Linus Akesson

Essay for Part 1 of the PhD course in research methodology, ethics
and innovation.

Research methods I currently use

In this section, I will describe my work in terms of research methods. I will start
with a very general overview of the work, and then focus on three different parts
of it.

Overview

The core of my work can be described as design science on several different
levels. At the most concrete level, T develop software (a compiler toolchain, and
a middleware runtime system) to solve problems of a particular kind, and then
I evaluate qualitatively and quantitatively how well the software solves those
problems.

At a higher level, T design the programming language that serves as input for
the compiler I'm writing, and evaluate this programming language, trying to
determine how well it can be used to solve problems in the intended domain.

Finally, at the highest level, I try to map out some guidelines for designing such
programming languages in general. That is to say, I reflect on what worked well
and what didn’t work, and try to crystallise some general advice that could be
helpful for others who wish to explore the same design space.

Software

As part of my research, I have designed and implemented software, and measured
its performance (relating it to the performance of similar systems). According
to the classification scheme used in [1], the design and implementation would be
an example of a formulative research approach, and measuring the performance
would be an example of an evaluative approach. My work includes a new
algorithm for solving a particular optimisation problem, and the software could
then be regarded as a proof of concept implementation of the algorithm. That
the algorithm is effective is shown using simulation.

In order to explain and motivate why these artefacts are useful, I perform a
literature review (descriptive according to [1]).

Language

A programming language is a designed artefact; therefore the creation of one
should be regarded as design science. Again, I use literature review to show how
this artefact differs from existing ones. I perform a small case study to identify
some of the design requirements for the language: From the study I obtain an



example scenario, and the language is then designed to be able to deal with the
scenario. This is an example of use-case driven design.

Design advice

At the most abstract level, I sketch out some advice for designing programming
languages similar to mine. One could regard the software and my programming
language as the concrete artefact for which these guidelines are just academic
commentary. Or one could regard the advice as the central artefact (it would
be classified as formulative-guidelines/standards in [1]), and the programming
language and software as a kind of substantiation, providing a concrete evalua-
tion of the artefact. In my opinion, both of these views are equally valid, and I
deliberately refrain from committing myself to just one of the interpretations.

Research methods I might consider using in the future

The design rationale for my artefacts is mainly established by means of a
case study; they grew out of a need in a particular research project. Perhaps
the contribution would be regarded as stronger if a more extensive set of re-
quirements were gathered systematically by means of a survey. The design of
the programming language itself could perhaps benefit from studies of wvisual
notations [2].

As for the evaluation aspect of my research, I might want to complement my
performance measurements and simulations with field studies or field exper-
iments, in orded to judge how well the artefacts actually work in practice. A
programming language is arguably a user interface, and as such may be amenable
to heuristic evaluation [3].

One possible way forward would be to formalise the semantics of my program-
ming language. This would make the compiler and the language (as well as
programs written in it) amenable to certain kinds of formal analysis and math-
ematical proof. For instance, it would be possible to demonstrate the correctness
of the optimisation algorithm.

References

[1] R. L. Glass, V. Ramesh, and I. Vessey. An analysis of research in computing
disciplines. Commun. ACM, 47(6):89-94, June 2004.

[2] D. Moody. The “physics” of notations: Toward a scientific basis for
constructing visual notations in software engineering. IEEFE Transactions
on Software Engineering, 35(6):756-779, Nov 2009.

[3] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI "90, pages 249-256, New York, NY, USA, 1990. ACM.



