
Ulf Asklund

Department of Computer Science

Lund University

B
j
ö

r
n

R

e
g

n
e
l
l

Lund Institute of Technology

Doctoral dissertation, 2002

Configuration Management
for Distributed Development

in an Integrated Environment

ii

This thesis is submitted to the Board of Research: FIME - Physics, Infor-
matics, Mathematics and Electrical Engineering - at Lund Institute of
Technology (LTH), Lund University, in partial fulfillment of the require-
ments for the degree of Doctoral of Philosophy in Engineering.

ISBN 91-628-5470-4
ISSN 1404-1219
Dissertation 14, 2002
LU-CS-DISS:2002-1

Department of Computer Science
Lund Institute of Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

E-mail: Ulf.Asklund@cs.lth.se
WWW: http://www.cs.lth.se/~ulf

© 2002 Ulf Asklund

Abstract

Configuration management (CM) includes synchronizing and supporting
developers in their common development and maintenance of a system. In
order to utilize personnel regardless of their geographical location, groups
of developers are now working all over the world on the development of
common systems, a situation called distributed development. From differ-
ent locations they may need to concurrently modify thousands of files,
sometimes the same files, within the product. In the line of increased dis-
tribution, not only are groups placed at different locations, but also the
groups themselves are distributed. I.e., people are working tightly
together as a team although geographically dispersed. These changed pre-
requisites imply new, and harder, demands on CM support.

This thesis describes an approach to configuration management for
distributed development in an integrated environment. The motivation is
to improve the support for people working together, although geographi-
cally distributed. We put forward a versioning model unified for both con-
figurations and atomic items (UEVM), and a possible tool supporting this
model. To support distributed work we have also added functionality from
the area of computer supported cooperative work (CSCW), in particular
support for collaborative awareness and different modes of collaboration.
These aspects: versioning model, collaborative awareness, and collabora-
tion modes have been integrated within one homogeneous environment,
COOP/Orm. Besides the importance of these aspects, we claim that the
integration itself is important and necessary in order to provide more and
better support than separate tools. For example, we do treat versions as
fundamental and therefore understood by all tools within the environ-
ment, which enables a smooth transition between asynchronous and syn-
chronous collaboration for users working on a shared document.

iv Abstract

Acknowledgments

The research presented in this thesis was carried out within the Program-
ming Environments Group at the Department of Computer Science, Lund
University, and LUCAS, the Lund University Center for Applied Software
Research. First, I would like to thank my supervisor Boris Magnusson,
the leader of the programming environment group, for introducing me to
configuration management as well as computer support for cooperative
work, and for his support throughout my thesis work.

I would also like to thank all of my former and present colleagues at
the department for providing such a great environment to work in. It is a
pleasure to work with you all.

Parts of the experimental work with COOP/Orm was done jointly in
the programming environments group, and I really want to thank all who
participated in this development. Especially thanks to Boris Magnusson,
Görel Hedin, Sten Minör, Roger Henriksson, Torsten Olsson, Patrik Pers-
son, and Jonas Persson. I have also had many valuable and rewarding
discussions with Lars Bendix and Henrik B. Christensen, for which I am
very grateful. Thanks to Anne-Marie Westerberg for helping me with var-
ious practical things.

The studies described in the thesis could not have been performed
without the help from a number of individuals and companies letting me
interview them and their willingness to share their experiences. Special
thanks to Krister Erlansson and Alf Ek for many fruitful discussions and
to Annita Persson and Göran Östlund for their confidence and encourage-
ment.

Finally, but certainly not least, I must thank my wife and children -
Maria, Johan, and Emma. It is with you I enjoy life most. Also thanks for
being patient with me during the long work on this thesis.

This work has been financially supported by VINNOVA, the Swedish
Agency for Innovation Systems and by VI, the association of Swedish
Engineering Industries.

vi Acknowledgments

Contents

Chapter 1 Introduction 1
1.1 The thesis .2
1.2 Thesis organization .3
1.3 Publications .4

Chapter 2 Thesis motivation 7
2.1 Work models. .8
2.1.1 Combining models .10
2.1.2 Object oriented languages .10
2.1.3 Synchronous and asynchronous collaboration 11
2.1.4 Collaborative awareness and system overview needed . . .12
2.2 Distributed development .13
2.3 Integrated development environments.14
2.4 Problem statement. .15

Chapter 3 Integrated development environments 17
3.1 Synchronization points .18
3.2 Levels of tool communication .18
3.2.1 The COOP/Orm approach .19

Chapter 4 Cases of distributed development 21
4.1 Cases of distributed development .23
4.1.1 Locally .23
4.1.2 Distance working .24
4.1.3 Outsourcing. .25
4.1.4 Co-located groups .25
4.1.5 Distributed groups .26
4.2 Conclusions .27

viii Contents

Chapter 5 Software configuration management 29
5.1 Definitions - two target groups . 30
5.2 Strategies/working modes . 30
5.3 CM from a management perspective 32
5.3.1 Areas of responsibility . 32
5.4 CM from a developmental perspective - tool support 34
5.4.1 Version control . 35
5.4.2 Configurations/Selections. 37
5.4.3 Concurrency control . 38
5.4.4 Build management . 39
5.4.5 Release management . 39
5.4.6 Workspace management. 40
5.4.7 Change management . 40
5.5 Synchronization models. 42
5.5.1 Checkout/checkin . 42
5.5.2 Composition. 44
5.5.3 Long transactions . 46
5.5.4 Change set. 49
5.5.5 Tool support for synchronization models. 51
5.5.6 Summary . 51
5.6 Version and configuration models. 52
5.6.1 Configuration vs. configuration specification 52
5.6.2 Extensional and intensional versioning 52
5.7 Summary . 54

Chapter 6 Unified extensional versioning model 57
6.1 The unified extensional versioning model 58
6.1.1 The document model. 58
6.1.2 The version model . 60
6.1.3 Summary . 62
6.2 Discussion and comparison . 63
6.2.1 The UEVModel from the users perspective. 63
6.2.2 Managing the combinatorical explosion of configurations 64
6.2.3 Supporting and managing changes 65
6.2.4 Supporting concurrent work . 66
6.3 Related work . 67
6.3.1 Ragnarok . 67
6.3.2 CoED . 68
6.3.3 NUCM . 69
6.3.4 Adele . 70
6.3.5 POEM . 70
6.3.6 Subversion. 70

Chapter 7 The COOP/Orm environment 73
7.1 Requirements . 74
7.2 Structured documents (spatial model) 76
7.2.1 Structure of documents . 77
7.2.2 Discussion . 79
7.3 Version model. 79

ix

7.3.1 A session scenario .80
7.3.2 Fine grained incremental version control80
7.3.3 Browse in time .82
7.3.4 Visualizing version history during editing83
7.3.5 Local version graph .83
7.3.6 Versioning configurations of documents85
7.3.7 Discussion .86
7.4 Merge model. .87
7.4.1 Avoid conflicts in the first place. .88
7.4.2 Automatic merge proposal based on default rules88
7.4.3 Visualize merge result .91
7.4.4 Facilitate consistent decisions during merge93
7.4.5 Merge of configurations .94
7.4.6 Discussion .96
7.5 Awareness model .96
7.5.1 Hypothetical merge .98
7.5.2 Discussion .99
7.6 Client-server architecture .100
7.7 Replication (server-server) model .100
7.8 Related work .102
7.8 Asynchronous collaboration in software engineering. . . .105
7.9 Conclusion .108

Chapter 8 The COOP/Orm client-server model 111
8.1 Requirements and trade-offs. .111
8.2 Principle design decisions .113
8.2.1 Document structure and version control113
8.2.2 Delta technique (node content deltas)113
8.2.3 Structural deltas. .115
8.2.4 Type generic server. .116
8.2.5 Push model (request-install protocol) 116
8.2.6 Scalability .116
8.2.7 Version tube .118
8.3 Summary .122

Chapter 9 The COOP/Orm storage format 125
9.1 Storage layers .125
9.2 The storage format grammar .127
9.2.1 VersionFile mapped to TreeFile. .129
9.2.2 Semantic rules (invariants) .130
9.3 Static properties. .130
9.3.1 Sequential versions. .130
9.3.2 Branches .133
9.3.3 After merge .135
9.3.4 Reliability .136
9.3.5 Change propagation .136
9.3.6 ClientAdmData. .137
9.4 Dynamic properties .137
9.4.1 Protocol / Operations .137

x Contents

9.5 Merge . 140
9.6 Re-merge. 142
9.7 Hypothetical merge . 143
9.8 Merge requirements on ClientData and ClientDelta. 144
9.9 Evaluation and scalability. 145

Chapter 10 The COOP/Orm architecture 147
10.1 Client run-time model . 147
10.1.1 StorageNode . 148
10.1.2 Tools. 149
10.1.3 Configurator . 149
10.2 The COOP/Orm framework. 150
10.2.1 Hot-spots in COOP/Orm. 150
10.2.2 Changing the rules defining the document structure. . . 151
10.2.3 Creating new node types . 154
10.3 The server architecture . 160
10.4 Summary and discussion. 163

Chapter 11 Related work 165
11.1 TUCAN . 165
11.2 Coven (Stellation). 167
11.3 Adele . 168
11.4 POEM . 169
11.5 Subversion . 170
11.6 Ragnarok . 171

Chapter 12 Future work 173

Chapter 13 Contributions 175
13.1 Capture the requirements . 176
13.2 Find models . 178
13.3 Build a prototype . 181
13.4 Evaluate . 181

Chapter 14 Conclusions 183

References 187

Appendix A: Dynamic behaviour - notation 195

Appendix B: Merge cases 199

Appendix C: Server commands 205

Chapter 1 Introduction

Although large companies and organizations have for many years had
access to global networks, the rapid development of the Internet has
brought about a dramatically increased access to services. The result is a
degree of dependence on these services and an expectation that Internet
is available in almost all kinds of work, not least in software development.
A large number of companies have their developers geographically dis-
persed, i.e. groups of developers work all over the world on the develop-
ment of a common system. From different locations they are able to
modify a system of thousands of different files, and sometimes the same
files, within a single product. The potential is considerable due to the
increased possibility of using personnel and competence in a more effi-
cient, flexible and comfortable manner. While some of these companies
have planned their distribution to better utilize resources in their global
organization, others, however, have more or less accidentally come to this
situation. Irrespective of reason many companies have found that the
methods and tools used do not fully support their current situation. The
new situation has caused considerable changes of the organization of the
work place. The way in which the work has been divided and the handling
of the interactions between different groups and individuals has been
largely affected by the fact that the staff is geographically dispersed. This
creates new demands on the tools and the systems used for handling the
coordination of the development, especially with concurrent development.

Software development is not the only activity where distributed teams
are involved. Another common activity is collaborative writing, i.e. sev-
eral authors are working on the same document (e.g. an article or a man-
ual). Even though this task might be considered less complex than
software development it has many similarities and share many of the
requirements from distribution.

Configuration management (CM) is an important discipline within
software engineering (SE). CM comprises of both processes which, among
other things, defines how to coordinate the work of many developers
working concurrently on the same system, and tools that automates fre-

2 Introduction

quent, and otherwise time consuming, steps following these processes.
Even though CM from the beginning was a management discipline, it is
now very much part of each developers daily work. This means that tools
used are part of the development environment (together with tools such
as editors and compilers). It also means that these tools must support the
developers in their situation of being distributed. Gladly, the tool vendors
have also noticed this need and put a lot of effort on support for distrib-
uted development, e.g. by providing multi server solutions. There is, how-
ever, more to do in this area. In the line of increased distribution, not only
groups are placed at different locations, but also the groups themselves
are distributed. I.e. people are working tightly together as a team
although geographically dispersed. This trend puts even harder demands
on the tools used. There is for example a need for support of informal com-
munication and of awareness of what other developers are working. These
new demands on both the work models used and on tool functionality is
the motivation of this thesis.

1.1 The thesis

The goal of the research presented in this thesis is to find methods and
tools that reduce the drawbacks of distributed development, and to show
how these could be used in an integrated environment. Even though we
address current problems in the industry our goal is not to find a quick
patch that can be used tomorrow. Instead we aim at techniques and tools
that maybe are harder to quickly adopt but that will give a better and
more long-lived solution to the problems. It is also possible to adopt only
parts of our proposals, or to use them as a future goal during several
updates of the environment used. Our work have been focused on solu-
tions within the areas of integrated environments, CM, and CSCW (Com-
puter Supported Collaborative Work).

The research method used have been to; (1) capture the requirements
from ‘real’ situations by thorough case studies in Swedish industry, (2)
find a model that address these requirements, (3) build a prototype envi-
ronment that implements (parts of) this model, and (4) evaluate the proto-
type.

The results is thus both theoretical and practical in their nature.
Among the ‘theoretical’ results are classification of distributed situations
and their CM characteristics and a definition of the Unified Extensional
Versioning Model. More practical results have come from the development
of the prototype. To make a tool usable it is important that it scales for all
important parameters in the specific domain, in our case number of users,
document size, and distance between developers. To cope with these
demands requires engineering including storage format, algorithms and a
a lot of trade-offs.

Thesis organization 3

1.2 Thesis organization

This theses consists of three parts: Introduction, here we defines the prob-
lem statement and motivation of the thesis together with general descrip-
tions of development environments, distributed development, and
configuration management which are needed as background knowledge.
Part two is about the results. In five chapters our proposed model and the
prototype environment implementing most of this model is described. We
also reason about practical issues such as usability and scalability, and
needed design decisions due to these issues. In the last part, future and
related work, we relate our work to work done by others, conclude, and
discuss open problems and improvements.

Introduction
Chapter 2 ‘Thesis motivation’

We discuss work models and different ways of synchronizing concur-
rent development. The discussion results in a need for better support
of tight collaboration and sharing of files for geographically distributed
development, which is the motivation of this thesis.

Chapter 3 ‘Integrated development environments’
What is the difference between an integrated environment and a set of
tools. Pros and cons of integrated environments are discussed.

Chapter 4 ‘Cases of distributed development’
Distributed development can occur due to several different reasons
which results in similar, but not identical, demands on e.g. the work
model. In this chapter we define four different cases of distributed
development and discuss the CM characteristics for each case.

Chapter 5 ‘Software configuration management’
Defines CM in general - both management and developer view. Also
gives an in depth description of synchronization models (checkout/
checkin, composition, long transaction, and change set) and versioning
and configuration models (intentional and extensional versioning).

Results
Chapter 6 ‘Unified extensional versioning model’

Presents the theoretical result of a model using extensional versioning
both for atomic entities and for configurations.

Chapter 7 ‘The COOP/Orm environment’
Practical result implementing the theoretical model described in
Chapter 6. Presents the prototype environment COOP/Orm from the
user perspective, the user requirements on the tool and the functional-
ity provided. Usability is important.

Chapter 8 ‘The COOP/Orm client-server model’
Chapter 8, 9, and 10 describes the implementation of COOP/Orm, i.e.
meeting the requirements resulting from the desired behavior

4 Introduction

described in Chapter 7. This chapter describes the architecture and
functionality or the client-server protocol and the storage model. Scal-
ability is important (number of developers, number of versions, size of
document).

Chapter 9 ‘The COOP/Orm storage format’
Contains a thorough description of the server storage format and its
implementation. Focus on discussion about scalability, both in terms of
document size and number of versions, but also in terms of time to
access e.g. a specific version.

Chapter 10 ‘The COOP/Orm architecture’
Describes the software architecture at a higher level. For example the
framework solution that makes it possible to add support for new
types of document content.

Future and related work
Chapter 11 ‘Related work’

Research related to this work, especially other similar systems.
Related work is also described last in Chapter 6 and Chapter 7.

Chapter 12 ‘Future work’
Some ideas of what we aim to do in the future.

Contributions and conclusions
Chapter 13 ‘Contributions’

Summarizes the contributions reported in this thesis.

Chapter 14 ‘Conclusions’
Concludes the thesis.

1.3 Publications

Most of the work and results presented in this thesis have already been
published. Below are the main references to such publications:

[ABHM99]U. Asklund, L. Bendix, H.B. Christenssen, and B. Magnusson.
“The Unified Extensional Versioning Model”. In Proceedings of
SCM-9 - Ninth International Symposium on System
Configuration Management, J. Estublier (Ed.), Toulouse,
France, September 1999. LNCS, Springer Verlag

[AM01] U. Asklund and B. Magnusson. “Support for Consistent
Merge”. In Proceedings of SCM-10 - 10th International
Workshop on Software Configuration Management,
A. van der Hoek (ed.), Toronto, Canada, May 2001.

Publications 5

[AM97] U. Asklund and B. Magnusson. “A Case-Study of Configuration
Management with ClearCase in an Industrial Environment”.
In Proceedings from SCM-7 - International Workshop on
Software Configuration Management, R. Conradi (Ed.), Boston,
May 1997, LNCS, Springer Verlag.

[AMP99] U. Asklund, B. Magnusson, and A. Persson. “Experiences:
Distributed Development and Software Configuration
Management”. In Proceedings of SCM-9 - International
Symposium on System Configuration Management,
J. Estublier (Ed.), Toulouse, France, September 1999. LNCS,
Springer Verlag.

[Ask94] U. Asklund. “Identifying Conflicts During Structural Merge”.
In Proceedings of 6th Nordic Workshop on Programming
Environment Research, Magnusson, Hedin, and Minör (Eds).
Lund, Sweden. June 1-3, 1994.

[Ask96] U. Asklund. “Integrated Version Control in the COOP/Orm
Version Server”. In Proceedings of NWPER’96, 7th Nordic
Workshop on Programming Environment Research, Bendix
et. al. (Eds.), Aalborg, May 1996.

[Ask99b] U. Asklund. “Configuration Management for Distributed
Development - Practice and Needs”. Licentiate thesis, Dept. of
Computer Science, Lund University, Sweden. 1999.

[MA95] B. Magnusson and U. Asklund. “Collaborative Editing -
Distributed and replication of shared versioned objects”.
Presented at the Workshop on Mobility and Replication, held
with ECOOP 95, Aarhus, August 1995. Available as: LU-CS-
TR:96-162, Dept. of Computer Science, Lund, Sweden.

[MA96] B. Magnusson and U. Asklund. “Fine Grained Version Control
of Configurations in COOP/Orm”. In Proceedings of the 6th
International Workshop on Software Configuration
Management, I. Sommerville (Ed.), LNCS, Springer Verlag,
Berlin. 1996.

[MAM93] B. Magnusson, U. Asklund, and S. Minör. “Fine-Grained
Revision Control for Collaborative Software Development”. In
Proceedings of ACM SIGSOFT’93 - Symposium on the
Foundations of Software Engineering, Los Angeles, California,
7-10 December 1993.

[MMA] B. Magnusson, S. Minör and U. Asklund. “A Model for Semi-
(a)Synchronous Collaborative Editing”. Manuscript for the
Journal of Computer Supported Collaborative Work.

6 Introduction

Chapter 2 Thesis motivation

The motivation of the work presented in this thesis is to improve the sup-
port for people working together, although geographically distributed. In
particular through tool support. Our goal is to present a model for an inte-
grated environment that meets some of the demands of this situation,
focusing on functionality within the configuration management domain.
We will also present a prototype implementation of such an environment.

Our long-term goal is to support software developers to handle their
documents such as requirements, program source code, and documenta-
tion. This includes support that requires programming language depen-
dent tools. So far, however, we have focused on a language independent
environment managing structured text documents, e.g. source code,
requirements specifications, etc. We have also found that not only the
development/creation of these documents may be distributed but also the
reviewing of them.

Like most ‘problems’ where people are involved there is no simple,
algorithmic, solution. In fact, there is no simple definition of the problem
itself. Instead, often more vague statements such as ‘This does not work’,
‘This is to complicated and therefore never used’, or ‘What is in it for me?
I will not do this tedious work if I can’t see the benefits myself ’ are made.
Therefore much of our work have been engineering work to find trade-offs
and usable functionality. In order to better analyze the problem domain,
we have also made a more ‘theoretical’ work such as classification of situ-
ations of distributed work and work models.

Different roles in the organization have different requirements. From
the user/developer perspective, usability is often the most important.
Usability is discussed in Chapter 6 ‘Unified extensional versioning model’
and Chapter 7 ‘The COOP/Orm environment’. From a more technical
implementation point of view, the dominating characteristics is perfor-
mance and in particular performance when scaling-up some, or all,
parameters in the problem domain, e.g. the number of users, the number
of documents, the size of each document, etc. Even though our prototype
have not yet been tested in large scale, one of the motivations for this the-

8 Thesis motivation

sis is to make it plausible that it scales. This is discussed in Chapter 8
‘The COOP/Orm client-server model’, Chapter 9 ‘The COOP/Orm storage
format’, and Chapter 10 ‘The COOP/Orm architecture’.

In this chapter we give a compact description of the problem statement
and our approach to ‘solve’ the problem. It begins with three important
areas: work models, distributed development, and integrated develop-
ment environments. All three are only briefly discussed and the purpose
is to define and focus the motivation of this thesis. In the following chap-
ters we will, in more detail, describe the requirements and also our pro-
posed model and prototype implementation.

2.1 Work models

When many developers work together concurrently on the same system,
they have to synchronize their work in some way. In practice this is often
done by dividing the work into pieces and assigning each piece to different
developers (or teams of developers making the algorithm recursive). It is
important, though, that these pieces of work can be combined together
again into a complete system. There are (at least) two conceptually differ-
ent ways to make this division, architectural or anatomic (terminology
from Ericsson).

• Architectural means to physically divide the system developed into
separate subsystems/modules, each having an owner. Only this
owner has the right to modify the module himself/herself or tempo-
rarily give this right to another developer.

• Anatomic means to divide the work to be done into work sets, e.g.
on the basis of functionality. This means that a developer is
assigned the task to implement a work set and is allowed to do
changes all over the system in order to complete this task.

When developing a system from scratch the architectural work model is
often used. During the (much longer) maintenance phase, however, this
model most often is too static. A change request, for example to fix a bug,
covering functionality implemented in many modules have to be divided
into several modules, implemented by each module owner, and then com-
bined again. This results in extra overhead and problems to keep the
implementation consistent, i.e. not to build a system with only parts of a
change request implemented. The anatomic model requires that work
sets are ordered and analyzed so that only independent sets are imple-
mented concurrently. This is often part of the change management pro-
cess. Thus, the anatomic model is more used during maintenance.
Figure 1 depicts a source code file structure and two examples of how the
work can be divided, anatomic and architectural.

Another common terminology used for work models defines three pat-
terns of coordination [MM93]. One is turn-taking, where one person at the
time does his/her changes. Another is split-combine where the shared doc-
ument is partitioned and each person does changes in his/her part. When
all are done the updated pieces are combined again (same as ‘architec-

Work models 9

tural’). Yet another model is copy-merge where each person is given a full
copy of the document, does his/her changes, and in the end all changes are
merged together (same as ‘anatomic’).

Although these cooperation models might serve in restricted situations
where few persons are involved, during a short time period and develop-
ing single documents, there are some severe drawbacks with each strat-
egy:

• Turn-taking means that only one person can work at the same
time.

• Split-Combine means that the partitioning has to be fixed over
some period of time.

• Copy-Merge gives a merging situation that can develop into a
nightmare in case there is no strategy for who changes what and no
support for merging.

For these reasons none of the techniques can be directly carried over to
developing software in large teams, with a large number of inter-depen-
dent software documents.

The copy-merge approach does, however, have the advantage of provid-
ing maximal flexibility, allowing all authors to change what they want,
whenever they want. To make copy-merge viable the support for merging
has to be improved.

Even when the primary model is turn-taking there is often a ‘second
model’ supported in case a developer wants to take work temporarily out
from the tool, e.g. during travel. This model is a copy-merge model. Since

Figure 1 The source code files of a product developed at two sites and with two
ways of dividing the responsibility: (1) Architectural: the developers are responsible
for their files/modules or (2) Anatomic: the developers are responsible for their
change requests/function/functionality

Site A Site B

The source code file
structure for a
product developed
at two sites

change
request

Architectural

change
request

Anatomic

10 Thesis motivation

this scenario seems to be more common we claim that the copy-merge
model should be the only model needed.

2.1.1 Combining models
In practice often a combination of models is used. Defining the system to
be developed into a hierarchical structure the split-combine model can be
used on a high level, e.g. by having teams that are responsible for differ-
ent subsystems. On a lower level, e.g. within a subsystem, a module or
even a file, the copy-merge model can be used. Figure 2 depicts such an
example, also showing how some files are synchronized following turn-
taking. An ‘icon’ attached to a node defines the model used for that node
and its children. A new ‘icon’ further down the hierarchy re-defines the
model used for that subtree. Also note that we have to specify how the
ownership/responsibility is divided when defining the split-combine
model.

2.1.2 Object oriented languages
When a new function should be implemented or a bug should be fixed it is
preferable if this could be done without modifying the entire system, but
to make as local changes as possible, not interfering with other changes
made to the system. Developing an object-oriented system is in this
respect somewhat different than developing a procedural system. The two
paradigms organizes the code differently; object orientation keeps all
methods affecting an object/type together in one file, while a procedural
language keeps all implementations of a function (for all different types)
together in one procedure. In an object-oriented language thus adding a
new method, e.g. pretty-print, therefore affects many files, while adding a

Split-combine. Specify the ‘owners/responsible’
for each part below.

Development group
(10 developer)

Copy-merge.

Turn-taking (locking). The same owner(s) as
for the node above, but locking is used below.

GUI group
(3 developers)

Communication group
(7 developers)

BorisRoger

Figure 2 Example of dividing the work mixing the models. The model ‘icon’
defines the model used to synchronize the work in the node and its children. A
new ‘icon’ further down the hierarchy may re-define the model used for that sub
tree.

Ulf, Görel,
Anders

Roger,
Boris

Eva,
Roy

include files
(all)

Work models 11

new class only affects one file (in principal). For a procedural language it
is vice versa.

Figure 3 depicts the development of implementing (or maintaining)
two methods, ‘prettyPrint’ and ‘clone’, in three classes (‘A’, ‘B’, and ‘C’).
Uppermost is Ulf, Boris, and Lars responsible for one class/file each, i.e.
dividing the work according to the architectural model. Below are Ulf and
Boris responsible for the development of prettyPrint and clone respec-
tively, working according to the anatomic model.

2.1.3 Synchronous and asynchronous collaboration
Posner and Baecker [PB92] have made an interview study of how people
are collaborating in writing. In this study, a number of different writing
strategies used in different phases of the authoring of a document are
identified. They conclude that both synchronous and asynchronous strate-
gies are used in different phases of a collaborative writing project and
that a system must support both styles and a smooth transition between
them. An interesting result of the study is that most collaborative writing
projects used the ‘separate writers strategy’, i.e. asynchronous editing,
extensively. If, for instance, two persons are co-authoring a paper, one per-
son may be away for some time (an hour, a day, a week). When resuming
work he/she is not primarily interested in what the other person is doing
right now, but rather what has happened in the document since the last
time.

In our own experience, several of the observations by Posner and
Baecker may apply also for software development. Also Weinberg has
noticed that programming is implicitly an activity performed by many
individual users, as writing a book [Wei71] and that discrepancy between
isolated work and group work is therefore inherent to software develop-
ment. A synchronous style of work is often used in the initial phases of

Figure 3 Example of dividing the work according to the architectural and ana-
tomic models for an object oriented program.

Class A (A.java)

prettyPrint()

clone()

Class B (B.java)

prettyPrint()

clone()

Class C (C.java)

prettyPrint()

clone()

Ulf Boris Lars

Class A (A.java)

prettyPrint()

clone()

Class B (B.java)

prettyPrint()

clone()

Class C (C.java)

prettyPrint()

clone()

Ulf

Boris

Architectural

Anatomic

12 Thesis motivation

development, e.g. brainstorming and initial high level design. For more
detailed design and implementation the work is often split up and the
work is mostly done asynchronously on a separate fragment of the design.
When it comes to integration, testing, and debugging the work style turns
to be more synchronous again. Schümmer [SH01] also states that an envi-
ronment that want to support programmers in their job of programming
should provide modes of collaboration matching the roles and phases
within the software development process and should ease the transition
between them.

Within the CSCW domain a number of collaborative editors have been
developed. The aim of the different systems vary, some are specifically
supporting collaborative authoring, such as PREP [NKCH90], some are
general purpose text editors, such as ShrEdit [MO92], some support col-
laborative sketching or drawing, such as GroupSketch [GB92], and some
provide a framework for integrating existing editors into a collaborative
environment, such as GROUPKIT [GM94]. Furthermore, different sys-
tems are based on different architectures, provide different granularity of
sharing, and use different strategies for distribution. Despite the different
goals and architectures the systems support two main editing styles:
either synchronous or asynchronous editing. Some researchers do, how-
ever, argue that there is a need for flexible support, where users can eas-
ily choose between working asynchronously or synchronously as the
situation demands, and indeed also use intermediate interaction modes. A
collaborative environment should thus support different modes of collabo-
ration and let the user swiftly switch between them. Examples of system
with such ambitions are SEPIA [HW92], SASSE [BNPM93], and COOP/
Orm [MM93].

2.1.4 Collaborative awareness and system overview needed
Another important aspect of development when there are several develop-
ers involved, is how they maintain their orientation and awareness of the
overall development, such as what other developers or groups are doing
and their status (called ‘collaborative awareness’) [DB92]. Part of this ori-
entation is through formal channels, via project managers, meetings and
so on, but a very large part of such information and experience is spread
through informal means, e.g spontaneous meetings. These may occur in
the coffee room, over lunch, in the corridor or in their spare time. Experi-
ence both from the software engineering domain, and from other com-
puter aided distributed applications (‘groupware’) has shown that this
kind of information distribution, which is complicated in a geographically
distributed development situation, is very important [Ask99b, HMFG01].
Groupware plays a large role in ensuring that group members avoid cre-
ating problems for each other and that they understand and solve prob-
lems when they eventually arise. The nature of the work and the distance
between the separate users (developers, project managers, etc.) results in
different demands being made on the CM solution. Developers working at
home in the evening, meet their colleagues the following morning and
therefore need relatively little communication support from the system.
People located in different buildings in the same city may know each
other and may therefore get in touch with each other more easily than

Distributed development 13

people located in different countries. Communications over time zones
make things even more difficult.

It is very important to try and replace this means of information distri-
bution on the introduction of distributed development. Thus, an impor-
tant aspect of collaborative systems is how a user is made aware of
actions performed by other users.

Different approaches for providing collaborative awareness can be
characterized both regarding its resolution in time and space. Synchro-
nous editors using a strict WYSIWIS (What You See Is What I See) repre-
sent one extreme solution where the resolution in time is very small -
each change is immediately reported to all users. The resolution in space
is small as well - each keystroke or even navigation change such as scroll-
ing is considered an individual operation. A more relaxed metaphor
regarding space, the size of operations, can be represented by synchro-
nous editors which allow individual scrolling or creation of private
changes to a part of a document that becomes known to other users in one
chunk. Relaxation in time can be represented by asynchronous collabora-
tive editors which use edit sessions as the resolution in time.

In the GroupDesk system [FPP95] a similar classification of awareness
in two dimensions is presented. Classification in the time domain is called
synchronous/asynchronous, while classification in the space dimension is
called coupled/uncoupled.

At the same time, existing CM systems are weak when it comes to
offering awareness to developers and project managers, and other means
of making such information available must also be considered. One exam-
ple may be the availability of easily accessible information on the status
of a sub-project, which files are being changed/have been changed and by
whom etc. Systems for an exchange of experiences, e.g. FAQ (‘Frequently
Asked Questions’) may also serve such a need.

2.2 Distributed development

Distributed development, i.e. when people work together although geo-
graphically dispersed, implies somewhat different requirements on the
work model and the synchronization of developers than local develop-
ment.

Turn-taking, i.e. locking, is even worse in a distributed setting than
when during local development. It is harder to understand why certain
files are locked and to find out when the lock will be released. It is also
much harder to contact the one holding the lock to, e.g. discuss when it
will be released. A situation that may work locally often gets irritating
and with long delays when distributed. Thus, locking should be avoided.

Split-combine – seems at first to be the logical solution, but drawbacks,
such as too static division especially during maintenance remains. It may
work out in a situation with co-located groups, but hardly for distributed
groups, see Chapter 4 ‘Cases of distributed development’.

Copy-merge. The drawback of potential merge problems may be larger
in a distributed setting due to lower collaborative awareness.

14 Thesis motivation

The result from the case-studies in [Ask99b] is that an architectural
work model all the way down to the level of files does not work in a dis-
tributed environment. It is too hard and time consuming to manage the
more complicated process of change requests that have to be split-and-
combined. The experience is that also locking between sites rarely work
very well. Even in projects where they try to keep groups together at one
site it turns out that people tends to move around over time and it ends
up in the more demanding situation of ‘distributed groups’.

2.3 Integrated development environments

Despite the fact that software systems are developed, documented and
maintained by teams, most development environments give poor support
for people working together. The availability of world-wide networks adds
a dimension of geographical distribution to the picture and makes the
problem even more urgent. Networks are not only used for distribution of
notes and news, but are often used as an essential component in the infra-
structure. To work distributed demands awareness which to some extent
can be provided by common tools like mail, news, www, etc.

From the CSCW (Computer Supported Collaborative Work) commu-
nity specialized editors for collaborative editing has been developed.
Johansen defined the four permutations of same/different place and same/
different time [BGBG97], and several tools have been created, each sup-
porting one or some of these four.

Within software engineering environments there are tools like editors,
compilers, version control tools, build tools, etc., all specialized for its own
purpose. Documents containing different types of data is often edited in
different tools.

The advantage of having specialized tools is that each tool is good at its
purpose. The drawback of using a set of many tools is that the data man-
aged has to be transferred between the tools. It may also be hard to get a
quick overview of what is going on since we have to look into each sepa-
rate tool, and there is no tool having the overall control.

Research to integrate an editor, a compiler, and the run-time system
have been made in Lund [MHM+90]. As a result of this integration, a
need for a more fine-grained versioning was noticed. This thesis focuses
on integrating the editors (both for structure and text) with the version
control system. Our goal is to provide an integrated environment that
makes it possible to better utilize the version information. Traditionally
the versioning tool should work transparently to the editors. The goal has
often been to ‘work as if you are alone’. Our goal is rather ‘work effectively
together, aware of each other’.

The integration also makes it possible to manage heterogeneous docu-
ments in a homogenous way. For example, to mix source code, documenta-
tion, requirements, design documents, test cases, etc. within the same
environment. We have also found that the integration is needed to really
support both asynchronous and synchronous collaboration (different/same
time), especially if we want to smoothly move between these modes
[MM93].

Problem statement 15

2.4 Problem statement

We argue that we have to support the optimistic copy-merge model, i.e.
without locking. When this is decided upon the main motivation of our
work is then to reduce the drawbacks of this model, i.e. all the problems
related to concurrent work and merge. The goal is to reduce these draw-
back so that:

1. not only a few people can work tight together, but also larger groups
can share and modify the same document at the same time,

2. the size of the documents shared can be larger. I.e. we can go from
the split-combine model to copy-merge at a higher level in the prod-
uct structure, e.g. on sub-systems instead of modules,

3. the group working together can be more geographically dispersed
still working effectively, i.e. more sites involved.

More technically, we have to provide solutions especially for system over-
view, group awareness, and merge. Moreover both synchronous and asyn-
chronous concurrent work have to be supported, preferable in an
integrated environment making it easy for the developers to switch
between the different synchronization modes.

16 Thesis motivation

Chapter 3 Integrated
development
environments

A development environment consists of all the tools used to fulfill the
development task. What should be developed, of course, decides what
tools should be used. When software is developed tools such as editors
(e.g. for source code, UML, etc.), compiler, linker, debugger, build tool, ver-
sion tool, diff tool, merge tool, etc. are used.

Within a software development environment the purpose of the SCM
tool is to provide an infrastructure and support for many activities during
a product life cycle. Other tools are available which provide services with
the same purpose, but these are most often focused on one particular
activity in the life cycle. From the users’s point of view it is important that
the use of many different tools does not introduce new complexity into the
entire process and that the information and services must be accessible in
a smooth and uniform way. For this reason integration issues are a very
important factor for the successful and efficient utilization of the tools.

From the users point of view, the word ‘integrated’ typically means:

• Same style of gui for all tools/functionality;
• Automatic update of all ‘views’, also between tools within the envi-

ronment.

To make such an environment possible to work effectively, the tools
within the environment need to communicate with each other. Preferably,
they should share the same common data representation and only send
synchronization messages between each other.

In general there are three possibilities of achieving interoperability
between tools in an environment:

• By obtaining a full integration providing a homogenous system
with one common user interface and automatic update between the
different ‘tools’ making it one environment rather than several
tools. Typically it should be possible to easily move back and forth
between tools modifying different aspects of the same data, or for

18 Integrated development environments

many users working with the same data to move between different
collaboration modes.

• By obtaining a loose integration in which each tool has its own func-
tions, independent of the other, but in which there are mechanisms
for exchanging information and providing services automatically
without additional effort by the users. The main challenge in this
type of integration is to keep data consistent in the entire system.
Several possible implementation solutions exist with different
trade-offs.

• By obtaining no integration, but manual intervention is required
using certain import/export functions. The result is a slow commu-
nication often creating a bottleneck in which there is a great risk of
inconsistencies being introduced between the tools. Also, sometimes
these manual routines are carried out by personal dedicated for this
activity, which adds one more step in the already slow process. It is
therefore important to precisely identify and describe the manual
routines for data updating and to strictly follow these.

3.1 Synchronization points

There are two reasons for using many tools within an environment and
require that these tools communicate: (1) different tools are used during
different phases in the development process, and (2) different tools are
used for different modes of collaboration. How well the different tools
communicate and how well the different functionality provided interplay,
determines the effectiveness of the entire environment.

The complexity of managing tool consistency for all development
phases, depends on the development process which identifies data and
stages in the process in which data is exchanged or copied. For this reason
it is important to identify these stages. The smaller the number of these
points and the lower the frequency of information exchange, the simpler
the model will be. This is especially the case in an iterative development
process. For tools used within an iterative loop, the same switch between
tools and transfer of data, is made many times during a short period of
time.

The use of different collaboration modes does not follow any predefined
process. The need for synchronous collaboration may arise spontaneously,
for example, to fix a bug together with another developer, followed by con-
tinuing the private debugging. It is thus harder (impossible) to define
fixed synchronization points, but the environment must always provide a
smooth transition between the tools.

3.2 Levels of tool communication

Since different tools provide different APIs, new interoperability func-
tions must be built for every new tool introduced, for both the business
and the communication parts. Modern development technologies based on
component-based development [CL02] make use of mechanisms which

Levels of tool communication 19

provide support for many standard functions such as communication
between the components (often designated as middleware), or integration
of components in distributed applications. When using these technologies
(CORBA, COM/DCOM, .NET, JavaBeans, etc.), development efforts can
be significantly reduced, the interoperability functions including only the
business logic while all the other parts required for the operation are
added automatically.

Much of the difference between loosely coupled tools and a tight inte-
grated environment is the level on which the tools communicate with each
other. If a standard protocol is used towards the existing tool APIs, we can
achieve the functionality defined and provided by the protocol and the
APIs of the involved tools. Each tool API is designed and implemented
with a specific use in mind. If, on the other hand, we strive to attain a new
usage, it is often needed to modify the tools and extend their APIs. Modi-
fying the tools means they can not be taken ‘of the shelf ’.

3.2.1 The COOP/Orm approach
In the COOP/Orm project we have focused on integrating document struc-
ture and versioning in order to better facilitate distributed development
and collaborative work. Traditionally the versioning tool returns complete
files to the editors as if they were not under any version control, i.e. the
version tool works transparently to the file system. In this way already
existing editors can be used. In COOP/Orm versions are visible to the
users, using them for collaborative awareness. Technically this means
that we have to also make the editors aware of versions, i.e. we can not
achieve this functionality when using standard editors. Moreover also the
servers should understand and communicate versions (e.g. by themselves
find and retrieve the deltas needed to recreate a specific version rather
than the client tells the server in which versions the deltas are stored).

One of our goals have been to show the benefits of making the struc-
ture and versioning fundamental and understood by the entire environ-
ment. If we succeed, maybe future default APIs will contain such support,
making it possible to use tools out-of-the-box.

Within the CSCW domain several different editors to support collabo-
rative writing have been developed. Many of these support distributed
synchronous collaboration (same time/different place), i.e. each user can
see what the other users are doing right now. This kind of editors are very
useful during some of the phases of development, e.g. during the design or
reviewing of software programs. However, these tools are very often stand
alone tools, seldom integrated in the common development environment.
Our goal has been to also provide, and integrate, this type of functionality
(synchronous collaboration) with ‘normal’ asynchronous collaboration.

Another smaller example is the possibility to control the checkpoint
frequency. Automatic controllable ‘Checkpoints’ rather than user ‘saves’
makes it possible to implement awareness where the receiver of notifica-
tions is in control rather than the sender. E.g. can the server, on commis-
sion of another client, increase the checkpoint frequency to get better
awareness.

Pros and cons with our approach compared to more loosely coupled
tools can be summarized in the following points:

20 Integrated development environments

pros:

• presentation of the evolution of the file (document), i.e. the version
graph, is integrated in the editor;

• management of deltas (and not only full text files) makes it possible
to quickly view different versions and compare them with each
other;

• automatically update markings in the editor, also due to changes
made by another developer (awareness);

• better merge support as a consequence of better delta management.

cons:

• the users can not get the advantage of using existing editors.
• it may be harder to extend the environment with new tools.

Chapter 4 Cases of
distributed
development

Distributed development is the situation arising when developers, or
groups of developers, developing the same software, are geographically
dispersed. This includes anything from different parts of the same town to
different continents in different time zones. Such a situation has several
immediate consequences. There is a risk of becoming dependent on a
slower and less reliable network, and as a consequence having to copy
common files with all the problems this can cause. In addition, geographi-
cal separation results in decreased opportunities for meetings, both for-
mal and informal, e.g. at coffee breaks. This means that the informal
interaction between groups becomes reduced, resulting in less knowledge
of the overall relationship between the sub-projects. It also means that
there is a risk that the connectivity within the group (the team spirit)
may be weakened which complicates the interaction between the groups
when there are problems e.g. with a common interface.

Distributed development puts new demands on the development envi-
ronment as a whole, especially how to manage common data, e.g. files,
how information may be spread between and within groups of developers,
and limit their possibilities to interact.

Why being distributed?
Many companies are for example organized in many branch offices, but
when taking new orders they want to be able to use the total amount of
resources, independent of location. To have many branch offices is in
many respects good. It enables e.g. a closer connection to customers. It
makes it also more easy to find skilled personnel. Sometimes a distributed
company is the result of a merger of companies.

Drawbacks...
Problems that can occur due to the distribution are both technical and
non-technical. As described in previous chapter, examples of non technical
problems are cultural differences, language, two companies may work

22 Cases of distributed development

together in one project, but are competitors in an other, long distances
make physical meetings expensive and time consuming, etc.

Examples of technical problems are: information sharing (many devel-
opers want to view/change the same piece of information at the same
time), need of fast networks, safety/security, etc. These problems are per-
haps most easily demonstrated by the use of a laptop computer. In this
case it is common to use the technique of (often manual) replication of the
file repository. This means that the files that one expects to need are cop-
ied over to the laptop computer. The files are modified and then copied
back. However, if they are modified on both computers they require a sub-
sequent synchronization (i.e. the choice of the latest version of the
changed files). If individual files have been changed on both computers,
they have to be merged. The problem increases with the number of files,
the time between synchronizations, and in a more general case, the num-
ber of copies.

In addition to the new demands on tools and methods of work for the
developers, distributed development also makes new demands on the ver-
tical and horizontal communications within the organization as well as
the project management: direction, follow up, and reporting.

Making the best of it
Some of the problems arising during distributed development can be com-
pensated for by changes in the design of the developed product, improved
work models and/or by employing a special functionality of the CM tool
being used.

• One may try to eliminate the influence of the new situation by act-
ing as though one does not have distributed development. One way
of achieving this is by centralizing the management of updating by
having one person responsible for each file, module or sub-system.
The advantage of this is that all technical problems with the distri-
bution of the software are eliminated. The disadvantage is, how-
ever, that the development may become unwieldy, heavy and slow,
which may lead to the less important, but perhaps simple changes,
not being accomplished. Furthermore, the person who has the prob-
lem is unable to influence which change suggestions are prioritized.
Finally, the competence will be less widespread then if for instance
a group is responsible, this may lead to problems at staff changes.

• One may try to adapt to the new terms and become less dependent
on the aspects that have deteriorated, e.g. make people who are
working from geographically separated locations, less dependent on
each other. By dividing the common product into components that
are as independent as possible, the need for communication
between the developers of the individual components is reduced.
Despite this, it can occur that they sometimes have to work (at least
temporarily) on the same sub-project and then perhaps even with
the same files.

• Another way of reducing the need for data transfer between geo-
graphically separated developers is by providing all development
locations with a complete copy of all the software. Then the develop-

Cases of distributed development 23

ment can be done locally, at least temporarily, which decreases the
problems in the daily work. However this solution results in the
risk of diverging interfaces causing increased difficulties at integra-
tion, and it requires that merges can be done of locally modified cop-
ies.

4.1 Cases of distributed development

One of the results from a study made by the Association of Swedish Engi-
neering Industry [Ask99a] is that distributed development occur due to
different situations which in turn leads to different requirements. In this
chapter we will try to classify these situations using some characteristic
cases. A classification also facilitates a discussion regarding suggestions
of solutions. The different cases that have been identified are:

• Locally (for comparison)
• Distance working
• Outsourcing
• Co-located groups
• Distributed groups

The different cases occur individually or in combinations. For instance
there may be groups which are normally connected but which may occa-
sionally be distributed.

4.1.1 Locally
A fast network is characteristic
of a place of work where every-
one is situated locally, allowing
complete development and test
environments for all developers.
It is fairly easy for the project
groups to communicate and syn-
chronize their work, by formal

meetings as well as by more informal encounters such as at the coffee
table. Informal meetings also create a team spirit, which in turn increases
the probability that the established CM process is observed.

From a CM perspective:

• A common file system.
• Complete development and test environment.
• Synchronization can to a certain degree be achieved through meet-

ings. In particular, problems that arise can be solved through direct
communication.

• Good awareness of what others are doing (group awareness).
• No particular secrecy problems (external networks are virtually

unused).

24 Cases of distributed development

4.1.2 Distance working
This kind of distant work is
brief work being performed else-
where than the usual place of
work. Home working as a com-
plement to the daily work being
the primary example.
When developers work at home
(or elsewhere) on a more regular

basis or for longer periods of time, a situation similar to that for ‘distrib-
uted groups’ arises, see below.

A limited computer utility and a relatively slow means of communica-
tion with the world around (for instance by data modems to the usual
place of work) is characteristic of distance working. Despite this, there is a
desire to be able to start working quickly, as the total working time on
each occasion is short (typically a few hours in the evening), which means
that it must be possible to set up the working environment quickly. As the
daily contacts remain, the possibility of informal communication and
maintaining the team spirit is more or less the same as in the local situa-
tion.

Two common modes of working are:

• Individual files are brought home and worked on off-line. This is a
necessary working mode when a complete environment at home
either takes too long to update at each occasion or cannot be
installed.

• Remote login to the place of work and the home computer is being
used as a terminal.

From a CM perspective:

• Bringing home individual files results in the work being done
locally outside of the control and support of the CM system. The
degree of impairment this can lead to partially depends on which
synchronization model the tool supports, see chapter 4, ‘Synchroni-
zation models’. For instance no support is offered as to the aware-
ness of what others are doing simultaneously. In addition, testing is
made impossible.

• Login at a terminal is similar to the local case. The slower connec-
tion makes the work somewhat heavier going for the developers.
Then there is also a tendency that they may not follow the work
models the way they should (for instance to make a complete test of
all platforms before check-in).

Modem,
CD/Tape,
Laptop computer

Cases of distributed development 25

4.1.3 Outsourcing
Instead of developing every-
thing by yourself or buying
existing components (COTS -
Commercial Off The Shelf) you
may have a third party develop
them for you. This is usually
called outsourcing (or subcon-
tracting) and gives, compared to
COTS, a greater control of the
development of the component,

albeit at a higher price. Outsourcing is based on a close collaboration
between the supplier and the purchaser. Consequently it is often possible
for the developer/supplier to test the component in an environment simi-
lar to the target environment prior to delivery. The purchaser then usu-
ally provides the test environment.

The purchaser is ultimately responsible for the product and possible
error/change management can be reflected in changed demands on the
component towards the supplier. As with any order, it must be clear what
should be delivered, but in this case it is further complicated by the fact
that the demands as well as the environment may change.

From a CM perspective:

• The purchaser must be able to integrate new versions of the compo-
nent into the product, which itself may have developed since the
latest release of the component.

• The supplier should be able to manage the updating of the develop-
ment and test environments.

• The purchaser and the supplier do not necessarily have the same
CM tools, which might make the updating (in both directions) diffi-
cult.

• The build tools must be consistent between the purchaser and sup-
plier.

• With changed demands, the connection between the version of the
demand and delivery must be clear.

4.1.4 Co-located groups
Developers at different affiliated
companies usually belong to
local groups or projects. The
division of the work has already
been determined at the struc-
turing of the project/product to
prevent too much dependency
between the different groups.
The product is divided up into
sub-products, which can be

developed by different project groups. The division makes it possible to do
most of the development locally within the groups without the require-
ment for much communication with other groups. Within the group and

copying of the test
environment

delivery of com-
ponent

possible updating
of the test environ-
ment

supplierpurchaser

26 Cases of distributed development

between groups in the same place, the situation is the same as with local
development. Groups in different places normally only have access to the
latest stable versions produced by the other groups. Due to the geographi-
cal distance, potential problems will inevitably be more difficult to solve.
Therefore, updating and distribution between the groups requires more
effort and administration, these may be considered as internal deliveries
and therefore tend to come more infrequently. Cooperation between the
groups may be facilitated if the work is planned in phases of which every-
one is aware. Conversely the redistribution or division of the work is more
difficult to perform afterwards.

From a CM perspective:

• The files are stored in different file systems, but (ideally) in the
same CM system. Large companies sometimes have different CM
systems in their different affiliated companies.

• When the locations are permanent, each local group should be able
to work within a complete development environment and with the
possibility of testing.

• The groups deliver (release) sub-products between them rather
than develop together.

• There are often few or no unplanned daily contacts between the
groups. The contact is limited to e.g. weekly meetings, which may
be actual physical meetings or telephone/video conferences.

• It is important to maintain the knowledge of the development sta-
tus between the groups.

• Change management of common components, such as interfaces, is
of particular importance.

4.1.5 Distributed groups
Distributed groups with mem-
bers at different locations
means that the members of the
group are also distributed, i.e.
that the people working in the
same project, perhaps even in
the same files, are geographi-
cally dispersed. The possibility
of daily communication by for-
mal as well as informal meet-

ings is lost even within the group.
Projects working towards the same product usually use some common

libraries or components. Changes in these are unusual (simply because
they are common and changes are difficult to manage), but sometimes
inevitable. If group members at different places want to make changes at
the same time they face a situation similar to that for the updating of
interfaces where there are ‘connected groups’ but in this case the prob-
lems apply to all files.

The situation with distributed groups can usually be avoided, by con-
sidering separate individuals as very small connected groups for example.
Despite these efforts, there are cases when the groups need to work more

Conclusions 27

closely together although they are still distributed. The obvious example
is when people included in one group, have to travel to other groups for
various reasons. Of course there is a desire to be able to continue working
with the usual project, this will then be done as a distributed group. A
similar situation arises when staff are moved to new projects but often
need to be consulted on the old project. People with special competence
are often included in several groups, which can be at different locations.

From a CM perspective:

• It is important that the members of the group receive information
about what the others in the group are doing, how the project is
developing, its status, which changes have been done and by whom
etc.

• It is important to support the division of files and concurrent,
simultaneous changes.

• Solutions using ‘locking’ and exclusive access to files work poorly as
it is difficult to solve situations where group members, located at
different sites, must wait for each other.

4.2 Conclusions

The situation of local development is of course preferable from a CM point
of view, as it is easier to manage than the cases of distributed develop-
ment. However, there are several other good reasons for the use of the dif-
ferent situations outlined above.

The situation with connected groups usually results in the work being
planned in a manner such that the dependency between groups in differ-
ent places is minimized.

The situation with distributed groups is usually not desirable, but
rather the planning of the work, the complete system construction, the
division into components and so on aims to avoid this. However, it can be
anticipated that such a situation arises as a consequence of the break up
of connected groups.

An additional example is in using remote places of work, i.e. a place of
work situated closer to home than the ‘real’ place of work, which is there-
fore used most of the week. The situation is a combination of distance
working and distributed groups. Typically, formal meetings work, but
informal ones, either partially or completely, fail to occur.

Nevertheless, one of the results from the study made by the Associa-
tion of Swedish Engineering Industry [Ask99a] is that distributed devel-
opment occurs more and more, and that also the most demanding
situation, ‘distributed groups’, occurs more and more. The study also
shows that the client-server architecture needed is depending on the situ-
ation, and that the most demanding architecture is not really supported
by the commercial tools of today.

Another reflection is that during collaborative writing there is often
less people involved than during software development. However, people
involved in collaborative writing are often all within ‘the same group’ and,

28 Cases of distributed development

if distributed, the requirements are those of the most demanding situa-
tion ‘distributed groups’.

Chapter 5 Software
configuration
management

Software Configuration Management (SCM) is a process supporting the
development, release, and maintenance of a software product, i.e. during
its entire life cycle. The process aims at coordinating developers towards a
mutual goal.

SCM can be managed entirely by manual routines, but in practice tools
are almost always used, especially to support daily routines of the devel-
opers. Central problems, often supported by tools, are the history of devel-
opment and management of documents and programs over time as well as
the management of branches, and the support of merge in particular dur-
ing concurrent development.

SCM was originally developed under the more or less explicit assump-
tion that the people as well as the files are situated at the same geograph-
ical location. This applies to the tools that have been developed as well as
to the work processes used. The general opinion on the functionality asso-
ciated with SCM has been formed from this assumption. Most tasks, how-
ever, are often complicated by the fact that the developers are
geographically dispersed.

Lately more effort has been put to also support distributed develop-
ment, both by improved processes and by better tools. In this chapter we
will first give a short introduction to SCM in general, annotated with
additional comments about the influence of distribution. Both a manage-
ment view (processes) and a development view (tool support) are
described.

The second part of this chapter is more in depth. Different models are
described and discussed; synchronization of concurrent changes from dif-
ferent developers, versioning, and configuration.

30 Software configuration management

5.1 Definitions - two target groups

One definition of CM is:

CM is the controlled way to manage the development and modifica-
tions of systems and products, during their entire life cycle.

This is, however, only one of many definitions. Appleton have collected a
lot of them on his home page [App02]. One reason for the many existing
definitions is that CM has two target groups with rather different needs:
management and developers. The need for CM was first noticed by the
managers who wanted more control and measurements over the develop-
ment and in particular over the releases of the products. This need was
met by manual routines often managed by a CM librarian. Today all
developers are involved in CM, which is highly automated by sophisti-
cated tools meeting not only the managers needs, but allow developers to
be more effective and more aware of what is going on within a project.

From a management perspective, CM directs and controls the develop-
ment of a product by the identification of the product components and
control of their continuous changes. The goal is to document the composi-
tion and status of a defined product and its components, as well as to pub-
lish this such that the correct working basis is being used and that the
right product composition is being made. One example of a definition sup-
porting this discipline is ISO 10 007 [ISO95] meaning that the major goal
within CM is ‘to document and provide full visibility of the product’s
present configuration and on the status of achievement of its physical and
functional requirements’.

From a developer perspective (tool support), CM maintains the prod-
ucts current components, stores their history, offers a stable development
environment and coordinates simultaneous changes in the product. CM
includes both the product (configuration) and the working mode (meth-
ods) and the goal is to make a group of developers as efficient as possible
in their common work with the product. From the developer’s point of
view, much of this work may be considerably facilitated by the use of suit-
able tools in the daily work. The definition by Babich [Bab86] stresses the
fact that it is often a group of developers that shall together develop and
support a system: ‘Configuration management is the art of identifying,
organizing, and controlling modifications to the software being built by a
programming team’.

5.2 Strategies/working modes

A fundamental aspect for the design of CM is which development strategy
is being chosen when modifications of a system are to be made. The strat-
egy must take into account two basically contradictory desires. On one
hand one wants to bring about the early integration of changes such that
potential problems are discovered as quickly as possible. On the other
hand one wishes to give the developers a stable environment to work in,
such that they will not be unnecessarily disturbed in their work by the

Strategies/working modes 31

occasional faults made by others. Strategies emphasizing the first desire
may be considered as optimistic - the integration problems may not be
that great, and strategies emphasizing the second may be considered con-
servative - a great deal of integration work is required, which is compli-
cated so it is done as seldom as possible.

An example of an optimistic development strategy is ‘Daily build’
where all of the day’s changes are integrated at the end of that day. The
developer integrating last will have to deal with the problems. An exam-
ple of a conservative strategy is ‘Big-bang integration’ which tends to be
done late, close to the release, and then involves all of the developers over
a rather long and intense period of time.

A related aspect is the strategy for how to allow concurrent working. A
previously common conservative strategy is not to allow concurrent
changes in the same files (or even sub-systems). An optimistic strategy is
to allow such changes (more or less planned for) and to accept that a later
integration with a merge of the changes may require some work.

We may also talk about the update strategy, i.e. (a) how one makes
changes available to others, publishes them, and (b) who ensures that the
changes are actually being used, subscribed to. An optimistic update
strategy is to have all changes that are published, immediately being
used by others (included in the next build). This means that all integra-
tion problems have to be solved immediately (although one tries to avoid
these problems by an extensive process of code inspection and testing
before publication). A conservative update strategy means that published
changes do not immediately take effect but the one subscribing to the
changes can control when this will happen. In practice this means later
and typically when the subscriber is ready to publish his/her changes.

The attitude to concurrent work in the same files/sub-systems has, in
several cases developed from a conservative to an increasingly optimistic
attitude as tools for version control and merging have come in general
use. In distributed development, the possibility of doing concurrent devel-
opment at least to some extent, is more or less a prerequisite.

An optimistic update strategy can be combined with a conservative
development strategy. When in a big-bang integration, after a thorough
analysis, one thinks that one has characterized all of the integration prob-
lems and defined an order in which the changes should be integrated, one
wants to discover immediately if additional and unexpected problems
arise.

Conversely, a conservative update strategy may imply an optimistic
development strategy. For instance, in ‘daily build’, one integrates
towards a common line of development. This and other incremental devel-
opment strategies are optimistic as they frequently use the integration
phase. In daily build the changes will not affect the other developers until
they start their own integration. It thus uses a conservative update strat-
egy.

Irrespective of which strategy is best suited to any given situation, it
will always affect the development model used, make demands on the
tools used and of course also make demands on how the CM work is struc-
tured. For instance, an optimistic update strategy may result in the model
including extensive quality assurance e.g. by code inspection and tests

32 Software configuration management

prior to publication as well as that the CM work, e.g. documentation of
changes, is planned such that tracking the changes and system backup
are facilitated.

5.3 CM from a management perspective

CM is a broad discipline covering the entire development process, both in
time (the entire lifetime of the product) and in extent (product and pro-
cess). In this section we take a management perspective and focus on
what CM means from this point of view. It is not without reason, that CM
is already a key area for level 2 to achieve repeatability according to the
known CMM model [SEI95].

5.3.1 Areas of responsibility
All CM standards [ANSI98, ISO95, MIL92, SEI00, ISO9000] and most
CM books defines CM as consisting of four activities, or areas of responsi-
bility. These are (extracted from the ISO 10 007 standard [ISO95]):

• Configuration Identification
Activities comprising determination of the product structure, selec-
tion of configuration items, documenting the configuration item’s
physical and functional characteristics including interfaces and
subsequent changes, and allocating identification characters or
numbers to the configuration items and their documents.

• Configuration Control
Activities comprising the control of changes to a configuration item
after formal establishment of its configuration documents.
Control includes evaluation, coordination, approval or disapproval,
and implementation of changes. Implementation of changes includes
engineering changes and deviations, and waivers with impact on the
configuration.

• Configuration Status Accounting
Formalized recording and reporting of the established configuration
documents, the status of proposed changes and the status of the
implementation of approved changes.
Status accounting should provide the information on all configura-
tions and all deviations from the specified basic configurations. In
this way the tracking of changes compared to the basic configuration
is made possible.

• Configuration Audit
Examination to determine whether a configuration item conforms to
its configuration documents.
Functional configuration audit: a formal evaluation to verify that a
configuration item has achieved the performance characteristics and
functions defined in its configuration document.
Physical configuration audit: a formal evaluation to verify the con-

CM from a management perspective 33

formity between the actual produced configuration item and the con-
figuration according to the configuration documents.

ISO95 also describes how to document and establish the work process in a
special CM plan: A configuration management plan (CMP) exists for
application within the organization, for projects or for contractual reasons.

A CMP provides for each project the CM procedures that are to be used,
and states who will undertake these and when. In a multilevel contract sit-
uation, the CMP of the lead contractor will usually be the main plan. Any
subcontractors should prepare their own plan, which may be published as
a stand-alone document or be included with that of the lead contractor.
The customer should also prepare a CMP that describes the customer
involvement in the lead contractor’s CM activities. It is essential that all
such plans be compatible and that they describe a CM system that, will
provide a basis for the practice of CM during later project phases.

As seen by these definitions, the purpose of CM is to organize the work
at the software development level, i.e. the software development process,
as well as on the product level, i.e. at delivery (external or internal). The
purpose of the CM plan is to make the routines clear and known and of
course adjusted such that they are easy to work by. The effects of geo-
graphical separation are already included in these definitions, for exam-
ple in the discussion of supplier and purchaser in the CM plan, however,
regarding software development, the four points are written without such
considerations. This does not prevent the formulation of a concrete CM
plan being considerably affected by the fact that the work is to be carried
out in a distributed environment.

• Configuration identification – In distributed development, it is even
more important to create a component structure enabling as inde-
pendent development of the components as possible, than in an
entirely local development.

• Configuration control – In this paragraph change management and
who approves of changes is discussed. Should this function also be
distributed or is it best when managed centrally? How does one
manage changes affecting the development at several sites? How
and who prioritizes which changes should be implemented and in
which order?

• Configuration status accounting – Is there a risk of loosing the com-
plete picture if the follow up is only done locally? Who can make
decisions regarding the reprioritization of tasks carried out at dif-
ferent places? How does one get a complete picture of the status - is
this the same thing as the sum of the parts, or does one then miss
something essential?

• Configuration audit – In distributed development, one can largely
consider the completion of components as deliveries, and in man-
agement terms, compare distributed groups to sub-contractors.
Then perhaps deliveries and therefore audits will occur more often.
If so, does that now imply that there are too much ‘overhead’ and
how does one avoid all the integration work being done by the pur-
chaser, i.e. centrally?

34 Software configuration management

Thus CM from a management perspective is affected in several aspects by
the fact that the work is done in a distributed manner and that the mode
of work and the development process used, will in many cases probably
have to be revised. Development is often stepwise and for a first adapta-
tion, one may use the experience one has from the handling of subcontrac-
tors. As the distributed development becomes a greater and more natural
part of the activity, and as one gets more experience, the CM handling can
gradually be adjusted.

5.4 CM from a developmental perspective - tool support

We have described the realization of a development strategy in a plan for
the management and documentation for the development and changes of
a system and a procedure, an order, for how and when changes can be
implemented and integrated. From the developer’s point of view, much of
this work may be considerably facilitated by the use of suitable tools in
their daily work.

The CM-related functionality one may wish for is extensive and does
not diminish, therefore we also consider the problems in connection with
distributed development. We mainly focus on the tool aspects that we
regard to be most relevant in this context. These are as follows:

• Version control – makes it possible to store different versions and
variants of a document and to subsequently be able to retrieve and
compare them.

• Configurations/Selections – functionality to create or select, associ-
ated versions (or branches) of different documents.

• Concurrency control – manages the simultaneous access by several
users, i.e. concurrent development, either by preventing it or by
supporting it.

• Build management – keeping generated files up to date, for
instance during compiling and linking, preferably without generat-
ing anything unnecessarily. In a distributed development situation,
it is possible that the build result is divided, but in many cases it is
also likely that it is maintained where it is required.

• Release management – identification and organization of all deliv-
erables incorporated in a product release.

• Workspace management – provides a sandbox in which it is possi-
ble to work in isolation, still within the control of the SCM tool.

• Change management – is about both the process of whether or not a
change request should be implemented and keeping track of all the
change requests and their implementation.

These aspects are expanded on in further detail below. However, firstly we
will briefly discuss other CM-related functionality, which may also be rel-
evant for tool support and where distributed development may play a role,
but which will not be discussed further here. Some of the aspects involve a
terminology, which is often referred to, and is therefore introduced here:

CM from a developmental perspective - tool support 35

• Reporting, status – the reporting of a current status with lists of
which files have been changed during a certain time period, who
made the changes, differences between products etc. These are
important functions particularly in the support of the overall view,
as seen by the project management. They are probably even more
important for distributed development, but despite this we do not
regard them as crucial when examining the models and tools.

• Process support – tools that help the developer follow the develop-
ment model and perform the actions prescribed by it and the CM
plan. The value of such automated tools may be even greater in dis-
tributed development if the tasks can be moved between different
locations.

• PDM - Product Data Management – the management of the prod-
uct structure including components, software and documentation.
PDM, in principle, does not manage software because the support
systems lack the functionality to build for example. This is a whole
area in itself and is not dealt with any further in this thesis. A com-
parison of SCM and PDM can be found in [ACH+01].

• Accessibility Control (Secrecy) – preventing inappropriate access to
information without complicating normal work. This is a highly rel-
evant problem in a distributed development situation.

5.4.1 Version control
Version management is central to SCM, and is the core functionality in
many SCM tools. A lot of developers also, falsely, believe that version con-
trol is equal to SCM. Even though it is important SCM is more than ver-
sioning as explained in the other sections.

An element of software or hardware placed under version control is
designated as a configuration item (ci). The most common example of a
configuration item is a source code file, but executables, products, and doc-
uments are also configuration items. Also a group of ci’s can be defined as
a ci, i.e. the group is version controlled itself. The possibility to store, rec-
reate and register the historical development of configuration items is a
fundamental characteristic of a SCM system. Every stable issue of a file’s
content is termed a version. The most important property of a version is
its immutability, i.e. when a version has been frozen its content can never
be modified. Instead new versions have to be created.

Versions of a file may be organized in a number of different ways.
When organized in a sequence they are often called revisions. They may
also be organized as parallel development lines called branches. Branches
can be merged into a new version, which then has two or more predeces-
sors, see Figure 4.

Revisions are usually deliberately created by a developer, e.g. when a
task is completed. In addition, many editors maintain one or several
micro-revisions of a file to facilitate its recovery following unsuccessful
editing. These ‘revisions’ are not managed by the SCM tool.

Branches are created for several reasons. The primary ones being per-
manent branches, these adjust the file according to diverging demands for
instance different operating or window systems, and temporary branches,
to permit parallel (concurrent) work. In the latter case, the branches are

36 Software configuration management

merged when the reasons for the concurrent work disappear. Usually, a
branch consists of a series of revisions and additional branches can be cre-
ated from the original branches etc. Branches are created for a reason and
are therefore not considered to be equal but to play different roles, for
example, as the main line in the development process or as a branch for
the implementation of a change, a bug-fix. To create strategies for creat-
ing and merging branches is often an important task for a CM manager.

A tool for version control can internally identify revisions, usually uti-
lizing a numbering technique in several stages that may be user friendly
to a greater or lesser degree. In addition, the user themselves can usually
give the revision one (or several) optional names in the form of a string,
often called a ‘tag’ or a ‘label’. The tool can return a version identified by
such a string. This facility (‘tagging’) can be used to realize a simple selec-
tion mechanism.

To emphasize on the representation of the versions and variants as
described above is often called state-based versioning. The alternative,
change-based versioning, instead focuses on the changes made between
the versions, more described in Section 5.5.4, ‘Change set’.

Variants
To manage variants is a very hard, and not entirely solved, problem. A
common misunderstanding is to draw a parallel between a variant and a
branch, but there is a distinction. When whole products or configurations
are adjusted according to diverging demands, this is managed with vari-
ants. For instance, different variants of a product may be developed for
different operating systems or with different customer adaptations. The
creation and maintenance of these variants can be done in, at least, four
ways:

• with permanent branches of the included files. For a variant, file
versions are primarily selected from the permanent branch created

1 2 3 4 5

6

7

9 10 11

Figure 4 Basic version control. The versions (1,2,3,4,5) are revisions in the same
branch (‘Main’). Version 2 has been named "Release 2.3", whereas version 5 has
been named ‘Release 2.4’. ‘Bug-fix 1 and 2’ are temporary branches (with one and
two revisions respectively) which have been merged back to ‘Main’. The example
also illustrates a permanent branch with three revisions (9,10,11).

Revisions

Temporary
branches

Permanent
branches

Bug-fix 1

Main

Bug-fix 2

Macintosh-branch

Merge

Label
Branch name: Release 2.4

8

Release 2.3

CM from a developmental perspective - tool support 37

for the purpose. Secondarily, a file version from a variant indepen-
dent branch, e.g. Main, is selected.

• with conditional compilation (compiling directives). This means
that all variants are managed in the same version of the file and
are therefore easier to keep together. However the variant manage-
ment will not be visible at the CM level.

• with installation descriptions clarifying which functionality should
be included in a certain variant. Variant dependent functionality
are implemented in different files, one for each variant.

• run-time check. A dipswitch or an attribute in flash memory is
checked during run-time.

Thus, to create branches is only one way to implement variants. The most
important is not which implementation technique to use, but to manage
the many variants resulting from the combinatorical explosion of several
optional parameters. Read more about variants in Mahlers article in
[Tic94].

5.4.2 Configurations/Selections
As shown above, there are often a great number of file versions, and
which one should be used in a given situation is not always obvious. The
situation is further complicated by the fact that a system often consists of
a large number of files such that the possible number of combinations gets
enormous. In a development situation one usually wishes to use the latest
revision of a file in the relevant variant. For other files, one typically
wants an older, stable version, for instance the one that is included in the
latest release, or the most recently published stable version as developed
by other groups. For files developed within ones own group there is a
great need for flexibility, such that it is possible to control how close one
wants to be to the others development. Several change requests require
the modification of more than one file. In all situations, it is desirable to
ensure that there is a consistent selection and configuration, in terms of
the inclusion of versions with connected modifications.

A useful technique for the specification of a configuration supported by
several systems, is to offer a rule-based selection mechanism. Typical
examples of rules that one would like to be able to specify are:

• the latest revision in my own branch (for files that I myself /the
group work with),

• the latest revision in a named temporary branch (for files that other
groups work with),

• the latest revision in a named permanent branch (for files that dif-
fer depending on the product),

• fixed, named, version, e.g. the latest release (for other sub-systems).

A system being built using a rule specifying the ‘latest’ is called a par-
tially bound (sometimes ‘generic’) configuration, as the exact versions
that are included, will vary in time. A system being built without such a
rule is called a bound configuration and is particularly suitable for deliv-
eries, as the versions of all files included are fixed and therefore it can be

38 Software configuration management

guaranteed that the system can be recreated. The difference is also con-
nected with the discussion on strategies above. Rules giving partially
bound configurations, permit an optimistic update strategy as a newly
made revision in the corresponding branch takes immediate effect (at the
next build) without the person building the system having made any
changes.

A certain bound configuration can form a baseline, i.e. are a basis for
further development with formal change management, or a release, i.e. is
delivered to an internal or external customer.

In the same way that the development of individual files can be consid-
ered to be a version history, so can a corresponding development of config-
urations. As an example, the user/customer sees the development of a
system in large steps, namely the configurations, releases, that are dis-
tributed. Developers and project managers see many more stages in the
development of the system and also the division into sub-systems and
configurations, with their own version histories. Therefore the perspective
where a system and sub-system are regarded as the development of con-
figurations in bound configurations may be useful at several levels.

The facility of naming versions (‘tagging’) can be used to manage the
selection of bound configurations in that all files are tagged with the same
name, e.g. ‘Release 2.3’. Relations between such configurations, for
instance that ‘Release 2.3’ is based on ‘Release 2.2’, is rarely supported by
the tool but have to be managed in a different manner, for instance in a
release document.

Consistent naming may also be used to represent logical changes, i.e.
changes arising from a change request and result in the modification of
several files.

5.4.3 Concurrency control
One major advantage of using a SCM system is that it enables teams to
work in parallel, which is good for many reasons. It can be developers
working concurrently on the same files fixing different bugs, or it can be a
developer working on the latest release while another is fixing a bug in an
old release. It also means that a test team can test the latest stable ver-
sion at the same time as the development team work on the latest (unsta-
ble) versions. The SCM system enables all these situations by providing:
(1) selection of versions building specific configurations for different
needs, and (2) a model for synchronization of concurrent changes, e.g. by
locking the files edited or by always allowing changes to be made but
instead detect conflicts at check-in and then merge (often called optimistic
check-out).

Distributed development
As described earlier it is sometimes the case that developers are geo-
graphically dispersed, although working on the same system, a situation
we call distributed development or remote development. To better support
this situation many SCM tools provide replicated repositories. In most of
the tools supporting replication there is no global master repository, but
all replicas are copies of the same repository automatically kept synchro-
nized. When one replica is modified by clients at that site these updates

CM from a developmental perspective - tool support 39

are also sent to the other replicas (in batches in a predefined frequency).
I.e. when data is replicated between different servers for the first time all
data in the repository has to be sent/copied. Data sizes could be as large
as several GB. Next time synchronization/replication is done, only update
packages are sent with a typical size of 4-5 MB.

The implementation must be so that no conflicts can occur and the syn-
chronization always can be made totally automatically. In ClearCase
[Rational], for example, there is a site ownership on each branch. Only the
site holding the ownership can create versions on that branch. In this way
it is always possible to send new versions created on a branch and ‘install’
them on the other sites without any conflict. Versions on branches not
owned can still be viewed and used to merge from to a branch owned by
the site.

5.4.4 Build management
Build management supports the user by collecting source code for a par-
ticular release and then using build tools, such as Make to automatically
create configurations. Make describes the dependencies between source
code files at build-time and ensures that the dependent source code is
built in the correct order.

Since building large systems may take days, and an inefficient build
process can waste hours of developer time, it is important to reuse as
much as possible of components not changed since last build. This is par-
ticularly important during test and integration, when you need to build
the whole system to test a small change. An intelligent build process can
reduce build time dramatically by re-using partially built items from pre-
vious builds.

Many SCM tools have further developed the ideas from Make [Fel79].
The build procedure is automatically created by the tool and often stored
in a ‘project’ file managed by the development environment.

5.4.5 Release management
The identification and organization of all deliverables (documents, execut-
ables, libraries, etc.) incorporated in a product release is designated
release management. Release support makes it possible to track which
users have which versions of which components and, therefore, to be sure
which of those will be affected by a particular change.

It is possible with appropriate release management to create installa-
tion kits automatically to ease the task of the build manager. The build
manager is responsible for providing the packed product with the correct
configuration and features. Products such as Windows installer
[Microsoft] and Install shield can be used to create installation kits.
Hoek et al [HHHW97, HW02] describes a prototype, designated Software
Release Manager (SRM), which supports both developers and users in the
software release management process. SRM has the notion of components
and helps in assembling them into systems. Dependencies are explicitly
recorded so that users can understand and investigate them.

40 Software configuration management

5.4.6 Workspace management
Introducing SCM in an organization is cumbersome without effective sup-
port from tools. Changing an existing culture requires massive education,
support and, above all, motivation. To motivate developers to use all the
tools and methods available with SCM, support for integrated tools in the
development environment is needed. Workspace management makes it
possible for developers to work transparent with the configuration man-
agement. A workspace works as a sandbox in which they can work in iso-
lation, still within the control of the SCM tool. Versions of files are
checked-out and put in the workspace, still with a mapping between the
versioned objects in the repository and the user files and directories in the
workspace.

Not only files modified are checked-out to the workspace. Often all files
needed to build and test the product, or part of the product, are checked-
out (possibly, some of them read only). Thus the workspace also makes it
possible to maintain a certain degree of quality on the files checked in to
the common repository, e.g. that all files changes due to the same change
request actually works together.

When several developers are working concurrently in their private
workspaces, control is needed between the different copies of the same
object as described in 5.5, ‘Synchronization models’.

Some tools also support cooperative versioning as described in
[EFM98]. In short, this means that local versioning within the workspace
is provided. When a file is check-in to the repository again, only the latest
local version is check-in. The other, intermediate, versions are removed.

An example of integrated features is when the developer ‘logs-in’ to a
project environment in which project structures and data repositories are
already prepared for the developer (e.g. by the CM group). The developer
then enters a transparent environment in which the development is done
with configuration management handled behind the scenes. This
approach is supported in such major software configuration management
tools available on the market today as Clear Case and Continuus [Ratio-
nal] [Telelogic].

5.4.7 Change management
The reasons for changes are multiple and complex. Changes can originate
from many different sources. Change management handles all changes in
a system. The reason for a change can be an error, improvement of the
component or added functionality. Change management is often sup-
ported by separate tools integrated to the main SCM tool. Examples of
such tools are PVCS tracker [Merant], Visual Intercept [Elsitech] and
Clear Quest [Rational].

Change management has two main goals to achieve: (1) provide a pro-
cess in which change requests are prioritized and decisions to implement
or reject them are made, and (2) to make it possible to list all active and
implemented requests and to track all the changes really made to imple-
ment them.

CM from a developmental perspective - tool support 41

Change management process
When a change is initiated, a change request (CR) is created to track the
change until it is resolved and closed. Figure 5 depicts how a change pro-
posal creates a change request as defined in [ISO95]. The configuration
control board (CCB) analyses the change request and decides which
action is to be taken. If the change is approved, the change request is filed
to the developer responsible for implementing the change. When the
developer has performed the change its status becomes ‘implemented’ and
a test is performed. The CCB also decides which changes are to be
included when a new release is to be built, and the customer receives a
patch including documentation of all the changes made. The latter is also
part of release management.

Traceability
Change management includes tools and processes which support the
organization and track the changes from the origin to the actual source
code [Crn97]. For each CR it should be possible to see which versions of
the modified files were created due to that request. The other way around,
it should also be possible to answer the question, ‘for what reason (which
CR) is this version of this file created’.

Various tools are used to collect data during the process of tracking a
change request. Change management data can be used to provide valu-
able metrics about the progress of project execution [CLL00]. From this
data it can be seen which changes have been introduced between two
releases. It is also possible to check the response time between the initia-
tion of the change request and its implementation and acceptance.

Figure 5 An example of a change request process

Document

CCB

Verify

Implement

Approve

Disapprove

Change
proposal

Evaluate

42 Software configuration management

5.5 Synchronization models

As an important aid for the developers, all CM tools offer some kind of
support for the synchronization of simultaneous, concurrent changes from
different users. Depending on the tool, this support is given in different
ways according to different synchronization models (They were presented
as CM models by Feiler in [Fei91]). In this section we will shortly describe
each model and comment upon how they relate to the strategies described
earlier and distributed development. The models are:

• Checkout/checkin. Concurrent development by temporary branches
of individual files/objects.

• Composition model. Configurations are represented by selection
rules. Developers work concurrently with different selection rules
and files in their own working area.

• Long transactions. A system/configuration is developed as a series
of versions, which may include changes to many files in the configu-
ration. The coordination is achieved when variants of the configura-
tions (concurrently developed) are integrated (merged), this can
mean that several included files have to be merged in turn.

• Change set model. Keeps the configuration management picture
focused on logical changes rather than on files or configurations.

Most tools support one or two of these models, usually checkout/checkin
plus one of the more configuration based models. On the selection of a
tool, it is important to select one supporting the update strategy being
used. For a developer to obtain full support from the tool, it is important
to understand and utilize the synchronization model supported by the
tool, otherwise the tool could easily be regarded as an obstacle rather
than a support.

5.5.1 Checkout/checkin
The first generation of tools, for instance SCCS [Roe75] and RCS [Tic85]
were entirely designed for use with a local file system and focused on indi-
vidual files. They have been used extensively together with build tools
such as make [Fel79] either directly or indirectly via other tools that have
been built on top of them. The model supported by them is checkout/
checkin, where individual files are stored in a compact form on a version
control basis, in a small database, a repository. Files are not read or
changed directly in the repository without being checked out first. Check-
out means that the file is copied into the developers working directory and
if write access is required, the file is ‘locked’ in the repository. Locking pre-
vents other developers from checking out that particular file (or more spe-
cifically that branch, see below) in write mode. When the file is checked in,
a new revision of the file is created in the repository and the lock is
released. In this way, each file in the repository will get its own version
history with a new version for each checkout/checkin.

These tools support ‘tagging’, i.e. the technique where named versions
and bound configurations can be represented by the sequential naming of
all files involved. Figure 6 illustrates the users local development environ-

Synchronization models 43

ment with checked out files, editor and generation tools as well as the
repository protocol. It should be appreciated that in the repository, there
is a bound configuration, ‘r1’, from which all files have a version marked
with this name.

The files that a developer does not need to modify but only read/com-
pile, can be managed in two ways. The developer can copy them from the
repository and save the copy, in this case a conservative update strategy is
obtained. If subsequent revisions of these files are added, they will not
affect the developers system until he again decides to retrieve files from
the repository. Alternatively, they may be read from the repository each
time they are required, in which case, other developers changes are imple-
mented as soon as they have been checked in, in this case an optimistic
update strategy is obtained.

Comments
The advantages of the checkout/checkin model are that it is easy to under-
stand and due to its simplicity, is also included as a part of several other
models. The developers can work with their tools and directories as usual
and consider CM as a repository function.

However the checkout/checkin model is very simple and has a number
of drawbacks that the newer models try to solve with more supplementary
functionality:

• Bound configurations can be represented by ‘tagging’, i.e. by named
versions of the files included. However, this does not support the
configuration version history or the relationship between configura-
tions. The users have to rely on convention on how to create names
and other documentation (which are not understood by the tool
either).

• No support for logical changes, i.e. change requests requiring the
modification of several files. These have to be checked out/in sepa-
rately. The ability to track simultaneous changes (from the same
change request) is therefore not supported.

• Poor integration. The tool (e.g. RCS) manages the repository and
then focuses on the version and the branch management of individ-
ual files. Build tools (e.g. make), editors and so on work in the file

Figure 6 Repository and workspace in the checkout/checkin model

Archive

workspace

checkout [lock

checkin

make-script

A

B

make-script

A B

generated files

config. r1

r1

r1

r1

label/tag
editor

compiler

development environment

44 Software configuration management

system and local working directory completely unaware of other
versions. For example, the build tool has the description of the con-
figuration without knowing anything about the version control.
There is a possibility of letting the build tool check out the versions
to be read.

• The model is dependent on the file systems facilities for access
rights. It is the file system that must prevent that files being
checked out to be read only are not modified. It is very easy for the
initiated user to bypass these protections without leaving a trace.

• Poor support for version selection. Each file has its own version his-
tory and the version history of the system (or a configuration) is dif-
ficult to overview. The technique of ‘tagging’ configurations is
possible in principle but as all files (not only those that have been
changed) have to be ‘tagged’ this soon becomes a complicated pro-
cess.

• Flat structure of the database. To keep a directory structure a
repository must be inserted into each directory.

When the number of developers is high, particularly with distributed
development, the following points become more obvious:

• Locking of files (supporting turn-taking only) does not work well
when there are several developers. A locked file can not be changed
by anyone else and the ‘work-around’ is to create a new temporary
branch in which one works. However, it is not possible to integrate
changes in the original branch until the first user checks in. As the
selection rules of others are often ‘the latest from the main branch’
they cannot, at least in an easy way, utilize changes which have not
been checked in there. In addition, the other user must monitor the
situation to be ready to check in whenever possible.

• The model often results in long checkout times. This is due to the
fact that it is often used with an optimistic update strategy, which
means that by checking in changes, others can use them. This is not
desirable until the complete sub-project is stable, this means that
the individual developer checks in as infrequently as possible. The
developers do not see any particular advantage for the use of ver-
sion control in their daily work and also cannot see what has been
changed as the repository is rarely updated.

5.5.2 Composition
The composition model is a further development of the checkout/checkin
model. The extension consists of a better-developed support for the man-
agement of configurations and thus different strategies for updating
between developers. On the other hand, repository facilities, checkin and
checkout, working directories and the synchronization of simultaneous
changes using the locking of individual files are the same as in the check-
out/checkin model.

The definition of a configuration is made in two steps: (1) a system
model selects the components that shall be included in the configuration
and (2) version selection rules then determine the version of each compo-

Synchronization models 45

nent. This is graphically shown in Figure 7 in the form of an AND/OR
graph, with step 1 representing AND and step 2 OR. The method works
recursively down the hierarchy of configurations until all components and
files that should be included have been selected for a specific version. Due
to the fact that the selection process can be started at any level (not neces-
sarily for a whole system) the CM system can manage system families at
different levels. A more detailed description of the AND/OR graph is given
in [Tic88].

At checkout, the system model and selection rules are used to deter-
mine which file and which version one will have. At checkout for making
changes, one copy of the file is placed in the working directory. The
changes then done are therefore outside the control and support of the
CM system. Checkin often occurs in two steps. The first is in what is
regarded as a local configuration accessible to the developer (or the local
group). Later, the local configuration is made accessible to other groups,
often after a merge with changes made by other groups. This itself can be
done in several steps.

‘Tagging’ can be used to label each respective version of the files
included in a bound configuration. Such labels can be subsequently used
in the selection rules for configurations where one wishes to start from
later work, for example an existing release. The update strategy may be
affected by the selection rules:

• To obtain an isolated workspace which is not affected by the work of
other developers, a configuration utilizing selection rules giving

Figure 7 AND/OR graph representing several versions of the system S. The sys-
tem model for S is R + C, and for R it is A + B. S in ver 1.0 is in a partially bound
configuration whereas for example the version of C is dynamically determined. S in
ver 2.0 is in a bound configuration where all included components are fixed to the
version, e.g. version 1.3 of C.

S

1.0 2.0

R

1.0 2.0

A

1.1 1.2 1.3

B

1.1 1.2 1.3

C

1.1 1.2 1.3

= AND

= OR

The system
model on this
level: S=R+C

The version of S
that is being uti-
lized is determined
by the selection
rules

S 2.0, Bound
configuration.
All included
components
fixed with
regard to ver-
sion

S 1.0, Partially bound, un-
fixed, configuration

46 Software configuration management

fixed versions of all the files except those that the developer himself
has checked out and is therefore changing, is defined. The developer
himself is then able to decide when to integrate the changes made
by others by then changing the selection rules, i.e. a conservative
update strategy.

• By using generic rules such as ‘the latest checked in version’, one
gets a configuration that changes as other developers check in their
modified files. The changes then take effect immediately (at the
next build) and one obtains an optimistic update strategy.

• The closest form of collaboration is obtained by the use of shared
workspaces, when several developers use the same system model
and selection rules. In this environment, developers also share
modified source code files as well as generated files (if wished), as in
the simple checkout/checkin model. Workspaces can, in practise,
only be used in a local environment.

The technique of using selection rules in the Composition model results in
a stronger support for defining configurations than checkout/checkin does.
The rules make it possible to think and work in configurations, rather
than in individual files. However, configurations arise indirectly as a
result of rule evaluation and no direct support for version configuration
exists. By version controlling the system descriptions and selection rules,
one can get some support for giving a version to the configuration. For the
representation of bound configurations the only option is to use the tech-
nique of named versions (‘tagging’).

Comments
The Composition model can be considered to be an extension of the check-
out/checkin model. This extension consists partly of selection rules and
partly that one can manage the configurations (often in the form of direc-
tories in the file system). Thus the model shares many of the drawbacks
previously listed for the checkout/checkin model. These include insuffi-
cient support for setting versions for configurations and the tracking abil-
ity. The model also gives insufficient support for the awareness of
activities between developers and groups (‘collaborative awareness’). This
stems from the fact that the actual development work is carried out in
workspaces not managed by the CM tool. If using an optimistic update
strategy, this often results in a conservative development strategy, i.e. the
update is performed infrequently as it tends to be disturbing for other
developers. Bringing about awareness in the sense that changes can be
seen, but that they do not necessarily take effect at the same time, is diffi-
cult to achieve in this model.

5.5.3 Long transactions
This model focuses more on configurations, logical changes and the fact
that the development is done within a group of developers. The model
seizes upon the fact that the development of the entire system occurs via
changes that are in bigger steps, by one or more logical changes, and by
coordinating the integration of these changes.

Synchronization models 47

The work process is formulated in such a way that a workspace is cre-
ated and it’s content defined as an existing bound configuration. Changes
are then done locally in that workspace. When the changes are finalized
the result is used to update the original workspace as an associated oper-
ation1. It is not until afterwards, that developers working in other work-
spaces can use the changes by first integrating them with the changes in
their workspaces. The work in a workspace can be done by using a (local)
version management. Versions of a file created in a workspace correspond
to a temporary branch.

This model can be regarded as if working with configuration versions
as well as file versions. A workspace corresponds to a configuration, a ver-
sion of the entire sub-system. By using the operation Bringover2 one
starts a new configuration variant. Changes made in files in that work-
space also mean that the configuration is modified. Individual files can be
version controlled according to the checkout/checkin model in the work-
space, and without this affecting other workspaces. When the changes are
finished (tested, inspected, approved etc.), they can be introduced as a sin-
gle operation in the original workspace with the command: putback,
which installs all changed files in the original space. It is only after such a
putback command that other developers can utilize the changes by per-
forming the operation update, which merges the changes made in ones
own workspace with changes made in the original workspace since the
last bringover (or update). If files have been edited in both places, the
update command means that the changes in these files are to be merged.
Workspaces can be organized hierarchically which may be considered as a
support for nested transactions, see Figure 8.

The model therefore discriminates between: (a) changes in an individ-
ual file, (b) publishing of a logical change and (c) the integration of pub-
lished changes. The division between b and c means that there is support
for a conservative update strategy. The possibility of managing changes in
several files simultaneously (b and c) means that the model manages logic
change and tracking down to the modification of individual files. For

1. The cycle of: copy, change, and putback, corresponds to a long transaction in a
data base context, hence the name.
2. Bringover and Putback is terminology used in Teamware [Team94].

Figure 8 Hierarchically organized workspaces direct the development process

Releases

Rel. 1.0Working

Ulf Annita

putback

bringover/update

48 Software configuration management

instance the model can be used such that each change request results in a
bringover/putback coupling.

Figure 9 shows how workspaces work as support for the individual
developer and what happens during conflicts, i.e. overlapping transac-
tions. In a workspace, i.e. during a long transaction, the checkout/checkin
model works for individual files. There is no locking between the work-
spaces and many can begin transactions from the same workspace (1 and
2 in Figure 9). When the first transaction is completed, it is finished with
a putback as usual (3). The detection of overlapping transactions is not
done until the other transaction is completed (4). A conflict arises if the
original space has been changed since the last bringover (or update) to the
workspace (in this case caused by 3). Putback can then not be performed
directly as the workspace (B) must be first updated with the changes
(from A) and then changes from the two transactions are integrated in B.
This is done by the command update (5) and if in addition, individual files
have been changed in both workspaces these must be merged at this
point. Following this a test of the result is best conducted in the local
workspace before a new putback is attempted (6). The overall effect is,
that what was for some time overlapping transactions, will afterwards be
regarded as being arranged in sequence (first A then B as to the right-
hand side in Figure 9) in the workspace.

The model is optimistic in the sense that it never prevents concurrent
work. Parallel workspaces can always be created and the same files
exchanged, which may lead to conflicts. Experience shows that in general,
conflicts that are difficult to solve are actually rare in reality.

The model encourages an optimistic development strategy (i.e. to inte-
grate and perform putback frequently) as the developer completing last is
obliged to perform integration with his own and the already integrated
changes. Developers in other workspaces can then be made aware of the
changes in the original transaction but decide for themselves when to use
them, i.e. a conservative update strategy.

The model supports two levels of coordination between developers.
Each developer/group can have its own workspace and the work in them
can be done concurrently without them disturbing each other. Within a
workspace different strategies may be used. Each developer can have
their own workspace, or several developers may work simultaneously in

Figure 9 The relationship between transactions and versions within the work-
spaces, and the work process that is supported. Terminology from Teamware. The
last transaction being completed in simultaneous work must integrate already
completed transactions before it is finished.

21

3
4

5

6

1. A bringover
2. B bringover
3. A putback

5. B update (merge)
6. B putback

4. B putback (denied)

A B

During parallel
development

1

3

5

6

A B

Following the integration of both trans-
actions, the changes are in sequence

Synchronization models 49

the same workspace. The situation between them will in that case be the
same as in the checkout/checkin model.

Comments
This model follows the copy-merge model and works well in a distributed
environment when a workspace has its own version control and therefore
can ‘manage on its own’. A workspace can be copied to another place, pro-
cessed only there, and copied back without problems. The model was
developed particularly for this kind of situation in distributed develop-
ment with little or no on-line communication. However, in such a situa-
tion the overall view and awareness of what others are doing is greatly
limited. However, there should not, at least in principle, be any problems
in using the model in a system where there is automatic replication of
workspaces. Accordingly, one should have the same possibility of seeing
developments in other workspaces and to integrate with the original
workspace etc., as in local development.

5.5.4 Change set
The Change-set model focuses on the management of logic changes, i.e.
several associated changes. If, for instance, a change request (error correc-
tion, implementation of a new functionality, etc.) requires changes in sev-
eral different files, this is called a logic change. A logic change can of
course also include a sequence of changes in the same file. It is important
to maintain the information that these individual changes are connected,
as normally all of them should be included in the configuration for it to
function as intended and for example, for the error to be corrected.

In this model, a system’s versions are organized as a bound configura-
tion, which is used as a starting basis, followed by a number of internally
unrelated logic changes. Different configurations can then be merged by
selecting which of the logic changes to include. Figure 10 depicts an exam-
ple. In practice, not all logic changes can be freely combined, as there are
often restrictions, such as that some cannot be used simultaneously and
others that require each other etc. The original configuration, in combina-
tion with all of the logic changes can be used to create a large number of
different configurations. If Change-sets are organized such that each
change request results in a Change-set, a very clear connection between
the request and the changes that the request actually resulted in, is
obtained. A common example of where this model has been used is in the
distribution of operating systems, which are often organized as a release
with a large number of ‘patches’. The patches that one then chooses to
install depends on for example, the hardware one has.

The developer working by the Change-set model creates, often from
starting out with a change request, a named logic change starting from a
stable common version. The strategy for how and when such logic changes
are integrated and tested can vary from that in which all logic changes
are considered to be isolated changes, and are therefore not tested
together, to that in which all logic changes are successively integrated and
tested together in the product configurations (one or several) available.
However, this means that in that configuration, the new logic changes are
added as they arise. Conflicts, i.e. changes in the same file, do not have to

50 Software configuration management

be merged until a configuration where both are included is created, and
possibly not at all. The Change-set model supports a conservative update
strategy and almost encourages a conservative integration strategy - or at
least it is not optimistic, in the sense that it forces the integration to
occur.

The Change-set model has an obvious relationship with the long trans-
actions model as a Change-set can be regarded as being the result of a
long transaction. The difference is that Change-sets can be managed and
named as units and their integration can be done at a later time point,
possibly not at all, and sometimes even by the end user. In the previous
models we have presented, the time sequence over which the changes are
being performed, will, almost randomly, affect which of these possible con-
figurations will actually arise. In the long transaction model, a sequenc-
ing of the transactions is forced as they must be integrated and tested one
after the other, as seen previously. In the Change-set model, it can even be
possible to test all of the possible combinations of logic changes and there-
fore all of the configurations that can be created.

In a distributed environment, the model can be used such that each
location/group creates their own Change-sets. These can be replicated at
different locations without technical problems. The model works well with
a very conservative integration strategy, however, this may result in a
weak support for group awareness at a local level, and even more so in a
distributed environment.

Comments
The Change-set model has a number of obvious advantages for the man-
agement of systems with a great number of variants (such as operating
systems). The model gives a great flexibility regarding the creation of a
suitable system from the component variants. If, on the other hand, the
application is intended to result in one system and that all logic changes

Figure 10 An example of a situation in which an original configuration and a
great number of logic changes have resulted in Change-sets. These can be indepen-
dent of each other, dependent (as Addon A is dependent on Func A), or excluding
(as Alt X1 and Alt X2). The number of configurations of the different logic changes
will rapidly become very large if they can be combined with complete freedom.

Release 2.0

Bug 124Bug 123 Bug 143 Bug 173Bug 144 Bug 133 Func A Func B Func C Func D

Addon A

Original, bound configuration

Change-sets

Alt X2Alt X1

Conf. 1 Conf. 10

Conf. 99
Conf. All

Large number of possible configurations

Conf Test A

Synchronization models 51

should be included, then perhaps the previous models are advantageous
in that they force the early integration of changes, whereas in the change-
set model, it can be made a policy. The obvious connection between change
requests and the logic change can be a great advantage, perhaps in partic-
ular during the maintenance phase of a system. In a distributed environ-
ment, the model gives great freedom to the developers in one location to
choose which of the changes made at another location, they want to use.

The disadvantages with this model are that several potential configu-
rations may arise (all permutations of logic changes) and that it may be
difficult to determine which of these are useful. Neither does the model
support configuration versions between baselines, e.g. configurations
intended to contain all of the error corrections. A work mode where such
versions are created and then continually tested and updated therefore
has no direct support, this may be particularly serious in a distributed
environment.

5.5.5 Tool support for synchronization models
A CM tool can handle several models, but usually only one or two of them
are really supported. In cases where there are two models, checkout/
checkin is usually included as a part of a more complicated model. Clear-
Case for instance, can be said to manage checkout/checkin, but its views
(or configuration specifications) makes it more reasonable to call the
model Composition. In contrast, in RCS, one can simulate Long transac-
tions by always creating a new branch at checkout. However, the model
being supported in this instance is only checkout/checkin. Therefore,
when selecting a CM tool it is important to check that the tool not only
makes it possible but that it actually makes it easy and natural to work in
the intended way.

5.5.6 Summary
We have discussed four synchronization models. The borderlines between
them are not crystal clear - partly because there are several aspects that
are relevant which are not always independent, and partly because the
models differ in several of these aspects. The models can be used more or
less flexibly, in a number of various ways, such that the differences
between them become even more diffuse. The models and how they are
being used can often be understood and characterized in terms of the
strategies that we described earlier in this chapter.

• Checkout/checkin is focused on individual files, supports a conser-
vative strategy for concurrent work, an optimistic update strategy
and in practice, a conservative development strategy.

• The Composition model extends the checkout/checkin model with
support for the connected version control of several files.

• Long transactions support the management of configurations of
files, an optimistic strategy for concurrent work, a conservative
update strategy and an optimistic development strategy.

• Change-set, models the changes rather than the versions and
thereby differs from the other models. This supports an optimistic

52 Software configuration management

strategy for concurrent work, a conservative strategy for updating
and a conservative development strategy.

For a more detailed description of synchronization models we refer to
[Fei91] and [Dar90].

5.6 Version and configuration models

A version model defines the objects to be versioned, version identification
and organization, as well as operations for retrieving existing versions
and constructing new versions. In 5.4.1, ‘Version control’ and in 5.4.2,
‘Configurations/Selections’ we gave an overview of version control and
version selection. We also defined partially bound and bound configura-
tions. To make it understandable we gave a slightly simplified picture,
and we will in this section continue to discuss these topics in more detail,
describing more general models.

We will also continue to discuss one of the fundamental problems when
dealing with configurations; That with already a small number of compo-
nents - each in a number of versions and variants - the number of possible
combinations get very large. Mathematically, the number of combinations
grow exponentially with the number of components and versions and any
attempt to deal manually with all of them is unmanageable. Different
models have been proposed to deal with this problem. We will describe
two of these models and discuss their pros and cons.

5.6.1 Configuration vs. configuration specification
At this point we first need to be precise about how we use the term ‘config-
uration’. A configuration is a named collection of atomic entities and other
configurations. Two versions of the same configuration may differ in that
they include different entities and/or the same entity in different versions.
Other authors would see what we call ‘versions of configurations’ as dif-
ferent configurations. We see a set of selection rules as a specification of a
configuration while others would identify the specification with the config-
uration it might result in. In our terminology a configuration is always
bound, while a configuration specification can be bound or generic. Our
use of the terms is consistent with the common CM-view on atomic enti-
ties where a file has identity and might exist in several versions (which is
in contrast to non-version-aware tools that see different versions as differ-
ent files).

5.6.2 Extensional and intensional versioning
A specific version of a versioned item (which can be both a atomic entity or
a configuration) can be defined in, at least, two ways, called extensional
and intensional versioning (e.g. described in the overview [CW98]).

Extensional versioning
Extensional versioning means that all versions of the versioned item are
explicitly represented and defined by enumerating each version, i.e. each
version is identified with an unique number. Typically the user retrieves a

Version and configuration models 53

version, vi, makes the changes, and checks it back as the new version vi+1,
thus resulting in a ‘derived from’ relation from vi+1 to vi. A given version
can be retrieved by identity at a later time in exactly the form it was cre-
ated. Versions of the item can be compared and related to each other, e.g.
by the partial relation ‘derived from’.

Extensional versioning is often used together with state-based version-
ing when dealing with atomic entities. Versions and their relationship can
then typically be presented as a version graph as depicted in Figure 4.
This is very common and implemented for example in RCS [Tic85], SCCS
[Roe75], ClearCase [Rational], and CVS [Ced02].

Intensional versioning
Most existing CM-systems, both state-based (ClearCase [Rational], PVCS
Dimensions [Merant]) and change-based, ([Crn97], Aide-de-Camp
[AdC90], COV [GKY91, MLG+93], PIE [GB80], DaSC [Mac95], and
Asgard [MC96]) use what is called intensional versioning of configura-
tions in order to handle the problem of combinatorical explosion of possi-
ble configurations. The approach builds on formulating selection rules
which are then used to choose the particular variant and version of a ver-
sioned item. The selection rules may be evaluated on demand when the
item, e.g. a file, is needed - for viewing, editing or translation. I.e. versions
are implicit and combinations are constructed on demand.

Intensional versioning supports a more flexible construction of ver-
sions in a large version space than extensional version does, but, as we
see it, it also has some drawbacks:

• The representation of a configuration is indirect, embedded in the
formulation of the rules (e.g. in a small script file), and in the build
information (often in a ‘makefile’). Given such a rule-based specifi-
cation, the only way to find out what the configuration really is, in
terms of what files are included and in what versions, is to actually
build it and register the result, the BOM (Bill Of Material).

• Differences between configurations in terms of what files are
included in what versions are hard to find out since that can not be
deduced from comparing the sets of rules. The only way to find out
is to evaluate the different sets, register them and then compare
the results.

• Consistency is hard to guarantee since incompleteness or ‘errors’ in
the rules may go unnoticed for a long time, and only show when a
new version of some file is created and then result in an uninten-
tional (wrong) configuration. As a consequence there is never a
guarantee that a given rule will result in the same set of files in the
same versions when evaluated at a later time. For important config-
urations, such as releases, it is often paramount to be sure that all
included files can be found and recreated in exactly the relevant
version. As a safeguard all files included in such configurations are
often copied and stored separately.

• Tagging is a way to label versions of individual files and when used
methodically can be used to pin the files and their versions as
included in a configuration. Unfortunately this is a rather primitive

54 Software configuration management

mechanism since there is not always a guarantee that such lables
are not changed afterwards. There is no support for relating config-
urations registered in this way to each other or to calculate the dif-
ference between them.

• The rules can include generic facilities such as selecting the ‘Latest’
version of a file which change over time, resulting in so called
‘generic’ configuration specifications. The same rule-based specifica-
tion of a configuration can thus over time result in many different
resulting configurations. This mechanism can thus be seen as a fur-
ther way to limit the effects of the combinatorical explosion prob-
lem, but it creates a new problem since it defeats traceability. It is
impossible to guarantee that the same system will be build from the
same generic rules at a later time. In the extreme case one can not
be sure that the versions of the files just compiled are the same as
the ones viewed in an editor.

In some systems intensional versioning is also used to define the version
of atomic entities. Often this is change-based systems, e.g. Aide-de-Camp
and COV. These name deltas between versions of atomic entities rather
than the versions themselves. An advantage of this mechanism is that the
deltas can be combined in many more ways than there are typically ver-
sions in a state-based systems and also in ways not foreseen by the cre-
ators of the deltas. The possible combinations are somewhat limited by
restrictions among some of the deltas that might exclude or presume each
other, but the difference is still big. For example all versions that in a
state-based system can be created through a trivial merge can here be
created directly. A needed version of an atomic entity (a file) is put
together on demand when needed (for viewing, editing, translating). In
existing changed based systems this task is handled through rules and
selection, thus using intensional versioning also for atomic entities.

In a change-based system the number of potential versions of each
atomic entity is larger. The number of possible combinations is thus also
larger. The combinatorical explosion problem of configurations thus gets
even worse in change-based systems. In existing systems this problem is
again handled through use of selection rules. ‘intensional versioning’ is
thus used consistently for atomic entities as well as for configurations.
The criticism we formulated above for handling configurations with inten-
sional versioning thus applies both when dealing with configurations and
atomic entities.

5.7 Summary

In this chapter we have given a short presentation of CM. We described
both the management view and the development view of CM. The fact
that there are two views contributes to the feeling that CM is often
regarded as a diversified discipline with different goals and scope.

From a management perspective, we identified four areas of responsi-
bility: configuration identification, configuration control, configuration

Summary 55

status accounting, and configuration audit, as well as the requirement for
a plan of the CM work.

From a development perspective we have identified seven particularly
important areas: version control, configuration selection, concurrency con-
trol, build management, release management, workspace management,
and change management.

In addition, we have determined that there are some fundamental
strategies that have to be considered when defining a CM plan:

• Development strategy - product integration, often/rarely
• Concurrent work - changes of common files
• Update strategy - when/how are modifications available for other

developers.

In all cases, we characterize different strategies as either optimistic or
conservative. These fundamental starting points are important for the
understanding of the following chapters.

Moreover we gave an overview focused on distributed development of
four synchronization models. Taking the work model/intended work
model (formulated as concrete strategies according to the above), the CM
plan being constructed and the process model intended for use as a start-
ing point, it can be decided which of the synchronization models may be
useful.

A more detailed analysis of versioning models, describing extensional
and intensional versioning concluded the chapter.

In the rest of this thesis we will focus more on results from our
research. These introductory chapters on distributed development and
configuration management will in that perspective build the base of ter-
minology and models, making it possible for us to talk in terms of strate-
gies and models rather than single features.

56 Software configuration management

Chapter 6 Unified
extensional
versioning model

As described in previous chapter there are two models of how to represent
a versioned item, using extensional or intentional versioning. We also
described that the items versioned could be both atomic entities, e.g. a file,
or configurations, e.g. a complete system. For atomic entities it varies
which model is used. For configurations both traditional state-based sys-
tems and change-based systems are similar in that they use intentional
versioning. A fundamental criticism of traditional state-based systems is
that they offer very different mechanisms for dealing with atomic entities
and with configurations. Unfortunately this leads not only to proliferation
of concepts, but also to a weak support for managing configurations.

In this chapter we put forward a different approach - using explicit
versioning also for configurations, see Figure 11, which has the advantage
of offering one unified version model for atomic entities as well as for con-
figurations. We also show how we with this approach counter the problem
of combinatorical explosion. The model we present, the Unified Exten-
sional Versioning Model, also avoids the problems discussed in previous
chapter in connection with intentional versioning of configurations.

Atomic entities (files) Configurations

Intentional versioning
(rules)

Change-based systems Change-based systems
Traditional, state-based

systems

Extensional versioning
(explicit versions)

Traditional, state-based
systems

UNIFIED MODEL

UNIFIED MODEL

Figure 11 Traditionally both state-based systems and change-based systems use
intentional versioning for managing configurations. The ‘Unified model’ uses
extensional versioning for both atomic entities and configurations.

58 Unified extensional versioning model

6.1 The unified extensional versioning model

To describe how an extensional versioning model can be used also for con-
figurations we begin by defining what we call a Document, which is a
structure - a configuration. We then continue by giving the rules of how to
version such documents following.

6.1.1 The document model
A Document in this model is structured and the structure can be
expressed in a grammar as shown in Figure 12. It is essentially a strict
hierarchical (tree) structure, but relations between documents are also
part of the model through the notion of links. ‘Document’ is here used in a
general sense of a file, data-set, that can contain any form of information,
e.g. program source, English text, graphics, etc.

• N-nodes are atomic nodes, leaves, in which data can be stored. It
can be text, source code, graphics or any other information which is
thus of no concern to the model. Different N-nodes can contain dif-
ferent types of data, so the model supports documents with mixed
data.

• C-nodes support Composition, whole-part relations. This is intro-
duced in recognition of the need for support of hierarchies com-
monly used to structure text documents (chapters, sections,
paragraphs), programs (modules, classes routines) and many other
kinds of information.

• L-nodes support Reference semantics, arbitrary relations between
documents. This is introduced in recognition of a need to share com-
mon parts between configurations (libraries, modules, classes in
programs, and illustrations, appendix, quotations etc. in textual
documents). The ‘name’ attribute stored in an L-node is the infor-
mation needed to link to another document. The ‘version’ attribute
is the information needed to denote a specific version of the docu-
ment, an important property which will be explained below.

The model supports structure in two ways, through C-nodes and L-nodes.
There is thus some redundancy in the model since composition, tree-
structures, can be built out of a restricted use of L-nodes.The motivation
to include C-nodes and explicit support for composition in the model is
that tree-structures is a fairly common case and that we view composition
and reference semantics as distinct cases.

D ::= T
T ::= C|L|N
C ::= T* [‘local data’]
L ::= ‘name’ ‘version’
N ::= ‘local data’

Figure 12 Grammar specifying the document structure

D - document (abstract node, non-terminal)
T - tree (abstract node, non-terminal)
C - composite node (concrete node, production)
L - link node (concrete node, production)
N - atomic node (concrete node, production)

The unified extensional versioning model 59

Traditional document models can be understood in our model as docu-
ments which only contain one N-node. Such models do not support inter-
nally structured documents and do not support relations between
documents.

Examples of structured documents
Figure 13 depicts two examples of document structures. The left hand
example shows a single tree-structured document. The right hand exam-
ple shows three structured documents linked together. Lines indicate
composition in a document while arrows are references between docu-
ments.

A more concrete example of a tree structure is a book. The left hand
example in Figure 14 depicts such a book consisting of three chapters,
where chapter one and three both have two sections respectively. The
relation between the book, the chapters, and the sections are ‘consists of ’
or ‘contains’ and the total structure represents one entity - the book.

A concrete example of a structure also using L-nodes is Java source
code for an application consisting of classes and packages. The small right
hand application, ‘Appl’, in Figure 14 consists of one class, ‘class 1’, and it

Figure 13 Composite document and configuration represented in the Unified
Extensional Versioning Model.

C

C

C

N

N N

N
N N N

C

L L

L

C

C CN

N N N N

Appl

Import Class 1

Class A
Class B

Import

Op 1 Op 2

Op 1
Op 1 Op 2

Op 2 Op 3
Su.Cl.

Ch 1 Ch 2 Ch 3

Book

Sec 1.2Sec 1.1 Sec 3.1 Sec 3.2

Figure 14 Example of structured documents: A book and Java source code.

60 Unified extensional versioning model

imports two classes, ‘class A’ and ‘class B’. The class-to-operation relation
is of the same type as the relations used in the book, i.e. ‘consists of ’ or
‘contains’. The relations import-to-class and su.cl-to-class (super class) is,
however, references i.e. links. It would e.g. be wrong to say that class B
consists of class A. Moreover, both class A and B might be included in
many other applications. The semantic difference between composition
and reference semantics will also show up in versioning of documents dis-
cussed below.

6.1.2 The version model
Both the structure and the contents of a Document will evolve over time.
In the extensional model all node types (N, L, or C in the grammar) are
explicitly versioned. Creation of a new version of a node is triggered by
any of the following conditions:

• N,C-nodes - a new version is created when its ‘local data’ is changed
• L-nodes - when ‘name’, or ‘version’ is changed
• C-nodes - also when any of its sons is added, deleted, or changed

Changes to a Document occurs during a ‘session’, a long transaction. The
extent of a session is defined by the user who explicitly or implicitly con-
trols when a session starts and ends. During one session there is created
at most one new version of each node if needed according to the rules
above. Repeated edits to local data in one node are thus part of the same
change to that node. Several additions, deletions and changes to the sons
of a C-node also result in only one new version of the node. The length of a
session, and thus the amount of changes that go into the same version,
can be used to control the granularity of the versioning. When a session is
ended the created versions of the nodes can no longer be modified.

Versions are related through the derived-from relation and can form
arbitrary DAG structures. The version mechanism thus can represent
concurrent development and merge of Documents, atomic entities as well
as configurations.

For a Document a means that a new version of the document is cre-
ated. For each node changed during the session a new version of the node
is created (but only one). The rule that C-nodes are considered changed
also when only their sons are changed results in an effect know as ‘change
propagation’ [Kat90]. Any change will result in new versions of all father
nodes of the changed node up to the top node (if not already changed in
the same session). The effect that there is only one new version of a
father-node during a session can be seen as a version concentration mech-
anism.

This automatic change propagation mechanism for documents is con-
sistent with how changes of compositions are perceived. For example a
change to a paragraph in this paper means the whole paper is changed. It
also means that a version of a document uniquely determines which inter-
nal nodes to include and for these which version.

For relations between documents the version attribute of an L-node
determines the version of the referenced document. If another version of
the referenced document is wanted the version attribute of the L-node

The unified extensional versioning model 61

needs to be changed (and thus the L-node itself, all enclosing C-nodes, and
ultimately the document where it resides).

The model thus implies that updating a link to another (for example
newer) version of a document means that the referencing document must
be changed. When and how this is done is not specified in the model, but
can be supported in a tool by different convenient mechanisms to admin-
ister updates between documents. Examples of such mechanisms are
illustrated by the tools presented in related work section below. A detailed
description of how COOP/Orm implements the model is given in Chapter
7, ‘The COOP/Orm environment’. Again the session mechanisms and long
transactions can be used by the user to limit the number of such versions
that actually occurs.

Example, versions of a structured document
Figure 15 depicts the evolution of a tree structured document. In
Figure 15b the local data in the N-node ‘3.1’ (sons numbered from left to
right) is modified and a new version of that node is created. As a conse-
quence also a new (intermediate) version of its father node is created
(node ‘3’) and of the root node, i.e. the entire document is considered
changed. In Figure 15c the user has continued the session by also modify-
ing node ‘2’, thus creating a new version of it. Since a new version of its
father node already exists change propagation has no effect in this case. It
is thus possible to make many related modifications to the document, all
included in one and the same version of the document. The user controls
when a session is ended and thus when and what versions are actually
created.

An example where the structure shown in Figure 15 might arise is a
book with three chapters, see Figure 14. A change in one of its paragraphs
results in a new version of the book and so does several modifications dur-
ing the same session. This situation is consistent with the situation that
would arise if the versioning model would not acknowledge structure and
the three chapters would be maintained as one single file. Versioning of
compositions using change propagation coincide with the situation when
more primitive composition mechanisms are used. A document can also be
seen as a bound configuration of its nodes. Given a version of the docu-
ment - the version of all its nodes are directly determined.

C

C C

CC

N

N N N N N N N N NN NNN N

NNC CC

CC

C CN C

a) Initial situation of
structured document

b) Node 3.1 has been
changed

c) Also node 2 is
changed

Figure 15 Many changes within the same version.

1

1 1

2

2 2

2

3.1 3.1

3

62 Unified extensional versioning model

Example, versions of configurations of documents
In this example we consider a situation with three documents, one (D1)
importing the other two (D2, D3) as shown in Figure 16. Modifications to
D2 and D3 results in new versions of these, one for each session depend-
ing on how the user chooses to organize his work. In Figure 16 we show
the situation after one edit session with D2 and two sessions with D3. In
order to use the newer versions of D2 and D3 also a new version of D1
needs to be created where its link nodes are changed. The user can here
decide to move to the latest version of D2 and D3 (as shown in the Figure)
or to use any other combinations of versions of D2 and D3. The structure
is in this case a small graph, but links can be used to build higher trees
and indeed arbitrary directed acyclic graphs and the same mechanisms
applies. Situations where structures as the one presented in Figure 16
can occur is for example in software development where the documents
are source modules, depending on each other such as in the situation
illustrated in Figure 14.

6.1.3 Summary
To summarize, the model improves on the observations regarding tradi-
tional models that we mentioned in the previous chapter.

• Representation of configurations is direct. A configuration can be
represented with a document that contains links to the other docu-
ments included in the configuration.

• Configurations are versioned. As any other document a configura-
tion exists in versions. Versions of configurations are explicit, they
can be named and organized.

• Versions of configurations are related to each other so their develop-
ment can be traced. They can be compared and differences can be
presented as components being added, deleted or changed. There is
no need for auxiliary support such as ‘Tagging’.

• Consistency is provided in the versioning sense. A version of a con-
figuration can always be reproduced in exactly the same form.
There is no need to copy systems in order to provide reproducibility.

C

C

C
C

CC

C

C

CC
CC

C

CC

NN

NNNN
NNN

NNNNN
NN

NNN

NN N N

L L

L

L L

L

LL LL

N

CC

NNNLL N

C

Figure 16 Editing an L-node often means rebinding to a new version.

D1 D1 D1

D2 D2 D2
D3 D3 D3

Discussion and comparison 63

The Unified model go beyond traditional models in that it provide more
support in a number of important situations:

• Version concentration. The number of versions of a configuration
that has to be considered is greatly reduced compared to the possi-
ble combinations given by mathematics.

• Architectural traceability. From any level of configurations the
exact changes that has been made over time, can be traced down to
the individual file.

• Modularization. Configurations can be handled as modules where
the internals and its detailed development is separated from its
interface and its development from external point of view.

• Scalability. Configurations can be included as elements in larger
configurations thus forming hierarchies is directly supported. This
is an essential property when managing any complex system.

6.2 Discussion and comparison

In this section we will discuss some effects and consequences of the uni-
fied extensional versioning model and its use and compare with the inten-
tional model.

6.2.1 The UEVModel from the users perspective
A consequence of the unified extensional model is that the concepts ‘ver-
sioned component’ and ‘bound configuration’ are unified. Extensional ver-
sioning is used in both cases which means that the user can use the same
model for versioning components as well as for versioning configurations.
In the same way as a user can decide what changes go into a new version
of a component (s)he can control through the session mechanism what
goes into a new version of a configuration. In both cases the version repre-
sents what the user regards as a meaningful state. The versions of config-
urations, including content and structure, are explicitly represented in
the version database. This allows the user to identify, inspect, compare
and reason about the properties of the configurations both in terms of con-
tent and structure: How and when new sections or chapters have been
added or removed, how the dependency structure between software mod-
ules have evolved, etc. The hierarchical formulation of the model allows
the user to organize the system in layers of libraries, sub-systems and
systems all explicitly represented and versioned.

In a software engineering context, the extensional model implies that a
version of a module not only embodies the source of that module but also
contains information about the modules that it depends upon, which can
be characterized as the SCM equivalent of the modularization principle.
The developer creates what (s)he thinks are meaningful and consistent
combinations of versions of the included documents. The user of such a
configuration (a library, module etc.), who have less insight in its inter-
nals, are thus confronted with choosing among a small number of mean-
ingful versions of its configuration.

64 Unified extensional versioning model

Builds of a system is always made from a bound configuration which in
the extensional model is explicitly available as a version of the system
configuration. Likewise, bill-of-material facilities are directly supported
since the structure of the system and version of all components are given
from a version of the system. What remains to capture is external aspects
such as versions of used tools, options, etc.

In comparison the intentional versioning scheme is more complex
from a user point of view. In order to specify configurations the user needs
to master a separate selection mechanism for versions of configurations,
often a small, specialized, language. (Languages that are often error-
prone to use and does not deal gracefully with structural changes.) Encap-
sulation is weak since selection is performed over entire systems, also
over parts not known in detail by the developer. Resulting, bound, config-
urations can be labled, but there is no support for comparing or relating
such configurations to each other. As a result users are directed to pro-
duce and store listings of components and their versions in order to sup-
port bill-of-material facilities.

6.2.2 Managing the combinatorical explosion of configurations
The problem of combinatorical explosion is one of the fundamental prob-
lems which has to be countered in every model. In the extensional model
this is achieved through the effect called ‘version concentration’. Consider
first the tiny example in Figure 16c. On the document level, in D3 there
are 23=8 possible configurations of versioned nodes of which only 3 have
been created. On the relation level there are 2*3=6 possible configura-
tions of the existing versions of D2 and D3, but here only 2 have been cre-
ated. The fact that mathematical combinatorics give that there are in all
32 possible combinations of the versions of the leaf nodes in this small
example is thus of no interest since the user have control over which com-
binations to explore and only these, for him/her interesting configura-
tions, are created. Furthermore, the two-session update of D3 is only
reflected as one new version of the configuration, D1. The hierarchical
structuring in combination with the session mechanism is thus helpful in
reducing the number of versions of configurations - version concentration
also on the configuration level. For the rest of the system, using D1, the
number of combinations of the files in this sub-system that needs to be
considered is thus decreased from 32 to 2. Should, however, a user want to
use another configuration of D1, say using the middle version of D3, the
model makes it easy to represent such a configuration as another version
of D1.

In realistic situations the numbers are much higher, 100 files in 10
versions each result in 10100 mathematically possible combinations which
are concentrated to perhaps 100 interesting versions of the configuration.
Of these only a small number are relevant at any given time, often the
last in each sequence of versions resulting from concurrent work (branch).
The version concentration mechanism works in the same way at each
level of configuring sub-systems into larger sub-systems and so on. At the
system level there are comparatively few versions of the configuration
corresponding to interesting versions of the system as a whole; releases,
test-versions and so on.

Discussion and comparison 65

In the intentional model the problem of combinatorical explosion is
countered by using selection rules, ideally choosing the intended version
of each file. Such rules are not directly depending on the number of revi-
sions of files (i.e. the age of the system) which makes this approach scale
up over time. The rules do, however, depend on the size of the system
since the number of modules, each with its branches and labled configura-
tions, will grow with the system. Selection rules are global and need to
reflect all the modules at the same time. In contrast the hierarchical com-
position used in the extensional system scales well as illustrated with the
Ragnarok experience in [Chr98a], which presents figures from a system,
developed using Ragnarok, with 1340 files resulted in only 30 versions on
the system level during a period of 2 years. A period when the system was
heavily modified and tripled in size and the number of possible configura-
tions would be uncountable. In order to see how ‘version concentration’
worked in practice, measurements were made. The result was that the
number of version nodes in the repository is proportional to the number of
check-ins and to the number of changes; thus there is no combinatorial
explosion. Furthermore, there was roughly one ‘intermediate’ version for
each ‘essential’ version. For each explicit check-in there were 3-8 files
checked in (which means 1.5-4 ‘essential’ versions). Thus rather than cre-
ating more work for the user having to check in ‘intermediate’ versions
the situation is that in Ragnarok a user have to handle fewer explicit
check-ins than in a traditional system. The users of Ragnarok were inter-
viewed [Chr98a] and they stated that the ‘intermediate’ versions created
were not problematic. ‘It is the job of the tool’ to handle the internal, pos-
sibly complicated, bindings, but the tool was reported to handle this ade-
quately, and they did not find the presence of intermediate versions a
problem. The ‘intermediate’ versions are, however, essential in order to
facilitate full traceability in all situations. In the intentional model this
operation corresponds to checking in components, labeling the configura-
tion, and updating the selection rules (making sure generic rules are
replaced), seemingly a heavier operation.

6.2.3 Supporting and managing changes
A CM system must support simple and low-overhead facilities for devel-
opers to change and extend a system. Ideally such support should be pos-
sible to offer within the used versioning model. The main mechanism in
the intentional model for this is generic selection rules, such as ‘Latest’,
selecting the latest created revision of a modified file, which often is what
the user intends to use. A configuration specification using generic rules
will not need to be changed in order to include a new revision of yet
another updated file and is thus convenient to use for a developer.

The corresponding mechanism in the extensional model is the session
mechanism which allows several changes to a component as well as to a
configuration to be included in one revision. Using this mechanism the
developer will create a new revision of a component (or configuration)
indicating that this part of the system is under revision. All changes the
user makes to the component in this revision will be accumulated. When
the user so decides the session is concluded and the version of the compo-
nent is closed and can no longer be modified. When dealing with compo-

66 Unified extensional versioning model

nents, the situation in the extensional and intentional models for the
developer comes fairly close. Check-out and check-in corresponds to creat-
ing and closing a revision of a component.

When dealing with configurations the situation is, however, different.
In the extensional model the user needs to create revisions also of configu-
rations in order to include revisions of its components, thus also if the
component itself is not explicitly revised. Thanks to the session mecha-
nism, the user can leave a revision of a configuration open and thus accu-
mulate revisions of several of its components and also several revisions of
the same component. Again, when the user so decides, the session is con-
cluded and the user can thus control the granularity of the revision, for
example to let a revision of a configuration represent a logical change.
Typically, and also supported by the experience from the use of Ragnarok,
sessions tend to be longer the higher up the hierarchy the component is,
and thus very long on the system level. There are, however, situations
where a number of revisions needs to be created or closed at the same
time. When the user decides to finish a session and close a revision of a
configuration, all open revisions of its components that it uses must also
be closed in order to form a bound configuration. This could be a tedious
operation, involving many components. In related work below and in suc-
ceeding chapters about COOP/Orm different approaches to this can be
found.

The extensional model trivially supports reconstruction of a version of
a configuration that has been closed since it can no longer be modified. In
the intentional model this takes a correctly formulated, and stored, set of
selection rules, which is hard to guarantee in particular in presence of
heavy restructuring of the system. Alternatively one has to store the full
list of components and versions for the entire system. On top of this the
extensional model offers full traceability among the explicitly stored ver-
sions of configurations. It supports relations between such versions of con-
figurations and a tool can show how they are derived from each other,
compare them, show the differences down to every included component.

6.2.4 Supporting concurrent work
In projects involving many developers it is often a necessity that work can
be done concurrently by several developers, including revising the same
documents and configurations. To make this a practical possibility, it
must be simple and swift to merge the result of concurrent work affecting
both the component and configuration level. Merging concurrently devel-
oped revisions, temporary variants, of a component is an established tech-
nique. Here tools make use of the known content of the two temporary
variants and their common ancestor to perform a three-way-merge, sug-
gesting the resulting merge and detecting lexically interfering changes in
the two variants. Dealing with configurations the work is often structured
so development starts from a common alternative, but done in a separate
alternative. When such a task is concluded the revisions are made avail-
able by updating the common alternative. In case of concurrent work, any
changes in the common alternative must first be merged with the new
changes in the separate alternative, tested etc., and then used to update

Related work 67

the common alternative. Thus the last developer to conclude his concur-
rent work will have to deal with merging with earlier work.

In the intentional model concurrent work is often aided by workspace
areas where the revisions of changed files are stored and visible for the
local developer. The tool then aides in updating the common alternative
as well as merging parallel work, i.e. updating the workspace with files
changed in the common alternative and initiating merge of files that has
been changed in both places.

In the extensional model configurations are explicitly versioned and
concurrent work is represented as branches in its versiongraph. Merge is
thus achieved in the same way as for components - a new version is cre-
ated with the branch as predecessors. With the same rules as in the inten-
tional system a tool will select the latest revision of a component changed
in only one of the alternatives and initiate a merge of a component that
has been modified in both branches. Since the model is recursive a compo-
nent might be a new configuration and the process repeated until all com-
ponents have been merged (the same ones as in the intentional model),
and the affected configurations have been facilitated with a new version
representing the merge. The difference between the models thus lies in
the last point. The explicit versioning of configurations makes it simple to
explore the history of configurations which is particularly useful in the
context of concurrent work and merges.

In the merge-case above we notice that all the versions of the involved
configurations are a consequence of the model and can be automatically
managed by a tool. A similar situation occurs when one want to integrate
with changes to the system unrelated to the concurrent development. In
the intentional model this is provided through the generic rules (e.g. the
‘latest’ rule of ClearCase, and the CVS command ‘cvs update’). Such rules
can also be used within the UEVM to retrieve e.g. the latest revision of all
components from the version database, update the bindings between the
components and configurations - all done within the current session. This
is a proven and often used technique to merge parallel work of different
parts of a software system.

6.3 Related work

In this section we will shortly describe the model of some other systems
implementing UEVM or similar models. A more comprehensive descrip-
tion of related work can be found in Chapter 11 ‘Related work’.

6.3.1 Ragnarok
Ragnarok [Chr99c, Chr99b, Chr99a, Chr98b, Chr98a] is a software devel-
opment environment with focus on software architecture and architec-
tural evolution. In Ragnarok, a document represents a software
abstraction in a software system. A document may have one C-node only,
and multiple N- and L-nodes. N-nodes store the implementation of the
abstraction (source code), and L-nodes architectural relations (like compo-
sition, depend-on (import) or subclass-of) between abstractions. Ragnarok
simulates composition using reference semantics (L-node links) and the

68 Unified extensional versioning model

tree-structure requirement is ensured by checking at the user interface
level.

Ragnarok uses a traditional repository/workspace model. A session
takes place locally in a workspace, and is ended (changes are committed
back to repository) by a check-in operation. Ragnarok has transitive
change propagation over L-nodes. Thus, if a document, A, is changed then
any document that includes A in its transitive, reflexive, closure of L-links
is considered changed; but only locally in the workspace where the change
was made. Ragnarok creates new, local, copies of all affected nodes and
rebinds L-nodes to reflect the changed architecture.1

The session concept is highly flexible; essentially each document has
its own session. A document’s session is started by the first change to the
document, directly (edit of N- or L-nodes) or indirectly (something in its
transitive closure changed). A document’s session is terminated by a
check-in; and the check-in is propagated to all documents in its transitive
closure. Thus, changes are committed to the repository and all sessions
closed in the sub-configuration that is rooted in the document. However,
document sessions higher in the hierarchy (documents not in the closure
of the document, but related to the document) remains open, which is how
version concentration is made in Ragnarok.

Finally, Ragnarok allows new configurations to be constructed inten-
sionally in a workspace, as it provides a rule-based check-out command,
called ‘gettip’. This command retrieves the latest revision of all compo-
nents from the version database, updates the bindings between the com-
ponents and configurations in the workspace, creating new versions of
configurations as needed. This is a proven and often used technique to
merge parallel work of different parts of a software system.

Ragnarok has been used in three real development projects [Chr98a].

6.3.2 CoED
CoEd [BLNP97, BLNP98] is a prototype environment that supports col-
laborative writing through the use of advanced version control policies.
CoEd manages hierarchically structured textual documents only, where
the relation between the parts is that of composition. This means that
CoEd does not support the L-nodes of the general model. In the specifying
grammar the L-production is removed and the T-production simplified
accordingly: T::=C|N. When changes have to be propagated, new versions
are created of all nodes on the path from the node that was changed to the
root of the document.

CoEd works as a repository only, which means that the user cannot
directly edit the bound configurations of the document, as they are immu-
table. So a traditional checkout-edit-checkin way of working has to be fol-
lowed. A session starts when a structure is checked out from CoEd. It is
possible to check out just a part of the document by indicating the C-node
that forms the root of the subpart. When the (sub)structure has been
checked out, a single file containing all the LaTex text for the (sub)struc-

1. This propagation and rebinding mechanism simulates ordinary development
where module relations are inherently generic: ‘A imports B’ and thus any change
in B indirectly affects A.

Related work 69

ture will exist in the users file system. This file is mutable and the user
can edit it as he wishes, changing even the structure of the document.
After the editing, the file representing the (sub)structure is checked back
into CoEd. The file is parsed and if it represents a valid LaTex structure,
CoEd discovers what has changed. Changes are propagated all the way up
to the root of the document. When the document is in the user’s file sys-
tem, its structure is not explicit anymore, but only indicated by the
respective LaTex commands. However, whenever the document is inside
the repository, its structure is explicit and it is kept as a series of versions
of bound configurations that can be browsed and retrieved.

Even though CoEd has no explicit notion of a workspace, it does imple-
ment the possibility to work directly on the structure of a document inside
the repository. If we want to ‘promote’ section 6.3.2. in this thesis to
become section 6.4, this can easily be done by dragging the section to the
new sections’s place. This creates a new bound configuration of the docu-
ment, where section 6.3.2 is deleted from its original place in the struc-
ture and inserted at the new place. Presently, there is no explicit session
concept when working inside CoEd’s repository even though all changes
are versioned. This means that if we make several modifications to the
structure this will result in several new bound configurations being cre-
ated, even if they might conceptually be considered as one change.

6.3.3 NUCM
NUCM [HHW96] is a generic repository aimed to be a testbed to help
explore issues of distributed configuration management. It can store
atoms (e.g. a source code file or a section of a document) and collections
(group of atoms and/or other collections). Both atoms and collections can
be shared among multiple collections, forming an acyclic graph.

New versions of both atoms and collections are created by the sequence
InitiateChange - <make the change> - CommitChange. When Committing
a change all changes made within that artifact are included in the new
version. I.e. it is when CommitChange is called the level of propagation is
determined, which differ from UEVM where a change propagates directly
(which is used in e.g. COOP/Orm to achieve awareness). In NUCM it is
also possible to create new versions of artifacts included in a spcific ver-
sion of a collection, i.e. it is not possible to freeze a collection version as a
bound configuration.

The NUCM model is similar to UEVM in that it supports versioned
references building DAGs of atoms and collections. However, while UEVM
aims at supporting a unified model for both atoms and collections (NUCM
terminology), NUCM aims at being general enough to be used implement-
ing any model on top of it. Therefore, versions are unordered artifact iden-
tifiers, locking is implemented as two artifact attributes that can be set
and unset leaving all semantics to the CM client, and collections can be
modified without ‘InitiateChange’ (starting a session). Despite the differ-
ent propagation strategies, UEVM likely can be implemented using
NUCM (as using any database general enough).

70 Unified extensional versioning model

6.3.4 Adele
In Adele Temporal versioning preserves history and provides traceability
by storing all objects states. When an attribute is defined as immutable it
means that ‘any attempts to change its value automatically produces a
new ‘state’ (i.e., revision) of the object.’ [EC94]. Thus every change of a
value results in a new version, i.e. version proliferation.

UEVM versioning is thus similar to temporal versioning in Adele, if all
attributes are defined as immutable and all references to other objects
refers to an object state. But(!) UEVM defines the concept of session
which, instead of version proliferation, leads to version concentration as
described in Section 6.1.2.

6.3.5 POEM
POEM (Programmable Object-Oriented EnvironMent) [LR95, LR96] is a
programming environment managing configurations of smaller items
than files. An important concept in POEM is subsystems. A Subsystem
S(X) is the set of software units that can be reached from X. Subsystems
may overlap each other, and is similar to a ‘document’ in UEVM.

Version control in POEM has two major goals: (1) to allow program-
mers to create, select, and use versions in terms of subsystems and (2)
simplify the access to old versions while still minimizing the space they
occupy. Two operations are provided:

• revise A: creates a new version of all software units within sub-
system A.

• snapshot A: freezes all modified versions within subsystem A. I.e.
the current version of subsystem A is now bound and immutable.

The goals are identical to the goals of UEVM. However, the implementa-
tion of these goals differs in when new versions of units are created. In
UEVM a new version of a unit is created on demand when the unit is
changed (also due to change propagation). The revise operation creates a
new version of all units within the subsystem (or actually within the
workarea, see below) which often are many more units than will later
actually be changed. Moreover, POEM does not seem to utilize sub-
systems as bound configurations to compare versions of them. Neither
seems branches and merge to be supported.

POEM also introduces the concept or workareas. Software units are
partioned into mutually exclusive workareas in order to define boundaries
between programming tasks. E.g. does the revise operation only create
new versions within the workarea. Units in other workareas are read
only. Each workarea has an owner that can edit the software units in the
workarea. In our opinion this is to inflexible, since it only supports the
split-combine model, but not copy-merge. Or, in other words, it does sup-
port co-located groups but not distributed groups.

6.3.6 Subversion
Subversion is an extension of CVS. It is still an early OSS project, plan-
ning to soon release verision 1.

Related work 71

It is similar to UEVM in that its main idea is to version configurations
rather than atoms and it supports bound configurations. Only the modul
(configuration) has a version number - not its parts. Several changes to
many parts can be changed within one new version of the module. I.e. the
same as for a Document in UEVM. Subversion does not have versioned
links (L-nodes).

72 Unified extensional versioning model

Chapter 7 The COOP/Orm
environment

The current work builds on the tradition on developing software environ-
ments at Lund. From 1986 to 1991 the Mjölner project was carried out
with the objective to increase the productivity of software by designing
and implementing Object-Oriented Software Development Environments
supporting specification, implementation and maintenance of large pro-
duction programs [KLMM94]. The project was carried out in Nordic uni-
versities and industrial companies. The main result from Lund was the
Mjölner Orm system [MHM+90]. Orm is an interactive, compiling envi-
ronment for object-oriented languages, based on incremental compilation,
incremental loading and incremental execution, using hierarchical win-
dows as means for direct manipulation interaction with program source.
It also supports revision and configuration control of programs, modules,
and grammars. However, even though it is possible for many developers
to simultaneously work on the same documents it is mainly a single user
environment. Documents are versioned as monolithic files but there is no
particular support for diff and merge. Since software development is a
team activity, requirements for more fine-grained versioning and better
synchronization of concurrent changes were raised. Therefore the project
to develop a successor to Orm, called COOP/Orm, was initiated.

The main goal and initial focus in COOP/Orm is on the collaborative
aspects, rather than language support. Especially we have focused on
support for distributed development as described in Chapter 4. The tech-
niques developed in COOP/Orm can then be integrated with Orm and its
strong support for software development and design of programming lan-
guages.

One of the slogans during the development of COOP/Orm has been
‘versions are good - let us make them cheap and visible’. In contrast to
many other approaches we do not want to create a fictive view of working
alone to the developer. Instead we claim that the developers should be
aware of each other in order to be able to work in parallel. Therefore the
main functionality explored in COOP/Orm is fine grained version control
(following the extensional versioning model) and group awareness.

74 The COOP/Orm environment

There are many reasons to build a prototype system implementing
some, or all, of the research ideas. One reason is to work out the ideas in
detail. Another reason is to make it more easy for other people to under-
stand the model and to prove (or make it plausible) to others that the
model proposed really works., i.e. as a pedagogical tool for demonstrating
the ideas. In this chapter we will try to use the tool, by describing it, for
both of these reasons. Concrete descriptions of the tool model and its func-
tionality will, hopefully, explain the ideas behind the model. Additional
discussions about scalability and usability will serve as the plausibility
part, i.e. that these ideas tackles real problems in industry. More techni-
cal issues such as design architecture and implementation of storage
structure and algorithms can be found later in Chapter 8 and Chapter 9.

In this chapter we will describe the COOP/Orm model from the user
perspective. Several partial models are described, each defining its view of
the total model. We will also make an explanation of how the COOP/Orm
model relates to the different cases of distribution defined earlier.

7.1 Requirements

Many of the requirements, e.g. from ‘distributed groups’ described in 4.1,
‘Cases of distributed development’, can be summarized in a few (techni-
cal) problem statements.

Software systems are made up from hierarchical collections of hierar-
chical documents. Traditionally, version control has been applied to keep
track of the revisions of individual documents, while configuration man-
agement has focused on how to form systems or sub-systems out of collec-
tions of documents [Roe75, Tic85, Tic88]. Although this separation has
some benefits in factoring out minimal functionality into single tools it
suffers from the lack of integration.

We will here illustrate a list of requirements and key problem areas we
believe are important to tackle (and manage) in a development environ-
ment.

Document size There are conflicting demands on the size of the
involved documents. Even a small change to a document creates a new
version of the whole document. From a version control point of view it is a
benefit if documents are kept small since the precision of the information
the version control system will give us will get higher. From the configura-
tion management point of view it is an advantage if the documents are
fewer (and thus larger) since the complexity grows with the number of
documents involved and with their versions. The number of meaningless
or non-compatible configurations of versions of documents grows exponen-
tially.

Change Size It is often the case that a change affects only a small part
of a document. Still, the version control and locking scheme is based on
the whole document which is often found as unnecessary coarse.

Requirements 75

Related documents It is often the case that many documents are
tightly related and are in fact version controlled together, but many sys-
tems can not represent the connection between related changes to differ-
ent documents.

Synchronization of developers To divide the product into modules,
each developed by a specific owner, is a common technique to provide con-
currency. Exploited to much, however, this strategy leads to a too static
division of developers. A bug concerning several modules, for example, can
not (is not allowed to) be fixed by one person, but has to be broken down
into several change requests, one for each module, resulting in a lot of
extra overhead. Instead it should be possible to allow several developers
to work within the same modules making it possible for an owner of a
change request to, consistently, make all the changes required. Better
awareness and a suitable synchronization model makes this possible.
Concurrency is resolved dynamically for each change request. Only
requests possible to work on concurrently are allowed at the same time.

Concurrency control Lock on check-out, as commonly used by many
version control systems, gets awkward to use when the group of people
involved grows. With a locking system there is a drive for using many
small documents since then more people can work simultaneously with-
out needing to change the same piece of information at the same time.
Locking also makes such a system hard to use in a distributed environ-
ment.

Configurations Configurations are often only described indirectly
through make-files, and although these can be versioned they can not
handle structural changes to a configuration since the underlying file sys-
tem is not versioned.

Awareness It is often hard to find out what documents other develop-
ers have changed, and what changes they have made, or even who
checked out a particular document. Providing some level of awareness of
what other developers are doing right now, have done and, preferably also
intend to do, seems essential in providing a flexible support for work pro-
cesses. In a distributed setting we lack much of the awareness due to
fewer meetings and informal contacts. The environment has to compen-
sate for this by directly supporting collaborative awareness.

Merge The (potential) problem of merging changes made in parallel is
still the most common reason to not work concurrently, and in particular
to not allow distributed development. Consequently, to reduce the prob-
lems related to merge is very important. It is not enough to just support
merge of single files but to allow merge of branches of the entire system.

Modes of collaboration The same environment (and its integrated
tools) should provide support for all the changing needs during different
phases of a project. Both asynchronous and synchronous collaboration
should be supported and it should be possible to switch easily between

76 The COOP/Orm environment

them. It is not sufficient to manually copy data between tools supporting
different needs.

Overview In most CM models atomic objects have evolution histories
and it is possible to see what have happened between versions of these.
There is a need to also see the evolution of the system being developed as
a whole. However, for configurations this information is harder to
retrieve. A requirement is thus to also support version control of configu-
rations, with one configuration representing the entire system.

Accessibility Despite the ever increasing bandwidth of the Internet/
Intranet the client-server solution with one server and clients all over the
world does not work in practice, due to latency, network failure, etc.
Instead an architecture allowing clients to access local servers is needed.
The access restrictions should be independent of the geographical location
and all servers should automatically synchronize themselves to keep all
data up-to-date and consistent. This to cope with both geographical distri-
bution (distributed groups) and with mobility, i.e. users travelling around
working at different sites.

7.2 Structured documents (spatial model)

The COOP/Orm document model follows the document model in the uni-
fied extensional versioning model (UEVM). This means it can be
expressed in a grammar as in Figure 12 on page 57, which is the most
general form of a grammar defining the model. All tools implementing
UEVM must follow this grammar, but can also have additional, more spe-
cialized, rules (compare with superclass and subclass). In COOP/Orm
such additional rules are also defined by a grammar. An example of such a
grammar can be seen in Figure 17, defining the structure of a book con-
taining a table of contents, chapters, and an index (optional). As we can
see a chapter can contain an arbitrary number of text paragraphs fol-
lowed by an arbitrary number of sections. Finally a section can contain
one or many text paragraphs. Comparing the specialized grammar with
the general one we can see that the B-node (book) corresponds to the T-
node (tree). The C-node (chapter) and S-node (section) both maps to the C-
node (Composite), and finally T (toc), P (paragraph), and I (index) all
maps to the N-node (atomic node). There are no L-nodes (links) in the

Figure 17 Grammar for a specific document.

D ::= B
B ::= T C* [I]
C ::= P* S*
S ::= P+

T ::= ‘text’
P ::= ‘text’
I ::= ‘text’

D - document (abstract node, non-terminal
B- book (concrete composite node, production)
T - table of Contents (concrete leaf node, production)
C - chapter (concrete composite node, production)
I - index (concrete leaf node, production)
S - section (concrete composite node, production)
P - paragraph (concrete leaf node, production)

Structured documents (spatial model) 77

book grammar. We can also note that since sections do not contain any
composition nodes, the book grammar has a limited depth.

Figure 18 depicts a snapshot of COOP/Orm with a document following
the grammar above. Actually it is a part of this thesis containing the table
of contents and the chapters. All chapters but one are iconized, but chap-
ter 2 is open showing us its sections and subsections.

The document structure is presented using nested windows, which
visualize the fact that a subsection really belongs to a section and a sec-
tion belongs to the chapter it is part of. That is, a child in the hierarchical
structure can not be moved outside its father, and closing e.g. a chapter
(iconizing it) also hides all its sections and subsections.

The document structure is edited using pop-up menus. Their contents
is context sensitive, following the grammar. I.e. the specific place in the
document a menu pops up, directly maps to a production node in the
grammar. Each row (option) in the menu corresponds to a production node
for that node construction in the grammar. In Figure 18 two pop-up
menus are visible (pinned). The top most has been popped-up in the outer-
most window corresponding to the B-node. This means that an T, C, or I
node can be created which maps to the ‘Create TOC’, ‘Create Chapter’,
and ‘Create index’ respectively. The menu below is popped-up in the chap-
ter window and thus maps to a C-node, making it possible to create P and
S nodes. Using context sensitive Pop-up menus to edit the structure
makes it possible to only create documents following the grammar (i.e. it
is impossible to create a document violating the grammar.). More details
about context sensitive editing in Orm can be found in [Min90].

7.2.1 Structure of documents
Since the book above has a strict hierarchical structure there was no need
for links in the book grammar above. A Java program, however, is not
always strict hierarchical. A Java class, for example, can be imported in
many other classes which makes the structure of classes a directed acyclic
graph (DAG), rather than a tree. Links between documents support such

Figure 18 The COOP/Orm user interface depicting the document model

78 The COOP/Orm environment

a structure and can be used to create a DAG of documents. Figure 19
depicts another possible book grammar, this time also using links. The
left hand grammar defines a book as a table of contents, an arbitrary
number of links to other documents, and an optional index. Note that
chapters are not directly contained within the book but that the links are
intended to refer to documents containing chapters. A document contain-
ing a chapter should follow the grammar to the right in Figure 19, i.e. the
document should only consist of one chapter which consists of a number of
paragraphs and sections. A snapshot of a book following these grammars
is depicted in Figure 20.

Figure 19 A grammar using links to other documents.

Book grammar
D ::= B
B ::= T L* [I]
T ::= ‘text’
L ::= <ver> <name>
I ::= ‘text’

D - document (abstract node, non-terminal
B- book (concrete composite node, production)
L - link to a specific version of another document
T - table of Contents (concrete leaf node, production)
C - chapter (concrete composite node, production)
I - index (concrete leaf node, production)
S - section (concrete composite node, production)
P- paragraph (concrete leaf node, production)

Chapter grammar
D ::= C
C := P* S*
S ::= P+

P ::= ‘text’

Figure 20 The book document contains links to documents containing the chap-
ters. Here, one of these links (chapter 2) has been opened, which in turn has some
parts open.

Version model 79

A link node is created exactly like any other node using a pop-up
menu, thus following the grammar. Each link has a ‘place’, or anchor,
within the document. Like all nodes a link can be both closed (iconized), or
open. When opened the entire document linked to, is opened in its con-
text, i.e. within the referencing document (chapter 2 document is opened
within the book document).

7.2.2 Discussion
Some of the requirements in Section 7.1 were based on the contradictory
requirements on the size of a document/object/file. In COOP/Orm a docu-
ment is intended to be larger than a ‘normal’ file. The advantage of having
larger documents is to reduce the number of items in the system configu-
ration. It is also easier to keep related information (and changes!)
together. The reason to not have large files is the problem to get an over-
view of the file contents when browsing, diffing, and merging. The struc-
ture of a document in COOP/Orm reduces this problem. Another reason to
have small files is to allow concurrency on a fine grained level, still using
locking on the file level. In COOP/Orm we do not use locking, but support
concurrent changes within a document which will be shown in the next
section. This implies that a user can group and organize the contents as
she/he wants, without having to consider the drawbacks of representation
and tool support.

7.3 Version model

The version model is a specialization of the version model in UEVM, i.e.
all node types (N, L, or C in the general grammar at page 60, or special-
izations of these types, e.g. the book grammars above) are explicitly ver-
sioned, and the creation of a new version of a node is triggered by any of
the following conditions (notation from the grammar in Figure 19):

• P, S, C-nodes - a new version is created when its ‘local data’ is
changed

• L-nodes - when name, or version is changed
• S, C-nodes - also new version when any of its sons is added, deleted,

or changed

As in the general model all changes to a document are made during a ses-
sion. In the COOP/Orm model a session involves three steps, (1) selecting
an originating version of the document and creating a new version from
it, (2) making a sequence of edits to one or several nodes within the docu-
ment, and finally (3) terminating the session by ‘freezing’ the new version.
Both the creation and ‘freezing’ of the version are explicit operations by
the user who thus determines the length of a session.

We use a terminology to name a node by giving the full path from the
Book-node (root) separating each level with a slash, e.g. {/3/1} means son 3
to the root and then son 1 to that node. In the figures we only write out
the son number due to the limited space.

80 The COOP/Orm environment

7.3.1 A session scenario
Figure 21 depicts an example session scenario. In (a) only one version
(version 1) exists of the document which is depicted by the version box at
the top. The box is closed which means that the version is frozen and thus
immutable.

In (b) a new version, 2, has been created from version one, thus start-
ing a session. The version box is open indicating that this version is under
construction. So far, however, no changes have been made to the docu-
ment, which thus is identical and entirely shared with version 1.

(c) and (d) depicts how changes are made to the document. Note that
all changes are made to version two. It is not necessary to create a new
version for each change, or for each node that is changed. Thus, a session
can be used to keep related changes, e.g. all changes made to implement
one task, together as one changes package - one version.

When finished the version is frozen, ending the session (e).

7.3.2 Fine grained incremental version control
Figure 22 is a snapshot similar to Figure 18, but also showing the window
‘Versions’, in which all the versions of the document are presented (in this

B

C T

P P
a) Version 1 of a
structured document

d) Node {/1/1} and
{/1/3} are modified

Figure 21 A session including many changes within the same document version.

1

2

2

3

1

B

C T

P P
b) Session started. Ver-
sion 2 of the document
is created, still identi-
cal to version 1

1 2

B B

PP

T C

c) Node {/3} and its sons
have been created and a new
version of the affected root
node has also been created

1

1 2

e) The sessions is
ended and version 2 is
frozen

Frozen, immu-
table, version

Open, mutable,
version (under
construction)

P
1

P

C

P P P
2

3

B B

PP

T C

1 2

C

P P P

C

P P

B B

PP

T C

1 2

C

P P P

C

P P

Version model 81

case version 1 and 2). Figure 22 also depicts ‘!’ and ‘+’ signs in front of the
titles. These are markers presenting the changes made (so far) in version
2, i.e. the current diff between version 2 and version 1.

During editing of a version, changes made to the document are marked
as they are typed. The COOP/Orm text editor maintains the version his-
tory of every character during editing. When a character is added or
deleted, the version information of the document is updated instantly -
the version information is updated incrementally during editing. Note
that the version information is fine grained in that the information
describes the history of individual characters rather than entire lines.

At the textual level new text is blue and underlined. Deleted text is
struck over with a blue line. The metaphor is that the editor is using a
blue pen and also the version box representing the version edited is blue.

At the structure level, three different signs are used to mark changes:
‘+’, ‘-’, and ‘!’. ‘+’ and ‘-’ means the node is added and deleted respectively.
In Figure 22, version 7 is under construction and all changes made during
the session is marked. ‘Chapter 5’ is added, thus marked with a ‘+’. The ‘!’-
sign means changed, i.e. either has the contents of the node itself been
changed (first section in chapter 1), or have any of the sons to a composi-
tion node being changed following the definition of change propagation
made in Section 6.1.2 (Section 2.1, chapter 2, chapter 1, and the document
itself).

Figure 22 Snapshot of COOP/Orm depicting version 7 under construction.
Changes are marked as they are typed, both structural and textual changes.
Change propagation makes it easy to find changes also in large documents.

82 The COOP/Orm environment

7.3.3 Browse in time
So far we have had only very few versions of a document, which may not
always be the case. When many versions have been created, maybe even
by several authors, it is often useful to be able to retrieve and compare old
versions to see how the document has evolved. In COOP/Orm this func-
tionality is offered by interacting with the version graph (VG), named
‘Versions’ in the gui. All commands like; change the currently viewed ver-
sion, compare two versions, create a new version, freeze a version, etc. are
initiated by selecting a version in the VG and then use the pop-up menu
to find the correct command operating on the selected version.

In Figure 23A the version graph consists of seven versions (which we
do not claim is many). The box representing version seven is open with a
handle indicating we are editing this version. Both version six and seven
are filled with black which means these versions are within, what we call,
the ‘viewed window’. The youngest version in the ‘viewed window’ is the
version viewed, together with the differences to (changes made since) the
oldest version in the ‘viewed window’.

The rectangle around version 4 means this version is selected. The
pop-up menu in (A) offers the user commands on this version, e.g. to cre-
ate a new version from it (top most option). In Figure 23B we see the
result from the user instead selected the ‘Set Compare’-command in the
menu, thus extending the ‘viewed window’. All versions between four and
seven are now viewed and their version boxes thus filled black.

It is also possible to temporarily pause the edit session and view
another version (or start a new, parallel, session). In (C) the user has
selected version 5 and executes the ‘Set Viewed’ command, with the result
as depicted in (D). Version 5 of the document is presented together with
differences to version 4 highlighted. Note that the handle on version 7
remains, meaning it is possible to get back and continue to edit this ver-
sion. This is always possible until the version is explicitly frozen.

Figure 23 Version graphs...

A B

DC

Version model 83

Figure 24 is a legend of the markings occurring in the Versions win-
dow. The polygon depicting the ‘viewed window’ does not exist in the gui,
but is drawn here to show the versions defined as within the ‘version win-
dow’.

7.3.4 Visualizing version history during editing
As can be noted in Figure 23B, the user still edits version seven and, at
the same time, views all the changes made since version 4. I.e. it is possi-
ble to move ‘Compare’ to any older version while still editing. To distin-
guish between old changes and changes made in this session, all changes
made in this session (in this case between version 6 and 7) are blue, and
all other changes are black.

7.3.5 Local version graph
In most cases large parts of a document will be unchanged during a ses-
sion. Working with a document for a long time, doing a lot of tasks each in
its own session will create many document versions. Looking at a specific
node, however, it may only have been modified in some of these versions.
To be able to see the history of a specific node in the context of the docu-
ment evolution, we use a ‘local version graph’ (LVG). A LVG visualizes the
version history of a specific node in the context of the version history of
the document. Figure 25 depicts an example of a local version graph. As
we can see this node did not exist in the versions 1-5, and 8 of the docu-
ment, but was created in version 6. The node was then also changed in
version 7. When version 5 and 7 were merged this node was included and
also further changed during the merge (a single line between version 7
and 9 depicts the node was changed). After also changing the node in ver-
sion 10 it was included in the merge of version 11, this time without
changing it during the merge. The double lines between version 10 and 11
depicts that all changes in the branch were merged into the main branch.

Note that ‘changed’ also here includes ‘change propagation’, i.e. the
LVG is the version graph for the entire subtree with the actual node as
the root node. If the LVG depicts ‘no change’ between two versions, this

Figure 24 Legend for version graph markings

frozen version
created by Tor
(closed box)

selected version
(rectangle)

version currently edited
by another user (open
box without handle)

not frozen version
created by this user.
(closed box with han-
dle)

currently edited by
this user (open blue box
with handle)

‘viewed window’.
Editing version 8 view-
ing all changes made between ver-
sion 2 and 8 (via 7). (Filled black
boxes)

84 The COOP/Orm environment

means nothing has been changed in that entire subtree. Actually, there is
no difference between a local version graph for the root and the document
version graph (‘Versions’ window). The document VG is a LVG for the doc-
ument root node. There are typically no ‘equal lines’ in the document VG
since the document in practice always is changed between two versions.

Figure 26 is a screenshot of COOP/Orm depicting several opened LVGs
in the same document. LVG (A) depicts the history of the introductory
text to section 2.1. LVG (B) depicts the history of its father, the entire sec-
tion 2.1. This means, of course, that there can not be any changes marked
in (A) not marked in (B). Here, A depicts a change in version 4 and B
changes in both version 4 and 5. LVG (C) depicts the version graph of
Chapter 1, which, in this respect, is a complete separate part of the docu-
ment than section 2.1 and its subsections.

Figure 25 Local Version Graph

Grey means node does not exist in this version

Legend

Black means node does exist in this version

Single line means node has changed between these version

Double lines (equal sign) means node is not changed

Figure 26 Snapshot depicting local version graphs.

B

A

C

Version model 85

7.3.6 Versioning configurations of documents
A relation between two documents is a link from a specific version of a
document to a specific version of another document. To the left in
Figure 27 we can see the document ‘Thesis.orm’ containing links to four
chapters, each stored as a Document itself. Currently version 3 of ‘Thesis’
is viewed. The link to chapter 3 ‘Configuration Management’ is opened
and we can see its version graph and contents. The version filled is the
one linked to. Here, version 3 of ‘Thesis’ links to version 3 of ‘Configura-
tion Management’.

As defined in UEVM, a link can not be changed if the document ver-
sion containing the link is frozen. In the COOP/Orm gui, this is intuitive
since all nodes, including links, are equally treated - they can only be
changed during a session. During a session two types of changes can be
made to a link: (1) change the version linked to (change ‘ver’), or (2) link to
a completely new document (change ‘name’ and ‘ver’). In Figure 27 (right)
version 4 of ‘Thesis’ has been created started a new session. The only
change made so far to ‘Thesis’ is a change to the ‘Chapter 3’ link, which is
now linked to version 5, which is reflected by the ‘version window’ in the
version graph. Also all changes made to the document linked to are pre-
sented (here some spelling errors have been corrected in 3.3.3 and 3.4 has
been added).

In this example the document ‘Thesis’ can be seen as a configuration of
documents. Using this terminology it is thus possible to compare two ver-
sions of a configuration. Changes made (new, deleted, or changed nodes
and links) are marked as usual (‘+’, ‘-’, and ‘!’). Opening a changed link
directly show the versions linked to and what changes have been made
between these version. I.e. it is easy to go from a diff on the system level,
following links, narrow it down to the leaf nodes and the level of charac-
ter.

One important property of UEVM is that configurations are bound. In
COOP/Orm this means that a frozen version of a document always links
to frozen versions. Or, in other words, it is impossible to end a session if
there is any link from the document to versions of other documents not
yet frozen. In current implementation this ‘bottom-up’ freeze of linked
documents has to be made manually. The plan is, however, to also imple-

Figure 27 Link to another document

86 The COOP/Orm environment

ment a top-down freeze that automatically traverse the document struc-
ture and ends all sessions needed. More details of this future work can be
found in [MA96].

Change propagation for L-nodes
Versioned links to other documents makes it possible to build acyclic
graphs of documents. They also makes it possible to limit the affect of
change propagation. As explained in Section 7.3, any change to a docu-
ment makes also the document considered changed - also a rebinding an
L-node to a new version. However, a document linked to can be changed
without necessarily changing the link. I.e. new versions can be created
while still referring to an older version. Rebinding links to newer versions
is entirely the responsibility of the document containing the links. This is
in line with how the responsibility normally is distributed among the
owners of modules or components.

7.3.7 Discussion

Fast navigation
Change propagation using !-signs together with the nested windows facil-
itate fast navigation and search for differences between versions. All
nodes not marked can be ignored (usually most of the document). Marked
icons are opened until we find the diff on appropriate level, e.g. the tex-
tual level.

Presenting large version graphs
In all long-lived systems the version history becomes long-winded and
partially uninteresting. In particular long sequences of successive
updates tend to be of little interest after a while. This is a general prob-
lem that can be observed already with common tools for versioning com-
ponents. In the extensional model the effect of ‘intermediate’ versions
may contribute to make such sequences for configurations even longer. In
any case the problem is general and in a graphical interface (such the one
used by some of the systems described earlier) one may have to consider
techniques where such sequences are collapsed, but still accessible, in the
presentation.

Edit and compare to older versions at the same time
The possibility to move ‘Compare’ while editing is especially useful when
writing program code. It can, for example, be used to reduce the risk for
redoing the same mistake over and over again.

Versioned workspace
One practical use of versioned links is to have an outermost document
containing only links to other documents, the ones actually containing
data. We call such document a ‘workspace document’. New documents are
added to the workspace by linking to them, others are removed by delet-
ing the link. In this way also the workspace is version controlled.

Merge model 87

Nested sessions
A user can choose to modify documents in short sessions thus giving
detailed control and traceability by creating new versions of the configu-
rations for each edit. It is also possible to use long sessions and let ver-
sions of documents remain open allowing many changes of their (link)
nodes. In a structure of linked documents each document has its own ses-
sion. It is thus possible to, within the structure, obtain a mix of these two
models to get a balance of strong version concentration and traceability.

Synchronization model
In Section 5.5 we described different models to synchronize co-working
developers, e.g. the check-out/check-in and long transaction model. In this
section (7.3) we have explained how new versions are created during ses-
sions. At first the version graph view looks very similar to the check-out/
check-in model. We find, however, our model more like the long transac-
tion model. Some of the differences are:

• The long transaction model (LTM) uses optimistic check-out, i.e. the
user is not warned if a second (third, ...) version (branch) is created
from a version, which is the case for checkout/in where the creation
of a new branch is an explicit operation. Instead LTM utilizes the
fact that conflicts are very rare, and when raised they can be
detected during check-in (commit). COOP/Orm also uses optimistic
check-out.

• Checkout/in operates on single files (maybe possible to operate on a
set of files, but that is more like script support built on top of the
model rather than the fundamental concept). A long transaction, on
the other hand, operates on the entire system or parts of the sys-
tems such as modules etc. Many changes, perhaps to many files, can
be made within a single transaction. In COOP/Orm the scope of a
transaction is a document, i.e. the entire document can always be
edited during a session.

7.4 Merge model

One of the main reasons not to allow concurrent work and especially dis-
tributed work is the fear of complex merge conflicts. There are some draw-
backs with current solutions that leads to this fear;

• A merge may create conflicts that are hard to resolve.
• When the merge tool has made a merge proposal it is hard to over-

view what really happened. Instead of reviewing the proposal, often
the developer just accepts the merge made and hopes the compiler
will find possible errors.

88 The COOP/Orm environment

• Normally, only merge of single files is provided, while the require-
ment in fact is to be able to merge two versions (branches) of a con-
figuration (module/system/application).

• Often lack as strategy for how to create branches and how they
should be merged, which undoubtedly leads to a system evolution
hard to overview.

By providing advanced support for the merge process, the drawbacks can
be reduced and concurrent work could be encouraged.

Our approach to a solution is both in the area of tool support and
model/process of how to work. The main idea is that it should be easy to
create branches of a document and that this, together with the awareness
and merge facilities, will facilitate developers to work concurrently within
the same document. Our main ‘strategy’ is to:

1. use awareness to avoid conflicts,
2. automate merge proposal based on default rules, and
3. support consistent decisions during interactive merge.

It is also important to visualize the merge result, both the proposal and
during interactive resolving the merge conflicts, so that the user actually
can make good decisions during the merge.

7.4.1 Avoid conflicts in the first place
Instead of just focusing on resolving conflicts they should be avoided
already in the first place. Not by avoiding branches, but by increasing the
awareness of what is happening in parallel branches. The COOP/Orm
‘awareness model’ has been developed with the aim to make it easy for a
developer to see what is happening in parallel with his/her work. It is
easy to browse into the work done by other developers, even as they are
currently working, also while still working in your own branch. In this
way conflicts can be hindered before even created. Details about different
levels of awareness can be found later in 7.5, ‘Awareness model’.

7.4.2 Automatic merge proposal based on default rules
A merged version is created by viewing one of the versions to merge
(called ‘Main’), select the other version to merge (called ‘Merge with’), and
then select the ‘Create merge’-operation in the pop-up menu. The system
finds the youngest predecessor of these two versions (called ‘Fork’) and
does a 3-way merge proposal based on default rules (called ‘Merged’). A
screenshot from a merge is depicted in Figure 28 (unfortunately without
colors). In this example ‘Fork’ is version 4, ‘Main’ is 8, ‘Merge with’ is 7,
and ‘Merged’ is 9. During the merge all changes made from ‘Fork’ to
Merged’ is presented color coded. Changes made from ‘Fork’ to ‘Main’ are
marked red, changes made from ‘Fork’ to ‘Merge with’ are marked green,
and changes made during the merge (i.e. from ‘Main’ or ‘Merge with’ to
‘Merged’) are marked blue. Figure 28 will be further explained in Section
7.4.3, ‘Visualize merge result’.

Merge model 89

We note that when a ‘normal’ (not a merge) version is created it is
identical with its predecessor, i.e. the diff between the new version and its
predecessor is empty. This is not the case for a merged version since it is
typically changed in both branches.

A document is a structure (configuration) of nodes which may be of dif-
ferent types. The system therefore does a two-level merge; First is the
structure level merged and then the node contents for each node.

Structural merge
Since a node can be added, deleted, changed, or not changed in both alter-
natives the combinatorical number of merge cases is sixteen. However,
some of these are not possible, e.g. can the same node not be added in both
branches. Adding a node in both branches results in two nodes with dif-
ferent identity, one added in branch A and one added in branch B. Left is
eleven possible merge cases, see Figure 29, where also the default merge
rule for each case is depicted.

The main underlaying rule when two branches are merged, is that all
changes should be included in the merged version as far as possible. How-
ever, for the cases ChDel and DelCh this is not possible. For these we
decided to let the change win over the deletion. These default rules are no
exact science. Currently they are hardcoded, but we plan to make them

Figure 28 Version 8 (‘Main’) and version 7 (‘Merge with’) are merged creating
version 9 (‘Merged’). Their youngest common version is version 4 (called ‘Fork’).
Changes made from ‘Fork’ to ‘Main’ is marked red and changes made from ‘Fork’ to
‘Merge with’ is marked green. The merge session is still open allowing the user to
modify the merge result.

90 The COOP/Orm environment

editable by the end user to implement different merge strategies. E.g.
another possible strategy could be to let one of the branches, e.g. ‘Main’,
always win, i.e. to select ‘A’ for both ChDel and DelCh.

Merge of node contents
When the structure is merged also the node contents has to be merged.
For all merge cases but ChCh this is trivial since the default rule on the
structure level decides the contents. When a node is changed in both
branches, however, the content editor has to merge the contents. The
rules for how to do this merge is decided by the content type. Each content
type has its own editor defining the rules. In the COOP/Orm text editor
(implemented by Patrik Persson and described in [Per98]) we treat each
character, rather than character position, as an identity, which means we
can not ‘change’ a character. This reduces the number of merge cases for
each character to 6 as depicted in Figure 30. The default rules follows the
underlaying model that all changes from both branches should be
included in the merged version. This, even though there is a conflict
present.

Suppose a version of the document contains the word ‘beleeve’ (sic.).
Two different users create new versions from that version in different
branches. The first user replaces the word with the word ‘think’, while the
other user re-spells the word to ‘believe’. When merged the editor will
identify the combination of the two as the deletion of the strings ‘bel’ and
‘eve’ (as done in the first version), the deletion of the second ‘e’ (both ver-
sions), the addition of the string ‘think’ (first version), and the addition of
the letter ‘i’ (latter version). This results in the string ‘thinki’, which is
probably not what either of the users intended.

No Branch A Branch B Case Marking Rule: select

1 Not changed Not changed NotNot / none

2 Not changed Changed NotCh / ! B

3 Not changed Deleted NotDel / - B

4 Changed Not changed ChNot ! / A

5 Changed Changed ChCh ! / ! A&B

6 Changed Deleted ChDel ! / - A

7 Deleted Not changed DelNot - / A

8 Deleted Changed DelCh - / ! B

9 Deleted Deleted DelDel - / - A&B

10 Not changed Added NotAdd / + B

11 Added Not changed AddNot + / A

Figure 29 All possible merge cases for a composite node when two branches (A
and B) are merged.

Merge model 91

To make the user aware of situations as the one described above,
COOP/Orm defines some combinations of add and delete as conflicts. This
conflicts are clearly marked and requires user intervention to get
unmarked.

The definition of a conflict is:

When a change from both branches appear in the same posi-
tion in the text.

Figure 31 depicts the result of the example above. The ‘red branch’ has
added ‘think’ and deleted ‘bel’ and ‘eve’. The green user has added ‘i’. The
first ‘e’ is deleted with black color since both branches deleted it. A brown
rectangle enclose changes made by both branches at the same position.

7.4.3 Visualize merge result
One very important property of a merge tool is to present the merge result
to the user so that he/she can resolve any conflicts and finally approve the
merge. In most traditional merge tools the two versions merged is pre-
sented in windows beside each other with synchronized scrolling. For each
difference (or conflict depending on tool) the appropriate lines are high-
lighted and the user may select the line from one of the alternatives or
change it completely. I.e. the file is traversed line by line and it is very
hard to get an overview of where in the file most of the conflicts are.

Figure 28 depicts the result of a merge proposal in COOP/Orm. Ver-
sion 8 (Main) has been merged with version 7 (Merged With) resulting in
version 9 (Merged). The merge situation is presented to the user using the
structure similar as when comparing two versions. Each node has three

No Branch A Branch B Case Marking Default Rule

1 Not changed Not changed NotNot none

2 Added - AddNot A

3 - Added NotAdd B

4 Deleted Not changed DelNot A

5 Not changed Deleted NotDel B

6 Deleted Deleted DelDel A&B

Figure 30 All possible merge cases for a string in a text node when two branches
(A and B) are merged.

Figure 31 A conflict on the textual level is detected and marked.

92 The COOP/Orm environment

possible markings: (1) changed during merge, (2) merge case, and (3)
selected branch, see Figure 32.

‘Free’ editing during merge
The user can edit the document during the merge session in exactly the
same way as during a session creating a ‘normal’ version. At each node ‘!’,
‘+’, and ‘-’-signs marks such changes and propagates as described in
Section 7.3.2. The metaphor of using a blue pen is used also during merge.

Merge case
In Figure 29 all possible merge cases are listed. Each node is marked with
its merge case. The case depends entirely on the changes made in the
branches merged, and can not be affected during the merge session. A
potential conflict is when a node has been changed in both branches, thus
marked with ‘!/!’. The user can thus easily open nodes marked ‘!/!’ and see
what has been changed. In the example depicted in Figure 28, Chapter 2,
Chapter 3, and TOC contains potential conflicts. Chapter 2 is opened and
we can see that section 2.1 has been changed in both branches (and dur-
ing the merge), and we thus has to look at the textual level to find out if it
is a conflict or not. We can also see that there is no section changed by
both branches in Chapter 3, and thus no conflict on the textual level.

The fact that the marking for a potential conflict propagates up the
hierarchy helps the user to navigate through the document. We call this
conflict detection propagation. Similarly, all nodes marked ‘/’ (merge case
‘NotNot’) can be left unopened, which in practice often is a larger part of
the document. The effect is that the user can spend more time working
with the potential conflicts rather than on browsing through other less
interesting parts of the document.

The user can go through the merge proposal and all the potential con-
flicts like editing any other version. No special order is enforced. Instead
the nodes can be visited in any order to resolve conflicts. It is possible to
mark visited nodes as treated as a help to remember what parts of the
document were already checked.

Figure 32 Markings during merge.

marks if any ‘normal’ changes have
made during the merge session.

merge case - for this node, see Figure 29.
Left corresponds to ‘Main’ (red) and
right to ‘Merge with’ (green)

selected branch - depicts an arrow pointing at the selected branch.
<- : all changes from the ‘Main’ branch is selected and none from ‘Merge with’
-> : all changes from the ‘Merge with’ branch is selected and none from ‘Main’
<-> : changes from ‘Main’ and ‘Merge with’ according to the default merge rules.

Merge model 93

Selected branch
The symbols ‘<->’, ‘<-’, and ‘->’ depicts from which branch changes should
be included into the merge. The merge proposal made when the merge
session is started is based on default rules, which thus is visualized by
these markers. Looking at Figure 28 again, we can see that the merge
case ‘/!’ results in ‘->’ (section 1.1) and that ‘+/’ results in ‘<-’ (section 3.5).
Also note that since all sections changed in chapter 1 are marked ‘->’, also
the entire chapter 1 can be marked ‘->’.

How the proposal can be modified by the user during the session is
elaborated on in the next section.

7.4.4 Facilitate consistent decisions during merge
The merge proposal only starts the merge session. Now, the user has to
view the proposal and resolve conflicts (if any), and make any other
changes he/she wants to before ending the session. It is possible to accept
the proposal and freeze the version as it is, but it is also possible to edit it
as any other version until frozen.

In addition to the normal edit commands (write and delete text, add
and delete nodes) it is also possible to select (include) changes from one of
the branches to the merged version. In COOP/Orm we make it possible to
do this in a consistent way, by providing such selection on any level in the
document hierarchy. Using the pop-up menus the user can make consis-
tent merge decisions for single changes, nodes, or complete parts of the
documents. The user just select one of the commands: ‘<-’, ‘->’, or ‘default’,
from a pop-up menu to make a merge decision at that specific level (as the
pop-up menu was opened at). I.e. the user can include a specific change,
all the changes in a node, or all the changes in a complete tree of nodes
from one branch and include them in the merged version. The command
‘default’ results in the original default proposal (for that part of the docu-
ment). Figure 33 depicts a snapshot of user editing the merge proposal by
executing commands from pop-up menus. Traditionally the user can walk
through a list of changes and make the decision on one change at them
time.

A possible scenario is that a user wants to update his/her branch with
all the changes made in another branch, but not to the entire document
but to one part of it, e.g. a class. To do this he/she first initiate the merge
of the two branches, then selects his/her branch for the entire document
and then the other branch for the specific class. Thus only changes made
in that class are included in the merge. The rest of the document is
unchanged.

Figure 33 The same node as depicted in Figure 32. To the left has ‘Main’ been
selected and to the right ‘Merge with’. The change ‘PDM has...’ is an addition made
during the merge (blue when in color) and included in both selections.

94 The COOP/Orm environment

Another typical scenario is to repeatedly update from one branch to
another. The main requirement for this operation is that changes already
merged in a previous merge should not turn up as conflicts in succeeding
merges. Another common requirement is to make it easy to exclude some
parts from the merge, which have to be done every time the update/merge
is done. The possibility to consistently exclude parts of the document
makes such choice easy and consistent.

The support for consistent merge within COOP/Orm is also described
in [AM01].

7.4.5 Merge of configurations
Not only ‘normal’ nodes can be merged, but also links to other documents.
As the other nodes, also a link node can be added, changed, or deleted. A
‘changed’ link node means the version linked to is changed. If the docu-
ment linked to is changed this is similar to adding a complete new link
node, and removing the old one.

The default rules for merging links are similar as those for composite
nodes as depicted in Figure 29. For all merge cases but ‘ChCh’, we let the
change be included in the merged version. Remains does the interesting
case ‘ChCh’. Similar to how text is merged within a text node, also a link
node has to merge its contents. We have identified three common situa-
tions:

1. The version linked to is changed in both branches, and it is changed
to the same version (version x). In this case there is no conflict and
the default rule is to continue to link to version x.

2. The version linked to have been changed in both branches, but to
different versions (x and y respectively) within the same branch.
The default rule is to link to the youngest version of x and y.

3. The version linked to have been changed in both branches, and
even to different branches. In this situation it is harder to decide
what to do. We could either decide one version from one of the
branches, or we could create a new version to link to. E.g. the
merged version of the two versions linked to from the two branches.
This is actually our default rule. The merge of the document linked
to is initiated automatically, but have to be frozen as any other
merge before we can link to it.

Merge model 95

Figure 34 shows an example of situation 3. The document ‘MergeExam-
ple.orm’ links to the document ‘aDocument.orm’. The screenshot to the
right depicts the situation directly after the merge has been initiated.
Note that the user has finish the merge session of ‘aDocument’ before it is
possible to finish the merge session of ‘aMergeExample’.

Figure 35 depicts more formally the three situations above as two
cases and their default rules.

The three situations describe above covers most of the situations actu-
ally occurring in a project. But also somewhat different situations may
occur. It is, for example, possible to change a link to refer to an older ver-
sion. If the link is changed in only one branch the older version will be
included in the merge (following the default rule for ChNot or NotCh).
However, if the link is changed in both branches, both changing to an
older version (but not the same). Is it still an intuitive rule to select the
youngest version? The explicit representation of configurations in COOP/
Orm makes these situations visible and allows the user to make good
decisions. It remains for us to further evaluate these situations and
maybe change the default rules or define more cases in order to cover all
situations best possible.

Figure 34 Examples of merge cases when merging a document containing a ref-
erences to other documents.

No Branch A Branch B Rule: select

1 Changed to ver X Changed to ver X A&B

2 Changed to ver X Changed to ver Y if sameBranch(X,Y) then
youngest(X,Y)

else
Initiate merge
link to merged version

Figure 35 Merge cases and default rules for a link node changed in both
branches.

96 The COOP/Orm environment

7.4.6 Discussion
The (potential) problem of merging changes made in parallel is still the
most common reason to not work concurrently, and in particular to not
allow distributed development. Current merge tools have improved dur-
ing the last years. Especially most of them now have a 3-way merge and
sound default rules. However, a remaining shortage is the difficulty to get
an overview of the proposed merge. The lack of overview might make it
difficult for a developer to make detailed decisions during merge. We see
our increased support for awareness of what has happened and what is
happening in parallel branches, together with the better overview of the
merge result and the possibility to consistently select changes from the
branches, as means to reduce this shortage and make merge a safer oper-
ation, eventually making it easier to work concurrently in general and
distributed especially.

COOP/Orm does not only support optimistic check-out, but also ‘opti-
mistic merge’, i.e. it is always possible to create a new merged version.
Two versions merged, can always be merged again, of course, resulting in
a new merged version parallel to the previous merge. This is probably
possible to do in other systems as well, but in COOP/Orm it is intuitive
and simple. E.g. the ‘extra’ branch needed due to the multiple merged ver-
sions is automatically created.

In the current implementation of COOP/Orm the default rules are not
editable by the end user. The plan, however, is to visualize the table of
merge cases and default rules and make them editable by the user. One
possible customization of the default rules is to make the merge asymmet-
ric. E.g. if the ‘main’ branch has higher priority than ‘merge with’ the con-
sequence will be that for both ChDel and DelCh the ‘main’ branch is
selected, maybe also for leaf nodes with the case ChCh. There have been
some research on this [MD94], but here the merge ‘proposal’ is final and
not interactive.

Future work is also to define what should be considered ‘hard con-
flicts’, i.e. the subset of potential conflicts that should be given an addi-
tional marking (also propagated to be easily traced). Maybe should the
user be forced to resolve such conflicts.

Moreover it should be interesting to support not only the detection of
syntactic conflicts, semantic conflicts as well. However, a semantic conflict
detection will require an interpretation of the node contents. For a discus-
sion on research in semantic diffs and conflict detection, see Chapter 12
‘Future work’.

7.5 Awareness model

To be aware of what other developers have done and are doing is called
group awareness or just awareness. This term was first introduced in the
CSCW community where collaboration between people is an important
research area [DB92]. In COOP/Orm these ideas have been transferred to
a development environment (also presented at CSCW93 [MM93]). As
described above it can reduce the risk of creating merge conflicts that may
be hard to resolve. A quick view of the documents current status and

Awareness model 97

ongoing work is often enough to confirm if other users are working with
potential conflicting changes or if you, safely, can continue with your
work.

Many systems provides some mechanism for notification, often imple-
mented using email. However, the solution is not to notify you as a user of
everything that happens all the time. This will surely only lead to infor-
mation overflow and eventually all notifications will be ignored. Instead,
it is important to find an appropriate level of awareness.

There are two important characteristics about the COOP/Orm aware-
ness model. First, it provides the user with several levels of awareness
intuitively chosen through the version graph pop-up menu. Secondly, the
awareness is well integrated in the document model using the hierarchi-
cal model and propagation.

The different levels of awareness are:

• Shared version graph All users working on the same document
share its version graph, which makes it possible to see when ver-
sions are created and frozen. Meta data is also attached both to
each version and to each branch. Data about creation time and who
created it is always attached. Any other data can also be added.

• View version To view a specific version of the document, just
click on the version in the version graph. If the version is frozen,
this is just a very convenient and easy way to view the evolution
history of the document, especially since it is easy to compare ver-
sions as well. It is also possible to view an open version, i.e. a ver-
sion not yet frozen. If the version is currently edited by another
user all the changes made are viewed directly as they are typed.

• Synch viewing Similar to ‘view version’ to a version currently
edited. However, in ‘synch viewing’ also the gui operations are
viewed. This means that the viewer also follows commands like
move, resize, open, and close a window. The mouse pointer and cur-
sor movements are not followed.

• Share version Synchronous editing. Both users can edit the
same version of the document, and they have exactly the same view,
i.e. What You See Is What I See (WYSIWIS). To establish this
awareness level both users have to agree, since it is not only aware-
ness but actually a shared workspace.

• Hypothetical merge Also synchronous editing but in two differ-
ent versions. The one setting up the hypothetical merge will have a
view as if the two versions were merged, although they are not fro-
zen yet. I.e. he/she is able to see all the changes made by the other
user (especially potential merge conflicts) and, at the same time,
edit his/her own version.

The levels ‘view version’ and ‘synch viewing’ are established just by mov-
ing the version viewed to a version edited by another user (as described
earlier in Section 7.3.3). A more detailed description of the hypothetical
merge view will follow below.

98 The COOP/Orm environment

7.5.1 Hypothetical merge
The main reason to provide awareness is to avoid merge conflicts. I.e. to
avoid that two branches concurrently developed evolve so that changes
leading to merge conflicts are made in the first place. Ideally, to avoid
these conflicts we should be noticed of changes made by other developers
causing potential merge conflicts directly as they are made and not when
we eventually merge. The hypothetical merge view is close to this ideal
situation.

A hypothetical merge is the view of two versions merged. It is ‘hypo-
thetical’ since none of the versions merged have to be frozen, and thus no
‘real’ merge can be created! Therefore no merge is actually made (or at
least not saved), but the user can view how the merge would look like if
the versions were frozen and then the merge was performed. Of, course
the merge will change as the two versions are edited - which is the main
idea. The view is changed both when the user viewing the hypothetical
merge is editing his/her version and when the other user edits his/her
version. Not only changes in terms of added and deleted characters will be
visible, but also new or changed merge cases (merge cases are described
earlier in Section 7.4.2). Typically, when (if) one of them make a change
that introduce a potential merge conflict this will directly be marked as a
conflict.

Figure 36 depicts a snapshot from a hypothetical merge. The user
(called A) working in version 8 has established a hypothetical merge to
version 9 (edited by a user called B). The color coding is similar to the one
during normal merge. The merge itself can not be merged, but instead the
blue color is used as during normal editing presenting all changes made
in the currently edited version (version 8). Previous changes made in A’s
branch (version 6) are marked red and changes made in B’s branch (ver-

Figure 36 Snapshot depicting the hypothetical merge view.

Awareness model 99

sion 4 to 9) are marked green. The merge case for each node (window) and
the selected branch is presented in the window header. The node ‘Class
Text’, is marked containing a potential conflict. Opening ‘Class Text’ (as
shown in the figure) directly reveals that no changes made within the
class are conflicts at the textual level. If, in this situation, user B should
start to make changes in, for example, ‘Set Pos’, the header marking will
directly change to ‘<-> !/!’, and user ‘A’ can open the node and see if there
is a reason to contact ‘B’ in order to avoid conflicts.

It is also possible for user ‘A’ to make a merge decision by selecting a
branch as described in Section 7.4.4. However, since this only affects the
view, it can only be used as an additional help for browsing and elaborat-
ing on how a later ‘real’ merge can look like.

Note that the merge cases for all nodes/windows may change as they
are edited. E.g. if the user is currently working in a node not changed in
the other branch. If the other user suddenly makes a change anywhere in
this node or in that subtree of the document the case immediately will
change to ChCh (conflict). It is then possible for the user to contact the
other user if needed to avoid later conflicts.

It is not possible to freeze the merged version before its predecessors
are frozen. It is also possible to just undo the merge and continue to work
as normal, going back to a lower degree of awareness.

The hypothetical merge is a combination of individual work in isola-
tion (editing your own version) and synchronous editing. Even though it is
so close to synchronous editing, setting up a hypothetical merge does not
affect the other user at all. He/she continues to work as normal and is not
affected. However, it is possible for this user to also, at the same time, set
up a hypothetical merge between the same versions. Such ‘duplex hypo-
thetical merge’ together with a voice link (e.g. a phone) is very close to
synchronous editing, but still working within their respective versions.

7.5.2 Discussion
The awareness model discussed provides strong support to avoid potential
merge conflicts. I.e. when editing a document it is quite easy to be aware
of other developers also working within the same document. Of course,
this model could be mixed with the notification model to be aware of
actions like creating a new version in documents currently not open by
the user. This could trigger opening the document enabling all, more fine
grained, awareness mechanisms. Also an integrated support for audio
could further improve the more synchronous collaboration modes.

In COOP/Orm all levels of awareness are always accessible for all user.
It could be discussed if a user should be able to block other users to view
his/her version while editing it. Such a mechanism is implemented in
TUCAN [SH01], integrated with a ‘contribution/benefit’ relation motivat-
ing each user to allow awareness of their work. Currently COOP/Orm has
been designed as open as possible in order to evaluate the benefits of full
awareness. Possible restrictions could then be added if needed.

In this section we have presented the awareness functionality in
COOP/Orm separately as one separate module. A main advantage of
COOP/Orm is, however, how different functionality, such as awareness, is
integrated within the environment. The developer does not need to know

100 The COOP/Orm environment

about different levels of awareness and there is no explicit commands for
awareness. Instead, everything is controlled implicitly through the ver-
sion graph. Behind the scene, a higher level of awareness leads to a
higher frequency of checkpoints (saves) and more messages are sent
between the clients, but this technical level is not directly visible to the
user.

7.6 Client-server architecture

COOP/Orm follows a client-server architecture. The server stores all the
documents in its repository and synchronize commands from the clients.
In contrast to most version control tools we do not follow the workspace
model with the client storing a local copy of the document when checked-
out. A workspace is off-line from the server which thus can not support
synchronous collaboration. Instead, all clients are always on-line, and
directly modifies the (original) document stored by the server. Moreover,
there is no ‘save’-button. The client automatically, and frequently, check-
points all changes to the server. From the user perspective every edit
operation seems to be directly sent to the server, but in reality there is
some buffering. Depending on the level of awareness required by the cli-
ent, or by another client affecting this client, the checkpoint frequency is
tailored by the server.

7.7 Replication (server-server) model

Replication is an architecture where several equal servers are located at
different sites. These are automatically synchronized at close intervals
(hours, minutes, seconds) and all of the servers have (with very little
delay) the same information. The goal is that a developer should be able
to work at any site (towards the server at that site).

Two results from the case-studies made in [Ask99b], was that (1) only
one server will not work in practice for distributed development as it will
be the bottleneck decreasing the usability too much. This means the data
has to be replicated on many servers. (2) To really support the situation of
distributed groups as described earlier in Chapter 4, the replication has to
be symmetric and totally transparent to the user. I.e. the user should be
able to work exactly the same way towards the system, independent to
which server he/she connects to.
The COOP/Orm model includes replication of data on many servers
through a server-server protocol. The replication is transparent to the
user in the way that access rules are the same (e.g. it is possible to create
versions on any branch) independent of which server the client is con-
nected to, i.e. symmetric replication. Figure 37 is a schematic picture
depicting the symmetric replication. The servers contains replicated data
which is automatically synchronized (the double arrow). I.e. they,
together, acts as one server (dashed line) and clients (small circles) can
connect to any of them with the same behavior as the result. The dotted

Replication (server-server) model 101

line symbolizes a virtual site, i.e. that the behavior will be as if all clients
were located at the same site.

The COOP/Orm replication model is based on the optimistic check-out
model. No locking is used when a version is checked-out, but it is always
possible (and part of the model) to work concurrently by creating
branches later merged. Since no locking is used, nothing has to be sent
out to all the other servers and there is no need to wait for a reply to cre-
ate a new version. On the contrary, it is always possible to create a new
version. This will be sent to the other servers which will update their cli-
ents which will show the new version in their version graphs. However,
since the client creating the version do not wait for this to happen, it is
possible that another user, connected to another server, also creates a new
version on the same branch. This scenario is depicted in Figure 38.
Within the delay of replicating the creation command (this delay may be
long due to network failure), two independent clients connected to differ-
ent servers create a version from on the same branch (from the same pre-
decessor). They work with these versions without knowing the existence
of each other. When connection is re-established and the information is
replicated, COOP/Orm automatically renumbers one of the version num-
bers and creates the branch needed to work concurrently (as they are).
This is no conflict, or unusual situation since branching is the normal
work model. It is possible for them to merge their versions whenever suit-
able.

Figure 37 Symmetric replication provides one large virtual server to which the
clients can connect to.

network failure connection
re-established

Figure 38 Synchronization of servers.

manual
merge

102 The COOP/Orm environment

Many other tools, e.g. ClearCase [Rational], use another model for rep-
lication based on branch ownership. This means that all branches are
‘owned’ by a server (site). Clients are only allowed to create new versions
on branches owned by the server they are connected to. Therefore this
model does not support symmetric replication. To allow other clients to
create versions, it is possible to ask for the ownership, moving it to
another site.

7.8 Related work

The COOP/Orm model is very general and touches on aspects covered by
many other diverse systems. Most of these are specialized for a particular
situation or style of interaction. Comparing our model with other models
and systems we have chosen to structure the presentation according to
different interaction modes. Related work is also described in Chapter 11
and Chapter 6. In Chapter 11 other systems are described more generally
and in Chapter 6 models related to the UEVM are compared more specifi-
cally.

Merge support
Using a 3-way merge at the character level (rather than line based) often
gives a ‘good’ default merge suggestion. Very seldom are there any con-
flicts that has to be resolved, and merges not detected as conflicts are
often correctly merged. The problem is the combination of offering a 99%
default merge and too poor overview of the result. These together invites
the user to just click on the OK button. The COOP/Orm provides a much
better overview utilizing the document structure and propagation of con-
flict detection markers. It also makes it possible to edit the proposal in a
consistent way - not change per change. We have not seen the approach of
markings or consistent merge decisions in any other tool.

Some systems (e.g. RCS, CVS) still only provide a line based, non inter-
active, 2-way merge. Such a merge tool is too bad to be used in a system
using an optimistic checkout policy (which CVS does). Many systems pro-
vides a 3-way merge which is much better than 2-way merge to detect
potential conflicts. However, most of them are still line based. Teamware
[Team94], for example, has a nice graphical user interface presenting the
differences at the character level, but the conflict detection is still line
based.

The Suite model by Munson and Dewan [MD94] is a user tailorable
merge tool controlled by a matrix specifying how changes from two ver-
sions should be combined. Changes can be specified as acceptable directly
or after user interaction (typically to resolve conflicting changes).

There is nothing in the COOP/Orm model that prohibits integration
with similar functionality, but in the current implementation the merge
support is more fixed. We do, however, find support for our default rules
since they coincide with the generic example matrices discussed by Mun-
son and Dewan for atomic elements as well as for structures although
COOP/Orm support hierarchical structures directly. COOP/Orm is also
built on a version control system and differs from Suite in that it works on

Related work 103

the actual, recorded, edit operations rather than calculated differences.
The mode of user interaction is also very different. In the COOP/Orm
implementation the user is in control, exploring and editing the default
merge suggestion. The work on Suite seems more targeted towards a pro-
gram driven situation with a single scan of the document where the user
is involved now and then to resolve conflicts.

The PREP [NCK+92, NKCM90] system have a notion for selecting
granularity of an edit change as characters, word, sentence, or paragraph.
This is a powerful notion in order to control how conflicting changes are
defined and to ensure consistent merges. For example it might be mean-
ingful to consider including only full sentences from a version, and not
mix changes from two versions to the same sentence without user confir-
mation.

The support for selective granularity is in COOP/Orm to a limited
extent present in the hierarchical model where nodes and subtrees are
considered as conflicting if changed in both versions. Our approach is,
however, different since the conflict can be viewed on several levels at the
same time.

Subversion has a traditional workspace work process, which is to
check out files to a workspace and then continuously update this work-
space with new changes from other developers committed to the reposi-
tory. Subversion (in contrast to CVS) supports these update merges in
that changes already updated in previous updates are not again marked
as conflicts, i.e. the fork version (in the 3-way merge) is not still the ver-
sion the workspace was created from, but the version from which the lat-
est update was made from. This problem arises only for workspaces
(anonymous branches deleted when committed). Using branches, as in
COOP/Orm, the system can easily find the youngest common fork at the
time for merge independent of how previous merges were performed.

Browsing, relaxed synchronized editing
The GROVE system [EGR91] is an example of a synchronous editor,
intended to support brainstorming activities. All users share the same
workspace and can change any text they like. GROVE uses the outline
metaphor (a variant of split-combine) to allow users to work on different
parts in relative isolation. GROVE is thus built on a relaxed form of
WYSIWIS where each user can control the spatial details of his or her
view. Access rights can be used to support users working alone or in sub-
groups, on a piece of the document for a while. The experience from
GROVE has led to recognition of different kinds of entries in the shared
document. Reflective, independent and consensus entries seem to match
three activities: agenda (pointing out problems or items for discussion),
proposing (proposing changes where several alternatives might arise),
and, decision (the group is agreeing on a particular alternative). They also
recognize partitioned and recorded entries which seem to be the result of
specialized activities in brainstorming.

Our hierarchical representation and presentation directly supports
outline editing, but is more powerful since it is not limited to only one
level and any part of the document can be viewed at the same time. The
synchronous editing mode is in our model supported by ‘shared version’

104 The COOP/Orm environment

and ‘hypothetical merge’. ‘Reflective nodes’ are handled in the same way
as reviewing (describe below). The ‘independent nodes’ can thus be han-
dled in our model by a user simply creating a new window. The creation of
‘consensus nodes’ is handled by accepting an ‘independent node’ in a
merged version. GROVE is also supporting a protection mechanism which
enables individuals or groups to have private sections of the document. In
our model this is covered by protection on versions which when relaxed
makes the changes (and additions) in this version visible for others. An
additional capability of our model is traceability (who made which contri-
butions) since the participants are editing their own versions (which
might later be merged).

SASSE [BNPM93], and its predecessor SASE, also supports synchro-
nous editing using a replicated architecture. Independent simultaneous
work in different parts of the document is supported, but also WYSIWIS
with telepointers. To avoid conflicts, locking at the user text selection level
is used. Awareness is supported both with multiple color-coded indicators
on a scroll bar and through the ‘gestalt view’ presenting a condensed view
of the entire document as well as all collaborators’ positions and text
selections.

DistView [PS94] is a toolkit supporting synchronous collaboration over
wide area networks. It allows application windows to be shared while still
allowing other application windows to be private. Users export and/or
import windows explicitly and shared windows are synchronized (i.e. syn-
chronized scrolling and the mouse used as telepointer). Locking is used to
avoid conflicts.

Our model directly supports independent simultaneous work in differ-
ent parts of a document. The model could also be used to support strict
WYSIWIS and telepointers although we have
not yet developed these aspects. The synchronization could then be done
on the level of windows which would give a DistView-like model.

Reviewing, serialized, asynchronous work
PREP [NCK+92, NKCM90] is an example of an asynchronous editor sup-
porting collaboration. It allows only one user to edit a document at a time,
but has specialized support for commenting a document. A document is
organized as a number of columns. The author may create the document
contents in one column, and a reviewer, may for instance, create a new
column for his/her comments and bind the different comments to places in
the author’s column. The PREP editor thus mainly supports asynchro-
nous collaboration for authoring in form of reviewing and commenting.
SASSE [BNPM93] supports an annotation mechanism that allows
authors to exchange notes and comments.

Our model can support the same task as PREP, although with a less
specialized user interface. A reviewer can create an alternative of the doc-
ument and add the comments. The author can at a later time (or actually
at the same time if desired) set up an hypothetical merge to the reviewer’s
alternative and obtain the comments as markers in his/her own alterna-
tive. The author may then choose between just reading the markers as
the document is revised in his/her own alternative and merging the two
alternatives to a version containing the comments for further revisions.

Related work 105

PREP also has facilities to filter changes according to size (displayed as
changed character, word or sentence). This is a facility not implemented
in COOP/Orm, but which an editor built on our model also could provide.

MILO [Jon95] is a tool for authors of structured documents containing
text and graphics. A hierarchical structure of notes, each containing text
or graphics, represents a document. The document structure and the note
content may be changed at any time. Unattached notes or note structures
can be added and then later merged into the main document using a
Liveware merge [WTCG91]. Each note stores its history of activity, but
there is no explicit version control supported. Several representations of
the document can be viewed, e.g. the document structure is browsed and
edited through the main window and all the notes are in separate unre-
lated windows. MILO uses queries to identify notes changed in a particu-
lar time period.

We have in our model avoided using several views and modes to
present different aspects. Nested windows are used to allow both struc-
tural and textual editing in the same view. The version graph is used
(besides awareness) to give a ‘time-oriented view’, browse arbitrary ver-
sion, compare versions, and to allow parallel development and merge. The
local version graph in our system maps the attached history to a node.
The change propagation scheme supported by COOP/Orm marks changed
nodes and make a separate query language unnecessary.

Asynchronous collaboration in software engineering
Software Engineering is definitely a collaborative process, but as Wein-
berg states in [Wei71] besides the collaborative aspects, programming is
implicitly an activity performed by (many) individual users. as writing a
book or composing a piece of music. Only communication synchronously
split each individuals working hours into fragments between meetings.
Instead it is important to support an asynchronous collaboration, making
it possible to ‘catch up’ on projects or to communicate in an time effective
asynchronous way.

CVS [Ced02] is built on top of RCS in an attempt to support structures
in terms of Unix directories in which files are version controlled together.
Complete directories with related files are checked-out and checked-in
together following the long-transaction model, rather than individual
files. Moreover CVS allows several users to check-out the same directory
and thus provide some support for asynchronous collaborative editing.
When checked in again, CVS attempts to merge directories and can han-
dle the simple situation when a single file is modified in only one of the
alteratives. CVS will detect situations when files have been modified in
several alternatives, but such conflicts have to be merged manually. CVS
uses copy-merge and provides mechanisms for split-combine to reduce
merge conflicts. Each file has its own version history (managed by RCS
[Tic85]).

Teamware [Team94] is a system for distributed development of soft-
ware based on a ‘workspace’ metaphor. The idea is to support synchroni-
zation of replicated copies of directories with files and version history (in
SCCS files). Files can thus be changed in parallel. Teamware supports
merging the changes by synchronizing the copies, albeit Teamware insists

106 The COOP/Orm environment

on a linearized update history implied by the workspace model. It detects
merge conflicts, but again merge has to be done manually.

When used for asynchronous work our model shares the common
approach of CVS, and Teamware, optimistic check-out and support for
structure. COOP/Orm also provides awareness (more than notification
mails), and better support for merge, which reduces the drawbacks of the
optimistic approach. Also, due to the integrated representation, a much
more powerful and direct manipulation user interface for comparing and
viewing versions.

Asynchronous collaboration, distributed/mobile computing
MESSIE [SHC93] is a system for distributed collaborative editing based
on email and RCS. Documents located on a designated central server can
be checked-out and a copy sent to the user for modification. When mailed
back for check-in the new version replaces the old one (using RCS to keep
track of deltas) and other users can then check-out the document. Mean-
while they can only view the document and queue requests to check-out
the locked document. The system thus uses turn-taking and users quickly
learn to use split-combine to partition a document in smaller pieces in
order to allow parallel work. MESSIE uses a time-out facility in order to
avoid infinite locking caused by slow or misbehaving users.Users must
handle the tedious merge situations that in this case will occur when the
first copy is eventually checked-in again.

The IRIS system [Koc95] supports asynchronous editing of structured
documents in a distributed environment. Each user has a replica of the
document and optimistic concurrency control is used, allowing any change
to the local replica. All updates are multicasted to all the other users,
making it possible to discover that parallel modifications have been made.
There is, however, no fine-grained conflict detection, and merge of the
alternatives is not supported.

COOP/Orm supports distributed and mobile computing through repli-
cation and multiple servers. In addition it provides awareness, completely
avoids locking, and supports merge also on the detailed level. These are
aspects we consider crucial for a model to scale up in a distributed envi-
ronment.

Duplex [PSS94] is a distributed collaborative editor supporting asyn-
chronous interaction over wide area networks. The model used is based on
replication of kernel objects, allowing changes to be made locally. Decom-
position, using a hierarchical structure, decreases the risk of conflicting
changes. If, however, a conflicting change occurs anyway, there is no sup-
port for identifying the conflict nor merging the alternatives, but ‘last
store wins’. Awareness is supported through the kernel objects. ‘Journal
lockup’ enables the user to acknowledge important operations performed
on a kernel object by other users, and a ‘bulletin board consultation’
enables the user to generate, filter, and read messages related to a seg-
ment maintained by the kernel object.

COOP/Orm also uses decomposition to reduce conflicts. However, in
the case of a conflicting update (i.e. the same version has been used as
predecessor in both servers) an alternative is created instead of just over-

Related work 107

writing the changed object. This means that no information is lost and the
alternatives can later be merged by any of the users.

Hypertext authoring
SEPIA is a system for collaborative editing of hypertext documents
[HW92, SHH+92]. It offers three modes of interaction called: individual,
loosely coupled, and tightly coupled respectively and switching between
them. The individual mode works like asynchronous editing. In loosely
coupled mode a node may be edited by one user at a time while other
users may see the changes, i.e. synchronous editing based on locking.
Finally, tightly coupled mode adds shared views, telepointers, and audio
communication. With a further development called CoVer [HH93] version
control for hypertext documents are offered. Hypertexts place special
demands on the version control server since it handles a general graph
structure rather than a tree.

Although not its main ambition, our system can be seen as offering
support for versioned hypertext documents through its versioned links.
Viewed as a hypertext system, COOP/Orm is unusual since it supports an
internal tree structure within each node in the hypertext graph. A capa-
bility that might be useful if it is common that parts of hypertext docu-
ments are organized as trees.

LINCKS [Par94] is an object-centered multi-user database system for
information system applications. The focus is on sharing, provided by
linking objects into ‘composite objects’. A change to an object results in
updates to all compositions which have that object as a component. The
user interface hides the internal structure and a ‘composite object’ is
edited in a single display window. Awareness is supported by parallel
editing notification, i.e. the users are warned when parallel editing occurs
within one object.

In the COOP/Orm model alternatives are created more explicitly when
a new version is created. Awareness is then used to avoid unintended con-
flicting changes rather than notification when running into them. By the
same argument the internal structure is not hidden, but depicted in the
user interface by the nested windows. Change propagation is done within
a hierarchical document, but rebinding of versioned links are done explic-
itly in the importing document where a new version has to be created, let-
ting the user import other objects to be in control.

108 The COOP/Orm environment

7.9 Conclusion

In this chapter we have described the COOP/Orm approach to support for
distributed developers working on shared documents. It contains a broad
spectrum of functionality integrated into one homogenous model. We
claim that the integration itself is important and necessary to provide
more and better support than separate tools. In COOP/Orm functionality
traditionally offered by separate tools is provided within the environment,
including:

• text editor
• structure editor
• diff tool
• merge tool
• synchronous editing
• awareness

The integration implies that all this functionality works together, which
had been impossible using separate tools, e.g. here it is possible:

• to diff and merge both structure and text,
• to diff while editing,
• to receive awareness while editing,
• for two developers to collaborate synchronously while still working

in their own ‘sandbox’.

We have also shown how an integrated support for fine-grained version-
ing nicely implements most of this functionality. In a distributed environ-
ment there is a need for providing a stable basis for discussions. It is not
possible to collaborate, if the shared documents discussed are not stable
and distributed to all involved. Versions serve this purpose, and therefore
versions are crucial in a groupware system. Below is a list of properties in
COOP/Orm related to versions:

• bound configurations are fundamental as the foundation of discus-
sions and collaboration

• optimistic check-out and strong support for merge makes it possible
to work concurrently and distributed

• the version graph is the first level of awareness
• integrated browsing and diff serves the purpose of asynchronous

awareness
• viewing versions under construction provides synchronous aware-

ness
• the awareness levels ‘shared version’ and ‘hypothetical merge’ pro-

vides synchronous collaboration.

A pitfall when discussing tool functionality is that in larger systems
almost everything is possible to do. However, it is a considerable differ-
ence between ‘possible to do’ and ‘support for’. For example, in COOP/Orm
it is easy to browse both in space and time. This can be done also in many

Conclusion 109

other systems, but is often harder and only provided in a separate tool. To
compare two versions in CVS, for example includes the following process:
check out version A to A’, rename it, check out version B, send the A’ and
B to the diff tool. In COOP/Orm the same diff is presented - in the editor -
after two clicks and one menu selection. Another example is that in many
tools a specific tag or branch type has to be established in order to create a
branch. Since it is part of the normal process supported by COOP/Orm it
is as easy to create a new branch as it is to create any other version. If a
certain operation should be frequent according to the work process, it
must also be well supported in the tool used - not just possible.

Scalability
An important factor of a tool often neglected when designing prototypes is
the performance when used in larger scale, or for short scalability. Many
different factors can be larger or many more. Below is a list of such factors
and, for each, a short reasoning on why COOP/Orm scale for that factor.

• Document size: The nested windows provides a very easy to use
interface which makes it possible to quickly iconize large parts of
the document and focus on one or more details from different parts
of the document. Together with markings propagated up the hierar-
chy also changes made between versions and/or potential conflicts
during merge can easily be found - also in large documents. For
large documents containing links to other documents, it is still easy
to iconize parts on any level hiding parts not interesting for the
moment.

• Number of versions: It is easy to ‘move around’ and compare ver-
sions and it is easy to get an overview of the entire system evolu-
tion. Using a facility to collapse sequences of versions in the view,
makes it possible to view only strategic versions such as fork and
merge nodes, or nodes marked with specific tags.

• Number of users: When the number of users increase also the con-
currency increases. The support for awareness and the strong sup-
port for merge is thus important, and provided in COOP/Orm. Also
the support for different levels of collaboration makes it possible to
support many types of users during different phases of a project.

• Number of sites: Clients on different sites should avoid to connect
to an off -site server. Less performance due to server bottlenecks
and slow networks increase the risk of developers not following
defined work processes, which in turn may lead to neglected testing,
less awareness and merge conflicts. The symmetric, transparent,
synchronization of replicated servers in COOP/Orm reduces this
risk and support also the hardest situation of distribution - distrib-
uted groups.

Applicability
During a project different phases requires support for different working
modes. The possibility to easily move between asynchronous and synchro-
nous work provides such support.

110 The COOP/Orm environment

Chapter 8 The COOP/Orm
client-server
model

Previous chapter described COOP/Orm from the user perspective, i.e. the
functionality, user-interface, and usability. In this and in the two follow-
ing chapters, we will focus on the implementation and the technically
design decisions made, e.g. the client-server model, storage format, proto-
cols, scalability, etc.

As almost all version control systems, COOP/Orm has a client-server
architecture. As described in Chapter 7 ‘The COOP/Orm environment’
COOP/Orm also implements a server-server communication to handle
distribution over wide area networks. In order to really cope with our pri-
mary requirements of distribution and synchronization of users working
concurrently, we have made some untraditional decisions both when
designing the client-server and the server-server protocols.

In this chapter we will describe the client-server model, i.e. what func-
tionality have been implemented in the server and clients respectively.
We will also describe and discuss the different types of commands and
replies, i.e. the client-server protocol.

8.1 Requirements and trade-offs

When designing a client-server application there are some basic decisions
that have to be made: How thin/thick should the client be, i.e. how much
(and which) responsibility should the client and the server have respec-
tively? How general/specific should the server be? Is a specific client-
server protocol needed or can a more general one be used?

We argue that information that is fundamental for the application
domain should be supported by both the client and the server. Also prop-
erties assumed to be static can be implemented into the server in order to
increase the performance. Properties that probably change during time,
on the other hand should not be hard-coded into the server. Instead these
should be implemented in the client in a way which makes it easy to mod-
ify or extend. The server implementation should in this perspective be

112 The COOP/Orm client-server model

general and compatible enough to still work with such client extensions.
Thus, a client can be extended and directly work with the same (old)
server implementation. Since COOP/Orm is focused on supporting several
users concurrently modifying structured documents this should be
strongly supported. These properties can be ‘hardcoded’ in both the client
and the server.

Below is a list of important requirements that must be taken into con-
sideration during the design work and short hints of how they are coped
with in COOP/Orm. In the rest of this chapter we will further elaborate
the solution part. Terms in italics are described further in the following
subsections.

• Document structure. Both the client and the server must support
the hierarchical structure. The Nodename (the name/address of a
node in a document) is part of the protocol and not only an attribute
stored in a general server database.

• Fine grained version control. Also versions are fundamental and
included into the client-server protocol (not only a node attribute).
It must be easy (from the user perspective) to create new versions
and they must be cheap to manage in terms of time and space (per-
formance). This leads to sharing of data between versions and delta-
technique.

• Awareness. The delta-technique used allows the users to compare
and merge operation-based diffs and conflicts on the character level
rather than computed diffs on the line level. To enable an aware-
ness model integrated into the editors used, we use a client-server
push-model (request-install protocol) instead of the more traditional
request-reply protocol.

• Merge must be strongly supported (e.g. two-level merge and consis-
tent merge). Functionality in both the server and the clients are
needed.

• Many types of node data. It is unpractical to fix in advance all type
of data all users want to store. Thus the server should be data type
independent to allow clients to add new editors for new data types
(type generic server) without the need to update the server.

• Mobile users. Transparent server-server replication (symmetric
replication)

• Good performance for intended use. Access pattern for interactive
use should be supported:
– Open/iconizing windows (subtrees) of the document.
– Frequently move ‘Viewed’ and ‘Compare’.

• Scalability. The implementation should scale in the terms of docu-
ment size, number of versions, number of users, and level of distri-
bution.

Principle design decisions 113

8.2 Principle design decisions

8.2.1 Document structure and version control
The hierarchical structure and the integrated version control are in our
model fundamental, and are therefore understood and supported by all
parts of the system, including the server. This means that version num-
bers and addresses of specific nodes in the document hierarchy are
included in the client-server protocol. As depicted in Figure 39, the node
tree in the client reflects the hierarchical structure of a specific version of
a document, in this example version 1. This hierarchy is visualized by
nested windows in the user interface as depicted in Figure 18. Attached to
each node is the data presented in the windows (e.g. source code or text),
handled by the integrated editor (here depicted as rectangles). We call the
‘address’ to a specific node in the tree, its nodename (which also can be
seen in the Figure, e.g. {1/2}).

The more complicated structure in the server stores all the versions of
the document, or more precisely all the changes made to the document,
making it possible to retrieve any version of it.

A client’s request for a specific node’s data (GetData) both includes the
node address, i.e. the nodename (‘Node’) and the version of the document
required (‘Ver’). The example shows such a command requesting data.

As a response to this request, the server sends a ‘GetDataReply’ mes-
sage to the client requesting the data. The Data and Deltas sent are the
information needed to re-build the version requested (the Deltas can be
empty).

8.2.2 Delta technique (node content deltas)
Instead of storing all versions in full only deltas between versions are
stored in older versions. This is no new idea, but have been used in many
tools starting with RCS [Tic85] and SCCS [Roe75]. The primary reason
for using deltas has been to save disk space, since a delta normally is
smaller than the full data. However, we do not use the delta technique
primarily to save disk space, but to be able to present accurate deltas
between versions to the user. The deltas are by many tools calculated by
comparing the full text of two versions, a technique that may lead to infor-
mation loss. Instead, we let the client create both the full data of the new
version and the delta at the same time, which makes it possible to store

Figure 39 Representation of a document in a Client and in the Server.

GetData(Ver,Node)

GetDataReply(Ver,Node,

Client Server

ver. 1

Data,Deltas)

v.1 v.2 v.3{1} {2}

{1/1} {1/2}

114 The COOP/Orm client-server model

operation based deltas rather than the actual difference, i.e. also how the
change was made. This also makes it more easy to store deltas such as
move and copy.

The deltas are stored as in traditional systems, using backward deltas.
In changed nodes, the contents is stored using delta-technique. Figure 40
depicts an example where a node has been changed in two succeeding ver-
sions (n+1 and n+2). The newest full text is stored in the youngest (latest)
version (n+2). In the preceding version, the backward delta is stored, i.e.
the delta required together with the new full text to rebuild the old text.
I.e. to re-create the node in version n, the Full text, deltan+2, and deltan+1
are needed.

In our model, the editor must understand the notion of versions and
deltas. When a node is changed both the new full text and the delta are
constructed by the editor and sent to the server. The operation to store
data (PutData(Ver,Node,Full,Delta)) thus takes both the full text (‘Full’)
and the delta (‘Delta’). This in contrast to systems where only the new full
text is sent, and then the delta is calculated by the server, using diffing
algorithms to find out what was really changed.

Similarly, when the data at an old version of a node is requested the
server finds the full data, possibly of a younger version, and if so, all the
deltas needed to recreate the node in the requested version. The editor
receives the data and deltas and presents it to the user as one full data.
Figure 41 depicts the request and installation of node {1:/1/2}. I.e. the
server does not have to interpret either the data or deltas in any way.
Only the client (or actually the editor) deals with its own data.

Also when deltas should be presented to the user comparing versions
of the same node, the server finds the requested deltas. This time the edi-
tor presents them as a diff instead of recreating the older version. The edi-

Figure 40 Node data stored using delta-technique.

version n version n+1 version n+2

deltan-(n+1) delta(n+1)-(n+2) Fulln+2

Figure 41 Full + deltas needed to recreate an old version.

GetData(1,{1/2})

GetDataReply(1,{1/2},

Client Server

ver. 1

D1-2 D2-3 F3F3&D2-3&D1-2

F3,D2-3;D1-2)

1 2 3

Principle design decisions 115

tor thus has to separate deltas needed to recreate the viewed version with
the deltas presented as a diff.

More details about the integrated editor can be found in [Ols94] and in
[Per98] and later in ‘The COOP/Orm framework’ on page 150.

8.2.3 Structural deltas
A composition node can store application data in the same way as a leaf
node does, but it can also ‘contain’ children. The status of these children,
both in current viewed version and changes between versions, can also be
requested from the server. Actually, this is a requirement to effectively
implement lazy loading of nodes not yet requested by the user as
described later in ‘Scalability’ on page 116. Note that ‘changed’ here
means changed also according to the propagation. In Figure 42 an exam-
ple of three versions of a document is depicted. In this example, request-
ing the structural delta of node {1} between version 2 and 3 will return
that the node has been changed and that the change is that son 3 has
been added and son 1 has been changed. Requesting the delta between
version 1 and 3 would result in a response that also son 2 has been
changed. All server operations (requests) are listed in Appendix A:
‘Dynamic behaviour - notation’.

In COOP/Orm, unchanged parts of the document are shared between
versions rather than copied. Figure 43a depicts the conceptual model of
two versions of a document, here with one leaf node changed in the
younger version, n+1. A schematic view of how this is implemented is
depicted in Figure 43b. The left subtree not changed is shared between
the versions. The requests ‘GetData(n,{1/1})’ and ‘GetData(n+1,{1/1})’ both
will give the same result from the server. More details about the storage
format and the space required to store all versions and branches can be
found in the next chapter ‘The COOP/Orm storage format’ on page 125.

Figure 42 Edited node data, added nodes, and change propagation.

version 1 version 2

edited

{1} {2}

{1/1} {1/2}

version 3 ‘Changed’
node

Added
nodeadded

Figure 43 Sharing of node versions

version n version n+1

edited

version n version n+1
full text

delta
1 2

1 2

(b) Sharing node versions(a) Conceptual view

116 The COOP/Orm client-server model

8.2.4 Type generic server
The current implementation of COOP/Orm has one editor implemented, a
text editor, but more specific editors for graphics, programming source
code, etc. are planned. To make such extension possible we first of all
made the server type generic. I.e. in order to extend the client with a new
editor with a new data type, we do not have to extend or re-implement
anything in the server. As described above it is the responsibility of the
client node editor to provide the server with both the full data of a new
version and the delta required to rebuild the preceding version. Also when
an old version is required the server retrieves the full data of the latest
version in that branch and all the deltas required to rebuild the required
version. It is thus only the client editor that need to understand the for-
mat of the data and the deltas. The server never parse or interpret the
node contents itself, but treats it as a string of bytes. The server, however,
does know to which versions a specific delta belongs and it can find all the
needed deltas to rebuild a requested version.

Chapter 10 ‘The COOP/Orm architecture’ further describes the client
architecture using a framework design to make it easy to extend the cli-
ent.

8.2.5 Push model (request-install protocol)
In Figure 41 we can see an example of a server request and its response.
It is important to note that the request and the response are not synchro-
nized. I.e. the client does not wait for the reply on a request. Instead, the
response is sent as a separate message to the client. When the client
receives such a message, the data is ‘installed’ to the correct node updat-
ing the user view. In this way the user is never blocked out waiting. How-
ever, if the response is slow it will take some time for the requested
information to be presented to the user.

To implement the push model means that the client has to be stateless,
since it must always be able to receive messages from the server, e.g. con-
taining data or deltas. Actually, this technique is used to also implement
awareness, which is ‘responses’ never requested, but sent due to actions
made by other clients.

8.2.6 Scalability
One very important issue easy to forget when building a prototype is to
make it scalable, i.e. making not only small examples possible but real
industry projects as well. In a large document with a long history consist-
ing of many versions, retrieving an old version could potentially be a time
consuming operation. In the situation with the user often changing the
viewed version and frequently comparing it to other versions (see usabil-
ity in Section 7.3.7), long delays are not acceptable. In order to scale up to
handle large documents with many versions, it is important to reduce the
communication between the client and the server and especially avoid
‘ping-pong’ communication with many small packages.

In connection to data retrieval COOP/Orm ‘optimize’ the communica-
tion in two dimensions, both in space and time;

Principle design decisions 117

• Lazy data and delta retrieval. The hierarchical structure is utilized
to limit the data retrieved when, for example, a new version of the
document is viewed. Only data for open windows are retrieved, i.e.
if a window, in the user interface, is iconized and consequently
there is no need for data for the corresponding node, no data is
retrieved. The request is instead made on demand when windows
are opened (if ever). In this way complete subtrees can be loaded
lazy, which makes the number of nodes that retrieve data propor-
tional to the number of open windows and not to the document size.

The access pattern from a user frequently opening and iconized
windows, e.g. following change markers to find what have been
changed between two versions must be implemented efficiently. The
server commands ‘GetSonAdmData’ and ‘GetSonAdmDelta’
requests information about all the sons to a node. Which sons have
been changed, added, deleted, or not changed is returned together
with administrative information such as window position, is the
window open or closed, etc. Note, that ‘changed’ here means
changed according to the UEVM, i.e. the node content itself has not
necessarily been changed. A server providing such operations
makes it possible to avoid a ‘ping-pong’ protocol asking each son for
its status.

• The clients cache deltas. Attached to each delta returned from the
server are two version numbers (specifying the transition between
these two versions) telling the client where the delta belongs. This
makes it possible for the client to treat each delta individually,
which in turn makes it possible to incrementally retrieve deltas for
a node instead of reloading the entire history every time it might be
a change. Figure 44a depicts a version graph for a document where
version 4 is viewed and compare with version 2 (differences are
highlighted to version 2). If Compare in this situation is moved to
version 1, only the deltas between version 1 and 2 are retrieved -
and only for the visible nodes. The new deltas are then, in the pre-
sentation, concatenated to the already presented. If then Compare
is moved to version 3 no deltas are needed at all, but the delta
between version 1 and 2 and between version 2 and 3 can now be
dropped. Examples of moves of Compare and Viewed, and what
data and deltas are needed are further described in Section 8.2.7.
The requirements on the format of the Data and Deltas are defined
in Section 9.8.

Figure 44 Version graphs depicting different Viewed and Compare situations

(a) single development line (b) branching into two alternatives

118 The COOP/Orm client-server model

Storage space overhead is an important aspect when managing large sys-
tems. When storing components, standard delta storage techniques can be
used as usual for compact storage of revisions. Here should thus be no
inherent difference between our model and a traditional approach. On top
of that, the COOP/Orm model can represent internal structure in a docu-
ment, which can be used to share common nodes and subtrees between
variants facilitating compact storage and fast retrieval of variants. Here
our model thus has an advantage. The representation of bindings between
documents, L-nodes, is comparable to what is already present in form of
external declarations (or comparable mechanisms) in source-files. The
representation of explicit versions of these bindings is an additional, but
very small cost and to store differences of these bindings is very compact.
It should be compared to label all files in a system using the traditional
approach. Here our model is thus likely to come out even better. Although
we have not made a careful study of this we are confident that our
approach will come out favorable in a comparison due to the benefit of the
hierarchical structure when storing variants.

8.2.7 Version tube
The two well motivated ‘optimizations’ described in Section 8.2.6,
together with support for concurrent development and merge, makes it
necessary to extend the client-server protocol with more elaborated ver-
sion information. The solution we have implemented is based on the
underlaying assumption that we do not want to create a situation with
data and deltas from different branches for different nodes, since this
should increase the complexity of the caching delta-algorithms mentioned
above. Thus all deltas retrieved from the server should come from the
same branch. As a consequence, it is not always enough to only give a par-
ticular version requesting a delta, but also the path to a particular end
version (latest, youngest, version in a branch) must be known. We call the
data structure to specify such a path for a ‘version tube’. (See also [Ask96])

We previously talked about Figure 44a depicting a version graph with
Viewed set to version 4 and Compare set to version 2. This means that for
all open windows full data of version 6, deltas to rebuild version 4, as well
as deltas between version 2 and version 4 to highlight differences, are
loaded. If a window is opened and new data and deltas are needed, the
data request will return the required data without any problem. This
example is simple to handle because in the version history without
branches, there is no ambiguity of which delta to retrieve.

The situation gets, however, more complicated when the development
branches into parallel alternatives. Figure 44b depicts a situation where a
version older than the fork version is viewed. If a window is opened in this
situation, the question arises: from which alternative should data and
deltas be retrieved to rebuild version 3? The already loaded nodes got
their data from one of the alternatives (4 or 5), but which one depends on
how the user came to this situation.

A similar problem in the same example arises if Viewed is moved to,
for example, version 5. If this alternative was used rebuilding version 3 no
deltas are needed at all, since they are already loaded. However, if the
other alternative was used, both data and delta rebuilding version 3 using

Principle design decisions 119

the new alternative instead, must be retrieved. Thus, the requirements
are; answering the question: ‘from which alternative did we get the data’,
and it must be possible to retrieve delta from the same alternative again.

Yet another situation is depicted in Figure 45a, occurring when Com-
pare and Viewed spans a ‘split-merge’. Both loading a node (as a conse-
quence of opening a window), or moving Compare to version 4 or 5 gives
the client the same situation of not knowing which alternative to retrieve
deltas from or if they already are retrieved.

In COOP/Orm the requirements addressed by the examples above are
implemented using the ‘version tube’, which is a data structure represent-
ing a path through the version graph. A tube always starts from the Com-
pare version, runs through Viewed, and ends in the last version of an
alternative, see Figure 45b. The tube drawn in the figure symbolizes how
the client remembers from which alternative deltas were retrieved. If
Viewed in this situation is moved to version 5, the client knows that the
deltas needed for the new situation already are loaded and no deltas are
requested. Each client creates its own tube when the first data is
requested and uses it to remember the way deltas have been retrieved. To
guarantee deltas to be retrieved the same way again when new windows
are opened, the version tube is used as a parameter to the data request
operation (server command). The server still must support the version
and the delta technique, but is now limited to the sequential version his-
tory in the tube when it searches for data and deltas.

When the user moves Viewed or Compare, first all the structural del-
tas are retrieved to find out which nodes have been added, deleted or
changed. Since complete subtrees may become visible or have been
changed the procedure of retrieving structural deltas and node deltas can
be repeated many times, one for each level in the tree. Finally, for nodes
with changed client data, the tools (e.g. an editor) need to find out
whether new data or deltas are needed. The version tube makes this deci-
sion similar for all tools (including the structural delta) and are depen-
dent on how Viewed/Compare is moved, the structure of the version
graph, and the current version tube. All this information is stored in the
global (for the document) class VersionGraph (further called VG, also
described later in Section 10.2.3).

Two methods on the VG are: MoveViewed and MoveCompare which
are called when the user moves Viewed and Compare respectively. VG
then finds out the consequences of this move and sends this information
to the root node which propagates it down the document tree. Each node,

Figure 45 Situations occurring when merge have been done

(a) Are deltas already retrieved between
version 3 and 5?

(b) A version tube

120 The COOP/Orm client-server model

and the tool managing the node data, acts on this information, e.g. by
requesting needed information from the server.

MoveViewed has four different cases which requires different actions
by the tools. MoveCompare has three such cases. These different cases are
described below:

Move of Viewed
As we define it there are basically four different moves of Viewed:

1. Viewed is moved within the tube. Two variants are possible:
a) Viewed is moved to an older version within the tube. The new
Viewed is still younger or equal to Compare. (Figure 46)
b) Viewed is moved to a younger version within the tube.

For both these cases the tools connected to visible nodes do not
need to request for any deltas. Both full data and all deltas within
the tube are already retrieved. However, nodes becoming visible for
the first time, has to be ‘loaded’ requiring both structural and client
data. If such a node has sons, also these have to be ‘loaded’.

2. Viewed is moved to an older version, older than Compare. This
means that also Compare is moved to the new Viewed. (Figure 47)

In this case both structural deltas and client deltas are needed
for all version between the new Viewed and the old Compare.

within old ‘tube’ only

within new ‘tube’ only

deltas currently loaded and now dropped

deltas not loaded or needed

deltas loaded due to the move

deltas are already loaded and still needed

within both the old and new ‘tube’

Legend

Figure 46 Viewed is moved to an older version within the tube (case 1a).

Viewed

Compare

Figure 47 Viewed is moved to a version older than Compare. Also Com-
pare is moved to the new Viewed (case 2).

Viewed

Compare

Principle design decisions 121

3. Viewed is moved outside the tube to another branch which is later
merged with the tube, i.e. the same full data can still be used.

We call the youngest common fork version of the old and the new
tube for ‘Fork’. Similarly, the oldest common join version between
the old and the new tube is called ‘Join’. Note that this Join version
can be both older or younger than the old Viewed.

Two variants of this case are possible depending on Compare:
a) Compare is older than, or equal to, ‘Fork’. (Figure 48)

b) Compare is younger than ‘Fork’. In this case also Compare is
moved to the new Viewed. (Figure 49)

For this case deltas in the old tube (or part of it) are no longer
needed.

4. Viewed is moved to another branch outside the tube, which is not
later merged with the tube. Two variants of this case are possible
depending on Compare:
a) Compare is older than, or equal to, the youngest common fork
version of the new branch and the tube. (Figure 50)
b) Compare is younger than the youngest common fork.

Both case 4a and 4b results in that all tools have to replace the
full data always stored in the youngest version. New full data and
deltas from the new branch are requested, and data and deltas from
the old tube can be dropped (not needed).

Figure 48 Move is moved outside the tube to another branch. Compare is
older than the youngest common fork, and the oldest common join is
younger than the old Viewed (case 3a).

Join

Compare

Fork

Viewed

Figure 49 Compare is younger than the youngest common fork and is
also moved to the new Viewed (b). Join is older than the old Viewed (case
3b).

Join

Compare

Fork

Viewed

Figure 50 Viewed is moved outside the tube to a new branch not merged
with the old tube (case 4a).

Compare Fork

Viewed

122 The COOP/Orm client-server model

Move of Compare
Similarly there are 3 different moves of Compare:

1. Compare is moved to a younger version within the tube. Compare is
still older than Viewed (or the same). No new deltas are needed.

2. Compare is moved to an older version, which means deltas between
the new and old Compare is needed.

3. Compare is moved to a new branch outside the tube. The new
branch is merged to the tube in a version older than (or equal to)
Viewed (called Join). Deltas are needed between the new Compare
and ‘Join’. Deltas between the old Compare and ‘Join’ are no longer
needed.

Note that the VG always depicts all document versions. A specific node is
typically not changed in all these versions which also reduce the need to
request for node deltas (we do not request deltas if we know the node is
not changed).

Also note that the full data is stored in the youngest changed version of
a node. Figure 50 depicts how Viewed is moved to a new branch. This
means, that for a node last changed in the ‘Fork’ version (or an older ver-
sion than ‘Fork’), both branches share this full data, and the tool does not
need to request for new data.

The presented technique using a version tube, is however not the only
possible solution. It is based on the requirement that all nodes in a docu-
ment must retrieve their deltas from the same alternative, i.e. using the
same version tube. If this requirement is given up, it also removes the
need to force the server to follow a certain path when a node is loaded.
Thus, is the ‘version tube’-extension of the client-server protocol not
needed. However, the drawback of not forcing a certain path to be fol-
lowed, is that the optimization in time (retrieving deltas incrementally)
must be done specifically for each node instead of for the document. I.e.
the client must have one (internal) version tube for each document node,
instead of one for the entire document.

8.3 Summary

In this chapter we have discussed the design of the client and the server
and how they interact. We first listed a set of implementation require-
ments based on functionality and intended use as described in Chapter 7.
We then presented our design decisions to meet these requirements.

For example, how fundamental properties and properties assumed to
be static should be supported by both the server and the client - prefera-
bly implemented effectively:

• Both the client and the server understands and manage the hierar-
chical structure, including change propagation.

• Both the client and the server understands versions of the structure
and the client-server protocol includes both a version number and a
node address.

Summary 123

• Both the client and the server understands the delta technique,
which is used in order to present fine grained diffs to the user.

• Information about the structure and changes to the structure can
be retrieved from the server allowing an effective client-server pro-
tocol.

On the other hand, properties likely to be changed, or where we can
assume an extension, should be implemented in the client only allowing
them to be updated and still work towards the same server:

• The data stored in the document is never parsed by the server, but
seen as a string of bytes. This allows the clients to store any type of
data in a server.

We have also discussed performance and Scalability:

• The client-server protocol is designed to avoid clients to wait for
replies from the server. The ‘request-install’ protocol used also
enables the implementation of awareness.

• ‘Version tubes’ are used to allow caching and lazy loading.
• The algorithms to find out which data is needed and what can be

deleted when ‘Viewed’ and ‘Compare’ is moved is implemented in
the document Version Graph. Thus, it is done only once, and the
result can be used by all nodes.

124 The COOP/Orm client-server model

Chapter 9 The COOP/Orm
storage format

Several operations to a stored document operate across many versions,
e.g. collecting deltas between a range of versions. To cope with this
demand all versions are stored together in one file. This design decision
also makes it more easy to implement sharing of unchanged nodes
between versions, which is a very important property, especially since we
encourage a work process with many versions and branches to gain col-
laborative and concurrent work with awareness. The trade-off and optimi-
zations made designing the storage format have been driven from the
intended use and common operations (use cases) as described in earlier
chapters. For these operations the tool must have sufficient performance
both for time and the space used for storage.

The hierarchical structure of the stored documents is fundamental in
the design and affects also the storage format. All access is made to nodes
in a hierarchy but also most of the implementation is made in this model.
The mapping to the sequential Unix file is made at a very low level.

In this chapter we will give a formal description of the storage format
together with some examples. Like in all engineering situations a lot of
design decisions have been made with many trade-offs as the result. In
this chapter we discuss some of these decisions in terms of usability, scal-
ability, performance, etc.

In 8.1 and 8.2 we first, objectively, explain the storage format. 8.3 then
explains, using examples, the static and dynamic properties, ending each
example with a discussion of pros and cons of the design decisions made.

9.1 Storage layers

The implementation of the VersionFile repository is made using the work
done by Anders Gustavsson [Gus90]. He implemented a storage model
called TreeFile, which makes it possible to create a tree of nodes. To each
node a string of bytes can be stored and retrieved. His work included a lot
of other functionality such as comparing and diffing these trees and to

126 The COOP/Orm storage format

map information stored by an interactive development environment to a
stored tree. In our work, however, only the storing facilities are used.

Using TreeFile the hierarchical structure and the possibility to access
arbitrary nodes in this hierarchy comes for free. Also the mapping to the
Unix file is made in TreeFile storing all nodes in one unix file. The imple-
mentation of VersionFile can thus be made completely in the tree model.
Added in VersionFile is the notion of versions and the data/delta-tech-
nique. Figure 51 depicts the three storage layers: VersionFile, TreeFile,
and Unix. For each layer the storage model is depicted and an example of
the syntax retrieving data stored to a node. As the figure depicts the lay-
ers are:

VersionFile
Models versioned tree structure of nodes. Access to a node is made by both
a version number and a nodename in the document hierarchy. I.e. a node
at a specific position in the tree has the same nodename independent of
version. For example has node 5 and 5’ the same nodename, /2/5. To
address version 2 of the node /2/5 we write 2:/2/5. See also ‘VersionFile
mapped to TreeFile’ on page 129.

To all nodes two types of data can be stored and retrieved, one using
delta technique and one without. The document version graph, deltas
describing modifications made to the structure, and history descriptions
of the nodes themselves and their contents are also provided by this layer.

TreeFile
Models a tree of nodes to which a string of bytes can be stored and
retrieved. Access to nodes are made by node name in the tree structure.

Figure 51 The three storage layers and an example of how data is accessed

1 1’ 1’’

2’’

6

2’

5’54

2 3VersionFile: GetData(Ver, Node, ...)

TreeFile: ReadByteString(Node, ...)

Unix file: ReadByte(pos, byte, ...)

returns Full Data the deltas needed to recreate

The bytestring stored in Node is returned.

A stream of bytes are returned

ver 1 ver 2 ver 3

the requested version of the node.

The storage format grammar 127

Unix file
Access through position in the sequential file. Details of how the TreeFile
is mapped to the Unix file can be found in [Gus90].

9.2 The storage format grammar

All data stored in VersionFile is stored in the node tree structure provided
by TreeFile. The data stored is besides the data stored by the clients also
internal, administrative data. Examples of such administrative data is:
whether the data stored is full data or a delta, links to shared nodes, etc.

More formally the format of all data stored in a VersionFile can be
described in a grammar, see Figure 52. This grammar defines both the
tree structure itself and all data attached to the nodes. Names in bold rep-
resents terminals. Concrete production nodes in the tree structure are in
italics. Below is a detailed description of all terminals and the format of
administrative data. Also invariants that must be fulfilled to keep the
data stored consistent are described.

Root

VGdata
Data specifying the version graph, i.e. the document evolution. All ver-
sions and their relations and (optionally) the graphical layout are stored.
Moreover, metadata can be stored to each version (‘VerInfo’) and each
branch (‘BranchInfo’). Typically some meta data is automatically created
by the client (e.g. when and who created the version/branch), while some
data is created by the user (e.g. why).

The version tree stored is by representing each transition between two
versions. ‘n’ and ‘m’ are the from and to version respectively, ‘Xpos’ and
‘Ypos’ defines the graphical position and are optional (otherwise a default
layout is followed), and M/LM/AM/MM/EM defines what type of transition
it is, e.g. an end version, a new branch or a merge.

Invariant: The number of versions in the VGdata must equal the num-
ber of VerRoot nodes.

VersionTree::= Root
Root ::= VGdata VersionRoot*
VGdata ::= (n m [Xpos Ypos] (M ! LM ! AM ! MM ! EM)

[VerInfo] [BranchInfo])+
VersionRoot::=Preds SonInfo Composite
Composite ::= Preds HighestSonNo SonInfo* [NodeData] Composite* Leaf*
Preds ::= PreVer1 [PreVer2]
SonInfo ::= SonId NodeType Status ContentType

[LinkVerNo] [ClientAdmData]
NodeData ::= Null ! ClientData (ClientDelta)* ! (NextVer [ClientDelta])+ [ClientData]
Leaf ::= [NodeData]

Figure 52 The grammar for the storage structure.

128 The COOP/Orm storage format

Preds

PreVer1
Integer. Version number of previous version of this node. If NodeType is
MFolder it is the version number of the node in the ‘main’ alternative
from which the merge were initiated. PreVer=0 means there is no previ-
ous version.

Invariant: PreVer=0 <=> Status=Added.

PreVer2
Integer: The version number of the node in the ‘merged with’ (or ‘added’)
alternative.

Invariant: Exist only when NodeType=MFolder, PreVer2=0 <=> Sta-
tus=Added.

SonInfo

SonId
Integer. Son identity. Used to address nodes in the tree.

NodeType
Character. F (Folder) | M (MFolder) | L (Leaf) | E (MLeaf) | K (Link).
MFolder and MLeaf means that the node is a result of a merge.

Invariant: MFolder or MLeaf <=> Father.NodeType=MFolder

Status
Character. A (Added) | U (Updated). Added means that this is a new node
with no predecessor. Updated means the node is modified in this version.

Invariant: Added <=> PreVer1=0, Updated <=> PreVer1<>0

ContentType
Character. F (Full) | L (FullAndDelta) | D (Delta) | N (NoContent). The
type of content stored in the node. The meaning of Full, Delta, and
NoContent should be obvious. FullAndDelta means that the content
stored is two bytestrings, one containing a Full (younger) version and the
other containing all the deltas needed to rebuild this version of the node.

Invariant: DataShared <=> NodeData (in the son)=SharedVer.

LinkVerNo
Integer. Version number in which the shared son really exist.

Invariant: Exist only when NodeType=Link.

ClientAdmData
ByteString. Data stored by the client and never parsed by the server. No
delta technique is used but the full admdata is stored each time. If adm-
data is requested for a version of a node in which no data has been stored,
the following search pattern is followed until a version is found in which
data has been stored: First older versions are searched, then younger, and
at last unrelated versions in parallel branches. The admdata is intended
to be used for administrative data used by the client when the father is

The storage format grammar 129

‘loaded’ but not necessarily the node itself, thus supporting incremental
load of the document. This is also the reason to actually store the data put
to a node in its father node. Example of administrative data is window
(icon) attributes needed when the father window is opened and this son is
presented as an icon.

NodeData

Null
Empty bytestring or no bytestring at all.

ClientData, ClientDelta
ByteString. Bytestring stored by the client containing data and delta
respectively (not parsed by the server).

NextVer
Integer. Document version in which the next version of this node exist
containing delta, or full data.

Invariant: Exist only when ContentType=Delta

9.2.1 VersionFile mapped to TreeFile
The grammar can also be visualized as a tree structure built using TreeF-
ile nodes. To each node is data stored in a format described by a grammar
for each node type. Since the structure is not included in theses grammars
they are less complex than the total grammar in Figure 52. Figure 53
depicts such a tree structure. Some of the constructions in the total gram-
mar (Root, VersionRoot, Composite, and Leaf) are now shown as nodes
which reduce the grammar for the data stored in each node type.

As described in Section ‘VersionFile’ page 126, a node is addressed by a
nodename. This name starts from the first Composite node, i.e. the (only)
son to a VR-node (Version Root). This Composite node has the nodename
{/}, independent of version. To specify a specific version a version number
is added in front of the nodename, e.g.{2:/}. The VersionRoot node enables
sharing of complete versions of a document, which actually is done when a
new version is created as described in Section Protocol / Operations. Also
the adminfo for the document root node is stored in the VersionRoot.

Preds SonInfo

VGdataR

VR VR

C Preds SonInfo* [NodeData]

L L NodeDataC C

VersionTree

Figure 53 The actual mapping of the grammar to the tree structure.

Legend
R = Root
VR = VersionRoot
C = Composite
L = Leaf

130 The COOP/Orm storage format

The data stored in each node is stored in what we call a ByteString. As
the name indicates it is a string of bytes, with some structure though. It is
e.g. possible to store tupples, lists, nested bytestrings, etc. Nested
bytestrings are used to store data from the client (a ByteString) as a
unparsed part of the (total) ByteString stored to a node.

9.2.2 Semantic rules (invariants)
In a grammar specifying the syntax there is always a trade-off between
how much should be left as semantic rules and what should be included in
the grammar. The invariants described above are examples of semantic
rules that must be fulfilled to keep the structure consistent. Two exam-
ples from above are:

• The number of VerRoot’s is the number of versions of the document,
which also is stored in the VGdata.

• The number of SonInfo is equal to the number of Composite and
Leaf together. I.e. one SonInfo per son.

Including invariants in the grammar would make the grammar much big-
ger and harder to understand.

9.3 Static properties

In three examples (Figure 54, Figure 55, and Figure 56) the storage for-
mat is depicted. The examples illustrates versions, data/delta, and shar-
ing in three different evolution situations: sequential versions, branches,
and merge of two branches. For each example three views are depicted:
snapshot, sharing, and format. The snapshot view depicts the logical
model most users have when editing a document. The sharing view shows
how nodes not changed are shared between versions, and the format view
depicts the actual storage format at the TreeFile level.

To limit the complexity of the examples no ‘ClientAdmData’ is shown
in the nodes. This information is meant to be used by the client applica-
tion to store e.g. window information. Moreover, client (user) data is only
stored in leaf nodes. For the client there is no difference to store data in a
composite node or a leaf node, but due to change propagation the imple-
mentation differ somewhat. Both ‘ClientAdmData’ and data stored in
composite nodes will be discussed in later examples.

9.3.1 Sequential versions
The document consists of 7 nodes, of which 4 are leaf nodes. It exists in
three versions to which small modifications have been made. The modifi-
cations are:

Version 1, the 7 nodes are created and data are stored in all leaves.
Version 2, the data stored to node {/2/2} is modified and stored, i.e. both

the new full data and the delta to version 1 are stored. As a consequence
also the nodes {/} and {/2} are considered changed.

Static properties 131

Version 3, the data stored to node {/3/1} is modified and stored and a
new node {/2/3} is created and data is stored. Also the nodes {/}, {/2}, and
{/3} are considered changed.

• View (a) depicts the ‘Traditional’ view of the document evolution.
The metaphor is that a new version of the document is a copy of the
preceding version. Modifications can then be made to this new copy
without affecting any other versions of the document. Nodes
changed or considered changed due to change propagation are
marked. Where (if) deltas are stored or if they are calculated on
demand can not be concluded from this view.

• In the ‘Conceptual’ view (b) both sharing of not modified nodes and
the use of delta-technique are depicted. Node {/1} illustrates how
unchanged nodes can be shared between many versions. Sharing of
sub trees, not only single nodes are achieved in the same way ({/3}
and {/3/1} are shared between version 1 and 2). Node {/3/1} illus-
trates the fact that a delta is not always stored in the preceding doc-

1 32

version 1 version 2

modified or new node data

version 3

changed or new node

0 1 xPos yPos M ver1Inf 1 2 xPos M ver2Inf 2 3 xPos EM ver3Inf BrInf

2 1LAK1 2FUN 3FUN

1 1LUF

FullFull

Full

Full 2 Delta

0 1LAF 2FAN 3FAN

0 1LAF 2LAD

1 1LAK1 2FUN 3FAK1

1 1LAK1 2LUF

1 1FUN 2 1FUN0 1FAN

2 1LAK1 2LUK2 3LAF

Figure 54 Three different views of three sequential versions of a small document.

1

1

1

1

2

1 1

2

2

2

2

2

3

3 3

3

a) Snapshot view. A new version is copy of its predecessor which then can be modified

b) Sharing view. Depicts how (and in which versions) full data and deltas are stored. Also
illustrates the sharing of not changed nodes between document versions, and the ‘preds’-info
(dotted lines.

c) Format view. The administrative data really stored. This view gives a general view of the
overhead

Son Id

nodename: {3:/2/3}

nodename: {3:/}

nodename: {/2/3}

Full

FullFull 2 Delta Full

version graph

{/1} {/2} {/3}

{2/2} {/3/1}

3 Delta Full

3 Delta1

0 1LAD

Full1

{/} {/} {/}

{/2/1}

{/1} {/2} {/3}

{2/2} {/3/1}{/2/1}

{/1} {/2} {/3}

{2/2} {/3/1}{/2/1}

132 The COOP/Orm storage format

ument version, but in the version in which the node last was
modified, a preceding node. The dotted arrows depict the ‘preds’-
informations, i.e. the preceding version of a composite node. ‘Pred’-
pointer from {3:/3} to {1:/3} depicts a reference over more than one
version.

• View (c), the ‘Format’ view, presents the structure as it is stored in
TreeFile nodes. All internal administrative data is depicted, follow-
ing the grammar presented in Figure 52 and Figure 53. Note how
links to shared nodes are implemented by changing the NodeType
stored in the father, e.g. the soninfo stored in node {2:/}: ‘... 3FAK1’,
means that son 3 is a shared ‘added’ composite node which really
exists in version 1. In node {1:/2/2}, ‘2 Delta’, the digit ‘2’ means that
the delta should be applied to the data stored (or recreated) in ver-
sion 2, i.e. {2:/2/2}.

For all nodes the full data is always stored in the latest/youngest changed
version. In this way the access to the latest version of a branch (which is
the most common version to access) is as quick as if only one version were
stored.

Discussion/evaluation
A trade-off when defining a storage format is between optimization for
speed or space. In VersionFile some administrative data is not really nec-
essary but stored to facilitate faster algorithms to common operations.
Two examples are:

• The ‘Preds’, which can be left out. These are used to find the previ-
ous version of a node which not necessarily is the same as the previ-
ous version of the document (see {/3/1} in Figure 54). It is possible to
use information stored in VGdata to search for the previous version
of the document and then see if the node exist in that version. If
not, try next preceding version, and so on, until the node is found or
no more older versions exist. By storing the ‘Preds’, however, this
lookup will be much faster and constant in time, independent of in
which version the node really exist. ‘Preds’ are, however, only stored
in composite nodes and not in leaves to reduce the space somewhat.
The predecessor to the father always has a link to the preceding
node, i.e. there is never more than two steps.

• ‘NextVer’ is the version number to the next younger version of a
node is stored together with a delta (see e.g. {1:/2/2}). The reason for
these extra stored bits is that a common request is to access an old
version which results in an access pattern of following deltas from
the old version to younger versions finally finding a ‘full data’. By
also storing this ‘forward pointer’ this request will be linear in the
number of changed version of the node instead of the total number
of versions of the document.

Some common algorithms will be described in more detail later in
Section 9.4.1.

Static properties 133

9.3.2 Branches
In Figure 55 two branches, version 2 and 3, have been created from ver-
sion 1, see the version graph in the upper left corner. View (a) illustrates
the changes made in the two branches. Two nodes are modified in one
branch only, and one node is modified in both branches. Version 2 and 3
both has version 1 as their common predecessor. We can see in view (b)
how the pred-pointers from composite nodes in both version 2 and version
3 points to their respective node in version 1.

For the node modified in both branches there are two deltas to store,
one for each branch. The node {1:/4} in view (c) depicts how two deltas are
stored in the same node data. Nested ByteStrings are used as described in
Section 9.2.1. There is no restrictions on the number of stored deltas, and
‘NextVer’ (see the grammar in Figure 52) makes it easy to find the correct
delta.

1

3

2

version 1 version 2

modified or new data

version 3

changed or new node

0 1 xPos yPos M ver1Inf 1 2 xPos EM ver2Inf Br1Inf

1 1LAK1 2LAK1

FullFull 3 Delta2 Delta

1 1LAK1 2LUF

1 1FUN 1 1FUN0 1FAN

Full

Figure 55 Representation of branches. Nodes not changed can still be shared,
now between branches.

1 3 xPos yPos EM ver3Inf Br2Inf

Full

3LAK1 4LUF 3LUF 4LUF
0 1LAF 2LAD
3LAD 4LAD

2 Delta
3 Delta Full

11 1

1

1 2

2 23 3

3

4 44

a) Snapshot view.

b) Sharing view.

c) Format view.
Full Full

134 The COOP/Orm storage format

Discussion/evaluation
Previously we said that the storage space cost for a version was the
changed nodes, not the entire document. This means that there are no
cases when full data is stored unnecessarily. This is almost always true
also when branching:

• It is trivially true for nodes not modified, which are shared also
between branches. An example is node {/1} in Figure 55, which is
not modified in any branch.

• It is also always true for nodes changed in both branches. The new
full data is stored in the changed version and only deltas are stored
in previous versions. An example is node {/4}.

• Remaining are nodes changed in some but not all of the branches.
To make it true also for this case, it implies that a node data some-
times has to be re-created even for the youngest version in a
branch. I.e. the time to retrieve the youngest version in a branch is
not optimized (which we previously claimed). Thus, the trade-off is
between storage space and the time to retrieve the youngest version
of a node not modified in the branch but modified in another
branch.

Basically there are three approaches of how to deal with the last case:

1. Always store full data in all branches, i.e. each branch has its own
copy of the document. This alternative optimize for speed and sim-
plicity but is space consuming.

2. Only store full data in versions changing the data. If one of several
branches modify a node the full data is stored in that branch and
the delta is stored in its predecessor, i.e. the version which is still
the youngest version in the other branches. This means that all the
others have to recreate this version when retrieved, even though it
is the youngest in that branch. The implementation optimizes
space. However, at the expense of breaking the rule that the young-
est version should always be fast (optimized) to retrieve.

This alternative also makes the implementation of ‘MoveViewed’
and ‘MoveCompare’ in the clients harder. The version tube
described in Section 8.2.7 is used to make it simple for a client to
know which deltas it should remove and which should be kept since
all deltas are retrieved from versions within the tube. However, if a
node is not changed in a version in the tube, but in another alterna-
tive the server must retrieve the full data and the deltas in that
branch to be able to retrieve the version requested within the tube.

3. Store also the full data in fork versions. When (if) all branches have
stored deltas the full data (fork version of it) can be removed since
modified full data now is stored in all branches. In this way the fork
version never has to be recreated, which is especially nice when the
youngest version in a branch not modifying the node is requested.

Even though 3 is a compromise between case 1 and 2, it is optimal for
speed (equally fast as alternative 1 above). The cost is only (at most) one

Static properties 135

additional full data per fork node, i.e. not one per branch. This is the
alternative chosen.

Figure 55 depicts the implementation of alternative 3 above. In the
nodes {1:/2} and {1:/3} both a delta and version 1 of the full data is stored.
However, in node {1:/4} no full data is stored since both branches have
modified the node.

It is relatively easy to modify the implementation and further evalua-
tion will guide us in what is the best trade-off (in most cases).

9.3.3 After merge
When merging the two branches created in Figure 55, a merged version 4
is created resulting in the storage tree depicted in Figure 56. The current
situation is the result of the default merge made by both the server and
the client, i.e. the server has merged the structure and the client has
merged modified nodes and sent the data and deltas for these nodes to the
server (node {/2, /3, and /4}). We can se that the two deltas required for
node {/4} has been stored in {2:/4} and {3:/4} respectively. The default rule
for node {/2} (and correspondingly for {/3}) is to include all the changes
made in version 2, i.e. the client puts a full data to version 4 (equal to the
one previously stored in version 2), an empty delta to version 2, and a
delta corresponding all the changes made in the modified branch (in this
case only version 2) to version 3.

One more technical detail is depicted in Figure 56: Storing a delta in
an old version normally means that the node has been modified and thus
should be marked with an ‘!’ in the gui when comparing these versions
(see Chapter 7 ‘The COOP/Orm environment’). However, even though a
delta is stored in node {2:/2} comparing version 2 and 4 should not mark
node {/2} as changed! This case is noticed by especially detecting when a

1

3

2

0 1 xPos yPos M ver1Inf 1 2 xPos M ver2Inf

1 1LAK1 2LAK1

4 Delta

Full 3 Delta2 Delta

1 1LAK1 2LUD

1 1FUN

1 1FUN

0 1FAN

4 Ø

Figure 56 Result of default merge where node {/2} was changed in version 2,
{/3} in version 3, and {/4} in both. Note that version 4 is not yet frozen and can still
be modified.

1 3 xPos yPos EM ver3Inf Br2Inf 3 4 MM

4 Ø

3LAK1 4LUD

3LUD 4LUD

0 1LAF 2LAD
3LAD 4LAD

2 Delta
3 Delta

4 Delta

4

2 4 xPos M Ver4Inf Br1Inf

FullFull

2 3 1FAN

2 3 1LAK1 2LUF
3LUF 4LUF

41

3

2

1 2

2

23

3

34

4

4

1

1

1

14

Full3 Ø 2 Ø

4 Delta2

4 Delta3

136 The COOP/Orm storage format

‘null’-delta is retrieved, which can be done without parsing its (empty)
contents.

In this example the merge cases NotNot, ChNot, NotCh, and ChCh
were depicted. All cases and their default rules were described in
Section 7.4 and their dynamic properties are described later in this chap-
ter.

Discussion/evaluation
Note that for the merge cases ChNot and NotCh the full data stored in the
fork version before the merge is removed when merged, since full data
always is stored in the merged version. I.e. after the merge of two
branches, there is only one version of full data for each node. This means
that for a temporary branch merged back to where it was created from,
the storage cost is in proportion to the changes made in that branch, not
to the document size.

Also note that nodes not changed in either of the branches may be
shared with versions older than the fork version.

In an earlier implementation of the merge algorithms the server made
the entire default merge as one operation without any need to communi-
cate with the client and without parsing the ClientData or ClientDeltas.
In this way the client did not even need to load the document to merge.
For the merge case ChCh this meant that the main branch ‘won’, i.e. these
modifications were the default suggestion. This is probably not what the
users want, but it was the only thing the server could automatically sug-
gest. However, for the cases ChNot and NotCh the server made the same
default merge as the client in the current implementation. The server
gathered all the changes made in the modified branch and stored these
deltas in the youngest version in the other branch. Since the server is not
able to parse the contents of the delta these must be ‘moveable’ and possi-
ble to be stored as created in another version. E.g. the client must not
include any version numbers in the data or delta.

We dropped his solution due to its complexity. The benefits of not need-
ing to load the entire document is not as large as we first thought, since
the user normally goes through the default merge resolving conflicts load-
ing the document anyway.

9.3.4 Reliability
During a session, i.e. before the version during creation is frozen, the full
data in the preceding version is also stored. This means that both the
delta to the new version and the old full data is stored in modified nodes.
When the version is frozen the old full data is removed. In this way we get
a more reliable implementation against failures during the store opera-
tions and it makes it easy to uncheckout a version (drop the session).

9.3.5 Change propagation
In the previous examples we have not stored any client data in the com-
posite nodes. In this example we will describe how duplication of such
data is avoided when new nodes are created due to change propagation,
i.e. when the node itself (its client data) has not been modified. Figure 57
depicts a situation in which node {2:/} is created due to change propaga-

Dynamic properties 137

tion. When node {2:/2} was modified and data/delta were stored not only
this node were created but also its father. In our terminology the father is
considered changed even though it is not modified. The client data stored
in {1:/} is, however, not copied but moved to {2:/} and a ‘null’-delta is stored
in {1:/} instead. The node is thus marked as changed to the user, but when
comparing the versions in the node editor the diff will be empty.

9.3.6 ClientAdmData
This data is stored without use of any delta-technique. However, not mod-
ified data is not duplicated, but many versions may share the same data.
Since in current implementation ClientAdmData is used to store gui
information such as the position of windows, etc., the search algorithm
used to find the appropriate version to use is optimized for that. I.e. win-
dows behave intuitive to the user and do not ‘randomly move around’. As
with node type and node status, also the ClientAdmData is stored in the
father to the node. In this way the number of server requests are greatly
reduced as described earlier in Section 8.2.6.

9.4 Dynamic properties

The static properties in the previous section explained the storage format.
In this section we will explain some of the algorithms transforming
between the data structures. The notation of the pseudo code used is
defined in Appendix A: ‘Dynamic behaviour - notation’.

9.4.1 Protocol / Operations
Below is a selection of server operations. The purpose of this section is to
make it plausible that the storage representation explained above and the
algorithms on this representation are sufficient for the required opera-
tions. The first four operations illustrates an example ‘session’ starting
with the creation of a new version, modifying the structure by creating a
new node, storing data to a node, and finally freezing the version.

1 2

0 1 xPos yPos M ver1Inf 1 2 xPos EM ver2Inf brInf

Full 2 Delta

1 1LAK1 2LUF Full

1 1FUF0 1FAD

Figure 57 Client data stored in composite nodes created due to change propaga-
tion is shared.

0 1LAF 2LAD Ø

Full

1 2

1 2

1 1

2

Full2 Ø
version 1 version 2

Full 2 Delta Full

138 The COOP/Orm storage format

CreateVersion(fromVer, newVer)
Creates a new version proceeding from ‘fromVer’. The new version num-
ber, ‘newVer’, is returned. ‘fromVer’ must be a frozen version.

Figure 58 depicts the algorithm in pseudo code and the resulting struc-
ture. First is the new version created in the version graph representation
which actually gives it a version number. Then a new version root node is
created and inserted in the storage tree and its attribute ‘PreVer1’ is set
to ‘fromVer’. Last is the document root node representing the entire docu-
ment linked to from the new version root, i.e. the new version share the
complete document with its predecessor.

The operation CreateVersion is also used to create new branches. The
same algorithm is followed. The fact that version fromVer already has at
least one succeeding version does not affect the algorithm. However, as
discussed in Section 9.3.2, current implementation use a storage strategy
that sometimes stores the full data also in fork versions. That is, in a situ-
ation that fromVer not already is a fork version, we have to traverse the
entire document (fromVer), and for nodes modified in the other branch we
have to re-create the old full data and also store it in fromVer.

PutData(Ver, Node, Full, Delta)
Put the data ‘Full’ in ‘Node’ and the delta ‘Delta’ in previous version of the
node. ‘Ver’ must be a not frozen version. Note that the old full data is still
stored in the previous version together with the delta. This makes it pos-
sible to easily undo the creation of version ‘Ver’, see also Section 9.3.4
‘Reliability’. The full data in the previous version is removed when ver-
sion ‘Ver’ is frozen.

Also note that node {2:/} in Figure 59 is created due to change propaga-
tion, but that the subtree with the root node {/2} remains shared. As
depicted by the recursion in the pseudo-code for the ‘UnShare’ operation
all shared nodes following the father-grandfather path are created due to
change propagation.

.....
Figure 58 Algorithm to create a new version (newVer) of the document. Note that
the entire document is shared with ‘fromVer’.

newVer:=VG.createVer(fromVer)
n:=createVR(newVer)
n.pred := VerRootfromVer
n.insertSharedSon({fromVer:/})

0 1LAF 2FAN

1 1FAK10 1FAN1

1

2

0 1 xPos yPos M ver1Inf
1 2 xPos M ver2Inf BrInf

Full1 2 0 ...

Dynamic properties 139

CreateSon(Ver, Node, Son, CorrectSon)
Creates a new son to ‘Node’. The parameter ‘Son’ is a proposal to sonId
from the calling client. If the id already exist a new unique sonId is cre-
ated and returned in ‘CorrectSon’. If ‘Node’ is shared with previous ver-
sions it (and its father, grandfather, ...) is created according to the change
propagation model. ‘Ver’ must be a not frozen version.

FreezeVersion(Ver)
Makes version Ver immutable and removes the old full data stored in pre-
vious version of each node containing data.

Figure 59 Pseudocode for PutData(2, {/1}, Full, Data).

n := {Ver:Node}
if n.IsShared then

p := n.real
n := UnShare(n)

else
p := n.pred

n.data := Full
p.data := (n.Ver,Delta)

UnShare(n)
f=n.father
if f.IsShared then

UnShare(f)
new_n := create(n.sonId)
f.insertSon(new_n)
return new_n

1 1FUN0 1FAN1 2

0 1 xPos yPos M ver1Inf
1 2 xPos M ver2Inf BrInf

1 1LUF 2FAK11

.....

0 1LAF 2FAN

2 Delta1 2 0 ...

1

Full1
Full

Figure 60 Pseudocode for CreateSon(2, {/}, 3, CorrectSon).

f := {Ver:Node}
N := f.sons
if Son∈N then

CorrectSon := new UniqueNo
else

CorrectSon := Son
n := create(CorrectSon)
if f.IsShared then

f := f.UnShare
f.insertSon(n)

1 1FUN0 1FAN1 2

0 1 xPos yPos M ver1Inf
1 2 xPos M ver2Inf BrInf

1 1LUF 2FAK1 3LAN1

.....

0 1LAF 2FAN

2 Delta1 2 0 ...

1

Full1
Full

3

Figure 61 Version 2 is registered as frozen in the version graph representation.
All full data stored in previous versions (and not needed due to branching) are
removed.

VG.freezeVer(Ver)
Forallnodesinver(2)

if (n.dataType=Full) and
not n.pred.needsFull then

n.pred.removeFull

1 1FUN0 1FAN1 2

0 1 xPos yPos M ver1Inf
1 2 xPos EM ver2Inf BrInf

1 1LUF 2FAK1 3LAF1

.....

0 1LAF 2FAN

2 Delta1 2 0 ...

1

Full1 Full3

140 The COOP/Orm storage format

GetData(Node, Tube, Ver, retData)
Returns a bytestring, retBS, with two bytestrings containing the full data
and deltas respectively. The deltas are received and concatenated follow-
ing ‘Tube’ from version Ver to the version containing the full data.

GetSonAdmData(Ver, Node, retBS)
Returns info about all sons to Node. Node must be a composite node.
Information returned in retBS is: the number of sons to ‘Node’ and for
each son its id and clientAdmData. Also the total evolution information
for each son is returned. If no clientAdmData exists in this version of the
son, first the youngest older version of the node is searched and then old-
est younger version of the node.

9.5 Merge

The merge model was described from a user perspective earlier in Section
7.4, ‘Merge model’. In this section and in the two following, the implemen-
tation of the merge operation in the server will be described. Three opera-
tions are discussed: (1) the default merge made in the server when the
merge is initiated from the client, (2) ‘Re-merge, i.e. how the functionality
described in Section 7.4.4, ‘Facilitate consistent decisions during merge’ is
implemented, and (3) the implementation of hypothetical merge described
in Section 7.5.1.

CreateMerge(MainVer, AddedVer, MergedVer, retBS)
Creates a new version that is the merge of MainVer and AddedVer. The
new version number, MergedVer, is returned. Also makes the default
merge of the entire document structure and returns (in retBS) the merge
case for all nodes. For nodes with mergecase=NotAdd (added in branch
Added) also the adm info of the node is returned.

CreateMerge first creates the new version and then actually makes the
merge. This is similar to the ‘normal’ creation of a new version, in which
the new version is an exact copy of its predecessor. In the merge situation
there are two predecessors and we use the default rules to create the ver-
sion. The pseudo-code in Figure 63 depicts the creation of the new merged
version and how a new structure containing merge information also is

Figure 62 Pseudocode for GetData

n := {Ver:Node}
while not finished do

if n.dataType=Full or n.data=FullAndDelta then
finished=true

else //Delta
s := n.getSucc(Tube)
retDelta.append(n.delta(s))
n := s

retFull := n.full
retData := retFull & retDelta

Merge 141

Figure 63 Pseudocode for CreateMerge and MergeSons.

CreateMerge(MainVer, AddedVer, newVer, retBS)
1 newVer:=VG.createNewMergedVer(MainVer, AddedVer)
2 n:=createVR(newVer)
3 n.Pred := VerRootMainVer
4 n.Pred2 := VerRootAddedVer
5 miroot := createmi(0)
6 mi := createmi(newVer, ChCh)
7 mi.SelAlt := Both
8 miroot.insert(mi)
9 MergeSons(VerRootFrok, VerRootMainVer, VerRootAddedVer, VerRootnewVer, mi)
10 miroot.TraverseAndPackInfo(retBS)

MergeSons(fatherFork, fatherMain, fatherAdded, fatherMerged, mi)
begin

case mi.case do //i.e the father merge case
NotNot: N := fatherFork.Sons

for all n in N do
MergeAction(mi.mc, mi.SelAlt, NotNot) //see Appendix B
MergeSons(nFork, none, none, none, min)

NotCh: N := fatherFork.Sons AND fatherMain.Sons AND fatherAdded.Sons
For all n in N do

min.mc := FindoutMergeCase //possible:NotNot, NotCh,NotDel,NotAdd
MergeAction(mi.mc, mi.SelAlt, min.mc) //see Appendix B
MergeSons(nFork, nMain, nAdded, nMerged, min)

NotDel: N := fatherMain.Sons
for all n in N do

MergeAction(mi.mc, mi.SelAlt, NotDel) //see Appendix B
//note that mi.SelAlt can be both Main or Added!!
MergeSons(nFork, nMain, nAdded, nMerged, min)

ChNot: See NotCh
ChCh: N := fatherFork.Sons AND fatherMain.Sons AND fatherAdded.Sons

For all n in N do
min.mc := FindoutMergeCase // all cases possible
MergeAction(mi.mc, mi.SelAlt, min.mc) //see Appendix B
MergeSons(nFork, nMain, nAdded, nMerged, min)

ChDel: N := fatherFork AND fatherMain
For all n in N do

min.mc := FindoutMergeCase //possible:NotDel,ChDel,DelDel,AddDel
MergeAction(mi.mc, mi.SelAlt, min.mc) //see Appendix B
MergeSons(nFork, nMain, nAdded, nMerged, min)

DelNot: See NotDel
DelCh: See ChDel
DelDel: N := fatherFork.Sons

for all n in N do
MergeAction(mi.mc, mi.SelAlt, DelDel) //see Appendix B
MergeSons(nFork, none, none, none, min)

AddNot: N := fatherMain.Sons
for all n in N do

MergeAction(mi.mc, mi.SelAlt, AddNot) //see Appendix B
MergeSons(nFork, nMain, nAdded, nMerged, min)

AddDel: See AddNot
NotAdd: See AddNot
DelAdd: See AddNot

end

142 The COOP/Orm storage format

created. Line 9 actually makes the default merge and row 10 traverse the
merge information nodes (created during the merge), collects and pack
the information in retBS, which is the return parameter.

Also the merge itself can be divided into two steps: (1) identify merge
case, (2) perform the default rule for identified case, which is depicted in
the procedure ‘MergeSons’.

MergeSons(nfork, nmain, nadded, nmerged, mi)
When the operation ‘MergeSons’ is called the same procedure is per-
formed for all sons. Note, in order not to miss added or deleted sons, all
sons here means the union of all sons in the fork, main, and added ver-
sion. For each son the current merge case is identified. What action to per-
form is based on the merge case of the father, the selected alternative of
the father, and the merge case for the son. This gives a total of 26 merge
situations for a node. The action for each situation is described in Appen-
dix B: ‘Merge cases’.

After the action is performed for a son, the MergeSons operation is
called merging its sons, thus traversing the document depth first.

When the server has made the default merge of the structure and col-
lected all the information in ‘retBS’, this is sent to the client ordered the
merge. The information is unpacked by the client and installed in all
nodes loaded in the client, which not necessarily is the entire document.
For nodes containing ClientData changed in both branches (case ChCh),
the client makes the default merge of this data which is sent to the server
on next checkpoint. Merge information about nodes not currently existing
in the client (not loaded) is requested on-demand when opened/made visi-
ble by the user. Also the default merge is made lazy waiting until the node
is created in the client. However, if the user decides to close the applica-
tion before viewing all the marked conflicts, the client automatically
makes the default merge for all nodes remaining.

PutMergedData(Ver, Node, Full, Delta1, Delta2)
Similar with PutData but PutMergedData takes two deltas, one for each
branch. The algorithm is almost the same. Note that sometimes is only
one Delta used. For example for the merge cases: AddNot, NotAdd, ChDel,
and DelCh. For the merge case NotNot are Delta1 and Delta2 equal since
only one (common) predecessor exist in which the delta is stored.

9.6 Re-merge

The user can modify the merge in two in principle different ways: (1) One
is to modify the default merge proposal as any other version. Until the
version is frozen any change can be made, both adding/deleting nodes and
modify the node data. (2) It is also possible to select a specific branch for a
particular node and to make the merged version of the node equal to that
branch version. I.e. the same result as if all the cells in column ‘Rule:
select’ in Figure 29 was A:s for all merge cases (or B:s if that branch was
selected).

Hypothetical merge 143

ReMerge is very similar to the initial Merge with the difference that
the nodes already are merged and that this merge may need to be undone
first.

The ReMerge not only affects the entire subtree rooted at the node, but
may extend to the entire document. This is due to the hierarchical
requirements on how to select branch, see Figure 64.

Rule (1) is used when the first default merge is made. If a merge case
implies a specific branch to be selected, e.g. n.mc=ChNot => n.sa:=main,
then no further analysis has to be made for the entire subtree rooted at
that node, since all nodes will have the same branch selected independent
of merge case.

Rule (2) is used during ReMerge. When the ‘Selected Alternative’ is
changed for a node due to user action, this, of course, affects its sons
according to rule (1), but also implies that its father has to be checked to
see if rule (2) is triggered. If so the selected alternative for the father is
changed and its father is checked, and so on.

Since the entire document may be affected even though the user only
changes ‘SelAlt’ for one node, the server supports also this operation so it
can be made as one atomic operation. Thus, a time consuming verbose cli-
ent-server protocol can be avoided.

9.7 Hypothetical merge

As described in Section 7.5.1, the hypothetical merge is from a user per-
spective more a view to support synchronous awareness than a traditional
merge. The user can not edit the view of the two, not yet frozen, versions,
but instead still edit his/her own branch version. Similarly, the other user
continues to edit his/her version in the other branch and is necessarily not
even aware of the hypothetical merge.

However, technically it is a merge of two, not yet frozen, versions and
the implementation is similar to a ‘normal’ merge - at least the creation of
the merge. As the two branch versions merged still changes, the merge
cases for the nodes are not fixed as during a ‘normal’ merge. If, for exam-
ple, a node with merge case ‘ChNot’ is modified in the ‘Added’ branch, the
case is changed to ‘ChCh’.

For all operations that may change the merge case or default merge,
this is checked and if changed this information is sent to the client.

Some changes also affect other nodes than the one changed. Therefore,
when a merge case is changed also an impact analysis is made and all the
affected nodes are also changed. For example if a node is changed from
‘ChNot’ to ‘ChCh’ this change may also affect its father. If the father

Figure 64 Hierarchical conditions (invariants) on the selection of branch
during merge. The notation used is defined in Appendix A: ‘Dynamic behaviour
- notation’.

1. n.sa=x => n.si.sa=x, for all i, where x is one of the branches
2. si.sa=x for all i => si.f.sa=x

144 The COOP/Orm storage format

merge case also was ‘ChNot’ it is now ‘ChCh’, which in turn, may affect its
father, and so on until the document root node or until a node which
already has the case ‘ChCh’. Another example is a node with case ‘DelNot’
which thus is deleted in the merged version. If this node is modified in the
other branch the case is changed to ‘DelCh’, which also affects the default
rule. Possible merge cases for the father before this change was ‘DelNot’,
’ChNot’, ‘DelCh’, or ‘ChCh’, which thus also may be changed.

When the hypothetical merge is aborted the information added during
hypothetical merge is removed. The created state is as if the hypothetical
merge did not take place. This is fairly simple since no information was
removed during the hypothetical merge. In particular, in nodes where
delta will replace full data, the full data is retained making the undo sim-
ple. This scheme is the same during creation of normal versions where the
redundant full data are removed at freeze.

9.8 Merge requirements on ClientData and ClientDelta

As previously described in Section 8.2.2, all client data (and delta) are
stored and managed by the clients and never parsed by the server. Every
tool (e.g. a text editor) is responsible for its own information stored. A
backward delta technique is used, which means that the full data is
stored in the youngest version, and a backward delta in all older versions.
To re-create the full data in an old version backward deltas are applied to
a newer full version.

In COOP/Orm, when a user views an old version (x) this version is not
just re-created, but the editor is ‘loaded’ with the full data stored in a
younger version and all the deltas back to version x. Thus, not only ver-
sion x can be viewed but also all the changes made to the younger ver-
sions.

More formally, the operation to ‘load’ version x using the full data
stored in its successor y is defined as:

Δ–(dxy,fy) → fx-y, where version y is created from version x

dxy = delta created when version y was created from version x
fy = full data in version y
fx-y = full data and all deltas from version x to y

In order to also support merge this is not enough. There are some addi-
tional fundamental requirements on both the storage format of the full
data and the deltas. Figure 65 depicts an example of a version graph also
showing where the full data and deltas are stored. When a merge of ver-
sion p (main) and r (merge with) is initiated, the changes made in both
branches should be presented to the user in one view (see Figure 28 in
Section 7.4.2). To achieve this all the deltas from version p to version r via
version n have to be ‘loaded’. Firs, version n to version p is loaded using
the Δ–(dxy,fy) → fx-y function, but then also q (and eventually r) has to be
loaded from n using the dnq (and dqr) delta. Therefore, an additional func-
tion is needed defined by:

Evaluation and scalability 145

Δ–(dxy,fx) → fx-y, where version y is created from version x

The entire ‘load’ for the merge can then be performed as:

Δ+(dqr,Δ+(dnq,Δ–(dno,Δ–(dop,fp)))) → fp-o-n-q-r

Thus, the requirement on the data and delta storage format is that it
should be symmetric. It must be possible to both ‘load’ an older version
from a younger version and vice versa, i.e. it must be possible to imple-
ment both the function Δ–(dxy,fy) → fx-y and Δ+(dxy,fx) → fx-y.

9.9 Evaluation and scalability

Two major performance and scalability concerns may come up regarding
our representation: storage overhead and time to access a specific version
of a node including to re-produce an old revision of the information in the
node. The storage overhead comes from storing deltas from old versions
and from the overhead for structure information of the tree. The structure
information is fairly small, one pointer per node, which should be negligi-
ble if the content of the node has a reasonable size, like a procedure or a
text paragraph, which is the intended use. Also keeping track of deltas
costs one pointer to be compared with a separate file in the traditional
approach which costs file directory overhead and much longer access
times. The deltas themselves could (in the worst case) be stored in the
same format as standard diffs (as generated by the Unix utility diff, used
by other revision control systems), so there is no reason to believe that our
storage form is inherently worse than current techniques. There are in
fact several aspects that indicate that the revision trees might be more
memory efficient. First, the change-oriented deltas can turn out to be
more compact than traditional line-based text-oriented diffs, especially if
changes typically are small compared to the length of the source line. Sec-
ond, RevisionTrees use a large amount of sharing of common parts. This
will pay off as the number of branches grow, since a traditional represen-
tation must store a full document for all parts in each branch.

Regarding the time overhead to calculate an old revision we can note
that this is done on demand on fairly small pieces of information assum-
ing the hierarchical storage is used as intended (only open, visible win-
dows). The time for the calculations needed should be compared to

Figure 65 Principle view of ClientData and ClientDelta storage

m n o p

q r

dop fullpdno
dnq

dqr fullr

146 The COOP/Orm storage format

communication times between the client and the server (where the full
node information and necessary deltas are sent as one message) and file
access times (where our model gives essentially one read per delta while
traditional diffs requires also a file to be opened and closed). We are thus
confident that performance for applying deltas will not be a problem in
practice even for large applications.

Scalability in terms of number of simultaneous users is also a concern.
The overhead for the representation of the possibly large number of alter-
natives caused by simultaneous users was addressed above. Likewise, we
do not expect any performance problems with the active diffs involving a
large number of alternatives since diffs are set up when needed and then
probably only for a subset of all alternatives. Even if an active diff is set
up for a large number of alternatives, the order of magnitude for the
response times required still is seconds rather than fractions of a second.
Without having any experimental evidence, we expect this modest
requirement can be fulfilled. Finally, merging between a very large num-
ber of alternatives may be a scalability problem. However, a successive
two-way merge of alternatives will probably be practically feasible. Typi-
cally, alternatives are created from a main development line (this may be
the main development line of the system as a whole or just the main
development of the alternative a group currently is working with) and
subsequently merged with the main development line again. Further-
more, we expect merging will be a fairly straightforward process, since
merge conflicts probably will be reasonably infrequent as a result of the
group awareness provided by the active diffs. This expectation is sup-
ported by the experience from using the group editor GROVE as reported
in [EGR91].

Chapter 10 The COOP/Orm
architecture

As described in Chapter 3 ‘Integrated development environments’ COOP/
Orm is an integrated development environment, in contrast to a set of
tools more loosely connected to each other. One drawback of this approach
is that it may be harder to use the favorite editor, since only editors inte-
grated with the environment can be used (actually the major drawback
when asking the developers). Also in a ‘tool set’ architecture the editor
has to be integrated, but this is often more easy to do, mostly because they
are aim at a lower integrated functionality. An editor in an integrated
environment can provide more functionality to the user with the help of
the tight integration.

To make it as easy as possible to integrate tailorable editors or to
develop new ones integrated in the COOP/Orm environment, still taking
advantage of all the benefits of the integrated environment, the architec-
ture provides a tool Framework (the term Framework was first intro-
duced by in [Sch86].) This Framework makes it easier to plug-in
tailorable editors or to create new editors, e.g. to support other data types.

In this chapter we start by describing the building blocks in the client
run-time model. We then describe the COOP/Orm framework. After defin-
ing the hot-spots, i.e. the important variable aspects in the framework, we
present two patterns: ‘Changing the rules defining the document struc-
ture’ and ‘Creating new node types’. We especially describe how the, for a
document, global version graph implements most of the tricky algorithms
used by all different tools (e.g. the editors).

10.1 Client run-time model

This section describes how tree-structured hierarchical documents are
represented in the client. We consider a document to be a tree of ‘Blocks’
(such as chapter, section, paragraph or a module class, procedure, declara-
tions, statements, or directories, and files). When edited, or browsed etc.,
parts of the document is loaded into primary memory and expanded to a

148 The COOP/Orm architecture

cluster of Simula objects. Still, the same basic organization into blocks is
maintained. Blocks are brought into primary memory by need, either by
user actions (like opening windows) or by some internal linking in the
document (like semantic dependencies or loading of code), as described in
[MM92, MHM+90]. The basic representation of Blocks is general and flex-
ible, but the actual trees that are built can be restricted by a grammar.
For this presentation we consider the cluster of objects representing a
Block as grouped into three parts: StorageNode, Configurator, and Tools,
see Figure 66.

10.1.1 StorageNode
The StorageNodes are building up the Block tree having Configurators
and Tools on the side at each level. The StorageNode knows about
addressing the VersionTreeFile and in the end to do the reading and writ-
ing calls. A StorageNode in a way corresponds to a pagetable in a linear-
ized memory and takes care of the reading in of information in order to
expand the tree, and also triggers updating of ‘dirty’ nodes. The StorageN-
ode keeps some administrative information about a Node, but has no
viewpoint on the specific information stored by the attached tool.
A StorageNode is an abstraction for the addressing into a versionTreefile.
It thus keeps track of NodeNames and a special ByteString where it
stores some administrative information.

StorageNode Configurator

Tools

Window
Editor

Controller

Figure 66 Document ‘Block’ representation - StorageNodes form a tree

Client run-time model 149

10.1.2 Tools
The tools in a Block are for example a Window, AstEditor, Semantic ana-
lyzer and Code Generator. It can also be a Text editor etc. Exactly which
tools there are in a particular type of Block is known by the Configurator.
Among the Tools (almost) all Block nodes have a Window to present its
output and a Controller which manages the input (and Menus) to the
Tools. These two are only strictly needed when the Block is visible on the
Screen either as window or as an icon (i.e when its father Window is open
and visible).

10.1.3 Configurator
The Configurators comes in various subclasses that represent the ‘type’ of
the Block. Each subclass knows about the collection of Tools needed for its
particular type of node. Type here indicate what kind of information it
handles, like text or ASTs. There is nothing that stops different types of
Configurators to use Tools of the same kind, like a text editor might be
used in many situations. The Configurator also to some extent handles
lazy configuration of the tools needed depending on the state of the Block.
One such state depends on the Window which can be Visible (Open or
Iconic) or Hidden. When it is Hidden, Window and Controller tools are not
needed.

The Configurator also collects packed information from the tools, com-
bines it into one chunk which it hands to the StorageNode for storage on
the VersionTreeFile. In the reverse situation it gets such a chunk from the
StorageNode, split it up in the components and hand them to the proper
tools.

The Configurator is responsible for configuring the Block node with
Tools of the right kind and at the right time. Not all Tools must be present
at all times in all Blocks. The Configurator is also responsible for discard-
ing (unconfigure) Tools when appropriate in order to decrease the memory
consumption.

The Configurator is a state machine that can be in several different
states, as depicted in Figure 67:

Paged Out

Hidden

Visible

Iconic Window

Figure 67 Configurator states

Paged In

InitAsOld

VisibleConfiguration HiddenConfiguration

IconicConfiguration

WindowConfiguration

InitAsNew

150 The COOP/Orm architecture

Transition between the Iconic/Window states are typically triggered by
user actions. Transformation between the Hidden/Visible states are
results of the father window being Iconic (or indeed Hidden) because of
the window hierarchy. In the Hidden state some Tools (like the Window
itself and the Controller) are not strictly needed. There is also a state
when the Block is not present in the internal representation, Paged Out.
Transition from Paged In to Paged Out is initiated by the corresponding
Father StorageNode. There is always a Configurator for each StorageN-
ode although the Configurator is not always complete with all its Tools.

newConfiguratorManager
This class is handling creation of Configurator subclass objects. The
implementation follows the ‘factory method’ [GHJV95]. It is actually cre-
ating all such objects and marks them with a number/production name
with which its type is represented when stored on file. This same type
identification is used by the newConfiguratorManager when a Configura-
tor object is loaded back (paged in) or created as new. There is no need for
more than one newConfiguratorManager object. It has to be presented
with one object of each Configurator type it is supposed to know about. It
uses the operation ‘Clone’ that each Configurator is supposed to imple-
ment to create objects (since there are no Class-parameters in Simula).

10.2 The COOP/Orm framework

10.2.1 Hot-spots in COOP/Orm
As Schmid says in [Sch96] a domain-specific framework both have fixed
aspects, that are common to all applications from a domain, and variable
aspects, in which different applications may differ. The variable aspects
are called the hot spots of the framework after Pree [Pre94]. This observa-
tion applied to COOP/Orm means that the client should have hot spots
making it possible for the developer to customize its behavior. The server,
however, should be generic and possible to be used by all clients, no mat-
ter how they are customized. Two important such hot spots are:

• The rules defining the document structure. The structure of a docu-
ment is always hierarchical. Further restrictions on this hierarchy,
e.g. that a node must have a fixed number of sons instead of an arbi-
trary number, should be possible to add. In other words, it should be
possible to create new node types similar to a folder but with the
only difference that there should be other rules defining the num-
ber of sons and their type.

• Possibility to add new leaf node types, i.e. nodes with other tools
connected to them. Such nodes could, for example provide editing of
new data types such as graphics or abstract syntax trees (ASTs).
Because the server is generic according to the data type, the prob-
lem is concentrated to the client which must be extended with an
editor that can handle the new data type.

The COOP/Orm framework 151

The following two subsections describe how the variability of these two
hot spots are accomplished. The description follows the model of how pat-
terns are presented in [BMR+96].

10.2.2 Changing the rules defining the document structure

Context
Further restrictions on the hierarchical document structure is needed.
These should make it possible to, without any deep knowledge about the
implementation, customize the client to support a specific document
structure (instead of the general hierarchy).

Example
Ulf is writing a program using the COOP/Orm environment. The hierar-
chical structure supported by the system is used to structure the code, e.g.
has each class its own folder containing a son for each operation. The sup-
port is, however, to general and the same type of folder must be used both
to represent classes and operations. Ulf realizes that a more tailored sup-
port with both ‘class folders’ and ‘operation folders’ should give further
help. Such structure is that each block (Ulf is, of course, writing his pro-
gram in Simula in which a block can exist in many situations. In this
small example, however, a block means a class or an operation) contains
documentation, declaration, and a body. The documentation and the body
are both leaf nodes containing text while the declaration is a container
node containing ‘simple’ declarations and (optional) new blocks. The ‘sim-
ple’ declaration is a leaf text node, but the block will recursively repeat
the structure. What Ulf wants is that the creation of a block window
should result in a container window with three subwindows. In the block
window no further subwindows should then be possible to create. Opening
the declaration window should visualize a ‘simple’ declaration window.
Here, however, a pop-up menu makes it possible to create new block win-
dows inside the declaration window.

Problem
In COOP/Orm rules are connected to a document folder. These rules
determine how many sons the folder can have and of which type they can
be. In the standard configuration of COOP/Orm these rules are very gen-
eral and allow an unlimited number of sons of any type (text, link, or
folder). Also, the standard configuration only have one container type, the
folder, and then, of course, only one set of rules. One of the hot-spots
defined, however, is to be able to add restrictions on this very general
structure. The problem to solve is therefore how a developer should be
able to create new container types, like the folder but with other, addi-
tional, rules. The problem is also to enable modifications of the rules con-
nected to a container type.

The following forces must be balanced:

152 The COOP/Orm architecture

• It should be easy to create new container types, i.e. nodes contain-
ing other nodes.

• It should be easy to change the container rules that determines how
many sons the container can have and of which type.

• Both adding new container types and changing the rules should be
possible during run-time, taking effect immediately. The already
created document structure must not be checked according to the
new rules, even if such feature most likely had been nice.

Solution
Let the Composite pattern, presented in Gamma et al. [GHJV95], be the
main design solution used to build the node hierarchy. This gives a class
hierarchy as depicted in Figure 68, both in graphical and textual notation
(BNF grammar). Looking at the graphical notation it is natural to see
how the document can be made up by a set of instances of the concrete
(leaf) classes. The textual notation, on the other hand, is seen as a lan-
guage in which we can create the document, i.e. the restrictions we must
follow. Even if they are equal I henceforth will use the latter interpreta-
tion.

The straightforward continuation of the problem would now be to build
the document following the language defined by the grammar. This

Figure 68 Graphical and textual representation of the node class hierarchy –
the meta-grammar

BlockNodeTextNodeLinkNode

Node

Node::= LinkNode | TextNode | BlockNode
BlockNode ::= Node*

Figure 69 The class hierarchy of configurators – the document grammar

FolderConfDocConfLinkConf

Configurator

Abstract grammar
Configurator::= FolderConf | DocConf | LinkConf
FolderConf ::= Configurator*

Concrete grammar
FolderConf ::= BlockNode
DocConf ::= TextNode
LinkConf ::= LinkNode

The COOP/Orm framework 153

approach does, however, not enable the changeability we aim at, since the
grammar should be static and could not be changed. Instead an additional
level between the node grammar and the document structure is intro-
duced. I.e. the target structure from the node grammar is not the docu-
ment, but a new grammar, called the document grammar, which in turn is
used to build the document. Because the node grammar is used to build a
new grammar we call it a meta grammar. The result is three levels: the
meta grammar, the document grammar, and the document itself.

Figure 69 depicts an example of a document grammar, which in fact is
the default grammar in a client. To prevent us from mixing the terminol-
ogy of the meta grammar and the document grammar, we call the classes
in the document grammar ‘configurators’. The grammar consists of both
an abstract and a concrete part. The abstract describes the relationship
between the configurators while the concrete maps back to the meta
grammar, i.e. defines of which node class a specific particular configurator
is an instance of. The meta grammar must, of course, be followed which,
for example, means that an instance of ‘TextNode’ (e.g. DocConf) can not
have any sons.

As the last step the document is created following the document gram-
mar. Figure 70 depicts a document example which follows the document
grammar in Figure 69. Since a document is created by selecting items
from a pop-up menu the user can not create an incorrect document
according to the document grammar. By changing the document grammar
in a special grammar editor (following the meta grammar), also incorrect
document grammars are avoided.

The flexibility of this solution comes from that the user can rewrite (or
extend) the document grammar. As long as the meta grammar is followed
any document grammar is allowed. Since the document grammar is inter-
preted every time the pop-up menu ‘pops up’ - a change to the grammar
takes effect immediately. Already created document nodes are, however,
not affected which can result in a document inconsistent with the new
version of the grammar.

Example resolved
To get the required structure, Ulf writes the following abstract and con-
crete grammars:

The abstract grammar:
Block ::= Doc Decl Body
Decl ::= SDecl Block*

Figure 70 An example of a document structure

Folder

Doc Folder

DocDoc Link

154 The COOP/Orm architecture

and the concrete grammar:
Block ::= BlockNode
Decl ::= BlockNode
Doc ::= TextNode
Body ::= TextNode
SDecl ::= TextNode

Looking at the abstract grammar we can see that a ‘Block’ always has the
same three sons and that the pop-up menu in the user interface conse-
quently will have no operations for creation of sons. The declaration node,
on the other hand, both has the compulsory ‘simple declaration’ node but
also the possibility to create an arbitrary number of new block nodes. The
concrete grammar says that all leaf nodes are of the type ‘TextNode’, and
that containers are of the type ‘BlockNode’, which means that the meta
grammar is followed as required.

Black-box framework
The technique used when interpreting grammar rules can also be seen as
a black-box framework. What we have is some black boxes (the instantia-
ble node classes in the meta grammar). These can then be plugged-in,
forming different configurations which all result in different behavior of
the application, i.e. the idea of a black-box framework. There are, how-
ever, some additional benefits with the grammar technique. First, the doc-
ument grammar is an intuitive and easy to understand (well known)
notation to describe the current box configuration. This makes it easy for
a developer to, without detailed knowledge about the system, create a
new, or understand an existing, configuration. Second, the meta grammar
is a formal specification of how the boxes can be configured, which both
further facilitate changes to the document grammar, but also makes it
possible to automatically check if a document grammar is correct. It is
even possible to provide a syntax editor interpreting the meta grammar
while editing the document grammar, making it impossible to create
incorrect document grammars, see also [Min90].

10.2.3 Creating new node types

Context
The client is extended with additional editors for new data types (e.g.
graphic). To each new editor a new node type (configurator) is created.
These are then used in the same way as the built-in configurators during
creation of a document.

Example
Ulf is writing a Simula program and has written his own document gram-
mar supporting the program structure (see ‘Changing the rules defining
the document structure’ above for details on this procedure). However, all
leaf nodes are of the same (meta) node type ‘TextNode’ (or ‘LinkNode’). I.e.
both nodes containing documentation and nodes containing program
source code are using the same textual editor, which unfortunately does
not give any support concerning the contents. What Ulf really wants is

The COOP/Orm framework 155

different editors depending on the node contents. This should enable sup-
port like spell checkers for documentation nodes and syntax editors
‘expanding’ the program code for ‘Body’ nodes.

Problem
The black-box architecture described in previous section allows a devel-
oper to, in an elegant way, configure the black boxes provided by the sys-
tem according to a meta grammar. The boxes are a text node, a link node,
and a block node. Since one of the main ideas with COOP/Orm is that the
document should be in center allowing different tools to operate on sepa-
rate parts of the document, the restriction to only be able to handle plain
text is not satisfactory. Versioned documents containing graphics and/or
program code (i.e. syntax trees) should of course also be possible to edit
within the environment. The conclusion is that it must be possible for a
developer to create new editors (‘black boxes’), thus extending the meta
grammar. The creator of such editor must, by himself, create both the nec-
essary internal structure (the model) and a viewer (terminology from the
MVC-pattern [BMR+96]) for the new data type, however the system must
give as much support as possible.

The following forces should be balanced:

• It should be proportionately easy to create the new editor.
• Minimal changes in the existing code should be necessary to extend

the client with the new node type.
• The extension should work together with the other possibilities to

customize the client.

VersionGraphVersionDescriptor

myNode

Node

Controller

DefaultMenuFEI

FII

Framework

Framework
extension

RI

StorageNode

Window

myMenu

DefaultMenuHandler

Figure 71 White-box framework enabling extension of the meta grammar.

myEditor

156 The COOP/Orm architecture

Solution
The solution is a white-box framework in which the extension is obtained
through subclassing of an abstract class within the framework. More con-
crete, the new node type that will extend the meta grammar should be a
subclass to the abstract class ‘Node’, i.e. the same superclass used for the
built-in node types as depicted in Figure 68. The functionality of the new
subclass is to be the controller according to the MVC pattern. Conse-
quently also the model and the view must be created and implemented,
both depicted as ‘myEditor’ in Figure 71. The Figure also depicts all the
other classes within the framework collaborating with the new classes.
The classes to implement (how is described in the Implementation section
below) form together a new node in the meta grammar, i.e. a new subclass
to ‘Node’ in Figure 68, thus extending the meta-grammar. Figure 72
depicts how the black-box part and the white-box part of the framework
are integrated. The result is that there is no difference to use a built-in
node or one created by the developer. E.g. can a concrete document gram-
mar using the extended meta grammar according to Figure 72 look-like:

The abstract grammar:
Configurator::= FolderConf | DocConf | DesignConf
DesignConf ::= GraphConf DocConf
FolderConf ::= Configurator*

and the concrete grammar:
FolderConf ::= BlockNode
DocConf::= TextNode
GraphConf ::= GraphNode

Implementation
The drawback of all white-box frameworks is that they require detailed
knowledge about the framework from the user extending it. Therefore it
is of great importance that the implementation steps are well documented
and easy to follow. This section is no such documentation, but only a short
simplified description aimed to give a hint of the needed work.

The idea of a framework is to capture the domain specific behavior and
to make extensions creating different applications possible within the
domain. The domain captured in the COOP/Orm framework is version
controlled hierarchical documents. I.e. version control, including the man-
aging of all deltas, is compulsory and built-in within the framework, while
e.g. the type of data can be varied. COOP/Orm differ from traditional sys-
tems in that the client is responsible for recreating old versions by apply-
ing deltas to a newer version of the data. The responsibility finally ends
up on the editor model which must be able to both create and recreate
data and deltas. Also the viewer must be able to select which data that
should be visible with the current ‘Viewed’ and ‘Compare’ versions. The
framework has two classes that can (should) be used when implementing
this functionality: VersionGraph and VersionDescriptor.

The VersionGraph is the model that keeps the information shown in
the ‘Versions’-window presented to the user, see Figure 22 on page 81. I.e.
the complete version tree, the version currently viewed and to which ver-

The COOP/Orm framework 157

sion we currently compare to (including the versions in between which we
call the ‘version tube’, see Section 8.2.7 and [Ask96]). Besides to present
the information to the user, the VersionGraph is used for queries like ‘is
this versioned item visible in the current view?’, which can be asked e.g.
by the editor. The VersionDescriptor is a data container holding a ver-
sioned item’s all data necessary for the VersionGraph to answer the query,
i.e. a versiondescriptor is always sent as parameter to the queries. Only
one instance of the VersionGraph exist and the framework provide refer-
ences to it (the singleton pattern [GHJV95] solves this). This is in contrast
to VersionDescriptor which the user extending the framework can instan-
tiate freely.

VersionDescriptor The class VersionDescriptor is purely a data con-
tainer. Its function is to store the history (or at least a part of it) of one
node in the document tree. Instances of VersionDescriptor are aggregated
both by BlockStorageNode and Editors.

A reference to a VersionDescriptor is used as a parameter to most of
the enquiry operations called to VersionGraph.

Examples of operations are:

• SetAdded(from, to)
• SetDeleted(from, to)

VersionDescriptor

Node

Controller

DefaultMenuFEI

FII

Framework

RI

StorageNode

Window

DefaultMenuHandler

Figure 72 The default meta-grammar extended with a graph node

Block
Link

Text
TextNodeTextEditor

TextMenu

Black-box
Framework

White-box
Framework

VersionGraph

GraphNodeGraphEditor GraphMenu
Graph

158 The COOP/Orm architecture

• SetChanged(from, to)
• SetHistory(...)

VersionGraph A data structure describing the revision history of the
entire document. The information in the VersionGraph is shared among
all clients, i.e. continuously updated by and broadcasted to all clients.

In the current implementation VersionGraph also holds information
about the layout, used by VersionViewer. This information is never stored
on disk, but calculated by VersionGraph in each client, i.e. even if the
revision history structure is shared, the layout is not.

VersionGraph also stores status information that is specific to the cli-
ent. The version currently viewed, the version we are presenting deltas to,
if we are editing or merging are examples on such information. Also the
history of Viewed and Compare is stored.

The client specific information is to answer questions from BlockStor-
agenode and Tools (e.g. an editor), leading to correct deltas are retrieved
and stored. If e.g. Compare is a fork version and Viewed is the merged
version of the two variants, VersionGraph remembers from which variant
deltas have been retrieved. If Compare is moved right, into one of the
variants, one of two things happens: (1) Compare is moved into the vari-
ant from which deltas have been retrieved, i.e. no further deltas are
required. (2) Compare is moved to the other variant, and deltas are thus
needed for all versions between the new Compare and the common merge.

Examples of operations in the VersionGraph are:

• AddVersion(FromVer,ToVer)
• AddMergedVersion(MainVer,AddedVer,mergedVer)
• Freeze
• SetViewed
• SetCompare
• SetEditFrom
• Added(VD), Deleted(VD), Outside(VD), ... see Figure 73.

The last item is some of the methods the VG provides, which can be used
by BlockStorageNodes to figure out how to present the node - visible or
not, marked as added, marked as deleted, etc. Also other tools managing
any versioned item use these methods, e.g. the text editor has a VD con-
nected to each paragraph. All these methods takes a VersionDescriptor as
parameter. Its state together with the current state of Viewed and Com-
pare gives the result as depicted in Figure 73.

Steps to follow when adding a new data type (cook-book)
Below is a list of all the needed steps when extending the framework. An
example follows the steps like a ‘red thread’ and is referred to for each
step. The example is that the user change the ‘Compare’-version to an
older version. This operation results (from the user point of view) in that
new deltas between the old ‘Compare’ and the new ‘Compare’ are
retrieved from the server and presented together with the other diffs
already presented.

The COOP/Orm framework 159

1. Create a new subclass to Configurator. Implement the virtual oper-
ations. One such virtual operation is ‘MoveCompare’ which is called
when the user change the ‘Compare’-version. The default behavior
of a Configurator is to get the required deltas from the server, thus
is the operation ‘GetDelta’ called. This operation, together with all
the others needed to implement the virtual operations, is imple-
mented in the class Node (or in any of the superclasses to Node).
The result of this call is that (after the server has returned the
requested deltas) the virtual operation ‘InstallDeltas’ is called, and
consequently also must be implemented. This implementation is,
however, most likely only a forward to the editor class, see step 2.

1. OutsideO
2. Deleted
3. Present
4. AddDel
5. Added
6. OutsideY

Added Deleted Outside Visible Present
Now

Added
Now

Deleted
Now Changed

0. Initial true

1. OutsideO false false true false false false false false

2. Deleted false true false true false false ? false

3. Present false false false true true false false ?

4. AddDel false false false false false false ? false

5. Added true false false true true ? false false

6. OutsideY false false true false false false false false

7. DelAdd false false false true true ? false false

7. DelAdd

Figure 73 The columns are methods in the VersionGraph. The rows are the cur-
rent state of the node, stored in the VersionDescriptor sent as a parameter to the VG
method. The cells are the result returned from a method call. The methods XNow
are only valid during editing, otherwise are always false returned. Above the table
are the different states stored in the VD explained, with the line symbolizing the
existence of the item.

Cases:
Version graph

7 examples of different lifespans for a node in relation to the current ‘viewed
window’ (versions filled black from Compare to Viewed).

ViewedCompare

160 The COOP/Orm architecture

2. Create the editor class. Referring to the example an operation
installing delta, ‘InstallDeltas’, must exist. Besides to install the
delta in the model correctly, the delta must also be presented to the
user with the correct markings (e.g. can deltas previous marked as
changed now be added). To accomplish this each versioned entity
has its own VersionDescriptor storing its evolution history. Queries
like ‘Visible?, Added?, etc. asked to the VersionGraph with the
descriptor as parameter finds out how each entity should be
marked.
Note, if the complete node should be visible or not and possible
markers on the windows/icons are handled by the framework auto-
matically.

3. Create a menu. A default menu exists within the framework. It is
then possible to extend this menu to add additional entries needed
in the new editor. The default entries are still handled by the
framework automatically.

4. Create the prototype of the new node, see Prototype pattern
[GHJV95]. The only change necessary in existing code is to add one
row in the main program. This row creates one instance of the new
node and registers it in the prototype handler. For every node cre-
ated by the user the prototype of the correct node type is cloned.
Consequently must also the virtual operation ‘Clone’ always be
implemented in the new node.

5. Now is the meta grammar extended. To use it, also the document
grammar must be changed to include also the new node, which is
explained above in Section 10.2.2, ‘Changing the rules defining the
document structure’.

Example resolved
Ulf decides to extend the meta grammar with a new node called ‘Simul-
aNode’. He follows the cook-book and implements the necessary classes.
The new editor is an editor for syntax trees and only allows trees follow-
ing the Simula grammar, which gives the help during programming he
aimed at. (To create such editor is, of course, not a simple task but outside
the scope of this paper.) Finally Ulf changes the concrete document gram-
mar changing the BodyConfigurator to be a a SimulaNode instead of a
TextNode and the customized program environment is ready to use.

10.3 The server architecture

As previously described we consider awareness as very important for a
groupware system. In COOP/Orm the implementation is based on the cli-
ent-server push model, described in Section 8.2.5. In this section we will
shortly describe how awareness is implemented in the server.

The model has two main properties:

• For a command requiring a response (e.g. GetData), this response is
not sent as a reply which the client waits for, but as a (stand alone)

The server architecture 161

message to the client. Clients are always in a state, ready to receive
messages from the server.

• The server may send ‘response messages’ not just to the requesting
client but to other clients or servers also needing it.

Thus, the client-server push model requires the clients to always be able
to receive messages from the server, for example containing node data.
This requirement on the clients is also used for the implementation of
awareness.

For example as a response to GetData, the server sends a message
(‘NodeDataMsg(ver, nodename, data)’) to the client asked for it. When the
client receives such a message it just loads the node with the data, asked
for or not. When a client stores data, the command ‘PutData(ver, node-
name, data, delta)’ is sent to the server. If other clients currently are view-
ing version ‘ver’ (e.g. with a hypothetical merge), the server sends a
message (‘DataMsg(ver, nodename, data)’) to them, which they load in
exactly the same way as when asked for.

Figure 74 depicts parts of the server architecture, its sockets connect-
ing it to its clients, and how commands are diverted to the correct docu-
ment manager and responses/messages are sent to the correct clients.

The process for a command sent from a client to the server is:

Server ‘SP’
Sockets to con-
nected clients

xxx.PutData(3)

List of connected
clients and servers
- client A
- client C
- client D
- ...
- server SZ

clients and servers
opened Doc ‘xxx’

Clients/
Servers

View
ver

Synch
ver

A 3

D

E 3

G 4 4

SZ 4

clients and servers
opened Doc ‘yyy’

Clients/
Servers

View
ver

Synch
ver

A 19

C 14

A

SZ

C

D

G
Doc ‘xxx’

E

Doc ‘yyy’

yyy.PutData(14)

Figure 74 Server architecture

Doc
Mgr

Doc
Mgr

162 The COOP/Orm architecture

1. The command is first sent to the correct document manager, which
executes the command. The document manager executes each com-
mand as an atomic operation serializing commands sent simulta-
neously from many clients. Depending on which command is
executed the manager generates different replies. Five different
types of replies can be returned, shown in Figure 75.

2. The different replies (none or many) are then sent to the relevant
clients, which are specified in a table for each document. All clients
that opened a document is listed in this table. If a client views a
version currently edited by another client this is entered in the col-
umn ‘ViewVer’. When the version level ‘synch ver’ is selected, the
version viewed is entered in the column ‘synch ver’, which results in
that also changes in the gui (e.g. opening a window) is sent as mes-
sages to the subscribing client.

In Appendix C:, ‘Server commands’, Figure 78 ‘Server commands and
their responses.’, all server commands are listed in a table depicting
which type (may be many) of response each command gives rise to.

Note that each server only has to manage ‘its own’ clients and the
other servers, never clients connected to another server. Also note that
there is no ‘racing’ between commands or messages. If a message is
delayed, it will result in a slightly delay in awareness, but it will never
lead to the document contents being different. On exception to this is dur-
ing ‘Share Version’ (see Section 7.5, ‘Awareness model’), when it could be a
race of grabbing the cursor, but when the cursor is grabbed only one client
can edit the document.

Reply: a message that should be sent to the client sending the command. E.g.
the client data requested by the GetData command is sent in a ReplyGetData
message.

Broadcast: should be sent to all clients opened the document, independent of
which version they are currently viewing. E.g. when a client sends CreateVer all
clients should be aware of this and update their version graph. Therefore the
message BroadCreateVer(ver) is sent to all clients.

View: should be sent to all clients viewing that particular version. E.g. if client
A views version 4 and client B sends the command PutData(4, <data&delta>)
this data and delta is sent to client A in a ViewPutData(4, <data&delta>)
message.

Synch: is sent to client ordered ‘ViewSynch’ of a version. These messages are,
for example, sent also when windows are opened, closed, or moved.

Server: Clients opened the same document may be connected to different
servers. A ServerMessages is sent to these servers and they are then relaying to
their clients as of above. All servers not interested in that document receives
the updates later during the normal server replication synchronization.

Figure 75 Different types of messages that can be sent from the server.

Summary and discussion 163

10.4 Summary and discussion

In this chapter we have discussed the architecture which makes it possi-
ble to tailor the environment by:

• specializing the document grammar, thus re-defining the allowed
document structure by putting restrictions on the general hierar-
chical structure.

• providing a framework which makes it easy to add new editors to
the environment. Since the editor itself is responsible for the data
type edited, also new data types managed by the environment could
easily be added.

Thus, the use of well-known patterns and a framework architecture
makes it relatively easy to tailor the document structure and to extend
the environment with editors for new data types - still providing the same
high level of support as for the built-in editors.

It also enables the possibility to add an editor with limited functional-
ity (support). E.g. to add an existing editor that does not support version-
ing or presentation of diffs, and that always store the full data in all
versions. Similarly, it is easy to add a tool presenting diffs only (i.e. no edi-
tor). Typically such tool takes two full data, compares them, and presents
the diff. In this way a more limited (traditional) support can be imple-
mented as a ‘quick and dirty’ solution.

164 The COOP/Orm architecture

Chapter 11 Related work

COOP/Orm started as a project to add support for collaboration to the
integrated development environment Orm developed within the Mjölner
project [KLMM94]. The results is the addition of several models covering
different aspects important to obtain collaboration, all integrated into one
environment. For each of these models there have been a lot of related
work. For example within collaborative editing there is an entire domain
(CSCW) covering a lot of aspects of how people can and should collabo-
rate. There are other projects building integrated environments, some of
them with very similar goals as for COOP/Orm. This chapter will cover
both some of the related work within different specialized areas and
projects developing integrated environments. Earlier in this thesis
related work has also been presented in connection with specific results
from COOP/Orm. These will also be summarized in this chapter.

11.1 TUCAN

TUCAN is a synchronous distributed team programming environment
from GMD/IPSI in Germany [SH01, SS01]. It is implemented using the
open source groupware framework COAST [OC02, SKSH96] and the
Smalltalk programming environment VisualWorks/ENVY [Cincom], to
which it adds awareness i order to provide support for collaboration.

In order to identify what kind of awareness is needed different points
of collaboration during the process of software development (PoC) were
identified [SS01]. Based on these PoCs different modes of collaboration
(MoC) could be identified. Also, they noticed that MoCs is a lightweight
mode and that changing MoCs therefore should be considered as a light-
weights activity comparable to the effort of changing modes of operation
by selecting different windows (which also is one of the key aspects of
COOP/Orm). The MoCs defined are: off-line, process level, change level,
change aware, presence level, presence aware, communication, tightly-
coupled collaboration. Switching between MoCs can be done automati-

166 Related work

cally or manually. Automatic means that some actions (e.g. opening a tool)
change mode. Manually means that the mode is changed explicitly using
the ‘user dialog’, which may lead to the system will close tools that are not
allowed in the new mode.

An important factor for the acceptance of a groupware system is the
balance between efforts and gains. TUCAN addresses this problem by
introducing rules that define how much a user has to contribute to the
system in order to benefit from it. A contribution here is to allow the sys-
tem to log your activities and enable other users to view what you are
doing or to be available to a certain degree. To contribute a lot, typically is
to allow a detailed log and to allow other users to contact you and ask for
tighter collaboration. To be able to gain from the system, i.e. to get a lot of
awareness of what other users are doing, demands the fulfillment of cor-
responding contributions.

TUCAN’s awareness model is based on the ‘software space’, which is
the graph of all artifacts developed and their relationships, where a rela-
tionship can be ‘part of ’, ‘inherits’ and ‘uses’. In this graph a developer’s
‘focus’ is defined as the set of artifacts the programmer work with (or
actually currently are looking at). Also the ‘nimbus’ can be defined given a
weight of each relationship. The ‘nimbus’ was defined by [GB97] to ‘repre-
sents an observed object’s interests to be seen in a given medium’. The
focus and nimbus are used to make users aware of each other, by making
the user aware of how much his/her focus/nimbus intersect with other
developers focus/nimbus. The TUCAN environment consists of different
tools supporting different strengths of collaboration, where all tools share
the metaphor of software space.

TUCAN and COOP/Orm have very similar goals and ideas of how to
utilize awareness to better support collaborative work. Both have an
awareness model based on the software space (artifacts i TUCAN and doc-
uments in COOP/Orm). However, in COOP/Orm currently only ‘part of ’
relations within a document propagate awareness. Versioned links to
other documents implements ‘uses’, but these do not automatically propa-
gate changes and with that awareness. Future work is to also manage
source code abstract syntax trees (AST), which will enable also other rela-
tionships such as inheritance and uses on a more fine-grained level.

Providing different modes of collaboration and awareness is similar in
the two systems. In TUCAN these levels are more defined and named,
while in COOP/Orm we prefer to not even call them ‘modes’ and instead
emphasize on how simple it is to increase and decrease awareness while
collaborating - without any fixed boundaries.

A difference between the models is that COOP/Orm does not provide
‘presence aware’ while working, i.e. awareness of where in the software
space other users are browsing/viewing. During editing only awareness of
other users actual changes to the document is provided. In ‘synch viewing’
however, an identical view is established monitoring another user.

Moreover, COOP/Orm do not have any rules to receive awareness. We
totally agree on the importance of balancing effort and gain, which we
believe is even more important for more administrative systems and
when the cost actually is time consuming actions that must be performed

Coven (Stellation) 167

rather than automatically being viewed. Currently we instead focus on
providing as much awareness as possible in order to evaluate its benefits.

This is also correlated to the (lack of) fear of being monitored. In accor-
dance with the experiences from studies using TUCAN, we are confident
that programming teams working close together already have a social
protocol making trust no problem and that the same is true also for e.g.
authors writing a book together.

11.2 Coven (Stellation)

Coven [Chu01, CS00] is a SCM system originally developed at IBM
research. It has very similar goals as COOP/Orm, addressing the prob-
lems arising when large projects are developed in a geographically dis-
tributed environment. It attempts to enhance the communication and
collaboration between programmers by providing fine-grained versioning,
compound artifacts, repository replication, soft locks, and multidimen-
sionality.

Fine-grained storage and versioning. Coven stores and version
more fine-grained artifacts than traditional files. For example, when man-
aging programming source code a typical artifact could be a class method
rather than the entire class. The idea of communicating and coordinating
shared artifacts on a finer grain than traditional source files is very simi-
lar between Coven and COOP/Orm.

Compound artifacts (CA). Versioning of small fragments demands
tools for composing these fragments into larger units. Coven provides this
through versioned compound artifacts (CA), which is similar to COOP/
Orm documents using versioned links only, i.e. only L-nodes and no C-
nodes (see Section 6.1.1). I.e. a CA is a bound configuration of versioned
fragments or other CAs. Also, CAs need not be mutually exclusive (same
as for Documents), but there is a consistency rule that for any artifact
contained within a CA, there must be exactly one version of that artifact
(which is checked using feature logic).

In Coven CAs are used to implement a project model based on dividing
a project into subprojects. In COOP/Orm documents are presented using
nested windows also providing effective browsing, propagation of changes
(awareness), and presenting and resolving merge conflicts.

Repository replication. The repository is replicated by building a
hierarchy of linked repository replicas very similar to Teamware’s
[Team94] nested transactions (described in Section 5.5.3). At any level a
repository can be replicated, creating a sub-repository. Events (e.g. cre-
ation of new versions) are transmitted between the levels of the tree.
Thus, the repository hierarchy is used both to coordinate changes and to
replicate data.

In COOP/Orm the server-server protocol replicates data between serv-
ers in order to keep them up-to-date. Coordination of developers and
teams is provided by other means, e.g. branching. This means that the

168 Related work

server-server communication is never time critical. Also, data sent
between servers is the actual changes only, and the COOP/Orm server-
server communication does not require higher bandwidth than the sub-
scription based messaging system to coordinate Coven repository replicas.
However, if two clients connected to different servers sets up a synchro-
nous collaboration or if one client sets up a ‘synch view’ to the other client,
this traffic will temporarily require a higher bandwidth. To integrate
asynchronous and synchronous collaboration is one of the benefits of
COOP/Orm.

Locking and coordination Unlike Teamware and COOP/Orm, Coven
does not use an optimistic check-out policy, but uses locking to coordinate
changes. The locks used are advisory ‘soft locks’ which can be neglected,
resulting in a notification sent to the holder of the lock. In combination
with the hierarchal repository replication model, a nice usage of locking is
when a team wants to work with a set of artifacts and prevent other
teams to disturb them by also changing these artifacts. By placing a lock
on these artifacts at the correct level in the replica tree structure the arti-
facts appear locked for other sub-teams, but appears unlocked for the
team placing the lock.

COOP/Orm does not provide soft locks, but entirely uses an optimistic
approach. For loosely coupled teams the passive awareness provided by
soft locks may be enough, but within a tightly coupled team it undoubt-
edly will be concurrent changes requiring strong support for fine-grained
awareness and merge.

Multidimensionality. One of the key ideas of Coven is to separate code
storage from organization. Artifacts can be composed into virtual source
files (VSF), which only purpose is to communicate organizational mean-
ing. This is similar to modules in CVS, but CVS only manage files and not
finer-grained artifacts. In addition, Coven uses a query based language to
define views, to access the repository and to place locks. A VSF is dynami-
cally generated by executing a query (e.g. each time a VSF is checked out).

At a high level, the goal of Coven is to ease the development of software
systems by large groups of loosely coordinated developers, while COOP/
Orm is more focused on providing support for tightly coordinated develop-
ers (i.e. distributed groups as defined in Chapter 4), which requires more
awareness and synchronous collaboration.

Coven has recently changed name to Stellation, which is an open
source project (subproject to Eclipse [Ecl02]) made available under the
Common Public License. Stellation is implemented both as a Eclipse plug-
in and command line tool.

11.3 Adele

Adele [Est85, EC94] has an object-oriented data model in which both
objects (e.g. files, activities, functions, strings, etc.) and relationships
(associations for e.g. derivation, dependency, composition) are objects. The

POEM 169

aim is to manage both object evolution (i.e. versions) and complex objects
(products and configurations). An object is a set of attributes, including
files and other objects. References to other objects can either refer to an
object state or to a generic object. If references to object states are used
only, it builds a bound configuration, otherwise the configuration is
generic.

A bound configuration (an instance of a generic configuration) is a set
of revisions, one for each variant of the generic configuration. This
instance is created and defined by the constraints to be applied in order to
select the convenient revision for each variant. This selection is made in
Adele on the basis of the revision properties, using a first order logic lan-
guage. Compared to COOP/Orm the primary configuration model in Adele
is based on selection rules, while in COOP/Orm such rules more are used
as a help modifying a document version already created (session started).

Three types of versioning is defined in Adele: temporal, logical, and
dynamic versioning.

Temporal versioning preserves history and provides traceability by
storing the states of all objects. When an attribute is defined as immuta-
ble it means that ‘any attempts to change its value automatically pro-
duces a new ‘state’ (i.e., revision) of the object.’ [EC94]. See comparison to
UEVM in Section 6.3.4.

Dynamic versioning is a mechanism to control overlapping activities.
Transparent to the user it creates object copies so that each process has
the illusion of working alone on ‘its’ object. This is just the opposite to how
concurrency is solved in COOP/Orm, where awareness makes the users
aware of concurrent activities (instead of hiding them) and then provides
support to merge these activities.

The ‘family’ is another important concept in Adele providing a flexible
structuring mechanism. Basically a family is a module providing an inter-
face associated with one or several realizations. Important though is that
family, interface, and realization all also are objects, with a type, possible
to classify in inheritance hierarchies. Being objects they have attributes
and can be versioned as described above.

The Adele workspace manager is similar to Teamware [Team94] and
Coven [Chu01]. A workspace is actually a sub-database of the repository
database, which can be created forming a hierarchical structure of work-
spaces. Workspaces are synchronized using the operations ‘promote’ and
‘resync’.

11.4 POEM

POEM (Programmable Object-Oriented EnvironMent) [LR95, LR96] is a
programming environment. The motivation behind POEM and UEVM
and their models are very similar based on the well known assumption
‘modularization is the separation of concern’ and the fact that this separa-
tion of concern is not available if we handle configuration management in
terms of files. To manage files and directories (as most traditional CM sys-
tems) has the obvious limitations of: (1) we cannot have versions of sub-
file entities like functions and classes and (2) we cannot handle the ver-

170 Related work

sions of high-level functions and classes with simple operations. The main
motivation for POEM (as for COOP/Orm) is to resolve this problem.
Therefore POEM supports system building and version control directly in
terms of the functions and classes in the source code.

POEM is tailored for the C++ language and uses existing C and C++
compilers in the UNIX operating system as its backend and is imple-
mented under POEM itself.

System building is supported by a graphical, interactive editor where
the relations between software units are modeled. Like L-nodes, relations
relate to a specific unit version building bound configurations. The system
visualizes two types of relations: ‘uses-interface’ (analogous to including a
‘.h’ file in a ‘.c’ file) and ‘t_uses_interface’ (analogous to including a ‘.h’ file
in another ‘.h’ file). These relations supersedes both ‘#include’ directives
and make files.

Another important concept is subsystems, which are similar to docu-
ments in UEVM. Also the versioning model is similar, but with the differ-
ence of when versions are created and the limitation of change
propagation. More details about this can be found in Section 6.3.5.

To support collaborative work POEM also introduces the concept or
workareas, which are software units portioned into mutually exclusive
workareas in order to define boundaries between programming tasks.
Each workarea has an owner that can edit the software units in the
workarea. In our opinion this is to inflexible, since it only supports the
split-combine model, but not copy-merge. Or, in other words, it does sup-
port co-located groups but not distributed groups.

To conclude and compare with COOP/Orm, the system model and ver-
sion control is similar to COOP/Orm. In addition POEM has strong sup-
port for build, but does not provide support for awareness, (a)synchronous
editing or copy-merge.

11.5 Subversion

CVS is successfully used in many projects, including open source projects.
However, it has some deficiencies and several tools have been and are
developed with the goal of being the real ‘CVS killer’. One of these
projects is Subversion [Sub02], developed as an OSS project itself.

It still looks like CVS, but some of the new ideas are similar to COOP/
Orm functionality. Important properties of Subversion includes:

• Same work model as CVS: Checkout - update - commit. However,
long transactions are not implemented, i.e. it is possible to commit
changes to the repository without first doing update, even though
some changes can not be committed due to conflicts.

• Versioning of configurations rather than atoms. Only the module
(configuration) has a version number - not its parts. Bound configu-
rations are thus managed and several changes to many parts can be
changed within one new version of the module. I.e. very similar to a
Document in UEVM.

Ragnarok 171

• A module and its part have the same version number (se item
above). Subversion also presents in which version each part was
last changed, which (of course) not always is the same as the mod-
ule version number. This is a light version of COOP/Orm’s local ver-
sion graph (Section 7.3.5) presenting the entire history of a part in
terms of the module version graph, including when it is created and
deleted.

• Supports repeated merges. Subversion remembers last update and
uses this version as youngest common fork (CVS continues to use
the version from which the workspace was created). In COOP/Orm
developers work in branches rather than workspaces, which makes
it possible for them to have their own versioning within the branch
and the entire merge history (e.g. ‘updates’) is preserved.

COOP/Orm and Subversion creates new versions at different points in
time. COOP/Orm creates the new document version directly when the
session starts. The user thus knows which version she works on. In Sub-
version a module version is checkedout to a workspace and when commit-
ted the new version is created. Thus, possible parallel work is not noticed
until commit (or specifically asked for by the user). In COOP/Orm parallel
work is visible from the start, which also enables (and encourages) aware-
ness by viewing the work of others both synchronously and asynchro-
nously.

11.6 Ragnarok

Ragnarok [Chr99c, Chr99b, Chr99a, Chr98b, Char98a] is a software
development environment with focus on software architecture and archi-
tectural evolution. Ragnarok implements the Unified Extensional Ver-
sioning Model as described earlier in Section 6.3.1. It differs from COOP/
Orm in that it simulates composition using reference semantics (L-nodes)
instead of a hierarchical structure of composition nodes (C-nodes). I.e.
COOP/Orm will provide better support for a more fine-grained internal
document structure. Also the session concept differs somewhat. All
changes to a document are in Ragnarok made in a workspace. When a
document is checked-in to the repository, all documents rooted in that doc-
ument are committed and their sessions are terminated. Ragnarok thus
provides a flexible model in which any document can be the root for a
check-in. COOP/Orm more explicitly starts a session by creating a new
version which then can be modified until the sessions is terminated. Also,
by not using off-line workspaces, COOP/Orm also supports both asynchro-
nous and synchronous awareness.

Even though Ragnarok primarily was aimed for research it was also
used in three real development projects, detailed in [Chr98a]. This use
itself proves that the UEVM can be used in real projects, but Christensen
also made some quantitative measurements in order to analyze its behav-
ior. In order to see how ‘version concentration’ worked in practice, the
Ragnarok prototype was in early February 1997 equipped with two addi-

172 Related work

tional house-keeping attributes, that allowed the actual amount of prolif-
eration in the version database to be assessed quantitatively.

The important point from these measurements is that the number of
version nodes in the repository was proportional to the number of check-
ins and to the number of changes; thus there was no combinatorical explo-
sion. Furthermore, the measurements showed that there was roughly one
‘intermediate’ version for each ‘essential’ version. For each explicit check-
in there was 3-8 files checked in (which means 1.5-4 ‘essential’ versions).
Thus rather than creating more work for the user having to check in
‘intermediate’ versions the situation is that in Ragnarok a user had to
handle fewer explicit check-ins than in a traditional system.

Both Ragnarok and COOP/Orm implement UEVM. Since both the cre-
ation of intermediate versions and the concept of ‘version concentration’
are fundamental in UEVM, the implementation of them are equivalent in
both systems. Consequently, the results above from practical use of Ragn-
arok can be transferred to also apply to COOP/Orm.

Chapter 12 Future work

Within the former Mjölner group and current LUCAS group [LUCAS] we
have had a tradition to cooperate and listen to the industry to get an idea
of what they generally consider to be important areas to work with and
problems to solve. For example, the problem statements in this thesis are
based on several industrial case-studies. Also in the future we will con-
tinue work in close collaboration with industry.

Some people mean all there is to research about within CM is already
resolved. We do not agree. In the same spirit of having a sharp ear
towards actual problems, we also aspire to broaden ourselves. One way of
doing that is to collaborate and learn from other domains. Examples of
such projects are our study of the CM ‘behavior’ within the OSS domain in
order to learn from them and to investigate if some of their techniques can
be transferred to traditional CM [AB02, AB01, AB01b]. We have also been
part in a project driven by the Association of Swedish Engineering Indus-
tries about ‘PDM and SCM - similarities and differences’ [ACH+01]. The
main idea with this project was to learn more about both these domains
and to really find out what is similar and what is different, what can SCM
learn from PDM and vice versa, how should SCM tools and PDM tools be
integrated in order to provide full support for a company, etc. Currently
we are also writing a book about this topic, and future work will be to
actual give a concrete form to this knowledge and to implement lessons
learned.

Continue to implement and evaluate
We will continue to develop and evaluate the COOP/Orm model. We will
do that following two tracks: (1) develop and use the COOP/Orm proto-
type implementation, and (2) implement model in existing tools.

We will continue to implement the COOP/Orm prototype and make it
stable enough to be used in different situations. We have discussed with
industry to (in the first phase) use it for collecting and discussing early
requirements and for reviewing - two activities where many, often distrib-
uted, persons are involved. Of course, program development is one goal,

174 Future work

and to achieve this we also have to integrate a compiler, linker and debug-
ger to our environment. We also aim at not treating source code as text,
but to manage ASTs instead. We thus want to have fine-grained version
control of ASTs in order to compare and merge them - and, most impor-
tant, to clearly present the result to the user. More concrete, we will
develop editors for new data types such as ASTs and Graphic (to support
design documents).

It is also possible to evaluate (parts of) the model by configuring exist-
ing tools according to our model. Many advanced SCM tools are possible
to configure. Even though they are not primarily designed for such use
and it is a lot of work configuring them, it is still possible at least for the
purpose of evaluation.

Support to XP activities
Extreme programming (XP) [Bec99] is an interesting and concrete work
process of current interest. XP is focused on small processes giving a lot of
fast feedback, which is exactly what we have focused on developing
COOP/Orm. We will further study how the COOP/Orm environment can
specifically support XP activities. Particularly, we believe we can support
refactoring. Our idea is to store and manage semantic operations rather
than lexical. If a user renames an identifier this is stored as a rename
operation rather than deleting some characters adding some new at a spe-
cific. Such semantic operation can then be merged into other branches
applying the same refactoring.

Multi grammar documents
COOP/Orm is designed for managing documents containing many differ-
ent data types. Of such documents do not follow one grammar, but differ-
ent parts of the document follow different grammars. For example, the
main grammar for a book contains chapter, sections, etc. But if it is a Java
book, it may also contain examples of Java source code, which if supported
by Java editors could be written correctly and maybe even compiled and
run.

Instead of defining one (big) grammar for the entire document it is pos-
sible to define several nested grammars. Each grammar having its start-
ing node defining the grammar for the document tree it is root for - unless
it is overridden by a new grammar further down in a subtree of its tree.

Several grammars are covered in the COOP/Orm model and future
work is to implement ‘grammar starting nodes’, to make it possible to
have nested grammars.

Chapter 13 Contributions

The main motivation for this work was to improve the support for distrib-
uted development. Such a broad problem formulation means that
advances and results from several research areas are needed and com-
bined. When designing such an environment many engineering issues
comes up and there are no simple right or wrong answers, but trade-offs
between different conflicting goals need to be done. The efforts also
includes resolving subproblems, but in the end it is the complete solution
that is most important. If too much focus is on resolving subproblems
there is a risk to achieve local optimums rather than a good total solution.

The two most important design decisions we have taken are:

• Versions are good - let us keep them cheap and easy to use. Very
early we found versions extremely useful for collaboration. Versions
are stable (we therefore also made versions of configurations stable)
and are thus possible to refer to and to compare. Most of the other
design decisions are based on the fact that all involved components
know about versions.

• Integrated environment. In order to demonstrate the power of max-
imum support we decided to build an integrated environment. The
integration enables tighter interaction between different ‘tools’
enabling more support to the user. Even though there are draw-
backs, e.g. it is harder to integrate the favorite editor, we believe the
advantages outweigh the disadvantages, and wanted to explore this
situation.

In this chapter we will summarize the contributions of this thesis and
present them in the context of the four step research method defined in
the introduction chapter. Below is a short summary of the results of each
of these steps:

176 Contributions

1. Capture the requirements
We have captured requirements from two larger studies: A 6 month
study of how ClearCase works in a real industrial environment
including suggestions of improvements were made in 1997 [AM97].
We have also been part in a project from April 1998 to February
1999 studying problems due to and solutions for distributed devel-
opment [AMP99, Ask99a, Ask99b]

2. Find models
The UEVM model comprising extensional versioning for both
atomic entities and configurations is fundamental in our approach
[MA96, ABHM99, Per98]. The support for merge have been
extended from traditional approaches providing the user with a bet-
ter overview of the default merge suggestion, conflict detection, and
resolving them in a consistent manner [AM01, Ask94]. The aware-
ness model supports several levels of awareness [Ols94]. The
(a)synchronous collaboration model actually is the result of combin-
ing the awareness model and the integrated environment [MM93,
MMA]. Finally, the symmetric replication model cope with the most
demanding case of distribution, distributed groups [MA95].

3. Build a prototype
Most of the models above have been implemented in the COOP/
Orm prototype written in Simula and Java on Unix [MAM93,
Ask96].

4. Evaluate
COOP/Orm is a prototype and has so far not been used for an indus-
trial evaluation. We evaluate the results, measure and argue to
make if plausible that the results work in an integrated environ-
ment.

13.1 Capture the requirements

The overall goal is to ‘support people working together although geo-
graphically distributed’. Many CM tools already provide such support to
some level, but we aim at extending the support and make it possible to
have:

• larger groups working together;
• larger size of documents shared between developers;
• developers more geographically dispersed - more mobile.

In this ‘capture the requirements’ phase we capture several concrete
requirements that together meets the overall goal. In order to get the
requirements from ‘real life’ (i.e. from concrete projects in industry rather
than by own guesses) we made two rather large case-studies.

The first project was a study in 1997 of how CM and ClearCase works
in a real environment. During approximately six months the development
environment was studied, interviews were made, and some minor devel-
opment tasks were performed. Among the results were a better knowl-
edge about the development environment (both for us and for the

Capture the requirements 177

company), some suggestions of how ClearCase could be improved to better
support this companies needs, and requirements on a configuration man-
agement tool in general [AM97].

The second project was a 10 month project ordered by The Association
of Swedish Engineering Industries in which we had an active part. It
lasted from April 1998 to February 1999, included several case-studies,
and resulted in a report (presented at a conference) [Ask99a, Ask99b] and
a paper at SCM-9 [AMP99].

The resulting requirements from both these projects includes:

• A definition of different cases of distribution, and their require-
ments on CM. The case ‘distributed groups’ was found as the most
demanding situation arising when a group of people working tight
together although geographically distributed. This situation
requires symmetric replication, see last bullet below.

• The copy-merge (anatomic) work model has to be supported. Within
large products it should be possible to combine an anatomic and
architectural work model to allow flexibility. Especially during the
product maintenance phase work tasks typically cover different
parts of the project rather than one single component.

• The anatomic work model implies a need of strong merge support.
The main requirement is to provide a better overview of the merge
result, making it possible to more easily find potential conflicts and
to resolve them. Many merge tools have good algorithms for default
merge suggestions, but they lack a readable overview of the result.

There is also a need for merging versions of a configuration,
rather than just versions of single files. Actually this is what the
user almost always want to do.

• To compensate for the lack of informal meetings due to geographical
distribution, tool support for group awareness is crucial. Related to
awareness is the need of flexible support for different modes of col-
laboration. During different phases of software development (or any
other creative process) different modes of collaboration is needed,
ranging from work in isolation to a WYSIWIS (What You See Is
What I See) view.

• Micro versions and light-weight branches. Branches are used for
many purposes, but often there are only one type of branch sup-
ported in a tool. For example, branches are often used for larger
projects and for bug-fixes, and there is an administrative overhead
in creating and managing these branches. However, we found also a
need to use branches on the team level, synchronizing concurrent
work within a team, but due to the overhead in using branches they
were not used. Thus, there is a need also for light-weight branches
that can be used for this purpose.

Moreover, such light-weight branches should also make it possi-
ble for individual developers to create ‘micro-versions’ within their
own branch.

• Symmetric replication. To support ‘distributed groups’ and in par-
ticular team members moving from site to site, the users should be
offered the same environment, with the same access rights, inde-

178 Contributions

pendent on to which server they connect. The geographic location
should be transparent to the user, i.e. it should be possible to per-
form all work operations in the same way independent of where the
user is located and to which server he/she is connected.

This implies that an implementation of replication based on
locking does not fully work, but the replication should be symmet-
ric.

• Strategies for development, update, integration were identified and
defined. Each can be classified as ‘optimistic’ or ‘conservative’.
Which strategy is best depends on the situation/the case of distribu-
tion. This correlation was also studied.

13.2 Find models

When all the requirements are understood the next step is to find a model
(or several cooperating models) that fulfills these requirements. Again, it
is the total model/solution that should fulfill all the requirements satisfac-
tory. If each requirement is taken care of one by one this will most likely
result in local optimal solutions, but in a poorer total solution. Neverthe-
less, to make the presentation of the COOP/Orm models we present them
one by one. The models are:

• Unified Extensional Versioning Model
• Awareness model
• Merge model
• Collaboration
• Replication model

Unified Extensional Versioning Model We found early that exten-
sional versioning of bound configurations are well suited for collaborative
work and we named the model unified since it offers extensional version-
ing for both atomic entities and configurations [MA96, ABHM99]. UEVM
covers both inter and intra document structures and creation of new ver-
sions during ‘sessions’. The document grammar specified in UEVM is fun-
damental in COOP/Orm and utilized by all the other models as well. The
UEVM is presented in Chapter 6 ‘Unified extensional versioning model’.

Awareness model The awareness model supports both synchronous
awareness (what is happening right now) and asynchronous awareness
(what have happened during the last week). It also makes it possible to
interactively move between different levels of awareness, ranging from
awareness of what other versions are currently edited by other users to
following each keystroke and mouse movement within a specific version of
the document. This flexible awareness is implemented through extensive
use of the version graph and utilizing the document structure. Also, the
possibility to edit your own versions and, at the same time, present deltas
to older versions (for the entire document as well as for parts of the docu-
ment) combines ongoing editing with awareness of what has been done

Find models 179

[Ols94, Per98]. The Awareness model is described in Section 7.5, ‘Aware-
ness model’.

Merge In Section 2.4, ‘Problem statement’, we argued for the need to
share larger documents, and to use the copy-merge work model rather
than split-combine - requiring better support for merge than traditionally
offered. We claim that our overall solution to this problem significantly
reduces the drawbacks of merge and thus also concurrent and distributed
work. First, potential merge conflicts are avoided by providing awareness
of work in parallel branches. Second, better overview during the interac-
tive merge, the conflict detection propagation, and the support for consis-
tent decisions when resolving merge conflicts makes the merge itself a
safer operation [AM01]. Third, supporting merge of configurations in a
uniform way makes it possible for a developer to work on the system level
rather than on files.

The support for merge have been extended from traditional
approaches and provides the user with a better overview of the default
merge suggestion (3-way merge). Again, the document structure specified
in UEVM is utilized, both to clearly detect potential merge conflicts and to
browse through these in any order. The merge model also includes the
possibility to resolve conflicts in a consistent manner, selecting the ‘win-
ning’ branch at an arbitrary level in the document structure. The merge
model is described in Section 7.4, ‘Merge model’.

Collaboration model The (a)synchronous collaboration model is the
result of combining the awareness model and the integrated environment.
Since awareness facilities are integrated in the editor, editing in the most
detailed awareness mode is synchronous editing. Changing to a less
detailed awareness mode also moves to a more relaxed (less synchronous)
collaboration. I.e. it is easy for a group of users to smoothly move between
synchronous and asynchronous work [MM93, MMA].

Replication model Finally, the symmetric replication model fully sup-
ports the most demanding case of distribution, distributed groups
[MA95]. Most other models are based on some type of locking, e.g. restric-
tions on which sites can create versions in particular variants. When a
group of tightly collaborating people are at different sites (and especially
when people are moving around) this is an obstacle. Our model is fully
optimistic, always allowing new versions to be created. The replication
model is described in Section 7.7, ‘Replication (server-server) model’.

Model interaction
Even though each of the five basic models above are contributions of their
own, the main contribution is how they are combined and together pro-
vide a consistent and intuitive environment to the user. From the user
perspective it is not so important exactly how such an environment is
implemented ‘behind the scenes’. Important, though, is that an integra-
tion enables additional functionality compared to loosely coupled
detached tools. In COOP/Orm the integration enables several benefits
including:

180 Contributions

• A document model covering the management of different types of
data within the same document (i.e. heterogeneous document). It is,
for example, possible to merge two versions of a document contain-
ing many types of data.

• Making the entire system version aware. This has many benefits:
– Version aware editors makes it possible to diff and merge in the

same editor as you view and edit your data. It is easy to quickly
move from viewing old versions and diff them (awareness) to
editing your own version. It is even possible to present diffs to
older versions while editing the latest version.

– The combination of clients (editors) manage all their data and
deltas themselves and servers understanding versions (rather
than storing an attribute ‘version’) enables type generic servers.
This means that clients can be extended to use new data types
(add new editors) and directly work with the same (old) server.

• Version graphs at all levels in the document structure. The global
version graph is just like local version graphs, but for the document
root node. I.e. the same model for both entire documents and for
internal structures within the document can be used. The idea of a
local version graph itself is possible thanks to UEVM and the inte-
gration.

• Consistent merge decisions over substructures of a document.
COOP/Orm combines the benefits of large and small documents.
Having large documents results in fewer documents which are eas-
ier to manage. It also gives better overview and support for consis-
tent merge decisions, which is problematic if the document is
divided into smaller parts, each part managed by its own detached
editor.

The internal structure of a document provide the benefits of
using small documents. All levels within the internal structure
have their own change log (visualized with the local version graph).
Also, internal nodes can contain data of different types, allowing a
document to represent logical units rather than uniform data types.

Distribution
In order to cope with the overall requirement of distribution many models
are involved. With distributed development we actually mean to support
both concurrent development in general and the problems arising due to
geographically distribution specifically.

In COOP/Orm concurrent work is supported both through (a)synchro-
nous collaboration, i.e. by providing both synchronous and asynchronous
collaboration and by making branches simple to create and merge. We uti-
lize the internal document structure (UEVM). It enables a flexible level of
awareness and makes it easy to detect, browse, and resolve merge con-
flicts. It is also the internal document structure that makes it possible to
manage quite large documents.

Distribution is supported by symmetric replication and awareness.
Symmetric replication makes the distribution transparent to the user.
This means that independent of which site the user is located at (to which
server he/she is connected to), there is no difference in what he/she can do

Build a prototype 181

and how it should be done. It is even possible to install both a client and a
server on a portable computer and work off line for a while. When con-
nected again, the server at the portable computer and the other server
will synchronize as normal. Supporting collaborative awareness is crucial
when geographically dispersed in order to counter the drawbacks of less
personal communication.

13.3 Build a prototype

Most of the models above have been implemented in COOP/Orm, even
though all are not fully stable (as normal in a research prototype). It is a
working prototype written in Simula (and a small part in Java) on Unix.

To actually implement a model has many advantages. It means all
ideas have to be complete, in that possible logical ‘holes’ are undoubtedly
found and have to be rethought. It also means that aspects like perfor-
mance and scalability come to the surface. In order to cope with such con-
crete aspects the implementation of COOP/Orm has resulted in three
contributions:

• Storage format [MAM93]. All versions of a document are stored in
one Unix file. The storage format and run-time representation of
document versions have to scale with both the document size and
the number of versions. I.e. the size of the file should be kept as
small as possible and common operations, e.g. for retrieving older
versions and/or diffs (both structural and node data), have to be suf-
ficiently fast.

• Framework. The main drawback of an integrated architecture com-
pared to a more component based architecture is that it is harder to
integrate new tools (e.g. an editor) to the system. To minimize this
drawback and to enable the extension of a client with editors for
new data types we provide a framework architecture.

• Client-Server request/install protocol. We have shown how this pro-
tocol can be used to implement awareness. Besides removing need-
less blocking at the client side it also enables implementing
awareness by letting the server or other clients send data to a client
using the same protocol as for the other (‘normal’) client-server
communication.

13.4 Evaluate

The actual implementation of COOP/Orm has proven that the models are
possible to implement, that they are sound and complete, and that they
can be used, although so far only validated in small scale. We have not yet
practically evaluated the prototype in an industrial setting. However,
parts of the models discussed here have been tested in a somewhat larger
setting with external users within the Ragnarok project [Chr99c]. Ragn-
arok is in may respects similar to COOP/Orm, e.g. do both implement the
Unified extensional versioning, so even though the implementation differs

182 Contributions

somewhat, some of the empirical results from [Chr98a] can be transferred
to also apply to COOP/Orm. Christensen presents two such results: (1)
the number of version nodes in the repository is proportional to the num-
ber of check-ins and to the number of changes, thus there is no combina-
torical explosion of the number of created versions. (2) the number of
created versions of the top level (system level) do not escalate, but was
kept to less than 30 over a time period where the system’s size more than
tripled in terms of KLOC. These two results support the theoretical evalu-
ation of the scalability presented in Section 9.9.

Chapter 14 Conclusions

In this thesis we have described the COOP/Orm approach to configuration
management for distributed development in an integrated environment.
The motivation has been to improve the support for people working
together, although geographically distributed. To do this, we have put for-
ward a versioning model unified for both configurations and atomic items
(UEVM), and a prototype tool supporting this model. Besides the support
for UEVM, we have also added support for collaborative awareness and
different modes of collaboration - functionality previous research within
computer supported cooperative work (CSCW) has found important.
Thus, the main contribution is that these aspects: versioning model, col-
laborative awareness, and collaboration modes have been integrated
within one homogeneous environment.

We also claim that the integration itself is important and necessary in
order to provide more and better support than separate tools. In COOP/
Orm functionality traditionally offered by separate tools is provided
within the environment.

The tool developed is presented both from a theoretical view, describ-
ing the different submodels covered by the tool and in what way they
meet the requirements of distributed development, and from an imple-
mentation perspective to motivate that the techniques implemented scale
to real use.

To make sure that we put our effort on problems actually existing in
industry, we started the project of COOP/Orm by two case studies of con-
figuration management for distributed development, presented in detail
in [Ask99b]. One of the main results from these studies was that the work
model copy-merge should be supported, i.e. without locking of shared
items. When this was decided upon the main motivation of our work was
then to reduce the drawbacks of this model, i.e. all the problems related to
concurrent work and merge. Below is a list of what we wanted to achieve
and how COOP/Orm approach each point:

184 Conclusions

1. Not only a few people should be able to work tight together, but also
larger groups, sharing and modifying the same document at the
same time. In COOP/Orm the strong support for collaborative
awareness and merge of development branches make it easier to
enlarge the group of people working tightly together.

2. It should be possible to have larger shared documents. I.e. we
should go from the split-combine model to the copy-merge model at
a higher level in the product structure, e.g. on sub-systems instead
of modules. COOP/Orm supports this by an internal structure of
larger documents and to present this structure using nested win-
dows. Propagation of markings for both changes and potential
merge conflicts, makes it easier to navigate also in a large docu-
ment.

3. We want to allow the group working together to be more geographi-
cally dispersed, still working effectively, i.e. to allow more sites to be
involved. A solution to distribution is to support replication of data
to several servers. COOP/Orm is designed to support such replica-
tion symmetrically, i.e. from the users point of view, it is possible to
connect to any of the replicated servers and still obtain exactly the
same CM properties.

In the process of developing COOP/Orm we have made some specific
design decisions, both when choosing the underlaying models and for
implementation techniques. Most of these are trade-offs, to which there
are both pros and cons, rather than an easy true or false. Below is a list of
the most important decisions made and arguments for why we made
them:

• We use the Unified Extensional Versioning Model (UEVM), instead
of e.g. intentional versioning for configurations.

In a team working on the same system there is a need for provid-
ing a stable basis for discussions. It is not possible to collaborate, if
the shared documents discussed are not stable and distributed to
all involved. This is especially true when the developers are geo-
graphically dispersed with a much higher risk of misunderstand-
ings. Immutable versions serve this purpose well, and therefore
versions are crucial in a groupware system. In UEVM are both
atomic items and configurations bound and immutable which
makes it easier for the distributed team to discuss not only about
versioned atomic items (e.g. files), but also about versions of config-
urations (e.g. modules, components, or entire systems).

• We make versions fundamental and understood by all tools within
the environment including the server, instead of extracting it from
the tools.

When the tools understand versions this enables a much more
light-weigh process to change between the versions and to present
the diff between two versions. The fact that versions more easily
can be created and used, also results in that more versions actually
are created. Fewer, more focused, changes are made within each
version, resulting in a more fine-grained versioning and a better

185

traceability. It also enables a more fine-grained versioning, in the
sense that also the internal structure can be versioned.

• We integrate version control and UEVM into the same environment,
instead of managing the structure separately.

Configurations are versioned rather than atomic items. The
direct representation and manipulation of versions of configura-
tions makes it easy to not only view old versions, but also to com-
pare and even merge versions of a configuration.

It also enables the evolution history of an atomic item to be pre-
sented in the context of the history of the configuration it is part of
(in COOP/Orm provided by the local version graph).

• We use versions as a metaphor for collaborative awareness, instead
of separate notifications.

Fine-grained versioning increase the traceability compared to
more course-grained versioning. Similarly it also provides a possi-
bility for more ‘fine-grained’ awareness. The version graph can be
used both for asynchronous awareness and synchronous awareness.
To view and compare old versions makes it easy to catch up on work
done by other users. To view other versions while being edited
makes it possible to be aware of concurrent changes and thus to
avoid introducing conflicts.

• We support both synchronous and asynchronous collaboration
within the same environment, rather than in separate specialized
tools.

It is possible, in just one operation, to go from editing a docu-
ment in total isolation, to simultaneously see what another user is
doing in the same document, still continuing to edit one’s own ver-
sion. The hypothetical merge provides a smooth transition from
asynchronous collaboration to synchronous collaboration within the
same environment, and within the same editor. This functionality
also requires that versions are treated as fundamental, integrated
in the tools.

Altogether we are confident that these decisions taken during the design
and implementation of COOP/Orm are well motivated for any groupware
and environment that aims to support distributed development.

186 Conclusions

References

[AB01] U. Asklund and L. Bendix. “Configuration Management for Open
Source Software”. Technical Report, R-01-5005, Department of
Computer Science, Aalborg University, Denmark, January 2001.

[AB01b] U. Asklund and L. Bendix. “Configuration Management for Open
Source Software”. In preprints of the ICSE workshop on Open
Source Software Engineering, Toronto, Canada, May 15, 2001.

[AB02] U. Asklund and L. Bendix. “A Study of Configuration Management
in Open Source Software”. In IEE Proceedings - Software, Vol 149,
No. 1, February 2002.

[ABHM99] U. Asklund, L. Bendix, H.B. Christenssen, and B. Magnusson.
“The Unified Extensional Versioning Model”. In Proceedings of
SCM-9 - Ninth International Symposium on System Configuration
Management, J. Estublier (Ed.), Toulouse, France, September
1999. LNCS, Springer Verlag

[ACH+01] U. Asklund, I. Crnkovic, A. Hedin, et al. “Product Data
Management and Software Configuration Management -
Similarities and Differences”. Report ordered by the Association of
Swedish Engineering Industries. ISSN 1493-6444. 2001.

[AdC90] Software Maintenance and Development Systems. Aide-de-Camp
Product Overview. Software Maintenance and Development
Systems, Concord, MA 1990.

[AM01] U. Asklund and B. Magnusson. “Support for Consistent Merge”. In
Proceedings of SCM-10 - 10th International Workshop on Software
Configuration Management, van der Hoek (ed.), Toronto, Canada,
May 2001.

[AM97] U. Asklund and B. Magnusson. “A Case-Study of Configuration
Management with ClearCase in an Industrial Environment”. In
Proceedings of SCM-7 - International Workshop on Software
Configuration Management, R. Conradi (Ed.), Boston, May 1997,
LNCS, Springer Verlag.

[AMP99] U. Asklund, B. Magnusson, and A. Persson. “Experiences;
Distributed Development and Software Configuration
Management”. In Proceedings of SCM-9 - Ninth International
Symposium on System Configuration Management, J. Estublier

188 References

(Ed.), Toulouse, France, September 1999, LNCS, Springer Verlag.
[ANSI98] ANSI/EIA-649-1998, National Consensus Standard for

Configuratin Management American National Standards
Institute, 1430 Broadway, New York, NY 10018, USA, 1998.

[App02] Collection of definitions of SCM.
http://www.enteract.com/~bradapp/acme/scm-defs.html.

[Ask94] U. Asklund. “Identifying Conflicts During Structural Merge”. In
Proceedings of the Nordic Workshop on Programming
Environment Research, Magnusson, Hedin, and Minör (eds). Lund,
Sweden. June 1-3, 1994.

[Ask96] U. Asklund. “Integrated Version Control in the COOP/Orm
Version Server”. In Proceedings of NWPER’96, Nordic Workshop
on Programming Environment Research, Bendix et al. (Eds.),
Aalborg, May 1996.

[Ask99a] U. Asklund. “Distribuerad utveckling och Configuration
Management för programvarusystem”. Report published by the
association of Swedish Engineering Industries, 1999. ISSN 1493-
6444.

[Ask99b] U. Asklund. “Configuration Management for Distributed
Development - Practice and Needs”. Licentiate thesis, Dept. of
Computer Science, Lund University, Sweden. 1999.
ISSN 1404-1219, Dissertation 10.

[Bab86] W.A. Babich. “Software configuration management : coordination
for team productivity”. Addison Wesley. 1986.
ISBN 0-201-10161-0.

[Bec99] K. Beck. “Extreme Programming Explained”, Addison Wesley,
reading, MA, 1999.

[BGBG97] R.M. Baecker, J. Grudin, W.A.S. Buxton, and S. Greenberg.
“Groupware and Computer-supported Cooperative Work”, In
Readings in Human-Computer Interaction: Toward the Year 2000,
2nd edition, Morgan Kaufmann Publishers, Inc.

[BLNP97] L. Bendix, P.N. Larsen, A.I. Nielsen, J.L.S. Petersen: “CoEd - A
Tool for Cooperative Development of Hierarchical Documents”,
Technical Report R-97-5012, Department of Computer Science,
Aalborg University, Denmark, September 1997.

[BLNP98] L. Bendix, P.N. Larsen, A.I. Nielsen, and J.L.S. Petersen. “CoEd -
A Tool for Versioning of Hierarchical Documents”. In Procedings of
ECOOP’98 workshop, Symposium of System Configuration
Management (SCM-8), Boris Magnusson (Ed.), Lecture Notes in
Computer Science 1439. Springer-Verlag, 1998.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad. “A
system of patterns”, Wiley. 1996.

[BNPM93] R.M Baecker, D. Nastos, I.R Posner, and K.L Mawby. “The User-
centered Iterative Design Of Collaborative Writing Software”. In
Proceedings of the Conference on Human Factors in Computing
Systems (INTERCHI’93), Amsterdam, The Netherlands. ACM
Press.

[Ced02] P. Cederqvist. “Version Management with CVS”.
http://www.cvshome.org/docs/manual/.

[Chr98a] H.B. Christensen. “Experiences with Architectural Software
Configuration Management in Ragnarok”. In Proceedings of
System Configuration Management (SCM-8), Magnusson (Ed.)

[Chr98b] H.B. Christensen. “Utilising a Geographic Space Metaphor in a

189

Software Development Environment.” In Proceedings of EHCI'98,
IFIP Working Conference on Engineering for Human-Computer
Interaction, P. Dewan, (Ed.), Crete, Greece, September 1998.
Kluwer.

[Chr99a] H.B. Christensen. “The Ragnarok Architectural Software
Configuration Management Model”. In Proceedings of the 32nd
Annual Hawaii International Conference on System Sciences, Jr.
R.H. Sprague, (Ed.), Maui, Hawaii, January 1999.

[Chr99b] H.B. Christensen. “The Ragnarok Software Development
Environment”. Nordic Journal of Computing, 6(1), Jan 1999.

[Chr99c] H.B. Christensen. “RAGNAROK: An Architecture Based Software
Development Environment”. PhD thesis, Department of Computer
Science, University of Aarhus, Denmark. 1999.

[Chu01] M.C. Chu-Carroll. “Supporting Distributed Collaboration through
Multidimensional Software Configuration Management”. In
Proceedings of the ICSE 2001 workshop on Software Configuration
Management (SCM-10), 2001.

[Cincom] Cincom smalltalk homepage, www.cincom.com/smalltalk. as
accessed 2002.

[CL02] I. Crnkovic and M. Larsson. “Building Reliable Component-based
Systems”, Artech House, 2002. ISBN 1-58053-327-2

[CLL00] I. Crnkovic, M. Larsson, and F. Lüders, "Software Process
Measurements using Software Configuration Management", In
Proceedings of 11th European Software Control and Metrics
Conference , IEEE Computer Society, 2000.

[Crn97] I. Crnkovic. “Experience with Change-oriented SCM Tools”, In
Proceedings of 7th Symposium on Software Configuration
Management, Lecture notes in Computer Science, nr 1235,
Springer Verlag, 1997.

[CS00] M.C. Chu-Carroll and S. Sprenkle. “Coven: Brewing Better
Collaboration through Software Configuration Management”. In
Proceedings of Eigth International Symposium of the Foundations
of Software Engineering (FSE-8), San Diego, California, USA,
November 2000.

[CW98] R. Conradi and B. Westfechtel. “Version Models for Software
Configuration Management”. ACM Computing Surveys, 30(2):232-
-282, June 1998.

[Dar90] S. Dart. “Spectrum of Functionality in Configuration Management
systems”. Technical report CMU/SEI-90-TR-11, Software
Enginering Institute, Carnegie Mellon Institute, december 1990.

[DB92] P. Dourish and V. Bellotti. “Awareness and coordination in shared
workspaces”. In Proceedings on Computer-supported Cooperative
Work (CSCW’92). 1992.

[EC94] J. Estublier and R. Casallas. “The Adele Configuration Manager.”
Chapter 4 in [Tic94].

[Ecl02] Eclipse project. http://www.eclipse.org.
[EFM98] J. Estublier, J-M Favre and P. Morat: “Toward SCM/PDM

Integration?”, In Proceedings of System Configuration
Management, SCM-8, Lecture Notes in Computer Science 1439,
Springer, pp. 75-94. 1998.

[EGR91] C.A. Ellis, S.J. Gibbs, and G.J. Rein. “Groupware: Some Issues
and Experiences”. Communication of the ACM, 34(1):38–58, 1991.

[Elsitech] Elsitech, Visual Intercept, http://www.elsitech.com/.

190 References

[Est85] J. Estublier. “A Configuration Manager: The Adele Data base of
Programs”. In Proceedings of a Workshop on Software Engineering
Environments for Programming-In-Large. Harwichport
(Massachusetts). pp 140-147. June 9-12, 1985.

[Fei91] P. Feiler. “Configuration Management Models in Commercial
Environments”. Technical report CMU/SEI-91-TR-7, Software
Enginering Institute, Carnegie Mellon Institute, mars 1991.

[Fel79] S.I. Feldman, “Make - A Program for Maintaining Computer
Programs”, Software - Practice and Experience, Vol 9, 255-265,
1979.

[FPP95] L. Fuchs, U. Pankoke-Babatz, and W. Prinz. “Supporting
Cooperative Awareness with Local Event Mechanisms: The
GroupDesk System”. In Proceedings of Fourth European
Conference on Computer Supported Cooperative Work,
Stockholm, September, 1995.

[GB80] I.P. Goldstein and D.G. Bobrow. “A layered approach to software
design. Technical Report. CSL-80-5, XEROX PARC, Paolo Alto,
CS. 1980.

[GB91] S. Greenberg and R. Bohnet. “GroupSketch; A multi-user
sketchpad for geographically-distributed small groups”. In
Proceedings of Graphics Interface, Calgary, 1991.

[GB97] C. Greenhalg and S. Benford. “Boundaries, Awareness and
Interaction in Collaborative Virtual Environments”, In
Proceedings of the 6th International Workshop on enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Cambridge, Mass., 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object-oriented Software”.
Addison-Wesley, 1995.

[GKY91] B. Gulla, E.-A. Karlsson, and D. Yeh. “Change-oriented version
descriptions in EPOS”. Software Engingering Journal 6, 6 (Nov.),
378-386. 1991.

[GM94] S. Greenberg and D. Marwood. “Real time groupware as a
distributed system: Concurrency control and its effect on the
interface”. In Proceedings of the ACM CSCW Conference on
Computer Supported Cooperative Work, Chapel Hill, North
Carolina, October 22-26, ACM Press. 1994.

[Gru88] J. Grudin. “Why CSCW applications fail: Problems in the design
and evaluation of organizational interfaces”. In Proceedings of the
Conference on Computer-Supported Cooperative Work (CSCW88),
(Portland, Oregon, 1988), ACM Press, New York, 1988.

[Gus90] A. Gustavsson. “Software Configuration Management in an
Integrated Environment”. Licentiate thesis, Dept. of Computer
Science, Lund University, Sweden, 1990. LU-CS-TR:90-52

[HH93] A. Haake. and J.M. Haake. “Take CoVer: Exploiting Version
Support in Cooperative Systems”. In Proceedings of the Conference
on Human Factors in Computing Systems (INTERCHI’93),
Amsterdam, The Netherlands. ACM Press.

[HHW96] A. van der Hoek, D. Heimberger, and A.L. Wolf. “A Generic, Peer-
to-Peer Repository for Distributed Configuration Management”. In
Proceedings of 18th International Conference on Software
Engingeering (ICSE). Berlin. 1996.

[HMFG01] J.D. Herbslev, A. Mockus, T.A. Finnholt, and R.E. Grinter. “An
Empirical Stucy of Global Software Development: Distance and

191

Speed”. In Proceedings of the 23rd International Conference on
Software Engineering (ICSE-23). Toronto, Canada, May 2001.

[HHHW97]A. van der Hoek, R.S. Hall, D.H. Heimbigner, and A.L. Wolf.
“Software Release Management”. In Proceedings of the 6th
European Software Engineering Conference, Zurich, Switzerland,
September 1997.

[HW02] A. van der Hoek, A.L. Wolf. “Software Release Management for
Component-Based Software”. In Software - Practice and
Experience. 2002.

[HW92] J.M. Haake, and B. Wilson. “Supporting Collaborative Writing of
Hyperdocuments in SEPIA”. In Proceedings of the ACM 1992
Conference on Computer-supported Cooperative Work, Toronto,
Canada. ACM Press.

[ISO9000] ISO 9000-3:1997, “Guidelines for the Application of ISO 9001:1994
to the Development, Supply, Installation, and Maintenance of
Computer Software”, Geneva, Switzerland: ISO, 1997.

[ISO95] “Quality management - Guidelines for configuration
management”. Standardiseringen i Sverige (SIS) SS-EN ISO
10 007.

[Jon95] S. Jones. “Identification and use of guidelines for the design of
computer supported collaborative writing tools”. Computer
Supported Cooperative Work. Kluwer Academic Publishers, 3(3-
4):379–404.

[Kat90] R.H. Katz. “Toward a Unified Framework for Version Modelling in
Engineering Databases”. ACM Computing Surveys, 22(4),
December 1990.

[KLMM94] J.K. Knudsen, M. Löfgren, O.L. Madsen, and B. Magnusson
(Eds.). “Object-oriented environements: The Mjölner approach”.
Prentice Hall, The Object-Oriented Series, ISBN 0-13-009291-6,
1994.

[Koc95] M. Koch. “Design Issues and Model for a Distributed Multi-User
Editor”. Computer Supported Cooperative Work. Kluwer Academic
Publishers, 3(3-4):359–378.

[LR95] Y.-J. Lin and S.P. Reiss. “Configuration Management in terms of
Modules”, in Proceedings of the Fifth International Workshop on
Software Configuration Management, Seattle USA, April 1995.

[LR96] Y.-J. Ling and S.P. Reiss. “Configuration Management with
Logical Structure”. In Proceedings of 18th International
Conference on Software Engineering (ICSE), Berlin. 1996.

[LUCAS] Lund University Center for Applied Software research.
http://www.lucas.lth.se

[MA95] B. Magnusson and U. Asklund: “Collaborative Editing -
distribution and replication of shared versioned objects”.
Presented at the ECOOP’95 Workshop on Mobility and
Replication, Aarhus, August 1995. Available as technical report
LU-CS-TR:96-162, Dept. of Computer Science, Lund, Sweden.

[MA96] B. Magnusson and U. Asklund. “Fine Grained Version Control of
Configurations in COOP/Orm.” In Proceedings of the 6th
International Workshop on Software Configuration Management,
I. Sommerville (Ed.), LNCS, Springer Verlag, Berlin. 1996.

[Mac95] S.A. MacKay. “The state-of-the-art in concurrent, distributed
configuration management”. In Software Configuration
Management: Selected Papers SCM-4 and SCM-5, J. Estublier
(Ed.), Seattle, WA, 1995. LNCS 1005, Springer-Verlag.

192 References

[MAM93] B. Magnusson, U. Asklund, and S. Minör. “Fine-Grained Revision
Control for Collaborative Software Development”. In Proceedings
of ACM SIGSOFT’93 - Symposium on the Foundations of Software
Engineering, Los Angeles, California, 7-10 December 1993.

[MC96] J. Micallef and G. Clemm. “The Asgard system: Activity-based
configuration management”. In Software Configuration
Management: ICSE’96 SCM-6 Workshop, I. Sommerville (Ed.),
Berlin, March 1996. LNCS 1167, Springer-Verlag

[MD94] P.J. Munson, and P.A. Dewan. “Flexible Object Merging
Framework”. In Proceedings of ACM 1994 Confrence on Computer
Supported Cooperative Work (CSCW’94), Chapel Hill, North
Carolina, USA, ACM press.

[MHM+90] B. Magnusson, G. Hedin, S. Minör, et al. “An overview of the
Mjolner/Orm Environment”. In proceedings of TOOLS’90, Paris,
France, 1990.

[Merant] Merant, PVCS Dimensitons and PVCS Tracker,
http://www.merant.com/pvcs

[Microsoft] Microsoft, Windows Installer, http://www.microsoft.com/.
[MIL92] MIL-STD-973, Configuration Management, Washington, DC: U.S.

Department of Defense, Apr. 1992.
[MLG+93] B.P. Munch, J.-O. Larsen, B. Gulla, et al. “Uniform versioning:

The change-oriented model”. In Proceedings of the 4th
International Workshop on Software Configuratino Management.
Baltimore, MD, May 1993.

[MM92] S. Minör and B. Magnusson. “Using Mjolner Orm as a structure-
based meta environment”. In Structure-Oriented Editors and
Environments, L. Neal, G. Szwillus (Eds), Academic Press. LU-CS-
TR:92-101.

[MM93] S. Minör and B. Magnusson. “A Model for Semi-(a)Synchronous
Collaborative Editing”. In Proceedings of the Third European
Conference on Computer Supported Cooperative Work, Milano,
Italy, 1993. Kluwer Academic Publishers.

[MMA] B. Magnusson, S. Minör and U. Asklund: “A Model for Semi-
(a)Synchronous Collaborative Editing”. Manuscript for the
Journal of Computer Supported Collaborative Work.

[Min90] S. Minör. “On Structure-Oriented Editing”. Ph.D. thesis, Lund
University, Lund, Sweden, 1990.
LUTEDX/(TECS-1002)/1-202/(1990)

[MO92] L.J. McGuffin, G.M. Olson. “ShrEdit: A Shared Electronic
Workspace”, Cognitive Science and Machine Intelligence
Laboratory, Tech. report #45, University of Michigan, Ann Arbor,
1992.

[NCK+92] C.M. Neuwirth, R. Chandhok, D.S. Kaufer, P. Erion, J. Morris,
and D. Miller. “Flexible Diff-ing In A Collaborative Writing
System”. In Proceedings of the ACM 1992 Conference on Computer-
Supported Cooperative Work, Toronto, Canada. ACM Press. 1992.
Reprinted in R. Rada (Ed.). Groupware and authoring. San Diego:
Academic Press. 1996.

[NKCM90] C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J. Morris. “Issues
in the Design of Computer Support for Co-Authoring and
Commenting”. In Proceedings of the Third Conference on
Computer-Supported Cooperative Work (CSCW’90), Los Angeles,
California. ACM Press. 1990. Reprinted in R.M. Baecker (Ed.)

193

(1993). “Readings in groupware and computer-supported
cooperative work”. San Mateo, CA: Morgan Kaufmann Publishers,
Inc. 1993

[OC02] OpenCoast website. http://www.opencoast.org. as accessed 2002.
[Ols94] T. Olsson. “Group Awareness Using Fine-Grained Revision

Control”. In Proceedings of the Nordic Workshop on Programming
Environment Research, Magnusson, Hedin, and Minör (Eds).
Lund, Sweden. June 1-3, 1994.

[Par94] D. Partain. “The xlincks User’s Manual for Version 2.2 of the
LINCKS Database System”. Lab for Intelligent Information
Systems. Department of Computer and Information Science,
University of Linköping, Sweden.

[PB92] I.R. Posner and R.M. Baecker. “How People Write Together”. In
Proceedings of the 25th Hawaii International Conference on
System Sciences, Volume IV, january 7-10, 1992.

[Per98] P. Persson. “On the Integration of Text Editing and Version
Control”. In Proceedings of the 8th Nordic Workshop on
Programming Environment Research (NWPER´98), Ronneby,
Sweden, University of Bergen, Norway, 1998.

[PMB96] I.R. Posner, A. Mitchell, and R.M. Baecker. “Learning to Write
Together Using Groupware”. In R. Rada (Ed.) Computer
Supported Cooperative Writing. Academic Press. 1996.

[Pre95] W. Pree. “Design patterns for Object-Oriented Software
Development”. Addison-Wesley, 1995.

[PS94] A. Prakash and H.S. Shim. “DistView: Support for Building
Efficient Collaborative Applications using Replicated Objects”. In
Proceedings of the ACM 1994 Conference on Computer-Supported
Collaborative Work, Chapel Hill, NC, USA. ACM Press. 1994.

[PSS94] F. Pacull, A. Sandoz and A. Schiper. “Duplex: A Distributed
Collaborative Editing Environment in Large Scale”. In
Proceedings of the ACM 1994 Conference on Computer-Supported
Collaborative Work, Chapel Hill, NC, USA. ACM Press. 1994.

[Rational] Rational, Clear Case, http://www.rational.com/products
[Roe75] M.J. Roekind. “The source code control system”. IEEE

Transactions on Software Engineering, 1(4):364–370, December
1975.

[Sch86] K. Schmucker. “Mac App: An Application Framework” in Object-
Oriented Programming for the Macintosh, Hayden Book Company,
1986.

[Sch96] H.A. Schmid. “Design Patterns for Constructing the Hot Spots of a
Manufacturing Framework. Journal of Object-Oriented
Programming 9(3), 1996.

[SEI00] SEI, Capability Maturity Model, 2000, http://www.sei.cmu.edu.
[SEI95] The Capability Maturity Model. Software Engineering Institute,

Carnegie Mellon University, Addison Wesley. 1995.
[SH01] T. Schümmer and J.M. Haake. “Supporting distributed software

development by modes of collaboration”. In Proceedings of the 7th
European Conference on Computer Supported Cooperative Work
(ECSCW), Bonn, Germany, Kluser Academic Publishers, 2001.

[SHC93] M. Sasse, M. Handley and S. Chuang. “Support for Collaborative
Authoring via Electronic Mail: The MESSIE Environment”. In
Proceedings of the 3rd European Conference on Computer
Supported Cooperative Work (ECSCW’93), Milano, Italy. Kluwer
Academic Publishers. 1993.

194 References

[SHH+92] N. Streitz, et al. “SEPIA: a cooperative hypermedia authoring
envirionment” In Proceedings of ACM Hypertext’92, 1992.

[SKSH96] C. Schuckman, L. Kirchner, J. Schümmer, and J.M. Haake.
“Designing object-oriented synchronous groupware with COAST”,
In Proceedings of ACM CSCW’96 Conference on Computer
Supported Cooperative Work, Boston, Mass., 1996.

[SS01] T. Schümmer and J. Schümmer. “Support for Distriubuted Teams
in eXtreme Programming”. In Giancarlo Succi, Michele Marchesi:
“eXtreme Programming Examined”, Addison Wesley, May 2001,
ISBN 0201710404.

[Sub02] Subversion. http://subversion.tigris.org
[Team94] Teamware. Teamware user’s guide, Sun Microsystems, Mountain

View.
[Telelogic] Telelogic CM Synergy. http://www.telelogic.com, as accessed 2002.
[Tic85] W.F. Tichy. “RCS - a system for revision control”. Software Practice

and Experience, 15(7):634–637, July 1985.
[Tic88] W.F. Tichy. “Tools for software configuration management”. In

Proceedings from International Workshop on Software Version and
Configuration Control, Grassau, Germany, February 1988.

[Tic94] W. Tichy (Editor). “Configuration Management”. John Wiley &
Sons Ltd. 1994.

[Wei71] G. Weinberg. “The psychology of computer programming”,
NewYork, 1971.

[WTCG91] I.H. Witten, H.W. Thimbleby, G. Coulouris, and S. Greenberg.
“Liveware: a new approach to sharing data in social networks”.
International journal of man-machine studies, 34(3):337–348.

Appendix A: Dynamic
behaviour -
notation

In Section 9.4 the dynamic behavior of the operations on the server repos-
itory is explained. The notation used is defined in the table below.

notation description

n node, named by a node name defining both version
and ‘address’, e.g. {3:/2/4/1}

N set of nodes, {n}

Attributes to n

n.Ver the version defined in n. If n is shared it is still the
version defined in n even though the node really
exist in an older version of the document.

n.sonId the sonId number unique among the children.

n.data the client data stored in the node n.

n.full the full data stored in n (if exists)

n.delta(v) the delta to version v stored in n

n.dataType type of data stored in n, i.e. ‘Full’, Delta’, or
‘FullDelta’

n.type the type of n, i.e. ‘Folder’, ‘Leaf ’, MFolder’, ‘MLeaf ’, or
‘Link’.

n.pred the predecessor node to n. If n is a merged node
Pred1 is returned. Always a not shared node.

n.real Valid attribute only to shared nodes. Returns the
actual (real) version of the node, i.e. the yongest
modified version of the node.

196

Operations on n

n.IsShared true if n is shared with older version.

n.getPred(tube) returns the predecessor node following ‘tube’. For not
merged nodes Pred1 is always returned. If no
predecessor exists within the tube, search rules
define the search order of other paths.

n.getSucc(tube) return succeeding node, i.e. the oldest younger
version to n following the tube. If no succeeding node
exists within the tube, default rules define the search
order of other paths.

n.sons returns a set with the node names of the son nodes to
n.

n.father returns the father to node n.

n.insertSon(m) insert node m as, not shared, son to n. Son number
determined by m.sonId

n.insertSharedSon(m) insert node m as a shared son to n. Son number
determined by m.sonId

n.si son i to a node

n.mc merge case for node n

n.sa selected alternative for node n

mi Merge Info node.

mi.sonId

mi.case Merge case for this merge info node

mi.selalt The selected alternative for this merge info node

t Tube representing a range of versions (or actually
transitions between versions). E.g. (2-3,3-5,5-8)

createt(Vfrom, Vto) Creates a tube ranging from ver Vfrom to Vto. If
ambiguity, one of (not defined which) the correct
tubes is created.

N.getNode extracts a node name from the set N.

notation description

197

createVR(Ver) create a version root node for version Ver. I.e. a new
node with sonId=Ver inserted as a new son to Root.

create(id) create a node with sonId=id

VG.createVer(fromVer) operation on data stored in the Root node. Create a
new version derived from fromVer. Returns the
version number of the new version.

VG.freezeVer(Ver) operation on data stored in the Root node. Freezes
version Ver, i.e. makes it immutable.

notation description

198

Appendix B: Merge cases

In Section 9.5 the implementation of merge is described. Figure 76 is a
table containing details about how each possible merge case for a node is
implemented, i.e. the implementation of the operation ‘MergeSons’
described in Section 9.5. The input to this operation is the merge situation
for the father node and the merge case for this node. This situation is
shown in the three columns most to the left: ‘mi.mergeCase’ is the merge
case for the father node to the node currently merged, ‘mi.SelAlt’ is the
selected alternative for the father node, ‘MergeCase’ is the merge case for
the node. ‘Action’ is pseudo code for the actual action taken.

In some cases the ‘selected alternative’ for the node merged is deter-
mined by the default rule (e.g. ChDel.Default). The default rules currently
implemented are shown in Figure 77.

mi.
merge-
Case

mi.
SelAlt

Merge-
Case Action Comment

NotNot (NoAlt)
(Main)
(Added)

NotNot mison := createmi(sonId, NotNot)
mison.SelAlt := mi.SelAlt
mi.insert(mison)

Father node
already shared.
Only create mi-
nodes to retrieve
merge info.

NotCh (Added) NotNot mison := createmi(sonId, NotNot)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nmerged.insertSharedSon(sonId, nfork)

Figure 76 Pseudo code for the implementation of all possible merge cases for a node
and its father.

200

NotCh mison := createmi(sonId, NotCh)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.data(nadded.son.full)
nadded.son.delta(merged, null)
nson.Pred(nmain.son(sonId))
nson.Pred2(nadded.son(sonId))
nmerged.InsertSon(nson)

Contents merged
(trivially) by client

nfork = nmain

NotDel mison := createmi(sonId, NotDel)
mison.SelAlt :=mi.SelAlt
mi.insert(mison)

NotAdd mison := createmi(sonId, NotAdd)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.data(nadded.son.full)
nadded.son.delta(merged, null)
nson.Pred(none)
nson.Pred2(nadded.son(sonId))
nmerged.InsertSon(nson)

NotDel Main NotDel mison := createmi(sonId, NotDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)

Added NotDel mison := createmi(sonId, NotDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)

ChNot see NotCh

ChCh (Both) NotNot mison := createmi(sonId, NotNot)
mison.SelAlt := NotNot.Default
mi.insert(mison)
nmerged.InsertSharedSon(sonId,nfork)

mi.
merge-
Case

mi.
SelAlt

Merge-
Case Action Comment

Figure 76 Pseudo code for the implementation of all possible merge cases for a node
and its father.

201

NotCh mison := createmi(sonId, NotCh)
mison.SelAlt := NotCh.Default
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nson.Pred2(nadded.son(sonId))
nmerged.InsertSon(nson)

Contents merged
(trivially) by client

NotDel mison := createmi(sonId, NotDel)
mison.SelAlt := NotDel.Default
mi.insert(mison)

ChNot see ChCh-NotCh

ChCh mison := createmi(sonId, ChCh)
mison.SelAlt := NotDel.Default
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nson.Pred2(nadded.son(sonId))
nmerged.InsertSon(nson)

Contents merged
by client. Will
probably require
user interaction.

ChDel mison := createmi(sonId, ChDel)
mison.SelAlt := ChDel.Default
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

DelNot see ChCh-NotDel

DelCh see ChCh-ChDel

DelDel mison := createmi(sonId, DelDel)
mison.SelAlt := DelDel.Default
mi.insert(mison)

AddNot mison := createmi(sonId, AddNot)
mison.SelAlt := AddNot.Default
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

NotAdd see ChCh-AddNot

mi.
merge-
Case

mi.
SelAlt

Merge-
Case Action Comment

Figure 76 Pseudo code for the implementation of all possible merge cases for a node
and its father.

202

ChDel (Main) NotDel mison := createmi(sonId, NotDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

mi.SelAlt=Main!

ChDel mison := createmi(sonId, ChDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

DelDel mison := createmi(sonId, DelDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)

AddDel mison := createmi(sonId, AddDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

DelNot see NotDel

DelCh see ChDel

DelDel (Both)
(Main)
(Added)

DelDel mison := createmi(sonId, DelDel)
mison.SelAlt := mi.SelAlt
mi.insert(mison)

AddNot
or
AddDel

(Main) AddNot
or
AddDel

mison := createmi(sonId, AddNot)
mison.SelAlt := mi.SelAlt
mi.insert(mison)
nson := create(sonId)
nson.Pred(nmain.son(sonId))
nmerged.InsertSon(nson)
nson.data(nmain.son.full)
nmain.son.delta(merged, null)

or AddDel

mi.
merge-
Case

mi.
SelAlt

Merge-
Case Action Comment

Figure 76 Pseudo code for the implementation of all possible merge cases for a node
and its father.

203

NotAdd
or
DelAdd

see AddNot

Merge Case Default merge

NotNot NoAlt

NotCh Added

NotDel Added

ChNot Main

ChCh Both

ChDel Main

DelNot Main

DelCh Added

DelDel Both

AddNot Main

NotAdd Added

AddDel Main

DelAdd Added

Figure 77 The default merge rule for all possible merge cases.

mi.
merge-
Case

mi.
SelAlt

Merge-
Case Action Comment

Figure 76 Pseudo code for the implementation of all possible merge cases for a node
and its father.

204

Appendix C: Server
commands

This appendix lists all commands sent from a client to a server. Each com-
mand is executed by the document manager (Doc. Mgr. in Figure 74). For
some of the commands a response should be sent back to the sending cli-
ent and/or to other clients and/or servers. To whom the response should be
sent depends on the type of command and if any other clients has the
same document opened and what version of the document these clients
view, described in Chapter 10 ‘The COOP/Orm architecture’.

Figure 78 is a table depicting all commands sent to the server and
their responses from the document manager. The columns represents the
different types of response:

• ReplyMessage is sent to the client sending the command.
• BroadcastMessage is sent to all clients having the document

opened.
• ViewMessage is sent to all clients viewing the version of current

interest.
• ServerMessage is sent to all servers replicating the document.
• SynchMessage is sent to all clients viewing the version with the

awareness level ‘synch view’.

For example, the command PutData generates two response messages:
‘ViewMessage’ and ‘ServerMessage’. Any clients connected to another
server also viewing the version will receive a ‘ViewMessage’ sent from
their server (as a consequence of that server receiving the ‘ServerMes-
sage’).

206

Command Reply Broadcast View Server Synch

Create

Open X

Close X

CheckPoint

PutData X X

PutMergedData X X

GetData X

GetDelta X

GetAllNodeInfo X

PutAdmData X X

GetSonAdmData X

GetSonAdmDelta X

CreateSon X X X

DeleteSon X X X

UnDeleteson X X X

ChangeAlternative X X X

PutVerInfo X X

PutAltInfo X X

CreateRevision X X X

CreateMerge X X X

RemoveRevision X X

CreateHypMerge X

FreezeRevision X X

GetRevTree X

GrabTelepointer X

SynchStatus X X

OpenWindow X

CloseWindow X

MoveWindow X

Figure 78 Server commands and their responses.

207

ResizeWindow X

ScrollWindow X

MouseMove X

Command Reply Broadcast View Server Synch

Figure 78 Server commands and their responses.

208

	Configuration Management for Distributed Development in an Integrated Environment
	Abstract
	Acknowledgments
	Contents
	Chapter 1 Introduction
	1.1 The thesis
	1.2 Thesis organization
	Introduction
	Results
	Future and related work
	Contributions and conclusions

	1.3 Publications

	Chapter 2 Thesis motivation
	2.1 Work models
	2.1.1 Combining models
	2.1.2 Object oriented languages
	2.1.3 Synchronous and asynchronous collaboration
	2.1.4 Collaborative awareness and system overview needed

	2.2 Distributed development
	2.3 Integrated development environments
	2.4 Problem statement

	Chapter 3 Integrated development environments
	3.1 Synchronization points
	3.2 Levels of tool communication
	3.2.1 The COOP/Orm approach

	Chapter 4 Cases of distributed development
	Why being distributed?
	Drawbacks...
	Making the best of it
	4.1 Cases of distributed development
	4.1.1 Locally
	4.1.2 Distance working
	4.1.3 Outsourcing
	4.1.4 Co-located groups
	4.1.5 Distributed groups

	4.2 Conclusions

	Chapter 5 Software configuration management
	5.1 Definitions - two target groups
	5.2 Strategies/working modes
	5.3 CM from a management perspective
	5.3.1 Areas of responsibility

	5.4 CM from a developmental perspective - tool support
	5.4.1 Version control
	5.4.2 Configurations/Selections
	5.4.3 Concurrency control
	5.4.4 Build management
	5.4.5 Release management
	5.4.6 Workspace management
	5.4.7 Change management

	5.5 Synchronization models
	5.5.1 Checkout/checkin
	Comments

	5.5.2 Composition
	Comments

	5.5.3 Long transactions
	Comments

	5.5.4 Change set
	Comments

	5.5.5 Tool support for synchronization models
	5.5.6 Summary

	5.6 Version and configuration models
	5.6.1 Configuration vs. configuration specification
	5.6.2 Extensional and intensional versioning

	5.7 Summary

	Chapter 6 Unified extensional versioning model
	6.1 The unified extensional versioning model
	6.1.1 The document model
	Examples of structured documents

	6.1.2 The version model
	Example, versions of a structured document
	Example, versions of configurations of documents

	6.1.3 Summary

	6.2 Discussion and comparison
	6.2.1 The UEVModel from the users perspective
	6.2.2 Managing the combinatorical explosion of configurations
	6.2.3 Supporting and managing changes
	6.2.4 Supporting concurrent work

	6.3 Related work
	6.3.1 Ragnarok
	6.3.2 CoED
	6.3.3 NUCM
	6.3.4 Adele
	6.3.5 POEM
	6.3.6 Subversion

	Chapter 7 The COOP/Orm environment
	7.1 Requirements
	7.2 Structured documents (spatial model)
	7.2.1 Structure of documents
	7.2.2 Discussion

	7.3 Version model
	7.3.1 A session scenario
	7.3.2 Fine grained incremental version control
	7.3.3 Browse in time
	7.3.4 Visualizing version history during editing
	7.3.5 Local version graph
	7.3.6 Versioning configurations of documents
	Change propagation for L-nodes

	7.3.7 Discussion
	Fast navigation
	Presenting large version graphs
	Edit and compare to older versions at the same time
	Versioned workspace
	Nested sessions
	Synchronization model

	7.4 Merge model
	7.4.1 Avoid conflicts in the first place
	7.4.2 Automatic merge proposal based on default rules
	Structural merge
	Merge of node contents

	7.4.3 Visualize merge result
	‘Free’ editing during merge
	Merge case
	Selected branch

	7.4.4 Facilitate consistent decisions during merge
	7.4.5 Merge of configurations
	7.4.6 Discussion

	7.5 Awareness model
	7.5.1 Hypothetical merge
	7.5.2 Discussion

	7.6 Client-server architecture
	7.7 Replication (server-server) model
	7.8 Related work
	Asynchronous collaboration in software engineering

	7.9 Conclusion
	Scalability
	Applicability

	Chapter 8 The COOP/Orm client-server model
	8.1 Requirements and trade-offs
	8.2 Principle design decisions
	8.2.1 Document structure and version control
	8.2.2 Delta technique (node content deltas)
	8.2.3 Structural deltas
	8.2.4 Type generic server
	8.2.5 Push model (request-install protocol)
	8.2.6 Scalability
	8.2.7 Version tube
	Move of Viewed
	Move of Compare

	8.3 Summary

	Chapter 9 The COOP/Orm storage format
	9.1 Storage layers
	VersionFile
	TreeFile
	Unix file

	9.2 The storage format grammar
	Root
	VGdata
	Preds
	PreVer1
	PreVer2
	SonInfo
	SonId
	NodeType
	Status
	ContentType
	LinkVerNo
	ClientAdmData
	NodeData
	Null
	ClientData, ClientDelta
	NextVer
	9.2.1 VersionFile mapped to TreeFile
	9.2.2 Semantic rules (invariants)

	9.3 Static properties
	9.3.1 Sequential versions
	Discussion/evaluation

	9.3.2 Branches
	Discussion/evaluation

	9.3.3 After merge
	Discussion/evaluation

	9.3.4 Reliability
	9.3.5 Change propagation
	9.3.6 ClientAdmData

	9.4 Dynamic properties
	9.4.1 Protocol / Operations
	CreateVersion(fromVer, newVer)
	PutData(Ver, Node, Full, Delta)
	CreateSon(Ver, Node, Son, CorrectSon)
	FreezeVersion(Ver)
	GetData(Node, Tube, Ver, retData)
	GetSonAdmData(Ver, Node, retBS)

	9.5 Merge
	CreateMerge(MainVer, AddedVer, MergedVer, retBS)
	MergeSons(nfork, nmain, nadded, nmerged, mi)
	PutMergedData(Ver, Node, Full, Delta1, Delta2)

	9.6 Re-merge
	9.7 Hypothetical merge
	9.8 Merge requirements on ClientData and ClientDelta
	9.9 Evaluation and scalability

	Chapter 10 The COOP/Orm architecture
	10.1 Client run-time model
	10.1.1 StorageNode
	10.1.2 Tools
	10.1.3 Configurator
	newConfiguratorManager

	10.2 The COOP/Orm framework
	10.2.1 Hot-spots in COOP/Orm
	10.2.2 Changing the rules defining the document structure
	Context
	Example
	Problem
	Solution
	Example resolved
	Black-box framework

	10.2.3 Creating new node types
	Context
	Example
	Problem
	Solution
	Implementation
	Steps to follow when adding a new data type (cook-book)
	Example resolved

	10.3 The server architecture
	10.4 Summary and discussion

	Chapter 11 Related work
	11.1 TUCAN
	11.2 Coven (Stellation)
	11.3 Adele
	11.4 POEM
	11.5 Subversion
	11.6 Ragnarok

	Chapter 12 Future work
	Continue to implement and evaluate
	Support to XP activities
	Multi grammar documents

	Chapter 13 Contributions
	13.1 Capture the requirements
	13.2 Find models
	Model interaction
	Distribution

	13.3 Build a prototype
	13.4 Evaluate

	Chapter 14 Conclusions
	References
	Appendix A: Dynamic behaviour - notation
	Appendix B: Merge cases
	Appendix C: Server commands

