

A {
syn Set s circular [new Set()];

}

abstract class A extends Node {
Set s_value = new Set();
boolean s_computed = false;
boolean s_visited = false;
abstract Set s();

}

B: A ::= ... {
s = f(...)

}

class B extends A {
...
Set s() { ... }

}

Figure 5 Example of CRAG fragment and corresponding classes
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3.2 Comparison of algorithms

In this and the following subsections we will compare our algorithm to
existing algorithms and also present some improvements of the basic
algorithm shown in Fig. 6 in order to avoid certain inefficiencies. 

To facilitate the description we will use the following terminology: An
attribute is definitely noncircular if no instance of the attribute can be
part of a cycle in the dependency graph for any derivable AST. An
attribute is potentially circular if some instance can be part of a cycle for
some AST. An instance of a potentially circular attribute in a certain AST
is actually circular if it is on a cycle and otherwise actually noncircular. 

All potentially circular attributes are required to be declared circular.
(In Section 3.4 we will discuss how to detect and handle failures to fulfil
this requirement.) Thus, we have a similar situation as in Farrow’s static
evaluator where potentially circular attributes are detected by analyzing
the productions of the grammar. However, some of the shortcomings of the
static technique mentioned in Section 2.1 are avoided by our basic algo-

class B extends A {
...
Set s() {

if (s_computed) return s_value;
if ( ! IN_CIRCLE) {

IN_CIRCLE = true;
s_visited = true;
do {

CHANGE = false;
Set new_s_value = f(...);
if ( ! new_s_value.equals(s_value))

CHANGE = true;
s_value = new_s_value;

} while (CHANGE);
s_visited = false;
s_computed = true;
IN_CIRCLE = false;
return s_value;

}
else if ( ! s_visited ) {

s_visited = true;
Set new_s_value = f(...);
if ( ! new_s_value.equals(s_value))

CHANGE = true;
s_value = new_s_value;
s_visited = false;
return s_value;

}
else 

return s_value;
}

}

Figure 6 Evaluation code for the equation s = f(...) where 
s is a circular attribute. 
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rithm and others can be avoided by small modifications of our demand
driven evaluator given the possibility to cache attribute values.

We will use the different cases of Fig. 2 in the discussion below.

Nested iterative evaluations are avoided

In Farrow’s static method and in the basic method of Sasaki & Sassa, an
iterative evaluation may recursively include another iterative evaluation.
The number of iterations in the innermost loop becomes an exponential
factor of its nesting level. Sasaki & Sassa improve their evaluator to avoid
such nested behavior by introducing a global variable. In our evaluator
the global variable IN_CIRCLE achieves the same improvement. How-
ever, as a consequence, iterations might span over more than one strongly
connected component of the dependency graph. This is suboptimal behav-
ior as compared to the dynamic algorithm of Jones, where each compo-
nent is evaluated individually. In Section 3.3 we will show how this
inefficiency can be avoided in some cases.

Iterative evaluation of definitely noncircular attributes is avoided

Recall case (III) of Fig. 2, and assume that b is definitely noncircular. Sup-
pose that one of the attribute instances of component A is demanded. An
iterative process is then started during which b will be demanded. Since b
is cached it will only be evaluated the first time it is demanded. When a
later iteration in component A demands b again, its computed value will
be returned. This differs from the static evaluation techniques of Farrow
and Sasaki & Sassa, where definitely noncircular attributes might be
evaluated during each iteration.

3.3 Improving the algorithm

We can avoid some additional inefficiencies by slight modifications to our
demand-driven evaluator.

Avoiding recomputation of potentially circular attributes

The basic algorithm in Fig. 6 computes the value of an attribute s and
caches the intermediate values of the circular attributes involved in the
cycle. When the iterative evaluation has converged, the attribute s has
reached its fixed point and is registered as computed by setting the field
s_computed. However, at this point, all other attributes on the cycle have
reached their fixed point as well, but are not registered as computed. For
efficiency reasons it is desirable to register these attributes as computed
in order to avoid their recomputation in case they will be demanded
again. By introducing another global variable READY, that is set to true
when the fixed point is reached, it is possible to perform one extra itera-
tion during which all involved attribute instances register themselves as
computed. 
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Evaluating strongly connected components in topological order

Consider case (II) of Fig. 2 and suppose that b is definitely noncircular.
When an attribute of component A is demanded, an iterative process is
started and eventually b will be demanded. b will in turn demand c1. A
new strongly connected component is thereby entered, but a new iterative
process would not be started by the basic algorithm shown in Fig. 6 since
IN_CIRCLE is already true. The resulting iterative process would thus
involve all attributes of components A, B, and C just as in the static tech-
niques mentioned in Section 2.1. It would be more efficient to suspend the
iterative process of A temporarily and start a new iterative process for
component C, and thereby avoid unnecessary evaluations in A while the
attributes in C are being computed. This scheme can be realized by
slightly modifying the algorithm for definitely non circularly attributes
(i.e. the algorithm in Fig. 3). An outline of the modified algorithm is given
in Fig. 7. When the attribute b is demanded, the status of the iterative
process is now stacked (CHANGE flag), b calls its semantic function and on
return, the interrupted cyclic evaluation of component A is resumed.
When b demands the attribute c1 a new cycle is entered, so the component
C will be brought to a fixed point before b gets its value. When b is com-
puted, the suspended iterations of A are resumed. Since all cyclic
attributes are cached after they have been brought to a fixed point, the
attributes in cycle C will only be computed once. 

Avoiding iterative evaluation of actually noncircular attributes

For many ASTs there might be many actually noncircular instances of
potentially circular attributes. Consider case (IV) in Fig. 2 and suppose a
is demanded. If a is potentially circular, an iterative process is started in
which b and c will be demanded. Again, a small modification of the algo-
rithm makes it possible to detect that no cycle is ever encountered and
interrupt the iterative process. Basically, a global variable is used to keep

if (attribute_computed) 
return attribute_value;

if ( ! attribute_visited ) {
attribute_visited = true;
if (IN_CIRCLE) {

push value of CHANGE on stack;
IN_CIRCLE = false;
INTERRUPTED_CIRCLE = true;

}
attribute_value = f(...);
attribute_computed = true;
if (INTERRUPTED_CIRCLE) {

CHANGE = pop from stack;
IN_CIRCLE = true;

}
attribute_visited = false;
return attribute _value;

}
else throw new RuntimeException(“Circular def...”);

Figure 7 Pseudo-code for improved evaluation of a defi-
nitely noncircular attribute
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track of if we have encountered an already visited attribute during an
ongoing iterative evaluation process.

Sasaki & Sassa [20] also have a refined mostly static version of their
originally completely static technique. The basic idea is here to have sev-
eral versions of attribute evaluation sequences, one for each possible pat-
tern of remote dependency edges. The actual pattern for each subtree in
the AST is then computed at runtime and the evaluator selects the proper
version. If there are no actually circular attributes in a subtree, iterations
are avoided for the production at its root, provided cycles are always
caused by remote references. It is not clear if their algorithm can be gen-
eralized to deal with cyclic behavior that is not caused by remote links.
The refinement deals only with potentially circular attributes that are not
actually circular. Their evaluator will still make unnecessary iterations
for definitely noncircular attributes in a subtree below AST nodes corre-
sponding to productions with actually circular attributes.

3.4 Robust Improved Algorithm

So far, we have assumed that the AG author has declared all potentially
circular attributes as circular. As will become evident from examples in
Section 4, it is often apparent to the AG author which attributes are
potentially circular. However, if the AG author has forgotten to declare an
attribute as circular, and it is in fact actually circular, the algorithms in
figures 6 and 7 may yield erroneous results. Consider Fig. 8 as an exam-
ple. There are five attribute instances of which four (a, b, c, and d) have a
circular dependency. Given the equations to the right in the figure, it is
obvious that the set {id} should be the final value of all attributes after a
fixed-point iteration. Suppose that the AG author has forgotten to declare

attribute c as circular and suppose that attribute a is demanded. An itera-
tive process is started, b is demanded and then c i demanded. Since c is
not declared circular its evaluation code will be that of Fig. 7 and thus the
iterative phase will be temporarily suspended and d will be demanded.
Since d is a circularly declared attribute, a new iterative process is
started. When a is demanded it is already visited, so it will return its cur-
rent value (the bottom value). The iterative process started by d will thus
only involve attributes d and a and their values will never change from
the bottom value, i.e, the empty set. Consequently the value of c will also
be the empty set. The interrupted iterative process started by the evalua-
tion of a is resumed when c has been evaluated. Since c is cached, the iter-
ations will only span over attributes a and b and the fixed point is reached

a

d b

c

e

a = b
b = c.union(e)
c = d
d = a
e = {id}

Figure 8 Equations for some attributes creating cyclic dependency
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when their respective values are {id}. Obviously all semantic rules are not
satisfied.

In order to make the algorithm robust to such grammar errors, the
algorithm can be modified as follows. Using the information about which
attributes are declared circular, it is possible to keep track of which nodes
in the dependency graph might belong to the same strongly connected
component. If a visited node belonging to another component is encoun-
tered, then an error has ocurred. In the case described above the evalua-
tor would consider attributes a and b to belong to one component and
attribute d to another. When the evaluation of d demands a, a visited node
belonging to a different component is encountered. The scheme of keeping
track of components can be realized by adding vertices of the dependency
graph to a set during evaluation, as long as only potentially circular
attributes are encountered. This set will be stacked together with the
CHANGE flag when an iteration is temporarily suspended as in Fig. 7.
When a visited node is encountered it can then be checked if it belongs to
the set of the component actually being brought to a fixed point. Thus, in
case of a missing circular declaration, the algorithm will detect the error,
identify the attributes involved, and raise an exception.

3.5 Comparison to related work

Our evaluation algorithm uses a pure dynamic demand-driven technique
where no initial dependency analysis is performed. In general, the com-
plete dependency graph for a RAG or a CRAG is not known until after
evaluation, since the dependencies introduced by reference attributes will
depend on the reference values. This is in contrast to ordinary attribute
grammars where the dependency graph can be computed from the gram-
mar and constructed before evaluation. The static attribute evaluation
algorithms available for ordinary attribute grammars, like OAGs [13],
rely on this property in order to compute approximations of the depen-
dency graph before evaluation. The same holds for the static evaluation
algorithms for circular attribute grammars, like Farrow’s algorithm [5].
The development of static evaluators for subcategories of RAGs and
CRAGs is an open problem that we have not pursued, but there is some
other work in this direction. In [3] Boyland addresses the problem of ana-
lyzing (noncircular) non-local dependencies statically. The scope and
implementation status of the developed technique is, however, unclear.
Sasaki & Sassa [20] allow circular dependencies as well as remote links
between nodes in the AST, but links between nodes are not considered a
part of the AG and must be provided by a separate initial phase that they
have not elaborated further on in their paper. In contrast, our demand-
driven evaluation technique allows reference attributes as well as ordi-
nary attributes to be evaluated in the same manner. An additional con-
straint in the scheme of Sasaki & Sassa is that cycles are assumed to
arise only from remote references.

As was discussed in Section 3.2, the static evaluation algorithms of
Farrow and of Sasaki & Sassa have suboptimal behavior for strongly con-
nected components of circular attributes, while the dynamic algorithm of
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Jones [11] is optimal. In section 3.3 we showed how our dynamic demand-
driven algorithm avoids some of the suboptimal cases by using cached
attribute values. For non-circular RAGs, dynamic demand-driven evalua-
tion using caching is optimal (each attribute is evaluated at most once).
For CRAGs, the existence of general optimal evaluation algorithms is an
open issue.

For CRAGs, we rely on the author to declare a potentially circular
attribute as circular, which provides the same information as the analysis
of the grammar performed initially in the static methods of Farrow and
Sasaki & Sassa. In both cases the potentially circular attributes are iden-
tified and become known to the evaluator. A less experienced author
might forget to declare some attributes that are potentially part of cyclic
dependencies as circular. Our evaluator will then report an error on inputs
where cycles do appear and it will produce a correct result on cycle-free
input. 

Our evaluator presently does not check whether circularly defined
attributes take their values from a lattice of finite height or if their defin-
ing semantic functions are monotonic. Thus there is no guarantee that
iterations will converge. Our approach is in this respect similar to that of,
e.g., Farrow [5] and means that the we rely on the AG author to ensure
that the semantic functions involved are properly constrained. 

4 Application examples

In this section we will discuss three examples which are naturally
expressed using recursion and circular dependencies. Two of them are
classical and are discussed in earlier papers dealing with circular
attribute grammars. In these cases we will focus on a comparison between
the solutions proposed earlier and solutions made possible when reference
attributes are available. However, we start with an example that com-
putes nullable, first, and follow in the context of parser construction. This
is a problem that, to our knowledge, has not been solved using an
attribute grammar approach before. This application is typical for a large
class of problems within compiler construction that deal with computing
various properties of grammars. Other similar problems are the computa-
tion of static dependency graphs in the context of attribute grammars,
computation of visit sequences for ordered attribute grammars, etc. All
these problems are expressed as highly recursive equations and are typi-
cally solved by iterative fixed-point computations.

4.1 Computation of nullable, first, and follow

Given a context-free grammar (CFG), a recursive-descent or predictive
parser can be generated if the first terminal symbol of each subexpression
provides enough information to select production. This can be more pre-
cisely formulated by introducing the notion of a nonterminal being nullable
and by defining the sets first and follow, informally defined as:
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• A nonterminal X is nullable if the empty string can be derived from X.

• first(X) is the set of terminals that can begin strings derived from X.

• follow(X) is the set of terminals that can immediately follow X.

Fig. 9 shows an example context-free grammar and its values for nul-
lable, first, and follow (grammar 3.12 in Appel [1]). 

4.1.1 Computation of nullable

We define nullable by the following equations:

(i) Let X be a nonterminal with the productions X → γ1, X → γ2, ... X → γn.
X is nullable if any of its production right-hand sides is nullable:

nullable( X ) ==
nullable( γ1 ) || nullable( γ2 ) ... || nullable( γn )

(ii)  Let ε be an empty sequence of terminal and nonterminal symbols.
The empty sequence is nullable:

nullable( ε ) == true

(iii) Let γ = sδ be a nonempty sequence of terminal and nonterminal symbols
where s is the first symbol and δ is the remaining (possibly empty) 

sequence.
γ is nullable if both s and δ are nullable

nullable( γ ) == nullable( s ) && nullable( δ )

(iv)A terminal symbol t is not nullable:
nullable( t ) == false

The definition is circular which is evident from (i) since X might be identi-
cal to, or derivable from, one of the nonterminal symbols on the right-
hand side of one of the productions.

The above definition can, with trivial adaptions to syntax form, be for-
mulated directly in a CRAG as demonstrated in Fig. 10. The CRAG equa-
tions corresponding to equations (i) - (iv) above are marked in the CRAG
specification. In the CRAG, we differ between declared and applied occur-
rences of nonterminal symbols (NDecl and NUse). Each NUse is bound to
the appropriate NDecl by means of a reference attribute decl which is spec-
ified in a similar way as was sketched in Section 2.3. Their values for nul-
lable are equal as indicated by equation (v). 

Nonterminals and their 
productions

nullable first follow

X → Y | a true {a, c} {a, c, d}

Y → c | ε true {c} {a, c, d}

Z → X Y Z | d false {a, c, d} ∅

Figure 9 Example CFG and its values for nullable, first, and follow
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4.1.2 Computation of first

The following equations define the first set for symbols and symbol
sequences:

(i) Let X be a nonterminal with the productions X → γ1, X → γ2, ... X → γn.
first( X )== first( γ1 ) ∪ first( γ2 ) ... ∪ first( γn )

(ii) Let ε be an empty sequence of terminal and nonterminal symbols.
first( ε ) == ∅

(iii) Let sδ be a nonempty sequence of terminal and nonterminal symbols 
where

s is the first symbol and δ is the remaining (possibly empty) sequence.
first( sδ ) == if (nullable( s ))

then first( s ) ∪ first( δ )
else first( s )

(iv) Let t be a terminal symbol.
first( t ) = { t }

The equation system is circular which is evident from (i) since X might be
identical to, or derivable from, one of the nonterminal symbols on the

CFG ::= Rule * { }
Rule ::= NDecl ProdList {

NDecl.nullable = ProdList.nullable; (i)
}
NDecl ::= <ID> {

inh boolean nullable circular [false];
}
ProdList, Prod, SymbolList, Symbol {

syn boolean nullable circular [false];
}
EmptyProdList: ProdList ::= {

nullable = false; (i)
}
NonEmptyProdList: ProdList ::= Prod ProdList {

nullable = Prod.nullable || ProdList.nullable; (i)
}
Prod ::= SymbolList {

nullable = SymbolList.nullable; (iii)
}
EmptySymbolList: SymbolList ::= {

nullable = true; (ii)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {

nullable = Symbol.nullable && SymbolList.nullable; (iii)
}
Terminal: Symbol ::= <TERMINAL> {

nullable = false; (iv)
}
NUse: Symbol ::= <ID> {

syn NDecl decl = ...;
nullable = decl.nullable; (v)

}

Figure 10 A CRAG that computes nullable
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right-hand side of one of the productions. We can also note that the defini-
tion of first relies on the definition of nullable. Figure 11 shows the corre-
sponding CRAG including the equations (i) - (iv) from the definition
above. As in the case of nullable, the first computation relies on the decl
reference attribute in NUse to equate the first values of an NUse and its
corresponding NDecl (v).

4.1.3 Computation of follow

The definition and CRAG for follow is similar in style to nullable and first,
but makes additional use of reference attributes: To compute follow for a
nonterminal X we need to locate all the applied occurrences of X and look
at the subsequent symbols. To this end, reference attributes are used for
linking an NDecl to all its NUses. The additions of such attributes are
straight-forward using CRAGs, for example by defining a set of NUse ref-
erences at each NDecl. With these attributes in place, the specification of
follow becomes as straight-forward as for nullable and first.

During evaluation, the computation of nullable, first, and follow, forms
three strongly connected components where the first component depends
on the nullable component, and the follow component depends on both the
nullable and first components.

CFG ::= Rule * { }
Rule ::= NDecl ProdList {

NDecl.first = ProdList.first; (i)
}
NDecl ::= <ID> {

inh Set first circular [∅];
}
ProdList, Prod, SymbolList, Symbol {

syn Set first circular [∅];
}
EmptyProdList: ProdList ::= {

first = ∅; (i)
}
NonEmptyProdList: ProdList ::= Prod ProdList {

first = Prod.first ∪ ProdList.first; (i)
}
Prod ::= SymbolList {

first = SymbolList.first; (iii)
}
EmptySymbolList: SymbolList ::= {

first = ∅; (ii)
}
NonEmptySymbolList: SymbolList ::= Symbol SymbolList {

first = Symbol.nullable (iii)
? Symbol.first ∪ SymbolList.first
: Symbol.first;

}
Terminal: Symbol ::= <TERMINAL> {

first = { <TERMINAL> }; (iv)
}
NUse: Symbol ::= <ID> {

first = decl.first; (v)
}

Figure 11 A CRAG that computes first
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4.1.4 Experimental results

We have implemented the robust improved CRAG evaluation algorithm
in our compiler construction tool JastAdd. In order to test performance,
we developed a CRAG for computing nullable, first, and follow for context-
free grammars. We have compared the generated CRAG evaluator with a
typical hand-coded iterative implementation. We have tried to make the
basis for comparison as fair as possible: Both implementations use the
same implementation language (Java), the same underlying AST classes,
and the same data structure classes (for sets etc.). There has been no
effort put into optimizing any data structures or operations. All is imple-
mented in a straight-forward manner using classes, objects, and methods.

The results are shown in Fig. 12. The grammars Appel 1 and Appel 2
are small example grammars from [1]. Appel 1 is a toy language (the
same as in Fig. 9.) with 3 nonterminals (#N) and 6 productions (#P) and
Appel 2 is a grammar for simple arithmetic expressions. Tiny is a gram-
mar for a small block-structured language. The grammar for Java 1.2 is
the largest and has been taken from the examples distributed with Jav-
aCC [10]. It has about 160 nonterminals when written in our CFG lan-
guage. The times given are average times for 100 executions on a Sun
Ultra 80 using the HotSpot JVM. The results indicate that the evaluator
of CRAG performs as well as the handwritten iterative evaluation code.
For a large grammar like Java the declarative approach even seems to be
superior. One explanation could be that in an imperative style fixed-point
iteration, the order in which the productions are processed is very impor-
tant. (See, e.g. [1] chapter 17.4.) The CRAG evaluator, on the other hand,
traverses the dependency graph depth first, i.e., in topological order, and
the iterations will thus usually converge faster.

We can also see that the maximum number of iterations for a single
attribute value to converge (#I-A) seems to be almost constant, regardless
of grammar size, whereas the total number of iterations (#I-T) naturally
depends on the number of attributes, and thereby on the size of the gram-
mar.

 CRAG Handwritten

Language #N #P #I-T #I-A time 
(ms)

time(ms)

Appel 1 3 6 8 4 8 7

Appel 2 6 12 18 4 13 9

Tiny 18 30 35 4 22 15

Java 1.2 157 321 263 5 147 175

Figure 12 Computation of nullable, first, and follow for 
some different grammars.
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4.2 Using constants before declaration

This is an example described by Farrow in [5] and deals with a language
where constants can be defined in terms of other constants and where use
of a constant before its declaration is legal as in the following example:

a = 2*b + c;
b = 2;
c = d -1;
d = 4;

Farrow shows how a part of an AG for the language can be specified to
build a table mapping constant names to their respective values. The
specification will be circular. In essence, to build a table of constants and
their values you need the value of the expression defining each constant.
If an expression defining a constant uses another constant (as in the defi-
nitions of a and c above) you will need to look them up in the table. The
table thus depends on the constant values which in turn depend on the
table. The only case when cycles will not occur is when no expression
defining constants uses other constants, i.e., have the form of the declara-
tions of b and d above. Had there not been the requirement to allow use of
constants before their declaration, the AG could be simplified to avoid
cycles. Farrow showed that it is possible to rewrite the AG to be cycle free
by introducing complexity involving higher order functions one of which
in essence captures the behavior of the fixed-point iterations needed for
the evaluation in the cyclic version of the grammar.

Farrow’s discussion is based on traditional AGs enhanced with a static
evaluation technique for cyclic dependencies mentioned in Section 2. The
evaluation will produce the table of constants and their values if the con-
stants are well-defined, i.e., there must be exactly one defining expression
for each constant and the definitions themselves must not be cyclic. The
table will thus be incomplete if the constants, e.g., are defined as in:

a = b + 2;
b = 2*a; // circular definition

Using CRAGs it is easy to specify a non-circular attribute grammar for
the specification of the constant values. Again a name analysis proves
useful linking constant use sites to their declaration sites by a reference
attribute decl as was described in Section 2.3. The value of a constant can
then be modelled as an attribute val of its declaration node class. The val
attribute is specified in terms of the values of the constants used in its
defining expression. These values are in turn specified as the value of the
val attribute at their corresponding declaration sites, using the reference
attribute decl. 

Fig. 13 shows parts of an abstract grammar for a language with inte-
ger constants. The specification of the val attribute in the ConstUse class
checks if the constant has been declared. If not, it will be assigned the
value undefined. The example demonstrates how reference attributes can
simplify a grammar as compared to previously suggested solutions.

The val attribute will be noncircular exactly when Farrow’s cyclic spec-
ification produces a complete table of constant values, i.e., when each con-
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stant has a defining expression and no constant is defined in a circular
manner. Should some constants be part of circular definitions like in the
example above, this is a programming error that should be caught by the
compiler. To use circular attributes is not an option here since there does
not, in general, exist any fixed-point solution. For the CRAG above, the
evaluator will throw an exception when it discovers the circular depen-
dency. This is, of course, not an acceptable behavior for a production com-
piler. An improved CRAG can instead check explicitly for such erroneous
circular definitions by introducing an attribute isCircular in class ConstDecl.
Its value can be specified in a noncyclic manner by a recursive function
that builds the set of all constants of which a certain constant is depen-
dent and checks if the constant is itself in this set. An alternative way is
to specify the dependency sets of each constant using a circularly specified
attribute of a set type and then check if a constant is contained in its own
dependency set.

4.3 Live analysis in optimizing compilers

One of the most frequently used examples of cyclic dependencies in AGs is
the performance of live analysis for variables. Farrow [5], Jones [11], and
Sasaki & Sassa [20] all focus on this example in their papers.

A variable v is said to be live on entry to a statement S if there is a con-
trol flow path from S to another point p such that p uses the value of v and
v is not redefined on the path from S to p. The goal of an attribute gram-
mar in this context is to specify the sets of live variables on entry to each
statement or block in a program. 

Farrow and Jones both exemplify with a language with loop-structures
like for- and while-statements. No reference attributes need to be involved
here, but the specifications become cyclic for loop-statements. Sasaki &
Sassa use a smaller language with only assignment statements, label-
statements and goto-statements. Here remote attributes are used to link
goto nodes in the AST to their corresponding label nodes. Cycles can in
their simple example language arise only if a program contains goto-state-
ments and the evaluation technique used (or rather the technique to
check for convergence) is dependent on this fact. This means that the
evaluation process described by Sasaki & Sassa in [20] would not be capa-
ble of handling, e.g., a language with structured loop-statements. Also, as

ConstDecl ::= IdDecl Exp { syn Integer val = Exp.val; }
Exp { syn Integer val; }
AddExp : Exp ::= Exp1 Exp2 { val = Exp1.val + Exp2.val; }
...
ConstUse : Exp ::= <ID> {

syn ConstDecl decl = ...;
val = decl != null ? decl.val : undefined;

}
IntExp : Exp ::= <INT> { val = <INT>; }

Figure 13 A CRAG for a language where constants 
can be used before declaration.
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has been mentioned before, their links between gotos and labels in the
AST are not ordinary attributes, but need to be provided by a separate
phase that takes place before attribute evaluation.

Given the combination of reference attributes and capability of han-
dling cyclic dependencies makes it easy for us to specify a CRAG for live
analysis for a language containing ordinary loop-structures as well as
labels and goto statements. A name analysis links goto nodes in the AST to
their proper label nodes. The rest of the attributes needed to perform a live
analysis can be specified following the pattern proposed in earlier papers.
In CRAGs, there is no need for an initial phase for computing reference
attributes. The reference attributes are evaluated by our system when
they are demanded just like any other attributes.

5 Conclusions

In this paper we have presented CRAGs, an extension of traditional AGs
with reference attributes and circularly defined attributes. We have devel-
oped a general demand-driven evaluation technique for CRAGs, imple-
mented it in Java, and tried it out on several applications, thereby
demonstrating the expressiveness of CRAGs and that they are useful for
a number of practical problems.

Most language analysis problems include name analysis as a subprob-
lem. It is well known that traditional AGs are not well suited for specify-
ing name analysis, leading to complex awkward specifications. Reference
attributes have proved useful to overcome this problem and this paper
demonstrates how such name analysis provides a natural basis for fur-
ther analyses based on circular recursive equations. In Section 4.2 we
demonstrated how reference attributes in some cases even remove the
need for circular specifications.

Many language analysis problems are inherently circular and need to
be computed by iterating to a fixed point. We have demonstrated how
CRAGs allow the recursive definitions to be specified directly in the gram-
mar, and where the fixed point is computed by an automatically generated
evaluator. The use of reference attributes broadens the potential applica-
tions of circular attribute evaluation to a much wider range. The compu-
tation of nullable, first, and follow, that we have presented here is
representative of a large number of grammar analysis problems that can
make use of this technique.

We have compared our demand-driven evaluation algorithm with
handwritten imperative code implementing fixed-point iterations, and the
results indicate that there is little difference in performance.

Open problems concerning RAGs that are interesting for future
research include whether it is possible to detect potential cyclic dependen-
cies statically and to what extent it is possible to statically analyze depen-
dencies in general. The latter question can be addressed as in [20] by
introducing all possible remote edges with lots of potential cycles in the
dependency graph as a result. Most abstract syntax trees will, however,
not contain any cycles and the iterations performed by the generated eval-



86 CRAGs - their Evaluation and Applications

uator are unnecessary. It would be useful if algorithms for a more realistic
analysis could be developed at least for some subcategories of RAGs. 

Future work also includes further improvements of the evaluator. One
idea we are looking at is how to isolate strongly connected components by
modularizing the grammar. Such modularization is natural to do anyway
from a grammar writing perspective, and can probably be used for
improving the evaluator performance. We are also looking at techniques
for automatically deciding which attributes to cache to provide best per-
formance and memory usage. It would be desirable to let the user decide
what attributes to save in the AST nodes and let the tool help to decide
when to cache other attributes temporarily to avoid inefficiencies and for
check of convergence. One idea could be using a cache like in [20]. Finally,
we plan to apply CRAGs to more problem areas.
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