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Abstract

We have developed a new approach for implementing precise intraprocedural control-
flow and dataflow analysis at the abstract syntax tree level. Our approach is declarative,
making use of reference attribute grammars augmented with circular attributes and collec-
tion attributes. This results in concise executable specifications of the analyses, allowing
extensions both to the language and with further source code analyses.

To evaluate the new approach, we have implemented control flow, dataflow and dead
assignment analysis for Java, by extending the JastAdd Extensible Java Compiler. We
have compared our results to several well-known analysis frameworks and tools, using a
set of Java programs as benchmarks. These results show that our approach performs well
concerning both efficiency and preciseness.

Key words: declarative, dataflow, analysis, control-flow, Java, compiler,
attribute grammars

1 Introduction

Control-flow and dataflow analysis are key elements in many static analyses, and
useful for a variety of purposes, e.g., code optimization, refactoring, enforcing cod-
ing conventions, bug detection, and metrics. Often, such analyses are carried out
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on a normalized intermediate code representation, rather than on the abstract syn-
tax tree (AST). This simplifies the computations by not having to deal with the
full source language. However, doing these analyses directly at the AST level can
be beneficial, since the high-level abstractions are not compiled away during the
translation to intermediate code. This is particularly important for tools that are
integrated in interactive development environments, such as refactoring tools and
tools supporting bug detection and coding convention violations.

In this paper, we present a new approach for computing intra-procedural control-
flow and dataflow at the AST level. Our approach is declarative, making use of at-
tribute grammars. Advantages include compact specification and modular support
for language extensions, while giving sufficient performance for practical use.

To make the approach work, we rely on a number of extensions to Knuth’s
original attribute grammars [18]: Reference attributes [15] allow the control-flow
edges to be represented as references between nodes in the AST. Higher-order
attributes [24] are used for reifying entry and exit nodes in the control-flow graph as
objects in the AST. Circular attributes [13,20] are used for writing down mutually
recursive equations for dataflow as attributes, automatically solved through fixed-
point iteration. Finally, collection attributes [6,19], enable the simple specification
of reverse relations, for example, computing the set of predecessors, given the set of
successors. These mechanisms are all supported in the JastAdd system [11], which
we have used to implement our approach.

As a case study, we have implemented control-flow graphs and dataflow anal-
ysis for Java by extending JastAddJ (the JastAdd Extensible Java Compiler) [12].
The control flow graph is precise: it is implemented at the expression level and
covers non-trivial control flow including Java exception handling, taking exception
types into account, and short-circuited boolean expressions. For dataflow, we have
implemented both liveness analysis and reaching definition analysis. As an exam-
ple of a tool-oriented analysis, we have implemented a detector of dead assignments
to local variables.

The implementation is modular and extensible. Similar to the internal modular-
ization of JastAddJ [12], each module can be viewed as an object-oriented frame-
work, with a client API representing the result of the analysis, and an extension API
for the attributes that need to be defined by a language extension module. In many
cases, new language features can reuse the existing analyses as they are, but for
language constructs affecting control-flow, rules need to be added. We exemplify
this by considering the effect on the analyses when extending Java 1.4 to Java 5.

These are the main contributions of this paper:
• We present a new approach to implementing precise control-flow graphs at the

AST level, using reference attribute grammars. An attribute framework for control-
flow graphs is presented that allows the modular addition of language constructs,
classified into non-directing, internal flow, and abruptly completing constructs.
We furthermore provide attribute grammar solutions for specifying precise con-
trol flow of exceptions and short-circuiting of boolean expressions.
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• We present how the control-flow framework can be modularly extended with
liveness analysis and reaching definition analysis. These dataflow analyses are
specified using circular attributes, resulting in declarative implementations very
similar to textbook definitions.

• We have implemented control flow graphs and dataflow analysis using our ap-
proach for full Java 1.4 and with a modular extension to support Java 5. The
implementation is available at the JastAdd site [17].

• We report performance and preciseness results of our approach by comparing it
to three well known analysis frameworks and tools for Java: Soot [23], PMD [9],
and FindBugs [3]. This is done by comparing the results from a dead assignment
analysis (implemented on top of the dataflow analyses) on a set of benchmark
Java programs from the DaCapo suite [4], the largest being 130 000 lines of
code. Our results show that our approach present precise results on par with
Soot, and provides better performance than the selected set of tools for almost
all selected benchmarks.

The rest of this paper is structured as follows. The implementation of control-
flow analysis is described in Section 2, and the dataflow analyses in Section 3. An
application doing dead assignment analysis is given in Section 4, and Section 5 dis-
cusses how to extend the analysis when the source language is extended. Section 6
provides a performance evaluation of our method. Finally, Section 7 discusses re-
lated work and Section 8 concludes the paper.

2 Control-flow Analysis

In control-flow analysis, the goal is to build a control-flow graph (CFG) where
nodes represent blocks of executable code, and successor edges link the blocks in
their possible order of execution. The nodes typically correspond to basic blocks,
i.e., linear sequences of program instructions with one entry and one exit point [1].
Each node n has a set of immediate successors, succ(n), and a set of immediate
predecessors, pred(n), both of which can be empty.

2.1 Control-flow API

In JastAdd, a program is represented as an AST, with nodes that are objects with
attributes. To represent the CFG, we superimpose it on the AST, treating statement
and expression nodes as nodes in the CFG. We represent the succ and pred sets as
attributes on an interface CFGNode implemented by expressions and statements. To
represent the entry and exit points of a method, we add synthetic empty statements
to the method declaration.

JastAdd builds on Java, and generates an ordinary Java API for the AST and its
attributes. Figure 1 shows the generated Java API for the CFG of a method. JastAdd
specs can use this API to specify additional analyses, for example dataflow. The
API can also be used by ordinary Java code, for example, an integrated development
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public Set<CFGNode> CFGNode.succ();
public Set<CFGNode> CFGNode.pred();

public CFGNode MethodDecl.entry();
public CFGNode MethodDecl.exit();

Fig. 1. The generated Java API for the control flow graph of a method.

environment implemented in Java.

2.2 Language Structure

Figure 2 shows an example Java method and parts of its corresponding AST. We
will use this as an example to illustrate how the control-flow graph is superimposed
on the AST. To keep the example concise, we have omitted parameters and local
declarations in the code.

void m() {
if(c > 2)

x = c;
while(c < 10) {

x += p();
c++;

}
}

MethodDecl "void m()"

Block "{...}"

IfStmt "if(...)"

Expr

"c > 2"
Then

AssignExpr

VarAccess

"x"

VarAccess

"c"

WhileStmt "while(...)"

Expr

"c < 10"

Block "{...}"

Stmt

"x += p();"

Stmt

"c++;"

Fig. 2. Sample Java method and its abstract syntax tree.

A simplified part of the abstract grammar for Java is shown in Figure 3. It
is written in an object-oriented form with abstract classes Stmt and Expr, and
subclasses for the individual statements and expressions such as WhileStmt and
VarAccess.

The grammar uses a typical syntax with the Kleene star for list children, angle
brackets for tokens, and square brackets for optional children. Children are either
named after their types, such as a Block child of a MethodDecl, or with given
names preceding the type name. For example, the left and right children of an
AssignExpr are named LValue and RValue.

Certain constructs in Java can act as both expressions and statements, for ex-
ample assignments and method calls. They are represented as expressions in the
grammar, for example AssignExpr, and the class ExprStmt serves the purpose of
adapting such expressions to serve as statements. The full grammar for Java is
available at the JastAdd web site [17].
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MethodDecl ::= ParamDecl* Block;
ParamDecl ::= <Type:String> <Name:String>;

abstract Stmt;
Block : Stmt ::= Stmt*;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
WhileStmt : Stmt ::= Expr Stmt;
ExprStmt : Stmt ::= Expr;
VarDecl : Stmt ::= <Type:String> <Name:String> [Init:Expr];
ReturnStmt : Stmt ::= [Expr];
EmptyStmt : Stmt;

abstract Expr;
AssignExpr : Expr ::= LValue:Expr RValue:Expr;
VarAccess : Expr ::= <Name:String>;
MethodCall : Expr ::= <Name:String> Arg:Expr*;

Fig. 3. Simplified parts of the Java abstract grammar in Figure 2.

2.3 The control-flow graph

Figure 4 shows how the AST has been attributed with successor edges and synthetic
nodes, to form the CFG for the example method. The statement nodes constitute
the nodes of the CFG, and reference attributes represent the successor edges. Two
synthetic nodes are added to represent the entry and exit of the graph.

void m() {
if(c > 2)

x = c;
while(c < 10) {

x += p();
c++;

}
}

MethodDecl

Blockentry exit

IfStmt

Expr
Then

AssignExpr

VarAccess

"x"

VarAccess

"c"

WhileStmt

Expr
Block

Stmt

"x += p();"

Stmt

"c++;"

Fig. 4. Example method and its CFG, excluding control flow internal to omitted children.
Successors are shown as directed edges. Synthetic nodes are grey and the dashed lines
show parent-child relations to these nodes.

Some nodes can be viewed as explicitly transferring control, whereas others
merely let the control flow through them. For example, the AssignExpr in Figure 4
transfers the control first to its right-hand side (the read of c) and then to its left-
hand side (the assignment to x). After that, it transfers control to some location
decided by its context (to the WhileStmt in this case). For a VarAccess, the control
simply flows through, transferring to a location decided by its context.

Based on this observation, we distinguish between the following three cate-
gories of nodes.
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Non-directing nodes which merely transfer control to the next node, as decided
by their context. A VarAccess is an example of a node in this category.

Internal flow nodes which may transfer control to and between their children. Ex-
amples of nodes in this category are Block, WhileStmt, and AssignExpr.

Abruptly completing node which may transfer control to a specific location out-
side itself, in effect ending the execution of one or more enclosing nodes. Ex-
amples of such nodes in Java include breaks, throws, returns and method calls
[14].

In the following subsections, we will discuss how the different parts of the CFG
are specified, and how these different categories of nodes are handled.

2.4 The successors framework

Figure 5 shows a small attribution framework for the successor edges. It specifies
the behavior for non-directing nodes, and can be specialized to handle internal flow
and abruptly completing nodes. The framework introduces four attributes: succ,
following, followingTrue and followingFalse. The succ attribute is a set of
references to nodes, and represents the successor edges in the CFG. The following
attribute of a node n, is its set of successors as seen from its enclosing node, i.e.,
without any knowledge of the internal flow or possible abruptly completing nodes
inside n.

The attributes followingTrue and followingFalse are used for handling con-
trol flow of short-circuited boolean expressions. For instance, in ”e1 && e2”, the
evaluation of e2 should be skipped if e1 is false. If this boolean expression is en-
closed in some other boolean expression or conditional construct, the place to skip
to may be a different one from the ordinary following set. The attributes capture
the appropriate place to skip to.

In the framework, succ is defined to be equal to following, thus capturing the
behavior of non-directing nodes. Subclasses of Expr and Stmt can override this
definition to cater for internal flow or abrupt completion.

// The successor edges in the CFG
syn Set<CFGNode> CFGNode.succ();

// Nodes that follow a node, as seen from its context
inh Set<CFGNode> CFGNode.following();

// By default, they are the same.
eq CFGNode.succ() = CFGNode.following();

// The following node for conditional branches. By default, these are empty
inh CFGNode.followingTrue();
inh CFGNode.followingFalse();

Fig. 5. The attribution framework for successors.

The attribute succ is synthesized, whereas following, followingTrue and
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Node kind Examples succ following*

Non-directing variable – –

Internal-flow block
if
assignment

direct flow to an
internal node

possibly redefine
for internal nodes

Abruptly completing break
return
throw

direct flow to a
special location

–

Fig. 6. How different kinds of nodes extend the successors framework to achieve the con-
trol-flow graph.

followingFalse are inherited 5 . The difference is that synthesized attributes must
be defined in the node in which they are declared, whereas inherited attributes must
be defined in an ancestor node. So, succ is defined by an equation in CFGNode, and
can have overriding equations in subclasses of Expr and Stmt, similar to ordinary
virtual methods. The attribute following of a node n, must instead be defined by
one of the ancestor nodes of n. So to use this framework, equations must be pro-
vided that define the value of following for all possible nodes. The same applies
to followingTrue and followingFalse.

The table in Figure 6 shows how the CFG is achieved by extending the suc-
cessors framework: For non-directing nodes, no additional equations are needed.
For internal-flow nodes, the equation for succ needs to be overridden, and equa-
tions may need to be added for constituents’ following, followingTrue and
followingFalse attributes. For abruptly completing nodes, succ is overridden.

As an example of an internal-flow node, consider the Block whose CFG speci-
fication is shown in Figure 7. To capture the internal flow, Block overrides the def-
inition of its own succ attribute, transferring control to its first internal statement,
if there is one. Since a block has a list of statement children, it must also define
the value of following for each of these children. This is done by the equation
Block.getStmt(int i).following = ... which applies to the i:th statement
child of a block. For the last child, following is simply the same as for the block
itself. For other children, following contains a reference to the next child in the
block. The function singleton used in this definition returns a set containing a
single given reference.

Another example of an internal-flow node is the IfStmt, whose CFG specifi-
cation is shown in Figure 8. The equation overriding succ states that control will
be transferred to the Expr part (the condition). To allow boolean expressions in
the condition to short-circuit to the correct branch, equations are given defining the
followingTrue and followingFalse attributes. For normal (non-short-circuited)

5 Note that this use of the term inherited stems from Knuth [18] and is unrelated to and different
from the object-oriented use of the term.
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eq Block.succ() =
(getNumStmt() = 0) // no children
? following()
: singleton(getStmt(0));

eq Block.getStmt(int i).following() =
(i = getNumStmt()-1) // last child
? following()
: singleton(getStmt(i+1));

Block

Stmt:0 Stmt:n-1. . .

Fig. 7. Specializing the successors framework for Block.

control flow, transfer is possible to both branches as defined by the equation for the
following attribute.

Note that it is not necessary to define the following attribute for the Then and
Else parts, since they should have the same value as following for the IfStmt

itself, so the same equation in some ancestor applies to these parts.

eq IfStmt.succ() = singleton(getExpr());
eq IfStmt.getExpr().followingTrue() = singleton(getThen());
eq IfStmt.getExpr().followingFalse() = hasElse() ?

singleton(getElse()) : following();
eq IfStmt.getExpr().following() =

getExpr().followingTrue().union(getExpr().followingFalse());

IfStmt

Expr
Then

Else

Fig. 8. Specializing the successors framework for IfStmt.

Before we give examples of abruptly completing statements, we will introduce
the framework for entry and exit nodes.

2.5 The entry and exit framework

To make sure there will always be well-defined entry and exit nodes, even for empty
methods, we add two synthetic empty statements to each method. Nodes can be
added declaratively to an AST by means of higher-order attributes, also known as
non-terminal attributes (NTAs) [24]. An NTA is like a non-terminal in that it is a
node in the AST. However, instead of being constructed as part of the initial AST,
typically built by a parser, it is defined by an equation, just like an attribute. So
in this sense, it is both an attribute and an AST node, hence the term higher-order.
The right-hand side of an equation for an NTA must denote a fresh object, i.e. an
object not already part of the AST, typically computed by a new expression.

Figure 9 shows the attribution framework defining the entry and exit nodes.
Since the method declaration is the parent of both the entry and exit nodes, as well
as of the main block, it furthermore needs to define their following attributes.
Naturally, the entry is followed by the main block, which is followed by the exit
node, which in turn has no following statements, as specified in the equations. The
function empty, used when defining following for the exit node, simply returns
the empty set.
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syn nta Stmt MethodDecl.entry() = new EmptyStmt();
syn nta Stmt MethodDecl.exit() = new EmptyStmt();

eq MethodDecl.entry().following() = singleton(getBlock());
eq MethodDecl.getBlock().following() = singleton(exit());
eq MethodDecl.exit().following() = empty();

inh Stmt Stmt.exit();
eq MethodDecl.getBlock().exit() = exit();
eq MethodDecl.entry().exit() = exit();
eq MethodDecl.exit().exit() = exit();

MethodDecl

Block

entry exit

Fig. 9. Attribution framework for entry and exit nodes. Dotted directed edges indicate
elements in the following sets.

The framework additionally defines an inherited attribute exit which gives all
nodes access to the exit node. This is useful for abruptly completing nodes which
need to transfer control directly to the exit node.

As a simple example of an abruptly completing node, consider the return state-
ment. Figure 10 shows how it directs the control flow directly to the exit node by
overriding the succ attribute. This definition is simplified, however, and does not
take Java exception handling into account. A full treatment of these issues is given
in the next section.

eq ReturnStmt.succ() = exit();

MethodDecl

. . .

Return

exit

Fig. 10. Using the entry and exit framework to abruptly transfer control from return state-
ments to the end of the method. (Simplified definition that ignores Java exceptions.)

2.6 Handling Java Exceptions

The Java statements break, throw, continue and return are abruptly completing
nodes, transferring control to a specific location outside of themselves.

The successor of an abrupt node is called the target node. For example, the
target of a return statement is normally the exit node, as was shown in Figure 10.
However, if the abrupt node is inside the try block of a Java exception handler
with a finally block, the finally block will intercept control before transferring
control to the normal target(s). Figure 11 shows an example.

In a similar way, other abrupt nodes also have a normal target to which control
is transferred if there are no enclosing try statements with finally blocks. For
throw it is a matching catch, or the exit node. For break the normal target is the
statement following a matching enclosing loop or labeled statement. For continue
the normal target is the first part of a matching enclosing loop. Figure 12 shows
example normal control-flow (without finally blocks).
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try {
return;

} finally {
n();

}

TryStmt

Block Finally

Return ExprStmt

exit

Fig. 11. The control flow from a return, in the presence of a finally block.

break:

WhileStmt

Expr Block

StmtBreak

continue:

WhileStmt

Expr Block

StmtContinue

throw:

TryStmt

Block

Throw

"throw new E();"

Catch

Expr

"E e"

Stmt

Fig. 12. Control flow for some abrupt nodes.

We will now show how control flow of abrupt nodes is handled in the presence
of finally blocks. As an example, we will take a closer look at the break state-
ment. The other abrupt nodes are handled in an analogous way. We introduce an
inherited attribute breakTarget, returning a singleton set with the matching target,
or the empty set if no target is found (corresponding to a compile-time error). For
the break statement, this attribute will be the true successor, i.e., either the normal
target (e.g., a while loop), or a finally block.

The attribute breakTarget is also defined for the try statement, by which the
finally block can find its successor, i.e., usually the normal target. This solution
works also for nested try statements with finally blocks, in which case control is
transferred from the break statement, through all the finally blocks of enclosing
try statements, and finally to the normal target.

The breakTarget attribute is parameterized by the BreakStmt to allow the
target for the correct BreakStmt to be found. This attribution solution, using pa-
rameterized inherited attributes, is similar to the JastAdd implementation of Java
name analysis, as presented in [10].

The successor of a BreakStmt is now simply defined as the breakTarget of
itself. Figure 13 shows the specification. There are several equations defining
breakTarget, and if there is more than one in a chain of ancestors, the closest
equation applies. Therefore, if a BreakStmt is enclosed by a TryStmt, and then by
a BranchTargetStmt (e.g., a while loop), the equation in the TryStmt will hold.
If the BreakStmt is not enclosed by any of these kinds of statements, the equation
defined in BodyDecl will hold, defining the target to be the empty set. To illustrate
how this works, consider Figure 14, showing the values of breakTarget for an
example program.

To handle the remaining abrupt statements, continue, return, and throw, we
define one target attribute for each of them and use them in a similar fashion. With
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eq BreakStmt.succ() = breakTarget(this);

inh Set BreakStmt.breakTarget(BreakStmt stmt);
inh Set TryStmt.breakTarget(BreakStmt stmt);

// Equations for breakTarget
eq BodyDecl.getChild().breakTarget(BreakStmt stmt) = empty();
eq BranchTargetStmt.getChild().breakTarget(BreakStmt stmt) =

targetOf(stmt)
? following()
: breakTarget(stmt);

eq TryStmt.getBlock().breakTarget(BreakStmt stmt) =
hasFinally()
? singleton(getFinally())
: breakTarget(stmt);

Fig. 13. Specializing the successor framework for BreakStmt. The targetOf attribute is
defined in the compiler frontend.

{
while (..) {

try {
break;

} finally {
n();

}
}
m();

}

Block

While

Expr

m();

Try bT

Block Finally

Break bT
n();

Fig. 14. Values of the breakTarget attribute (bT).

this approach we end up with potentially several abrupt nodes transferring control
to the finally block. The potential successors of the finally block is thus the
set of normal targets for all these intercepted abrupt nodes. For this reason, we in-
troduce an attribute interceptedAbruptNodes which contains references to these
nodes. Given this attribute, the TryStmt can define the following attribute for its
finally block, as shown in Figure 15. Here, the attribute targetAt uses the dou-
ble dispatch pattern [16] to let each kind of abrupt node decide how to compute its
target 6 .

Handling unchecked exceptions
In addition to explicitly thrown exceptions, using the throw statement, exceptions
can be thrown implicitly by the runtime system at runtime errors such as null
pointer dereferencing, division by zero, out of memory, etc. Unless these errors

6 The equation for following uses an assignment and a for loop which might be surprising since
our approach is declarative. However, because we use Java method body syntax to define attribute
values, it is natural to use imperative code here. This is perfectly in agreement with the declarative
approach as long as that code has no net side effects, i.e., only local variables are modified.
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eq TryStmt.getFinally().following() {
Set flw =
(getFinally().canCompleteNormally())
? following()
: empty();

for (Stmt abrupt : interceptedAbruptStmts) {
flw = flw.union(abrupt.targetAt(this));

}
return flw;

}

syn Set Stmt.targetAt(TryStmt t) = empty();
eq BreakStmt.targetAt(TryStmt t) = t.breakTarget(this);
eq ContinueStmt.targetAt(TryStmt t) = t.continueTarget(this);
...

Fig. 15. Specializing the successor framework for TryStmt.

are caught, they are propagated back to the calling method, making also method
calls a source of such implicit exceptions. So in this sense, more or less every
expression and statement can have abrupt completion. Instead of adding explicit
successor edges for all these possible control paths, we define an inherited attribute
uncheckedExceptionTarget for Expr and Stmt nodes, and in that way make all
nodes aware of these potential successors. By default, this attribute is a set contain-
ing the exit node. But if there are catch clauses that match RuntimeException

or Error, these clauses are also added.
This approach is inspired by the factored control-flow graph explained in [8]

where unchecked exception branches are summarized at the end of basic blocks to
limit the number of branches.

2.7 Predecessors

To complete the implementation of the control-flow API, we now define the set of
predecessors. This is simply the inverse of the successors relation, so if there is
a successor edge from a to b, there will be a predecessor edge from b to a. Such
inverse relations are easily defined using collection attributes [6,19]. The attributes
we have seen so far have been defined using an equation located in an AST node.
A collection, in contrast, is an attribute whose value is defined by the combination
of a number of contributions, distributed over the AST. This way, we can define the
predecessor sets by letting each node contribute itself to the predecessor sets of its
successors. Figure 16 shows the JastAdd specification.

coll Set CFGNode.pred() [empty()] with add; // (1)
Stmt contributes this to CFGNode.pred() for each succ(); // (2)
Expr contributes this to CFGNode.pred() for each succ(); // (3)

Fig. 16. Using a collection attribute to define the predecessors.

Rule (1) is the declaration of the collection attribute pred for CFGNode. The
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rule states the type of the attribute (Set), the initial value (the empty set), and the
operation used to add contributions (add). For correct evaluation, it is assumed
that the operation is commutative, i.e., that the order of adding the contributions is
irrelevant, which is indeed the case for the add method for the Java class Set.

Rules (2) and (3) declare that each Stmt and Expr node contributes itself (this)
to the pred attribute of each of its successors. A more detailed presentation of
collection attributes and their evaluation in JastAdd is available in [19].

3 Dataflow Analysis

We want to analyze dataflow on the control-flow graph defined in the previous sec-
tion. Two typical examples of dataflow analyses are liveness analysis and reaching
definition analysis. We describe our implementation of these analyses using Jas-
tAdd in the following two subsections.

3.1 Liveness Analysis

A variable is live at a certain point in the program, if its assigned value will be used
by successors in the control-flow graph. If a variable is assigned a new value before
an old value has been used, the old assignment to the variable is unnecessary, also
called dead.

We express liveness in the same fashion as Appel in [2] using four sets – in,
out , def and use. The def set of a node n contains the variables assigned a value in
n, and the use set contains the variables whose values are used in n. From these two
sets we calculate the in and out sets, i.e., variables live into a node and variables
live out of a node, using the following equations:

Definition 3.1 Let n be a node and succ[n] the value of the succ attribute for the
node n:

in[n] = use[n] ∪ (out [n] \ def [n])
out [n] =

⋃
s∈succ[n]

in[s]

We note that the equations for the in and the out sets are recursive and mutually
dependent, i.e. they have a circular dependency to each other. Equations like these
are usually solved by iteration until a fixpoint is reached, which is guaranteed if all
intermediate values can be organized in a finite height lattice and all operations are
monotonic on that lattice. We will explain how circular equations like these can be
implemented as circular attributes in JastAdd [20].

3.1.1 The use and def sets
The main challenge in computing the use set for each node, is to support all kinds
of statements and expressions in the source language. A complex language such as
Java has more than 20 statements and 50 expressions. Fortunately, it is quite easy
to support all these constructs in JastAddJ (the JastAdd Extensible Java Compiler),
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since each expression that accesses a local variable encapsulates a VarAccess node
performing the actual binding. Moreover, each VarAccess node has two boolean

attributes, isDest and isSource, determining whether the access acts as a defini-
tion (l-value) or use (r-value). Some nodes actually act as both. For example, a
VarAccess that is the child of the post increment operator ’++’, will both read from
and write to the variable. JastAddJ also defines an attribute decl for VarAccess
nodes, referring to the appropriate declaration node. Figure 17 summarizes the
JastAdd API used.

public boolean VarAccess.isDest();
public boolean VarAccess.isSource();
public Decl VarAccess.decl();

Fig. 17. JastAddJ API used by liveness analysis

In the liveness analysis, we represent use and def as sets of references to dec-
laration nodes in the AST. We implement them using synthesized attributes, and let
VarAccess nodes add themselves to the appropriate collection, depending on their
role as an r-value and/or l-value. The variable, parameter and field declarations
are also viewed as assignments, so they contribute themselves to their own def set.
Figure 18 shows the implementation of these attributes.

// def
syn Set<Decl> CFGNode.def();
eq Stmt.def() = empty();
eq Expr.def() = empty();
eq VarAccess.def() = isDest() ? singleton(decl()) : empty();
eq VarDecl.def() = singleton(this);
eq ParamDecl.def() = singleton(this);

// use
syn Set<Decl> CFGNode.use() = empty();
eq VarAccess.use() = isSource() ? singleton(decl()) : empty();

Fig. 18. Implementation of def and use for liveness analysis

These two attributes effectively compute the use and def sets for all intraproce-
dural control-flow nodes in Java. If we add a new language construct that modifies
a local variable we need only make sure it encapsulates a VarAccess and provide
equations for the inherited attributes isDest and isSource, which are needed else-
where in the frontend anyway, and the use set and def set attributes are still valid.

3.1.2 The in and out sets for liveness
The equations for the in set and out set in Definition 3.1 are mutually dependent.
As mentioned earlier, such equations can be solved by iteration as long as the values
form a finite height lattice and all functions are monotonic. This is clearly the
case for our equations since the power set of the set of local variables, ordered by
inclusion, forms a finite lattice, with the empty set as bottom, on which union is
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monotonic. A fixpoint will thus be reached if we start with the bottom value and
iteratively apply the equations as assignments until no values change.

JastAdd has explicit support for fixpoint iteration through circular attributes, as
described in [20]. If we declare an attribute as circular and provide a bottom value,
then the attribute evaluator will perform the fixpoint computation automatically.
This allows us to implement the in and out sets using circular attributes, resulting
in a specification very close to the textbook definition, as shown in Figure 19.

// in
syn Set<Decl> CFGNode.live_in() circular [empty()] =

use().union(live_out().compl(def()));

// out
syn Set<Decl> CFGNode.live_out() circular [empty()] {

Set<Decl> set = empty();
for(Stmt s : succ()) {

set = set.union(s.live_in());
}
return set;

}

Fig. 19. Implementation of liveness in and out sets, using circular attributes.

In our actual implementation, we use an even more concise specification of
the out set by defining it as a collection attribute, reversing the direction of the
computation by making use of the predecessors instead of the successors. See
Figure 20.

coll Set<Decl> CFGNode.live_out() circular [empty()] with add;
Stmt contributes live_in() to CFGNode.live_out() for each pred();
Expr contributes live_in() to CFGNode.live_out() for each pred();

Fig. 20. Alternative implementation of the out set, using a circular collection.

An alternative to using circular attributes would be to manually implement the
fixpoint computation imperatively. Such a solution requires manual book keeping
to keep track of change, which significantly increases the size of the implementa-
tion and the essence of the algorithm gets tangled with book keeping code. Also,
it is necessary to either statically approximate the sets of attributes involved in the
cycle to iterate over, or to manually keep track of such dependencies dynamically.
This is all taken care of automatically by the attribute evaluation engine in JastAdd
when using circular attributes.

3.2 Reaching Definition Analysis

In computing reaching definitions, we are interested in sets of definitions (assign-
ments), rather than in sets of variable declarations. Because definitions may occur
in several different syntactic constructs, not just in assignment statements, we de-
fine an interface Definition to abstract over the relevant AST classes, namely
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VarAccess, VarDecl, and ParamDecl. Not all variable accesses are definitions,
but the isDest attribute can be used to decide this.

A definition of a variable is said to reach a use of a variable if there is a path
in the control-flow graph from the definition to the use. A variable use may be
reached by more than one variable definition in which case the actual value of the
variable can not be decided statically. For cases where there is only one reaching
definition the use might be replaceable with a constant, a property typically used
in, for example, constant propagation.

We define five sets – defs , gen, kill , in and out , in the same fashion as Ap-
pel [2]. The defs set of a variable declaration v contains all definitions of that
variable. The gen set of a node n contains the definitions in n, i.e., corresponding
to the new variable values generated by that node. The kill set of a node n is the set
of definitions killed by definitions made in n. Consider a definition d of a certain
variable v. The kill set for a definition d is the defs for v, minus the definition d
itself, see Definition 3.2. The kill set for a statement is simply the union of the kill
sets of its gen set.

The in set of a node n is the set of definitions that reach the beginning of n,
and out is the set that reaches the end of n. Given the kill and gen sets, in and
out are defined as shown in Definition 3.3. Note that the equations for in and
out are recursive and mutually dependent, hence requiring a fixpoint iteration for
evaluation.

Definition 3.2 Let d be a definition of a variable v:

d : v ← . . . : kill [d] = defs [v] \ {d}

Definition 3.3 Let n be a node and pred[n] the value of the pred attribute for the
node n:

in[n] =
⋃

p∈pred [n]

out [p]

out [n] = gen[n] ∪ (in[n] \ kill [n])

3.2.1 The defs set
To implement the defs set, we use a collection attribute on Variable, which is
an interface implemented by VarDecl and ParamDecl. We then let the definitions
contribute themselves to their declaration. Contributing VarAccess nodes check
that they are actually acting as definitions using the attribute isDest. The imple-
mentation is shown in Figure 21.

coll Set<Definition> Variable.defs() [empty()] with add;
VarAccess contributes this

when isDest() to Variable.defs() for decl();
VarDecl contributes this to Variable.defs() for this;
ParDecl contributes this to Variable.defs() for this;

Fig. 21. Implementation of defs using attributes.
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3.2.2 The gen and kill sets
The gen set of a node contains all the definitions inside the node. We use a synthe-
sized attribute to implement this set and let variable declarations, parameter dec-
larations and VarAccess nodes, that serve as definitions, contribute themselves to
their own gen. The kill set is implemented using the same strategy, see Figure 22.

// gen
syn Set<Definition> CFGNode.gen();
eq Stmt.gen() = empty();
eq Expr.gen() = empty();
eq VarAccess.gen() = isDest() ? singleton(this) : empty();
eq VarDecl.gen() = singleton(this);
eq ParamDecl.gen() = singleton(this);

// kill
syn Set<Definition> CFGNode.kill();
eq Stmt.kill() = empty();
eq Expr.kill() = empty();
eq VarAccess.kill() = isDest() ? defs().compl(this) : empty();
eq VariableDeclaration.reaching_kill() = defs().compl(this);
eq ParameterDeclaration.reaching_kill() = defs().compl(this);

Fig. 22. Implementation of gen and kill .

3.2.3 The in and out sets for reaching definitions
In Definition 3.3 the sets in and out are defined as two mutually dependent equa-
tions using the kill and gen sets. Again we use circular attributes, obtaining an
implementation very similar to the textbook definition of these sets. See Figure 23.

// out
syn Set<Definition> CFGNode.reach_out() circular [empty()];
eq CFGNode.reach_out() = gen().union(reach_in().compl(kill()));

// in
coll Set<Definition> CFGNode.reach_in() circular [empty()] with add;
Stmt contributes reach_out() to CFGNode.reach_in() for each succ();
Expr contributes reach_out() to CFGNode.reach_in() for each succ();
ParamDecl contributes reach_out() to CFGNode.reach_in() for each succ();

Fig. 23. Implementation of the in and out sets for reaching definitions.

4 Dead Assignment Analysis

To evaluate the efficiency and scalability of our approach, we have implemented a
simple intraprocedural analysis for Java which detects dead assignments. In more
detail, we locate assignments whose values are not used later in a body declaration,
i.e., in a method, constructor, instance initializer, static initializer, or field declara-
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tion. We only include assignments to local non-constant variables and parameters
in the analysis:

syn lazy boolean CFGNode.includeInDeadAssignAnalysis() = false;
eq VarAccess.includeInDeadAssignAnalysis() =

isDest() && isLocalStore();
eq VarDecl.includeInDeadAssignAnalysis() =

hasInit() && isLocalVariable() && !isConstant();

We try out two versions on this selection: one based on liveness analysis, and one
combining liveness analysis with analysis of reaching definitions.

4.1 Collecting Dead Assignments

To collect all dead assignments of a compilation unit, we add a collection (coll)
attribute deadAssignments to the CompilationUnit class. This class represents a
file with one or more classes which might contain one or more body declarations
(methods, constructors etc.):

coll Set<Stmt> CompilationUnit.deadAssignments() [empty()] with add;

The CompilationUnit class is connected to the grammar in Figure 3 as follows
(here, only including methods):

CompilationUnit ::= ClassDecl*;
ClassDecl ::= MethodDecl*;
MethodDecl ::= ...

Dead assignments contribute themselves to the collection of their enclosing Comp-

ilationUnit using a contributes clause. The reference to the Compilation-

Unit node is propagated to descending statement nodes using an inherited attribute
enclosingCompilationUnit:

VarAccess contributes this
when includeInDeadAssignAnalysis() && isDeadAssign()
to CompilationUnit.deadAssignments()
for enclosingCompilationUnit();

VarDecl contributes this
when includeInDeadAssignAnalysis() && isDeadAssign()
to CompilationUnit.deadAssignments()
for enclosingCompilationUnit();

Each of these nodes, VarAccess and VarDecl, contribute to the collection, if they
are included in the selection of the analysis, and their isDeadAssign attribute is
true. We define this attribute to be false by default for all control flow nodes:

syn boolean CFGNode.isDeadAssign() = false;

4.2 Analyzing using Liveness

Definition 4.1 If a variable is defined, but not live immediately after the node, the
assignment is considered dead in the sense that the assignment is unnecessary. That
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is, an assignment a is dead when:

kill [a] 6= ∅ ∧ kill [a] ∩ out [a] = ∅

Using liveness analysis, we can define an assignment to be dead when a defined
variable is not live after the assignment, as defined in Definition 4.1. With this
in mind, we can define a very useful attribute isDead which we can use to define
equations for isDeadAssign as follows:

syn lazy boolean CFGNode.isDead();
eq CFGNode.isDead() = !def().compl(liveness_out()).isEmpty();

eq VarAccess.isDeadAssign() = isDead();
eq VarDecl.isDeadAssign() = isDead();

4.3 Analyzing using Liveness and Reaching Definition

We can combined liveness analysis with reaching definition analysis, by adding a
condition to the equations of the isDeadAssign attribute, as follows:

eq VarAccess.isDeadAssign() = isDead() || allReachedUsesAreDead();
eq VarDecl.isDeadAssign() = isDead() || allReachedUsesAreDead();

The consequence of combining these two analyses, is that we can find additional
dead assignments on the form:

a = 0; // Also dead because b is dead (the reached use)
b = a; // b is dead

Here, the assignment to a is dead because the assignment to b is dead, which is
the only reached use of a. To get this behavior, we need to define the attribute
allReachedUsesAreDead, which investigates whether all reached uses are dead:

syn boolean ReachingDef.allReachedUsesAreDead() circular [false];
eq Stmt.allReachedUsesAreDead() {

for (ReachedUse use : reachedUses())
if (!use.inDeadAssign())

return false;
return true;

}

The reachedUses attribute is defined on an interface ReachingDef, implemented
by nodes defining values, and it returns a set of reached uses, implementing an
interface ReachedUse. Nodes implementing the ReachedUse interface has an addi-
tional attribute inDeadAssign returning true if the use is in the right-hand side of
an assignment that is dead:

inh boolean ReachedUse.inDeadAssign();
eq VarDecl.getInit().inDeadAssign() = isDead();
eq AssignExpr.getSource().inDeadAssign() =

getDest().isLocalStore() && getDest().isDead();
eq Program.getChild().inDeadAssign() = false; // default value
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It might be the case that an assignment that is dead has, for instance, a method
call on its right-hand side, but we do not want to consider variables given to the
method as dead. To avoid cases like these, we can add an equation to, for example,
a method call as follows:

eq MethodAccess.getArg(int i).inDeadAssign() = false;

5 Language Extensions

The previous examples have illustrated how the control-flow specification for indi-
vidual statements can be written modularly. Similarly, the control-flow implemen-
tation for Java 1.4 can be extended modularly to support Java 1.5. The only new
language constructs that affect the CFG are the new enhanced for statement and
enum constant, which is a new kind of body declaration. As an example we will
considering the enhanced for statement in more detail, which has the following
abstract syntax:

EnhancedFor : BranchTargetStmt ::= VarDecl Expr Stmt;

This statement iterates over the elements in the iterable object denoted by Expr. In
each iteration, a new element is assigned to VarDecl, and the Stmt is executed. To
capture this flow, we let the EnhancedFor itself represent the initialization of the
iterator. We provide equations defining the succ attribute for EnhancedFor and the
following attributes of its constituents. Figure 24 shows the specification.

eq EnhancedForStmt.succ() = singleton(getExpr());
eq EnhancedForStmt.getExpr().followingTrue() =

singleton(getVarDecl());
eq EnhancedForStmt.getExpr().followingFalse() = following();
eq EnhancedForStmt.getExpr().following() =

getExpr().followingTrue().union(
getExpr().followingFalse());

eq EnhancedForStmt.getVarDecl().following()=
singleton(getStmt());

eq EnhancedForStmt.getStmt().following()=
singleton(getExpr());

EnhancedFor

VarDecl

StmtExpr

Fig. 24. Control flow for EnhancedFor

Note that since the analyses of liveness, reaching definitions, and dead assign-
ments are defined in terms of the control-flow graph, they will work automatically
also for these new constructs.

6 Evaluation

To evaluate our approach, we have run the dead assignment analysis on a set of
Java benchmark applications, and compared the results and performance to other
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Name Version Lines of Code Candidates # Flows Avg. Flow Size

ANTLR 2.7.7 37 730 3 826 3 332 47.0

Bloat 1.0 38 581 5 740 5 095 136.0

Chart 1.0 9 968 1 818 1 469 39.0

FOP 0.95 130 300 18 203 19 632 110.0

Fig. 25. Java benchmarks. Candidates are the number of local variable declarations and
assignments in an application. The last two columns show the number of intraprocedural
flows (methods etc.) in an application and the average flow size, i.e. the average number of
nodes in a flow.

analysis tools. We have also measured the size of our specification modules in order
to evaluate development effort, and compared them to another tool.

6.1 Setup

6.1.1 Selection of Benchmarks
For evaluating our analyses, we have selected four Java applications of varying size
from the DaCapo benchmark suite [4]: ANTLR, Bloat, Chart and Apache FOP.
ANTLR is a parser and translator generator, Bloat is a byte-code level optimization
and analysis tool, Chart is a charting utility tool and Apache FOP is a print for-
matting tool. Figure 25 gives an overview of the selected benchmarks with regard
to size (lines of code), number of flows (methods, instance initializers etc.), and
average size of these flows (number of nodes in the control-flow graph). ANTLR
and Bloat are of similar size, but we include both because they differ substantially
in their average flow size.

The figure also shows the number of possible dead assignments, or candidates,
in each application. For a node to be a candidate it needs to be either a variable
declaration with an initializing assignment, or an assign expression. For reason
of comparison, we exclude constants of primitive types (integer, double etc.) and
strings from the set of candidates. Constants like these may be removed by default
by some analysis tools, excluding them from the dead assignment analysis that we
want to compare to.

6.1.2 Selection of Analysis Tools
We compare our JastAdd-based analysis results to those of Soot (2.4.0), FindBugs
(1.3.9) and PMD (4.3.5). Soot is a very well known Java optimization framework,
working at the byte code level [23]. It is interesting for comparison as it can be
expected to have very high precision and correctness. FindBugs [3] and PMD
[9] are two well known tools for detection of bugs and anomalies in Java source
code. They are interesting for us to compare to since they exemplify the developer-
oriented tools we have in mind for our AST-based analysis. FindBugs performs the
analysis on byte code, whereas PMD analyzes the source code directly.
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All these tools support a number of different analyses, but for our comparison
we are only interested in dead assignment analysis. In order to get these results
from each tool we have used the following configurations:

Soot The Soot framework is made up by a set of phases, each connected to a certain
kind of analysis. For example, there is a phase called jbwhich translates input to
a three-address code called jimple, and there are phases for whole program anal-
ysis, for example, cg, wjtp, wjop. We are interested in the intra-procedural
analyses found in a phase called jop. So we disable all other phases, except for
the jb phase. Inside a phase there are several packs, one for each analysis. For
the jop phase, we are only interested in the jop.dae pack, performing dead
assignment elimination, and hence we disable all other packs in the jop phase.

We want to easily find which assignments that Soot wants to eliminate. With
this in mind, we have added a flag -only-tag to the jop.dae pack, which
causes the analysis to tag an assignment rather than removing it. This way, we
can print out the jimple code and find which assignments are detected as dead.

Since Soot operates on a jimple representation it might find a lot of dead as-
signments to temporaries in its own representation which do not correspond to
assignments in the source. To partly deal with this issue we only consider as-
signments on the line of a source assignment, i.e., on the line of a candidate.
However, given that one source assignment may be represented on several lines
in Soot, it is still possible that Soot will remove an assignment but not the actual
source assignment. For cases like these, i.e., where Soot does not remove all
jimple lines of a candidate, we do a manual check.

FindBugs FindBugs performs a number of identifications of so called bug pat-
terns, i.e., patterns in the code possibly corresponding to a bug. One such bug
pattern identifies dead local stores (DLS), that is, dead assignments. We have
configured FindBugs to only include the DLS pattern in its analysis. The results
are given on a file and source line basis which makes it easy for us to map the
result to candidates in a benchmark. To get as good precision as possible and to
find all pattern matches for DLS we run FindBugs with the -effort:max and
-low flags.

PMD PMD supports the definition of rules using Java or XPath, but also provides
a default set of rules. One such rule set looks for so called dataflow anomalies
of three kinds, and two of these locate dead assignments – DU and DD. DD by
identifying when a variable is assigned twice in a row with out a use in between,
and DU by identifying if an assigned value is not used in the scope it is defined.
The third finds undefined variables (UR) which is not interesting for our com-
parison. Results are obtained on a file and line basis which makes it easy for us
to map the results to candidates in a benchmark.

6.1.3 Comparison of Result
In order to compare the results of different tools we need a unified way to identify
which assignments that are found to be dead. To accomplish this we pretty-print
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the source code of each benchmark and let each assignment start on a new line.
This way we can identify a candidate by file name and source line.

In the case where the analysis is not performed on source code, we may need
to maintain a mapping to source. For Soot we maintain a mapping between each
source line and its corresponding jimple lines, to know if an assignment has been
found completely dead or partially dead. In the case with FindBugs, which analyses
bytecode, the result includes information of source lines and no extra mapping is
required.

6.1.4 Performance Measurement
All performance measurements have been performed on a Lenovo Thinkpad X61
running Ubuntu 10.10 (Maverick Meerkat). For comparison between tools, we use
the average time of 10 runs from a terminal, measuring execution time with the
Unix command time. For JastAdd, we also provide performance measurements
using the multi-iteration approach with a pre-heated VM, as presented in [5].

6.2 Correctness and Precision

Figure 26 shows the number of dead candidate assignments found by each tool.
The results are grouped into four subfigures, one for each Java benchmark.

For JastAdd we only include the results for JAlive, i.e., the dead assignment
analysis only using liveness. The results for JAlive+reaching are slightly more pre-
cise, but at a substantial additional cost in execution time. JAlive+reaching only iden-
tified an additional three cases, one in ANTLR and two in Chart, all on the form:

s = s + a; // dead in JA_live
s = b; // also dead in JA_live+reaching

None of the other tools found any of these cases.
JastAdd and Soot both find very similar numbers of dead assignments among

the selected candidates. JastAdd finds a few dead assignments that Soot does not
find, and we have manually verified that they are indeed dead. Soot also finds a
few dead assignments that JastAdd does not find. We have looked at each of these
manually. One of these cases correspond to a true dead assignment at the source
level:

int a = 0;
while (expr) {

a++; // dead in Soot but not in JastAdd
}

Here, a is kept alive in the JastAdd analysis, while not in Soot.
In the other cases where Soot identifies dead candidate assignments, and Jas-

tAdd not, it is actually not the source level assignment that is detected, but assign-
ments to temporary variables introduced in the jimple code. These do thus not
correspond to dead assignments at the source level.

There are some cases where both Soot and JastAdd have identified a dead as-
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Dead Assignments Found (#)

Tool: A,B only A both only B

JA, Soot 8 308 (22) 3

JA, PMD 57 259 658

JA, FB 278 38 0

Soot, PMD 57 254 (21) 663

Soot, FB 276 35 (21) 3

PMD, FB 885 32 6

(a) Results for ANTLR

Tool: A,B only A both only B

JA, Soot 8 78 (26) 3

JA, PMD 32 54 466

JA, FB 58 28 0

Soot, PMD 31 50 (6) 470

Soot, FB 59 22 (10) 6

PMD, FB 502 18 10

(b) Results for Bloat

Tool: A,B only A both only B

JA, Soot 8 22 (4) 0

JA, PMD 0 30 104

JA, FB 19 11 0

Soot, PMD 0 22 (4) 112

Soot, FB 16 6 (3) 5

PMD, FB 123 11 0

(c) Results for Chart

Tool: A,B only A both only B

JA, Soot 13 226 (31) 6

JA, PMD 22 217 1705

JA, FB 193 46 0

Soot, PMD 10 222 (27) 1700

Soot, FB 191 41 (21) 5

PMD, FB 1884 38 8

(d) Results for Apache FOP

Fig. 26. Results The numbers show the number of dead candidate assignments found by
pairs of tools: Soot, JAlive (JA), FindBugs (FB) and PMD. For each tool pair, the number
of assignments only found in one of the tools and the number of assignments found in both
are shown. For the assignments found by both tools, where one tool is Soot, the number of
cases where Soot only removed some jimple lines are shown within parentheses.

signment, but Soot has only removed some of the corresponding jimple lines. This
is because the right-hand side is a construct that might have side effects, typically
a method call, and the call is therefore still present. The behavior for these cases is
equivalent for JastAdd and Soot, but we needed to look at the jimple code manually
to determine this.

In addition to the dead assignments found on candidates shown in the figure,
Soot also finds an additional number of dead assignments not matching candidates
(ANTLR=256, Bloat=902, Chart=106 and FOP=5212). We have not been able to
manually check all these assignments, but after looking at many of them, we have
only found cases that are either due to constant propagation (which we do not do),
or to temporary variables introduced in the jimple code.

PMD reports very many dataflow anomalies of type DD and DU. After in-
specting several of those that are neither reported by Soot nor JastAdd, we have
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Benchmark JAlive JAlive+reach Soot FindBugs PMD

ANTLR 11.8± 0.3 22.3± 0.2 26.0± 5.2 105.6± 18.1 17.9± 2.4

Bloat 15.0± 0.4 46.8± 11.8 37.0± 8.9 115.5± 14.8 61.9± 10.1

Chart 7.4± 0.2 17.2± 4.4 20.2± 5.2 53.0± 12.0 7.6± 0.1

FOP 59.4± 11.6 278.9± 27.3 256.3± 2.6 250.3± 38.3 38.9± 9.3

Fig. 27. Average total execution time (in seconds)

only found false positives. It seems that arrays appear to be treated as ordinary
variables, and that the control-flow is not fine enough, ignoring, for example, short-
circuiting of boolean expressions. Like Soot, PMD reports dead assignments for
non-candidates (ANTLR=18, Bloat=99, Chart=22, FOP=625). These non-candidates
may, for example, be fields. It should be pointed out that the DD and DU reports
are described by PMD to be anomalies that are potentially dead assignments. PMD
does not claim that they are dead.

FindBugs finds comparatively few dead assignments, and reports no dead as-
signments for non-candidates. All the dead assignments found by FindBugs are
found also by JastAdd.

6.3 Performance

Benchmark Plain JAlive JAlive+reach

ANTLR 1.7± 0.1 2.9± 0.06 9.1± 0.04

Bloat 2.3± 0.1 3.6± 0.06 17.5± 0.08

Chart 1.0± 0.07 1.3± 0.1 9.3± 0.2

FOP 10.0± 0.05 16.2± 0.07 182.4± 16.5

Fig. 28. In-memory performance for JastAdd. In seconds, using a pre-heated VM. Plain
is the static-semantic analysis only.

Figure 27 shows average total execution times in seconds for all tools, measured
using time. All average times are given with a confidence interval of 95%.

JAlive is faster than Soot on all four applications, and it is the fastest tool for
three of the applications, with the exception of FOP where PMD is faster. For PMD,
the performance for Bloat sticks out, which may be due to the large average flows
in Bloat. FindBugs generally gets the worst performance, except for FOP where
both JAlive+reach and Soot are worse. Both JastAdd and PMD perform analysis
on source which is likely to result in smaller control-flow graphs with less nodes.
This might also explain the difference in performance between Soot/FindBugs and
JastAdd/PMD.
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One motivation for doing this type of analysis on source rather than on byte
code is the applicability in interactive settings, for example, in editors. In an edit-
ing scenario a model of the edited program will be kept in memory. This model,
which is typically an AST, will be updated in response to user actions, like code
modifications. The time needed for re-computation of information will affect the
response time experienced by the user, and a translation to byte code would po-
tentially slow down performance. Figure 28 shows JastAdd performance measures
for an in-memory AST with a pre-heated VM. We show both our analyses, JAlive

and JAlive+reach, as well as a plain analysis only doing semantic analysis. These
numbers show the performance for a full analysis of the whole benchmark appli-
cation. Preferably, in an editing scenario each edit action should not trigger a full
analysis of the application being edited, but employ some incremental evaluation
mechanism for limiting unnecessary re-computations.

6.4 Effort

Modules Number of Rules

Name Version LOC syn inh eq coll contr.

Java Frontend
1.4 10 352 471 168 1 453 0 0

1.5 4 909 166 48 588 0 0

Control Flow
1.4 444 17 26 185 2 5

1.5 20 0 0 9 0 0

Liveness 1.4 29 4 1 10 1 3

Reaching 1.4 96 8 1 30 3 7

Helpers 1.4 33 11 1 13 1 1

Dead assignment 1.4 25 3 1 5 2 5

Fig. 29. Size of modules using lines of code (LOC) and number of JastAdd rules separated
into different columns for – syn, inh, eq, coll, contributes. The modules for the
alternative variants of liveness (JAlive and JAlive+reaching) have the same size and are only
included once.

In order to estimate effort of implementation, we look at the actual size of the
implementations. By making use of higher-level abstractions in the form of at-
tributes, our wish is to decrease the development effort needed for the analyses.

Figure 29 shows an overview of the different modules for the JastAdd approach,
including the frontend of JastAddJ. Each module is separated into two rows when
there is a modular extension from Java version 1.4 to Java version 1.5. For cases
where such an extension is unnecessary due to reused behavior, only numbers for
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version 1.4 are given. Besides size, we also show the number of JastAdd rules
divided into different columns depending on rule type. For completeness, the size
of a Helpers module, needed by the Control Flow, Liveness, Reaching Definition
and Dead Assignment modules, is also included.

The total number of lines for the JastAdd analyses is 647. In comparison, the
corresponding Soot implementation is 1308 lines of code, i.e., more than twice as
large. This includes 186 for the dead assignment analysis, 481 for dataflow analysis,
and 641 for control-flow including the handling of exceptions. We have not found
it meaningful to compare with the implementation sizes of PMD and FindBugs,
since the results they report are so different.

7 Related Work

Silver is a recent attribute grammar system with many similarities to JastAdd, but
which does not support circular attributes. It has also been applied for declarative
flow analysis [26], but using a different approach than ours. In Silver, the specifi-
cation language itself is extended to support the specification of control-flow and
dataflow analysis. The actual dataflow analysis is not carried out by the attribute
grammar system, but by an external model checking tool. This approach is mo-
tivated by the difficulty of declaratively specifying dataflow analysis on the same
program representation as, for example, type analysis. No performance figures
for this approach are reported. In contrast, we have shown how both control flow
and dataflow can be specified in a concise way directly using the general attribute
grammar features of JastAdd, in particular relying on the combination of reference
attributes, circular attributes and collection attributes.

Farrow introduced circular attributes, and used liveness as a motivating example
[13]. He builds on traditional attribute grammars without reference attributes, and
does therefore not build any explicit control-flow graph. The dataflow analysis is
instead defined directly in terms of the underlying syntax, with rules for each kind
of statement.

Another declarative approach to dataflow analysis (both inter- and intra) is
to use techniques based on logic programming and deductive databases, running
queries on a database of facts extracted from the program code [21]. Deductive
database languages like Datalog have been used for interprocedural flow analyses
of Java [25,7]. In this approach, the source program needs to be preprocessed, for
example to resolve names, in order to extract the relevant facts. In contrast, the
attribute grammar approach can be used seamlessly for all analysis after parsing.
However, it should be pointed out that our current implementation concerns in-
traprocedural flow analysis only. Implementation of interprocedural flow analyses
using reference attribute grammars is still future work.

Soot, [23], is a framework for optimizing, analyzing, and annotating Java byte-
code. The framework provides a set of inter- and intraprocedural program optimiza-
tions with a much wider scope than the analyses presented in this paper. Soot is
based on several kinds of intermediate code representations, including typed three-
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address code, and provides seamless translations between the different representa-
tions. Java source code is first translated into one of these representations in which
some high-level structure is lost. The control-flow and data-flow frameworks in
Soot are indeed quite powerful with reasonably small APIs. A major difference, as
compared to our approach, is that the Soot approach is not declarative and therefore
relies on manual scheduling when combining analyses, or adding new analyses as
new specializations of the framework.

Schäfer et al. have used a variant of our analyses modules in the implementation
of experimental refactoring tools for Java. They report performance on par with
industrial strength refactoring tools [22].

8 Conclusions

Control-flow and intraprocedural dataflow analysis is important for source-level
tools like bug detectors and refactoring tools. Doing such analysis at the source
level, rather than at the level of intermediate code, is desirable from a tool integra-
tion point of view. The downside of working at the source level is that it requires
all language constructs to be taken into account, and that the analyses need to be
extended when new language features are added.

In this paper, we have presented a new approach to source level control-flow and
dataflow analysis, based on reference attribute grammars that are augmented with
circular attributes and collection attributes. We argue that this provides an excellent
foundation for implementing these analyses, leading to concise specifications that
are close to text book definitions, and that are easy to extend modularly when the
language evolves.

We have demonstrated that the approach works well for practical applications
by implementing control flow, dataflow, and dead assignment analysis for Java, and
comparing with Soot (a well known Java optimization framework), and with PMD
and FindBugs (both well known tools for bug and code anomaly detection).

Our evaluation shows that JastAdd analyses are concise and easy to extend mod-
ularly. The JastAdd specification for Java 1.4 is only 627 lines for Java 1.4, and only
a 20-line module is needed to extend the control-flow analysis to Java 5, and the
other analyses can be reused as they are. In comparison, the corresponding Soot
implementation is 1308 lines.

To evaluate correctness and precision, we compared the results of dead assign-
ment analysis on a number of Java benchmark programs, the largest being over
130 000 lines of code. Due to its focus on optimization, Soot can be expected to
have both high correctness and preciseness, and manual inspection of deviating re-
sults between the tools confirmed this. We found that the results from JastAdd and
Soot were almost identical, with both finding a very small number of dead assign-
ments that the other did not find. Both PMD and FindBugs found substantially
fewer dead assignments, and PMD had many false positives.

Concerning performance, our JastAdd-based solution is between four and nine
times faster than FindBugs, and at the same time more precise. The performance
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comparison between JastAdd and the other two tools, Soot and PMD, is less clear
cut. While JastAdd is the fastest on most benchmarks, Soot and PMD find dead
assignments also outside the candidate set we have tested. While we believe that
most of these reports are due to constant propagation and internal optimizations of
jimple code for Soot, and false positives for PMD, this would need to be manually
verified.

We implemented two variants of dataflow analysis: liveness only, and liveness
combined with reaching definitions. The difference between these variants was ex-
tremely small: adding the reaching definitions analysis accounted for merely three
additional dead assignments detected in the four benchmark programs together,
and which none of the other tools detected. The performance cost was quite large,
however, resulting in an analysis that was between two to five times slower.

There are several interesting ways to continue this work. One is to investigate
more advanced interactive tool support that need precise intraprocedural dataflow
analysis. For example, more advanced bug and code anomaly detectors. Another
direction is to extend the work to interprocedural analyses, in particular to object-
oriented call graph construction and interprocedural points-to analysis. We already
have promising work in the direction of call graphs and simple whole program
devirtualization analysis [19]. Because evaluation of reference attribute grammars
is demand-driven, they should lend themselves to interprocedural analyses.

A third direction is to apply these results to analysis on intermediate code, and to
develop declarative frameworks building SSA form and declarative implementation
of related analyses.
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with collection attributes - evaluation and applications. In Proceedings of Seventh
IEEE Working Conference on Source Code Analysis and Manipulation, September
2007.
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