Embedded Systems & Programmer Culture
PhD course on Research Methodology, Ethics, and Innovation for Computing Disciplines
Patrik Persson, June 20, 2016

In this essay, I'll give some reflections on (what I perceive to be) research methods in my field,
embedded systems design. I’ll note some potential weaknesses in our ways of working and
suggest how to address those weaknesses.

What we do now

Our group’s web page (Embedded Systems Design) says:

The big challenge of this research is to find efficient methods and tools which can be used
in industry to enhance a design process, make time-to-market shorter and improve overall
quality of the final products. [1]

Broadly speaking, we design and evaluate hardware and software constructions to make
electronic gadgets cheaper and more efficient. Much work concerns hardware/software co-
design, and results can include both software (algorithms) and hardware (e.g., accelerators).
Like many computer scientists, we’re interested in mathematically oriented methods for de-
scribing and analyzing problems.

Our work could perhaps be categorized as design science, and includes the following:

1. Select an architecture (typically an existing one). This could be, say, an operating system,
or a programming language.

2. Identify an application for the given architecture, and identify cases where the applica-
tion runs sub-optimally on this architecture.

3. Propose and construct a new or modified component, such as a scheduling algorithm, or
a hardware accelerator.

4. Evaluate the new component with respect to the application in step (2), and possibly
other benchmarks. We typically use quantitative measures of performance or power.

Steps 1-2 concern our choice of problem, and steps 3—4 concern our method to address
that problem. In my work, step 1 could be an Android-based mobile phone, step 2 could be
an imaging (photo) application overheating the phone in some cases, step 3 could be a revised,
temperature- and power-aware task scheduler for imaging algorithms, and step 4 could involve
power, heat, and performance measurements with/without the proposed scheduler.

A couple of points are worth noting here. First, I've presented the choice of problem and
the research method together. We sometimes seem to prefer to think that we first start with a
problem and then select our method; however, I'm convinced we frequently choose problems
that allow us to apply our favorite methods. I think this phenomenon is not specific to this field,
but rather to engineering research in general, and (to some degree) even all research. There’s
not necessarily anything wrong with this concept of “method in search of a problem’; we select



problems we think we can do something good with. But I think it’s important to remember that
we often know which method, and perhaps which architecture, we prefer before we know which
problem to solve.

Second, we are the ones to both (3) propose a solution and (4) evaluate it. In contrast to a
natural scientist, whose empirical work concerns a reality outside of its observer, our empirical
work concerns our own constructions. There is an obvious risk for bias, since we usually
wish our solutions to be good. Our preconceptions, methodological preferences, and wish for
success may—perhaps unconsciously—nudge our conclusions in the right direction.

What we could do

So, I see two potential problems: (1) we may select architectures depending (partly) on what
kind of research we like to do, and (2) our subjective views risk influencing our evaluation of
our own work.

Problem (1) typically concerns programming models—the ways we like to express our
ideas. A programmer would choose a particular operating system, programming language, or
framework that fits his or her needs. Those needs often involve a fair dose of subjective views.
Is object-oriented or functional programming better? Android or iOS? Threads or dataflow?
OpenCL, Cuda or RenderScript? Universal, objective criteria can certainly be found in many
cases, but far from all. It often boils down to individual programmers’ preferences.

I think it could be useful to apply case study methods here. Can we learn how programmers
like to express problems? Can we learn something, for example, about which problems are
preferably expressed in an object-oriented form, and which in a functional one? We usually
say that some problems lend themselves to one expressions, and some the other; however,
Tedre and Sutinen [2] convince me that different computer science traditions view these things
differently. Preferences depend not only on the problem, but also on the programmer and
the programmer’s teachers; programmer preferences need to be weighed into our selection of
architecture. To understand those preferences, we would need to move into case study research.

Problem (2) above, of our wishes influencing our results, is trickier. To some extent it is
addressed by choosing universally accepted benchmarks; still, those benchmarks reflect the
choice of architecture, and, by extension, the programmer preferences discussed above. One
metric never says it all—it’s always based on an assumption of what to care about.

I argue that the research cannot be entirely separated from the researcher. We certainly
strive towards the objective, and this is precisely why we should be good at understanding the
subjective. Embracing the subjective does not mean that we give up on the objective: we can
both agree that the grass is green, even if I'm not sure your green is the same as mine.

References

[1] Embedded Systems Design, Dept. of Computer Science, LTH: http://esd.cs.Ith.se. Retrieved on June 6,
2016.

[2] Tedre, Matti, and Erkki Sutinen: “Three traditions of computing: What educators should know.” Computer
Science Education 18.3 (2008): pp. 153-170.



