
Interactive Tool Support for
Domain-Specific Languages

Elizabeth Bjarnason

CODEN: LUNFD6/(NFCS-3124)/1-112/(1997)
LU-CS-TR:97-192

Lund, November 1997

ii

iii

To Jesus who was with me every step of the way

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund, Sweden

E-mail: Elizabeth.Bjarnason@dna.lth.se

Front cover: Part of the abstract syntax tree of a program expressed in a domain-
specific language, controlling an ASEA/ABB Irb-6 robot (picture from the robot
manual, digitized by Rolf Braun). Calls in the language implementation to the
motion control interface are dynamically bound in the embedded execution
environment.

© 1997 by Elizabeth Bjarnason

iv

Abstract

Domain-specific languages are used in numerous problem domains, e.g. database
handling, robot programming and numerical calculations. The main advantage of
using such languages is the ease with which a problem within the domain can be
expressed in the language. The resulting programs are easier to debug and main-
tain, and consist of higher quality code since the language constructs are close to
the concepts of the domain. The drawback of using domain-specific languages has,
until now, been the huge cost, both in terms of time and skill, in developing a lan-
guage which covers the domain in a good way. This cost could be reduced by easy-
to-use tools which support the language-design process in an interactive way. Fur-
thermore, an interactive programming environment for domain-specific languages
would support the programmer in editing programs according to the syntax and
static semantics of a language. The aim of this thesis is to present techniques for
developing such interactive tool support for domain-specific languages, both at the
language-design level and at the programming level.

Rapid language prototyping can be supported by tools built on the principle of
grammar interpretation. The programming environment then automatically
adapts whenever the grammar is changed. This thesis presents techniques for
parsing and static-semantic analysis based on this principle. The resulting tools
are used to support language-sensitive text editing and advanced semantic editing
of both programs and grammars.

The development of new languages can be further enhanced by reusing existing
language specifications. Object-oriented modular grammars support such develop-
ment of languages by combining a number of modules, or ‘building blocks’.
Furthermore, multi-layered grammars can be used to design languages for multi-
level systems where a language is implemented in terms of the routines of a library
or framework.

APPLAB, an interactive language laboratory and programming environment,
has been implemented to support the techniques presented in this thesis. The sys-
tem has been used in a number of case studies, including a study on robot
programming where a full-sized language was implemented. Our experience
shows that the presented techniques provide valuable support for interactive
development of domain-specific languages, as well as enhanced programming sup-
port for such languages.

vi

Acknowledgements

The research presented in this thesis has been carried out within the Software
Development Environments Group at the Department of Computer Science, Lund
University. I am indebted to my supervisor, Görel Hedin, who introduced me to the
field of domain-specific languages, and static-semantic support within program-
ming environments. She very patiently and carefully read drafts of my reports and
papers, as well as this manuscript, giving page after page of detailed comments.
Thank you for sharing your knowledge of this area, as well as helping me with lots
of practical issues (like “How does one do this in Framemaker?”) I also want to
thank Klas Nilsson for introducing me to his ‘baby’, one of the ABB robots at the
Department of Automatic Control, Lund University, and for giving me insight into
the world of robot programming. Thanks for encouraging, as well as helpful com-
ments on my various drafts and on this thesis.

I want to thank the rest of our research group; Boris Magnusson, Roger Hen-
riksson, and Ulf Asklund, as well as previous members Torsten Olsson and Anders
Dellien, and newer members, Anders Ive and Patrik Persson. Thank you, Göran
Fries, my supervisor during my first term at the Department, for introducing me
to the world of Ph.D. studies.

During the thesis process I have learnt a great deal about writing. I am indebt-
ed to my mother (and Swedish father) for teaching me the English language from
birth (starting with ‘teddy’ and ‘tractor’), as well as teaching me to read and write
the language at an early age. Thanks also Peter Middleton and Julian Gillett, for
answering detailed questions about spelling and writing in British English.

My children have been a source of great joy, and have forced me to take time off
from work for breathers. Thank you, Jonathan and Michaela, for helping me to not
loose track of the ‘important’ things in life; like chasing the autumn leaves and dis-
covering how to climb over the gate to the stairs. Also, thank you, Michaela, for
your smile at six o’clock in the mornings!

Finally, but not least of all, I want to give a big round of applause to my hus-
band, Bjarni, for encouraging me to go on when I felt like giving up, for caring for
the kids during weekends, when I have been away on conferences or when they
have been ill, and for sharing the household chores. You are a one in a million; a
hero!

This work has been financially supported by NUTEK, the Swedish National
Board for Industrial and Technical Development.

viii

Contents

Chapter 1 Introduction 1
1.1 About the Thesis ..3

Chapter 2 Domain-Specific Languages 7
2.1 Introduction ...7
2.2 Benefits of DSLs ...8
2.3 Different Types of DSLs ..9
2.4 Problems and Solutions ...13
2.5 Conclusions ..18

Chapter 3 APPLAB -
A Language Laboratory 21
3.1 Introduction ...21
3.2 The APPLAB System ...22
3.3 The APPLAB Architecture ..26
3.4 Immediate Computation ...29
3.5 Designing a New Language in APPLAB31
3.6 Case Studies Using APPLAB ..36
3.7 Related Systems ...37
3.8 Current Status and Future Work39
3.9 Summary ..39

Chapter 4 A Grammar-Interpreting
Static-Semantic Analyser 41
4.1 Introduction ...41
4.2 Object-Oriented Attribute Grammars43
4.3 Demand-Driven Attribute Evaluation45
4.4 Framework for Predefined Attribute Types51
4.5 Current Status and Future Work53

x

Chapter 5 A Grammar-Interpreting Parser 55
5.1 Introduction ..55
5.2 Text- and Structure Editing in APPLAB56
5.3 Implementation ..59
5.4 Related Work ..65
5.5 Conclusion ..68

Chapter 6 Case Study - Robot Programming 71
6.1 Motivation ..71
6.2 Robot Programming ...72
6.3 Experimental Setup ...74
6.4 Implementing the End-User Level in APPLAB76
6.5 A DSL for the Application-Specific Level78
6.6 Experience and Future Work ..81

Chapter 7 Grammar Modularization 83
7.1 Introduction ..83
7.2 Object-Oriented Modular Grammars84
7.3 Multi-Layered Grammars ...85
7.4 An Example ..86
7.5 Related Work ..89
7.6 Summary and Future Work ..91

Chapter 8 Evaluation 93
8.1 APPLAB as a DSL Tool ...93
8.2 Performance ...97
8.3 Conclusions and Future Work ...99

Chapter 9 Conclusions and Future Work 101
9.1 Contributions ...101
9.2 Future Work ...102

References 105

Chapter 1

Introduction

In industry, today, a lot of resources are poured into programming large systems.
A lot of the work involves ensuring that the produced code is correct and safe.
There is a lot to be gained by aiding the programmer in writing more correct pro-
grams to start off with. Such support can be supplied by designing a domain-
specific language, or DSL, that captures the vocabulary and the rules of the prob-
lem domain [War94, TMC97]. Taking the step from general-purpose languages to
DSLs means that the same advantages as were achieved when programmers
moved from assembly languages to high-level languages are obtained once again.
The implementation details of the domain concepts are dealt with in the language
implementation rather than in the application programs, thus, increasing the level
of abstraction and decreasing the semantic gap [Bos96]. And, just as one can use a
high-level programming language without having any knowledge of details of the
physical machine like registers and memory location, one can program in a DSL
without having to consider the low-level details of the underlying implementation.
Instead, the programmer can concentrate on the problem at hand. In short, DSLs
can reduce the amount of effort needed to program, debug, and maintain applica-
tions within the problem domain.

There are several different approaches to modelling DSLs. A DSL can be
designed from scratch which often results in a very specialized, high-level lan-
guage [Ben86]. Such languages often lack the abstraction mechanisms of general-
purpose languages, but contain constructs which are very close, both in syntax and
semantics, to the concepts of the problem domain. Another common approach is to
extend a general-purpose language with domain-specific syntax by using syntactic
macros. In this way the surface syntax of the language is closer to the concepts of
the problem domain. A third approach is to use a language which is well suited to
modelling different problem domains [Hud96, Kos96, KH97]. The abstraction
mechanisms available in object-oriented languages make them very suitable for
such domain-specific modelling. This was noted already in the definition of the
object-oriented programming language Simula [DMN68].

In the late sixties Sammet deemed user-defined languages (or DSLs) to be “the
most likely and promising future development” [Sam69, p. 727] within the area of
programming languages. This has not been the case, partly due to the introduction

2 Chapter 1 Introduction

of object-oriented languages which have been successfully used for modelling prob-
lem domains. Other major factors which have limited the use and acceptance of the
DSL technique include the huge cost of developing and maintaining a new lan-
guage, the problem of compatibility and reusability of software across different
platforms, and that the needed technology and tools for compiler construction have
not been available [Nil96b, DK97].

In conclusion, in many programming situations it is desirable to use DSLs but
not all companies have the resources, both financial and technical, needed to
design and implement their own languages. In order to make the use of such lan-
guages more feasible there is a need for dedicated environments supporting the
programmer, as well as tools for rapid development of such environments.

Goals

The goal of the research presented in this thesis was to develop techniques allow-
ing the construction of easy-to-use tools for designing and implementing domain-
specific languages, as well as programming environments for DSLs. In particular,
we were interested in providing support for rapid language prototyping with which
the development costs for DSLs can be decreased, making the approach more wide-
ly available. The compiler construction tools available today can be used to
implement a language but do not support the language design process as such.

Tools and environments for supporting the programmer working with DSLs are
very useful since one can expect the application programmer to be more of an appli-
cation expert than a programming expert. Furthermore, DSLs are often used on an
irregular basis, and the language may often need to be revised as new features and
requirements are added to the system. This makes it hard for the programmer to
stay acquainted with the details of the language.

Method

This research is a continuation of the work done within the Mjølner/Orm project
[MHM+90, Mag93], a project concerned with building interactive programming
environments for object-oriented languages based on techniques for structure-ori-
ented editing [Min90], grammar interpretation [MH93] and incremental static-
semantic analysis [Hed92a]. The technique of grammar interpretation was applied
to parsing and static-semantic analysis by studying previously developed tech-
niques for generating recursive-descent parsers [Hed89b] and for evaluating
object-oriented AGs based on the implementation techniques for virtual functions
in object-oriented languages [Hed89a]. The resulting techniques were implement-
ed in APPLAB (Application Language Laboratory) which is a further development
of the grammar editor of the Mjølner/Orm environment [MHM+90, MM94]. The
system has been used as a test bed for experimenting with the developed tech-
niques. A number of case studies have been performed in APPLAB with the
purpose of evaluating how well these techniques support the DSL approach.

Also, by experimenting with extensions of object-oriented AGs and studying
other AG versions, like higher-order AGs [VSK89], techniques for supporting the
reuse and extension of language specifications have been sketched.

1.1 About the Thesis 3

Results

The main contributions of this thesis are grammar-interpreting techniques for
parsing and static-semantic analysis within a structure-oriented environment,
and techniques for supporting reuse of language specifications. Combined with
previously developed grammar-interpreting support for structure-oriented editing
these techniques support rapid language prototyping.

The presented parsing technique is based on recursive-descent parsing and a
generic parser based on this technique has been integrated into the APPLAB sys-
tem. Object-oriented AGs are used to describe static-semantic rules of a language.
The presented implementation techniques for a generic demand-driven attribute
evaluator have been used in APPLAB to support user-defined advanced editing
features like semantic editing and semantic error markers. The semantic editing
features of the Mjølner/Orm system were obtained in APPLAB by allowing these
features to be specified by the language designer.

The language-sensitive programming environment provided by structure-ori-
ented editing, semantic editing and language-sensitive text editing is, by utilizing
the techniques of grammar interpretation, also available at the language-design
level which further enhances the language-design process. This aids the language
designer in constructing a syntactically and static semantically correct language
specification.

The object-oriented modular grammars presented in this thesis support the
reuse and extension of existing language specifications. The presented multi-lay-
ered grammars support the development of multi-layered languages where a
language level is implemented in terms of the routines of a lower level.

Through a case study on robot programming the presented techniques were
applied to a realistic and challenging application domain. The rapid language pro-
totyping proved valuable, as well as the semantic editing features. The techniques
for object-oriented modular grammars and multi-layered grammars are not yet
implemented but are expected to provide valuable support for the development of
multi-layered languages.

1.1 About the Thesis

Outline

The rest of this thesis is organized as follows:

• Chapter 2: Domain-Specific Languages
The concept of domain-specific languages is discussed and a number of prob-
lems and requirements on support for such languages are presented.

• Chapter 3: APPLAB - A Language Laboratory
A general description of the APPLAB system is given, as well as an overview
on the design of a new language in the system.

4 Chapter 1 Introduction

• Chapter 4: A Grammar-Interpreting Static-Semantic Analyser
A technique for implementing generic demand-driven attribute evaluators
for object-oriented AGs is presented.

• Chapter 5: A Grammar-Interpreting Parser
A technique for implementing generic recursive-descent parsers in a struc-
ture-oriented environment is presented.

• Chapter 6: Case Study - Robot Programming
A case study using APPLAB to support the development of a DSL for robot
programming is presented.

• Chapter 7: Grammar Modularization
Techniques for supporting the reuse of language specifications in a struc-
ture-oriented environment are presented.

• Chapter 8: Evaluation
An evaluation of APPLAB and, thus, the techniques presented in this thesis
is performed against the requirements of DSLs. Some measurements on
time and memory consumption of the system are also presented.

• Chapter 9: Conclusions and Future Work
The contributions of this thesis are summarized and future work is
identified.

Publications and Contributions

Chapters 3, 5, 6 and 7 present contributions which have previously been published
as follows.

The general description of the APPLAB system found in Chapter 3, in combina-
tion with a brief description of the robot case study discussed in Chapter 6, is
presented in

E. Bjarnason, G. Hedin and K. Nilsson. “APPLAB-An Application
Language Laboratory”. Technical report LU-CS-TR:97-188, Department
of Computer Science, Lund University, Sweden, August 1997.

The APPLAB system has also been described in the position paper
E. Bjarnason. APPLAB - A Laboratory for Application Languages. In
Proceedings of NWPER’96 (Nordic Workshop on Programming
Environment Research), L.Bendix, K. Nörmark, and K. Österbye (eds),
Technical Report R-96-2019, Aalborg University, Denmark, May 1996.

and in the user guide
E. Bjarnason. APPLAB User’s Guide (Version 1.2) Technical Report LU-
CS-IR:96-01, Department of Computer Science, Lund University,
Sweden, April 1996.

1.1 About the Thesis 5

The parser, described in Chapter 5, is based on an object-oriented recursive-
descent parsing algorithm developed by Görel Hedin [Hed89b]. I adapted and
implemented the algorithm in the grammar-interpreting environment of APPLAB.
This implementation work is also presented in

E. Bjarnason and G. Hedin. A Grammar-Interpreting Parser in a
Language Design Laboratory. In Proceedings of the Poster Session of
CC’96 (International Conference on Compiler Construction). P. Fritzson
(ed.), LiTH-IDA-R-96-12, Dept. of Computer Science, Linköping
University, Sweden, April 1996.

The static-semantic analyser, presented in Chapter 4, is based on an algorithm for
demand-driven attribute evaluation of OOAGs developed by Görel Hedin
[Hed89a]. Similarly to the parser, I adapted and implemented the algorithm to
work in the grammar-interpreting environment of APPLAB.

The robot case study discussed in Chapter 6 was joint work with Klas Nilsson
at the Department of Automatic Control, Lund University. Based on the principles
presented in [NBL98], he developed and implemented the embedded execution
environment used to execute robot programs developed in APPLAB, while I made
the necessary adaptations to APPLAB and implemented the RAPID language. A
summary of the case study has been presented in

E. Bjarnason and K. Nilsson. Languages for Embedded Systems. In
Preprints of SNART 97 Konferens om Realtidssystem, Lund, Sweden,
August 1997.

The techniques for supporting the reuse of language specifications proposed in
Chapter 7 were developed together with Görel Hedin. These initial ideas have been
presented in the following position paper

E. Bjarnason. Tool Support for Framework-Specific Language Extensions.
In Proceedings of LSDF’97 (Workshop on Language Support for Design
Patterns and Frameworks held in conjunction with ECOOP’97),
Jyväskylä, Finland, June 1997.

A shorter version of the same paper will be published in Lecture Notes of Computer
Science 1357, Springer Verlag, (ECOOP’97 Workshop Reader.)

6 Chapter 1 Introduction

Chapter 2

Domain-Specific Languages

In this chapter we discuss the concept of domain-specific languages, i.e. languages
that are especially well suited for programming a certain set of problems. After an
introduction including the benefits of using this technique, different types of
domain-specific programming are identified and exemplified. Then, we look at
problems which arise when using domain-specific languages and how these can be
solved. The chapter ends by drawing some conclusions.

2.1 Introduction

The language determines our expressiveness. Consider our natural language and
a small child learning to speak. At first she can only express simple needs like
‘water’ and ‘dolly’, but as her language expands and is refined, the child can express
what she wants in more detail. For example, “I want to give my favourite doll a
glass of water”. Moving on to natural languages in general, there are different sets
of vocabulary within one language. One for domestic purposes, one for medical pur-
poses, one for technical discussions, and so on. In order to be able to express
ourselves, and to be understood by others, we need a (common) language which is
well suited to the subject we wish to discuss. Similarly, when programming, it is
important that the programming language is suitable for the current set of prob-
lems. That is, it should be expressive within the problem domain. There are
general-purpose programming languages (corresponding to everyday English),
like C, Java, Pascal etc., that serve as a basis for programming in general. But,
when dealing with problems in a specific domain, it is often cumbersome to have to
express those domain concepts in terms of a general-purpose language (compara-
ble to explaining a medical condition without using any medical terms).

The abstraction mechanisms of a (general-purpose) base language can be used
to create a library or a framework containing the domain-specific concepts, thus,
introducing a domain-specific ‘vocabulary’. The degree to which the syntax and the
semantics of the domain can be reflected in this way depends on the strength of the
abstraction mechanisms of the base language used. The aspects which can not be
described directly in terms of the base language will then be conventions which the
application programmer is expected to know about and follow. This requires that

8 Chapter 2 Domain-Specific Languages

the application programmer to some extent acquaints himself with the inner work-
ings of the library or framework. Failure to correctly use the library can lead to
serious errors which are often left undetected until run time. The expressiveness
of the programmer would be greatly enhanced by a language which allows him to
express the problem at hand, in a simple way, in terms which correspond well to
the vocabulary and reasoning of the problem domain. That is to say, the semantic
gap between the problem domain and the formal language used to describe it,
should be as small as possible. Using such a language reduces the programming
time needed to produce an application, as well as increases the quality of the pro-
duced code. We call such a formal (programming or specification) language a
domain-specific language, or DSL. The technique of using a special language to
develop a system, or a set of systems, has been called Language-Oriented Program-
ming [War94], or SDRR (Software Design for Reliability and Reuse) [BBH+94,
Kie95].

Taking the step from general-purpose languages to DSLs is comparable to mov-
ing from assembler to high-level languages. When high-level languages were first
introduced, implementing a language was something left to the experts. Since
then, compiler technology has come a long way and there are now plenty of compil-
er-compiler tools which aid in the implementation of new languages. However,
these tools do not support the actual language-design process. To further support
the design and implementation of well-designed DSLs, there is a need for further
research in this area. Due to the advances in compiler technology, now the time
seems to be ripe to do so, and over the past few year a number of workshops have
been held in this area [Kam93, SEPL95, SEPL96, ALEL96, DALEL96, DSL97b,
LSDF97], as well as the first conference on domain-specific languages [DSL97].

There are a number of different approaches to domain-specific programming
including object-oriented frameworks, little languages, and extended languages.
After having further looked at the benefits of DSLs we will attempt at giving an
overview of these different approaches. In this thesis we are mainly concerned with
textual languages, but, of course, for domains which are well suited for graphical
representation graphical languages are more suitable.

2.2 Benefits of DSLs

The first characteristic of a [domain-specific] programming language is
that the user can write a program without knowing much - if anything
- about [the underlying implementation layer, or,] the physical charac-
teristics of the machine on which the program is to be run.

[Sam69, p. 9]

The main idea of DSLs is the same as for programming languages in general, as is
captured in the quote above. A language should allow the programmer to program
an underlying (complex) layer without requiring detailed, or any, knowledge about
how it works. In the DSL case this means that the problem domain should be made
available to the programmer, in such a way that application programs can be writ-
ten without considering the implementation of the domain concepts. The DSL
approach includes a range of techniques for domain-specific programming. Even

2.3 Different Types of DSLs 9

though the techniques vary, they have a number of common traits and benefits due
to the support of a formal language, and to the benefits of separating the concerns,
i.e. the domain-specific concepts and the actual application.

Reduced Programming Time

In general, the more domain-specific support a DSL provides, the easier it is to
learn and use. This support is especially useful for someone who is more of a
domain expert than a programming expert. Since the implementation details of
the domain-specific constructs are dealt with by the language, the programmer can
focus on the logic of the application program and does not need to worry about the
details of the underlying implementation. The language, thus, aids the user, espe-
cially non-programming experts, in expressing the problem at hand in terms of the
programming language.

Increased Quality

The programs written using a DSL are usually shorter and, if domain-specific syn-
tax is used, closer to the domain at hand. Less code generally means less errors and
this is also true for these applications [DK97]. Furthermore, when working in a
language that enforces domain-specific syntax and static-semantic rules, a number
of errors that would otherwise remain undetected until run-time are reported by
the compiler. Thus, the number of errors in application programs can be expected
to be less when using a DSL.

2.3 Different Types of DSLs

We have chosen a very general definition of DSLs, so as to include a range of dif-
ferent techniques for handling domain-specific programming. Our definition of
DSLs includes

• using the abstraction mechanisms of an existing language to create a set of
domain-specific entities, e.g., a framework or a library,

• little languages limited to expressing problems within the domain, and,

• extending a general-purpose language with domain-specific syntax and/or
static semantics.

We will now take a closer look at these different types of DSLs. Their advantages
and drawbacks vary due to the set of requirements for a programming project, e.g.,
on efficiency, amount of resources, security demands, and skills in language design
and compiler technology.

10 Chapter 2 Domain-Specific Languages

2.3.1 Libraries and Frameworks

The use of libraries and frameworks together with a general-purpose language is
one very common way of coping with domain-specific programming. A set of
domain-specific entities are then introduced into a language by utilizing the
abstraction mechanisms of that existing language. This approach results in a
domain-specific embedded language, DSEL [Hud96], or a light-weight DSEL, a
term introduced by Hudak in the keynote address of DSL’97 [Hud97]. The tech-
nique is used in many different types of programming languages, e.g., procedural
languages (resulting in libraries), functional languages [Hud96, Kam96], LISP
[San78], object-oriented languages (resulting in object-oriented frameworks). In
the rest of this chapter the term ‘library’ will be used to denote such a set of
domain-specific entities. Isolating the implementation of the domain concepts in
this way makes it easier to retarget the set of applications using the library. It is
also simpler to extend and maintain than a complete language and its implemen-
tation. And, if the source code of libraries is available they can be adapted as new
needs arise [GWB+96]. The application programs using the library will still con-
tain non domain-specific details, like the number and order of arguments, the exact
name of the desired routine (which often can not be very ‘domain-specific’ due to
the large amount of routines in a system). Also, there are a number of conventions
attached to the correct use of a library. Some of these conventions can be expressed
by using the abstraction mechanisms of the language used for implementing the
library. The more abstraction mechanisms the implementation language contains,
the more precisely the syntax and semantics of the domain entities can be
expressed, reducing the number and complexity of the (formally unexpressed) con-
ventions [Hed97a].

Object-Oriented Frameworks

The object-oriented paradigm is very suitable for modelling domain entities and,
thus, for introducing domain-specific language constructs within the language.
This was also stated as one of the main points of the object-oriented language Sim-
ula, where the following can be read in the preface of the language definition
[DMN68]:

A main characteristic of SIMULA is that it is easily structured towards
specialized problem areas, and hence can be used as a basis for Special
Application Languages.

Object-oriented frameworks [Deu89, Joh88] have a lot in common with DSLs
[Kos96]. They both consist of constructs for the entities of the domain and can be
used for programming applications within that domain. In [RJ97], the design of
DSLs is described as an evolutionary process starting with the development of a
framework, which usually starts off as a white-box framework [Joh88] and then
gradually evolves into a black-box framework, as more domain-specific details are
added. The ‘blacker’ a framework becomes the more it takes on the role of a DSL,

2.3 Different Types of DSLs 11

as more and more domain-specific details are merged into the framework, as it is
refined and maintained.

2.3.2 Building a Completely New Language

In [Bos96] two different approaches to the design of DSLs are identified: the revo-
lutionary and the evolutionary approach. With the revolutionary approach the
general-purpose language is discarded and the language designer starts from
scratch. This usually results in a little language [Ben86], i.e., a language exclusive-
ly containing the necessary constructs for covering the domain.

Little Languages

A little language is a very high-level language with syntax and semantics close to
the problem domain. Such languages are very expressive in the domain for which
they are designed, allowing the programmer to state a problem more precisely in
domain-specific language terms. These languages are small, and often do not con-
tain any abstraction mechanisms like classes, procedures and types. This makes
the language easier to implement, but limits its use to the domain for which it is
designed. The advantages of domain-specific libraries, i.e., maintainability of the
domain, portability, also apply to these languages, even if they require knowledge
of compiler technology in order to design, implement and maintain the language.

Scripting languages are a well known example of little languages. Other exam-
ples include PIC [Ker82], CHEM and SCATTER [Ben86], and GRAP [BK86]. PIC
is a language for drawing graphical figures. It is a fairly ‘big’ little language but
still qualifies as such since it lacks several features found in general-purpose lan-
guages. The other examples given above, are all implemented as preprocessors for
the PIC language. CHEM is used for drawing chemical structure diagrams, SCAT-
TER is used to make scatter plots from x, y data, while GRAP is a language for
generating graphical displays of data to be included in documents. These languag-
es illustrate the fact that once “a task becomes repetitive or complicated, it is often
profitable to design a language for it” [BK86, page 787]. Implementing these lan-
guages has been done by using standard tools like lex, yacc and AWK [AKW79].
Examples of development times being, for GRAP - “one long evening”, and for
CHEM - a week for design and implementation of the first version. They have
proved to be of great practical use, saving both time and effort, and allowing tasks,
that otherwise would have needed special programming expertise, to be performed
by the domain experts themselves.

2.3.3 Domain-Specific Language Extensions

Even when programming within a specific domain and requiring special domain
concepts there is often a need for the abstraction mechanisms found in general-
purpose languages. For instance, robot programming languages started out a set
of robot-specific instructions, but abstractions found in modern programming lan-
guage have been found to be very useful in the more advanced applications of today

12 Chapter 2 Domain-Specific Languages

[Cra89]. Using the evolutionary approach for designing a DSL results in an extend-
ed general-purpose language, or a heavy-weight DSEL [Hud97] (compare to ‘light-
weight DSEL’ in Section 2.3.1). The abstraction mechanisms and language con-
structs of an existing language can then be reused, and the desired domain-specific
constructs needed for more efficient programming of the domain can be added. This
saves having to (re)implement large parts of the language. The language designer
can then concentrate on the domain-specific language extension. An example of
extending a base language for real-time programming is found in Chapter 7, on
page 86.

For a programmer who is already acquainted with the base language, it is not
such a big step to start using a set of domain-specific constructs in that language.
The language extensions are often relatively small and, if well designed, they are
easily recognizable as parts of the problem domain. The actual implementation of
the domain-specific entities can been done in a library or framework which is then
incorporated into the language implementation. With this approach the shortcom-
ings of the library or framework in fully reflecting the syntax and semantics of the
domain can be alleviated by introducing language support for the domain entities.
This is highly desirable since failure to adhere to the conventions which describe
how the library is to be used leads to an increased cost in debugging the source
code. And, in some application areas, undetected errors may lead to serious reper-
cussions. For instance, if the program is to be installed in an aeroplane, or if it
controls a robot, an undetected error may lead to damaging equipment or even
injuring people. These conventions can be captured by extending different aspects
of the base language [HB96]; the underlying object model, the static semantics, or
the syntax.

Extensible Object Models

Extensible object models are a way of extending an object-oriented language by
allowing more refined message passing between objects. It is a way of specifying
the semantics of the object relationships which can be used for describing the
semantics of domain entities. Extended object models have, for example, been used
for dealing with real-time issues and database features. The composition filters
object model [AWB+94, BTA96] is an extended object model that uses input and
output composition filters which affect the received and sent messages of an object

LAYOM [Bos95a, Bos96] is an extensible object model which supports the
extension of the object model by encapsulating an object with layers which filter
the messages passing to and from the object. The primary principle of LAYOM is
that “an entity in analysis and design models also is represented as an entity in
the language model” [Bos95a, p. 120], which is what is sought after in a DSL. The
extended features are made available in the language by introducing a new lan-
guage construct.

The FLO object model [DBP95, Duc97] uses connectors for defining the seman-
tics of the interaction between objects. The connectors are specified by a set of
interacting rules which can be freely combined at the language level. This is allows
for a more flexible use of the extensibility of the model compared to LAYOM. This
flexibility is a result of the connectors not being as tightly connected to the objects.

2.4 Problems and Solutions 13

Semantic Extension

In many cases, errors resulting from failure to adhere to conventions, can be
detected at an early stage by adding static-semantic rules, or constraints, to a lan-
guage. This can be done by extending the static semantics of the language with
additional rules ensuring the correct usage of the domain concepts. A number of
different kinds of conventions, like coding conventions, conventions connected to
the use of libraries, frameworks, and design patterns [Gam95], can be captured in
this way. Missing language constructs can also be simulated using this technique.
In [Hed97a] such a technique is presented which is based on attribute extension.
The base (attribute) grammar is then allowed to be extended with checks to ensure
that the conventions are adhered to. Another attribute grammar based technique
for extending the static semantics of a language is the use of semantic macros
[Mad89]. They are similar to syntactic macros, but also consider the static seman-
tics of the program and can be used to extend the static semantics, as well as the
syntax, of a language.

Syntactic Extension

The syntax of a language greatly affects the amount of effort needed to write and
read programs using that language, since programs are written by humans who
think in terms relative to the specific problem domain at hand. Having the lan-
guage reflect these concepts with an intuitive and natural syntax assists the
programmer in correctly and precisely expressing a program that solves the prob-
lem. It also aids the understanding of written code since it is not cluttered with a
lot of low-level details. In short, the syntax of a language can decrease the semantic
gap between the problem at hand and the resulting source code of the application.

A language can be supplied with a domain-specific syntax by using syntactic
macros [Lea66]. They are frequently used and are a convenient way of making the
surface syntax more domain-specific. But, several disadvantages have been point-
ed out, e.g., the lack of consideration of the scoping rules of the language which may
result in unwanted name clashes. Extensible grammars [CMA94] are an alterna-
tive to syntactic macros where the syntax of a language is extended by syntax-
directed patterns. The extended grammar recognizes and respects the scoping
structure of programs. Both syntax extensions and restrictions can be supported
with this technique.

2.4 Problems and Solutions

The use of DSLs reaps great benefits, but also poses problems. A number of rele-
vant research topics in this area are identified in [Nil96b], in the introduction of
[ALEL96] and in the summary of [DALEL96]. In ‘Little Languages, Little Mainte-
nance?’ [DK97], the question of DSL maintainability is covered in depth. We will
now attempt to identify some of the problems and propose a few solutions by taking
a closer look at the programming level and the language-design level of DSLs.

14 Chapter 2 Domain-Specific Languages

2.4.1 The Programming Level

The main goal for domain-specific programming is to reduce the time and effort
needed to produce a correct application. This entails making it easier to read and
write applications; aiding in maintenance and future development, as well as
reducing the number of errors left undetected until run time. The introduction of
one, or possibly several, new domain-specific languages does, however, pose some
problems according to the following.

Problem 1: Unfamiliarity with the DSL

One can expect the application programmer to be unfamiliar with the actual syn-
tax and semantics of the DSL. The reasons being irregular usage and language
changes, which can be expected to be more frequent for a DSL than for a standard-
ized general-purpose language. Providing interactive language-sensitive editing
support which aids the programmer in using the correct syntax and static seman-
tics would be very useful and relieve the programmer of having to remember the
exact details of the current version of the language.

Problem 2: The User is Not a Programming Expert

The DSL programmer may very well be a domain expert, and as such be familiar
with the problem domain and recognize its syntax and semantics in the DSL. This
kind of domain programmer may have some programming experience, but is not
necessarily a programming expert. A well designed DSL will supply language con-
structs that are familiar to the domain expert, but the actual programming can be
further supported by an interactive language-sensitive editor which aids the
domain experts in correctly using the formal language.

Problem 3: Lack of Debugging Tools for DSLs

One of the main benefits of using a DSL is increased quality, i.e., less number of
errors in the produced program code. Even so, some debugging is bound to be need-
ed. This may pose a problem, if no debugging tools are available, or the ones
available use a base language to present the source code instead of the actual DSL
code written by the application programmer. Thus, there is a need for debugging
tools in terms of the DSL source code [DALEL96]. KHEPERA [FNP97] is a system
which supports source-code debugging of DSLs by keeping track of the transforma-
tions performed on the abstract syntax tree of the program in order to produce the
executable code.

Problem 4: Maintenance of a Program Using a Changing Language

The problem of maintaining an application is split into maintaining the DSL and
maintaining the application [DK97]. If a domain-specific syntax is used, the appli-

2.4 Problems and Solutions 15

cation program is usually easier to read and understand even for others than the
original programmer, thus making it easier to maintain. On the other hand, it may
be difficult to find someone who is fluent in the particular DSL used in the appli-
cation. And, the documentation of the language may be poor or even non-existent.

Another aspect of DSL maintenance is that the language can be expected to
change and evolve. The existing programs then need to be kept compatible with the
current version of the language. A transformation mechanism, similar to the ones
in Muir [Nor87, Win87] and TransformGen [GKL94], is needed. In both systems, a
transformation template, or table, is created as the grammar is modified, and in
some cases, for example, when deleting a production, the transformation needs to
be manually refined in order to transform program documents according to the
intentions of the language designer.

Problem 5: Unstable Language Implementation

When working with DSLs the language implementation is a potential source of
errors. Undetected language implementation errors may result in very cryptic
error messages and behaviour in the application program, comparable to errors in
compilers. Since the application programmer usually is not familiar with the lan-
guage implementation, these errors are very frustrating and hard to locate. DSL
support for the language-design level is needed to ensure a correct language design
and implementation.

2.4.2 The Language-Design Level

As has been mentioned, it is extremely important that the language implementa-
tion is correct since that is the platform on which the applications are to be built.
In order to ensure a correct and stable design and implementation, the same sup-
port as is supplied at the DSL programming level should also be available for the
language-design level. The language specifications can be seen as a program
expressed in a (meta-level) DSL. By supplying DSL programming support for this
level the resulting language implementation will be easier to read, write, main-
tain, and contain less errors. The language designer could be aided by, for example,
warnings of missing grammar items, unparsable grammars, circular grammars,
and ambiguity. We mentioned that good language design is hard. It would be very
beneficial if the language designer could be supported in translating domain enti-
ties into ‘good’ constructs [Kam96]. A suggested approach is to first design and
implement an object-oriented framework for the problem domain, and once the
semantics of the domain are clarified move on to adding a (textual or graphical)
language level [DALEL96, RJ97].

Problem 6: Need for Collaborative Design

The design of a language is very important since bad design can lead to severe dif-
ficulties. For example, if the language fails to cover the whole problem domain, this
will limit the use of the language, and a DSL with a ‘bad’ syntax results in pro-

16 Chapter 2 Domain-Specific Languages

grams which are hard to understand. A combination of extensive knowledge of the
domain and of language design is needed to obtain a ‘good’ language design. Since
the person best acquainted with the problem domain is usually not an expert in
language design, there is a need for both language and domain expertise to work
in collaboration, interactively evaluating and changing the design as the project
progresses. This requires an environment that supports such collaboration and,
which also supports rapid prototyping of languages, giving the domain expert a
chance to give important feedback on the language design at an early stage.

Problem 7: Limited Resources

The design and implementation of a DSL is typically not the main objective in sys-
tem or product development. The building of the language may only employ a small
part of the project resources. Also, in a smaller company the technical skills in lan-
guage design and compiler technology may be very limited. Handcoding a compiler
for a DSL is, thus, usually not desirable, nor possible. The time needed to design,
implement, and maintain a DSL also has to be measured against the advantages,
in software quality and reduced programming time, gained by using a DSL [DK97].
By applying the DSL technique and providing language-sensitive support for lan-
guage development [DALEL96] these same advantages can be obtained for the
language-design level. The language development phase could be further rational-
ized by allowing reuse of existing language designs and implementations. For
example, through language extension, and through modular language specifica-
tions which allow for the construction of a language by combining a number of
existing modules, or language building blocks [DALEL96].

Compiler-construction tools allow for a fast and easy implementation of a lan-
guage. Yacc and lex are examples of well known, and much used, compiler-
compilers. Eli [GHL+92, Kas96] is another example of a compiler-compiler which
also support the construction of languages by combining reusable language compo-
nents. The reuse of language components is also supported by TaLE [JKN95,
KM95], a language implementation framework with a graphical user interface.

Problem 8: Incremental Language Design

DSLs are often of an experimental character, i.e., they are expanded and revised
time and time again as the domain develops, as opposed to general-purpose lan-
guages which are rarely changed. Designing a language is a process where new
constructs are tried and tested several times before they are ‘right’. The language
designer would be greatly enhanced by being supported in incrementally and iter-
atively designing a language in an integrated fashion [Nil96b]. Discrepancies of
the language, as well as specification errors, could then be detected at an early
stage in the design process by supplying immediate feedback of the changes of the
language specification. Since DSLs are relatively often expanded and revised there
is also a need for version control of the different revisions of the language.

2.4 Problems and Solutions 17

Problem 9: Language Maintenance

As the problem domain evolves and new requirements arise the language needs to
be revised. Changing the language implementation requires skill in language
design and implementation [DK97]. At best only the language implementation is
affected, but the language itself may also change. Existing programs will then need
to be updated to the new language version, as was mentioned in Problem 4.

Problem 10: Portability

Programs written in a standardized general-purpose language can be used on
almost any machine. This is not immediately true for programs written in a DSL.
Depending on the language implementation, DSL programs may need to be ported
in order to run on different platforms. Mapping the DSL to a standardized general-
purpose language, or to code for a virtual machine which is implemented in a
standardized general-purpose language, solves this problem.

Problem 11: Optimization

There are two different aspects concerning the optimization of DSL programs. A
DSL is a high-level language which encapsulates the entities of the lower level.
Full control of these entities is not available to the programmer, who can not per-
form, otherwise possible, optimizations. This may be a problem within some
problem domains, for example, when dealing with hard real-time constraints for a
system.

On the other hand, the DSL designer may be able to make optimizations based
on the knowledge of the domain [Hud96]. The resulting executable DSL programs
are then more efficient than programs expressed in a general-purpose language.

Problem 12: A Multi-Layered System Results in a Hierarchy of DSLs

Complex systems are often built in several layers where each layer covers a differ-
ent problem domain with its own set of requirements, concepts, and language
constructs [SG96]. Every layer uses its underlying layer, and provides routines for
use in the next higher layer. Applying the DSL technique to such a system results
in a DSL for the problem domain of each layer. Such a language is implemented in
terms of the DSL of the underlying layer, and is in turn used in the implementation
of the DSL of the next highest layer, resulting in a hierarchy of languages. Indus-
trial robot programming [Nil96a] is an example of such a multi-layered system
described in Chapter 6. Multi-layered grammars (see Chapter 7) can be used to
describe and implement such hierarchies of languages.

18 Chapter 2 Domain-Specific Languages

2.4.3 Desired Support for DSLs

Language development requires a high degree of skill and knowledge in language
design and compiler technology. In order to make the DSL technique more widely
available, support for the language design and implementation phase, and for DSL
programming is needed. In the previous sections we have identified a number of
aspects which need to be dealt with in order to make the use of DSLs easier and
safer. For the purpose of later evaluating our language laboratory, APPLAB, as a
DSL tool these requirements are listed in Table 2.1. The list is not meant to be
exhaustive. There are certainly additional items to add.

2.5 Conclusions

A lot is to be gained by using DSLs for programming specific problem domains. The
amount of programming effort required is reduced, both initially, and when debug-
ging and maintaining applications. A number of serious errors can be statically
detected by introducing static-semantic rules in a DSL. This greatly reduces the
amount of work required to ensure that a program is safe to execute.

On the other hand, effort needs to be put into designing, implementing and
maintaining a DSL. This is no simple task. It requires a lot of skill and technical
know-how. It is a trade-off between the benefits of using a DSL and the amount of

The Programming Level Problems

1. Interactive language-sensitive programming environment 1, 2

2. Source code debugging 3

3. Version control of language specifications and programs 8

4. Transformation of programs to new language version 8, 9

The Language-Design Level

5. DSL programming support for the language-design level 5, 7, 8

6. Rapid prototyping of languages 6, 8

7. Collaborative language design 6

8. Building a language from existing language blocks 7

9. Language extension 7

10. Multi-level languages 12

11. Translating a problem domain into a ‘good’ DSL 6

12. Portability 10

Table 2.1: Requirements for DSL support

2.5 Conclusions 19

work needed to design, implement and maintain such a language. In order to sim-
plify the language design and implementation process, additional support of the
DSL method is needed. By applying the DSL technique to the language-design lev-
el the same advantages, (i.e., reduced ‘programming’ time, and increased quality),
are also achieved for language development. The language designer would be fur-
ther assisted by an environment that supports the design process in an integrated,
iterative and incremental way. Such language design and compiler technology sup-
port would make the DSL technique available to a wider audience.

A list of requirements for DSL support has been presented. Existing technology
can be used to implement some of the requirements, while additional research is
needed for others. In Chapter 8 the APPLAB system is evaluated against this list.

20 Chapter 2 Domain-Specific Languages

Chapter 3

APPLAB -

A Language Laboratory

APPLAB is an interactive environment for the design of domain-specific languag-
es, developed as part of this thesis work. This chapter gives an overview of the
system, while the two following chapters contain more detailed descriptions of the
static-semantic and text editing facilities of APPLAB.

A number of different DSLs have been implemented using APPLAB. For exam-
ple, a robot programming language has been designed and implemented, and
APPLAB is used as a programming interface to an industrial robot. The meta
grammars used to describe the grammars which the language designer uses to
define a language in APPLAB, are also examples of DSLs. The robot case study is
described in Chapter 6.

3.1 Introduction

Designing a new language is an iterative process where language constructs are
designed and tested in a prototypical fashion. In particular, DSLs may need to
evolve rapidly due to new requirements that emerge as the domain develops. Com-
piler-compiler tools are useful when implementing a fully designed language, but
while designing a new language, or changing a language, it is desirable to work in
an environment that supports the language design process in an integrated and
incremental way. We call such an environment a language laboratory.

We have developed and used a language laboratory called APPLAB (APPlica-
tion language LABoratory) [Bja96] which is based on the principle of immediate
computation [RT87], meaning that the necessary computations are performed
immediately, and automatically, by the system. Immediate computation as such
can be found in systems like electronic spreadsheets, WYSIWIG word processors,
and language-based editors. In APPLAB, immediate computation is used both to
support the interactive development of a DSL specification, and the interactive
language-based editing of programs in the changing DSL. The language designer

22 Chapter 3 APPLAB - A Language Laboratory

can switch freely between editing the language specification and editing a pro-
gram in the (changing) new language. The effects of changing the language speci-
fication are immediately seen in the edited program without requiring the user to
issue any special updating commands.

APPLAB is based on an earlier language laboratory developed as part of the
Mjølner/Orm environment [MHM+90, MM94]. Other systems with similar aims of
interactive support for language design include DOSE [FJS86], Muir [Win87], the
ASF+SDF Meta Environment [Kli91], and TaLE [JKN95, KM95].

The rest of the chapter is organized as follows. Sections 3.2 and 3.3 give an over-
view of APPLAB and describe its architecture. This is followed by a discussion in
Section 3.4 of how the principle of immediate computation is applied in the system.
In order to give the reader an idea of what it is like to use the system, an example
of designing a language in APPLAB is given in Section 3.5. A few case studies per-
formed using the system are described in Section 3.6. Related systems are
discussed in Section 3.7. The current status and future work of APPLAB are iden-
tified in Section 3.8, and, finally, the chapter is concluded in Section 3.9.

3.2 The APPLAB System

APPLAB is a language laboratory based on language-sensitive editing, object-ori-
ented attribute grammars, and the principle of immediate computation. The
editing environment provides structure-oriented editing, semantic editing
(explained later), incremental parsing, static-semantic checking, and code
generation.

3.2.1 Grammar Interpretation

The most distinguishing characteristic of the APPLAB system is that the same
editing environment is provided for simultaneous editing of both the language
specification (i.e., the grammar) and programs written in the specified (changing)
language. The immediate updating of the program editor, as a result of changes to
the language specification, is accomplished by grammar interpretation [Min90],
where generic editing tools interpret the grammar and other data structures. This
distinguishes APPLAB from traditional compiler-compiler systems such as Yacc
[Joh79], the Synthesizer Generator [RT89], and Eli [GHL+92], which are based on
generation. That is, compilers and editors are built by compiling and linking source
code generated from language specifications.

The editing style provided by APPLAB is particularly well suited both for the
design and use of DSLs. While designing a new language, APPLAB allows the lan-
guage designer to work in an experimental fashion. The grammar-interpreting
features provide an instant feedback on new grammar rules, making it possible to
try out new language constructs interactively as they are defined. APPLAB also
aids the user in writing programs with correct syntax and with notification of stat-
ic-semantic errors. This is very useful for an application programmer since DSLs
are often changed and expanded, and are often used on an infrequent basis by
domain experts with less computer-programming experience.

3.2 The APPLAB System 23

3.2.2 Editing

The primary editing style supported by APPLAB is structure-oriented editing. The
user can expand placeholders in the program by selecting language constructs
from a menu of all syntactically legal constructs at the current editing focus.

The system also supports text editing by allowing any syntactic unit (corre-
sponding to a subtree of the syntax tree) to be edited as text and subsequently
parsed. The parser is implemented by a grammar-interpreting technique [BH96]
and is kept up to date as the language specification is changed.

An additional, editing style supported in APPLAB is semantic editing [Hed92b].
By allowing the definition and usage of menus based on the static-semantic infor-
mation of a program the programmer can be aided in locating the desired and
correct name directly in the program editor. Such a menu is called a names-menu.
It may contain, e.g., all declared names, all used but undeclared names, or all type-
correct names at a certain point in the program. Choosing a name from such a
menu means that it is inserted into the program at the current editing focus.

Another kind of advanced editing support provided by the APPLAB system is
static-semantic error reporting. The system notifies the programmer of static-
semantic errors by marking the source of these errors in the program-editing win-
dow. The user can then choose to ignore the error or correct it. An example of static-
semantic error reporting in APPLAB, is shown in Figure 3.1. The dotted lines
around parts of the program indicate static-semantic errors. Upon requesting an
explanation of such an error a message is displayed, provided one is defined.

3.2.3 Static Semantics and Code Generation

Static-semantic checking and code generation can be specified using OOSL
(Object-Oriented Specification Language), an object-oriented attribute grammar
formalism [Hed92a]. In the current version of APPLAB, attribute evaluation is
done by a demand-driven attribute evaluator. That is, the attributes are not stored
in the syntax tree, but are computed whenever their values are demanded, for
example, when the user explicitly asks for the value of a particular attribute of a

Figure 3.1 An example of static-semantic error reporting in APPLAB.

24 Chapter 3 APPLAB - A Language Laboratory

syntax node, or when the semantic editor asks for attributes to build the menu of
visible identifiers. The demand evaluation mechanism is simple, but general in
that it can evaluate attributes in any non-circular attribute grammar, and has
been of great practical use. We have used it to implement semantic-editing sup-
port, demand-driven static-semantic checking (type checking), and code generation
(generating C-code from DSLs) without efficiency problems. For example, genera-
tion of C-code for a 100-line robot program took 1.7 seconds.

3.2.4 Grammar Aspects

A language is specified in APPLAB in a grammar document containing several
grammar aspects. Each aspect is displayed in a window as shown in Figure 3.2.

• The ABSTRACT aspect defines the abstract context-free syntax for the lan-
guage, using a structured BNF notation, i.e., each production is either an
AND-rule or an OR-rule.

• The CONCRETE aspect defines the concrete syntax, i.e., keywords and
indentation defining the textual representation of an abstract syntax tree.

• The PARSE aspect defines additional rules necessary for parsing text into
the abstract syntax trees described by the ABSTRACT aspect, for example,
rules for operator precedence and associativity which resolve the ambigui-
ties of the ABSTRACT aspect.

• The OOSL aspect defines an attribute grammar which can be used for, e.g.,
static-semantic checking and code generation. In one language definition,
there may be several OOSL aspects used for different purposes.

The design choice to split the grammar representation into several aspects is part-
ly due to historical reasons, and the specification currently contains certain
redundancies. For example, the abstract syntax in the ABSTRACT aspect actually
has to be repeated in the OOSL aspect, but in a slightly different form.

In addition to the grammar aspects, a grammar document may contain PRO-
GRAM windows which contain example programs following the (changing)
language specification. It is also possible to have programs in separate documents
which follow the specification in a given grammar document. In fact, the different
grammar aspects in a grammar document follow the language specifications of
meta grammars given in other grammar documents.

Each grammar aspect or program is represented internally as an abstract syn-
tax tree (AST). All the internal tools in APPLAB (the different editing facilities and
the attribute evaluator) are implemented as generic tools which work on a program
AST, interpreting grammar ASTs to provide language-specific behaviour. For
example, the structure-oriented editor interprets the ABSTRACT and CON-
CRETE aspects to support structure-oriented editing for programs. Since the
grammar aspects are represented in the same way as programs, namely by ASTs,
all the internal tools work in the same way for the grammar aspects. For example,
the structure-oriented editor supports editing of the ABSTRACT aspect by inter-
preting a meta grammar defining the language used for the ABSTRACT aspect.

3.2 The APPLAB System 25

3.2.5 Implementation Status

APPLAB is implemented in Simula [Sta87] and runs on SUN workstations. The
compiled system consists of 3 MBytes of which 1.8 MBytes were ‘inherited’ from
the grammar editor of the Mjølner/Orm system. It is an ‘industrial prototype’, i.e.,
it is has sufficient functionality for evaluation and for use in real-sized case stud-
ies, but it is not sufficiently robust for production usage. The system is available
free of charge for research and evaluation purposes. The largest case study done
with APPLAB is the implementation of a robot programming language (212 pro-
duction rules). In addition, we have performed a number of smaller case studies
(see Section 3.6), and all the formalisms for the different grammar aspects are
themselves DSLs developed in APPLAB. The study of robot programming is dis-
cussed in more detail in Chapter 6.

Figure 3.2 A grammar document ‘toy’, containing different grammar aspects
and an example program.

26 Chapter 3 APPLAB - A Language Laboratory

3.3 The APPLAB Architecture

3.3.1 The Base Architecture

The base architecture of APPLAB is shown in Figure 3.3. The main components
are the Editor, the Unparser, the Edited (Syntax) Tree, and the Grammar. The Edi-
tor is responsible for changing the Edited Tree (edit), guided by the Abstract
aspect of the Grammar (interpret). The Unparser administers the presentation
of the Syntax Tree on the screen (present), guided by the Concrete aspect of the
Grammar (interpret).

Each of the grammar aspects is itself represented by a syntax tree, and is edited
and unparsed according to a meta-grammar. Thus, there are actually five instances
of the base architecture as shown in Figure 3.4. Each instance of the Editor, and
the Unparser, interprets the base Grammar of the edited grammar or program.

Edited tree (Program)

edit

Figure 3.3 Base architecture of APPLAB, program editing.

LEGEND: (Notation similar to [Jac92])

OOSLConcrete Parse Abstract

Grammarinterpret interpret

present

Program
Window

Unparser Editor

Interface object Active object Passive object Actor Operation

User

User

Program Window

Concrete Window

Parse Window

OOSL Window

Unparsers Editors

meta grammars Grammar

Program

Figure 3.4 Base architecture including meta grammars.

Abstract Window

3.3 The APPLAB Architecture 27

Editing grammars can therefore be done in the same way as editing programs. The
grammar editor is also structure-oriented with text-editing facilities and, if static-
semantic rules have been defined for the grammar (in the meta grammar), sup-
ports the user in defining static-semantically correct grammars, for example, that
all used names are defined.

3.3.2 The Parser Component

The base architecture is augmented by the parser component, GRIP, as shown in
Figure 3.5. When given a text string by the User (parse text), GRIP parses it
into a parse tree guided by the Abstract, Concrete and Parse aspects of the Gram-
mar (interpret). If the parse was successful the resulting parse tree is passed to
the Editor to be inserted into the Edited Tree (insert), and the Unparser is called
to update the screen (update). Upon encountering errors an error window appears
presenting the located errors (report). The User is then prompted to re-edit the
text in the Text Editing Window.

GRIP consists of the following internal components (see Figure 3.6): a Control-
ler which coordinates different actions, a Parser which performs the actual
parsing, a Lexer which tokenizes the input text, a Grammar Graph which is a rep-
resentation equivalent to the grammar but in a form more efficient for
interpretation during parsing, and a Grammar Checker which checks that the
grammar is possible to parse from and which constructs the Grammar Graph from
the grammar. See Chapter 5 for further details on the parser component.

3.3.3 The Demand-Attribute Evaluator

The static-semantic rules and code generation of a language, defined in the OOSL
aspect of a base grammar, are applied by calculating the values of the attributes of
the syntax nodes. The Demand Attribute Evaluator performs this evaluation by
interacting with the basic components of APPLAB, as shown in Figure 3.7. The
attributes are evaluated guided by the OOSL aspect of the base grammar and the
currently edited syntax tree (interpret). The Demand Attribute Evaluator can

Text Editing
Window

OOSLUser

Edited tree (Program)

edit

Concrete Parse Abstract

Grammar
interpret

interpret

present

Figure 3.5 Base architecture of APPLAB including the parser component, GRIP

interpret
report

insert

update

Error
Window

Program
Window

parse text
GRIP

Unparser Editor

28 Chapter 3 APPLAB - A Language Laboratory

be invoked both by the editor and by the user (evaluate).In the latter case the
resulting value of the attribute is displayed in a window (present). The semantic
editing features of the Editor are supplied by evaluating the static-semantic
attributes of the grammar, for example, the error -attribute. The Editor then uses
the evaluated attribute to supply the user with static-semantic information. For
example, upon evaluating an error -attribute to true the Editor requests that the
Unparser sets an error marker at the position of the static-semantic error in the
Edited Tree (mark).

The Demand Attribute Evaluator consists of the following internal components
(see Figure 3.8): a Controller which coordinates different actions, an Evaluator
which computes the current value of an attribute, an Evaluation Structure which
is a compiled representation of the OOSL aspect of the grammar allowing a more
efficient evaluation of the declared attributes, a Compiler which interprets and
checks the OOSL aspect of the grammar and which constructs the corresponding
Evaluation Structure. See Chapter 4 for further details on the static-semantic com-
ponent of APPLAB.

Figure 3.6 The parser component, GRIP

check

build

interpret

interpret

next token
parse

GRIP
Text Edit
Window

Semantic

User

Edited tree (Program)

edit

Concrete Parse Abstract

Grammar

interpret interpret

present

report

insert

updateError
Window

Program
Window

parse text

Unparser Editor

Controller Parser Lexer

Grammar
Checker

Grammar
Graph

mark

Figure 3.7 Base architecture of APPLAB including the demand attribute evaluator.

Attribute
Menu

SemanticUser

Edited tree (Program)

edit

Concrete Parse Abstract

Grammar

interpret

interpret

present

present

evaluate

Attribute Value
Window

Program
Window

evaluate

Unparser Editor

Demand Attribute
Evaluator

interpret

3.4 Immediate Computation 29

3.4 Immediate Computation

The APPLAB system uses immediate computation as its prevailing design philos-
ophy. This means that the system automatically performs all the necessary
computations needed to keep the internal structures of the system up to date, with-
out requiring that the user issues any explicit updating commands. This is
comparable to changing the data in a spreadsheet. The values of the affected cells
are immediately, and automatically, recalculated by the system. A similar example
from APPLAB is the effect of adding a new language construct. Assume that the
language contains constructs like ‘while ’ and ‘if ’, and that the language designer
adds an additional construct ‘repeat ’ by adding grammar rules in the ABSTRACT
and CONCRETE aspects. Programs can then immediately be edited using the new
language construct; the ‘repeat ’ construct will appear in the structure-editor
menus along with the previously existing ‘while ’ and ’if ’ constructs, and when
text editing, the system can automatically recognize also ‘repeat ’ statements.

Whereas functionality based on grammar interpretation are evaluated immedi-
ately as mentioned, other computations are delayed until the computed data is
actually needed. For example, the structure-editing menus and the parser are
updated when the user invokes them. These late and event driven computations
(called demand driven in the sequel), like in other window-based applications, only
result in a very short delay, normally unnoticable by the user.

We will now take a closer look at how the different components of the system
utilize a combination of demand-driven and immediate computation.

Figure 3.8 The attribute evaluator

check

build

interpret

interpret

evaluate

Attribute Evaluator

Attribute
Menu

Semantic

User

Edited tree (Program)
edit

Concrete Parse Abstract

Grammar
interpret

interpret

present

present

evaluate

Attribute Value
Window

Program
Window

evaluate

Unparser Editor

Controller Evaluator

OOSL
Compiler

Evaluation
Structure

mark

interpret

30 Chapter 3 APPLAB - A Language Laboratory

3.4.1 Structure-Oriented Editing

The structure-oriented editor interprets the ABSTRACT aspect in order to build
menus for structure editing. When the ABSTRACT aspect is changed by the user,
these menus need to be rebuilt. This is done, as mentioned above, when the user
wants to display a structure-oriented editing menu in a PROGRAM window. For a
grammar with 100 productions, this takes 0.4 seconds on a Sun Ultra 1.

When the system carries out an editing command, i.e., the construction of a pro-
gram structure as a response to a structure-editing command, the ABSTRACT
aspect is interpreted directly, and the time for this construction is thus not affected
by changes to the language specification.

The AST for a program is displayed as text by interpreting the CONCRETE
aspect. When the CONCRETE aspect is changed, the programs need to be redis-
played. Currently, this is not done for each incremental change of the CONCRETE
aspect, partly because it might disturb the user if other parts of the display are
updated while his/her attention is focused on the CONCRETE aspect, and partly
because it would result in the contents of the PROGRAM windows to be in several
intermediate uninteresting states. Instead, a PROGRAM window is redisplayed
the next time the user sets the editing focus in that window (by clicking in it). For
a 100 line program, such a redisplay takes 0.2 seconds.

Changes to the ABSTRACT aspect may cause existing PROGRAM ASTs to
become inconsistent with the specification. Currently, we only have an ad-hoc
transformation mechanism which can handle some simple non-information-losing
transformations, and takes 0.3 seconds for a 100 line program. Other inconsisten-
cies remain in the program ASTs and although the system can handle most of them
without crashing, this may cause problems later on in the programming process.
This is clearly not satisfactory, and needs to be dealt with in a more systematic way
in future versions of APPLAB. A mechanism is needed for transforming a program
AST into a consistent version based on a user-supplied specification, by for exam-
ple using techniques like those in the TransformGen system [GKL94] or Muir
[Nor87].

3.4.2 Text Editing

During parsing, APPLAB interprets the current grammar represented by a data
structure generated from information in the ABSTRACT, CONCRETE, and
PARSE aspects. This is done to achieve a higher degree of efficiency during the
actual parsing than if the grammar aspect ASTs had been interpreted directly. The
parsing technique and data structures are discussed in more detail in Chapter 5.
The generation of the data structure is demand driven. That is, when the user
invokes the text-editing facilities the system checks to see that the data structure
used by the parser is up to date, and if not, it is recomputed to conform to the cur-
rent version of the grammar. This takes 0.3 seconds for a grammar with 100
production rules.

3.5 Designing a New Language in APPLAB 31

3.4.3 Attribute Evaluation

The demand-driven attribute evaluator of the APPLAB system interprets a data
structure generated from information in the OOSL aspect, as described in more
detail in Chapter 4. This data structure needs to be regenerated when the OOSL
aspect has been changed. The regeneration is handled similarly to the text-editing
case. When the user asks for the value of an attribute, invokes a semantic-editing
command, or asks for code to be generated based on an OOSL grammar, the system
checks to see that the OOSL data structure is up to date, and if not, it is recomput-
ed to conform to the current version of the OOSL aspect. This takes 15 seconds for
a 100 production OOSL grammar.

The advanced editing support described in Section 3.2.2 has been implemented
by introducing special attributes. The contents of a names-menu is specified in a
names attribute while the static-semantic error reporting is supported by
attributes called error and errorMsg . The reporting of static-semantic errors is
currently not done by using immediate computation since the attribute evaluator
only works on demand. By implementing an incremental evaluator for Door AGs
[Hed92a] which can be described in OOSL, one could obtain immediate computa-
tion of static-semantic error messages, as the program is changed. As reported in
[Hed94] this updating can (for most programs) be done fast enough so as not to be
noticed by an interactive user. Using a Door AG evaluator would imply a small
delay for computing evaluation plans after changes to the OOSL aspect. The use of
stored attributes would also imply that an attributed program AST could become
inconsistent when the OOSL aspect for a Door AG is changed. The easiest solution
would be to simply recompute the complete program attribution according to the
new OOSL version.

3.5 Designing a New Language in APPLAB

When designing a new language in APPLAB the language designer can work in an
iterative fashion, working on a sub-set of the language and gradually extend it to
implement the whole language. Once the abstract syntax of a language sub-set,
however small, has been defined, it is possible to work on the different aspects of
the language, like the concrete syntax, the text-editing facilities, the static seman-
tics and the code generation. This can be done in any order, and in an iterative
fashion, all the time watching the resulting changes in a PROGRAM window.

3.5.1 Defining the Abstract and Concrete Syntax

When designing a new language in the APPLAB system one starts by defining the
abstract and the concrete syntax. Once the syntax of a new language construct is
specified, such a construct can be created and inspected in a PROGRAM window.
If the language designer is not satisfied with, for example, the concrete syntax it
can be edited and the resulting change is immediately shown in the PROGRAM
window. Figure 3.9 shows the start of a new language. The abstract rule for Stmt
and the concrete rule for IfStmt are highlighted. The focus of the PROGRAM win-

32 Chapter 3 APPLAB - A Language Laboratory

dow is set on a Stmt -construct, and when choosing Expand in the menu of the
PROGRAM window another (sub-)menu appears, containing exactly all the avail-
able kinds of Stmt :s. The syntax defined for the IfStmt in the concrete aspect is
used both in the expand-menu and in the PROGRAM window. If no concrete rule
has been defined for a language construct a default syntax is used, as for the Real
and Boolean constructs used in the variable declarations of the PROGRAM
window.

3.5.2 Adding Support for Text Editing

Once the abstract and concrete grammar aspects have been specified the structure-
oriented editor for the new language is complete. Some small, very simple languag-
es can be edited as text without any further specifications. But, for most languages
further specifications are needed since the structure-oriented editor allows an
abstract grammar to be ambiguous. For example, the two (different) syntax trees:

• add(a,subtract(b,c)) , and,

• subtract(add(a,b),c)

are both displayed using the same textual representation “a+b-c” . Further rules,
apart from the ones specified in the abstract and concrete aspect, are needed in
order to resolve such ambiguities. This is done in a PARSE window where the asso-
ciativity and precedence of binary operators are specified. Certain lexical
information, like comments and strings, can also be specified by the language
designer.

Figure 3.10 shows our example language with a PARSE window added. The
precedence of the binary operators of the language are given, where rules on lower
lines have precedence over rules on upper lines (indicated by <). For example, in
our language Mult is given higher precedence than Equal . In the figure the user
has chosen to text edit the highlighted expression. Extra parentheses have been

Figure 3.9 The ABSTRACT and CONCRETE aspects of a new language describe the
language shown in the PROGRAM window, and in its Expand-menu.

3.5 Designing a New Language in APPLAB 33

added in the text-editing window, according to the precedence of the operators, so
as to ensure an equivalent parse tree if the user returns an unedited text.

The lexical syntax recognized by the parser component of APPLAB is currently
not completely user-defined. The keywords and operators are defined in the con-
crete aspect, while identifiers and numbers are pre-defined. The start- and end-
tokens of strings and comments can be specified in the PARSE window. In our
example language, strings are enclosed within the character ‘, while comments are
surrounded by the tokens /* and */ .

If any errors are encountered while text editing, an error window is presented,
as in Figure 3.11, reporting the positions and types of errors, and the user is
prompted to correct the error, or cancel the text editing operation. No changes are
made in the actual PROGRAM document until a text editing operation is success-
fully completed. Errors in the language specification are also presented in the error

Figure 3.10 The PARSE aspect is used to specify the disambiguating information need-
ed to correctly text edit a language.

Figure 3.11 Language-sensitive text editing. The detected errors are reported
and the user prompted to re-edit the text, or cancel the text-editing operation.

34 Chapter 3 APPLAB - A Language Laboratory

window. For example, if the concrete syntax has not been defined for a language
construct, or if an undefined grammar rule is used.

3.5.3 Adding Static Semantics

Static-semantic features can be added to the structure-oriented editor for a lan-
guage by adding an OOSL window containing an object-oriented attribute
grammar expressing the static-semantic rules of the implemented language.
Attributes and equations defining those attributes can be declared for each gram-
mar rule of the ABSTRACT window. In particular, a few special attributes can be
used to trigger static-semantic actions in the structure-oriented editor. The
attribute names is an example of such an attribute. A names-attribute can be
defined to specify the contents of a names-menu, a context-sensitive menu from
which the application programmer can select a string (a name) to be inserted into
the program. Figure 3.12 shows part of the OOSL aspect of our example language
and the names-menu specified for the identifier part of an assign -statement. The
names-menu contains all available declared identifiers of the program according to
the scope-rules of the language. In the OOSL window, AssignStmt is specified as
a kind of Stmt which has two parts, an IdUse - and an Exp-node. All different
kinds of Stmt :s have an env -attribute containing all names of the current scope.
The value of this attribute is, in AssignStmt , passed to the names-attribute of the
IdUse -node, thus defining the names-menu of the left-hand side of an assign -
statement to contain all the names of the current scope. The result is seen in the
names-menu in the PROGRAM window.

While implementing and debugging the OOSL aspect of a language the user can
evaluate the attributes of the programs by selecting the desired attribute from a
sub-menu in the PROGRAM window. This sub-menu contains all the available
attributes of the current editor focus.

Figure 3.12 The names-menu of the current editor-focus.

3.5 Designing a New Language in APPLAB 35

3.5.4 Specifying the Code Generation

The code generation of a language can be specified using the same mechanisms as
for the static semantics. That is, by declaring an attribute for the generated code
and equations defining its contents in an OOSL window. This could be done in the
same OOSL window as used for the static-semantic rules but in our example we
have chosen to use a separate window called OOSL-CODE for this purpose. In Fig-
ure 3.13 the translation of an if-statement to (unformatted) C-code is shown in the
OOSL-CODE window. The attribute code contains the generated C-code and each
language construct has an equation describing how to generate the corresponding
C-code. Of course, the code generation could produce any other type of (textual)
code, it is not limited to handling C-code.

3.5.5 Designing a Complete Language

By iterating over the different language aspects for the desired language con-
structs, all the time inspecting the resulting changes to the syntax (abstract and
concrete), static semantics and code generation, a new language evolves, aspect by
aspect, and construct by construct. As the language specification grows there is a
need for debugging support. The currently available support is provided mainly by
the parser component and the OOSL evaluator which detect grammatical errors,

Figure 3.13 Code generation (in terms of C code) is specified in the
OOSL-CODE window. The code window contains the generated code
for the selected part of PROGRAM.

36 Chapter 3 APPLAB - A Language Laboratory

like inconsistencies between grammar windows, circular attribute grammars, and
ambiguous grammars. Also, it is possible to debug the OOSL grammar by evaluat-
ing the different attributes of any construct of a PROGRAM window, checking the
resulting values of the declared attributes. The currently available debugging sup-
port is mostly a result of ad hoc development. In the future, it is desirable to design
and implement debugging tools especially aimed at language design and
implementation.

3.6 Case Studies Using APPLAB

In addition to the large case study on robot programming (see Chapter 6), APPLAB
has been used in a number of smaller case studies including two master thesis
projects. One such project carried out at SAAB Military Aircraft included integrat-
ing APPLAB with the Verilog CASE environment which supports graphical
development of real-time systems [Ekb96]. APPLAB is used to view and edit the
finite state machine specifications, thus integrating structure-based editing into a
graphical environment. In another master thesis project [Nyb97], APPLAB was
used for allowing the same robot program to be edited in two different languages.
The project involved translating a program from RAPID to Karel, and back again
(described in [Nil96a, pp 41-44].

Another very interesting case study is to look at the grammars used to describe
the languages in APPLAB. They are in actual fact themselves described by (edit-
able) meta grammars. We will now take closer look at these grammars.

3.6.1 Meta Grammars

The grammars the language designer uses to define a new language are examples
of DSLs. They are usually small languages with 10-20 grammar rules, but can also
be bigger. These grammars are described in the system by (meta-) grammars and
can be edited just like any other language. For example, the concrete syntax of a
grammar can be changed by editing its meta-grammar. Due to the generic nature
of APPLAB’s internal tools the same language-sensitive editing support as is pro-
vided for programs, e.g., text editing and semantic editing, can also be provided for
grammars. Such support has been added to the abstract meta grammar. The rea-
sons for selecting the abstract meta grammar were that it is a ‘simple’ grammar
and that it is the primary grammar aspect; all other aspects have to conform to it.

The Abstract Meta Grammar

Text editing was supported right away by the generic parser. No additional speci-
fications needed to be made since the abstract meta grammar is not ambiguous and
does not contain any strings or comments.

Semantic editing was supplied by defining two different names menus. One con-
taining all defined nonterminals and one containing all used, but undefined
nonterminals. Interactive static-semantic error reporting was also implemented
for the abstract meta-grammar by checking that each used nonterminal is defined.

3.7 Related Systems 37

The two defined names-menus were of great assistance, even when working
with small languages containing 5-10 production rules. They save a lot of typing
and allow the language designer to instantly see if there are any additional nonter-
minals which need defining. Any static-semantic errors that occur when a
grammar rule is deleted or manually edited are caught and reported by the inter-
active static-semantic error reporting.

In the future, it is desirable to provide advanced editing support also for other
meta grammars used in the APPLAB system. Text editing can be supplied for all
meta grammars using the current version of the system. But, the advanced editing
features based on static-semantic rules require non-local access to the abstract
grammar aspect since the other aspects must conform to the abstract grammar
defined for the edited language.

3.7 Related Systems

Relation to Mjølner/Orm

APPLAB is the result of further development of an earlier language laboratory
which is part of the Mjølner/Orm environment [MHM+90, MM94]. The grammar-
interpreting structure-oriented editor [Min90], as well as the version control
[Gus90] of the Orm system were inherited by APPLAB. The new contributions for
the APPLAB system are

• Integrated grammar-interpreting static semantics.

Orm supports incremental static semantics of object-oriented languages
based on an early version of Door AGs [Hed94]. The static-semantic support
of APPLAB is more powerful in that the static-semantic component is gener-
ic (which it is not in Orm), but less powerful in that the evaluator works on
demand and does not support object-oriented languages. The grammar-
interpreting features of APPLAB allow for rapid prototyping of the static
semantics of a language and of the advanced editing features. This is not the
case for the Orm system which requires the use of external tools in order to
obtain a static-semantic component for a certain language. The object-ori-
ented AGs used in APPLAB support block-structured languages. The
incremental static semantics of the Orm system is more efficient than the
demand-driven attribute evaluation performed by APPLAB. For example,
the static-semantic error reporting which is done on demand in APPLAB
(described in Section 3.2.2) is performed continuously in the Orm system,
immediately notifying the user of occurring static-semantic errors. The stat-
ic-semantic support of APPLAB is further described in Chapter 4.

• Grammar-interpreting parsing.

Text editing of expressions has been handcoded for Simula in the Orm sys-
tem. In APPLAB text editing of any language structure (of a program or
grammar) is supported by a grammar-interpreting parser component. This

38 Chapter 3 APPLAB - A Language Laboratory

also supports the import of programs in textual form into the APPLAB sys-
tem. The parser component of APPLAB is further described in Chapter 5.

• Grammar-interpreting semantic editing.

The Orm system contains handcoded hierarchical names-menus for Simula.
The names-menus of APPLAB (described in Section 3.2.2) are nonhierarchi-
cal, but implemented by using the grammar-interpreting static semantics.
The contents of the names-menus is, thus, specified by a grammar and not
handcoded, as in Orm.

Other Systems

Other systems which also aim at interactive support for language design include
DOSE [FJS86], Muir [Win87, Nor87], the ASF/SDF Meta Environment [Kli91],
and TaLE [JKN95, KM95]. Of these, DOSE and Muir were research prototypes
which are no longer available.

DOSE, Muir, and the ASF/SDF Meta Environment are all similar to APPLAB
in that they provide generic structure-oriented and/or text editors working for both
language specifications and programs, with immediate construction of the pro-
gram-editing environment as the language specification changes. None of these
environments, however, support semantic editing. The support for semantic check-
ing and code generation is also different in these environments: DOSE used an
approach based on action routines and Muir only had an experimental semantic
component based on attribute grammars. The ASF/SDF Meta Environment con-
tains semantic support based on algebraic specifications. APPLAB, thus, differs
from the other environments in its support of semantic editing, static-semantic
checking, and code generation based on object-oriented attribute grammars.

Neither DOSE, nor the ASF/SDF Meta Environment has (to our knowledge)
version control for grammars and programs, or support for transformation of pro-
grams after changes to the grammar, or techniques for dealing with
inconsistencies. The Muir system had an advanced systematic technique for han-
dling transformations of programs after changes to the language specification, but
only an experimental rudimentary version-handling mechanism where production
rules and syntax nodes could be marked by a version number. APPLAB has full
version control for grammar and program documents, keeping track of older ver-
sions of documents, and bindings between program and grammar versions (and
between grammar and meta grammar versions), but only very limited support for
program transformations.

The TaLE system is also a system supporting the interactive development of
languages, but in quite a different way compared to the systems mentioned above.
Rather than providing structure-oriented editing environments for various lan-
guage specification formalisms, TaLE is a highly specialized editor, partly based on
graphical representations of the language constructs. An object-oriented represen-
tation of the language constructs is used to provide reuse, and built-in support for
standard programming language features on the lexical, syntactic, and semantic
level is supplied. However, the interactivity is provided only at the language-spec-

3.8 Current Status and Future Work 39

ification level; similar to traditional compiler-compilers, TaLE generates source
code for parsers and compilers.

3.8 Current Status and Future Work

Currently, new languages can be defined and edited in APPLAB, as well as pro-
grams expressed in those languages. The structure-oriented editor has been
augmented to also allow textual editing. This was done by adding a Grammar
Interpreting Parser, GRIP (see Chapter 5) to the system. The addition of a parser
component also makes it possible to import programs into APPLAB from other sys-
tems via a textual representation.

The support for static semantics is, at present, supplied by a demand-driven
attribute evaluator for standard attribute grammars. In the future it is desirable
to implement incremental attribute evaluation. Door AGs allow for efficient incre-
mental evaluation of attributes with non-local dependencies, and is especially
suited for object-oriented name analysis. We wish to support full, incremental,
Door AGs in the APPLAB system. Once this has been implemented, more
advanced editing features can be added. For example, the marking, and unmark-
ing, of static-semantic errors can be done automatically in the editor, instead of
letting the programmer request the current status of the error markers. The
names-menu facility, as described in Section 3.5.3, on page 34, is implemented in
the current version of the system. In order to allow more advanced names-menus
which also support referencing into objects, additional predefined data types, like
reference and class types, need to be implemented in OOSL.

APPLAB has been used in a number of smaller case studies. A more extensive
case study on robot programming is presented in Chapter 6. The system was then
integrated into the Robotics lab at the Department of Automatic Control, Lund
University, and used as a programming interface to an ABB Irb-6 robot. An extend-
ed version of ABB’s robot programming language RAPID [ABB94] has been
implemented in the APPLAB system, and simple programs have been written and
executed on the robot.

An interesting aspect of the grammar interpreting features of the APPLAB sys-
tem, is that the meta grammars themselves (the grammar used to describe, e.g.,
the abstract and concrete syntax) can be edited, and designed to offer the same
(text-editing and static-semantic) support to the grammar developer as to the ordi-
nary programmer.

3.9 Summary

This chapter has given an overview of APPLAB, a highly interactive language lab-
oratory, providing a language-based environment for integrated development of
both a DSL and example programs in the experimental changing DSL. APPLAB is
implemented using immediate computation as a main design principle, allowing
changes to a language specification to be immediately tried out on example pro-
grams. We have argued that this is particularly useful in the development of DSLs
where a lot of experimentation may be needed with the various aspects of the lan-

40 Chapter 3 APPLAB - A Language Laboratory

guage specification; abstract syntax, concrete syntax, and the specification of
various static-semantic aspects.

We will now continue by describing the static semantics and the parser compo-
nent of the APPLAB system in more detail. Then, a case study on the development
and integrated support for industrial robots will be presented.

Chapter 4

A Grammar-Interpreting

Static-Semantic Analyser

The static-semantic component of the APPLAB system is described in this chapter.
After an introduction, the object-oriented attribute grammars used to define static-
semantic rules are discussed. The demand-driven attribute evaluation of these
grammars is described as well as a framework for predefined attribute types. The
chapter is concluded with a report on the current status and future work.

4.1 Introduction

The static-semantic information of a program can be used for, e.g., name analysis,
type checking, detection of static-semantic errors, and code generation. Advanced
editing support can be provided by making the static-semantic information avail-
able to the program editor. Semantic editing allows the programmer to edit a
program according to its static-semantic rules. For example, a static-semantically
correct name can be selected from a names-menu containing all the declared and
type-correct names at the current editing focus. The editing of function calls, with
the correct number and type of arguments, can also be supported by semantic edit-
ing. Another kind of advanced editing support is interactive static-semantic error
reporting which checks the edited program for errors, which are then reported.
Advanced editing support promotes the writing of static-semantically correct pro-
grams at an early stage in the program development process.

Over the last decades the techniques used for producing tools used for program
development have evolved. Four ‘generations’ of techniques can be distinguished:
handcoding, generation from imperative language specifications, generation from
declarative specifications, and interpretation of declarative specifications. The four
generations, and examples of programming environments and conventional sys-
tems (e.g., compilers) for the different generations are shown in Table 4.1.

The first compilers and programming environments were handcoded for a spe-
cific language. The Cornell Program Synthesizer [TR81], for example, is a

42 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

programming environment handcoded for a dialect of PL/I (PL/CS), and also for
Pascal. The system provides syntax-directed editing of PL/CS programs. The incre-
mental static-semantic analyser contained in the system is used for highlighting
occurrences of static-semantic errors in a program.

The next generation of software tools was based on generation. That is, a pro-
gramming environment (or compiler component) is generated from a language
specification. An example is the Gandalf system [Not85] which generates syntax-
directed editors. Semantic rules can be specified in Gandalf using action routines
which are activated before and after certain editing events like insertion and dele-
tion. The parser generator Yacc [Joh79] also takes specifications containing action
routines and produces a parser for the specified language.

The third generation of software tools are also generative, but are based on
declarative specifications. The Synthesizer Generator [RT89] generates environ-
ments similar to the Cornell Program Synthesizers from language specifications
based on attribute grammars. This is comparable to Eli [GHL+92, Kas96] which
generates traditional compilers for which the static semantics of the language is
described using attribute grammars. FNC-2 [JBP90, JP91] is system which gener-
ates incremental attribute evaluators from AGs. Integration of the FNC-2 system
with Centaur [BCD+88] resulted in the programming environment generator
Minotaur [AP94].

The fourth generation of software tools supply a language-specific programming
environment by interpreting declarative language specifications. This approach
results in systems suitable for rapid language prototyping, i.e. systems which give
immediate feedback on changes made to the language specifications. These tech-
niques can also be applied to the language specifications, providing the same
editing support for specifications as for programs. Examples of such systems
include the Mjølner/Orm Environment [KLLM93, MHM+90], the ASF/SDF Meta
Environment [Kli91] and APPLAB. All three of these systems support an interac-
tive language-sensitive editor by interpreting specifications of the syntax and the

Programming
Environments

Conventional
 systems

Characteristics

1
Cornell Program

Synthesizer
Handcoded
compilers

Hand-coded for a specific
language.

2 Gandalf Yacc Generation. Imperative specifica-
tions (e.g., action routines)

3 Synthesizer Generator
Minotaur

Eli, FNC-2 Generation. Declarative specifica-
tion (e.g., AGs).

4 Mjølner/Orm,
ASF/SDF,
APPLAB

Interpretive systems. Declarative
specifications.

Table 4.1: The Evolution of Programming Tools

4.2 Object-Oriented Attribute Grammars 43

static semantics of a language. The Mjølner/Orm environment also provides
advanced editing support based on the static-semantic rules of a language. Inter-
active static-semantic error reporting is supported by interpreting a language
specification, while semantic editing support is provided for the object-oriented
language Simula with handcoded names-menus.

APPLAB is a programming environment of the fourth generation, i.e. the sys-
tem interprets a declarative language specification. Semantic editing support is
provided, both for programs and for grammars, by interpreting an object-oriented
attribute grammar. This is more flexible than the handcoded names-menus of the
Mjølner/Orm system. The supported subset of standard AGs contains enough func-
tionality to allow the declaration of static-semantic rules for block-structured
languages. The static-semantic analyser is implemented using demand-driven
attribute evaluation, a simple but general evaluation mechanism which allows for
an interactive notification of static-semantic errors.

After a description of the object-oriented attribute grammars used in APPLAB,
the implementation of the demand-driven attribute evaluator and a number of pre-
defined attribute types is presented. The use and implementation of the advanced
editing facilities of APPLAB are discussed before the chapter is concluded by a
report on the current status and future work of the static-semantic analyser.

4.2 Object-Oriented Attribute Grammars

An object-oriented version of AGs, OOSL (Object-Oriented Specification Language)
[Hed92a], is used to express the static-semantic aspect of a language in the
APPLAB system. Figure 4.1 contains part of an OOSL grammar expressing the
static-semantic rules for type checking an assignment statement of a strongly
typed language. Each nonterminal and production is represented by a node class,
e.g., Stmt , AssignStmt , Exp, IdUse and IfStmt . Nonterminals are represented
as alternation node classes (::!), e.g., Stmt and Exp. Productions are represented as
construction node classes (::=), e.g., AssignStmt , IfStmt and IdUse . A construc-
tion node class may have a number of class parameters declaring the number and
types of son node for the node class. For example, two sons are declared for
AssignStmt , i.e. IdUse and Exp. A construction node class specializes a node class
by using the inheritance mechanisms of the object-oriented paradigm, for example,
AssignStmt is a specialization of Stmt since it inherits from Stmt . This kind of
inheritance will be called oo inheritance in the rest of this chapter in order not to
confuse it with the inherited attributes of AGs. The nodes of an abstract syntax
tree consist of instances of the construction node classes and, for ‘empty’ nodes
which mark unexpanded parts of a program, alternation node classes.

44 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

Each node class may have any number of attributes and equations which define
the values of attributes. For example, the node class ANYNODE contains the
attributes error and env, and the equations (2) and (4). Both attributes and equa-
tions are oo inherited by any node class which specializes ANYNODE, e.g., Exp. The
equations defining the attributes can be seen as virtual functions which can be
overridden by equations in an oo inheriting node class. This is very useful for defin-
ing default equations for attributes which can then be redefined in a subclass. For
example, the error attribute is defined by equation (2) in the ANYNODE node class,
and is redefined in equation (13) of the node class IdUse (which oo-inherits from
ANYNODE via Exp).

There are three different kinds of attributes: local(loc), synthesized(syn) and
inherited(inh). Local attributes, like declaredType (10), are used and defined
within the declaring node class. Synthesized attributes are local attributes which
can be accessed by the father node. For example, the attribute type (8) of Exp is a
synthesized attribute which is used in equation (5) of AssignStmt to access the
actual type of the expression. Inherited attributes are defined by an equation in the

Figure 4.1 Part of a static-semantic grammar expressed in OOSL.

ANYNODE: node ::!
{ syn error: boolean ; (1)

eq error := false ; (2)
inh env: ref OOSLdictionary; (3)
eq son ANYNODE.env := env (4)

};

Stmt: node ANYNODE::!;

AssignStmt: node Stmt::=
(a_IdUse: ref IdUse, a_Exp: ref Exp)

{ eq a_IdUse.expType := a_Exp.type; (5)
eq a_Exp.expType := a_IdUse.type (6)

};

Exp: node ANYNODE::!
{ inh expType : ref OOSLtype; (* Expected type *) (7)

syn type : ref OOSLtype lazy ;(* Actual type *) (8)
eq type := Unknown; (9)

};

IdUse: node Exp::= (a_ID: ref ID)
{ loc declaredType: ref OOSLtype lazy ; (10)

eq declaredType := env.locate(a_ID.lex); (11)
eq type := if declaredType = none (12)

then Unknown
else declaredType;

eq error := declaredType = none or (13)
not (type=expType or type=Unknown or

expType=Unknown);
};

IfStmt: node Stmt::=
(a_Exp: ref Exp, Stmt1: ref Stmt, Stmt2: ref Stmt)

{ eq a_Exp.expType := BooleanType; (14)
eq error := a_Exp.error or (15)

Stmt1.error or Stmt2.error;
};

4.3 Demand-Driven Attribute Evaluation 45

father node, and are often used to propagate declarative information through the
syntax tree. A collective equation propagates a value to an inherited attribute of all
sons of a given type. For example, in equation (4) the (inherited) attribute env is
propagated to all nodes of type ANYNODE, including nodes which are a specializa-
tion of ANYNODE.

4.3 Demand-Driven Attribute Evaluation

The static-semantic analyser is implemented as a demand-driven attribute evalu-
ator. The values of the static-semantic attributes are not stored in the abstract
syntax tree, but are evaluated on demand. A demand-driven attribute can be seen
as a semantic function of a node, (as is noted by e.g., Engelfriet [Eng84]). When
invoking the semantic function of an attribute its value is calculated and returned.
Using a purely demand-driven algorithm can lead to performing the same
attribute evaluation several times. An alternative approach, which avoids such
unnecessary computations, is lazy demand-driven evaluation, first described by
Jalili [Jal83]. Each attribute evaluation is then only performed once; the first time
the attribute is accessed. The resulting value is stored in the tree and is used for
subsequent attribute accesses. This saves time but requires additional space.
APPLAB supports a combination of the two approaches similar to the attribute
evaluator of the Mjølner/Orm system [Hed89a] which supports both lazy (or stored)
attributes and demand attributes. Optimal performance can be obtained by config-
uring the attribute evaluation wisely; lazy for attributes which are accessed
several times in an evaluation and for which the evaluation is time consuming.

The static-semantic evaluator of the APPLAB system was implemented based
on the techniques for demand-driven and lazy evaluation of object-oriented
attribute grammars described by Hedin in [Hed92a]. An overview of the architec-
ture is shown in Figure 4.2. The User (i.e. the programmer or the editor) asks the
Controller to evaluate an attribute (evaluate attribute). The Controller
instructs the Compiler to check that the Evaluation Structure is up to date
(check). The Evaluator is then invoked to evaluate the desired attribute (eval-

interpret

evaluate
attribute

Figure 4.2 An overview of the architecture of the static-semantic analyser.
(Notation explained on page 26.)

OOSLConcrete Parse Abstract

Grammar

check build

interpret

Menu

evaluate

Controller

Evaluator

Compiler

User Structure
Evaluation

46 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

uate). The Evaluator calculates the current value of the required attribute by
interpreting (interpret) the Evaluation Structure . The Compiler generates
(build) this Evaluation Structure from the OOSL grammar (interpret) by
binding the declared attributes to a representation of their definitions, thus allow-
ing for a more efficient attribute evaluation.

4.3.1 Prototypes and Attribute Tables

A number of attributes and equations are defined for the different node classes.
Each attribute is represented by a semantic function defined by an equation. The
semantic functions are similar to virtual functions of object-oriented languages,
that is they can be redefined in a subclass and the actual binding is done at run-
time. The vtable technique, used for implementing virtual functions in languages
like Simula [DMN68] and C++, can then also be used for demand attributes. The
implementation in APPLAB is based on an adaptation of these techniques for
object-oriented AGs presented by Hedin in [Hed89a].

In the Evaluation Structure , shown in context in Figure 4.2, and in more
detail in Figure 4.3, the attributes are organized into tables of attributes. Each
node class is represented by a Prototype containing a reference to its (possible)
superclass, a Table of Attributes and a Son Table containing a Table of
Inherited Attributes for each son of the node class. The position of the seman-
tic function for an attribute is determined by the order in which the attribute is
declared in the node class.

The Evaluation Structure is constructed by the OOSL Compiler by inter-
preting (interpret) the OOSL grammar and creating a Prototype for each node
class. A position is reserved (Add) in the Table of Attributes for each attribute

Figure 4.3 The OOSL compiler is responsible for keeping the Evaluation Structure
up to date. ([n] indicates that an object refers to n other objects of the given kind.)

OOSLConcrete Parse Abstract

Grammar

Create

interpret

Compiler

User

[1]

[0..N]

Attributes
Table of

Evaluation
Tree

Create,
Set superclass

Evaluation Structure

[1]
Prototype

Attributes
Inherited
Table of

Son Table

[0..N]

[1]

Evaluation
Tree

Create

[0..N]

Add, Set entryAdd, Set entry

4.3 Demand-Driven Attribute Evaluation 47

declaration of the current node class. Each attribute of a node class is given an off-
set into the table of attributes. This offset is then used when accessing the
semantic function for the attribute. Upon compiling an equation the semantic func-
tion is translated (create) into an Evaluation Tree . The structure of this tree
is equivalent to the structure of the expression defining the semantic function. The
only difference being that any attribute accesses (by name) are replaced by the cor-
responding location of their semantic function. (See Section 4.3.2 for a more
detailed description of the evaluation trees.) Once the Evaluation Tree is com-
plete it is stored (Set entry) in the Table of Attributes , at the position of the
defined attribute and is later evaluated by the static-semantic analyser when cal-
culating the attribute’s current value.

The evaluation structure for the OOSL grammar of Figure 4.1 is shown in Fig-
ure 4.4. The attributes error and env declared in ANYNODE are found in the table

type
declaredType

NoneExp

Unknown

FalseExp

Prototypes Tables of
attributes

IfStmt

super

super

Figure 4.4 Part of the evaluation structure for the OOSL grammar of Figure 4.1.

Stmt

ANYNODE

error
env

InhExp

1
error
env

error
env

Table of
inh attributes

env
expType

env
expType

IdUse

1

SonAccess

2 3
SonAccess

1 3

error
env

super

Son tables

env
expType

env

env

BooleanType

super

IdUse

Exp

AssignStmt

super

Son table

RemoteAccess

InhExp

2

IdUse

1

FuncCall

1
Params

error
env
expType

error
env
expType
type

OrExp

Equal
NotExp

IdUse

5

Evaluation trees

48 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

of attributes of the prototype for ANYNODE. The semantic function for error ,
defined by equation (2), is represented by the evaluation tree FalseExp . Since
Stmt is a specialization of ANYNODE both the attributes error and env are oo-
inherited and, thus, also found in the table of attributes for Stmt . Note that the
evaluation tree for both attributes is shared by ANYNODE and Stmt since no over-
riding equations are declared in Stmt . This is not the case for IdUse . Since
equation (13) overrides the error attribute a different evaluation tree is stored for
the error attribute in the table of attributes for IdUse .

Inherited Attributes

The analogy of virtual functions works well for local and synthesized demand
attributes since their semantic functions are located in the same node class hier-
archy as the declarations of the attributes, as is also the case for virtual functions.
Inherited attributes do not directly follow this analogy since the semantic function
of an inherited attribute is to be found, not in the declaring node class but in the
node class of its father which is not known until ‘run-time’. A different technique
from the one presented in [Hed89a] is used in APPLAB. The semantic functions of
inherited attributes are stored in a Son Table in the node classes of their prospec-
tive fathers. This table contains a Table of Inherited Attributes for each
son. For list nodes which can consist of any number of sons, only the first entry of
the Son Table is used since all sons are of the same type.

Looking at the example grammar on page 44, we see that equations (5) and (6)
of AssignStmt and equation (14) of IfStmt all define different semantic functions
for the inherited attribute expType (7) of Exp. The evaluation structure, shown in
Figure 4.4, shows that these three equations result in three different semantic
functions, each stored at a different location in the evaluation structure. The son
table of IfStmt contains three entries, one for each son, i.e. a_Exp , Stmt1 and
Stmt2 . The table of inherited attributes at the first position in the son table con-
tains the semantic functions for the inherited attributes of Exp, i.e. env and
expType . The semantic function BooleanType has been stored for expType as a
result of equation (14). Similarly equations (5) and (6) of AssignStmt define the
semantic functions for expType , found in the tables of inherited attributes located
at the first and second entry of the son table for AssignStmt .

When evaluating the ith inherited attribute of a node which is the nth son of its
father the Evaluator locates the prototype of the father node, and accesses the
nth entry of the Son Table which is the table of Inherited Attributes for
the nth son. The ith entry of that table contains the semantic function for the
requested inherited attribute. As an example, assume we wish to evaluate the
attribute expType of an Exp node located in an IfStmt . The father node (an
IfStmt) is then requested to evaluate the second inherited attribute of its first son.
The correct semantic function (BooleanType) can then be located by accessing the
first entry of the son table of the IfStmt , and the second entry of the accessed table
of inherited attributes.

4.3 Demand-Driven Attribute Evaluation 49

4.3.2 The Evaluation Trees

A semantic function for an attribute is represented by an evaluation tree. The
structure of this tree corresponds to the semantic function. For example, the
expression

12+3*7

would be represented as the tree

add(int_const(12), mult(int_const(3), int_const(7)))

where add , mult and int_const are nodes of the evaluation tree. All semantic
functions are represented in this way, by trees consisting of evaluation nodes. All
types of expressions allowed for defining the semantic function of an attribute in
the OOSL language have a corresponding type of evaluation node. For example,
attributes used in expressions are represented by IdUse -nodes containing the off-
set into the table of attributes which corresponds to the attribute. Thus, access to
the attribute declaredType of the IdUse node in Figure 4.1, on page 44, is rep-
resented by

IdUse(5)

since declaredType is the fifth attribute declared for the IdUse node class and
its semantic function is consequently found at the fifth position in the table of
attributes. Similarly, the access of a synthesized attribute of a son node is repre-
sented by a SonAccess node containing the son’s number and the offset of the
required attribute.

As was discussed in Section 4.3.1, the semantic functions of an inherited
attribute are located in the current father node. In order to access an inherited
attribute it is represented by an evaluation node for inherited attributes (InhExp).
For example, the inherited attribute expType of Exp in Figure 4.4 is represented
by the evaluation tree InhExp(2) , where the number 2 indicates that it is the sec-
ond inherited attribute of Exp (the first being the attribute env).

Implementation

The evaluation nodes are implemented as classes with a virtual function eval
which takes an abstract syntax node and a representation of the evaluation (or,
run-time) environment as its parameters. The syntax node is used for traversing
the tree and for accessing the correct prototypes. The environment variable con-
tains a stack used for, e.g., passing actual parameters and objects currently being
accessed, for iterating over the nodes of a list, and for temporary variables. For
each class the function eval has been implemented to evaluate the current object
at the given node in the program tree. For example, the evaluation node IdUse is
implemented in Simula by the class IdUse in the following way:

50 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

EvaluationNode class IdUse(offset); integer offset;
begin

ref (Wrapper) procedure eval(targetNode, env);
ref (ASTnode) targetNode;
ref (RTEnvironment) env;

begin
ref (EvalNode) semanticFunction;

semanticFunction :-
targetNode.myPrototype.TableOfAttributes(offset);

eval :- semanticFunction.eval(targetNode, env);
end;

end;

The attribute’s position in the table of attributes is denoted by the class parameter
offset . When eval is invoked for an IdUse -object the semantic function for the
requested attribute is located in the prototype of the current abstract syntax node,
and evaluated by calling its virtual function eval .

Attribute values are handled in a uniform way by ‘wrapping’ them in Wrapper
objects. There is one kind of Wrapper for each data type, i.e. IntWrapper, String-
Wrapper, BoolWrapper and so on. Virtual functions of the Wrapper class are used
for performing basic arithmetic and logical operations on the wrapped values. For
example, boolean values are represented by an object of the following class:

Wrapper class BoolWrapper(v); boolean v;
begin

ref (Wrapper) procedure AndExp(wr); ref (BoolWrapper) wr;
OOSLAnd :- new BoolWrapper(v and wr.v);

.......
end;

The object-oriented implementation of the evaluation trees and attribute values
has proved to be very useful. Extending the OOSL notation with new operations
and additional simple data types results in extending the existing class hierarchies
of the evaluation nodes and wrapper objects, and adding new virtual functions to
the Wrapper class. Since the class hierarchy for the evaluation nodes correspond
to the expressions specified in the grammar for the OOSL notation it is relatively
easy to maintain the implementation and check that it corresponds to the current
OOSL version.

4.3.3 Lazy Attributes

An attribute can be defined as ‘lazy’ in the OOSL grammar aspect. The first time
such an attribute is evaluated the resulting value is stored in the program tree to
be re-used at later accesses. This saves time for an attribute which is often accessed
but takes up memory space, mostly for the attributes which are lazy but the imple-
mentation itself also requires some additional memory. Each entry in the table of
attributes is extended to also contain a flag indicating whether or not the attribute
is lazy. The first time a lazy attribute is evaluated the resulting value is stored in
the program tree at the current abstract syntax node. When evaluating a lazy
attribute the demand-driven attribute evaluator first tries to find the requested
attribute in the current syntax node. If a value is stored for the attribute this value

4.4 Framework for Predefined Attribute Types 51

is used, otherwise the semantic function of the attribute is evaluated and the
resulting value stored.

4.4 Framework for Predefined Attribute Types

OOSL allows attribute values to contain simple data types like boolean, integer
and string. Reference types and simple classes are also supported. In order to
express static-semantic rules like declaration-usage dependencies, more efficient-
ly, structured data types have been implemented in APPLAB. A few predefined
attribute types like sets, dictionaries and types have been added to the OOSL
grammar. They are implemented as applicative classes, that is, classes “whose
objects are used to represent values” ([Hed92a, page 67]). The object must there-
fore never be changed and when testing for equality a special function of the class
is to be used, not simple object identity where the reference pointers are compared.

The predefined attribute types each have a class interface description in OOSL,
shown in Figure 4.5. The class OOSLset represents a set of strings. Simple data
types, like integer and real, can be represented (for putting into symbol tables) by
creating objects of the class OOSLtype . A symbol table containing identifiers and
their declared types can then be created by using the class OOSLdictionary
which contains the names of identifiers and a type-object representing their
declared type. The function match of the OOSLdictionary class returns the set
of all the identifiers of the current OOSLdictionary which correspond to a given
type. This can be used for locating the set of all type-correct identifiers.

OOSLset: class
(* applicative: A set of strings *)

{ empty: func boolean ;
contains: func boolean (item: string);
add: func ref OOSLset (item: string);
union: func ref OOSLset (s: ref OOSLset);
equal: func boolean (s: ref OOSLset)

};

OOSLtype: class ;
(* applicative: A class used for representing types *)

OOSLdictionary: class
(* applicative: Dictionary mapping string to OOSLtype. *)

{ locate: func ref OOSLtype(item: string);
add: func ref OOSLdictionary

(item: string; type : ref OOSLtype);
union: func ref OOSLdictionary

(d: ref OOSLdictionary);
match: func ref OOSLset

(* Returns all strings which match the given type t.*)
 (t: ref OOSLtype)
};

Figure 4.5 The declarations of the predefined attribute types in OOSL.

52 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

Implementation

The internal structures of the predefined attribute types are built explicitly (coded
in Simula) and connected to their class interface descriptions in OOSL. These
internal structures are organized into a prototype similar to the ones used for
attributes and identical to the ones used for classes defined in OOSL. This means
that the compiler can treat the usage of predefined attribute types the same as
using any other class declared in OOSL. New attribute types are added by defining
a new class interface in OOSL, implementing a number of (sub)classes using the
base classes of the framework, and (in the code for the OOSL compiler) creating
and connecting a prototype containing these classes to the OOSL interface
description.

The prototype of the OOSLset class is shown in Figure 4.6. Each function of the
OOSLset is represented by an entry in the table of semantic functions (similar to
a table of attributes). The evaluation nodes stored at each entry are specializations
of the general class EvaluationNode . The prototype also contains a reference to
an evaluation node (NewSet) which is used for evaluating new-expression which
create new OOSLSet objects. The virtual function eval of these evaluation nodes,
i.e. NewSet , InternalSet_empty , InternalSet_contains etc., perform the
required evaluations on internal classes implementing OOSLset :s. These OOSLset
objects are contained in SetWrapper :s, a specialization of the Wrapper class. The
code for the evaluation classes for OOSLSet is as follows:

EvaluationNode class NewSet;
begin

ref (Wrapper) procedure Eval(targetNode, env);
ref (ASTnode) targetNode; ref (RTEnvironment) env;

begin
Eval :- new SetWrapper;

end;
end;

EvaluationNode class InternalSet_empty;
begin

ref (Wrapper) procedure Eval(targetNode, env);
ref (ASTnode) targetNode; ref (RTEnvironment) env;

begin
ref (SetWrapper) wr;

wr :- env.getInternalData;! Fetches the current OOSLSet;
Eval :- wr.setEmpty;

end;
end;
EvaluationNode class InternalSet_contains; begin ... end;

InternalSet_contains
InternalSet_add
InternalSet_union
InternalSet_equal

InternalSet_empty

Prototype

OOSLset
table of
sem func

equal

empty
contains
add
union

NewSet

Figure 4.6 The prototype for the predefined attribute type OOSLset.

4.5 Current Status and Future Work 53

Just as for operations and simple data types, the modelling of predefined attribute
types, using classes and virtual functions, has resulted in a system which is rela-
tively easy to maintain and extend with additional structured data types. Also, no
additional considerations need to be taken when compiling and evaluating
attributes of these types. This is due to the fact that the predefined attribute types
are accessed via their interface description in OOSL and implemented using the
same class hierarchy as simple OOSL data types and expressions.

4.5 Current Status and Future Work

The static-semantic analyser currently used in APPLAB supports demand-driven
attribute evaluation of an object-oriented version of standard AGs, OOSL. The
attribute evaluator was implemented using an existing technique based on the vta-
ble technique used for object-oriented languages. This technique was adapted to
the grammar-interpreting approach, and the representation of the semantic func-
tions for inherited attributes was improved (by introducing son tables).

The static-semantic analyser has been used to implement advanced editing
support, i.e., names-menus and interactive static-semantic error reporting, as well
as code generation for the RAPID language (described in Chapter 6.) The interpre-
tive nature of the static-semantic analyser allows the language designer to
interactively specify the static-semantic rules determining (the code generation
and) the behaviour of the names-menus and the static-semantic error reporting.
This also means that advanced editing support can be provided for language
specifications.

The currently supported version of OOSL has been extended with a number of
predefined attribute types, e.g., list, set, dictionary, in order to support simple
block-structured languages. A framework for implementing and adding these
attribute types in a systematic way has been developed.

The names-menus of the current implementation are non-hierarchical. In the
future we also wish to allow hierarchical names-menus which support access into
reference types. The current interactive implementation of static-semantic error
reporting is due to the inefficiency of the demand-driven attribute evaluator.
Checking for static-semantic errors after each editing operation would be too slow
using the current evaluator. Due to this and (mainly) to the fact that we wish to
support the specification of object-oriented language, we intend to use Door AGs
[Hed92a] in the future (also mentioned in Section 3.8). The object-oriented gram-
mar notation OOSL (Object-Oriented Specification Language) [Hed92a], currently
used can also be used to express Door AGs [Hed92a] which allow for efficient incre-
mental attribute evaluation using a technique that scales up well. A problem with
the current implementation of the static-semantic analyser is the amount of pre-
processing required to construct the evaluation structure from the OOSL grammar
aspect. This could also be alleviated by supporting incremental attribute evalua-
tion for Door AGs. The construction of the evaluation structure could then be
described in the meta grammar for OOSL. The evaluation structure for a language
would then be incrementally updated as the language designer edits the OOSL
grammar aspect.

54 Chapter 4 A Grammar-Interpreting Static-Semantic Analyser

Chapter 5

A Grammar-Interpreting Parser

This chapter describes the dynamic parser component of APPLAB. Parsing is done
according to the current state of the grammar. To achieve this dynamic behaviour,
the parser is based on grammar interpretation and uses an object-oriented recur-
sive-descent parsing algorithm.

5.1 Introduction

This chapter describes the dynamic parser GRIP (GRammar-Interpreting Parser)
implemented as part of APPLAB. The GRIP parser is used both to allows textual
editing as an alternative to structure-oriented editing, and to supports document
exchange with other environments via textual representation. Analogous to the
structure editor, GRIP uses grammar interpretation to supply dynamic language-
specific parsing. Other systems which contain dynamic parsers include DOSE
[FJS86] and GIPE [Kli91]. (See section 5.4 for a comparison.)

The requirements on a language-laboratory parser differ from those in a tradi-
tional text-based environment:

• Parsing speed. The speed of the parser is not as important in a language lab-
oratory as in text-based environments: During editing, very small text-
fragments are parsed at a time (often only part of a line), and as long as this
can be done in a fraction of a second (so it is unnoticeable to an interactive
user), the speed is acceptable. For parsing larger documents produced by
other environments, the parsing speed will show, but since this is a compar-
atively uncommon operation in the language laboratory, a moderately fast
parser may be acceptable.

• Parser generation speed. The parser generation speed is very important. It
should take at most a few seconds to produce a new parser when the gram-
mar is changed, in order to allow editing/parsing according to the new
grammar to proceed immediately after the change.

• Parser grammar. The context-free part of a language specification is, typical-
ly, centered around an abstract grammar, augmented by a pretty-printing

56 Chapter 5 A Grammar-Interpreting Parser

specification describing how to unparse an abstract syntax tree as text. Pref-
erably, the parser should use these existing specifications as far as possible.
In particular, we want to avoid having to specify a separate parsing grammar
in order to satisfy a particular parsing algorithm.

For GRIP we have chosen an object-oriented recursive-descent parsing algorithm
which interprets the grammar while parsing. The object-oriented algorithm sup-
ports parsing directly into the structure described by the abstract grammar. To
resolve parsing ambiguities, we have extended the grammar specification with
precedence- and associativity rules. To achieve reasonable speed during the gram-
mar-interpreting parsing, a graph representation of the grammar is constructed.
This graph construction corresponds to the parser generation, and takes only a
couple of seconds.

The rest of this chapter is organized as follows. Section 5.2 describes editing in
APPLAB from the user’s point of view. Section 5.3 describes the implementation of
APPLAB and the interpretive parser in particular. Section 5.4 discusses related
work, and section 5.5 concludes the chapter.

5.2 Text- and Structure Editing in APPLAB

APPLAB supports simultaneous editing of a grammar and an example program
following the specified grammar. (The grammar formalisms are specified in meta
grammars.) The edited structures are represented internally as abstract syntax
trees (ASTs) and are presented on the screen as text by unparsing the ASTs. Any
subtree can be selected by the user and edited either structurally or as text. In
structure editing, constructs are inserted into the AST by selecting them from a
menu which contains all syntactically legal alternatives at the point of insertion.
In text editing, the textual representation of the selected subtree is edited by the
user, and then parsed into a new subtree which replaces the old selection.

5.2.1 Overview

Figure 5.1 contains a snapshot of an APPLAB session. The grammar currently
edited describes RAPID [ABB94], a robot programming language. The windows
marked ABSTRACT, CONCRETE, and PARSE contain different aspects of the con-
text-free part of the language specification (the context-sensitive parts are not
discussed in this chapter). The ABSTRACT aspect describes the abstract syntax,
i.e. the syntactic structure of the language. The CONCRETE aspect describes the
concrete syntax, i.e. the screen layout of different constructs of the language. The
PARSE aspect is used to define additional rules needed for parsing. The PRO-
GRAM window contains an example program following the RAPID grammar.
Changing, e.g., the concrete syntax in the CONCRETE window causes the PRO-
GRAM window to be updated to show the new syntax instead of the old one. In the
same way, a new language construct, added to the ABSTRACT and CONCRETE
windows, is immediately accessible in the PROGRAM, both for structure and text
editing.

5.2 Text- and Structure Editing in APPLAB 57

Figure 5.1 shows the different grammar aspects for expressions, and for
mult_exp in particular. The ABSTRACT aspect gives the BNF AND/OR structure
of the grammar. An OR rule corresponds to the declaration of a class hierarchy,
where the left-hand side, e.g., C_exp1, is a superclass of the symbols on the right-
hand side, e.g., C_arith . Similarly, C_arith is a superclass of mult_exp . An AND
rule corresponds to composition where a syntax node object of the left-hand-side
class has components according to the right-hand side. For example, a mult_exp
node has two components (son-nodes) of class C_exp .

The CONCRETE aspect gives the concrete text representation for each of the
AND rules. For example, when displaying a mult_exp node, the token “*” will be
shown between the texts representing the two son nodes (referred to as @1 and @2).

The PARSE aspect shows the precedence and associativity rules for different
expressions, in order to disambiguate the textual representations for different syn-
tax trees. In the figure, the mult_exp has been given higher precedence than
add_exp (rules on lower lines have precedence over rules on upper lines). This

1.The prefix “C_” used in some rules is used as a primitive structuring devise for the editor
menus. It will be removed in future releases of APPLAB.

Figure 5.1 Structure Editing in APPLAB

58 Chapter 5 A Grammar-Interpreting Parser

means that the string ‘a+b*c’ will be parsed as ‘a+(b*c)’. Switching the precedence
levels for mult_exp and add_exp would mean parsing the same string as ‘(a+b)*c’.

Text Editing

When choosing to edit a structure as text the user is given the text representation
of the currently selected subtree as the initial text and may edit it character by
character. In some situations text editing may be preferred to structure editing,
e.g., when editing complex expressions, and when changing an existing construct.
For example, changing an existing while-stmt to a for-stmt with the same
body. Text editing such constructs is easy, while doing the same editing using the
structure editing technique would mean a series of cut-and-paste operations.

If errors are encountered during parsing they are reported to the user in an
error window which displays an error message and the position of the error in the
edited text. GRIP tries to repair the errors as far as possible. For example, if an
error causes the parser to fail in parsing the body of a while-stmt , the parse still
results in a while-stmt , but possibly with an empty body structure.

Changing the Grammar

When the grammar is changed, subsequent text editing in the PROGRAM will be
parsed according to the new grammar state. The user does not need to give any
explicit command for updating the parser. Instead, the parser will be regenerated
automatically the next time the user edits a subtree as text.

Some changes to the grammar may cause the existing program in PROGRAM
to become inconsistent with the current grammar. If only the CONCRETE aspect
is changed, the PROGRAM will be automatically reunparsed to reflect the new
grammar state. If rules in the ABSTRACT aspect are changed, e.g., adding or
deleting components in an AND rule, this will cause existing nodes of these rules
in the PROGRAM to become inconsistent with the grammar. Currently, the incon-
sistent nodes are simply marked in the PROGRAM, and the user may explicitly
delete them to obtain a consistent program. Future versions of APPLAB may add
more sophisticated techniques for updating inconsistent PROGRAM programs,
allowing transformation rules to be stated using, e.g., the techniques suggested in
[GKL94].

Grammar Errors

When editing the grammar, errors will often be introduced. For example, the mis-
spelling of nonterminals, the use of a nonterminal on the right-hand side of a rule
without it appearing on the left-hand side of any rule, and inconsistent aspects of
the same grammar rule, e.g., different number of components in the ABSTRACT
and CONCRETE aspects of a rule. These errors are reported during the parser
generation phase.

More intricate errors can occur as a result of certain combinations of rules, e.g.,
indirect left-recursion and grammar ambiguities. Indirect left-recursion is detect-

5.3 Implementation 59

ed and reported during parsing, see section 5.3.5. Grammar ambiguities are not
detected, but rules appearing early in the grammar are given precedence over
rules appearing later, thus disambiguating the grammar.

Since we can assume that errors in the grammar will be rather common while
designing a language it is desirable to have an environment that is as tolerable as
possible towards these errors. The environment must not crash as a result of a
grammar error, and it should be as supportive and helpful as possible in debugging
the language being designed. GRIP has been designed with this in mind and allows
parsing even with an incomplete, incorrect grammar. If the erroneous rules are
used during parsing, the grammar errors are reported as warnings, and parsing is
done according to a repaired version of the grammar, as described in section 5.3.5.

5.3 Implementation

5.3.1 OO Recursive-Descent Parsing

Recalling the requirements on language-laboratory parsers listed in section 5.1, it
is important that the parser generation speed is high, whereas the actual parsing
speed is less crucial, and that the abstract grammar used for structure editing can
be used as the basis also for parsing. To meet these demands, we have chosen to
base GRIP on OORD, an Object-Oriented Recursive-Descent parsing method
[Hed89b]. Similar to traditional recursive-descent parsing, OORD follows the
grammar closely, and it is therefore simple and fast to generate the parser. The
parsing method is termed object-oriented because the language specification is giv-
en in an object-oriented form, using classes and subclasses, rather than in the
traditional form using nonterminals and productions. These classes are called node
classes, because they classify the nodes occurring in the syntax trees. An important
advantage of the OORD method is that it is particularly well suited for parsing
directly into abstract syntax trees:

• Precedence and associativity, normally specified using production rules such
as term, factor, etc., and common prefix factorization, can be specified using
specialization (subclassing), thereby avoiding the generation of non-abstract
nodes in the resulting parse tree.

• Left-recursion, as it normally appears for expressions, can be handled direct-
ly by the algorithm. In contrast, in traditional recursive-descent parsing one
has to eliminate left-recursion from the grammar, thereby distorting the
resulting parse tree.

60 Chapter 5 A Grammar-Interpreting Parser

Precedence and Associativity

The example below shows how precedence and associativity of arithmetic expres-
sions can be defined in the OORD notation:

Exp: ();
Term: Exp (); # Term is a specialized expr
Factor: Term (); # Factor is a specialized term
Primary: Factor (); # Primary is a specialized factor
Add: Term (Term ’+’ Factor);

Add is a specialized term with two
subcomponents - a term and a factor.

Sub: Term (Term ’-’ Factor);
Mul: Factor (Factor ’*’ Primary);
Div: Factor (Factor ’/’ Primary);
Id: Primary (LexId);
ParExp: Primary (’(’ Exp ’)’);

As seen from the example, specialization is used to limit what kinds of expressions
may occur as subcomponents to different expressions. For example, the specifica-
tion for Add limits the left component to be a term and the right component to be
a factor. Add is thus left-associative, since another instance of Add can only appear
as the left subcomponent. The corresponding specification in a conventional
nonterminal/production notation would be:

add: <Term> ::= <Term> ’+’ <Factor>

where add is the production name, and Term and Factor are nonterminals. An
important difference between these notations is that they result in different parse
trees: the OORD parse tree is like an abstract syntax tree in that it only contains
instances of the most specialized classes: Add, Sub, Mul , Div , Id , and ParExp . In
contrast, a parse tree from a conventional grammar contains additional internal
nodes for the nonterminals Exp, Term, Factor , and Primary .

Left-Recursion

As seen from the conventional specification of add , the production is left-recursive
(the first component ‘Term ’ is the same nonterminal as the left-hand side ‘Term ’).
In a standard recursive-descent parser, such left-recursion must be eliminated by
rewriting the grammar rules in a way which distorts the parse tree and adds more
nodes to it. In the OORD method, such rewriting is unnecessary; the parser can
deal with the left-recursion and construct the abstract syntax tree directly.

Common Prefix Factorization

If two productions with the same left-hand side nonterminal have a common prefix,
a standard recursive-descent parser would, in general, need an unbounded looka-
head. The usual technique to avoid this, in order to use a lookahead of fix length,
is to factor out the common prefix into a new nonterminal, thereby changing the
structure of the parse tree and adding more nodes to it. Using the OORD notation,

5.3 Implementation 61

the factorization can be done by specialization rather than by adding new nonter-
minals, and this way the resulting parse tree is unaffected by the factorization. The
example below shows an example grammar where two variants of the if-statement
start in the same way, i.e. they have a common prefix.

Stmt: ();
IfThenElseStmt: Stmt (’if’ Exp ’then’ Stmt ’else’ Stmt);
IfThenStmt: Stmt (’if’ Exp ’then’ Stmt);

The common prefix can be factored out by adding a new class IfThenStarting-
Stmt which contains the common prefix. The new class is inserted in the class
hierarchy between the general class Stmt and the specialized If -classes:

Stmt: ();
IfThenStartingStmt: Stmt (’if’ Exp ’then’ Stmt);
IfThenElseStmt: IfThenStartingStmt (’else’ Stmt);
IfThenStmt: IfThenStartingStmt ();

Since we have only changed the class hierarchy, and not the structure of instances
of the concrete most specialized classes, this factorization does not affect the struc-
ture of the parse tree.

In the case of left-recursive classes, like Add and Sub above, the common prefix
does not have to be factored out because the OORD method for handling the left-
recursion will automatically take care of the common prefix as well.

5.3.2 Parser Generation

When the grammar has been changed, the parser needs to be re-generated. For
GRIP, being an interpretive parser, this re-generation means updating only the
graph structure interpreted by the parser. The core of the parser is generic and
does not need to be updated. The following steps are carried out:

• Check the grammar to report possible errors in it.

• Construct a graph representation of the grammar according to the informa-
tion in the ABSTRACT and CONCRETE grammar aspects.

• Transform the graph representation of the grammar to deal with precedence
and associativity according to the information in the PARSE aspect.

• Transform the graph representation by doing common-prefix factorization.

• Generate a lexer.

The graph construction and transformation steps are done even if the grammar
contains errors. It is then possible to parse successfully, at least as long as none of
the erroneous parts of the grammar are involved. The transformation steps are
described in sections 5.3.3 and 5.3.4. Section 5.3.5 discusses error handling and in
section 5.3.6 the generation of the lexer is described.

The graph is an internal representation of the grammar, structured according
to the OORD notation. There is one vertex per node class, and related vertices are
connected to each other in order to allow efficient interpretation: each vertex has a

62 Chapter 5 A Grammar-Interpreting Parser

set of edges to its immediate subclasses, and to its component classes. Node classes
which have components also have an edge to the corresponding rule in the CON-
CRETE grammar aspect, where the keywords occurring in the rule can be found.
The grammar transformations which are described in sections 5.3.3 and 5.3.4, are
done only on the graph representation of the grammar, and do thus not interfere
with the structure-oriented editor which interprets the original grammar.

5.3.3 Transformation of Precedence and Associativity

The precedence and associativity specification given in the PARSE grammar
aspect is used to transform the grammar graph to include this information by
inserting additional node classes. As an example, consider arithmetic expressions
where the specification in the ABSTRACT and CONCRETE grammar aspects cor-
respond to the following (ambiguous) OORD grammar:

Exp: ();
AddExp: Exp (Exp ’+’ Exp);
SubExp: Exp (Exp ’-’ Exp);
MulExp: Exp (Exp ’*’ Exp);
DivExp: Exp (Exp ’/’ Exp);
ParExp: Exp (’(’ Exp ’)’)

These rules are disambiguated by the following PARSE aspect specification:

< left: AddExp, SubExp precedence level 1
< left: MulExp, DivExp precedence level 2

The grammar graph is transformed to include these precedence and associativity
rules by inserting node classes, yielding the following OORD grammar:

Exp: ();
Exp_1: Exp ();
Exp_2: Exp_1 ();
Exp_3: Exp_2 ();
AddExp: Exp_1 (Exp_1 ’+’ Exp_2);
SubExp: Exp_1 (Exp_1 ’-’ Exp_2);
MulExp: Exp_2(Exp_2, ’*’, Exp_3);
DivExp: Exp_2(Exp_2, ’-’, Exp_3);
ParExp: Exp_3 (’(’ Exp ’)’);

We consider the transformation corresponding to a precedence level specification
for subclasses to a base class B. Each of the listed subclasses should be a unary or
binary operator with subcomponents qualified by B.

Precedence is handled by inserting n+1 new node classes Pk, k=1..n+1, where n
is the number of precedence levels, and where super(P1) = B and super(Pk) = Pk-1
(fork>1). Node classes at precedence level k are moved in the class hierarchy by
making them subclasses to Pk, and the qualifications of their components are also
changed to Pk, or to the more specialized class Pk+1, depending on associativity, as
described below. For instance, MulExp on level 2 is made subclass to Exp_2 , and
its component qualifications are changed to Exp_2 and Exp_3 respectively.

Associativity of binary operators is handled by specializing either or both of the
subcomponents to Pk+1. For left-associative operators, the second component is

5.3 Implementation 63

specialized. This restricts an additional instance of an operator on the same level
to appear only to the left of the operator. For instance, in MulExp , the second com-
ponent is specialized to Exp_3 . An additional instance of MulExp or DivExp can
thus only appear as the first component. Analogously for right-associative opera-
tors, the first component is specialized. For non-associative operators, both
components are specialized (disallowing adjacent instances of the operator alto-
gether). Unary prefix (or suffix) operators are treated like binary operators with an
empty first (or second) subcomponent.

Subclasses to the base class B whose right-hand side neither starts nor ends
with B, for example ParExp , should not be listed in the precedence level specifica-
tion since they cannot take part in the grammar ambiguities addressed by
precedence and associativity. These classes are made subclasses to Pn+1 and the
qualifications of their components are left unchanged. For instance, ParExp is
made subclass to Exp_3 , but its component is still qualified by Exp.

The transformation algorithm for precedence and associativity is given below.
In the algorithm we assume that all classes listed in the precedence specification
are direct subclasses of the base class. Some of our grammars, however, make use
of intermediate classes, such as C_arith , as shown in figure 5.1. These intermedi-
ate classes merely have the role of grouping similar expressions in order to give
more structure to the abstract grammar, and they are removed in the parser ver-
sion of the grammar before doing the transformation.

Algorithm PrecAndAssocRewrite(B)
where B is a base class with subclasses specified in n
precedence levels.

Let SUB k be the subclasses to B listed at level k.
Let NONLISTED be the subclasses to B not listed on any
level.

Add a new class P 1; super(P 1) := B;
for k := 1 to n do

Add a new class P k+1 ; super(P k+1) := P k;
for each class X in SUB k do

super(X) := P k;
Let s 1 and s 2 be the subcomponents of X
case associativity of level k:

left: qual(s 1) := P k; qual(s 2) := P k+1 ;
right: qual(s 1) := P k+1 ; qual(s 2) := P k;
non: qual(s 1) := P k+1 ; qual(s 2) := P k+1 ;

esac;
od;

od;

for each class X in NONLISTED do
super(X) := P n+1;

od;

5.3.4 Transformation of Common Prefixes

Common prefixes of sibling classes (classes with the same superclass) are factored
out by introducing an additional class containing the common prefix, as was
described in section 5.3.1. The algorithm is given in detail below. In the case of left-

64 Chapter 5 A Grammar-Interpreting Parser

recursive classes, however, the OORD method handles the common prefix auto-
matically, and no factorization is needed.

Algorithm CommonPrefixFactorize(C, SUB)
where C is a class and SUB is a set of subclasses of C.

if |SUB| > 1 then
let p be the longest common prefix in SUB.
I.e., p is the longest common prefix of the sequences

RHS(X), X ∈SUB,
where RHS(X) is the sequence of right-hand side
symbols (keywords and nonterminals) of the class X.
if |p| = 0 then

Split SUB into subsets SUB k starting with the same
symbol. I.e.,

∀X ∈ SUBk, head(RHS(X))=sym k.
symi ≠ sym j , i ≠ j

for each set SUB k do
CommonPrefixFactorize(C, SUB k);

od
else

Construct a new class N for the common prefix p
and insert it between C and SUB in the class
hierarchy, removing the prefix p from the classes
in SUB.

fi
fi

5.3.5 Error Handling

When doing interpretive parsing there are two sources of errors: errors in the
parsed text and errors in the grammar. Errors in the grammar are reported at
parser generation time, but since APPLAB allows parsing even if there are errors
in the grammar, these errors may be reported at parsing as well.

Errors in the Parsed Text

GRIP performs Phrase-level Error Recovery [ASU86], if the parsed text does not
match the grammar. I.e., it performs local correction on the remaining input in the
following manner. At a token mismatch, the parser first tries to skip the current
token and continue parsing. If there still is a token mismatch, the parser inserts
the expected token instead and continues parsing, possibly encountering more
errors.

If there is more than one possible expected token, i.e., if the parser is parsing a
node class with subclasses, and the current token matches neither of the FIRST
symbols for the subclasses, the parser inserts a placeholder for the expected node
class and continues parsing.

Errors in the Grammar

Most grammar errors, e.g., reference to undefined symbols, etc., are reported at
parser generation time. If the grammar contains errors, the incomplete or incon-

5.4 Related Work 65

sistent rules are repaired in the graph representation and parsing is allowed all
the same. If a repaired rule is used during parsing, the parser reports a warning.
This is useful in the experimental language laboratory setting where the grammar
is often changed; one can continue to edit the program even if the grammar tempo-
rarily contains errors.

As described above, the OORD algorithm handles direct left-recursion which
appears, e.g., for normal left-associative binary expressions. However, the algo-
rithm does not handle indirect left-recursion. According to [DM82, p. 62], indirect
left-recursion hardly ever appears in practical grammars. Nevertheless, endless
recursion must be avoided, should the user happen to specify a grammar with indi-
rect left-recursion, by mistake or on purpose. To handle this, a check is done while
parsing. When this check detects an indirect left-recursion in the current parse, an
error is reported, and the current parse is cancelled.

It would be possible to check indirect left-recursion at parser generation time as
well, but by checking it at parsing time it is possible to parse strings which do not
involve the indirect left-recursion.

5.3.6 The Lexer

The lexer uses a table of keywords constructed from the CONCRETE grammar
aspect. The table is constructed during parser generation. Currently, the defini-
tions of other lexical items are hand-coded to fit the RAPID language, including
identifiers, numbers, strings, and comments (for the latter two, start- and end-
tokens can be specified in the PARSE aspect). These definitions are fairly standard
and are sufficient for many languages. However, future releases of APPLAB will
include a fully grammar-interpretive lexer which allows complete specification of
the lexical level. Analogously to the parser, a graph representation of the lexical
specification will be constructed and interpreted during lexical analysis. This will
allow full use of the interpreting parser for all languages defined in APPLAB.

5.4 Related Work

Editing programs in a structure-oriented editor is fundamentally different from
using a traditional text editor since the editing is done in terms of language con-
structs rather than characters. Many voices have been raised to say that text
editing should not be banned altogether from structure-oriented editors, e.g.,
[VG92, Wat82]. On the other hand, it has been argued that the structure-oriented
approach has not yet been fully explored and evaluated, and that the usual argu-
ments given in favour of text editing are not valid in structure-based environments
[Min92]. Whatever viewpoint is taken towards text editing in structure-oriented
editors, there is a need for parsing in such systems if one wishes to integrate it and
exchange documents with other (text-based) systems.

66 Chapter 5 A Grammar-Interpreting Parser

Syntax-Directed Versus Syntax-Recognizing Editors

Among the existing language-based environments there are two fundamentally
different approaches to combining text and structure-oriented editing: syntax-
directed editors and syntax-recognizing editors. In the syntax-directed editors, the
syntax tree of the document is presented to the user, and editing operations are
performed directly on the tree. Adding text editing to such editors is done as in
APPLAB, by letting the user select a subtree and edit it as text. The edited text
cannot affect any parts of the syntax tree outside the structural selection. Other
environments supporting this kind of editing include the Synthesizer Generator
[RT89], Centaur [BCD+88], Gandalf [Not85], GIPE (ASF/SDF) [Kli91] and DOSE
[FJKS85].

The selection can be parsed either exhaustively, i.e. parsing all the text of the
selection, or incrementally, i.e. parsing only the changed parts of the text and reus-
ing the old syntax subtree in order to construct the new subtree for the selection.
Incremental parsing speeds up the parsing for large selections. It depends on how
the environment is used if large selections are edited as text or not. It is common
to edit only small structures, e.g., expressions, as text, whereas larger structures,
e.g., procedures or control structures, are edited using structure editing. In this
case an exhaustive parser is usually sufficiently fast. APPLAB, the Synthesizer
Generator, and Centaur use exhaustive parsing. The Gandalf system uses a tech-
nique for incremental parsing where a series of tree transformations are performed
as tokens are inserted and deleted [KK85]. DOSE uses a combination of tech-
niques, where assignments and expressions are parsed using a method based on
the incremental parsing algorithm used in the Gandalf system.

A different approach in combining text and structure is taken in syntax-recog-
nizing editors, e.g., Pan [BGV90]. In these editors, the user edits the document as
text and the system maintains an internal syntax tree which is hidden from the
user. This type of system allows the user to continue working in the same way as
in a traditional text editor, while the internal syntax tree can be taken advantage
of in the same way as in the syntax-directed editors, e.g., for cross-referencing or
type-checking. The text-editing in the syntax-recognizing editors thus corresponds
to text editing in a syntax-directed editor where the selection is always the com-
plete document. The ‘selection’ is thus usually quite large, and incremental parsing
is therefore very useful in these systems. Since it is not feasible to perform incre-
mental lexical and syntactic analysis for each character-edit operation, a design
decision has to be made for such editors as to when the incremental lexical analysis
and parsing is to be invoked. In Pan, the different levels of analysis maintain a
summary of increments to be used by the next analysis level. I.e. the incremental
LALR(1) parser revises the internal structure in response to increments produced
by the lexical analyser.

Language Laboratory Parsers

When implementing a programming environment or structure editor for a specific
language, the easiest way to produce a parser component is to generate one by
using a general-purpose parser generator such as yacc [Joh79]. For example, both

5.4 Related Work 67

Centaur and the Synthesizer Generator use yacc to generate the parser compo-
nent. However, yacc and other parser generators produce program code as output
(C in the case of yacc) which has to be compiled and linked. For a language labo-
ratory, this approach is not suitable since it would take too long time to generate a
new parser, definitely more than a few seconds as was required according to our
list in section 5.1. Furthermore, with current standard compilation and linking
technology, such a parser could not be an exchangeable part of the language labo-
ratory process, but would need to run as a separate process, adding interprocess
communication overhead during parsing.

For a language laboratory, the reasonable approach seems to be to use some
kind of generic parser interpreting a data structure derived from the grammar. The
language-laboratory environments DOSE, GIPE, and our APPLAB, all use some
variation of this approach. There are a few different techniques, or combinations
of techniques, that are used to generate the parser sufficiently fast:

• Incremental parser generation. I.e., update the parser data structure accord-
ing to the grammar changes.

• Choose a top-down parsing algorithm, since they require less pre-processing
than bottom-up algorithms.

• Lazy parser generation. I.e., generate the parser data structure piece by
piece as it is needed during parsing.

For example, APPLAB uses a top-down parser, while GIPE uses a bottom-up pars-
er and both incremental and lazy parser generation. DOSE uses an algorithm that
combines top-down and bottom-up parsing. The different language-laboratory
parsers are discussed in more detail below.

DOSE Parsing is performed in DOSE by a combination of parsing techniques.
Expressions and assignment statements are parsed using a method based on the
incremental expression parsing algorithm developed by Kaiser and Kant [KK85],
while other language constructs are parsed top-down by recognizing the first key-
word of a construct, like IF and WHILE. Just as in APPLAB the same language
description that is used for the structure-editor is also used by the parser. While
APPLAB presents the subtree to be text edited in a separate window, DOSE
allows the user to edit text within its context on the screen.

GIPE The parser generator of the GIPE environment, IPG [HKR90, Rek92], is
implemented as a lazy, incremental LR(0) parse table generator. The parse tables
are incrementally updated by need while parsing input. The syntax specification
of GIPE is similar to the one in APPLAB in that the abstract syntax is augmented
with disambiguating precedence and associativity rules. The text editing facilities
of GIPE are more smoothly integrated into the structure-oriented editor. While
APPLAB lets the user text edit a selected part of a program in a separate window,
GIPE allows text editing of the program fragment currently in focus, to be done
within its context in the structure-oriented editor. Parsing of the edited text is
performed when the user moves the focus to another part of the program. If any
syntax errors are encountered the user is required to correct them before moving

68 Chapter 5 A Grammar-Interpreting Parser

the focus. In APPLAB, should any syntax errors be detected, they are reported
and, as far as possible, corrected by the parser and the resulting AST is inserted
into the edited program. If the user so wishes the latest text editing operation can
be undone by re-inserting the old (unedited) AST. GIPE and APPLAB both allow
the user to select any part of the edited program for text editing.

TaLE The TaLE environment [JKN95, KM95] is a specialized, partly graphical,
editor for designing textual languages. It allows the user to edit, reuse and refine
language features in a controlled fashion. TaLE is suited for rapid prototyping of
application-specific languages but is not a language laboratory in our sense since
it does not allow the user to freely switch between designing and testing the lan-
guage. Instead, TaLE generates Eiffel-classes (which may be manually edited)
corresponding to the language constructs which are then compiled and result in a
traditional source-code compiler rather than a structure-based editor.

TaLE uses incremental parser generation where the generated Eiffel classes
are incrementally updated as the user changes the language description. The pars-
ing algorithm used in TaLE is a lazy recursive descent algorithm modified to fit
object-oriented context-free grammars [KV92]. The parsers in TaLE and APPLAB
have certain similarities. They are both recursive-descent parsers, and they both
draw on the principles of object orientation in distributing the information needed
for parsing into objects representing the nonterminals of the grammar. In TaLE,
this is utilized to support incremental (and lazy) parser generation. For example,
changing the production for a nonterminal only affects the corresponding object in
the parser.

5.5 Conclusion

We have presented the dynamic parser GRIP and its integration in the language
design laboratory APPLAB. GRIP is a generic parser which interprets a grammar
graph in order to parse according to a given grammar. Any text selected in
APPLAB’s structure-oriented editor can be edited as text and parsed by GRIP. In
case the grammar has been changed since the last text edit operation, a new gram-
mar graph is generated automatically, causing GRIP to always use the current
version of the grammar. The system has been tested on several languages, ranging
from small meta-grammars of around 10 productions to grammars for real-sized
programming languages with over 200 productions (the grammar for RAPID,
which is a Pascal-like language with some special constructs for programming
robots).

APPLAB and GRIP are implemented in the object-oriented language Simula
[Sta87] and runs on SUN Sparc workstations. An evaluation of GRIP compared to
the requirements listed in section 5.1 yields the following conclusions:

• Parsing speed. GRIP parses around 190 tokens/second on a SUN Sparc Ultra
1. This corresponds to around 1700 lines per minute. This is sufficient for the
main requirement, namely that parsing of small texts, such as short expres-
sions, should be unnoticeable by the user. However, faster parsing would
certainly be desirable for document exchange. There are many details in the

5.5 Conclusion 69

implementation which could be optimized and we therefore have good hope
of increasing the parsing speed substantially.

• Parser generation speed. A new parser is generated in 0.6 seconds for a real-
sized language with over 200 productions. We find this well within the
acceptable delay.

• Parser grammar. As required, GRIP runs without the need of a special pars-
ing grammar. The abstract and concrete grammars augmented with
disambiguating precedence and associativity rules is sufficient information
to generate the parser.

The object-oriented recursive-descent (OORD) algorithm turned out to be very
suitable for implementation of the language-laboratory parser. Being a recursive-
descent algorithm it is straight-forward to implement. Furthermore, the possibility
to express precedence, associativity, and common prefix factorization using special-
ization, allowed us to transform the original abstract grammar to a grammar fit for
the OORD algorithm, yet without changing the structure of the resulting parse
tree. That is, the tree resulting from parsing is also a derivation tree of the abstract
grammar.

70 Chapter 5 A Grammar-Interpreting Parser

Chapter 6

Case Study - Robot Programming

APPLAB has been used in several case studies where robot programming is the
topic of the most extensive one. It was chosen because of its challenging demands
on programming on several different levels which would benefit by applying the
DSL technique. The robot programming language RAPID was implemented in
APPLAB which was then used as a front-end for operating an ABB Irb-6 industrial
robot. The case study was carried out in cooperation with the Department of Auto-
matic Control at Lund University, using information provided by ABB Robotics
Products AB. After an introductory motivation and presentation of the area of
robot programming, the experimental setup and APPLAB’s role in it is described,
followed by a discussion on DSL support at the end-user level. The chapter is con-
cluded by experience and future work.

6.1 Motivation

The purpose of the case study was to explore the use of interactive language-based
tools for DSL development and programming in the context of industrially relevant
and demanding programming situations, and in the course of doing so, to evaluate
APPLAB and to identify desired extensions to further support DSL development.
In an industrial context, we may focus on programming and configuration of com-
puters as such, but other types of programmable equipment are probably more
interesting; such programming often has to be carried out by engineers that are not
primarily programmers which implies a greater need for domain-specific support.
Furthermore, the possible benefits in terms of time and money are substantial if
engineering time can be saved and the utilization of the (expensive) equipment can
be improved. Examples include telecom systems, process control systems, and
manufacturing systems. Perhaps the most demanding, or diversified, type of pro-
gramming is the programming of industrial robots. Including the system
programming usually done by the robot manufacturer, some characteristics are:

• Programming ranges from hardware related programming of low-level con-
trol and sensing, to very high-level programming using abstract operations
that are created on lower levels of the system.

72 Chapter 6 Case Study - Robot Programming

• Simple robot tasks should be simple to teach (the robot) for the inexperi-
enced user, and advanced operations should be possible to implement by the
experienced application expert.

• Programming constructs that are suitable for high-level operations are not
appropriate for low-level control due to the demands on execution efficiency.

• The robot task is not known at the time of the design of the robot control sys-
tem, and task descriptions may change at run time. Even the type of
application may be new to an available robot programming system.

• Concurrency and timing has to be dealt with.

Thus, programming of industrial robots includes a relevant set of programming
issues. Each of these issues can also be found in other applications, but a robot pro-
gramming setup provides a comprehensive research environment for the study of
programming tools and languages.

6.2 Robot Programming

When programming industrial robots there are several different levels of program-
ming involved [Nil96a]: the motion control level, the application-specific level and
the end-user level. Figure 6.1 illustrates these different levels. At the motion con-
trol level, the developer of the industrial robot works at the robot manufacturing
company which delivers the product together with a programming interface for the
basic motion control of the robot. The application expert then uses this interface to
implement an application-specific level which specializes the robot for a specific
application, e.g., welding or gluing. At the moment this phase is most often done
by the manufacturers themselves, since the design of the application packages
requires detailed knowledge of the system design including the motion-control
interface. The resulting specialized robot is delivered to a customer, or end-user,
who wishes to use the robot to manufacture some product. Programming is then
done at the end-user level, typically by using a dedicated robot programming lan-
guage together with data from teach-in or CAD/CAM systems [Cra89].

Motion control

Interface

Welding package

Welding application

Figure 6.1 Different levels of robot programming. “Welding” exemplifies a standard,
but demanding robot application.

End-user level
(End-user programmer)

Application-specific level
(Application expert)

Motion control level
(Robot developer)

Interface

6.2 Robot Programming 73

In order to simplify the programming between the different levels, a DSL could
be introduced for each level. In this chapter we discuss DSLs and the usage of the
APPLAB tool to implement the end-user level. At first we used a transparent appli-
cation-specific level which only reflects the motion control level, thus, making it
available at the end-user level. We have also considered different language con-
structs needed for the DSL of the application-specific level.

ABB’s robot programming language RAPID1 [ABB94] is used at the end-user
level, and since that is the level we were interested in studying we chose to use
RAPID as our base language. It is a Pascal-like language especially designed for
robot programming. The fact that each robot vendor has designed its own robot
language is often criticized by the rest of the software engineering community
(reinvention of computer programming). New languages are, however, designed to
better support the robot programmer in typical manufacturing situations. In fact,
the variety of different robot programming languages shows the need for DSLs. In
the ABB case, the special properties of the RAPID language and its run-time sys-
tem include:

• Backward execution. This is mainly useful for motion statements which then
makes the robot move backwards along its programmed path.

• Persistent variables. A variable declared as persistent (PERS) remains after
a power failure. The robot can automatically resume execution and continue
its task.

• Numerical variables. Floating point and integer values are declared as the
same type (NUM). Their internal representation is of no interest to the user of
the robot.

• Modules. Dynamically loaded libraries which are only loaded into memory
when needed.

• Placeholders. Non-defined parts of a program can be represented by place-
holders. The program is then syntactically correct but upon attempting to
execute a placeholder an execution error occurs. Yet undefined robot poses
are also allowed in the language. During execution the user is prompted to
define these robot poses via a teach-in procedure, in order to adopt to the
actual position of a workpiece.

An embedded interpreter, developed within ABB Robotics, for the RAPID language
is delivered together with new ABB robots today. Note that interpretation, instead
of compilation, is not a problem concerning execution speed (the mechanical robot
is slower anyway), but the interpretation has to take place on the target computer
to ensure timely operation. When developing a language such as RAPID, or when
extending it for special application areas like welding or gluing, appropriate lan-
guage-design tools are, of course, highly desirable.

1. or ARL, ABB Robot Language, which was its original name within ABB Robotics.

74 Chapter 6 Case Study - Robot Programming

6.3 Experimental Setup

We will now investigate how to support the design and implementation of the lan-
guage of the end-user level. An overview of the experimental setup is given in
Figure 6.2. The APPLAB system has been tailored to be used as a programming
and control interface to the motion control system of an ABB Irb-6 robot. Function-
ality for communicating with the motion control system via an embedded execution
environment on a target computer has been added, and a DSL based on the robot
programming language RAPID has been implemented in APPLAB. The DSL
includes the full syntax of RAPID extended with some instructions for controlling
the robot arm.

6.3.1 Robot Hardware and Interfaces

The Irb-6 robot used in our setup has five degrees of freedom, which means that
there are five motors moving the five joints of the robot. On each motor there is a
sensor for reading its angular position. The Motion Control software running on
the target computer controls the robot by reading the sensors of the robot, comput-
ing the necessary control signals to achieve the desired actions of the robot, and
sending these signals to the robot’s actuator hardware. The existing motion control
software of the robot laboratory and its interface was used, see [Nil96a] for further
details. The Interface of the motion control system consists of a number of library
routines written in C and Modula-2. These routines provide, for example, access to
the current position of the robot, and control of the robot arm and the gripper. The
target computer is a VME-based Motorola 68040 board with a network interface
connected to Sun workstations which are used for software development and for
running software tools such as APPLAB.

Host Computer

Target Computer

APPLAB with
RAPID programs

Embedded Execution
Environment

Interface
Motion Control

coordinating signals
.o-code

ABB Irb6 robot

Figure 6.2 APPLAB runs on the host computer and communicates with
the target computer which controls the robot.

ASEA

6.3 Experimental Setup 75

6.3.2 The Embedded Execution Environment

It is highly desirable to be able to change and reload the robot program while the
robot is working. This implies loading and binding the compiled application pro-
gram to software already running in the target system, and also to deallocate the
program when not used any more. This is dealt with in the embedded execution
environment (see Figure 6.3) using a software technique with cross compiled ‘plug-
in’ code-pieces [Nil96a] which are host controlled and managed over the network
via the load server. The load server provides the dynamic linker with the necessary
addresses for resolving all references in the code of the application program. Once
the code is loaded into memory the Interpreter running on the target computer is
used to execute the dynamically linked and loaded programs that control the robot,
and to control it with a small hand-held terminal (teach-in). Basic coordinating sig-
nals like load , run , step, and stop are used for communicating with the
embedded execution environment, and controlling the loading and running of
APPLAB programs.

6.3.3 The APPLAB-Robot Connection

Figure 6.2 shows how APPLAB communicates with the robot via the embedded
execution environment; by coordinating signals and .o code. Functionality for send-
ing and receiving the coordinating signals has been added to APPLAB. The .o code
sent to the embedded execution environment may contain instructions accessing
the routines of the motion control, as well as calls of a hook-instruction which tem-
porarily halts the execution of the application program. This hook-instruction is
used to implement step-wise execution of RAPID programs and is explained fur-
ther in Section 6.4.1.

Figure 6.3 The embedded execution environment of the target computer.

Available
routines

Motion Control
Interface

System routines

Application
program

Dynamic Linker

Load Server

Interpreter

load

r un,
step,
stop

load

link

execute

move

write
debug
math

grip on
grip off

76 Chapter 6 Case Study - Robot Programming

6.4 Implementing the End-User Level in APPLAB

An extended and modified version of RAPID was implemented in APPLAB. Instead
of implementing full interpretation (backwards and forwards) and binary code gen-
eration, we decided to take the short-cut to map RAPID to C code and to only
support the sequential execution model. A standard C compiler can then be used
to generate executable code for the hardware actually used. This approach was tak-
en since we are interested in studying the language level, and not the details of the
run-time system.

The RAPID to C translation was conveniently done by using the attribute gram-
mar support supplied by APPLAB. An OOSL aspect of the RAPID grammar was
used to describe the mapping from RAPID to C. A code attribute and equations
defining this attribute were declared for each grammar rule. The C-translation of
a RAPID program can then be generated by evaluating the code -attribute of the
root of the RAPID program tree. Figure 6.4 shows how a MOVELIN-statement in
RAPID is translated to C, using the embedded execution environment by accessing
a MoveLinear -function. This is later executed by a call to a routine in the basic
motion control system. A more complete example is shown in Figure 6.5 which con-
tains a snapshot of an APPLAB session. The code generation for the robot-specific
instructions move_linear and grip_on, is shown in the OOSL window. The
PinTray window shows part of a RAPID program which gets pin by pin out of a
tray and puts them at some goalPos . Part of the C code generated for the PinTray
program is shown in the C-code window. The calls to NextInstruction are used
to allow step-wise execution of the program currently running on the robot.

Figure 6.4 An example of accessing motion control routines in an end-user
program. The “Empty” arguments of the Trajec.CartGoto call are dum-
mies; these formal parameters are used for more advanced motions.

......

MOVELIN x;
.....

RAPID grammar-OOSL aspect

move_linear: node C_lib_proc::=
(a_C_exp: ref C_exp)

{
eq code := nl_indent&

“MoveLinear(“&a_C_Exp.code&”)”
};

Generated C-code

void RapidProgram(void)
......

MoveLinear(x);
.....

Call into motion control system

MoveLinear(x):
Trajec.CartGoto(x, 0.0,

Trajec.EmptyProcedure,
Trajec.EmptyCartProcedure,
Trajec.EmptyJointProcedure,
Trajec.EmptyStateProcedure);

RAPID program

6.4 Implementing the End-User Level in APPLAB 77

6.4.1 Execution of Application Programs

Functionality for receiving and sending the coordinating signals mentioned in Sec-
tion 6.3.3 has been added to APPLAB. By using these signals the system
communicates with the embedded execution environment. The end-user controls
the execution of robot programs from APPLAB via a menu containing the com-
mands Load program, Run, Step and Stop corresponding to the coordinating
signals mentioned in Section 6.3.2. Upon issuing the Load program command
APPLAB performs code generation for the current program, i.e. generates C code
and compiles it. The cross-compiled code is then sent to the embedded execution
environment along with a Load -signal. The application program is then dynami-
cally linked and loaded into the memory of the target computer. When the end-user
issues a Run or a Step command, the corresponding signal is sent by APPLAB to
the interpreter of the embedded execution environment which launches the execu-
tion of the currently loaded program.

Debugging Support for RAPID Programs

Debugging support for programs written in APPLAB was achieved, as mentioned
earlier, by invoking a hook-instruction for each instruction of the RAPID program.
When the application program is executed, control is returned to the interpreter at

Figure 6.5 A screenshot from APPLAB showing the RAPID program
PinTray and its corresponding C-code. The RAPID-to-C translation is
defined in the OOSL window.

78 Chapter 6 Case Study - Robot Programming

each such hook-instruction. The interpreter decides whether to continue executing,
or to stop. While performing step-wise execution of an application program a step -
signal indicating the current point of execution is sent to the invoking APPLAB
session. This point is received from the invoked hook instruction. Upon receiving
this signal APPLAB locates the instruction in the application program and high-
lights it to indicate the current point of execution. Execution of the robot program
is resumed by the interpreter when the user issues a step or a run command which
sends the corresponding signal to the embedded execution environment.

Generating the calls to this hook-instruction was straight forward. The OOSL
grammar describing the code generation for RAPID was extended to also generate
a call to the hook-instruction for each RAPID instruction, together with an identi-
fier of the current position in the application program.

6.5 A DSL for the Application-Specific Level

The RAPID language is in itself a DSL for robot programming, but when consider-
ing the end-user level of an application like gluing or welding, the problem domain
changes. Instead of general robot movements the user is concerned with applica-
tion-specific actions like, for example, turning the welding equipment on and off.
In standard RAPID this is achieved by using a module (library) containing the
application-specific routines. The syntax of procedure calls in RAPID is such that
they can be perceived as being part of the language (i.e. without parentheses).
Even so, the problem of formally unexpressed conventions for correctly using the
routines remains.

The Problem of Modal Settings

The definition of desired language extensions is a topic of its own, but one pub-
lished [Nil96a] desired feature is to support the robot programmer concerning so
called modal settings such as base coordinate systems, definition of end-effector
geometry (what kind of equipment is attached to the robot arm), speed limits along
programmed paths, or some application-specific settings of external equipment.
Such settings are typically made via procedure calls that change some logical state
of the system, or global variables that are manipulated directly. Since the program-
mer then explicitly has to restore the settings, this technique often gets hard to
manage when robot programs grow in size and complexity. This is mainly a prob-
lem within so called on-line programming when the programmer may edit and
execute individual statements in any order, not necessarily in sequence. This may
affect the modal settings, and since the equipment is used during the program-
ming, the settings of the equipment must agree with those made in the robot
program. In robot systems today, this is handled manually by the programmer, and
when not correctly done the result may be unexpected (and sometimes dangerous)
robot behaviour. Without going into the details of industrial robot programming,
let us illustrate how DSLs can help solve this type of problem.

As an example, assume that we have a robot language in which we can express
linear motions between defined poses using a MOVELIN statement; a motion starts

6.5 A DSL for the Application-Specific Level 79

from the current pose of the robot arm and the robot hand is moved in a straight
line to the pose defined by the coordinate following the keyword MOVELIN. Then, as
an attempt to handle the modal settings in a structured way, we want to extend the
language in the following two ways:

• Possibility to express motion coordinates relative to an intermediate coordi-
nate system which we call a FRAME. Programming a sequence of motions
relative to a certain FRAME should be supported. Teach-in programming of
such motions requires the frame to be properly initialized to ensure that the
motion specification really is relative to the frame. Otherwise, when the
frame is moved due to a relocation of its corresponding work-piece, the robot
motions will not be properly adjusted, and an unexpected robot motion (back
to the old location of the work-piece) will occur.

• Dedicated support for arc-welding applications. This is related to the previ-
ous item in that we need a DSL extension in terms of a ‘local welding scope’,
or block, i.e., the system should ensure that welding is started and stopped
properly when such a block of the robot program is entered and exited. This
application-specific block has been named ARCWELD. An ARCWELD statement
accepts welding parameters (such as voltages, currents, wire feed etc.) defin-
ing how to perform welding within its scope.

The original RAPID language, including its motion specification package, provides
a fixed set of intermediate frames which can be used as optional arguments to pro-
cedures, but the frames are data and not supported by the language. A deeper
analysis [Nil96a] shows that interactive programming and evaluation of individu-
al statements, as done in the original ABB system, implies that the FRAME and
ARCWELD features should be supported by the language. Further, note that
ARCWELD is an application-specific construct, but a robot as such is a general-pur-
pose machine. This means that this construct has to be added afterwards either as
a language extension, or by utilizing an appropriate abstraction mechanisms of a
general-purpose robot language. This would support the correct usage of modal set-
tings as well as make it possible to correctly initialize the robot when the user
explicitly sets the point of execution during teach-in or debugging.

Solution 1: Language Extension

Since extending an existing language is not a trivial operation, and because soft-
ware engineers in general think of a language as something statically defined,
current industrial robot languages do not (yet) provide this type of programming
support for modal settings. But, when using a language laboratory like APPLAB
language constructs like FRAME and ARCWELD can quickly and easily be added
to an existing language. An example program using the desired language exten-
sions FRAME and ARCWELD is shown in Figure 6.6. While executing different parts
of the program the affected modal settings are handled by the language implemen-
tation, like calling startweld for an ARCWELD block. A similar solution for
hierarchical editors (which are used in the ABB RAPID system) was presented in
[Nil96a].

80 Chapter 6 Case Study - Robot Programming

Solution 2: Inline Procedure Specialization

The inline procedure specialization of the BETA language [LMN93] solves the
problem of application-specific blocks in an elegant way. A procedure in BETA can
be specialized using the inheritance mechanism of OO languages. An inner-con-
struct in the body of the procedure code is used to indicate where the code of the
specialization is to be executed. Such procedure specializations may appear inline,
avoiding the declaration of a new specialized procedure. Consider the following
example, where FRAME and ARCWELD have been defined using an extension of
RAPID that supports inline procedure specializations (in RAPID syntax):

PROC ARCWELD(\num I, \num U) PROC FRAME(CoordSystem base)
! Block for welding ! Block for setting a local frame

startweld I,U; VAR CoordSystem oldBase;
INNER;
stopweld; oldBase:=currCoordSystem;

ENDPROC setCoordSystem base;
INNER;
setCoordSystem oldBase;

ENDPROC

RAPID has here been extended with an INNER construct. In the ARCWELD proce-
dure, INNER is used to encapsulate any specialization of ARCWELD with calls to
startweld and stopweld which turns the welding equipment on and off in a cor-
rect fashion. The FRAME procedure sets the coordinate system to the value given as
a parameter, and after executing possible specialization code resets the original
coordinate system. The program of Figure 6.6 can be rewritten, by specializing the
procedures ARCWELD and FRAME, resulting in the following code:

MOVELIN home;
FRAME base_plate

MOVELIN start_pose;
ARCWELD \I:=10 \U:=60

MOVELIN mid_pose;
MOVELIN end_pose;

END; ! ARCWELD
END; ! FRAME
MOVELIN clean;

Figure 6.6 Proper management of modal settings can be ensured by
implementing special language constructs which deal with the settings.

MOVELIN home;
FRAME base_plate

! Coordinate system implicitly set
MOVELIN start_pose;
ARCWELD \I:=10 \U:=60

! startweld 10, 10 implicitly called
MOVELIN mid_pose;
MOVELIN end_pose;
! stopweld implicitly called

END;
! Coordinate system implicitly reset

END;
MOVELIN clean;

6.6 Experience and Future Work 81

Note that the syntax is identical to Solution 1. The difference lies in the implemen-
tation of the application-specific blocks, FRAME and ARCWELD.

Comparison of the Solutions

Inline procedure specialization is the most general of the two proposed solutions.
Once the needed abstraction mechanisms are implemented, any type of applica-
tion-specific blocks can be created. Extending the language with additional
constructs is simpler to implement, but results in more work in the long run since
the language has to be extended for each desired type of application-specific block.

We are using APPLAB and the developed robot interface for rapid prototyping
of both kinds of solutions. An attribute grammar is used to expressing the seman-
tics of the extension. The extension of the syntax is trivial. Once the RAPID
language is defined within APPLAB, language extensions such as introducing an
ARCWELD or a FRAME construct can be implemented within a day, including
testing on the real robot. Introducing the more general extension of inline proce-
dure specialization could also be done with a reasonable amount of work in a future
version of APPLAB which provides static-semantic support for object-oriented lan-
guages (which is needed for specifying ‘subclassing’ of procedures). The extension
of a base language like RAPID will be further supported in future releases of
APPLAB when the modular and multi-layered grammars presented in Chapter 7
are implemented.

6.6 Experience and Future Work

We have used APPLAB in a case study on the development of DSLs and integrated
programming support for industrial robots. The programming of industrial robots
is a complex task with the need for DSLs at several different levels. The study has
confirmed the usefulness of the APPLAB system for DSL development, and also
pointed out a number of interesting areas for future development of the system.

The use of a structure-oriented environment proved important because it
relieves programmers of having to remember detailed syntax or semantics for an
experimental, changing language; the system automatically provides guidance
such as menus for structure-oriented and semantic editing. The language imple-
mentation was changed and updated hundreds of times. The support for
incremental language design was then invaluable, as well as APPLAB’s rapid lan-
guage prototyping features. We expect this approach; a structure-oriented
incremental language laboratory based on immediate computation, to be very suit-
able for the development and experimentation with extensions of the base robot
language to different specialized robot application areas.

As the language specification grew we experienced a need both for semantic
editing support of the language specifications, as well as the possibility to split the
specification into several modules, as described in Chapter 7, which would make it
easier to handle the complexity of the language implementation. As a result of this
a small case study was performed on introducing such support for the abstract
meta grammar (see Section 3.6.1).

82 Chapter 6 Case Study - Robot Programming

So far, we have only looked at the end-user level and introduced a language for
that level. If we continue by looking at the application-specific level and introduce
a DSL for that level, support for multi-layered grammars will be needed in
APPLAB. That is, support for implementing an extension to a base language in
terms of programs written in that base language, which is also described in Chap-
ter 7.

The motivation of this case study was to evaluate APPLAB’s suitability as a tool
for DSL development and programming, as well as identify desirable extensions,
which turned out to be multi-layered languages, modular languages, and semantic
editing support of language specifications. A more extensive evaluation of the sys-
tem is presented in Chapter 8 where APPLAB is measured against the
requirements we have set on DSL tools.

Chapter 7

Grammar Modularization

This chapter sketches a technique for supporting reuse of language specifications
within an integrated interactive environment like APPLAB. The introduction is
followed by a discussion of object-oriented modular grammars and multi-layered
grammars, which are then further explained by an example. Related work within
attribute grammars and systems supporting grammar reuse is discussed. The
chapter is concluded with a summary and future work.

7.1 Introduction

Modularization is as important for language specifications as it is for programs.
Dividing a specification into separate modules is a way of dealing with its complex-
ity which increases rapidly as the different aspects of a language are defined.
Modularization also supports reuse, extension and adaptation of existing specifica-
tions. Since most programming languages contain roughly the same basic building
blocks, like statements, expressions and procedures, allowing the reuse of existing
specifications reduces the amount of work needed to design a new language.

A language specification can be modularized in different ways. For example, a
module may contain a complete description of part of a language, e.g., expressions,
or it may contain a description of a certain aspect of a language like its concrete
syntax or code generation. The most flexible approach is to allow a combination of
both. That is, allow a language to be extended by adding a module containing
descriptions either of additional language constructs, or of an additional aspect to
the language. We have chosen to support both types of modularization by a combi-
nation of modular and object-oriented grammars; object-oriented modular
grammars. A grammar module is then used to extend a grammar specification with
new language constructs while the object-oriented features are used to adapt, i.e.
override by inheritance, a certain aspect of the grammar.

An extension of this modularity is used in multi-layered grammars which sup-
port the construction of a new language on top of another one. This is of interest in
a number of applications, for example, robot programming. A multi-layered gram-
mar extends a base language with framework-specific language extensions, i.e.
language constructs corresponding to the functionality of a framework. The imple-

84 Chapter 7 Grammar Modularization

mentation of these framework-specific language constructs is similar to syntactical
macros [Lea66]. They are defined in terms of the base language and the routines
of the framework. Expansion is handled internally by the system allowing the pro-
grammer to use the language extensions (or macros) without having to consider
their implementation.

The current version of APPLAB does not contain support for modular or multi-
layered grammars. This chapter outlines techniques for such grammars which we
plan to implement in the APPLAB system.

7.2 Object-Oriented Modular Grammars

As a first step towards supporting a general modularization mechanism for gram-
mar specifications, we have chosen to look at specifying a language by extending a
base language. This corresponds to reusing one grammar module, i.e. the base lan-
guage, when designing a new language. It is desirable to reuse as much as possible
of the existing specification, as well as add new features and adapt the existing
ones. By importing the base language, rather than copying its definition, changes
made to the base language can be automatically incorporated into the extended
language.

In order to make the reuse of a language specification practically useful, mech-
anisms for adapting and extending reused language specifications are required.
We have used the inheritance mechanism of the object-oriented paradigm to
achieve this. A new language construct can then inherit all the attributes and rules
of an existing construct, thus, reusing the original specification. We plan to inves-
tigate additional techniques for adapting constructs in an imported module. The
excluding of certain (imported) constructs has been discussed by Aksit et al. in
[AMH90] and is used in TaLE [JKN95, KM95]. TaLE also allows for the adaptation
of components of an inherited language construct, like, e.g., the declaration part of
a procedure declaration. The exclusion and adaptation of language constructs is
not directly supported by OO modular grammars, but can be simulated by defining
static-semantic rules that makes them illegal.

Figure 7.1 shows the architecture of a simple OO modular grammar. Two addi-
tional statement constructs, Loop and While , are added in the Loops module by
importing the Stmts module and then specifying the new constructs as subclasses
of Stmt . The existing features of Stmt can be modified by reimplementing the cor-
responding rules in the specifications of the new language constructs and new
features can be added by defining additional attributes. This allows for great flex-
ibility. One can either reuse all or part of an existing language construct. Also, the
inheritance mechanism incorporates the new constructs with the existing ones. For
example, the Or construct specified in the Bools module, as a subclass of Exp,
can occur (syntactically) at any place in a program where Exp is legal. Further-
more, new attributes can be added to a non-terminal by using the addto
declaration of OOSL [Hed92a]. In our example, the non-terminal Exp is extended
in the Bools module with an error attribute and default equations for that
attribute. This means that Add also contains an error attribute in the resulting
Toy language.

7.3 Multi-Layered Grammars 85

7.3 Multi-Layered Grammars

In a multi-level system, like robot programming (see Chapter 6), several program
layers are used in programming an application. Implementing a DSL for each level
is a way of capturing and enforcing the conventions of each such layer. The depend-
encies of the resulting language hierarchy could be expressed and supported by a
multi-layered grammar. Such a grammar consists of a number of program and lan-
guage layers. A program layer which implements some functionality, consists of a
library, a framework or an application program. A language layer introduces new
syntax and semantics, encapsulating the functionality and conventions of the pro-
gram layer at the previous level.

Figure 7.2. shows an example of expanding the base language, GBL, for a real-
time framework, RT Framework . The framework is programmed in the base lan-
guage, whereas the application program is programmed in the extended language
GBL+RT. The grammar for the extensions, GRT, can access the framework to imple-
ment the code generation of the new language constructs.

WhileLoop

Figure 7.1 The architecture of a modular object-oriented grammar.

Exp Add

Or +Exp

Stmt

Stmts

+Stmt

Exps

Bools

Toy

Import

Inherit

Loops

C Class

+C Class extension

error

Module
M

Imports

Figure 7.2 The architecture of a multi-layered grammar consisting of a base lan-
guage, GBL, a language extension for real-time programming, GRT, a framework (RT
Framework), and an application program expressed in the extended language, GBL+RT.

RT Framework

Application

GBL

Language Layers Program Layers

Programmed in

Programmed in

GRT

Invokes

86 Chapter 7 Grammar Modularization

A programmer using an extended language is primarily interested in seeing the
new language constructs and their syntax. The system, on the other hand, needs
to consider how the new constructs are implemented in terms of the base language
and the framework, in order to correctly perform code generation and static-
semantic checking. In a system whose internal representation of programs is based
on abstract syntax trees (ASTs), expansion trees can be used for representing the
implementation of the new language constructs. Similarly to macros which are not
expanded until compile time, expansion trees are not constructed until an attrib-
uted syntax tree is evaluated. This can be done by using Higher-Order Attribute
Grammars [VSK89] which allow a node in the tree to be defined by the value of an
attribute. We want such nodes to be invisible to the user, but used by the system to
perform attribute evaluation, and, thus, code generation and static-semantic
checking. Since the structure of an expansion tree follows the base language the
system can evaluate its attributes in the same way as for the other parts of the pro-
gram tree.

7.4 An Example

Real-time programming is an example of programming for which an object-orient-
ed framework, or a library, often is used. The framework then handles the
concurrency and real-time aspects of the programming. Correct usage of the frame-
work is crucial for the correctness of the program. For example, consider a monitor
[Hoa85] which according to its definition is intended to be a language construct
providing mutual exclusion. Part of the real-time framework is as follows:

class Monitor;
begin

procedure Enter;
(* Called first of all in each monitor procedure. *)

procedure Exit;
(* Called last in each monitor procedure. *)

end ;

class Event(mon);
ref Monitor mon;

begin
procedure Await;

(* The monitor must have been entered. *)
procedure Cause;

(* The monitor must have been entered. *)
end ;

A monitor is defined as a class with the methods Enter and Exit . An example of
a convention for the Monitor class is that the method Enter always should be
called on entering, and the procedure Exit always should be called on exiting a
method of the Monitor class. By designing a monitor language construct in a lan-
guage extension, GRT, this convention could be described and enforced by the
language, supporting the programmer in correctly using the monitor concept.

The object-oriented framework for real-time programming is expressed in the
language GBL. Two example programs for a buffer are shown in Figure 7.3. Exam-
ple 1 uses the framework directly in a base language, GBL, while Example 2 uses

7.4 An Example 87

the extended language, GBL+RT. The examples show the procedure get which
returns the next item in the buffer, using a monitor to exclude other processes from
accessing the buffer data. In Example 1, the get procedure contains calls to the
monitor methods Enter and Exit , and the body of the Buffer class contains state-
ments for creating the event variables. Note that Example 2, which uses the
language extensions, does not contain any such (explicit) calls to the classes or
methods of the framework. Instead, this is dealt with in the language implemen-
tation. Note, that the encapsulation of the body of the monitor procedure could
have been expressed in a language like BETA [LMN93] that allows for the special-
ization of actions using an inner construct. This illustrates that the base language
used to implement a library or framework determines to which extent the syntax
and semantics of the domain entities can be described.

7.4.1 Using O-O Modular Grammars for Language Extension

Consider the language used above in Example 2, where a base languages is extend-
ed by adding a monitor construct. Using the OO modular grammars, the new
construct MonitorDecl can be declared as a subclass of the existing Decl decla-
ration. Part of the specification of the extended language, GRT, is as follows:

begin
monitor Buffer(size);

integer size;
events NonFull, NonEmpty;
begin

character array
thisBuffer(1..Size);

integer inp, outp, cnt;

character procedure get;
begin

while cnt=0 do await NonEmpty;
get := thisBuffer(outp);
outp := mod(outp,size) + 1;
cause NonFull;

end ;

procedure put(character ch);
begin end ;

.....

end Buffer;
end

Example 2 (GBL+RT)
begin

Monitor class Buffer(size);
integer size;

begin
ref (Event) NonFull, NonEmpty;
character array

thisBuffer(1..Size);
integer inp, outp, cnt;

character procedure get;
begin

Enter;
while cnt=0 do NonEmpty . Await;
get := thisBuffer(outp);
outp := mod(outp,size) + 1;
NonFull.Cause;
Exit;

end ;

procedure put(character ch);
begin end ;

.....

NonFull :- new Event(this Buffer);
NonEmpty:- new Event(this Buffer);

end Buffer;
end

Example 1 (GBL)

Figure 7.3 Two examples of a Buffer. Example 1 uses the framework (see page 86)
directly while Example 2 uses it via a real-time language extension.

88 Chapter 7 Grammar Modularization

MonitorDecl::= (1)
Decl(“monitor” Id “events” Events “begin” Block “end”)

{ (* expansion definition: (2)
equations defining the expansion tree impl. the
monitorDecl construct in terms of the framework.*)

(* static semantics: (3)
equations which check that all variables are private
(protected) to this Block. *)

(* code generation: (4)
equations which compute the code to generate by
using the expansion tree.*)

};

addto ProcDecl (5)
{ (* expansion definition: (6)

equations defining an expansion tree for
declarations appearing within a MonitorDecl *)

(* code generation: (7)
equations which compute the code to generate by
using the possible expansion tree. *)

};

The object-oriented attribute grammar notation OOSL [Hed92a] is used in the
example. The addto construct in (5) inserts additional rules and attribute decla-
rations into the original declaration of ProcDecl . In (1) the abstract and concrete
syntax are specified, introducing the new keywords monitor and events , and
stating that a MonitorDecl declaration contains an Id , a list of Events , and a
body (Block). Static-semantic rules that ensure that variables declared within a
MonitorDecl are protected, that is, only accessible from within the MonitorDecl
are specified in (3). The code generation for the MonitorDecl construct (4)
involves generating calls to the framework using the defined expansion tree (2).
This includes encapsulating any procedures declared within the MonitorDecl
with calls to the framework. This is done by extending the code generation (7) of
the ProcDecl definition (5) to include the defined expansion tree (6).

7.4.2 Implementing A Language Construct With Expansion Trees

Part of the AST for the program in Example 2 (see Figure 7.3) is shown in Figure
7.4. The monitor construct of the extended language, GBL+RT, is represented by a
MonitorDecl node. This node has an Id (“Buffer ”), an Events node, a Block
node containing the procedure Get , and an expansion tree. The expansion tree of
MonitorDecl (specified in (2) above), maps the Buffer monitor construct to a
Buffer class which is a subclass of the monitor class of the real-time framework.
The get procedure of the buffer also has an expansion tree, (specified in (6) above),
which encapsulates the body of the procedure with calls to the methods Enter and
Exit . In order to do this the expansion tree refers back into the program AST, in
this case the body of the get procedure. The calls to Enter and Exit will be bound
to the corresponding methods of the monitor class of the framework via the Buff-
er class declared in the expansion node of MonitorDecl .

7.5 Related Work 89

7.5 Related Work

The problems of dealing with complexity, extensibility and reusability in language
specifications, have been identified by several researchers, e.g., [AMH90, MM94,
Bos95b]. A common approach in dealing with these problems is to apply the same
concepts as are used for dealing with them in programming languages, to language
specifications, and attribute grammars. In doing so, the same benefits as are
gained for the programming level, are made available at the language implemen-
tation level. Four main approaches based on AGs are identified in [Paa95];
attribution paradigms, which allow for a more efficient specification of attribute
values, structured AGs, which use ideas from block-structured programming lan-
guages for structuring a specification, modular AGs, with which a specification can
be constructed by combining a number of modules, and object-oriented AGs, which
incorporate the OO paradigm. Our approach is a combination of modular and
object-oriented AGs.

Modular AGs cover a number of different types of modularization, varying in
which part of the grammar is modularized; either the nonterminals and produc-
tions, which is used in the ASF/SDF meta environment [Kli91], or the attributes
and equations for a certain aspect of the language, which is used in, e.g., MAGGIE
[DC90], Eli [Kas96], the Synthesizer Generator [RT89] and in FNC-2 [JBP90,
JP91]. Modularizing the nonterminals results in modules which fully implement
part of a language. This is useful for language subsets which are identical in sev-
eral languages, for example, expressions. Modularizing the different aspects of a
language caters for easily adding new aspects to a language. The modular AGs
(MAGs) used in MAGGIE consist of classes of attribute computations (or equa-
tions) which are merged, by the system, with a CFG resulting in a monolithic AG.
A different approach to modularizing according to language aspects is to allow a
module to consist of any number and combination of nonterminals, productions,
attributes and equations. Since this allows for the most flexible packaging it is this
type of modularity we wish to support in combination with the object-oriented
approach.

ClassDecl

“Monitor”

“get”

GBL+RT Program

Id

Events

“Exit”

Figure 7.4 Part of the abstract syntax tree for a program (see Figure 7.3) expressed
in the extended language, GBL+RT.

An AST node

An expansion node

“Enter”

Ref. into program AST

“Buffer”

Block

Decls Stmts

Id Procedure

Id Block
Params

MonitorDecl

90 Chapter 7 Grammar Modularization

We have used the inheritance mechanism of the object-oriented paradigm to
support the reuse and adaptation of existing language constructs. In [AMH90], the
term ‘grammar inheritance’ is used to indicate that a grammar (describing the syn-
tax) inherits productions from a ‘superclass’ grammar, with the possibility to
exclude certain constructs. Our approach is different in that we say that a class cor-
responds to a production which inherits attributes and semantic functions from a
’superclass’, which is also a production. This is similar to the approach taken in
Mjølner/Orm [Hed89a] and in OOAG [SK90]. This type of inheritance for language
constructs allows for overriding and extension of attributes and rules, but not for
exclusion of language constructs. Utilizing the polymorphism of the object-oriented
paradigm means that no extra mechanisms need to be introduced into the gram-
mar notation for supporting overriding and extension of attributes and semantic
functions. The inheritance mechanism also supplies the ‘glue’ for combining the
grammar modules.

TaLE [JKN95, KM95, HHK97] is an object-oriented framework for language
implementation which also allows for the reuse of language concepts by inherit-
ance. In addition to overriding and extending the semantics of an inherited concept
TaLE also supports the adaptation of the components of that concept. Take the
monitor example presented earlier in this chapter. Assuming the following class
declaration

classDecl::= (superClass, “class”, idUse, formalPars, classBody)

a monitor construct, could be specified as a subclass of classDecl as follows

monitorDecl ::= classDecl (monitorSuper, -, -, -, -)

The declaration of superClass in classDecl is then refined to monitorSuper,
a subclass of superClass using the Monitor class of the real-time framework as
the superclass. The remaining components of classDecl are left unchanged
(denoted by -). This kind of adaptation (or refinement) which is not supported by
out OO modular AGs, could be very useful for, e.g., adapting existing language
specifications to a DSL.

In [Bos95b], a delegating parser is described which allows a grammar specifica-
tion to be split into several grammar modules. The parser is then implemented as
several separate, delegated, parser components which each parse according to a
grammar module. This allows for separate generation (analogous to separate com-
pilation) of a parser. APPLAB works by supplying language-specific behaviour by
interpreting grammar specifications, and does not have a generation phase, and,
thus, not the problem of having to update generated code after a change of the
grammar specification.

Implementing a new language on top of an existing one can be done by using a
preprocessor which transforms the source code into code of the base language.
When supporting source-code debugging and reporting of run-time errors these
transformations need to be reversed in order to present the affected source code
and not the code actually executed. This is done in KHEPERA [FNP97] and in
ASCENT [GCN92] which also supports the reuse of programming environment of
the base language. We expect the multi-layered grammars outlined here to be a

7.6 Summary and Future Work 91

suitable starting point for providing similar support for source-level debugging.
The reverse mapping of execution points to source code could then be achieved by
taking advantage of the fact that the expansion trees (which are used to generate
the executable code) are connected to the corresponding nodes in the original pro-
gram tree.

7.6 Summary and Future Work

Framework-specific language extensions which supply framework-specific syntax
and enforce the conventions of the framework make it safer and easier to use
object-oriented frameworks. An object-oriented grammar notation allows new lan-
guage constructs to be added by subclassing existing grammar rules. The new
constructs can either reuse or respecify the semantic properties of the existing lan-
guage constructs. When working in a programming environment which represents
programs as abstract syntax trees expansion trees can be used to implement new
language constructs in terms of a framework. Static-semantic checking and code
generation, as well as source code debugging, can then be supplied for the extended
language. We are planning to add such support for the design and implementation
of framework-specific language extensions to our language laboratory, APPLAB.

There are several interesting issues to look into concerning the use and imple-
mentation of framework-specific language extensions. For example, when a base
language is changed this affects languages implemented as an extension of that
base language, and programs expressed in the changed language. A mechanism is
then needed for transforming the affected languages and programs into consistent
versions according to the new version of the base language, by for example using
techniques like those in the TransformGen system [GKL94]. It is also desirable to
be able to allow multiple language extensions. That is, to combine several language
extensions into one extended language. There may then be combinations of lan-
guage constructs which interfere with each other. Can such clashes be avoided or
resolved automatically?

A lot of work remains to be done in this area. Both in implementing the pro-
posed techniques and in doing further research into the area. Due to its declarative
nature APPLAB is a suitable platform for performing such research, and trying out
new ideas in practice.

92 Chapter 7 Grammar Modularization

Chapter 8

Evaluation

This chapter discusses how well APPLAB, and the techniques used to implement
the system, supports the DSL approach. The system is evaluated against the
requirements for DSL support listed in Chapter 2. Measurements of APPLAB’s
performance in terms of time and memory consumption are also presented.

8.1 APPLAB as a DSL Tool

The main features which make APPLAB suitable for DSL programming and rapid
language prototyping (which is appropriate for the design of DSLs) are:

• Language-sensitive editing

• Immediate feedback on changes

• Version control

In addition, the execution model used in the robot case study provided DSL pro-
gramming support. The techniques for supporting reuse and extension of language
specifications described in Chapter 7 are not implemented in the current version
of the system. This feature can therefore not be evaluated in practice, but we judge
that it will provide the system with a powerful mechanism for quickly and easily
developing new DSLs. In Chapter 2, on page 18, a list of requirements for the DSL
approach was given. APPLAB will now be evaluated against these requirements.
Table 8.1 contains a summary of this evaluation.

94 Chapter 8 Evaluation

8.1.1 Language-Sensitive Editing

Requirement R1.(’Interactive language-sensitive programming environment’) is
fully met by APPLAB. Programs are edited in a structure-oriented editor which
supports semantic editing, as well as language-sensitive text editing. The editing
is an interaction where the user issues editing commands like picking a language
construct for the current editing focus from a menu containing all legal constructs.
The selected construct is then inserted into the program document. Similarly, all
legal names at the current editing focus can be accessed via a names-menu. These
two types of menus are of special assistance to a user unfamiliar with the details
of the current programming language. Also, during text editing, all syntactical
errors are reported, allowing the programmer to correct them, before inserting the
edited text into the program document.

The environment used for language design and implementation in APPLAB is
also used for program development. Thus, requirement R5.(’DSL programming
support for the language-design level’) is also fully supported by APPLAB since the
same support is offered at the language-design level as for the programming level.
That is, an interactive language-sensitive environment which aids the DSL design-
er in developing a language. For example, two different kinds of names-menus
have been specified for the abstract grammar. The first type of menu contains all
available productions (non-terminals). The second type of menu contains the

The Programming Level

R1. Interactive language-sensitive programming environment Full 8.1.1

R2. Source code debugging Indirect 8.1.4

R3. Version control of language specifications and programs Full 8.1.3

R4. Transformation of programs to new language version Part 8.1.3

The Language-Design Level

R5. DSL programming support for the language-design level Full 8.1.1

R6. Rapid prototyping of languages Full 8.1.2

R7. Collaborative language design Some 8.1.3

R8. Building a language from existing language blocks No 8.1.5

R9. Language extension No 8.1.5

R10. Multi-level languages No 8.1.5

R11. Translating a problem domain into a ‘good’ DSL No 8.1.5

R12. Portability Indirect 8.1.4

Table 8.1: APPLAB’s current DSL support

8.1 APPLAB as a DSL Tool 95

names of all non-terminals which need to be defined. These two names-menus are
of great assistance in specifying an abstract grammar since the language designer
can immediately see which non-terminals are left to specify and, when defining a
new production rule, which non-terminals are available.

8.1.2 Immediate Feedback on Changes

Requirement R6.(’Rapid prototyping of languages’) is fully supported by APPLAB.
Immediate feedback on changes made either to a language specification, or to a
program is given in the interactive editing environment. Upon editing a language
specification the resulting changes are immediately seen in the program window.
This was very valuable in the development of the RAPID language implementa-
tion. The language specification was revised hundreds of times, at first to create a
correct specification of the base language, and later in experimenting with differ-
ent language extensions. The rapid language prototyping provided by the
immediate computation mechanisms of APPLAB made it possible to quickly try
out the new constructs while getting them ‘right’.

The immediate feedback mechanism is also vital to the syntactic and semantic
editing support. The structure-oriented and names menus always reflect the cur-
rent status of the program and of the grammar.

8.1.3 Version Control

Requirement R3.(’Version control of language specifications and programs’) is fully
met by APPLAB. The immediate updating of a program to follow a new language
specification, as described in the previous section, applies only to example pro-
grams within a grammar document. For separate program documents, APPLAB
supplies version control (inherited from the Orm environment), keeping track of
which grammar version was used to construct the program document. This allows
newer experimental versions of the DSLs to be developed while existing programs
continue to use an older stable version. When a newer stable version has been
established, the user can decide whether a program should continue to use the old
version of the grammar, or if it should be updated to conform to the newer version.
This scheme was very valuable in order to make sure that existing programs did
not become inconsistent due to language changes, and to allow the user to control
when updates to newer DSL versions were made.

Requirement R4.(’Transformation of programs to new language version’) is
partly met by APPLAB. The limited support provided by the system to transform
a program to adhere to a new grammar version (or a grammar aspect to adhere to
a new meta-grammar version) proved invaluable in handling the numerous small
grammar changes. On a couple of occasions when we actually updated the lan-
guage description formalisms themselves (the meta grammars), we were able to
update our DSL specifications in a controlled manner. Extending this transforma-
tion support is, however, a very important issue if a system like APPLAB is to come
into production use.

96 Chapter 8 Evaluation

Requirement R7.(’Collaborative language design’) is also only partly met by the
system. The version system in APPLAB supports parallel development of variants
of documents allowing, for example, two developers to work on different aspects of
a grammar. However, because merging of variants is not yet supported, we could
not make full use of this feature in our case study. For future releases of APPLAB
we would like to include advanced fine-grained versioning and incremental merg-
ing of programs and grammars similar to the COOP/Orm system [MAM93, MA96].

8.1.4 Program Execution

Requirements R2.(’Source code debugging’) and R12.(’Portability’) are not directly
supported by the system but both were achieved in the case study on robot pro-
gramming. Portability of the application programs was obtained by generating C
code for the robot programming language, RAPID. Any standard C compiler can
then be used to generate binary code for the desired target machine. This approach
allowed us to specify the code generation for RAPID with a minimal amount of
effort, and produce executable code for the target computer.

Source code debugging was implemented by using an (external) component (the
embedded execution environment) for administering the program execution. This
component communicates with APPLAB via explicit signals and through adding
calls to a hook instruction in the code generation of the application program. See
Section 6.3 and Section 6.4 for further details.

8.1.5 Reuse of Language Specifications - Future Work

Requirements R8-10 are currently not met by APPLAB but will be supported in the
future by the object-oriented modular grammars and the multi-layered grammars
presented in Chapter 7. These grammars promote the reuse of language specifica-
tions, thus, enabling a faster development of new languages, requiring less effort
than with today’s system.

Requirement R8.(’Building a language from existing language blocks’) will be
directly met by the object-oriented modular grammars which allow a language to
be constructed by combining a number of (existing) grammar modules. This fea-
ture will also provide support for Requirement R9.(’Language extension’) by
allowing a base language specification to be combined with additional grammar
modules resulting in an extension of the base language.

The multi-layered grammars directly meet requirement R10.(’Multi-level lan-
guages’) as well as offering some support for requirement R11.(’Translating a
problem domain into a ‘good’ DSL’). Techniques for DSL design primarily require
a method for identifying the domain entities and their corresponding language con-
structs. One approach which has been proposed [RJ97] is to first design an object-
oriented framework which is then ‘pushed into’ a language implementation. The
multi-layered grammars mentioned above, would provide support for the develop-
ment of such a language.

8.2 Performance 97

8.2 Performance

8.2.1 Time Consumption

The times for various computations and updating of internal data structures used
in APPLAB are summarized in Table 8.2. The times relate to the three different
DSLs; the abstract meta grammar, a toy language and RAPID, and run on a Sun
SPARC Ultra 1. The example program used for each language each consists of 100
lines of code.

Most of the computations are less than a second and do not disturb the interac-
tion in any significant way, even for a full-sized language like RAPID. We have not
tried to optimize the implementation, and we think it is possible to reduce these
figures so that the updates become completely unnoticable to the user. The one
update which gives some problems is the computation of the data structures for the
attribute evaluator. This problem will be solved if we implement incremental
attribute evaluation using Door AGs. We will then be able to compute these data
structures incrementally, by describing the data structures themselves using a
Door AG. (In contrast to standard AGs, Door AGs allow the definition and compu-
tation of data structures with objects and references, and not only simple attribute
values.) Incremental evaluation of attributes will also allow the marking of static-
semantic errors to be done continuously and not interactively, as in the current
version.

a.names menu of all declared nonterminals

Computation

Languages

Grammar

Abstract
(8 prods)

Small DSL

Toy
(36 prods)

Large DSL

RAPID
(212 prods)

Build structure-editing menus 0.01 0.05 0.8

Redisplay of unparsed text 0.2 0.1 0.2

Computation of data structure for parser 0.02 0.1 0.6

Computation of data structure for attribute evaluation 0.6 5.4 30.0

Code generation - - 1.7

Compute names menu 0.02a 0.1 -

Static-semantic rror marking 0.6 1.3 -

Table 8.2: APPLAB computation times (in seconds).

98 Chapter 8 Evaluation

8.2.2 Memory Consumption

The memory requirements for an APPLAB session vary depending on which lan-
guage is used. The object code of the system itself requires 3 MBytes and additional
memory is needed for grammars and programs, and internal structures for parsing
and attribute evaluation as shown in Table 8.3. In addition, temporary memory
(about 0.1 MB) is also needed to perform various computations.

8.2.3 Time and Memory Trade-Offs

Using the lazy feature of the attribute evaluation increases the amount of memory
required, but decreases the time needed to perform the evaluation. It is up to the
language designer to select which attributes should be handled using lazy evalua-
tion, so as to achieve optimal performance both in time and in memory. Table 8.4
shows the time and memory requirements for accessing the two different kinds of
names menus of an abstract grammar consisting of 100 production rules (or loc).
The time required to generate the names-menu of all used, but undefined names is
large (29 seconds) when using pure demand attribute evaluation. This is caused by
re-evaluating the complete set of defined names for the grammar for each used
name, in order to determine if the used name is defined. By letting the attribute
containing the complete set of defined names for the grammar be a lazy attribute
its value is only calculated once thus resulting in a faster access time, (0.72 s the
first time the names menu is accessed and 0.02 s the following times.) The addi-
tional memory requirement (12.9 kByte) is small compared to the amount of
memory needed for the evaluation structure (173 kByte, i.e. 7%). And, most impor-
tantly the response time using the purely demand driven evaluation (29 s) is

Purpose

Languages

Abstract
(8 prods)

Toy
(36 prods)

RAPID
(212 prods)

ABSTRACT 71 100 295

CONCRETE 73 121 417

PARSE - 68 73

OOSL 432 653 1 585

PROGRAM (100 loc) 121 83 123

Parser structure 7 29 116

Evaluation structure 173 215 674

876 1 269 3 283

Table 8.3: Memory usage (kByte)

8.3 Conclusions and Future Work 99

unacceptable in an interactive editor. In conclusion, choosing the lazy attributes
wisely leads to a small increase in memory consumption compared to the amount
of time gained.

8.2.4 Summary

The time and memory requirements for the APPLAB system are reasonable, even
for larger programs and grammars. The memory requirement for running
APPLAB with a full-sized programming language like RAPID is less than 7
MBytes, and most of the computations, like accessing structure-editing and names
menus, are performed in less than a second. Thus, no annoying delays occur in the
interaction with the user. The one computation which does cause concern is the
generation of the evaluation structure used for attribute evaluation. As previously
mentioned, this will be alleviated by implementing incremental attribute evalua-
tion based on Door AGs, and by describing the evaluation structure itself with
DoorAGs.

8.3 Conclusions and Future Work

Looking at Table 8.1, we see that a third of the listed requirements on support for
DSLs are fully met by the current version APPLAB; the system provides an inter-
active language-sensitive environment both for language and program
development, rapid language prototyping is supported, as well as version control
of the different versions of a language. Another third of the requirements are part-
ly or indirectly supported. The system provides some (limited) updating of
programs to newer versions of the language, source code debugging is indirectly
supported, as well as portability of DSL programs. The remaining requirements
(which are not supported by the current version of APPLAB) all fall into the cate-
gory of future work. A more complete support for the transformation of programs
to a newer language version needs to be included in the system, as well as support

Names menu
contents

Demand
evaluation

Lazy evaluation

Time
(s)

Time
(s)

Memory
(kB)

Defined names 0.17 0.17 +18.2

0.02

Undefined
names

29 0.72 +12.9

0.02

Table 8.4: Time and memory requirements for the first and following accesses of the
names menus of an abstract grammar of 100 production rules (or loc).

100 Chapter 8 Evaluation

for merging different variants of a language development in order to support col-
laborative language design. The object-oriented modular grammars and the multi-
layered grammars presented in Chapter7 provide the support needed to extend
and reuse existing languages, as well develop multi-layered languages, which are
covered by the four remaining requirements.

A lot of work remains to be done in implementing additional features and
improving the performance of some of the existing ones, mainly the attribute eval-
uation. But, already today APPLAB provides valuable support to language
designers and DSL programmers. This has been shown by using the system in a
challenging application area, namely robot programming.

Chapter 9

Conclusions and Future Work

9.1 Contributions

The main contribution of this thesis is a combination of techniques for supporting
rapid language prototyping and language-sensitive editing support, and the imple-
mentation of a platform (APPLAB) showing that these techniques are viable. The
motivation for developing these techniques was to provide interactive tool support
for domain-specific languages. Such languages have many advantages, but one of
the greatest drawbacks is the problem of developing and maintaining a language
at a reasonable cost. The DSL technique could be more widely used if tools were
available which support the interactive development of DSLs and DSL
programming.

APPLAB (APPlication Language LABoratory) is an interactive language-design
environment as well as an interactive programming environment. It is a further
development of the grammar editor of the Mjølner/Orm system. The grammar-
interpreting structure-oriented editor (inherited from the Orm system) supports
rapid language prototyping of the syntax of a language. This feature has been fur-
ther enhanced in APPLAB by providing language-sensitive text editing, as well as
rapid prototyping of the static semantics of a language.

The technique for grammar-interpreting object-oriented recursive-descent pars-
ing, described in Chapter 5, has been integrated with the structure-oriented editor,
thus, supporting language-sensitive text editing of any language structure of a pro-
gram (or grammar) within the structure editor. The parser uses the same
grammars as the structure-oriented editor, and, if needed, disambiguating rules
can be specified.

The technique for grammar-interpreting static-semantic analysis, described in
Chapter 4, has been implemented in the APPLAB system, thus, supporting rapid
prototyping of semantic aspects of a language, e.g., code generation. The object-ori-
ented attribute grammar notation, OOSL, is supported and evaluated by a
demand-driven attribute evaluator. This simple, but powerful evaluation strategy
is used to support the grammar-interpreted advanced editing features like names-
menus, and interactive static-semantic error reporting implemented in APPLAB.

102 Chapter 9 Conclusions and Future Work

Due to the grammar interpretive nature of the introduced tools, the new fea-
tures (like text editing and advanced editing) are supported both at the
programming level and at the grammar level, thus, supporting both programmers
and language designers. Furthermore, the features automatically adapt to changes
in the grammar, thus, supporting rapid language prototyping.

In order to allow the specification of static-semantic rules for block structured
languages, a few predefined attribute types, like list, set and dictionary, were add-
ed in APPLAB for OOSL. For this purpose, a framework for predefined attribute
types (described in Section 4.4) was developed which facilitates the adding and
changing of attribute types. Each predefined attribute type has an interface
description in the OOSL grammar to which their implementing classes are con-
nected. This means that the static-semantic analyser does not need to take any
additional consideration for such predefined types.

A number of case studies have been performed with APPLAB. In the most
extensive one, which was on robot programming, APPLAB was integrated with an
industrial robot, (see Chapter 6), and a DSL based on the robot programming lan-
guage RAPID was implemented in the system. The domain of robot programming
contains a number of interesting programming problems. The different levels of
robot programming (discussed in Section 6.2) each represent a problem domain
(usually) implemented as a library. We have identified two approaches for provid-
ing improved programming support for each level (see Section 6.5):

1. extending a base (robot) language with constructs encapsulating the con-
cepts of a particular application domain

2. extending a base (robot) language with more powerful abstraction mecha-
nisms which allow the concepts of the application domain to be concisely
expressed in the base language

The first approach results in a hierarchy of languages which could be supported by
the multi-layered grammars outlined in Chapter 7. The second approach, which is
a more general one, is supported by the object-oriented modular grammars, also
outlined in Chapter 7, in combination with the proposed support for Door AGs (see
the next section). Both of these techniques are as yet unimplemented but are
intended to be further developed and integrated into APPLAB in order to support
the reuse of language specifications both for language extensions and for multi-lay-
ered languages.

9.2 Future Work

There are many areas in connection with this work which provide interesting
options for future research. Three main directions, which are particularly interest-
ing, will be outlined here.

9.2 Future Work 103

Support for Object-Oriented Languages

The object-oriented AGs which are currently supported by APPLAB allow for the
specification of simple block-structured languages. In order to also support object-
oriented languages it is desirable to use Door AGs which is an extension of stand-
ard AGs for which efficient incremental evaluation can be performed. The support
for object-oriented languages in APPLAB will also lead to a number of other
advantages:

• Object-oriented languages are well suited to modelling domain entities.
Providing support for OO languages would, thus, further enhance APPLAB
as a tool for DSL development. For example, the implementation of the in
line procedure-specialization mechanism described in Section 6.5 would
then be straight forward.

• Advanced editing support for OOSL grammars.
The static semantics of the object-oriented attribute grammar notation,
OOSL, used in APPLAB, could be described using Door AGs. This would
allow for the specification of names-menus and static-semantic error report-
ing for OOSL grammars.

• Incremental updating of the evaluation structure for OOSL.
The internal data structures currently generated by the static-semantic ana-
lyser to perform attribute evaluation could be described by a Door AG.
Incremental evaluation of Door AGs would then support the incremental
updating of the required data structure. Thus, avoiding the time consuming
generation phase.

DSL Run-Time Support

An important aspect of supporting DSL programming is to provide run-time sup-
port at the source-code level. The run-time environment used in the robot case
study provides this support but the APPLAB system as such does not. In a realistic
setting it is vital that a system such as APPLAB does provide a run-time environ-
ment which is easy to configure for a specific language. It is an interesting area of
research to look into this and develop techniques for DSL run-time support.

Reuse of Language Specifications

As previously mentioned, the techniques for supporting reuse of language specifi-
cations have not yet been implemented in APPLAB. Allowing for the reuse of
language specifications would enhance the language development by allowing the
development of a new language to be done by combining a number of existing build-
ing blocks. This would reduce both the time and the effort needed to produce a new
language and its implementation. The object-oriented modular grammars and the
multi-layered grammars outlined in this thesis are a first step towards providing
such support. We intend to implement these grammars in the APPLAB system and
further develop techniques for language reuse.

104 Chapter 9 Conclusions and Future Work

References

[ABB94] ABB Robotics. ARL Reference Manual, 1st edition, February 1994.
[AKW79] A. V. Aho, B. W. Kernighan and P. J. Weinverger. AWK - A pattern

scanning and processing language, Software Practice and Experience, 9,
pages 267-280 (April 1979).

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[AMH90] M. Aksit, R. Mostert and B. Havrekort, Compiler Generation Based on
Grammar Inheritance, Technical Report 90-07, Department of Computer
Science, University of Twente, February 1990.

[AWB+94] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and A. Yonezawa. Abstracting
Object Interactions Using Composition-Filters. In Object-Based
Distributed Programming, R. Guerraoui, O. Nierstratz, M. Riveill (eds.),
LNCS 791, Springer-Verlag, 1994.

[ANSI89] American National Standards Institute, American National Standard for
Information Systems-Programming Language C, X3.159-1989.

[ALEL96] Proceedings of ALEL’96. Workshop on Compiler Techniques for Application
Domain Languages and Extensible Language Models. Jan Bosch and Görel
Hedin (eds.). Linköping, April -96, Sweden. Technical report LU-CS-TR:96-
173. Dep. of Computer Science, Lund University. http://www.dna.lth.se/
Research/ProgEnv/ALEL/ALEL96/ElectronicProceedings/
ElectronicProc.doc.html

[AP94] Isabelle Attali and Didier Parigot. Integrating Natural Semantics and
Attribute Grammars: The Minotaur System. Rapport de recherche no 2339,
INRIA, September 1994.

[BGV90] R. A. Ballance, S. L. Graham, and M. L. Van De Vanter. The Pan
Language-Based Editing System For Integrated Development
Environments. SIGSOFT, Software Engineering Notes, 15(6), December
1990.

[BBH+94] J. Bell, F. Bellegarde, J. Hook, et al. Software Design for Reliability and
Reuse: A Proof-of-Concept Demonstration. In TRI-Ada’94 proceedings,
pages 396-404, November, 1994. ftp://cse.ogi.edu/pub/pacsoft/papers/
triada.ps

[Ben86] J. Bentley. Little Languages. Comm of the ACM, 29(8), August 1986.
[Bja96] Elizabeth Bjarnason. APPLAB: User’s Guide (version 1.2). Technical

Report LU-CS-IR:96-01, Department of Computer Science, Lund
University, April 1996.

106

[BH96] Elizabeth Bjarnason and Görel Hedin. A Grammar-Interpreting Parser in
a Language Design Laboratory. In Proceedings of the Poster Session of
CC’96 (International Conference on Compiler Construction). P. Fritzson
(ed.), pages 15-24, LiTH-IDA-R-96-12, Dept. of Computer Science,
Linköping University, Sweden, April 1996.

[BHN97] Elizabeth Bjarnason, Görel Hedin and Klas Nilsson. APPLAB-An
Application Language Laboratory. Technical Report LU-CS-TR:97-188,
Department of Computer Science, Lund University, 1997.

[BCD+88] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: The System. In Proc. of the ACM SIGPLAN
Conference on Practical Software Development Environments, pages 14–24,
1988.

[BK86] Jon L. Bentley and Brian W. Kernighan. GRAP - A Language for
Typesetting Graphs. Communications of the ACM, 29(8), August 1986.

[BTA96] Lodewijk Bergmans, Bedir Tekinerdogan and Mehmet Aksit. Modular and
Composable Extensions to Smalltalk using Composition Filters. In
Proceedings of Workshop on Extending the Smalltalk Language, held in
conjunction with OOPSLA’96.

[Bos95a] Jan Bosch. Layered Object Model Investigating Paradigm Extensibility. Ph.
D. thesis, Dep. of Computer Science, Lund University, Sweden, 1995.

[Bos95b] Jan Bosch. Parser Delegation An Object-Oriented Approach to Parsing. In
TOOLS EUROPE ‘95.

[Bos96] Jan Bosch. Compiler Support for Extensible Languages. In ALEL96.
[CMA94] Luca Cardelli, Florian Matthes and Martín Abadi. Extensible Syntax with

Lexical Scoping. Research Report 121, February, 1994. Digital Research
Center, 130 Lytton Avenue, Palo Alto, California 94301.

[CP93] S. Chamberlain and R. Pesch. Using LD, the GNU linker. Free Software
Foundation, Inc. and Cygnus Support, URL: http://www.cygnus.com/
library/ld/ld_toc.html, March 1993.

[Cra89] J. J. Craig. Introduction to robotics: mechanics and control. Addison-
Wesley, second edition, 1989.

[DMN68] O.-J. Dahl, B. Myhrhaug and K. Nygaard. SIMULA 67 Common Base
Language. Publ. S-2. Norwegian Computing Centre, Oslo. 1968.

[DM82] A. J. T. Davie and R. Morrison. Recursive Descent Compiling. Ellis
Horwood Limited Publishing, 1982.

[DALEL96]Summary of the DALEL Workshop: Design of Application Languages and
Extensible Language Models. Jan Bosch and Görel Hedin, June 1996. http:/
/www.cs.auc.dk/normark/NWPER96/proceedings/subworkshop-B.html

[DK97] Arie van Deursen and Paul Klint. Little Languages: Little Maintenance? In
[DSL97b].

[Deu89] L. Peter Deutsch. Design Reuse and Frameworks in the Smalltalk-80
System. In Ted J. Biggerstaff and Alan J. Perlis, editors, Software
Reusability, Volume II: Applications and Experience, pages 57-71. Addison-
Wesley, Reading, MA, 1989.

[DSL97] Proceedings of the USENIX Conference on Domain-Specific Languages,
Santa Barbara, California, USA, October, 1997.

[DSL97b] Proceedings of DSL’97, First ACM SIGPLAN Workshop on Domain-Specific
Languages. University of Illinois, Computer Science Report. 1997.
http://www-sal.cs.uiuc.edu/~kamin/dsl.

107

[DGH+84] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming
Environments Based On Structured Editors: The MENTOR Experience,
chapter 7, pages 128–140. In Barstow et al., editors. Interactive
Programming Environments. McGraw-Hill Book Company, 1983.

[Duc97] Stéphane Ducasse. Message Passing Abstractions as Elementary Bricks for
Design Pattern Implementation. In Proceedings of LSDF’97, Workshop on
Language Support for Design Patterns and Frameworks, held in
conjunction with ECOOP’97, Jyväskylä, Finland, 1997.

[DBP95] Stéphane Ducasse, Mireille Blay-Fornarino and Anne-Marie Pinna. A
Reflective Model for First Class Dependencies. In Proceedings of
OOPSLA’95, pages 265-280, Austin, October 1995. ACM. RR-95-24.

[DC90] G. D. P Dueck and G. V. Cormack. Modular Attribute Grammars.
Computing Journal, 33, 2, 164-172, 1990.

[Ekb96] B. Ekberg. Grammatikstyrd LSA-editor. (In Swedish) Master’s thesis. LU-
CS-EX:96-3. Dept. of CS, Lund University, Sweden. March 1996.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, Reading, MA, 1986.

[Eng84] J. Engelfreit. Attribute Grammars: Attribute Evaluation Methods. In B.
Lohro (ed.), Methods and Tools for Compiler Construction. Cambridge
University Press, pages 103-138. 1984.

[FNP97] Richard E. Faith, Lars S. Nyland and Jan F. Prins. KHEPERA: A System
for Rapid Implementation of Domain-Specific Languages. In DSL97.

[FMY92] R. Farrow, T. J. Marlowe and D. M. Yellin. Composable Attribute
Grammars: Support for Modularity in Translator Design and
Implementation. In Conference Record of the 19th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(Albuquerque, New Maciso). ACM, New York, pages 223-234.

[FJKS85] P. H. Feiler, F. Jalili, G. E. Kaiser, and J. H Schlichter. ISDS: A
Retrospective of the DOSE System. Tech. report, Siemens R & T
Laboratories, 105 College Road East, Princeton, NJ 08540, 1985.

[FJS86] Peter H Feiler, Fahimeh Jalili, and Johann H. Schlichter. An Interactive
Prototyping Environment for Language Design. In Proceedings of the
Nineteenth Annual Hawaii International Conference on System Sciences,
volume II, pages 106–116. IEEE, 1986.

[Gam95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns:
Elements of Object-Oriented Software. Addison-Wesley, 1995.

[GCN92] D. Garlan, L. Cai and R. L. Nord. A Transformational Approach to
Generating Application-Specific Environments. In Proc of 5th ACM
SIGSOFT Symposium on Software Development Environments, 17(5),1992.

[GKL94] D. Garlan, C. W. Krueger, and B. Staudt Lerner. TransformGen:
Automating the Maintenance of Structure-Oriented Environments. ACM
TOPLAS, 16(3):727–774, May 1994.

[GHL+92] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M Waite. Eli: A
Complete Compiler Constructions System. Comm. of the ACM 35, 1992.

[GWB+96] William G. Griswold, Richard Wolski, Scott B. Baden, Stephen J. Fink and
Scott R. Kohn. Programming Language Requirements for the Next
Millennium. Presented at the Workshop on Software Engineering and
Programming Languages, SEPL, June 1996. file://ftp.cs.washinton.edu/
pub/se/sepl/griswold.ps.Z

108

[GMN97] Carl Gunter, John Mitchell and David Notkin. Strategic Directions in
Software Engineering and Programming Languages. To appear in ACM
Computing Surveys, 1997.

[Gus90] Anders Gustavsson. Software Configuration Management in an Integrated
Environment. Dep. of Computer Science, Lund University, Sweden. 1990.

[HHK97] Maarit Harsu, Juha Hautamäki and Kai Koskimies. A Language
Implementation Framework in Java. In LSDF97, 1997.

[Hed89a] Görel Hedin. An Object-Oriented Notation for Attribute Grammars. In
Proceedings of the 3rd European Conference on Object-Oriented
Programming (ECOOP’89), S. Cook (ed.), British Informatics Society Ltd.,
Nottingham, 329-345, 1989.

[Hed89b] G. Hedin. A Recursive-Descent Parser Based On Object-Oriented
Grammars. Draft, 1989.

[Hed92a] Görel Hedin. Incremental Semantic Analysis. Ph. D. thesis, Department of
Computer Science, Lund University, Sweden, March 1992.

[Hed92b] Görel Hedin. Context-Sensitive Editing in Orm. In K. Systä el al., editors,
Proceedings of the Nordic Workshop on Programming Environment
Research, Tampere, Finland. Tampere University of Technology. Software
Systems Lab. TR 14. January 1992.

[Hed94] Görel Hedin. An Overview of Door Attribute Grammars. In Proceedings
of the 5th International Conference on Compiler Construction (CC’94),
LNCS 786, Springer-Verlag, pp. 31-51, Edinburgh, April 1994.

[Hed97a] Görel Hedin. Attribute Extension - A Technique for Enforcing
Programming Conventions. In Nordic Journal of Computing. Special Issue
on Programming Environments, 4, pp 93-122, 1997.

[HB96] G. Hedin and J. Bosch. Summary of the DALEL Workshop: Design of
Application Languages and Extensible Language Models. June 1996. In
DALEL96. http://www.iesd.auc.dk/~normark/NWPER96/proceedings/
subworkshop-B.html

[HKR90] J. Heering, P. Klint, and J. Rekers. Incremental Generation of Parsers.
IEEE Transactions on Software Engineering, SE-16(12), December 1990.
Also in Proceedings of the SIGPLAN’89 Conference on Programming
Language Design and Implementation, (June 1989), pages 179-191.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Int.,
London, UK, 1985.

[Hud96] Paul Hudak. Building Domain-Specific Embedded Languages. ACM
Computing Surveys, 28(4es), December 1996.

[Hud97] Paul Hudak. The Promise of Domain-Specific Languages. Keynote address
at DSL97. http://www.haskell.org/hudak/dsl.ppt

[Jac92] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley Publishing Company, 1992.

[Jal83] F. Jalili. A General Linear-Time Evaluator for Attribute Grammars.
SIGPLAN Notices, 18(9):35-44, September 1983.

[Joh79] S.C. Johnson. Yacc: Yet Another Compiler Compiler. Unix Programmer’s
Manual, 7th Edition, Bell Telephone Laboratories, January 1979.

[Joh88] Ralph E. Johnsson and Brian Foote. Designing Reusable Classes. Journal
of Object-Oriented Programming, 1(2):22-35, June/July 1988.

[JBP90] M. Jourdan, C. Le Bellec and D. Parigot. The OLGA Attribute Grammar
Description Language: Design, Implementation and Evaluation.In Proc of
International Conference on Attribute Grammars and their Applications.
LNCS , volume 461, Springer-Verlag, New York, 222-237, 1990.

109

[JP91] Martin Jourdan and Didier Parigot. Internals and Externals of the FNC-2
Attribute Grammar System. In Attribute Grammars, Applications and
Systems. Lecture Notes of Computer Science, volume 545, Springer-Verlag,
New York,485-504, 1991.

[JKN95] E. Järnvall, K. Koskimies and M. Nittymäki. Object-Oriented Language
Engineering with TaLE. Object-Oriented Systems 2, pp. 77-98. 1995.

[KK85] G. E. Kaiser and E. Kant. Incremental Parsing Without a Parser. The
Journal of Systems and Software, 5(2):121–144, May 1985.

[Kam93] Sam Kamin. Report of a Workshop on Future Directions in Programming
Languages and Compilers. January, 1993. file::/ftp.cs.washington.edu/pub/
se/sepl/kamin-report.ps.Z

[Kam96] Sam Kamim. The Challenge of Language Technology Transfer. ACM
Computing Surveys 28(4es), December 1996.

[KH97] Samuel N. Kamin and David Hyatt. A Special-Purpose Language for
Picture-Drawing. In DSL97, October 1997.

[Kas96] Uwe Kastens. Construction of Application Generators Using Eli. In
ALEL96.

[Ker82] B. W. Kernighan. PIC - a Language for Typesetting Graphics. Software -
Practice and Experience. 12:1, pages 1-21, 1982.

[Kie95] R. B. Kieburtz. Software Design for Reliability and Reuse. Method
Definition. ftp://ftp.cse.ogi.edu/pub/pacsoft/final_report/sdrr.ps

[Kli91] P. Klint. A Meta-Environment For Generating Programming
Environments, pages 105–124. Springer-Verlag New York Inc, 1991.

[KLLM93] J. L. Knudsen, M. Löfgren, O. Lehrmann-Madsen, and B. Magnusson,
editors. Object-Oriented Environments The Mjølner Approach. Prentice
Hall, 1993.

[Kos89] Kai Koskimies. Software Engineering Aspects in Language
Implementation. In Proceedings of the 2nd Workshop on Compiler
Compilers and High Speed Compilation. Lecture Notes in Computer
Science, vol. 371, D. Hammer, Ed. Springer-Verlag, New York, 39-51.

[Kos96] Kai Koskimies. Frameworks and Application-Oriented Languages.
Published in ALEL96.

[KM95] K. Koskimies and H. Mössenböck. Designing a Framework by Stepwise
Generalization. In Proceedings of 5th European Software Engineering
Conference (ESEC’95), Sitges, Spain. Lecture Notes in Computer Science
989, Springer, pp. 479-498. 1995.

[KV92] K. Koskimies and J. Vihavainen. Incremental Parser Construction With
Metaobjects. Technical Report A-1992-5, Dep. of CS, University of
Tampere, Finland, P.O.Box 607, SF-33101 Tampere. Finland, Nov. 1992.

[LSDF97] Proc of LSDF’97 Workshop on Language Support for Design Patterns and
Object-Oriented Frameworks. Jan Bosch, Görel Hedin and Kai Koskimies
(eds.) Held in conjunction with ECOOP’97. Research Report 6/97. Dep of
CS, University of Karlskrona/Ronneby, SE-375 25 Karlskrona, Sweden.

[Lea66] B. M. Leavenworth. Syntax Macros and Extended Translation. CACM,
9:790-793, 1966.

[LMN93] Ole Lehrmann Madsen, Birger Møller-Pedersen and Kristen Nygaard.
Object-Oriented Programming in the BETA Programming Language.
Addison-Wesley Publishing Company, 1993.

[LS84] M. E. Lesk and E. Schmidt. Lex - a Lexical Analyzer Generator. Bell
Laboratories, Murray Hill, New Jersey. Reprinted in Unix Programmer’s
Manual: Supplementary Documents, distributed with 4.2BSD, 1984.

110

[Mad89] William Maddox. Semantically-Sensitive Macroprocessing. Ph. D. thesis.
Report no UCB/CSD 89/545. Computer Science Division, University of
California, Berkeley, California 94720.

[Mag93] Boris Magnusson. The Mjølner Orm System, chapter 1, pages 11–23. In
Knudsen et al. KLLM93, 1993.

[MA96] Boris Magnusson and Ulf Asklund. Fine Grained Version Control of
Configurations in COOP/Orm. In Proceedings of ICSE 6th Workshop on
Software Configuration Management (SCM-6), I. Sommerville (Ed.),
Berlin. Springer LNCS 1167, pp 169-174. 1996.

[MAM93] B. Magnusson, U. Asklund, and S. Minör. Fine-Grained Revision Control
for Collaborative Software Development. In SIGSOFT’93, First ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-
1). 1993.

[MHM+90] B. Magnusson, G. Hedin, S. Minör, et al. An overview of the Mjølner/Orm
environment. In J. Bezivin et al., editors, Proceedings of the 2nd
International Conference TOOLS (Technology of Object-Oriented
Languages and Systems), pages 635-646, Paris, June 1990. Angkor.

[Min90] Sten Minör. On Structure-Oriented Editing. Ph. D. thesis, Department Of
Computer Science, Lund University, 1990.

[Min92] Sten Minör. Interacting with Structure-Oriented Editors. International
Journal of Man-Machine Studies, 37(4), October 1992.

[MH93] Sten Minör and Görel Hedin. Grammar Interpretation in Orm, chapter 20,
pages 297–306. In Knudsen et al. KLLM93, 1993.

[MM94] Sten Minör and Boris Magnusson. Using Mjølner Orm as a Structure-
Based Meta Environment. Published in Structure-Oriented Editors and
Environments, L. Neal and G. Swillus (eds.), 1994.

[Nil96a] Klas Nilsson. Industrial Robot Programming. Ph. D. thesis, Department of
Automatic Control, Lund Institute of Technology, May 1996.

[Nil96b] Thomas Nilsson. Application-Domain Languages: Some Suggestions for
Research. In [ALEL96]. 1996.

[NBL98] K. Nilsson, A. Blomdell and O. Laurin. Open Embedded Control. To appear
in Real-Time Systems - The International Journal of Time Critical
Computing, 1998.

[Not85] D. Notkin. The GANDALF Project. The Journal of Systems and Software,
5(2):91–105, May 1985.

[Nyb97] Mats Nyberg. Integrated Robot Programming. Master thesis. LUNDFD6/
NFCS-5098/1--25/1997. Dept. of Computer Science, Lund University,
Sweden. December 1997.

[Nor87] Kurt Nørmark. Transformations and Abstract Presentations in a
Language Development Environment. Ph. D. thesis, Computer Science
Department, Aarhus University, Denmark, February 1987.

[Paa95] Jukka Paakki. Attribute Grammar Paradigms - A High-Level Methodology
in Language Implementation. ACM Computing Surveys, Vol. 27, No. 2,
June 1995.

[Rek92] J. Rekers. Parser Generation for Interactive Environments. Ph. D. thesis,
University of Amsterdam, 1992.

[RT87] Thomas Reps and Tim Teitelbaum. Language Processing in Program
Editors. IEEE Computer, Vol.20, No. 11, November 1987.

[RT89] T. W. Reps and T. Teitelbaum. The Synthesizer Generator A System for
Constructing Language-Based Editors. Texts and Monographs in
Computer Science. Springer-Verlag, 1989.

111

[RJ97] Don Roberts and Ralph Johnson. Patterns for Evolving Frameworks.
Chapter 26 of Pattern Language of Program Design 3, Robert C. Martin,
Dirk Riehle and Frank Buschmann (editors).Addison-Wesley, 1997.

[Sam69] Jean E. Sammet. PROGRAMMING LANGUAGES: History and
Fundamentals. Series in Automatic Computation. Prentice-Hall, 1969.

[San78] E. Sandewall. Programming in an Interactive Environment: the “LISP”
Experience. Computing Surveys, Vol 10, No 1, pages 35-71, March 1978.

[SG96] Mary Shaw and David Garlan. Software Architecture. Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[SK90] Y. Shinoda and T. Katayama. Object-Oriented Extension of Attribute
Grammars and its Implementation. In Proceedings of the International
Conference on Attribute Grammars and their Applications. Lecture Notes
in Computer Science, vol. 461. Springer-Verlag, New York, 177-191. 1990

[SEPL95] Report on the Workshop on Software Engineering and Programming
Language, Stanford, Sept. 1995. John Mitchell. ftp://ftp.cs.washington.edu/
pub/se/sepl/stanford.ps.Z

[SEPL96] Workshop on Software Engineering and Programming Languages. June
1996. http://www.cs.washington.edu/research/se/sepl/position.html

[Sta87] SIS Standardiseringsgrupp. Databehandling Programspråk-SIMULA,
Svensk standard SS 63 61 14. SIS, 1987.

[TR81] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment. In Communications of the
ACM, 24:9, pages 563-573. September 1981.

[TMC97] ScottThibault, Renaud Marlet and Charles Consel. A Domain-Specific
Language for Video Device Drivers: from Design to Implementation. In
DSL97, October 1997.

[VG92] M. L. Van De Vanter and S. L. Graham. Coherent User Interfaces For
Language-Based Editing Systems. International Journal Of Man-Machine
Studies, 37(4), October 1992.

[VSK89] H. H. Vogt, S. D. Swierstra and M. F. Kuiper. Higher-Order Attribute
Grammars. Proceedings of the ACM SIGPLAN ‘89 Conference on
Programming Language Design and Implementation, ACM Sigplan
Notices, 24(7), 1989.

[War94] Martin P. Ward. Language Oriented Programming. The Journal of
Software-Concepts and Tools, Vol. 15, 1994. Also ftp.dur.ac.uk:/pub/
techreports/Martin.Ward

[Wat82] R. C. Waters. Program Editors Should Not Abandon Text Oriented
Commands. SIGPLAN Notices, 17(7), July 1982.

[Win87] Winograd, T. A., Muir: A Tool for Language Design, Report No. STAN-CS-
87-1151, Department of Computer Science, Stanford University, 1987

112

