

Scala for the Impatient
Copyright © Cay S. Horstmann 2012. All Rights Reserved.

The evolution of Java and C++ has slowed down considerably, and
programmers who are eager to use more modern language features
are looking elsewhere. Scala is an attractive choice; in fact, I think it
is by far the most attractive choice for programmers who want to
move beyond Java or C++. Scala has a concise syntax that is
refreshing after the Java boilerplate. It runs on the Java virtual
machine, providing access to a huge set of libraries and tools. It
embraces the functional programming style without abandoning
object-orientation, giving you an incremental learning path to a new
paradigm. The Scala interpreter lets you run quick experiments,
which makes learning Scala very enjoyable. And, last but not least,
Scala is statically typed, enabling the compiler to find errors, so that
you don't waste time finding them later in running programs (or
worse, don't find them).

I wrote this book for impatient readers who want to start
programming with Scala right away. I assume you know Java, C#, or
C++, and I won't bore you with explaining variables, loops, or classes.
I won't exhaustively list all features of the language, I won't lecture
you about the superiority of one paradigm over another, and I won't
make you suffer through long and contrived examples. Instead, you
will get the information that you need in compact chunks that you can
read and review as needed.

Scala is a big language, but you can use it effectively without knowing
all of its details intimately. Martin Odersky, the creator of Scala, has
identified the following levels of expertise for application
programmers and library designers:

Application Programmer Library Designer Overall Scala Level
Beginning (A1) Beginning
Intermediate (A2) Junior (L1) Intermediate
Expert (A3) Senior (L2) Advanced

Expert (L3) Expert

For each chapter (and occasionally for individual sections), I indicate
the experience level. The chapters progress through levels A1, L1,
A2, L2, A3, L3. Even if you don't want to design your own libraries,
knowing about the tools that Scala provides for library designers can
make you a more effective library user.

I hope you enjoy learning Scala with this book. If you find errors or
have suggestions for improvement, please visit
http://horstmann.com/scala and leave a comment. On that page,
you will also find a link to an archive file containing all code examples
from the book.

I am very grateful to Dmitry Kirsanov and Alina Kirsanova who turned
my manuscript from XHTML into a beautiful book, allowing me to
concentrate on the content instead of fussing with the format. Every
author should have it so good!

Reviewers include Adrian Cumiskey (Agile Owl Software), Michael
Davis (Collaborative Consulting), Daniel Sobral, Craig Tataryn, David
Walend, and William Wheeler. Thanks so much for your comments and
suggestions!

Finally, as always, my gratitude goes to my editor, Greg Doench, for
encouraging me to write this book and for his insights during the
development process.

Cay Horstmann

San Francisco, 2012

Topics in This Chapter A1

1.1 The Scala Interpreter — page 3

1.2 Declaring Values and Variables — page 5

1.3 Commonly Used Types — page 6

1.4 Arithmetic and Operator Overloading — page 7

1.5 Calling Functions and Methods — page 9

1.6 The apply Method — page 10

1.7 Scaladoc — page 10

Exercises — page 13

The Basics

In this chapter, you will learn how to use Scala as an industrial-strength pocket

calculator, working interactively with numbers and arithmetic operations. We

introduce a number of important Scala concepts and idioms along the way. You

will also learn how to browse the Scaladoc documentation at a beginner’s level.

Highlights of this introduction are:

• Using the Scala interpreter

• Defining variables with var and val

• Numeric types

• Using operators and functions

• Navigating Scaladoc

1.1 The Scala Interpreter
To start the Scala interpreter:

• Install Scala.

• Make sure that the scala/bin directory is on the PATH.

• Open a command shell in your operating system.

• Type scala followed by the Enter key.

3

1Chapter

TIP: Don’t like the command shell? There are other ways of running the
interpreter—see http://horstmann.com/scala/install.

Now type commands followed by Enter. Each time, the interpreter displays the

answer. For example, if you type 8 * 5 + 2 (as shown in boldface below), you

get 42.

scala> 8 * 5 + 2
res0: Int = 42

The answer is given the name res0. You can use that name in subsequent

computations:

scala> 0.5 * res0
res1: Double = 21.0
scala> "Hello, " + res0
res2: java.lang.String = Hello, 42

As you can see, the interpreter also displays the type of the result—in our

examples, Int, Double, and java.lang.String.

You can call methods. Depending on how you launched the interpreter, you may

be able to use tab completion for method names. Try typing res2.to and then hit

the Tab key. If the interpreter offers choices such as

toCharArray toLowerCase toString toUpperCase

this means tab completion works. Type a U and hit the Tab key again. You now

get a single completion:

res2.toUpperCase

Hit the Enter key, and the answer is displayed. (If you can’t use tab completion

in your environment, you’ll have to type the complete method name yourself.)

Also try hitting the ↑ and ↓ arrow keys. In most implementations, you will see

the previously issued commands, and you can edit them. Use the ←, →, and Del

keys to change the last command to

res2.toLowerCase

As you can see, the Scala interpreter reads an expression, evaluates it, prints it,

and reads the next expression. This is called the read-eval-print loop, or REPL.

Technically speaking, the scala program is not an interpreter. Behind the scenes,

your input is quickly compiled into bytecode, and the bytecode is executed by

Chapter 1 The Basics4

the Java virtual machine. For that reason, most Scala programmers prefer to call

it “the REPL”.

TIP: The REPL is your friend. Instant feedback encourages experimenting,
and you will feel good whenever something works.

It is a good idea to keep an editor window open at the same time, so you can
copy and paste successful code snippets for later use. Also, as you try more
complex examples, you may want to compose them in the editor and then
paste them into the REPL.

1.2 Declaring Values and Variables
Instead of using the names res0, res1, and so on, you can define your own names:

scala> val answer = 8 * 5 + 2
answer: Int = 42

You can use these names in subsequent expressions:

scala> 0.5 * answer
res3: Double = 21.0

A value declared with val is actually a constant—you can’t change its contents:

scala> answer = 0
<console>:6: error: reassignment to val

To declare a variable whose contents can vary, use a var:

var counter = 0
counter = 1 // OK, can change a var

In Scala, you are encouraged to use a val unless you really need to change the

contents. Perhaps surprisingly for Java or C++ programmers, most programs

don’t need many var variables.

Note that you need not specify the type of a value or variable. It is inferred from

the type of the expression with which you initialize it. (It is an error to declare a

value or variable without initializing it.)

However, you can specify the type if necessary. For example,

val greeting: String = null
val greeting: Any = "Hello"

51.2 Declaring Values and Variables

NOTE: In Scala, the type of a variable or function is always written after the
name of the variable or function. This makes it easier to read declarations
with complex types.

As I move back and forth between Scala and Java, I find that my fingers write
Java declarations such as String greeting on autopilot, so I have to rewrite
them as greeting: String.This is a bit annoying, but when I work with complex
Scala programs, I really appreciate that I don’t have to decrypt C-style type
declarations.

NOTE: You may have noticed that there were no semicolons after variable
declarations or assignments. In Scala, semicolons are only required if you
have multiple statements on the same line.

You can declare multiple values or variables together:

val xmax, ymax = 100 // Sets xmax and ymax to 100
var greeting, message: String = null
 // greeting and message are both strings, initialized with null

1.3 Commonly Used Types
You have already seen some of the data types of the Scala language, such as Int
and Double. Like Java, Scala has seven numeric types: Byte, Char, Short, Int, Long,
Float, and Double, and a Boolean type. However, unlike Java, these types are classes.

There is no distinction between primitive types and class types in Scala. You can

invoke methods on numbers, for example:

1.toString() // Yields the string "1"

or, more excitingly,

1.to(10) // Yields Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(We will discuss the Range class in Chapter 13. For now, just view it as a collection

of numbers.)

In Scala, there is no need for wrapper types. It is the job of the Scala compiler to

convert between primitive types and wrappers. For example, if you make an array

of Int, you get an int[] array in the virtual machine.

As you saw in Section 1.1, “The Scala Interpreter,” on page 3, Scala relies on the

underlying java.lang.String class for strings. However, it augments that class with

well over a hundred operations in the StringOps class. For example, the intersect
method yields the characters that are common to two strings:

Chapter 1 The Basics6

"Hello".intersect("World") // Yields "lo"

In this expression, the java.lang.String object "Hello" is implicitly converted to a

StringOps object, and then the intersect method of the StringOps class is applied.

Therefore, remember to look into the StringOps class when you use the Scala

documentation (see Section 1.7, “Scaladoc,” on page 10).

Similarly, there are classes RichInt, RichDouble, RichChar, and so on. Each of them has

a small set of convenience methods for acting on their poor cousins—Int, Double,
or Char. The to method that you saw above is actually a method of the RichInt class.

In the expression

1.to(10)

the Int value 1 is first converted to a RichInt, and the to method is applied to that

value.

Finally, there are classes BigInt and BigDecimal for computations with an arbitrary

(but finite) number of digits. These are backed by the java.math.BigInteger
and java.math.BigDecimal classes, but, as you will see in the next section, they are

much more convenient because you can use them with the usual mathematical

operators.

NOTE: In Scala, you use methods, not casts, to convert between numeric
types. For example, 99.44.toInt is 99, and 99.toChar is 'c'. Of course, as in
Java, the toString method converts any object to a string.

To convert a string containing a number into the number, use toInt or toDouble.
For example, "99.44".toDouble is 99.44.

1.4 Arithmetic and Operator Overloading
Arithmetic operators in Scala work just as you would expect in Java or C++:

val answer = 8 * 5 + 2

The + - * / % operators do their usual job, as do the bit operators & | ^ >> <<. There

is just one surprising aspect: These operators are actually methods. For example,

a + b

is a shorthand for

a.+(b)

Here, + is the name of the method. Scala has no silly prejudice against non-

alphanumeric characters in method names. You can define methods with just

71.4 Arithmetic and Operator Overloading

about any symbols for names. For example, the BigInt class defines a method

called /% that returns a pair containing the quotient and remainder of a division.

In general, you can write

a method b

as a shorthand for

a.method(b)

where method is a method with two parameters (one implicit, one explicit). For

example, instead of

1.to(10)

you can write

1 to 10

Use whatever you think is easier to read. Beginning Scala programmers tend to

stick to the Java syntax, and that is just fine. Of course, even the most hardened

Java programmers seem to prefer a + b over a.+(b).

There is one notable difference between Scala and Java or C++. Scala does not

have ++ or -- operators. Instead, simply use +=1 or -=1:

counter+=1 // Increments counter—Scala has no ++

Some people wonder if there is any deep reason for Scala’s refusal to provide a

++ operator. (Note that you can’t simply implement a method called ++. Since the

Int class is immutable, such a method cannot change an integer value.) The Scala

designers decided it wasn’t worth having yet another special rule just to save

one keystroke.

You can use the usual mathematical operators with BigInt and BigDecimal objects:

val x: BigInt = 1234567890
x * x * x // Yields 1881676371789154860897069000

That’s much better than Java, where you would have had to call

x.multiply(x).multiply(x).

NOTE: In Java, you cannot overload operators, and the Java designers
claimed this is a good thing because it stops you from inventing crazy
operators like !@$&* that would make your program impossible to read. Of
course, that’s silly; you can make your programs just as hard to read by using
crazy method names like qxywz. Scala allows you to define operators, leaving
it up to you to use this feature with restraint and good taste.

Chapter 1 The Basics8

1.5 Calling Functions and Methods
Scala has functions in addition to methods. It is simpler to use mathematical

functions such as min or pow in Scala than in Java—you need not call static

methods from a class.

sqrt(2) // Yields 1.4142135623730951
pow(2, 4) // Yields 16.0
min(3, Pi) // Yields 3.0

The mathematical functions are defined in the scala.math package. You can import

them with the statement

import scala.math._ // In Scala, the _ character is a “wildcard,” like * in Java

NOTE: To use a package that starts with scala., you can omit the scala prefix.
For example, import math._ is equivalent to import scala.math._, and math.sqrt(2)
is the same as scala.math.sqrt(2).

We discuss the import statement in more detail in Chapter 7. For now, just use

import packageName._ whenever you need to import a particular package.

Scala doesn’t have static methods, but it has a similar feature, called singleton

objects, which we will discuss in detail in Chapter 6. Often, a class has a

companion object whose methods act just like static methods do in Java. For exam-

ple, the BigInt companion object to the BigInt class has a method probablePrime that

generates a random prime number with a given number of bits:

BigInt.probablePrime(100, scala.util.Random)

Try this in the REPL; you’ll get a number such as 1039447980491200275486540240713.
Note that the call BigInt.probablePrime is similar to a static method call in Java.

NOTE: Here, Random is a singleton random number generator object, defined
in the scala.util package. This is one of the few situations where a singleton
object is better than a class. In Java, it is a common error to construct a new
java.util.Random object for each random number.

Scala methods without parameters often don’t use parentheses. For example, the

API of the StringOps class shows a method distinct, without (), to get the distinct

letters in a string. You call it as

"Hello".distinct

The rule of thumb is that a parameterless method that doesn’t modify the object

has no parentheses. We discuss this further in Chapter 5.

91.5 Calling Functions and Methods

1.6 The apply Method
In Scala, it is common to use a syntax that looks like a function call. For example,

if s is a string, then s(i) is the ith character of the string. (In C++, you would write

s[i]; in Java, s.charAt(i).) Try it out in the REPL:

"Hello"(4) // Yields 'o'

You can think of this as an overloaded form of the () operator. It is implemented

as a method with the name apply. For example, in the documentation of the StringOps
class, you will find a method

def apply(n: Int): Char

That is, "Hello"(4) is a shortcut for

"Hello".apply(4)

When you look at the documentation for the BigInt companion object, you will

see apply methods that let you convert strings or numbers to BigInt objects. For

example, the call

BigInt("1234567890")

is a shortcut for

BigInt.apply("1234567890")

It yields a new BigInt object, without having to use new. For example:

BigInt("1234567890") * BigInt("112358111321")

Using the apply method of a companion object is a common Scala idiom for con-

structing objects. For example, Array(1, 4, 9, 16) returns an array, thanks to the

apply method of the Array companion object.

1.7 Scaladoc
Java programmers use Javadoc to navigate the Java API. Scala has its own variant,

called Scaladoc (see Figure 1–1).

Navigating Scaladoc is a bit more challenging than Javadoc. Scala classes tend

to have many more convenience methods than Java classes. Some methods use

features that you haven’t learned yet. Finally, some features are exposed as they

are implemented, not as they are used. (The Scala team is working on improving

the Scaladoc presentation, so that it can be more approachable to beginners in the

future.)

Chapter 1 The Basics10

Figure 1–1 The entry page for Scaladoc

Here are some tips for navigating Scaladoc, for a newcomer to the language.

You can browse Scaladoc online at www.scala-lang.org/api, but it is a good

idea to download a copy from www.scala-lang.org/downloads#api and install

it locally.

Unlike Javadoc, which presents an alphabetical listing of classes, Scaladoc’s class

list is sorted by packages. If you know the class name but not the package name,

use the filter in the top left corner (see Figure 1–2).

Figure 1–2 The filter box in Scaladoc

111.7 Scaladoc

Click on the X symbol to clear the filter.

Note the O and C symbols next to each class name. They let you navigate to the

class (C) or the companion object (O).

Scaladoc can be a bit overwhelming. Keep these tips in mind.

• Remember to look into RichInt, RichDouble, and so on, if you want to know how

to work with numeric types. Similarly, to work with strings, look into StringOps.

• The mathematical functions are in the package scala.math, not in any class.

• Sometimes, you’ll see functions with funny names. For example, BigInt has a

method unary_-. As you will see in Chapter 11, this is how you define the prefix

negation operator -x.

• A method tagged as implicit is an automatic conversion. For example, the

BigInt object has conversions from int and long to BigInt that are automatically

called when needed. See Chapter 21 for more information about implicit

conversions.

• Methods can have functions as parameters. For example, the count method in

StringOps requires a function that returns true or false for a Char, specifying

which characters should be counted:

def count(p: (Char) => Boolean) : Int

You supply a function, often in a very compact notation, when you call the

method. As an example, the call s.count(_.isUpper) counts the number of upper-

case characters. We will discuss this style of programming in much more

detail in Chapter 12.

• You’ll occasionally run into classes such as Range or Seq[Char]. They mean what

your intuition tells you—a range of numbers, a sequence of characters. You

will learn all about these classes as you delve more deeply into Scala.

• Don’t get discouraged that there are so many methods. It’s the Scala way to

provide lots of methods for every conceivable use case. When you need

to solve a particular problem, just look for a method that is useful. More often

than not, there is one that addresses your task, which means you don’t have

to write so much code yourself.

• Finally, don’t worry if you run into the occasional indecipherable incantation,

such as this one in the StringOps class:

def patch [B >: Char, That](from: Int, patch: GenSeq[B], replaced: Int)
(implicit bf: CanBuildFrom[String, B, That]): That

Just ignore it. There is another version of patch that looks more reasonable:

def patch(from: Int, that: GenSeq[Char], replaced: Int): StringOps[A]

Chapter 1 The Basics12

If you think of GenSeq[Char] and StringOps[A] as String, the method is pretty easy

to understand from the documentation. And it’s easy to try it out in the REPL:

"Harry".patch(1, "ung", 2) // Yields "Hungry"

Exercises
1. In the Scala REPL, type 3. followed by the Tab key. What methods can be

applied?

2. In the Scala REPL, compute the square root of 3, and then square that value.

By how much does the result differ from 3? (Hint: The res variables are your

friend.)

3. Are the res variables val or var?

4. Scala lets you multiply a string with a number—try out "crazy" * 3 in the REPL.

What does this operation do? Where can you find it in Scaladoc?

5. What does 10 max 2 mean? In which class is the max method defined?

6. Using BigInt, compute 2

1024

.

7. What do you need to import so that you can get a random prime as

probablePrime(100, Random), without any qualifiers before probablePrime and Random?

8. One way to create random file or directory names is to produce a random

BigInt and convert it to base 36, yielding a string such as "qsnvbevtomcj38o06kul".
Poke around Scaladoc to find a way of doing this in Scala.

9. How do you get the first character of a string in Scala? The last character?

10. What do the take, drop, takeRight, and dropRight string functions do? What

advantage or disadvantage do they have over using substring?

13Exercises

Topics in This Chapter A1

2.1 Conditional Expressions — page 16

2.2 Statement Termination — page 17

2.3 Block Expressions and Assignments — page 18

2.4 Input and Output — page 19

2.5 Loops — page 20

2.6 Advanced for Loops and for Comprehensions — page 21

2.7 Functions — page 22

2.8 Default and Named Arguments L1 — page 23

2.9 Variable Arguments L1 — page 24

2.10 Procedures — page 25

2.11 Lazy Values L1 — page 25

2.12 Exceptions — page 26

Exercises — page 28

Control Structures and Functions

In this chapter, you will learn how to implement conditions, loops, and functions

in Scala. You will encounter a fundamental difference between Scala and other

programming languages. In Java or C++, we differentiate between expressions

(such as 3 + 4) and statements (for example, an if statement). An expression has

a value; a statement carries out an action. In Scala, almost all constructs have

values. This feature can make programs more concise and easier to read.

Here are the highlights of this chapter:

• An if expression has a value.

• A block has a value—the value of its last expression.

• The Scala for loop is like an “enhanced” Java for loop.

• Semicolons are (mostly) optional.

• The void type is Unit.

• Avoid using return in a function.

• Beware of missing = in a function definition.

• Exceptions work just like in Java or C++, but you use a “pattern matching”

syntax for catch.

• Scala has no checked exceptions.

15

2Chapter

2.1 Conditional Expressions
Scala has an if/else construct with the same syntax as in Java or C++. However,

in Scala, an if/else has a value, namely the value of the expression that follows

the if or else. For example,

if (x > 0) 1 else -1

has a value of 1 or -1, depending on the value of x. You can put that value in a

variable:

val s = if (x > 0) 1 else -1

This has the same effect as

if (x > 0) s = 1 else s = -1

However, the first form is better because it can be used to initialize a val. In the

second form, s needs to be a var.

(As already mentioned, semicolons are mostly optional in Scala—see Section 2.2,

“Statement Termination,” on page 17.)

Java and C++ have a ?: operator for this purpose. The expression

x > 0 ? 1 : -1 // Java or C++

is equivalent to the Scala expression if (x > 0) 1 else -1. However, you can’t put

statements inside a ?: expression. The Scala if/else combines the if/else and ?:
constructs that are separate in Java and C++.

In Scala, every expression has a type. For example, the expression if (x > 0) 1
else -1 has the type Int because both branches have the type Int. The type of a

mixed-type expression, such as

if (x > 0) "positive" else -1

is the common supertype of both branches. In this example, one branch is a

java.lang.String, and the other an Int. Their common supertype is called Any. (See

Section 8.11, “The Scala Inheritance Hierarchy,” on page 96 for details.)

If the else part is omitted, for example in

if (x > 0) 1

then it is possible that the if statement yields no value. However, in Scala, every

expression is supposed to have some value. This is finessed by introducing a

class Unit that has one value, written as (). The if statement without an else is
equivalent to

if (x > 0) 1 else ()

Chapter 2 Control Structures and Functions16

Think of () as a placeholder for “no useful value,” and think of Unit as the analog

of void in Java or C++.

(Technically speaking, void has no value whereas Unit has one value that signifies

“no value”. If you are so inclined, you can ponder the difference between an

empty wallet and a wallet with a bill labeled “no dollars”.)

NOTE: Scala has no switch statement, but it has a much more powerful pattern
matching mechanism that we will discuss in Chapter 14. For now, just use a
sequence of if statements.

CAUTION: The REPL is more nearsighted than the compiler—it only sees
one line of code at a time. For example, when you type

if (x > 0) 1
else if (x == 0) 0 else -1

the REPL executes if (x > 0) 1 and shows the answer.Then it gets confused
about else -1.

If you want to break the line before the else, use braces:

if (x > 0) { 1
} else if (x == 0) 0 else -1

This is only a concern in the REPL. In a compiled program, the parser will
find the else on the next line.

TIP: If you want to paste a block of code into the REPL without worrying about
its nearsightedness, use paste mode. Type

:paste

Then paste in the code block and type Ctrl+K. The REPL will then analyze
the block in its entirety.

2.2 Statement Termination
In Java and C++, every statement ends with a semicolon. In Scala—like in

JavaScript and other scripting languages—a semicolon is never required if it falls

just before the end of the line. A semicolon is also optional before an }, an else,
and similar locations where it is clear from context that the end of a statement

has been reached.

172.2 Statement Termination

However, if you want to have more than one statement on a single line, you need

to separate them with semicolons. For example,

if (n > 0) { r = r * n; n -= 1 }

A semicolon is needed to separate r = r * x and n -= 1. Because of the }, no

semicolon is needed after the second statement.

If you want to continue a long statement over two lines, you need to make sure

that the first line ends in a symbol that cannot be the end of a statement. An

operator is often a good choice:

s = s0 + (v - v0) * t + // The + tells the parser that this is not the end

 0.5 * (a - a0) * t * t

In practice, long expressions usually involve function or method calls, and then

you don’t need to worry much—after an opening (, the compiler won’t infer the

end of a statement until it has seen the matching).

In the same spirit, Scala programmers favor the Kernighan & Ritchie brace style:

if (n > 0) {
 r = r * n
 n -= 1
}

The line ending with a { sends a clear signal that there is more to come.

Many programmers coming from Java or C++ are initially uncomfortable

about omitting semicolons. If you prefer to have them, just put them in—they

do no harm.

2.3 Block Expressions and Assignments
In Java or C++, a block statement is a sequence of statements enclosed in { }. You

use a block statement whenever you need to put multiple actions in the body of

a branch or loop statement.

In Scala, a { } block contains a sequence of expressions, and the result is also an

expression. The value of the block is the value of the last expression.

This feature can be useful if the initialization of a val takes more than one step.

For example,

val distance = { val dx = x - x0; val dy = y - y0; sqrt(dx * dx + dy * dy) }

Chapter 2 Control Structures and Functions18

The value of the { } block is the last expression, shown here in bold. The variables

dx and dy, which were only needed as intermediate values in the computation,

are neatly hidden from the rest of the program.

In Scala, assignments have no value—or, strictly speaking, they have a value of

type Unit. Recall that the Unit type is the equivalent of the void type in Java and

C++, with a single value written as ().

A block that ends with an assignment statement, such as

{ r = r * n; n -= 1 }

has a Unit value. This is not a problem, just something to be aware of when

defining functions—see Section 2.7, “Functions,” on page 22.

Since assignments have Unit value, don’t chain them together.

x = y = 1 // No

The value of y = 1 is (), and it’s highly unlikely that you wanted to assign a Unit
to x. (In contrast, in Java and C++, the value of an assignment is the value that is

being assigned. In those languages, chained assignments are useful.)

2.4 Input and Output
To print a value, use the print or println function. The latter adds a new line after

the printout. For example,

print("Answer: ")
println(42)

yields the same output as

println("Answer: " + 42)

There is also a printf function with a C-style format string:

printf("Hello, %s! You are %d years old.\n", "Fred", 42)

You can read a line of input from the console with the readLine function. To read

a numeric, Boolean, or character value, use readInt, readDouble, readByte, readShort,
readLong, readFloat, readBoolean, or readChar. The readLine method, but not the other

ones, take a prompt string:

val name = readLine("Your name: ")
print("Your age: ")
val age = readInt()
printf("Hello, %s! Next year, you will be %d.\n", name, age + 1)

192.4 Input and Output

2.5 Loops
Scala has the same while and do loops as Java and C++. For example,

while (n > 0) {
 r = r * n
 n -= 1
}

Scala has no direct analog of the for (initialize; test; update) loop. If you need

such a loop, you have two choices. You can use a while loop. Or, you can use a

for statement like this:

for (i <- 1 to n)
 r = r * i

You saw the to method of the RichInt class in Chapter 1. The call 1 to n returns a

Range of the numbers from 1 to n (inclusive).

The construct

for (i <- expr)

makes the variable i traverse all values of the expression to the right of the <-.
Exactly how that traversal works depends on the type of the expression. For a

Scala collection, such as a Range, the loop makes i assume each value in turn.

NOTE: There is no val or var before the variable in the for loop. The type of
the variable is the element type of the collection.The scope of the loop variable
extends until the end of the loop.

When traversing a string or array, you often need a range from 0 to n – 1. In that

case, use the until method instead of the to method. It returns a range that doesn’t

include the upper bound.

val s = "Hello"
var sum = 0
for (i <- 0 until s.length) // Last value for i is s.length - 1
 sum += s(i)

In this example, there is actually no need to use indexes. You can directly loop

over the characters:

var sum = 0
for (ch <- "Hello") sum += ch

Chapter 2 Control Structures and Functions20

In Scala, loops are not used as often as in other languages. As you will see in

Chapter 12, you can often process the values in a sequence by applying a function

to all of them, which can be done with a single method call.

NOTE: Scala has no break or continue statements to break out of a loop.What
to do if you need a break? Here are a few options:

1. Use a Boolean control variable instead.

2. Use nested functions—you can return from the middle of a function.

3. Use the break method in the Breaks object:

import scala.util.control.Breaks._
breakable {
 for (...) {
 if (...) break; // Exits the breakable block

 ...
 }
}

Here, the control transfer is done by throwing and catching an exception,
so you should avoid this mechanism when time is of the essence.

2.6 Advanced for Loops and for Comprehensions
In the preceding section, you saw the basic form of the for loop. However, this

construct is much richer in Scala than in Java or C++. This section covers the

advanced features.

You can have multiple generators of the form variable <- expression. Separate them

by semicolons. For example,

for (i <- 1 to 3; j <- 1 to 3) print((10 * i + j) + " ")
 // Prints 11 12 13 21 22 23 31 32 33

Each generator can have a guard, a Boolean condition preceded by if:

for (i <- 1 to 3; j <- 1 to 3 if i != j) print((10 * i + j) + " ")
 // Prints 12 13 21 23 31 32

Note that there is no semicolon before the if.

You can have any number of definitions, introducing variables that can be used

inside the loop:

for (i <- 1 to 3; from = 4 - i; j <- from to 3) print((10 * i + j) + " ")
 // Prints 13 22 23 31 32 33

212.6 Advanced for Loops and for Comprehensions

When the body of the for loop starts with yield, then the loop constructs a collection

of values, one for each iteration:

for (i <- 1 to 10) yield i % 3
 // Yields Vector(1, 2, 0, 1, 2, 0, 1, 2, 0, 1)

This type of loop is called a for comprehension.

The generated collection is compatible with the first generator.

for (c <- "Hello"; i <- 0 to 1) yield (c + i).toChar
 // Yields "HIeflmlmop"
for (i <- 0 to 1; c <- "Hello") yield (c + i).toChar
 // Yields Vector('H', 'e', 'l', 'l', 'o', 'I', 'f', 'm', 'm', 'p')

NOTE: If you prefer, you can enclose the generators, guards, and definitions
of a for loop inside braces, and you can use newlines instead of semicolons
to separate them:

for { i <- 1 to 3
 from = 4 - i
 j <- from to 3 }

2.7 Functions
Scala has functions in addition to methods. A method operates on an object, but

a function doesn’t. C++ has functions as well, but in Java, you have to imitate

them with static methods.

To define a function, you specify the function’s name, parameters, and body

like this:

def abs(x: Double) = if (x >= 0) x else -x

You must specify the types of all parameters. However, as long as the function

is not recursive, you need not specify the return type. The Scala compiler deter-

mines the return type from the type of the expression to the right of the = symbol.

If the body of the function requires more than one expression, use a block. The

last expression of the block becomes the value that the function returns. For

example, the following function returns the value of r after the for loop.

def fac(n : Int) = {
 var r = 1
 for (i <- 1 to n) r = r * i
 r
}

Chapter 2 Control Structures and Functions22

There is no need for the return keyword in this example. It is possible to use return
as in Java or C++, to exit a function immediately, but that is not commonly done

in Scala.

TIP: While there is nothing wrong with using return in a named function (except
the waste of seven keystrokes), it is a good idea to get used to life without
return. Pretty soon, you will be using lots of anonymous functions, and
there, return doesn’t return a value to the caller. It breaks out to the enclosing
named function.Think of return as a kind of break statement for functions, and
only use it when you want that breakout functionality.

With a recursive function, you must specify the return type. For example,

def fac(n: Int): Int = if (n <= 0) 1 else n * fac(n - 1)

Without the return type, the Scala compiler couldn’t verify that the type of

n * fac(n - 1) is an Int.

NOTE: Some programming languages (such as ML and Haskell) can infer
the type of a recursive function, using the Hindley-Milner algorithm. However,
this doesn’t work well in an object-oriented language. Extending the
Hindley-Milner algorithm so it can handle subtypes is still a research problem.

2.8 Default and Named Arguments L1

You can provide default arguments for functions that are used when you don’t

specify explicit values. For example,

def decorate(str: String, left: String = "[", right: String = "]") =
 left + str + right

This function has two parameters, left and right, with default arguments "["
and "]".

If you call decorate("Hello"), you get "[Hello]". If you don’t like the defaults, supply

your own: decorate("Hello", "<<<", ">>>").

If you supply fewer arguments than there are parameters, the defaults are applied

from the end. For example, decorate("Hello", ">>>[") uses the default value of the

right parameter, yielding ">>>[Hello]".

You can also specify the parameter names when you supply the arguments. For

example,

decorate(left = "<<<", str = "Hello", right = ">>>")

232.8 Default and Named Arguments

The result is "<<<Hello>>>". Note that the named arguments need not be in the same

order as the parameters.

Named arguments can make a function call more readable. They are also useful

if a function has many default parameters.

You can mix unnamed and named arguments, provided the unnamed ones come

first:

decorate("Hello", right = "]<<<") // Calls decorate("Hello", "[", "]<<<")

2.9 Variable Arguments L1

Sometimes, it is convenient to implement a function that can take a variable

number of arguments. The following example shows the syntax:

def sum(args: Int*) = {
 var result = 0
 for (arg <- args) result += arg
 result
}

You can call this function with as many arguments as you like.

val s = sum(1, 4, 9, 16, 25)

The function receives a single parameter of type Seq, which we will discuss in

Chapter 13. For now, all you need to know is that you can use a for loop to visit

each element.

If you already have a sequence of values, you cannot pass it directly to such a

function. For example, the following is not correct:

val s = sum(1 to 5) // Error

If the sum function is called with one argument, that must be a single integer, not

a range of integers. The remedy is to tell the compiler that you want the parameter

to be considered an argument sequence. Append : _*, like this:

val s = sum(1 to 5: _*) // Consider 1 to 5 as an argument sequence

This call syntax is needed in a recursive definition:

def sum(args: Int*) : Int = {
 if (args.length == 0) 0
 else args.head + recursiveSum(args.tail : _*)
}

Here, the head of a sequence is its initial element, and tail is a sequence of all

other elements. That’s again a Seq, and we have to use : _* to convert it to an

argument sequence.

Chapter 2 Control Structures and Functions24

CAUTION: When you call a Java method with variable arguments of type
Object, such as PrintStream.printf or MessageFormat.format, you need to convert
any primitive types by hand. For example,

val str = MessageFormat.format("The answer to {0} is {1}",
 "everything", 42.asInstanceOf[AnyRef])

This is the case for any Object parameter, but I mention it here because it is
most common with varargs methods.

2.10 Procedures
Scala has a special notation for a function that returns no value. If the function

body is enclosed in braces without a preceding = symbol, then the return type is Unit.
Such a function is called a procedure. A procedure returns no value, and you only

call it for its side effect. For example, the following procedure prints a string inside

a box, like

Hello

Because the procedure doesn’t return any value, we omit the = symbol.

def box(s : String) { // Look carefully: no =
 val border = "-" * s.length + "--\n"
 println(border + "|" + s + "|\n" + border)
}

Some people (not me) dislike this concise syntax for procedures and suggest that

you always use an explicit return type of Unit:

def box(s : String): Unit = {
 ...
}

CAUTION: The concise procedure syntax can be a surprise for Java and C++
programmers. It is a common error to accidentally omit the = in a function
definition.You then get an error message at the point where the function is
called, and you are told that Unit is not acceptable at that location.

2.11 Lazy Values L1

When a val is declared as lazy, its initialization is deferred until it is accessed for

the first time. For example,

252.11 Lazy Values

lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

(We will discuss file operations in Chapter 9. For now, just take it for granted

that this call reads all characters from a file into a string.)

If the program never accesses words, the file is never opened. To verify this, try it

out in the REPL, but misspell the file name. There will be no error when the ini-

tialization statement is executed. However, when you access words, you will get

an error message that the file is not found.

Lazy values are useful to delay costly initialization statements. They can also

deal with other initialization issues, such as circular dependencies. Moreover,

they are essential for developing lazy data structures—see Section 13.13,

“Streams,” on page 173.

You can think of lazy values as halfway between val and def. Compare

val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated as soon as words is defined

lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated the first time words is used

def words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated every time words is used

NOTE: Laziness is not cost-free. Every time a lazy value is accessed, a
method is called that checks, in a threadsafe manner, whether the value has
already been initialized.

2.12 Exceptions
Scala exceptions work the same way as in Java or C++. When you throw an

exception, for example

throw new IllegalArgumentException("x should not be negative")

the current computation is aborted, and the runtime system looks for an exception

handler that can accept an IllegalArgumentException. Control resumes with the

innermost such handler. If no such handler exists, the program terminates.

As in Java, the objects that you throw need to belong to a subclass of

java.lang.Throwable. However, unlike Java, Scala has no “checked” exceptions—you

never have to declare that a function or method might throw an exception.

Chapter 2 Control Structures and Functions26

NOTE: In Java, “checked” exceptions are checked at compile time. If your
method might throw an IOException, you must declare it. This forces
programmers to think where those exceptions should be handled, which is
a laudable goal. Unfortunately, it can also give rise to monstrous method
signatures such as void doSomething() throws IOException, InterruptedException,
ClassNotFoundException. Many Java programmers detest this feature and end
up defeating it by either catching exceptions too early or using excessively
general exception classes. The Scala designers decided against checked
exceptions, recognizing that thorough compile-time checking isn’t always
a good thing.

A throw expression has the special type Nothing. That is useful in if/else expressions.

If one branch has type Nothing, the type of the if/else expression is the type of the

other branch. For example, consider

if (x >= 0) { sqrt(x)
} else throw new IllegalArgumentException("x should not be negative")

The first branch has type Double, the second has type Nothing. Therefore, the if/else
expression also has type Double.

The syntax for catching exceptions is modeled after the pattern-matching syntax

(see Chapter 14).

try {
 process(new URL("http://horstmann.com/fred-tiny.gif"))
} catch {
 case _: MalformedURLException => println("Bad URL: " + url)
 case ex: IOException => ex.printStackTrace()
}

As in Java or C++, the more general exception types should come after the more

specific ones.

Note that you can use _ for the variable name if you don’t need it.

The try/finally statement lets you dispose of a resource whether or not an

exception has occurred. For example:

var in = new URL("http://horstmann.com/fred.gif").openStream()
try {
 process(in)
} finally {
 in.close()
}

272.12 Exceptions

The finally clause is executed whether or not the process function throws an

exception. The reader is always closed.

This code is a bit subtle, and it raises several issues.

• What if the URL constructor or the openStream method throws an exception? Then

the try block is never entered, and neither is the finally clause. That’s just as

well—in was never initialized, so it makes no sense to invoke close on it.

• Why isn’t val in = new URL(...).openStream() inside the try block? Then the scope

of in would not extend to the finally clause.

• What if in.close() throws an exception? Then that exception is thrown out of

the statement, superseding any earlier one. (This is just like in Java, and it

isn’t very nice. Ideally, the old exception would stay attached to the new one.)

Note that try/catch and try/finally have complementary goals. The try/catch
statement handles exceptions, and the try/finally statement takes some action

(usually cleanup) when an exception is not handled. It is possible to combine

them into a single try/catch/finally statement:

try { ... } catch { ... } finally { ... }

This is the same as

try { try { ... } catch { ... } } finally { ... }

However, that combination is rarely useful.

Exercises
1. The signum of a number is 1 if the number is positive, –1 if it is negative, and

0 if it is zero. Write a function that computes this value.

2. What is the value of an empty block expression {}? What is its type?

3. Come up with one situation where the assignment x = y = 1 is valid in Scala.

(Hint: Pick a suitable type for x.)

4. Write a Scala equivalent for the Java loop

for (int i = 10; i >= 0; i--) System.out.println(i);

5. Write a procedure countdown(n: Int) that prints the numbers from n to 0.

6. Write a for loop for computing the product of the Unicode codes of all letters

in a string. For example, the product of the characters in "Hello" is 825152896.

7. Solve the preceding exercise without writing a loop. (Hint: Look at the StringOps
Scaladoc.)

8. Write a function product(s : String) that computes the product, as described

in the preceding exercises.

Chapter 2 Control Structures and Functions28

9. Make the function of the preceding exercise a recursive function.

10. Write a function that computes x

n

, where n is an integer. Use the following

recursive definition:

• x

n

 = y

2

 if n is even and positive, where y = x

n / 2

.

• x

n

 = x· x

n – 1

 if n is odd and positive.

• x

0

 = 1.

• x

n

 = 1 / x

–n

 if n is negative.

Don’t use a return statement.

29Exercises

Topics in This Chapter A1

3.1 Fixed-Length Arrays — page 31

3.2 Variable-Length Arrays: Array Buffers — page 32

3.3 Traversing Arrays and Array Buffers — page 33

3.4 Transforming Arrays — page 34

3.5 Common Algorithms — page 35

3.6 Deciphering Scaladoc — page 37

3.7 Multidimensional Arrays — page 38

3.8 Interoperating with Java — page 39

Exercises — page 39

Working with Arrays

In this chapter, you will learn how to work with arrays in Scala. Java and C++

programmers usually choose an array or its close relation (such as array lists or

vectors) when they need to collect a bunch of elements. In Scala, there are other

choices (see Chapter 13), but for now, I’ll assume you are impatient and just want

to get going with arrays.

Key points of this chapter:

• Use an Array if the length is fixed, and an ArrayBuffer if the length can vary.

• Don’t use new when supplying initial values.

• Use () to access elements.

• Use for (elem <- arr) to traverse the elements.

• Use for (elem <- arr if . . .) . . . yield . . . to transform into a new array.

• Scala and Java arrays are interoperable; with ArrayBuffer, use scala.collection.
JavaConversions.

3.1 Fixed-Length Arrays
If you need an array whose length doesn’t change, use the Array type in Scala. For

example,

31

3Chapter

val nums = new Array[Int](10)
 // An array of ten integers, all initialized with zero

val a = new Array[String](10)
 // A string array with ten elements, all initialized with null
val s = Array("Hello", "World")
 // An Array[String] of length 2—the type is inferred

 // Note: No new when you supply initial values

s(0) = "Goodbye"
 // Array("Goodbye", "World")
 // Use () instead of [] to access elements

Inside the JVM, a Scala Array is implemented as a Java array. The arrays in the

preceding example have the type java.lang.String[] inside the JVM. An array of

Int, Double, or another equivalent of the Java primitive types is a primitive type

array. For example, Array(2,3,5,7,11) is an int[] in the JVM.

3.2 Variable-Length Arrays: Array Buffers
Java has ArrayList and C++ has vector for arrays that grow and shrink on demand.

The equivalent in Scala is the ArrayBuffer.

import scala.collection.mutable.ArrayBuffer
val b = ArrayBuffer[Int]()
 // Or new ArrayBuffer[Int]
 // An empty array buffer, ready to hold integers

b += 1
 // ArrayBuffer(1)
 // Add an element at the end with +=
b += (1, 2, 3, 5)
 // ArrayBuffer(1, 1, 2, 3, 5)
 // Add multiple elements at the end by enclosing them in parentheses

b ++= Array(8, 13, 21)
 // ArrayBuffer(1, 1, 2, 3, 5, 8, 13, 21)
 // You can append any collection with the ++= operator

b.trimEnd(5)
 // ArrayBuffer(1, 1, 2)
 // Removes the last five elements

Adding or removing elements at the end of an array buffer is an efficient

(“amortized constant time”) operation.

Chapter 3 Working with Arrays32

You can also insert and remove elements at an arbitrary location, but those oper-

ations are not as efficient—all elements after that location must be shifted. For

example:

b.insert(2, 6)
 // ArrayBuffer(1, 1, 6, 2)
 // Insert before index 2

b.insert(2, 7, 8, 9)
 // ArrayBuffer(1, 1, 7, 8, 9, 6, 2)
 // You can insert as many elements as you like

b.remove(2)
 // ArrayBuffer(1, 1, 8, 9, 6, 2)
b.remove(2, 3)
 // ArrayBuffer(1, 1, 2)
 // The second parameter tells how many elements to remove

Sometimes, you want to build up an Array, but you don’t yet know how many

elements you will need. In that case, first make an array buffer, then call

b.toArray
 // Array(1, 1, 2)

Conversely, call a.toBuffer to convert the array a to an array buffer.

3.3 Traversing Arrays and Array Buffers
In Java and C++, there are several syntactical differences between arrays and

array lists/vectors. Scala is much more uniform. Most of the time, you can use

the same code for both.

Here is how you traverse an array or array buffer with a for loop:

for (i <- 0 until a.length)
 println(i + ": " + a(i))

The variable i goes from 0 to a.length - 1.

The until method belongs to the RichInt class, and it returns all numbers up to

(but not including) the upper bound. For example,

0 until 10
 // Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Note that 0 until 10 is actually a method call 0.until(10).

333.3 Traversing Arrays and Array Buffers

The construct

for (i <- range)

makes the variable i traverse all values of the range. In our case, the loop variable

i assumes the values 0, 1, and so on until (but not including) a.length.

To visit every second element, let i traverse

0 until (a.length, 2)
 // Range(0, 2, 4, ...)

To visit the elements starting from the end of the array, traverse

(0 until a.length).reverse
 // Range(..., 2, 1, 0)

If you don’t need the array index in the loop body, visit the array elements

directly, like this:

for (elem <- a)
 println(elem)

This is very similar to the “enhanced” for loop in Java or the “range-based” for
loop in C++. The variable elem is set to a(0), then a(1), and so on.

3.4 Transforming Arrays
In the preceding sections, you saw how to work with arrays just like you would

in Java or C++. But in Scala, you can go further. It is very easy to take an array

(or array buffer) and transform it in some way. Such transformations don’t

modify the original array, but they yield a new one.

Use a for comprehension like this:

val a = Array(2, 3, 5, 7, 11)
val result = for (elem <- a) yield 2 * elem
 // result is Array(4, 6, 10, 14, 22)

The for (...) yield loop creates a new collection of the same type as the original

collection. If you started with an array, you get another array. If you started with

an array buffer, that’s what you get from for (...) yield.

The result contains the expressions after the yield, one for each iteration of the loop.

Oftentimes, when you traverse a collection, you only want to process the elements

that match a particular condition. This is achieved with a guard: an if inside the

for. Here we double every even element, dropping the odd ones:

for (elem <- a if a % 2 == 0) yield 2 * elem

Keep in mind that the result is a new collection—the original collection is not

affected.

Chapter 3 Working with Arrays34

NOTE: Alternatively, you could write

a.filter(_ % 2 == 0).map(2 * _)

or even

a filter { _ % 2 == 0 } map { 2 * _ }

Some programmers with experience in functional programming prefer filter
and map to guards and yield. That’s just a matter of style—the for loop does
exactly the same work. Use whichever you find easier.

Consider the following example. Given a sequence of integers, we want to remove

all but the first negative number. A traditional sequential solution would set a

flag when the first negative number is called, then remove all elements beyond.

var first = true
var n = a.length
var i = 0
while (i < n) {
 if (a(i) >= 0) i += 1
 else {
 if (first) { first = false; i += 1 }
 else { a.remove(i); n -= 1 }
 }
}

But wait—that’s actually not so good. It’s inefficient to remove variables from

the front. We should start from the back after finding the first match.

In Scala, your life can be easier. First, let’s use a for/yield loop to find all matching

index values.

val indexes = for (i <- 0 until a.length if a(i) < 0) yield i

Then we visit the indexes in reverse, except for indexes(0).

for (j <- (1 until indexes.length).reverse) a.remove(indexes(j))

The key observation is that it is better to have all index values together instead of

seeing them one by one.

3.5 Common Algorithms
It is often said that a large percentage of business computations are nothing

but computing sums and sorting. Fortunately, Scala has built-in functions for

these tasks.

353.5 Common Algorithms

Array(1, 7, 2, 9).sum
 // 19
 // Works for ArrayBuffer too

In order to use the sum method, the element type must be a numeric type: either

an integral or floating-point type or BigInteger/BigDecimal.

Similarly, the min and max methods yield the smallest and largest element in an

array or array buffer.

ArrayBuffer("Mary", "had", "a", "little", "lamb").max
 // "little"

The sorted method sorts an array or array buffer and returns the sorted array or

array buffer, without modifying the original:

val b = ArrayBuffer(1, 7, 2, 9)
val bSorted = b.sorted(_ < _)
 // b is unchanged; bSorted is ArrayBuffer(1, 2, 7, 9)

You pass the comparison function as a parameter—see Chapter 12 for the function

syntax.

You can sort an array, but not an array buffer, in place:

val a = Array(1, 7, 2, 9)
scala.util.Sorting.quickSort(a)
 // a is now Array(1, 2, 7, 9)

For the min, max, and quickSort methods, the element type must have a comparison

operation. This is the case for numbers, strings, and other types with the Ordered
trait.

Finally, if you want to display the contents of an array or array buffer, the mkString
method lets you specify the separator between elements. A second variant has

parameters for the prefix and suffix. For example,

a.mkString(" and ")
 // "1 and 2 and 7 and 9"
a.mkString("<", ",", ">")
 // "<1,2,7,9>"

Contrast with toString:

a.toString
 // "[I@b73e5"
 // This is the useless toString method from Java

b.toString
 // "ArrayBuffer(1, 7, 2, 9)"
 // The toString method reports the type, which is useful for debugging

Chapter 3 Working with Arrays36

3.6 Deciphering Scaladoc
There are lots of useful methods on arrays and array buffers, and it is a good

idea to browse the Scala documentation to get an idea of what’s there.

NOTE: The methods for the Array class are listed under ArrayOps. Technically,
an array is converted to an ArrayOps object before any of the operations is
applied.

Because Scala has a richer type system than Java, you may encounter some

strange-looking syntax as you browse the Scala documentation. Fortunately,

you don’t have to understand all nuances of the type system to do useful work.

Use Table 3–1 as a “decoder ring.”

Table 3–1 Scaladoc Decoder Ring

ExplanationScaladoc

This method takes a predicate, a function

from A to Boolean. It counts for how many

elements the function is true. For example,

a.count(_ > 0) counts how many elements

of a are positive.

def count(p: (A) => Boolean): Int

This method takes zero or more arguments

of type A. For example, b.append(1, 7, 2, 9)

appends four elements to b.

def append(elems: A*): Unit

The xs parameter can be any collection

with the TraversableOnce trait, the most

general trait in the Scala collections

hierarchy. Other common traits that you

may encounter in Scaladoc are Traversable

and Iterable. All Scala collections

implement these traits, and the difference

between them is academic for library

users. Simply think “any collection” when

you see one of these.

However, the Seq trait requires element

access by an integer index. Think “array,

list, or string.”

def appendAll(xs: TraversableOnce[A]): Unit

373.6 Deciphering Scaladoc

Table 3–1 Scaladoc Decoder Ring (Continued)

ExplanationScaladoc

This method returns this, which allows

you to chain calls, for example: b += 4 -= 5.

When you work with an ArrayBuffer[A],

you can just think of the method as

def += (elem: A) : ArrayBuffer[A].

If someone forms a subclass of ArrayBuffer,

then the return type of += is that subclass.

def += (elem: A): ArrayBuffer.this.type

Note that the function copies an

ArrayBuffer[A] into an Array[B]. Here, B is

allowed to be a supertype of A. For example,

you can copy from an ArrayBuffer[Int] to an

Array[Any].

At first reading, just ignore the [B >: A] and

replace B with A.

def copyToArray[B >: A] (xs: Array[B]): Unit

A must have a supertype B for which an

“implicit” object of type Ordering[B] exists.

Such an ordering exists for numbers,

strings, and other types with the Ordered

trait, as well as for classes that implement

the Java Comparable interface.

def max[B >: A] (implicit cmp: Ordering[B]): A

This declaration happens when the

method creates a new collection. Skip it

and look for the simpler alternative, in

this case

def padTo (len: Int, elem: A) : ArrayBuffer[A]

A future version of Scaladoc will hide

these declarations.

def padTo[B >: A, That](len: Int, elem: B)

(implicit bf: CanBuildFrom[ArrayBuffer[A], B,

That]): That

3.7 Multidimensional Arrays
Like in Java, multidimensional arrays are implemented as arrays of arrays. For

example, a two-dimensional array of Double values has the type Array[Array[Double]].
To construct such an array, use the ofDim method:

val matrix = Array.ofDim[Double](3, 4) // Three rows, four columns

To access an element, use two pairs of parentheses:

matrix(row)(column) = 42

Chapter 3 Working with Arrays38

You can make ragged arrays, with varying row lengths:

val triangle = new Array[Array[Int]](10)
for (i <- 0 until triangle.length)
 triangle(i) = new Array[Int](i + 1)

3.8 Interoperating with Java
Since Scala arrays are implemented as Java arrays, you can pass them back and

forth between Java and Scala.

If you call a Java method that receives or returns a java.util.List, you could, of

course, use a Java ArrayList in your Scala code—but that is unattractive. Instead,

import the implicit conversion methods in scala.collection.JavaConversions. Then

you can use Scala buffers in your code, and they automatically get wrapped into

Java lists when calling a Java method.

For example, the java.lang.ProcessBuilder class has a constructor with a List<String>
parameter. Here is how you can call it from Scala:

import scala.collection.JavaConversions.bufferAsJavaList
import scala.collection.mutable.ArrayBuffer
val command = ArrayBuffer("ls", "-al", "/home/cay")
val pb = new ProcessBuilder(command) // Scala to Java

The Scala buffer is wrapped into an object of a Java class that implements the

java.util.List interface.

Conversely, when a Java method returns a java.util.List, you can have it

automatically converted into a Buffer:

import scala.collection.JavaConversions.asScalaBuffer
import scala.collection.mutable.Buffer
val cmd : Buffer[String] = pb.command() // Java to Scala

 // You can’t use ArrayBuffer—the wrapped object is only guaranteed to be a Buffer

If the Java method returns a wrapped Scala buffer, then the implicit conversion

unwraps the original object. In our example, cmd == command.

Exercises
1. Write a code snippet that sets a to an array of n random integers between 0

(inclusive) and n (exclusive).

2. Write a loop that swaps adjacent elements of an array of integers. For example,

Array(1, 2, 3, 4, 5) becomes Array(2, 1, 4, 3, 5).

3. Repeat the preceding assignment, but produce a new array with the swapped

values. Use for/yield.

39Exercises

4. Given an array of integers, produce a new array that contains all positive

values of the original array, in their original order, followed by all values that

are zero or negative, in their original order.

5. How do you compute the average of an Array[Double]?

6. How do you rearrange the elements of an Array[Int] so that they appear in

reverse sorted order? How do you do the same with an ArrayBuffer[Int]?

7. Write a code snippet that produces all values from an array with duplicates

removed. (Hint: Look at Scaladoc.)

8. Rewrite the example at the end of Section 3.4, “Transforming Arrays,” on

page 34 using the drop method for dropping the index of the first match. Look

the method up in Scaladoc.

9. Make a collection of all time zones returned by java.util.TimeZone.getAvailableIDs
that are in America. Strip off the "America/" prefix and sort the result.

10. Import java.awt.datatransfer._ and make an object of type SystemFlavorMap with

the call

val flavors = SystemFlavorMap.getDefaultFlavorMap().asInstanceOf[SystemFlavorMap]

Then call the getNativesForFlavor method with parameter DataFlavor.imageFlavor
and get the return value as a Scala buffer. (Why this obscure class? It’s hard

to find uses of java.util.List in the standard Java library.)

Chapter 3 Working with Arrays40

Topics in This Chapter A1

4.1 Constructing a Map — page 43

4.2 Accessing Map Values — page 44

4.3 Updating Map Values — page 45

4.4 Iterating over Maps — page 45

4.5 Sorted Maps — page 46

4.6 Interoperating with Java — page 46

4.7 Tuples — page 47

4.8 Zipping — page 48

Exercises — page 48

Maps and Tuples

A classic programmer’s saying is, “If you can only have one data structure, make

it a hash table.” Hash tables—or, more generally, maps—are among the most

versatile data structures. As you will see in this chapter, Scala makes it particularly

easy to use them.

Maps are collections of key/value pairs. Scala has a general notation of tuples—

aggregates of n objects, not necessarily of the same type. A pair is simply a tuple

with n = 2. Tuples are useful whenever you need to aggregate two or more values

together, and we briefly discuss the syntax at the end of this chapter.

Highlights of the chapter are:

• Scala has a pleasant syntax for creating, querying, and traversing maps.

• You need to choose between mutable and immutable maps.

• By default, you get a hash map, but you can also get a tree map.

• You can easily convert between Scala and Java maps.

• Tuples are useful for aggregating values.

4.1 Constructing a Map
You can construct a map as

val scores = Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

4Chapter

43

This constructs an immutable Map[String, Int] whose contents can’t be changed.

If you want a mutable map, use

val scores = scala.collection.mutable.Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

If you want to start out with a blank map, you have to pick a map implementation

and supply type parameters:

val scores = new scala.collection.mutable.HashMap[String, Int]

In Scala, a map is a collection of pairs. A pair is simply a grouping of two values,

not necessarily of the same type, such as ("Alice", 10).

The -> operator makes a pair. The value of

"Alice" -> 10

is

("Alice", 10)

You could have equally well defined the map as

val scores = Map(("Alice", 10), ("Bob", 3), ("Cindy", 8))

The -> operator is just a little easier on the eyes than the parentheses. It also

supports the intuition that a map data structure is a kind of function that maps

keys to values. The difference is that a function computes values, and a map just

looks them up.

4.2 Accessing Map Values
In Scala, the analogy between functions and maps is particularly close because

you use the () notation to look up key values.

val bobsScore = scores("Bob") // Like scores.get("Bob") in Java

If the map doesn’t contain a value for the requested key, an exception is thrown.

To check whether there is a key with the given value, call the contains method:

val bobsScore = if (scores.contains("Bob")) scores("Bob") else 0

Since this call combination is so common, there is a shortcut:

val bobsScore = scores.getOrElse("Bob", 0)
 // If the map contains the key "Bob", return the value; otherwise, return 0.

Finally, the call map.get(key) returns an Option object that is either Some(value for

key) or None. We discuss the Option class in Chapter 14.

Chapter 4 Maps and Tuples44

4.3 Updating Map Values
In a mutable map, you can update a map value, or add a new one, with a () to
the left of an = sign:

scores("Bob") = 10
 // Updates the existing value for the key "Bob" (assuming scores is mutable)

scores("Fred") = 7
 // Adds a new key/value pair to scores (assuming it is mutable)

Alternatively, you can use the += operation to add multiple associations:

scores += ("Bob" -> 10, "Fred" -> 7)

To remove a key and its associated value, use the -= operator:

scores -= "Alice"

You can’t update an immutable map, but you can do something that’s just as

useful—obtain a new map that has the desired update:

val newScores = scores + ("Bob" -> 10, "Fred" -> 7) // New map with update

The newScores map contains the same associations as scores, except that "Bob" has

been updated and "Fred" added.

Instead of saving the result as a new value, you can update a var:

var scores = ...
scores = scores + ("Bob" -> 10, "Fred" -> 7)

Similarly, to remove a key from an immutable map, use the - operator to obtain

a new map without the key:

scores = scores - "Alice"

You might think that it is inefficient to keep constructing new maps, but that is

not the case. The old and new maps share most of their structure. (This is possible

because they are immutable.)

4.4 Iterating over Maps
The following amazingly simple loop iterates over all key/value pairs of a map:

for ((k, v) <- map) process k and v

The magic here is that you can use pattern matching in a Scala for loop.

(Chapter 14 has all the details.) That way, you get the key and value of each pair

in the map without any tedious method calls.

454.4 Iterating over Maps

If for some reason you just want to visit the keys or values, use the keySet and

values methods, as you would in Java. The values method returns an Iterable that

you can use in a for loop.

scores.keySet // A set such as Set("Bob", "Cindy", "Fred", "Alice")
for (v <- scores.values) println(v) // Prints 10 8 7 10 or some permutation thereof

To reverse a map—that is, switch keys and values—use

for ((k, v) <- map) yield (v, k)

4.5 Sorted Maps
When working with a map, you need to choose an implementation—a hash table

or a balanced tree. By default, Scala gives you a hash table. You might want a

tree map if you don’t have a good hash function for the keys, or if you need to

visit the keys in sorted order.

To get an immutable tree map instead of a hash map, use

val scores = scala.collection.immutable.SortedMap("Alice" -> 10,
 "Fred" -> 7, "Bob" -> 3, "Cindy" -> 8)

Unfortunately, there is (as of Scala 2.9) no mutable tree map. Your best bet is to

adapt a Java TreeMap, as described in Chapter 13.

TIP: If you want to visit the keys in insertion order, use a LinkedHashMap. For
example,

val months = scala.collection.mutable.LinkedHashMap("January" -> 1,
 "February" -> 2, "March" -> 3, "April" -> 4, "May" -> 5, ...)

4.6 Interoperating with Java
If you get a Java map from calling a Java method, you may want to convert it to

a Scala map so that you can use the pleasant Scala map API. This is also useful

if you want to work with a mutable tree map, which Scala doesn’t provide.

Simply add an import statement:

import scala.collection.JavaConversions.mapAsScalaMap

Then trigger the conversion by specifying the Scala map type:

val scores: scala.collection.mutable.Map[String, Int] =
 new java.util.TreeMap[String, Int]

In addition, you can get a conversion from java.util.Properties to a Map[String,
String]:

Chapter 4 Maps and Tuples46

import scala.collection.JavaConversions.propertiesAsScalaMap
val props: scala.collection.Map[String, String] = System.getProperties()

Conversely, to pass a Scala map to a method that expects a Java map, provide

the opposite implicit conversion. For example:

import scala.collection.JavaConversions.mapAsJavaMap
import java.awt.font.TextAttribute._ // Import keys for map below

val attrs = Map(FAMILY -> "Serif", SIZE -> 12) // A Scala map

val font = new java.awt.Font(attrs) // Expects a Java map

4.7 Tuples
Maps are collections of key/value pairs. Pairs are the simplest case of tuples—

aggregates of values of different types.

A tuple value is formed by enclosing individual values in parentheses. For

example,

(1, 3.14, "Fred")

is a tuple of type

Tuple3[Int, Double, java.lang.String]

which is also written as

(Int, Double, java.lang.String)

If you have a tuple, say,

val t = (1, 3.14, "Fred")

then you can access its components with the methods _1, _2, _3, for example:

val second = t._2 // Sets second to 3.14

Unlike array or string positions, the component positions of a tuple start with 1,
not 0.

NOTE: You can write t._2 as t _2 (with a space instead of a period), but
not t_2.

Usually, it is better to use pattern matching to get at the components of a tuple,

for example

val (first, second, third) = t // Sets first to 1, second to 3.14, third to "Fred"

You can use a _ if you don’t need all components:

val (first, second, _) = t

474.7 Tuples

Tuples are useful for functions that return more than one value. For example,

the partition method of the StringOps class returns a pair of strings, containing the

characters that fulfill a condition and those that don’t:

"New York".partition(_.isUpper) // Yields the pair ("NY", "ew ork")

4.8 Zipping
One reason for using tuples is to bundle together values so that they can be pro-

cessed together. This is commonly done with the zip method. For example,

the code

val symbols = Array("<", "-", ">")
val counts = Array(2, 10, 2)
val pairs = symbols.zip(counts)

yields an array of pairs

Array(("<", 2), ("-", 10), (">", 2))

The pairs can then be processed together:

for ((s, n) <- pairs) Console.print(s * n) // Prints <<---------->>

TIP: The toMap method turns a collection of pairs into a map.

If you have a collection of keys and a parallel collection of values, then zip
them up and turn them into a map like this:

keys.zip(values).toMap

Exercises
1. Set up a map of prices for a number of gizmos that you covet. Then produce

a second map with the same keys and the prices at a 10 percent discount.

2. Write a program that reads words from a file. Use a mutable map to count

how often each word appears. To read the words, simply use a java.util.Scanner:

val in = new java.util.Scanner(java.io.File("myfile.txt"))
while (in.hasNext()) process in.next()

Or look at Chapter 9 for a Scalaesque way.

At the end, print out all words and their counts.

3. Repeat the preceding exercise with an immutable map.

4. Repeat the preceding exercise with a sorted map, so that the words are

printed in sorted order.

Chapter 4 Maps and Tuples48

5. Repeat the preceding exercise with a java.util.TreeMap that you adapt to the

Scala API.

6. Define a linked hash map that maps "Monday" to java.util.Calendar.MONDAY, and

similarly for the other weekdays. Demonstrate that the elements are visited

in insertion order.

7. Print a table of all Java properties, like this:

java.runtime.name | Java(TM) SE Runtime Environment
sun.boot.library.path | /home/apps/jdk1.6.0_21/jre/lib/i386
java.vm.version | 17.0-b16
java.vm.vendor | Sun Microsystems Inc.
java.vendor.url | http://java.sun.com/
path.separator | :
java.vm.name | Java HotSpot(TM) Server VM

You need to find the length of the longest key before you can print the table.

8. Write a function minmax(values: Array[Int]) that returns a pair containing the

smallest and largest values in the array.

9. Write a function lteqgt(values: Array[Int], v: Int) that returns a triple containing

the counts of values less than v, equal to v, and greater than v.

10. What happens when you zip together two strings, such as "Hello".zip("World")?
Come up with a plausible use case.

49Exercises

Topics in This Chapter A1

5.1 Simple Classes and Parameterless Methods — page 51

5.2 Properties with Getters and Setters — page 52

5.3 Properties with Only Getters — page 55

5.4 Object-Private Fields — page 56

5.5 Bean Properties L1 — page 57

5.6 Auxiliary Constructors — page 58

5.7 The Primary Constructor — page 59

5.8 Nested Classes L1 — page 62

Exercises — page 65

Classes

In this chapter, you will learn how to implement classes in Scala. If you know

classes in Java or C++, you won’t find this difficult, and you will enjoy the much

more concise notation of Scala.

The key points of this chapter are:

• Fields in classes automatically come with getters and setters.

• You can replace a field with a custom getter/setter without changing the

client of a class—that is the “uniform access principle.”

• Use the @BeanProperty annotation to generate the JavaBeans getXxx/setXxx
methods.

• Every class has a primary constructor that is “interwoven” with the class

definition. Its parameters turn into the fields of the class. The primary

constructor executes all statements in the body of the class.

• Auxiliary constructors are optional. They are called this.

5.1 Simple Classes and Parameterless Methods
In its simplest form, a Scala class looks very much like its equivalent in Java

or C++:

51

5Chapter

class Counter {
 private var value = 0 // You must initialize the field

 def increment() { value += 1 } // Methods are public by default

 def current() = value
}

In Scala, a class is not declared as public. A Scala source file can contain multiple

classes, and all of them have public visibility.

To use this class, you construct objects and invoke methods in the usual way:

val myCounter = new Counter // Or new Counter()
myCounter.increment()
println(myCounter.current)

You can call a parameterless method (such as current) with or without parentheses:

myCounter.current // OK

myCounter.current() // Also OK

Which form should you use? It is considered good style to use () for a mutator

method (a method that changes the object state), and to drop the () for an

accessor method (a method that does not change the object state).

That’s what we did in our example:

myCounter.increment() // Use () with mutator

println(myCounter.current) // Don’t use () with accessor

You can enforce this style by declaring current without ():

class Counter {
 ...
 def current = value // No () in definition

}

Now the class user must use myCounter.current, without parentheses.

5.2 Properties with Getters and Setters
When writing a Java class, we don’t like to use public fields:

public class Person { // This is Java

 public int age; // Frowned upon in Java

}

Chapter 5 Classes52

With a public field, anyone could write to fred.age, making Fred younger or older.

That’s why we prefer to use getter and setter methods:

public class Person { // This is Java

 private int age;
 public int getAge() { return age; }
 public void setAge(int age) { this.age = age; }
}

A getter/setter pair such as this one is often called a property. We say that the

class Person has an age property.

Why is this any better? By itself, it isn’t. Anyone can call fred.setAge(21), keeping

him forever twenty-one.

But if that becomes a problem, we can guard against it:

 public void setAge(int newValue) { if (newValue > age) age = newValue; }
 // Can’t get younger

Getters and setters are better than public fields because they let you start with

simple get/set semantics and evolve them as needed.

NOTE: Just because getters and setters are better than public fields doesn’t
mean they are always good. Often, it is plainly bad if every client can get or
set bits and pieces of an object’s state. In this section, I show you how to
implement properties in Scala. It is up to you to choose wisely when a
gettable/settable property is an appropriate design.

Scala provides getter and setter methods for every field. Here, we define a

public field:

class Person {
 var age = 0
}

Scala generates a class for the JVM with a private age field and getter and setter

methods. These methods are public because we did not declare age as private. (For

a private field, the getter and setter methods are private.)

In Scala, the getter and setter methods are called age and age_=. For example,

println(fred.age) // Calls the method fred.age()
fred.age = 21 // Calls fred.age_=(21)

535.2 Properties with Getters and Setters

NOTE: To see these methods with your own eyes, compile the Person class
and then look at the bytecode with javap:

$ scalac Person.scala
$ scala -private Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 private int age;

public int age();
 public void age_$eq(int);
 public Person();
}

As you can see, the compiler created methods age and age_$eq. (The = symbol
is translated to $eq because the JVM does not allow an = in a method name.)

NOTE: In Scala, the getters and setters are not named getXxx and setXxx, but
they fulfill the same purpose. Section 5.5, “Bean Properties,” on page 57
shows how to generate Java-style getXxx and setXxx methods, so that your
Scala classes can interoperate with Java tools.

At any time, you can redefine the getter and setter methods yourself. For example,

class Person {
 private var privateAge = 0 // Make private and rename

 def age = privateAge
 def age_=(newValue: Int) {
 if (newValue > privateAge) privateAge = newValue; // Can’t get younger

 }
}

The user of your class still accesses fred.age, but now Fred can’t get younger:

val fred = new Person
fred.age = 30
fred.age = 21
println(fred.age) // 30

Chapter 5 Classes54

NOTE: Bertrand Meyer, the inventor of the influential Eiffel language,
formulated the Uniform Access Principle that states: “All services offered by
a module should be available through a uniform notation, which does not
betray whether they are implemented through storage or through computation.”
In Scala, the caller of fred.age doesn’t know whether age is implemented
through a field or a method. (Of course, in the JVM, the service is always
implemented through a method, either synthesized or programmer-supplied.)

TIP: It may sound scary that Scala generates getter and setter methods for
every field. But you have some control over this process.

• If the field is private, the getter and setter are private.

• If the field is a val, only a getter is generated.

• If you don’t want any getter or setter, declare the field as private[this]
(see Section 5.4, “Object-Private Fields,” on page 56).

5.3 Properties with Only Getters
Sometimes you want a read-only property with a getter but no setter. If the value

of the property never changes after the object has been constructed, use a val
field:

class Message {
 val timeStamp = new java.util.Date
 ...
}

Scala makes a private final field and a getter method, but no setter.

Sometimes, however, you want a property that a client can’t set at will, but that

is mutated in some other way. The Counter class from Section 5.1, “Simple Classes

and Parameterless Methods,” on page 51 is a good example. Conceptually, the

counter has a current property that is updated when the increment method is called,

but there is no setter for the property.

You can’t implement such a property with a val—a val never changes. Instead,

provide a private field and a property getter, like this:

class Counter {
private var value = 0

 def increment() { value += 1 }
def current = value // No () in declaration

}

555.3 Properties with Only Getters

Note that there are no () in the definition of the getter method. Therefore, you

must call the method without parentheses:

val n = myCounter.current // Calling myCounter.current() is a syntax error

To summarize, you have four choices for implementing properties:

1. var foo: Scala synthesizes a getter and a setter.

2. val foo: Scala synthesizes a getter.

3. You define methods foo and foo_=.

4. You define a method foo.

NOTE: In Scala, you cannot have a write-only property (that is, a property
with a setter and no getter).

TIP: When you see a field in a Scala class, remember that it is not the same
as a field in Java or C++. It is a private field together with a getter (for a val
field) or a getter and a setter (for a var field).

5.4 Object-Private Fields
In Scala (as well as in Java or C++), a method can access the private fields of all

objects of its class. For example,

class Counter {
 private var value = 0
 def increment() { value += 1 }

 def isLess(other : Counter) = value < other.value
 // Can access private field of other object

}

Accessing other.value is legal because other is also a Counter object.

Scala allows an even more severe access restriction, with the private[this] qualifier:

private[this] var value = 0 // Accessing someObject.value is not allowed

Now, the methods of the Counter class can only access the value field of the

current object, not of other objects of type Counter. This access is sometimes called

object-private, and it is common in some OO languages, such as SmallTalk.

With a class-private field, Scala generates private getter and setter methods.

However, for an object-private field, no getters and setters are generated at all.

Chapter 5 Classes56

NOTE: Scala allows you to grant access rights to specific classes. The
private[ClassName] qualifier states that only methods of the given class can
access the given field. Here, the ClassName must be the name of the class
being defined or an enclosing class. (See Section 5.8, “Nested Classes,” on
page 62 for a discussion of inner classes.)

In this case, the implementation will generate auxiliary getter and setter
methods that allow the enclosing class to access the field. These methods
will be public because the JVM does not have a fine-grained access control
system, and they will have implementation-dependent names.

5.5 Bean Properties L1

As you saw in the preceding sections, Scala provides getter and setter

methods for the fields that you define. However, the names of these methods are

not what Java tools expect. The JavaBeans specification (www.oracle.com/

technetwork/java/javase/tech/index-jsp-138795.html) defines a Java property

as a pair of getFoo/setFoo methods (or just a getFoo method for a read-only property).

Many Java tools rely on this naming convention.

When you annotate a Scala field with @BeanProperty, then such methods are

automatically generated. For example,

import scala.reflect.BeanProperty

class Person {
 @BeanProperty var name: String = _
}

generates four methods:

1. name: String

2. name_=(newValue: String): Unit

3. getName(): String

4. setName(newValue: String): Unit

Table 5–1 shows which methods are generated in all cases.

NOTE: If you define a field as a primary constructor parameter (see
Section 5.7, “The Primary Constructor,” on page 59), and you want JavaBeans
getters and setters, annotate the constructor parameter like this:

class Person(@BeanProperty var name: String)

575.5 Bean Properties

Table 5–1 Generated Methods for Fields

When to UseGenerated MethodsScala Field

To implement a

property that is publicly

accessible and backed

by a field.

public name

name_= (var only)

val/var name

To interoperate with

JavaBeans.

public name

getName()

name_= (var only)

setName(...) (var only)

@BeanProperty val/var name

To confine the field to

the methods of this

class, just like in Java.

Use private unless you

really want a public

property.

private name

name_= (var only)

private val/var name

To confine the field to

methods invoked on the

same object. Not

commonly used.

noneprivate[this] val/var name

To grant access to an

enclosing class. Not

commonly used.

implementation-dependentprivate[ClassName] val/var name

5.6 Auxiliary Constructors
As in Java or C++, a Scala class can have as many constructors as you like.

However, a Scala class has one constructor that is more important than all the

others, called the primary constructor. In addition, a class may have any number

of auxiliary constructors.

We discuss auxiliary constructors first because they are easier to understand.

They are very similar to constructors in Java or C++, with just two differences.

1. The auxiliary constructors are called this. (In Java or C++, constructors have

the same name as the class—which is not so convenient if you rename the

class.)

2. Each auxiliary constructor must start with a call to a previously defined

auxiliary constructor or the primary constructor.

Chapter 5 Classes58

Here is a class with two auxiliary constructors.

class Person {
 private var name = ""
 private var age = 0

 def this(name: String) { // An auxiliary constructor

 this() // Calls primary constructor

 this.name = name
 }

 def this(name: String, age: Int) { // Another auxiliary constructor

 this(name) // Calls previous auxiliary constructor

 this.age = age
 }
}

We will look at the primary constructor in the next section. For now, it is sufficient

to know that a class for which you don’t define a primary constructor has a

primary constructor with no arguments.

You can construct objects of this class in three ways:

val p1 = new Person // Primary constructor

val p2 = new Person("Fred") // First auxiliary constructor

val p3 = new Person("Fred", 42) // Second auxiliary constructor

5.7 The Primary Constructor
In Scala, every class has a primary constructor. The primary constructor is not

defined with a this method. Instead, it is interwoven with the class definition.

1. The parameters of the primary constructor are placed immediately after the

class name.

class Person(val name: String, val age: Int) {
 // Parameters of primary constructor in (...)
 ...
}

Parameters of the primary constructor turn into fields that are initialized with

the construction parameters. In our example, name and age become fields of the

Person class. A constructor call such as new Person("Fred", 42) sets the name and

age fields.

Half a line of Scala is the equivalent of seven lines of Java:

595.7 The Primary Constructor

public class Person { // This is Java

private String name;
 private int age;
 public Person(String name, int age) {

this.name = name;
 this.age = age;
 }

public String name() { return this.name; }
 public int age() { return this.age; }
 ...
}

2. The primary constructor executes all statements in the class definition. For

example, in the following class

class Person(val name: String, val age: Int) {
println("Just constructed another person")

 def description = name + " is " + age + " years old"
}

the println statement is a part of the primary constructor. It is executed

whenever an object is constructed.

This is useful when you need to configure a field during construction. For

example:

class MyProg {
 private val props = new Properties
 props.load(new FileReader("myprog.properties"))
 // The statement above is a part of the primary constructor

 ...
}

NOTE: If there are no parameters after the class name, then the class has a
primary constructor with no parameters. That constructor simply executes all
statements in the body of the class.

TIP: You can often eliminate auxiliary constructors by using default arguments
in the primary constructor. For example:

class Person(val name: String = "", val age: Int = 0)

Primary constructor parameters can have any of the forms in Table 5–1. For

example,

Chapter 5 Classes60

class Person(val name: String, private var age: Int)

declares and initializes fields

val name: String
private var age: Int

Construction parameters can also be regular method parameters, without val or

var. How these parameters are processed depends on their usage inside the class.

• If a parameter without val or var is used inside at least one method, it becomes

a field. For example,

class Person(name: String, age: Int) {
 def description = name + " is " + age + " years old"
}

declares and initializes immutable fields name and age that are object-private.

Such a field is the equivalent of a private[this] val field (see Section 5.4,

“Object-Private Fields,” on page 56).

• Otherwise, the parameter is not saved as a field. It’s just a regular parameter

that can be accessed in the code of the primary constructor. (Strictly speaking,

this is an implementation-specific optimization.)

Table 5–2 summarizes the fields and methods that are generated for different

kinds of primary constructor parameters.

Table 5–2 Fields and Methods Generated for Primary Constructor Parameters

Generated Field/MethodsPrimary Constructor Parameter

object-private field, or no field if no method uses namename: String

private field, private getter/setterprivate val/varname: String

private field, public getter/setterval/var name: String

private field, public Scala and JavaBeans

getters/setters

@BeanProperty val/varname: String

If you find the primary constructor notation confusing, you don’t need to use it.

Just provide one or more auxiliary constructors in the usual way, but remember

to call this() if you don’t chain to another auxiliary constructor.

However, many programmers like the concise syntax. Martin Odersky suggests

to think about it this way: In Scala, classes take parameters, just like methods do.

615.7 The Primary Constructor

NOTE: When you think of the primary constructor’s parameters as class
parameters, parameters without val or var become easier to understand.The
scope of such a parameter is the entire class. Therefore, you can use the
parameter in methods. If you do, it is the compiler’s job to save it in a field.

TIP: The Scala designers think that every keystroke is precious, so they let
you combine a class with its primary constructor. When reading a Scala
class, you need to disentangle the two. For example, when you see

class Person(val name: String) {
 var age = 0
 def description = name + " is " + age + " years old"
}

take this definition apart into a class definition:

class Person(val name: String) {
 var age = 0
 def description = name + " is " + age + " years old"
}

and a constructor definition:

class Person(val name: String) {
var age = 0
def description = name + " is " + age + " years old"

}

NOTE: To make the primary constructor private, place the keyword private
like this:

class Person private(val id: Int) { ... }

A class user must then use an auxiliary constructor to construct a Person object.

5.8 Nested Classes L1

In Scala, you can nest just about anything inside anything. You can define func-

tions inside other functions, and classes inside other classes. Here is a simple

example of the latter.

Chapter 5 Classes62

import scala.collection.mutable.ArrayBuffer
class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }

 private val members = new ArrayBuffer[Member]

 def join(name: String) = {
 val m = new Member(name)
 members += m
 m
 }
}

Consider two networks:

val chatter = new Network
val myFace = new Network

In Scala, each instance has its own class Member, just like each instance has its own

field members. That is, chatter.Member and myFace.Member are different classes.

NOTE: This is different from Java, where an inner class belongs to the outer
class.

The Scala approach is more regular. For example, to make a new inner object,
you simply use new with the type name: new chatter.Member. In Java, you need
to use a special syntax, chatter.new Member().

In our network example, you can add a member within its own network, but not

across networks.

val fred = chatter.join("Fred")
val wilma = chatter.join("Wilma")
fred.contacts += wilma // OK

val barney = myFace.join("Barney") // Has type myFace.Member
fred.contacts += barney
 // No—can’t add a myFace.Member to a buffer of chatter.Member elements

For networks of people, this behavior probably makes sense. If you don’t want

it, there are two solutions.

635.8 Nested Classes

First, you can move the Member type somewhere else. A good place would be the

Network companion object. (Companion objects are described in Chapter 6.)

object Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }
}

class Network {
 private val members = new ArrayBuffer[Network.Member]
 ...
}

Alternatively, you can use a type projection Network#Member, which means “a Member
of any Network.” For example,

class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Network#Member]
 }
 ...
}

You would do that if you want the fine-grained “inner class per object” feature

in some places of your program, but not everywhere. See Chapter 18 for

more information about type projections.

NOTE: In a nested class, you can access the this reference of the enclosing
class as EnclosingClass.this, like in Java. If you like, you can establish an
alias for that reference with the following syntax:

class Network(val name: String) { outer =>

 class Member(val name: String) {
 ...
 def description = name + " inside " + outer.name
 }
}

The class Network { outer => syntax makes the variable outer refer to
Network.this. You can choose any name for this variable. The name self is
common, but perhaps confusing when used with nested classes.

This syntax is related to the “self type” syntax that you will see in Chapter 18.

Chapter 5 Classes64

Exercises
1. Improve the Counter class in Section 5.1, “Simple Classes and Parameterless

Methods,” on page 51 so that it doesn’t turn negative at Int.MaxValue.

2. Write a class BankAccount with methods deposit and withdraw, and a read-only

property balance.

3. Write a class Time with read-only properties hours and minutes and a method

before(other: Time): Boolean that checks whether this time comes before the

other. A Time object should be constructed as new Time(hrs, min), where hrs is in

military time format (between 0 and 23).

4. Reimplement the Time class from the preceding exercise so that the internal

representation is the number of minutes since midnight (between 0 and

24 × 60 – 1). Do not change the public interface. That is, client code should be

unaffected by your change.

5. Make a class Student with read-write JavaBeans properties name (of type String)
and id (of type Long). What methods are generated? (Use javap to check.) Can

you call the JavaBeans getters and setters in Scala? Should you?

6. In the Person class of Section 5.1, “Simple Classes and Parameterless Methods,”

on page 51, provide a primary constructor that turns negative ages to 0.

7. Write a class Person with a primary constructor that accepts a string containing

a first name, a space, and a last name, such as new Person("Fred Smith"). Supply

read-only properties firstName and lastName. Should the primary constructor

parameter be a var, a val, or a plain parameter? Why?

8. Make a class Car with read-only properties for manufacturer, model name,

and model year, and a read-write property for the license plate. Supply four

constructors. All require the manufacturer and model name. Optionally,

model year and license plate can also be specified in the constructor. If not,

the model year is set to -1 and the license plate to the empty string. Which

constructor are you choosing as the primary constructor? Why?

9. Reimplement the class of the preceding exercise in Java, C#, or C++ (your

choice). How much shorter is the Scala class?

10. Consider the class

class Employee(val name: String, var salary: Double) {
 def this() { this("John Q. Public", 0.0) }
}

Rewrite it to use explicit fields and a default primary constructor. Which form

do you prefer? Why?

65Exercises

Topics in This Chapter A1

6.1 Singletons — page 67

6.2 Companion Objects — page 68

6.3 Objects Extending a Class or Trait — page 69

6.4 The apply Method — page 69

6.5 Application Objects — page 70

6.6 Enumerations — page 71

Exercises — page 73

Objects

In this short chapter, you will learn when to use the object construct in Scala. Use

it when you need a class with a single instance, or when you want to find a home

for miscellaneous values or functions.

The key points of this chapter are:

• Use objects for singletons and utility methods.

• A class can have a companion object with the same name.

• Objects can extend classes or traits.

• The apply method of an object is usually used for constructing new instances

of the companion class.

• To avoid the main method, use an object that extends the App trait.

• You can implement enumerations by extending the Enumeration object.

6.1 Singletons
Scala has no static methods or fields. Instead, you use the object construct. An

object defines a single instance of a class with the features that you want. For

example,

object Accounts {
 private var lastNumber = 0
 def newUniqueNumber() = { lastNumber += 1; lastNumber }
}

6Chapter

67

When you need a new unique account number in your application, call

Accounts.newUniqueNumber().

The constructor of an object is executed when the object is first used. In

our example, the Accounts constructor is executed with the first call to

Accounts.newUniqueNumber(). If an object is never used, its constructor is not executed.

An object can have essentially all the features of a class—it can even extend other

classes or traits (see Section 6.3, “Objects Extending a Class or Trait,” on page 69).

There is just one exception: You cannot provide constructor parameters.

You use an object in Scala whenever you would have used a singleton object in

Java or C++:

• As a home for utility functions or constants

• When a single immutable instance can be shared efficiently

• When a single instance is required to coordinate some service (the singleton

design pattern)

NOTE: Many people view the singleton design pattern with disdain. Scala
gives you the tools for both good and bad design, and it is up to you to use
them wisely.

6.2 Companion Objects
In Java or C++, you often have a class with both instance methods and static

methods. In Scala, you achieve this by having a class and a “companion” object

of the same name. For example,

class Account {
 val id = Account.newUniqueNumber()
 private var balance = 0.0
 def deposit(amount: Double) { balance += amount }
 ...
}

object Account { // The companion object

 private var lastNumber = 0
 private def newUniqueNumber() = { lastNumber += 1; lastNumber }
}

The class and its companion object can access each other’s private features. They

must be located in the same source file.

Chapter 6 Objects68

NOTE: The companion object of a class is accessible, but it is not in scope.
For example, the Account class has to call Account.newUniqueNumber() and not
just newUniqueNumber() to invoke the method of the companion object.

TIP: In the REPL, you must define the class and the object together in paste
mode. Type

:paste

Then type or paste both the class and object definitions, and type Ctrl+D.

6.3 Objects Extending a Class or Trait
An object can extend a class and/or one or more traits. The result is an object of

a class that extends the given class and/or traits, and in addition has all of the

features specified in the object definition.

One useful application is to specify default objects that can be shared. For example,

consider a class for undoable actions in a program.

abstract class UndoableAction(val description: String) {
 def undo(): Unit
 def redo(): Unit
}

A useful default is the “do nothing” action. Of course, we only need one of them.

object DoNothingAction extends UndoableAction("Do nothing") {
 override def undo() {}
 override def redo() {}
}

The DoNothingAction object can be shared across all places that need this default.

val actions = Map("open" -> DoNothingAction, "save" -> DoNothingAction, ...)
 // Open and save not yet implemented

6.4 The apply Method
It is common to have objects with an apply method. The apply method is called for

expressions of the form

Object(arg1, ..., argN)

Typically, such an apply method returns an object of the companion class.

696.4 The apply Method

For example, the Array object defines apply methods that allow array creation with

expressions such as

Array("Mary", "had", "a", "little", "lamb")

Why doesn’t one just use a constructor? Not having the new keyword is handy

for nested expressions, such as

Array(Array(1, 7), Array(2, 9))

CAUTION: It is easy to confuse Array(100) and new Array(100). The first
expression calls apply(100), yielding an Array[Int] with a single element,
the integer 100.The second expression invokes the constructor this(100).The
result is an Array[Nothing] with 100 null elements.

Here is an example of defining an apply method:

class Account private (val id: Int, initialBalance: Double) {
 private var balance = initialBalance
 ...
}

object Account { // The companion object

 def apply(initialBalance: Double) =
 new Account(newUniqueNumber(), initialBalance)
 ...
}

Now you can construct an account as

val acct = Account(1000.0)

6.5 Application Objects
Each Scala program must start with an object’s main method of type Array[String]
=> Unit:

object Hello {
 def main(args: Array[String]) {
 println("Hello, World!")
 }
}

Instead of providing a main method for your application, you can extend the App
trait and place the program code into the constructor body:

Chapter 6 Objects70

object Hello extends App {
 println("Hello, World!")
}

If you need the command-line arguments, you can get them from the args property:

object Hello extends App {
 if (args.length > 0)
 println("Hello, " + args(0))
 else
 println("Hello, World!")
}

If you invoke the application with the scala.time option set, then the elapsed time

is displayed when the program exits.

$ scalac Hello.scala
$ scala -Dscala.time Hello Fred
Hello, Fred
[total 4ms]

All this involves a bit of magic. The App trait extends another trait, DelayedInit, that

gets special handling from the compiler. All initialization code of a class with

that trait is moved into a delayedInit method. The main of the App trait method cap-

tures the command-line arguments, calls the delayedInit method, and optionally

prints the elapsed time.

NOTE: Older versions of Scala had an Application trait for the same purpose.
That trait carried out the program’s action in the static initializer, which is not
optimized by the just-in-time compiler. Use the App trait instead.

6.6 Enumerations
Unlike Java or C++, Scala does not have enumerated types. However, the standard

library provides an Enumeration helper class that you can use to produce

enumerations.

Define an object that extends the Enumeration class and initialize each value in your

enumeration with a call to the Value method. For example,

object TrafficLightColor extends Enumeration {
 val Red, Yellow, Green = Value
}

Here we define three fields, Red, Yellow, and Green, and initialize each of them with

a call to Value. This is a shortcut for

716.6 Enumerations

val Red = Value
val Yellow = Value
val Green = Value

Each call to the Value method returns a new instance of an inner class, also called

Value.

Alternatively, you can pass IDs, names, or both to the Value method:

val Red = Value(0, "Stop")
val Yellow = Value(10) // Name "Yellow"
val Green = Value("Go") // ID 11

If not specified, the ID is one more than the previously assigned one, starting

with zero. The default name is the field name.

You can now refer to the enumeration values as TrafficLightColor.Red,
TrafficLightColor.Yellow, and so on. If that gets too tedious, use a statement

import TrafficLightColor._

(See Chapter 7 for more information on importing members of a class or object.)

Remember that the type of the enumeration is TrafficLightColor.Value and not

TrafficLightColor—that’s the type of the object holding the values. Some people

recommend that you add a type alias

object TrafficLightColor extends Enumeration {
type TrafficLightColor = Value

 val Red, Yellow, Green = Value
}

Now the type of the enumeration is TrafficLightColor.TrafficLightColor, which is

only an improvement if you use an import statement. For example,

import TrafficLightColor._
def doWhat(color: TrafficLightColor) = {
 if (color == Red) "stop"
 else if (color == Yellow) "hurry up"
 else "go"
}

The ID of an enumeration value is returned by the id method, and its name by the

toString method.

The call TrafficLightColor.values yields a set of all values:

for (c <- TrafficLightColor.values) println(c.id + ": " + c)

Finally, you can look up an enumeration value by its ID or name. Both of the

following yield the object TrafficLightColor.Red:

Chapter 6 Objects72

TrafficLightColor(0) // Calls Enumeration.apply
TrafficLightColor.withName("Red")

Exercises
1. Write an object Conversions with methods inchesToCentimeters, gallonsToLiters, and

milesToKilometers.

2. The preceding problem wasn’t very object-oriented. Provide a general super-

class UnitConversion and define objects InchesToCentimeters, GallonsToLiters, and

MilesToKilometers that extend it.

3. Define an Origin object that extends java.awt.Point. Why is this not actually a

good idea? (Have a close look at the methods of the Point class.)

4. Define a Point class with a companion object so that you can construct Point
instances as Point(3, 4), without using new.

5. Write a Scala application, using the App trait, that prints the command-line

arguments in reverse order, separated by spaces. For example, scala Reverse
Hello World should print World Hello.

6. Write an enumeration describing the four playing card suits so that the toString
method returns ♣, ♦, ♥, or ♠.

7. Implement a function that checks whether a card suit value from the preceding

exercise is red.

8. Write an enumeration describing the eight corners of the RGB color cube. As

IDs, use the color values (for example, 0xff0000 for Red).

73Exercises

Topics in This Chapter A1

7.1 Packages — page 76

7.2 Scope Rules — page 77

7.3 Chained Package Clauses — page 79

7.4 Top-of-File Notation — page 79

7.5 Package Objects — page 80

7.6 Package Visibility — page 80

7.7 Imports — page 81

7.8 Imports Can Be Anywhere — page 82

7.9 Renaming and Hiding Members — page 82

7.10 Implicit Imports — page 82

Exercises — page 83

Packages and Imports

In this chapter, you will learn how packages and import statements work in

Scala. Both packages and imports are more regular than in Java; they are also a

bit more flexible.

The key points of this chapter are:

• Packages nest just like inner classes.

• Package paths are not absolute.

• A chain x.y.z in a package clause leaves the intermediate packages x and x.y
invisible.

• Package statements without braces at the top of the file extend to the entire file.

• A package object can hold functions and variables.

• Import statements can import packages, classes, and objects.

• Import statements can be anywhere.

• Import statements can rename and hide members.

• java.lang, scala, and Predef are always imported.

7Chapter

75

7.1 Packages
Packages in Scala fulfill the same purpose as packages in Java or namespaces in

C++: to manage names in a large program. For example, the name Map can occur

in the packages scala.collection.immutable and scala.collection.mutable without conflict.

To access either name, you can use the fully qualified scala.collection.immutable.Map
or scala.collection.mutable.Map. Alternatively, use an import statement to provide a

shorter alias—see Section 7.7, “Imports,” on page 81.

To add items to a package, you can include them in package statements, such as:

package com {
 package horstmann {
 package impatient {
 class Employee
 ...
 }
 }
}

Then the class name Employee can be accessed anywhere as com.horstmann.impatient.
Employee.

Unlike the definition of an object or a class, a package can be defined in multiple

files. The preceding code might be in a file Employee.scala, and a file Manager.scala
might contain

package com {
 package horstmann {
 package impatient {
 class Manager
 ...
 }
 }
}

NOTE: There is no enforced relationship between the directory of the source
file and the package.You don’t have to put Employee.scala and Manager.scala
into a com/horstmann/impatient directory.

Conversely, you can contribute to more than one package in a single file. The file

Employee.scala can contain

Chapter 7 Packages and Imports76

package com {
 package horstmann {
 package impatient {
 class Employee
 ...
 }
 }
}

package org {
 package bigjava {
 class Counter
 ...
 }
}

7.2 Scope Rules
In Scala, the scope rules for packages are more consistent than those in Java. Scala

packages nest just like all other scopes. You can access names from the enclosing

scope. For example,

package com {
 package horstmann {
 object Utils {
 def percentOf(value: Double, rate: Double) = value * rate / 100
 ...
 }

 package impatient {
 class Employee {
 ...
 def giveRaise(rate: scala.Double) {
 salary += Utils.percentOf(salary, rate)
 }
 }
 }
 }
}

Note the Utils.percentOf qualifier. The Utils class was defined in the parent package.

Everything in the parent package is in scope, and it is not necessary to use

com.horstmann.Utils.percentOf. (You could, though, if you prefer—after all, com is also

in scope.)

777.2 Scope Rules

There is a fly in the ointment, however. Consider

package com {
 package horstmann {
 package impatient {
 class Manager {
 val subordinates = new collection.mutable.ArrayBuffer[Employee]
 ...
 }
 }
 }
}

This code takes advantage of the fact that the scala package is always imported.

Therefore, the collection package is actually scala.collection.

And now suppose someone introduces the following package, perhaps in a

different file:

package com {
 package horstmann {
 package collection {
 ...
 }
 }
}

Now the Manager class no longer compiles. It looks for a mutable member inside the

com.horstmann.collection package and doesn’t find it. The intent in the Manager class

was the collection package in the top-level scala package, not whatever collection
subpackage happened to be in some accessible scope.

In Java, this problem can’t occur because package names are always absolute,

starting at the root of the package hierarchy. But in Scala, package names are

relative, just like inner class names. With inner classes, one doesn’t usually run

into problems because all the code is in one file, under control of whoever is in

charge of that file. But packages are open-ended. Anyone can contribute to a

package at any time.

One solution is to use absolute package names, starting with _root_, for example:

val subordinates = new _root_.scala.collection.mutable.ArrayBuffer[Employee]

Another approach is to use “chained” package clauses, as detailed in the next

section.

Chapter 7 Packages and Imports78

NOTE: Most programmers use complete paths for package names, without
the _root_ prefix. This is safe as long as everyone avoids names scala, java,
com, org, and so on, for nested packages.

7.3 Chained Package Clauses
A package clause can contain a “chain,” or path segment, for example:

package com.horstmann.impatient {
 // Members of com and com.horstmann are not visible here

 package people {
 class Person
 ...
 }
}

Such a clause limits the visible members. Now a com.horstmann.collection package

would no longer be accessible as collection.

7.4 Top-of-File Notation
Instead of the nested notation that we have used up to now, you can have package
clauses at the top of the file, without braces. For example:

package com.horstmann.impatient
package people

class Person
 ...

This is equivalent to

package com.horstmann.impatient {
 package people {
 class Person
 ...
 // Until the end of the file

 }
}

This is the preferred notation if all the code in the file belongs to the same package

(which is the usual case).

797.4 Top-of-File Notation

Note that in the example above, everything in the file belongs to the package

com.horstmann.impatient.people, but the package com.horstmann.impatient has also been

opened up so you can refer to its contents.

7.5 Package Objects
A package can contain classes, objects, and traits, but not the definitions of

functions or variables. That’s an unfortunate limitation of the Java virtual machine.

It would make more sense to add utility functions or constants to a package than

to some Utils object. Package objects address this limitation.

Every package can have one package object. You define it in the parent package,

and it has the same name as the child package. For example,

package com.horstmann.impatient

package object people {
 val defaultName = "John Q. Public"
}

package people {
 class Person {
 var name = defaultName // A constant from the package

 }
 ...
}

Note that the defaultName value didn’t need to be qualified because it was in the

same package. Elsewhere, it is accessible as com.horstmann.impatient.people.defaultName.

Behind the scenes, the package object gets compiled into a JVM class with static

methods and fields, called package.class, inside the package. In our example, that

would be a class com.horstmann.impatient.people.package with a static field defaultName.
(In the JVM, you can use package as a class name.)

It is a good idea to use the same naming scheme for source files. Put the package

object into a file com/horstmann/impatient/people/package.scala. That way, anyone who

wants to add functions or variables to a package can find the package object

easily.

7.6 Package Visibility
In Java, a class member that isn’t declared as public, private, or protected is visible in

the package containing the class. In Scala, you can achieve the same effect with

qualifiers. The following method is visible in its own package:

Chapter 7 Packages and Imports80

package com.horstmann.impatient.people

class Person {
 private[people] def description = "A person with name " + name
 ...
}

You can extend the visibility to an enclosing package:

private[impatient] def description = "A person with name " + name

7.7 Imports
Imports let you use short names instead of long ones. With the clause

import java.awt.Color

you can write Color in your code instead of java.awt.Color.

That is the sole purpose of imports. If you don’t mind long names, you’ll never

need them.

You can import all members of a package as

import java.awt._

This is the same as the * wildcard in Java. (In Scala, * is a valid character for an

identifier. You could define a package com.horstmann.*.people, but please don’t.)

You can also import all members of a class or object.

import java.awt.Color._
val c1 = RED // Color.RED
val c2 = decode("#ff0000") // Color.decode

This is like import static in Java. Java programmers seem to live in fear of this

variant, but in Scala it is commonly used.

Once you import a package, you can access its subpackages with shorter names.

For example:

import java.awt._

def handler(evt: event.ActionEvent) { // java.awt.event.ActionEvent
 ...
}

The event package is a member of java.awt, and the import brings it into scope.

817.7 Imports

7.8 Imports Can Be Anywhere
In Scala, an import statement can be anywhere, not just at the top of a file. The

scope of the import statement extends until the end of the enclosing block. For

example,

class Manager {
import scala.collection.mutable._

 val subordinates = new ArrayBuffer[Employee]
 ...
}

This is a very useful feature, particularly with wildcard imports. It is always a

bit worrisome to import lots of names from different sources. In fact, some Java

programmers dislike wildcard imports so much that they never use them, but

let their IDE generate long lists of imported classes.

By putting the imports where they are needed, you can greatly reduce the

potential for conflicts.

7.9 Renaming and Hiding Members
If you want to import a few members from a package, use a selector like this:

import java.awt.{Color, Font}

The selector syntax lets you rename members:

import java.util.{HashMap => JavaHashMap}
import scala.collection.mutable._

Now JavaHashMap is a java.util.HashMap and plain HashMap is a scala.collection.
mutable.HashMap.

The selector HashMap => _ hides a member instead of renaming it. This is only useful

if you import others:

import java.util.{HashMap => _, _}
import scala.collection.mutable._

Now HashMap unambiguously refers to scala.collection.mutable.HashMap since

java.util.HashMap is hidden.

7.10 Implicit Imports
Every Scala program implicitly starts with

import java.lang._
import scala._
import Predef._

Chapter 7 Packages and Imports82

As with Java programs, java.lang is always imported. Next, the scala package

is imported, but in a special way. Unlike all other imports, this one is allowed

to override the preceding import. For example, scala.StringBuilder overrides

java.lang.StringBuilder instead of conflicting with it.

Finally, the Predef object is imported. It contains quite a few useful functions.

(These could equally well have been placed into the scala package object, but

Predef was introduced before Scala had package objects.)

Since the scala package is imported by default, you never need to write package

names that start with scala. For example,

collection.mutable.HashMap

is just as good as

scala.collection.mutable.HashMap

Exercises
1. Write an example program to demonstrate that

package com.horstmann.impatient

is not the same as

package com
package horstmann
package impatient

2. Write a puzzler that baffles your Scala friends, using a package com that isn’t

at the top level.

3. Write a package random with functions nextInt(): Int, nextDouble(): Double, and

setSeed(seed: Int): Unit. To generate random numbers, use the linear

congruential generator

next = previous × a + b mod 2n,

where a = 1664525, b = 1013904223, and n = 32.

4. Why do you think the Scala language designers provided the package object
syntax instead of simply letting you add functions and variables to a package?

5. What is the meaning of private[com] def giveRaise(rate: Double)? Is it useful?

6. Write a program that copies all elements from a Java hash map into a Scala

hash map. Use imports to rename both classes.

7. In the preceding exercise, move all imports into the innermost scope possible.

83Exercises

8. What is the effect of

import java._
import javax._

Is this a good idea?

9. Write a program that imports the java.lang.System class, reads the user name

from the user.name system property, reads a password from the Console object,

and prints a message to the standard error stream if the password is not

"secret". Otherwise, print a greeting to the standard output stream. Do not use

any other imports, and do not use any qualified names (with dots).

10. Apart from StringBuilder, what other members of java.lang does the scala
package override?

Chapter 7 Packages and Imports84

Topics in This Chapter A1

8.1 Extending a Class — page 87

8.2 Overriding Methods — page 88

8.3 Type Checks and Casts — page 89

8.4 Protected Fields and Methods — page 90

8.5 Superclass Construction — page 90

8.6 Overriding Fields — page 91

8.7 Anonymous Subclasses — page 93

8.8 Abstract Classes — page 93

8.9 Abstract Fields — page 93

8.10 Construction Order and Early Definitions L3 — page 94

8.11 The Scala Inheritance Hierarchy — page 96

8.12 Object Equality L1 — page 97

Exercises — page 98

Inheritance

In this chapter, you will learn the most important ways in which inheritance in

Scala differs from its counterparts in Java and C++. The highlights are:

• The extends and final keywords are as in Java.

• You must use override when you override a method.

• Only the primary constructor can call the primary superclass constructor.

• You can override fields.

In this chapter, we only discuss the case in which a class inherits from another

class. See Chapter 10 for inheriting traits—the Scala concept that generalizes Java

interfaces.

8.1 Extending a Class
You extend a class in Scala just like you would in Java—with the extends keyword:

class Employee extends Person {
 var salary: 0.0
 ...
}

As in Java, you specify fields and methods that are new to the subclass or that

override methods in the superclass.

87

8Chapter

As in Java, you can declare a class final so that it cannot be extended. Unlike Java,

you can also declare individual methods or fields final so that they cannot be

overridden. (See Section 8.6, “Overriding Fields,” on page 91 for overriding

fields.)

8.2 Overriding Methods
In Scala, you must use the override modifier when you override a method that

isn’t abstract. (See Section 8.8, “Abstract Classes,” on page 93 for abstract

methods.) For example,

public class Person {
 ...

override def toString = getClass.getName + "[name=" + name + "]"
}

The override modifier can give useful error messages in a number of common

situations, such as:

• When you misspell the name of the method that you are overriding

• When you accidentally provide a wrong parameter type in the overriding

method

• When you introduce a new method in a superclass that clashes with a subclass

method

NOTE: The last case is an instance of the fragile base class problem, where
a change in the superclass cannot be verified without looking at all the sub-
classes. Suppose programmer Alice defines a Person class, and, unbeknownst
to Alice, programmer Bob defines a subclass Student with a method id yielding
the student ID. Later, Alice also defines a method id that holds the person’s
national ID. When Bob picks up that change, something may break in Bob’s
program (but not in Alice’s test cases) since Student objects now return
unexpected IDs.

In Java, one is often advised to “solve” this problem by declaring all methods
as final unless they are explicitly designed to be overridden. That sounds
good in theory, but programmers hate it when they can’t make even the most
innocuous changes to a method (such as adding a logging call). That’s why
Java eventually introduced an optional @Overrides annotation.

Invoking a superclass method in Scala works exactly like in Java, with the

keyword super:

Chapter 8 Inheritance88

public class Employee extends Person {
 ...
 override def toString = super.toString + "[salary=" + salary + "]"
}

The call super.toString invokes the toString method of the superclass—that is, the

Person.toString method.

8.3 Type Checks and Casts
To test whether an object belongs to a given class, use the isInstanceOf method. If

the test succeeds, you can use the asInstanceOf method to convert a reference to a

subclass reference:

if (p.isInstanceOf[Employee]) {
 val s = p.asInstanceOf[Employee] // s has type Employee
 ...
}

The p.isInstanceOf[Employee] test succeeds if p refers to an object of class Employee or

its subclass (such as Manager).

If p is null, then p.isInstanceOf[Employee] returns false and p.asInstanceOf[Employee]
returns null.

If p is not an Employee, then p.asInstanceOf[Employee] throws an exception.

If you want to test whether p refers to a Employee object, but not a subclass, use

if (p.getClass == classOf[Employee])

The classOf method is defined in the scala.Predef object that is always imported.

Table 8–1 shows the correspondence between Scala and Java type checks and

casts.

Table 8–1 Type Checks and Casts in Scala and Java

JavaScala

obj instanceof Clobj.isInstanceOf[Cl]

(Cl) objobj.asInstanceOf[Cl]

Cl.classclassOf[Cl]

However, pattern matching is usually a better alternative to using type checks

and casts. For example,

898.3 Type Checks and Casts

p match {
 case s: Employee => ... // Process s as a Employee
 case _ => ... // p wasn’t a Employee
}

See Chapter 14 for more information.

8.4 Protected Fields and Methods
As in Java or C++, you can declare a field or method as protected. Such a member

is accessible from any subclass, but not from other locations.

Unlike in Java, a protected member is not visible throughout the package to which

the class belongs. (If you want this visibility, you can use a package modifier—see

Chapter 7.)

There is also a protected[this] variant that restricts access to the current object,

similar to the private[this] variant discussed in Chapter 5.

8.5 Superclass Construction
Recall from Chapter 5 that a class has one primary constructor and any number

of auxiliary constructors, and that all auxiliary constructors must start with a call

to a preceding auxiliary constructor or the primary constructor.

As a consequence, an auxiliary constructor can never invoke a superclass

constructor directly.

The auxiliary constructors of the subclass eventually call the primary constructor

of the subclass. Only the primary constructor can call a superclass constructor.

Recall that the primary constructor is intertwined with the class definition. The

call to the superclass constructor is similarly intertwined. Here is an example:

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

This defines a subclass

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

and a primary constructor that calls the superclass constructor

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

Intertwining the class and the constructor makes for very concise code. You may

find it helpful to think of the primary constructor parameters as parameters of

Chapter 8 Inheritance90

the class. Here, the Employee class has three parameters: name, age, and salary, two of

which it “passes” to the superclass.

In Java, the equivalent code is quite a bit more verbose:

public class Employee extends Person { // Java

 private double salary;
 public Employee(String name, int age, double salary) {
 super(name, age);
 this.salary = salary;
 }
}

NOTE: In a Scala constructor, you can never call super(params), as you would
in Java, to call the superclass constructor.

A Scala class can extend a Java class. Its primary constructor must invoke one of

the constructors of the Java superclass. For example,

class Square(x: Int, y: Int, width: Int) extends
 java.awt.Rectangle(x, y, width, width)

8.6 Overriding Fields
Recall from Chapter 5 that a field in Scala consists of a private field and

accessor/mutator methods. You can override a val (or a parameterless def) with

another val field of the same name. The subclass has a private field and a public

getter, and the getter overrides the superclass getter (or method).

For example,

class Person(val name: String) {
 override def toString = getClass.getName + "[name=" + name + "]"
}

class SecretAgent(codename: String) extends Person(codename) {
override val name = "secret" // Don’t want to reveal name . . .

override val toString = "secret" // . . . or class name

}

This example shows the mechanics, but it is rather artificial. A more common

case is to override an abstract def with a val, like this:

918.6 Overriding Fields

abstract class Person { // See Section 8.8 for abstract classes

 def id: Int // Each person has an ID that is computed in some way

 ...
}

class Student(override val id: Int) extends Person
 // A student ID is simply provided in the constructor

Note the following restrictions (see also Table 8–2):

• A def can only override another def.

• A val can only override another val or a parameterless def.

• A var can only override an abstract var (see Section 8.8, “Abstract Classes,”

on page 93).

Table 8–2 Overriding val, def, and var

with varwith defwith val

ErrorError• Subclass has a private

field (with the same

name as the superclass

field—that’s OK).

• Getter overrides the

superclass getter.

Override val

A var can override a

getter/setter pair.

Overriding just a getter

is an error.

Like in Java.• Subclass has a private

field.

• Getter overrides the

superclass method.

Override def

Only if the superclass

var is abstract (see

Section 8.8).

ErrorErrorOverride var

NOTE: In Chapter 5, I said that it’s OK to use a var because you can always
change your mind and reimplement it as a getter/setter pair. However, the
programmers extending your class do not have that choice. They cannot
override a var with a getter/setter pair. In other words, if you provide a var, all
subclasses are stuck with it.

Chapter 8 Inheritance92

8.7 Anonymous Subclasses
As in Java, you make an instance of an anonymous subclass if you include a block

with definitions or overrides, such as

val alien = new Person("Fred") {
 def greeting = "Greetings, Earthling! My name is Fred."
}

Technically, this creates an object of a structural type—see Chapter 18 for details.

The type is denoted as Person{def greeting: String}. You can use this type as a

parameter type:

def meet(p: Person{def greeting: String}) {
 println(p.name + " says: " + p.greeting)
}

8.8 Abstract Classes
As in Java, you can use the abstract keyword to denote a class that cannot be in-

stantiated, usually because one or more of its methods are not defined. For

example,

abstract class Person(val name: String) {
 def id: Int // No method body—this is an abstract method

}

Here we say that every person has an ID, but we don’t know how to compute it.

Each concrete subclass of Person needs to specify an id method. In Scala, unlike

Java, you do not use the abstract keyword for an abstract method. You simply

omit its body. As in Java, a class with at least one abstract method must be

declared abstract.

In a subclass, you need not use the override keyword when you define a method

that was abstract in the superclass.

class Employee(name: String) extends Person(name) {
 def id = name.hashCode // override keyword not required

}

8.9 Abstract Fields
In addition to abstract methods, a class can also have abstract fields. An abstract

field is simply a field without an initial value. For example,

938.9 Abstract Fields

abstract class Person {
 val id: Int
 // No initializer—this is an abstract field with an abstract getter method

 var name: String
 // Another abstract field, with abstract getter and setter methods

}

This class defines abstract getter methods for the id and name fields, and an abstract

setter for the name field. The generated Java class has no fields.

Concrete subclasses must provide concrete fields, for example:

class Employee(val id: Int) extends Person { // Subclass has concrete id property

 var name = "" // and concrete name property

}

As with methods, no override keyword is required in the subclass when you define

a field that was abstract in the superclass.

You can always customize an abstract field by using an anonymous type:

val fred = new Person {
 val id = 1729
 var name = "Fred"
}

8.10 Construction Order and Early Definitions L3

When you overrride a val in a subclass and use the value in a superclass

constructor, the resulting behavior is unintuitive.

Here is an example. A creature can sense a part of its environment. For simplicity,

we assume the creature lives in a one-dimensional world, and the sensory data

are represented as integers. A default creature can see ten units ahead.

class Creature {
 val range: Int = 10
 val env: Array[Int] = new Array[Int](range)
}

Ants, however, are near-sighted:

class Ant extends Creature {
 override val range = 2
}

Unfortunately, we now have a problem. The range value is used in the superclass

constructor, and the superclass constructor runs before the subclass constructor.

Specifically, here is what happens:

Chapter 8 Inheritance94

1. The Ant constructor calls the Creature constructor before doing its own

construction.

2. The Creature constructor sets its range field to 10.

3. The Creature constructor, in order to initialize the env array, calls the range()
getter.

4. That method is overridden to yield the (as yet uninitialized) range field of the

Ant class.

5. The range method returns 0. (That is the initial value of all integer fields when

an object is allocated.)

6. env is set to an array of length 0.

7. The Ant constructor continues, setting its range field to 2.

Even though it appears as if range is either 10 or 2, env has been set to an array of

length 0. The moral is that you should not rely on the value of a val in the body

of a constructor.

In Java, you have a similar issue when you call a method in a superclass construc-

tor. The method might be overridden in a subclass, and it might not do what you

want it to do. (In fact, that is the root cause of our problem—the expression range
calls the getter method.)

There are several remedies.

• Declare the val as final. This is safe but not very flexible.

• Declare the val as lazy in the superclass (see Chapter 2). This is safe but a bit

inefficient.

• Use the early definition syntax in the subclass—see below.

The “early definition” syntax lets you initialize val fields of a subclass before the

superclass is executed. The syntax is so ugly that only a mother could love it.

You place the val fields in a block after the extends keyword, like this:

class Bug extends {
 override val range = 3
} with Creature

Note the with keyword before the superclass name. This keyword is normally

used with traits—see Chapter 10.

The right-hand side of an early definition can only refer to previous early

definitions, not to other fields or methods of the class.

TIP: You can debug construction order problems with the -Xcheckinit compiler
flag. This flag generates code that throws an exception (instead of yielding
the default value) when an uninitialized field is accessed.

958.10 Construction Order and Early Definitions

NOTE: At the root of the construction order problem lies a design decision of
the Java language—namely, to allow the invocation of subclass methods in
a superclass constructor. In C++, an object’s virtual function table pointer is
set to the table of the superclass when the superclass constructor executes.
Afterwards, the pointer is set to the subclass table.Therefore, in C++, it is not
possible to modify constructor behavior through overriding.The Java designers
felt that this subtlety was unnecessary, and the Java virtual machine does
not adjust the virtual function table during construction.

8.11 The Scala Inheritance Hierarchy
Figure 8–1 shows the inheritance hierarchy of Scala classes. The classes that

correspond to the primitive types in Java, as well as the type Unit, extend AnyVal.

All other classes are subclasses of the AnyRef class, which is a synonym for the

Object class from the Java or .NET virtual machine.

Both AnyVal and AnyRef extend the Any class, the root of the hierarchy.

Figure 8–1 The Inheritance Hierarchy of Scala Classes

The Any class defines methods isInstanceOf, asInstanceOf, and the methods for

equality and hash codes that we will look at in Section 8.12, “Object Equality,”

on page 97.

AnyVal does not add any methods. It is just a marker for value types.

Chapter 8 Inheritance96

The AnyRef class adds the monitor methods wait and notify/notifyAll from the Object
class. It also provides a synchronized method with a function parameter. That

method is the equivalent of a synchronized block in Java. For example,

account.synchronized { account.balance += amount }

NOTE: Just like in Java, I suggest you stay away from wait, notify, and
synchronized unless you have a good reason to use them instead of higher-level
concurrency constructs.

All Scala classes implement the marker interface ScalaObject, which has no methods.

At the other end of the hierarchy are the Nothing and Null types.

Null is the type whose sole instance is the value null. You can assign null to any

reference, but not to one of the value types. For example, setting an Int to null is
not possible. This is better than in Java, where it would be possible to set an Integer
wrapper to null.

The Nothing type has no instances. It is occasionally useful for generic constructs.

For example, the empty list Nil has type List[Nothing], which is a subtype of

List[T] for any T.

CAUTION: The Nothing type is not at all the same as void in Java or C++. In
Scala, void is represented by the Unit type, the type with the sole value ().
Note that Unit is not a supertype of any other type. However, the compiler still
allows any value to be replaced by a (). Consider

def printAny(x: Any) { println(x) }
def printUnit(x: Unit) { println(x) }
printAny("Hello") // Prints Hello
printUnit("Hello")
 // Replaces "Hello" with () and calls printUnit(()), which prints ()

8.12 Object Equality L1

In Scala, the eq method of the AnyRef class checks whether two references refer to

the same object. The equals method in AnyRef calls eq. When you implement a class,

you should consider overriding the equals method to provide a natural notion of

equality for your situation.

For example, if you define a class Item(val description: String, val price: Double),
you might want to consider two items equal if they have the same description

and price. Here is an appropriate equals method:

978.12 Object Equality

final override def equals(other: Any) = {
 val that = other.asInstanceOf[Item]
 if (that == null) false
 else description == that.description && price == that.price
}

NOTE: We defined the method as final because it is generally very difficult
to correctly extend equality in a subclass.The problem is symmetry.You want
a.equals(b) to have the same result as b.equals(a), even when b belongs to
a subclass.

CAUTION: Be sure to define the equals method with parameter type Any. The
following would be wrong:

final def equals(other: Item) = { ... }

This is a different method that does not override the equals method of AnyRef.

When you define equals, remember to define hashCode as well. The hash code should

be computed only from the fields that you use in the equality check. In the Item
example, combine the hash codes of the fields:

final override def hashCode = 13 * description.hashCode + 17 * price.hashCode

TIP: You are not compelled to override equals and hashCode. For many classes,
it is appropriate to consider distinct objects unequal. For example, if you have
two distinct input streams or radio buttons, you will never consider them equal.

In an application program, you don’t generally call eq or equals. Simply use the

== operator. For reference types, it calls equals after doing the appropriate check

for null operands.

Exercises
1. Extend the following BankAccount class to a CheckingAccount class that charges $1

for every deposit and withdrawal.

class BankAccount(initialBalance: Double) {
 private var balance = initialBalance
 def deposit(amount: Double) = { balance += amount; balance }
 def withdraw(amount: Double) = { balance -= amount; balance }
}

Chapter 8 Inheritance98

2. Extend the BankAccount class of the preceding exercise into a class SavingsAccount
that earns interest every month (when a method earnMonthlyInterest is called)

and has three free deposits or withdrawals every month. Reset the transaction

count in the earnMonthlyInterest method.

3. Consult your favorite Java or C++ textbook that is sure to have an example

of a toy inheritance hierarchy, perhaps involving employees, pets, graphical

shapes, or the like. Implement the example in Scala.

4. Define an abstract class Item with methods price and description. A SimpleItem is
an item whose price and description are specified in the constructor. Take

advantage of the fact that a val can override a def. A Bundle is an item that

contains other items. Its price is the sum of the prices in the bundle. Also

provide a mechanism for adding items to the bundle and a suitable description
method.

5. Design a class Point whose x and y coordinate values can be provided in a

constructor. Provide a subclass LabeledPoint whose constructor takes a label

value and x and y coordinates, such as

new LabeledPoint("Black Thursday", 1929, 230.07)

6. Define an abstract class Shape with an abstract method centerPoint and subclasses

Rectangle and Circle. Provide appropriate constructors for the subclasses and

override the centerPoint method in each subclass.

7. Provide a class Square that extends java.awt.Rectangle and has three constructors:

one that constructs a square with a given corner point and width, one that

constructs a square with corner (0, 0) and a given width, and one that con-

structs a square with corner (0, 0) and width 0.

8. Compile the Person and SecretAgent classes in Section 8.6, “Overriding Fields,”

on page 91 and analyze the class files with javap. How many name fields are

there? How many name getter methods are there? What do they get? (Hint:

Use the -c and -private options.)

9. In the Creature class of Section 8.10, “Construction Order and Early Definitions,”

on page 94, replace val range with a def. What happens when you also use a

def in the Ant subclass? What happens when you use a val in the subclass?

Why?

10. The file scala/collection/immutable/Stack.scala contains the definition

class Stack[A] protected (protected val elems: List[A])

Explain the meanings of the protected keywords. (Hint: Review the discussion

of private constructors in Chapter 5.)

99Exercises

Topics in This Chapter A1

9.1 Reading Lines — page 102

9.2 Reading Characters — page 102

9.3 Reading Tokens and Numbers — page 103

9.4 Reading from URLs and Other Sources — page 104

9.5 Reading Binary Files — page 104

9.6 Writing Text Files — page 104

9.7 Visiting Directories — page 105

9.8 Serialization — page 106

9.9 Process Control A2 — page 107

9.10 Regular Expressions — page 108

9.11 Regular Expression Groups — page 109

Exercises — page 109

Files and Regular Expressions

In this chapter, you will learn how to carry out common file processing tasks,

such as reading all lines or words from a file or reading a file containing numbers.

Chapter highlights:

• Source.fromFile(...).getLines.toArray yields all lines of a file.

• Source.fromFile(...).mkString yields the file contents as a string.

• To convert a string into a number, use the toInt or toDouble method.

• Use the Java PrintWriter to write text files.

• "regex".r is a Regex object.

• Use """...""" if your regular expression contains backslashes or quotes.

• If a regex pattern has groups, you can extract their contents using the syntax

for (regex(var
1
, ...,var

n
) <- string).

101

9Chapter

9.1 Reading Lines
To read all lines from a file, call the getLines method on a scala.io.Source object:

import scala.io.Source
val source = Source.fromFile("myfile.txt", "UTF-8")
 // The first argument can be a string or a java.io.File
 // You can omit the encoding if you know that the file uses

 // the default platform encoding

val lineIterator = source.getLines

The result is an iterator (see Chapter 13). You can use it to process the lines one

at a time:

for (l <- lineIterator) process l

Or you can put the lines into an array or array buffer by applying the toArray or

toBuffer method to the iterator:

val lines = source.getLines.toArray

Sometimes, you just want to read an entire file into a string. That’s even simpler:

val contents = source.mkString

CAUTION: Call close when you are done using the Source object.

9.2 Reading Characters
To read individual characters from a file, you can use a Source object directly as

an iterator since the Source class extends Iterator[Char]:

for (c <- source) process c

If you want to be able to peek at a character without consuming it (like istream::peek
in C++ or a PushbackInputStreamReader in Java), call the buffered method on the source.

Then you can peek at the next input character with the head method without

consuming it.

Chapter 9 Files and Regular Expressions102

val source = Source.fromFile("myfile.txt", "UTF-8")
val iter = source.buffered
while (iter.hasNext) {
 if (iter.head is nice)

process iter.next
 else
 ...
}
source.close()

Alternatively, if your file isn’t large, you can just read it into a string and process

that:

val contents = source.mkString

9.3 Reading Tokens and Numbers
Here is a quick-and-dirty way of reading all whitespace-separated tokens in a

source:

val tokens = source.mkString.split("\\s+")

To convert a string into a number, use the toInt or toDouble method. For example,

if you have a file containing floating-point numbers, you can read them all into

an array by

val numbers = for (w <- tokens) yield w.toDouble

or

val numbers = tokens.map(_.toDouble)

TIP: Remember—you can always use the java.util.Scanner class to process
a file that contains a mixture of text and numbers.

Finally, note that you can read numbers from the console:

print("How old are you? ")
 // Console is imported by default, so you don’t need to qualify print and readInt
val age = readInt()
 // Or use readDouble or readLong

CAUTION: These methods assume that the next input line contains a single
number, without leading or trailing whitespace. Otherwise, a
NumberFormatException occurs.

1039.3 Reading Tokens and Numbers

9.4 Reading from URLs and Other Sources
The Source object has methods to read from sources other than files:

val source1 = Source.fromURL("http://horstmann.com", "UTF-8")
val source2 = Source.fromString("Hello, World!")
 // Reads from the given string—useful for debugging

val source3 = Source.stdin
 // Reads from standard input

CAUTION: When you read from a URL, you need to know the character
set in advance, perhaps from an HTTP header. See www.w3.org/
International/O-charset for more information.

9.5 Reading Binary Files
Scala has no provision for reading binary files. You’ll need to use the Java library.

Here is how you can read a file into a byte array:

val file = new File(filename)
val in = new FileInputStream(file)
val bytes = new Array[Byte](file.length.toInt)
in.read(bytes)
in.close()

9.6 Writing Text Files
Scala has no built-in support for writing files. To write a text file, use a

java.io.PrintWriter, for example:

val out = new PrintWriter("numbers.txt")
for (i <- 1 to 100) out.println(i)
out.close()

Everything works as expected, except for the printf method. When you pass a

number to printf, the compiler will complain that you need to convert it to

an AnyRef:

out.printf("%6d %10.2f",
 quantity.asInstanceOf[AnyRef], price.asInstanceOf[AnyRef]) // Ugh

Instead, use the format method of the String class:

out.print("%6d %10.2f".format(quantity, price))

Chapter 9 Files and Regular Expressions104

NOTE: The printf method of the Console class does not suffer from this
problem.You can use

printf("%6d %10.2f", quantity, price)

for printing a message to the console.

9.7 Visiting Directories
There are currently no “official” Scala classes for visiting all files in a directory,

or for recursively traversing directories. In this section, we discuss a couple of

alternatives.

NOTE: A prior version of Scala had File and Directory classes.You can still
find them in the scala.tools.nsc.io package inside scala-compiler.jar.

It is simple to write a function that produces an iterator through all subdirectories

of a directory:

import java.io.File
def subdirs(dir: File): Iterator[File] = {
 val children = dir.listFiles.filter(_.isDirectory)
 children.toIterator ++ children.toIterator.flatMap(subdirs _)
}

With this function, you can visit all subdirectories like this:

for (d <- subdirs(dir)) process d

Alternatively, if you use Java 7, you can adapt the walkFileTree method of the

java.nio.file.Files class. That class makes use of a FileVisitor interface. In Scala,

we generally prefer to use function objects, not interfaces, for specifying work

(even though in this case the interface allows more fine-grained control—see the

Javadoc for details). The following implicit conversion adapts a function to the

interface:

import java.nio.file._
implicit def makeFileVisitor(f: (Path) => Unit) = new SimpleFileVisitor[Path] {
 override def visitFile(p: Path, attrs: attribute.BasicFileAttributes) = {
 f(p)
 FileVisitResult.CONTINUE
 }
}

1059.7 Visiting Directories

Then you can print all subdirectories with the call

Files.walkFileTree(dir.toPath, (f: Path) => println(f))

Of course, if you don’t just want to print the files, you can specify other actions

in the function that you pass to the walkFileTree method.

9.8 Serialization
In Java, serialization is used to transmit objects to other virtual machines or for

short-term storage. (For long-term storage, serialization can be awkward—it is

tedious to deal with different object versions as classes evolve over time.)

Here is how you declare a serializable class in Java and Scala.

Java:

public class Person implements java.io.Serializable {
 private static final long serialVersionUID = 42L;
 ...
}

Scala:

@SerialVersionUID(42L) class Person extends Serializable

The Serializable trait is defined in the scala package and does not require an import.

NOTE: You can omit the @SerialVersionUID annotation if you are OK with the
default ID.

You serialize and deserialize objects in the usual way:

val fred = new Person(...)
import java.io._
val out = new ObjectOutputStream(new FileOutputStream("/tmp/test.obj"))
out.writeObject(fred)
out.close()
val in = new ObjectInputStream(new FileInputStream("/tmp/test.obj"))
val savedFred = in.readObject().asInstanceOf[Person]

The Scala collections are serializable, so you can have them as members of your

serializable classes:

class Person extends Serializable {
 private val friends = new ArrayBuffer[Person] // OK—ArrayBuffer is serializable

 ..
}

Chapter 9 Files and Regular Expressions106

9.9 Process Control A2

Traditionally, programmers use shell scripts to carry out mundane processing

tasks, such as moving files from one place to another, or combining a set of files.

The shell language makes it easy to specify subsets of files, and to pipe the output

of one program into the input of another. However, as programming languages,

most shell languages leave much to be desired.

Scala was designed to scale from humble scripting tasks to massive programs.

The scala.sys.process package provides utilities to interact with shell programs.

You can write your shell scripts in Scala, with all the power that the Scala language

puts at your disposal.

Here is a simple example:

import sys.process._
"ls -al .." !

As a result, the ls -al .. command is executed, showing all files in the parent

directory. The result is printed to standard output.

The sys.process package contains an implicit conversion from strings to ProcessBuilder
objects. The ! operator executes the ProcessBuilder object.

The result of the ! operator is the exit code of the executed program: 0 if the

program was successful, or a nonzero failure indicator otherwise.

If you use !! instead of !, the output is returned as a string:

val result = "ls -al .." !!

You can pipe the output of one program into the input of another, using the #|
operator:

"ls -al .." #| "grep sec" !

NOTE: As you can see, the process library uses the commands of the un-
derlying operating system. Here, I use bash commands because bash is
available on Linux, Mac OS X, and Windows.

To redirect the output to a file, use the #> operator:

"ls -al .." #> new File("output.txt") !

To append to a file, use #>> instead:

"ls -al .." #>> new File("output.txt") !

To redirect input from a file, use #<:

"grep sec" #< new File("output.txt") !

1079.9 Process Control

You can also redirect input from a URL:

"grep Scala" #< new URL("http://horstmann.com/index.html") !

You can combine processes with p #&& q (execute q if p was successful) and p #|| q
(execute q if p was unsuccessful). But frankly, Scala is better at control flow than

the shell, so why not implement the control flow in Scala?

NOTE: The process library uses the familiar shell operators | > >> < && ||,
but it prefixes them with a # so that they all have the same precedence.

If you need to run a process in a different directory, or with different environment

variables, construct the ProcessBuilder with the apply method of the Process object.

Supply the command, the starting directory, and a sequence of (name, value)

pairs for environment settings.

val p = Process(cmd, new File(dirName), ("LANG", "en_US"))

Then execute it with the ! operator:

"echo 42" #| p !

9.10 Regular Expressions
When you process input, you often want to use regular expressions to analyze

it. The scala.util.matching.Regex class makes this simple. To construct a Regex object,

use the r method of the String class:

val numPattern = "[0-9]+".r

If the regular expression contains backslashes or quotation marks, then it is a

good idea to use the “raw” string syntax, """...""". For example:

val wsnumwsPattern = """\s+[0-9]+\s+""".r
 // A bit easier to read than "\\s+[0-9]+\\s+".r

The findAllIn method returns an iterator through all matches. You can use it in

a for loop:

for (matchString <- numPattern.findAllIn("99 bottles, 98 bottles"))
process matchString

or turn the iterator into an array:

val matches = numPattern.findAllIn("99 bottles, 98 bottles").toArray
 // Array(99, 98)

To find the first match anywhere in a string, use findFirstIn. You get an

Option[String]. (See Chapter 14 for the Option class.)

Chapter 9 Files and Regular Expressions108

val m1 = wsnumwsPattern.findFirstIn("99 bottles, 98 bottles")
 // Some(" 98 ")

To check whether the beginning of a string matches, use findPrefixOf:

numPattern.findPrefixOf("99 bottles, 98 bottles")
 // Some(99)
wsnumwsPattern.findPrefixOf("99 bottles, 98 bottles")
 // None

You can replace the first match, or all matches:

numPattern.replaceFirstIn("99 bottles, 98 bottles", "XX")
 // "XX bottles, 98 bottles"
numPattern.replaceAllIn("99 bottles, 98 bottles", "XX")
 // "XX bottles, XX bottles"

9.11 Regular Expression Groups
Groups are useful to get subexpressions of regular expressions. Add parentheses

around the subexpressions that you want to extract, for example:

val numitemPattern = "([0-9]+) ([a-z]+)".r

To match the groups, use the regular expression object as an “extractor” (see

Chapter 14), like this:

val numitemPattern(num, item) = "99 bottles"
 // Sets num to "99", item to "bottles"

If you want to extract groups from multiple matches, use a for statement like this:

for (numitemPattern(num, item) <- numitemPattern.findAllIn("99 bottles, 98 bottles"))
process num and item

Exercises
1. Write a Scala code snippet that reverses the lines in a file (making the last

line the first one, and so on).

2. Write a Scala program that reads a file with tabs, replaces each tab with spaces

so that tab stops are at n-column boundaries, and writes the result to the

same file.

3. Write a Scala code snippet that reads a file and prints all words with more

than 12 characters to the console. Extra credit if you can do this in a single line.

109Exercises

4. Write a Scala program that reads a text file containing only floating-point

numbers. Print the sum, average, maximum, and minimum of the numbers

in the file.

5. Write a Scala program that writes the powers of 2 and their reciprocals to a

file, with the exponent ranging from 0 to 20. Line up the columns:

 1 1
 2 0.5
 4 0.25

6. Make a regular expression searching for quoted strings "like this, maybe with
\" or \\" in a Java or C++ program. Write a Scala program that prints out all

such strings in a source file.

7. Write a Scala program that reads a text file and prints all tokens in the file

that are not floating-point numbers. Use a regular expression.

8. Write a Scala program that prints the src attributes of all img tags of a web

page. Use regular expressions and groups.

9. Write a Scala program that counts how many files with .class extension are

in a given directory and its subdirectories.

10. Expand the example with the serializable Person class that stores a collection

of friends. Construct a few Person objects, make some of them friends of

another, and then save an Array[Person] to a file. Read the array back in and

verify that the friend relations are intact.

Chapter 9 Files and Regular Expressions110

