
111
Scala 3.5 QuickRef @ Lund University

https://github.com/lunduniversity/introprog/tree/master/quickref
Compiled 2024-11-21. License: CC-BY-SA. Pull requests welcome! Contact: bjorn.regnell@cs.lth.se

Compile and run @main program

In file hello.scala (any using-directives must come first)

//> using scala 3.5.2
@main def hi(n: Int) = println("hi " * n)

Compile and run single file:
scala run hello.scala -- 42
Main program arguments after --
Compile all scala & java files in current dir:
scala compile . -w
where -w or --watch recompile on change
the dot . gives access to code in current dir.

A compilation unit, e.g. hello.scala, can
have top-level definitions such as val, var,
def, import, class object, trait, ...
which may be preceded by a package clause, e.g.:
package x.y.z creates a name space and
places the compiled bytecode in dir
.scala-build under x/y/z/

Run all scala & java files in current dir:
scala run . -- 42
Main program arguments after optional --
Start REPL: scala repl .

Before Scala 3.5 use: scala-cli repl .

Definitions and declarations
A definition binds a name to a value/implementation, while a declaration just introduces a name (and type) of an
abstract member. Template bodies with curly braces { ... } are optional and can be replaced by : that opens an
indentation region with significant leading whitespace. Implementations after = also opens an indentation region.

Variable val x = expr Variable x is assigned to expr. A val can only be assigned once.
val x: Int = 0 Explicit type annotation, expr: SomeType allowed after any expr.
var x = expr Variable x is assigned to expr. A var can be re-assigned.
val x, y = expr Multiple initialisations, x and y is initialised to the same value.
val (x, y) = (e1, e2) Tuple pattern initialisation, x is assigned to e1 and y to e2.
val Seq(x, y) = Seq(e1, e2) Sequence pattern initialisation, x is assigned to e1 and y to e2.

Function def f(a: Int, b: Int): Int = a + b Function f of type (Int, Int) => Int
def f(a: Int = 0, b: Int = 0): Int = a + b Default arguments used if args omitted, f().
f(b = 1, a = 3) Named arguments can be used in any order.
def add(a: Int)(b: Int): Int = a + b Multiple parameter lists, apply: add(1)(2)
(a: Int, b: Int) => a + b Anonymous function value, ”lambda”.
val g: (Int, Int) => Int = (a, b) => a + b Types can be omitted in lambda if inferable.
val inc = add(1) Partially applied function add(1) of add above, where inc is of type Int => Int
def sumAll(xs: Int*) = xs.sum Repeated parameters: sumAll(1,2,3) or sumAll(Seq(1,2,3)*)
def twice(block: => Unit) = { block; block } Call-by-name argument evaluated later.

Object object Name: A singleton object is automatically allocated when referenced the first time.
def member = "hi" Objects can contain definitions of members such as def, val, var, object, etc.

Class class C(val x: Int): A template for objects to be allocated with new or apply.
def myMethod = ??? Members indented after colon, or use curly braces instead of colon.

case class C(x: Int) Case class parameters become val members,
other case class goodies: equals, copy, hashcode, unapply, nice toString, companion object with apply factory.

Trait trait T(val x: Int): A trait is like an abstract class, but can be mixed in.
def myAbstractMethod: Int An abstract member declaration with no implementation.

Mixin class C extends D, T A class can only extend one class, but mix in many traits separated with comma
Type Alias type A = AnotherType Defines an alias A for the type AnotherType. Abstract if no = ...

Import import path.to.name Makes name directly visible. Can be renamed using as
import path.to.* Wildcard* imports all.
import path.to.{a, b as x, c as _} Import several names, b renamed to x, c not imported.

222 Modifyers on definitions and declarations

Modifier applies to semantics
private definitions, declarations Restricts access to directly enclosing class and its companion.
override definitions, declarations Mandatory if overriding a concrete definition in a parent class.
final definitions Final members cannot be overridden, final classes cannot be extended.
protected definitions Restricts access to subtypes and companion.
lazy val Delays initialization of val, initialized when first referenced.
infix def Allow alpha-numeric names in operator notation without warning.
inline def, val Replaced at compile time by its implementation. Also if, match, params.
abstract class Abstract classes cannot be instantiated (redundant for traits).
sealed class, trait Restricts direct inheritance to classes in the same compilation unit.
open class Signal intent to be used in inheritance hierarchy. Silences warning.
transparent class, trait, def Inference of class/trait is suppressed. Inference of def type is precise.

Constructors and special methods (getters, setters, apply, update, right-assoc. op.), Companion object

class A(initX: Int = 0): primary constructor, object creation (new is optional): new A(1), A(1), A()
private var _x = initX private member only visible in A and its companion object
def x: Int = _x getter for private field _x (name with _ chosen to avoid clash with x)
def x_=(i: Int): Unit = special setter syntax of setter method enabling assignment syntax:
x = i val a = A(1); a.x = 2 means a.x=(42)

def +: (i: Int) = _x += i Right associative operator if ends with colon: 42 +: a means a.+:(42)
end A optional end marker checked by compiler
object A: becomes a companion object if same name and in same code file
def apply(i: Int) = apply is optional: A(1) is expanded to A.apply(1)
new A(i) new is needed here to avoid recursive calls

val y = A(1)._x private members can be accessed in companion

Getters and setters above are auto-generated by var in primary constructor: class A(var x: Int = 0)
With val in primary constructor only getter, no setter, is generated: class A(val x: Int = 0)
Private constructor e.g. to enforce use of factory in companion only: class A private (var x: Int = 0)
Instead of default arguments, an auxiliary constructor can be defined (less common): def this() = this(0)

class IntVec(private val xs: Array[Int]):
def update(i: Int, x: Int): Unit = { xs(i) = x }
def apply(i: Int): Int = xs(i)

Special syntax for update and apply:
v(0) = 0 expands to v.update(0,0)
v(0) expands to v.apply(0)
where val v = IntVec(Array(1,2,3))

Type parameters, type bounds, variance, ClassTag
class Box[T](val x: T): a generic class Box with a type parameter T, allowing x to be of any type
def pair[U](y: U): (T, U) = (x, y) a generic method with type parameter U

T is bound to the type of x, U is free in pairedWith, so y can be of any type
val b = Box(0) same as (with explicit type parameters): val b: Box[Int] = new Box[Int](0)
val p: (Box[Int], Box[Char]) = b.pair(Box('!')) type bounds >: supertype <: subtype
+ covariance - contravariance class Box[+T](x: T){ def pair[U >: T](y: U) = (x, y) }
val f: [A] => Seq[A] => A = [A] => xs => xs.head polymorfic function type and lambda
ClassTag needed for generic array constr.: def mkArr[A:reflect.ClassTag](a: A) = Array[A](a)

Expressions

literals 0 0L 0.0 "0" '0' true false Basic types e.g. Int, Long, Double, String, Char, Boolean
block { expr1; ...; exprN } The value of a block is the value of its last expression
if if cond then expr1 else expr2 Value is expr1 if cond is true, expr2 if false (else is optional)
match expr match caseClauses Matches expr against each case clause, see pattern matching.
for for x <- xs do expr Loop for each x in xs, x visible in expr, type Unit
yield for x <- xs yield expr Yields a sequence with elems of expr for each x in xs
while while cond do expr Loop expr while cond is true, type Unit
throw throw new Exception("Bang!") Throws an exception that halts execution if not in try catch
try val result = Evaluate function f: Throwable => T if exception thrown by expr

try expr catch f f for example: {case e: Exception => someValue}
finally doStuff finally is optional, doStuff always done even if expr throws

333Expressions (continued)
Tuples: Integer division and remainder:
Empty tuple, unit value () the only value of type Unit a / b no decimals if Int, Short, Byte
2-tuple value (1, "hi") also: 1->"hi" and Tuple2(1, "hi") a % b fulfills: (a / b) * b + (a % b) == a
2-tuple type (Int, String) same as Tuple2[Int, String] Check if x is even: x % 2 == 0

Tuple prepend 3 *: (1.0, '!') of type Int*:Double*:Char*:EmptyTuple same as (Int, Double, Char)
Methods on tuples: apply _1 _2 ... drop take head init tail zip toArray toIArray toList

Non-referable reference: null refers to null object of type Null. Instead prefer Option or unitialized:
Uninitialized: var x: String = scala.compiletime.uninitialized mutable AnyRef field set to null
Shorthand assignment: x += 1 expands to x = x + 1 if no method += is available, works for all operators
Check arguments: require(x >= 0) If condition is false throws IllegalArgumentException. Optional param msg.
Check assertion: assert(x >= 0) If condition is false throws AssertionError. Optional param msg.
Evaluation order (1 + 2) * 3 parenthesis control order Precedence of operators starting with:
Method application 1.+(2) call method + on object 1 all letters lowest
Operator notation 1 + 2 same as 1.+(2) |
Conjunction c1 && c2 true if both c1 and c2 true ^
Disjunction c1 || c2 true if at least one of c1 or c2 true &
Negation !c logical not, false if c is true = !
Function application f(1, 2, 3) same as f.apply(1,2,3) < >
Function literal x => x + 1 anonymous function, ”lambda” :
Placeholder syntax _ + 1 same as x => x+1, if arg used once + -
Object creation new C(1,2) class args (1,2) new is optional * / %
Self reference this refers to the object being defined other special chars highest
Supertype reference super.m refers to member m of supertype

Pattern matching, type tests
expr match expr is matched against patterns from top until match found, yielding the expression after =>
case "hello" => expr literal pattern matches any value equal (in terms of ==) to the literal
case x: C => expr typed variable pattern matches all instances of C, binding variable x to the instance
case C(x, y, z) => expr constructor pattern matches values of the form C(x, y, z), args bound to x,y,z
case (x, y, z) => expr tuple pattern matches tuple values, alias for constructor pattern Tuple3(x, y, z)
case x +: xs => expr sequence extractor patterns matches head and tail, also x +: y +: z +: xs etc.
case p1 | ... | pN => expr alternative pattern, match if at least one pattern p1, ..., pN match
case x@pattern => expr a pattern binder with the @ sign binds a variable to (part of) a pattern
case x => expr untyped variable pattern matches any value, typical ”catch all” at bottom: case _ =>

Pattern matching on direct subtypes of a sealed class is checked for exhaustiveness by the compiler
Matching with type pattern x match { case a: Int => a; case _ => 0 } is preferred over
explicit instance test and casting: if x.isInstanceOf[Int] then x.asInstanceOf[Int] else 0

Enumerations
enum Col: Col is a sealed class, values in companion of type Col: Col.Red etc.
case Red, Green, Blue Col.values returns Array(Col.Red, Col.Green, Col.Blue)

Col.Blue.ordinal zero-based ordinal number, here 2. The toString of Col.Blue is "Blue"
Col.valueOf("Red") value from String, here Red, can throw IllegalArgumentException
Col.fromOrdinal(0) value from Int, here Red, can throw NoSuchElementException
enum Bin(val toInt: Int): Parameterized enum. val is needed for class param to be externally visible.
case F extends Bin(0) get parameter from case value: Bin.F.toInt == 0
case T extends Bin(1) you can also define case members (def, val, etc) inside enums

enum Color(val rgb: Int): Algebraic Data Type (ADT). Parameterized case expands to case class.
case Red extends Color(0xFF0000) The exends clause is only needed if parameters are passed.
case Green extends Color(0x00FF00) 0x00FF00 is a hexadecimal Int litteral, decimal value 65280
case Blue extends Color(0x0000FF) Parameter access: Color.Blue.rgb == 255
case Mix(mix: Int) extends Color(mix) expanded to:

case class Mix(mix: Int) extends Color(mix) in companion object of trait Color(val rgb: Int)

444 Extension methods
Extension methods allow adding methods to a type after the type is defined, e.g. add a method to type String:
extension (s: String) def shoutBackwards = s.reverse.toUpperCase

Can be called using dot notation and normal call: "hej".shoutBackwards; shoutBackwards("hej")

Collective extension methods provide multiple extensions to the same type:
extension (xs: Seq[Double]) // note: no trailing colon
def mean: Double = xs.sum / xs.length // significant indentation
def midrange: Double = Seq(xs.max, xs.min).mean

extension [T](xs: List[T]) // generic extension, type param before paren
def second = xs.tail.head

extension [T: Ordering](xs: List[T]) // generic extension with context bound
def sortedDescending = xs.reverse.sorted // sorted requires Ordering

Contextual abstractions: given, using, summon[T]

enum Lang { case En, Sv } enum assumed in examples below
case class Config(lang: Lang) case class assumed in examples below
Contextual abstraction allows values to be inferred, and arguments to be filled in, based on expected type.
object Config: Given values in companion have lowest priority.
given default: Config = Config(Lang.En) A given instance, the name default: is optional.

def greet(name: String)(using cfg: Config) = A using parameter, the name cfg: is optional.
if cfg.lang == Lang.Sv then s"hej $name" If unnamed use: summon[Config].lang
else "hello $name" where summon returns given of specified type

A using argument can be omited: greet("Anna") A value of given type is inferred, here Config.default
Explicit given: greet("Anna")(using Config(Lang.sv)) Keword using is needed for explicit givens.

A ”type class” in Scala is a trait with one type parameter and at least one abstract method. Example:
trait CanShow[T]: A trait with one type parameter T
extension (x: T) def show: String An abstract member with a parameter of type T

Separately define given instances of type class CanShow for any type in any local scope:
given CanShow[Config] with keyword with needed when implementing members of given types
extension (x: Config) def show: String = s"Language is " + x.lang

Extension method show in type class CanShow is now available on Config implicitly: Config(Lang.En).show

Context bound: Use colon after type parameter as a shorthand when using parameter is a type class:
def rev[T: CanShow](x: T) = x.show.reverse CanShow[T] is required; automatically expands to:

def rev[T](x: T)(using CanShow[T]) = x.show.reverse

Context functions: the type of a function with a context parameter of type U to result type R is denoted U ?=> R
val f: Config ?=> Int = c ?=> c.lang.ordinal a context function lambda, c is a using-param.
When f is referred to without argument it is automatically expanded to: f(using summon[Config])
If type U ?=> E is expected, an expr of type E is expanded to a context function lambda: (u: U) ?=> expr

Opaque types: zero-cost abstractions

object Physical: Create a local scope for our opaque type alias
opaque type Distance = Double alias of Distance is Double, but that is invisible outside Physical
object Distance: In the local scope it is known that Distance is actually Double
extension (value: Double) def meter: Distance = value

Make the opaque type alias member available: import Physical.Distance.meter
Type of dist is Distance and members of type Double not available on dist: val dist = 42.0.meter
Prefer more versatile: case class Distance(value: Double) if zero allocation not performance-critical.

555The Scala Type System

Section
11.1

C
hapter11

·Scala’s
H

ierarchy
248

java.lang

String

scala

Boolean scala

Iterable

scala

Any

scala

AnyVal

scala

Unit

scala

Double

scala

Float

scala

Char
scala

Long

scala

Int

scala

Short

scala

Byte

scala

Nothing

scala

Seq

scala

List

scala

Null

scala

AnyRef
«java.lang.Object»

... (other Scala classes) ...

... (other Java classes) ...

Implicit Conversion
Subtype

... (other Scala value classes) ...

Figure 11.1 · Class hierarchy of Scala.

C
over·O

verview
·C

ontents
·D

iscuss
·Suggest·G

lossary
·Index

Prepared for Bjorn Regnell

Numbers

Number types
name # bits range literal Methods on numbers
Byte 8 −27 ... 27 − 1 0.toByte x.abs math.abs(x), absolute value
Short 16 −215 ... 215 − 1 0.toShort x.round math.round(x), to nearest Long
Char 16 0 ... 216 − 1 '0' '\u0030' x.floor math.floor(x), cut decimals
Int 32 −231 ... 231 − 1 0 0xF x.ceil math.ceil(x), round up
Long 64 −263 ... 263 − 1 0L x max y math.max(x, y), maximum
Float 32 ± 3.4 · 1038 0F x.toInt also toByte, toChar, toDouble etc.
Double 64 ± 1.8 · 10308 0.0 1 to 4 Range.inclusive(1, 4), incl. 1,2,3,4

0 until 4 Range(0, 4), incl. 0,1,2,3
Int.MinValue least possible value of type Int
Int.MaxValue largest possible value of the Int
math.Pi math.E π e
4.0.toRadians also toDegrees

Some methods in math same as in java.lang.Math:
pow(x, y) xy sqrt(x)

√
x exp(x) ex

hypot(x, y)
√

x2 + y2 log(x) natural logaritm
sin(x) asin(x) cos(x) tan(x) atan2(x,y)
floorMod(x, y) similar to x % y but always positive

scala.util.Random

Random.nextInt(n) A random Int uniformly distributed from 0 until n, not including n.
Random.nextInt() A random Int uniformly distributed from -Int.MaxValue to Int.MaxValue.
Random.nextDouble() A random Double uniformly distributed from 0.0 to 0.9999999999999999.
Random.between(a, b) A random number (a, b is Int, Float or Double) uniformly distributed from a until b.
Random.nextPrintableChar() A random Char including A to Z or any other printable char (uniform dist.).
Random.nextGussian() A random Double that is normally distributed with mean 0 and std dev 1.
Random.shuffle(xs) Returns a new sequence with the elements in xs in any, equally likely, random order.
Random.setSeed(s) Set Random’s integer seed s; sequence of next ”random” values will be same on each run.

666 The Scala Standard Collection Library

scala.collection.
immutable. mutable. methods with good performance:
Vector ArrayBuffer head tail apply +: :+
List ListBuffer head tail +: ::
ArraySeq ArraySeq head apply
Set Set contains + -
Map Map apply + -

Iterable

Seq Set Map

Vector List ArraySeq

Factory examples:

List(0, 0, 0); List(List(0), List(0)) same as List.fill(3)(0); List.fill(2,1)(0)
Map(1 -> "Sweden", 2 -> "Norway") same as Map((1, "Sweden"), (2, "Norway"))
Vector.tabulate(3)(i => i + 10) gives Vector(10, 11, 12)
Vector.iterate(1.2, 3)(_ + 0.5) gives Vector(1.2, 1.7, 2.2)
collection.mutable.Set.empty[Int] same as collection.mutable.Set[Int]() etc.
On mutable and immutable Set, Map, ArraySeq, etc.: toSet, toMap, toSeq etc. returns immutable collection

String implicitly Seq[Char] via immutable.StringOps

Some methods below are from java.lang.String and some methods are implicitly added from StringOps, etc.
Strings are implictly treated as Seq[Char], so all Iterable and Seq methods also work.
s(i) s.apply(i) s.charAt(i) Returns the character at index i.
s.capitalize Returns this string with first character converted to upper case.
s.compareTo(t) Returns x where x < 0 if s < t, x > 0 if s > t, x is 0 if s == t
s.compareToIgnoreCase(t) Similar to compareTo but not sensitive to case.
s.endsWith(t) True if string s ends with string t.
s.replace(s1, s2) Replace all occurances of s1 with s2 in s.
s.split(c) Returns an array of strings split at every occurance of character c.
s.startsWith(t) True if string s begins with string t.
s.stripMargin Strips leading white space followed by | from each line in string.
s.substring(i) Returns a substring of s with all charcters from index i.
s.substring(i, j) Returns a substring of s from index i to index j-1.
s.toIntOption s.toDoubleOption Parses s as an Option[Int] or Option[Double] etc. None if invalid.
42.toString 42.0.toString Converts a number to a String.
s.toLowerCase Converts all characters to lower case.
s.toUpperCase Converts all characters to upper case.
s.trim Removes leading and trailing white space.

val sb = StringBuilder("") En empty mutable string. (If multi-thread access use StringBuffer.)
sb.append("hello") Append string in-place. Also for Int, Char, Boolean, etc
sb.insert(i, s) Insert s at index i.
sb.delete(i) Remove char at index i.
sb.setCharAt(i, ch) Update char at index i to ch.
sb.toString Make an immutable String copy of sb.

Escape char Special strings
\n line break "hello\nworld\t!" string including escape char for line break and tab
\t horisontal tab """a "raw" string""" can include quotes and span multiple lines
\" double quote ” s"x is $x" s interpolator inserts values of existing names after $
\' single quote ’ s"x+1 is ${x+1}" s interpolator evaluates expressions within ${}
\\ backslash \ f"$x%5.2f" format Double x to 2 decimals at least 5 chars wide
\u0041 unicode for A f"$y%5d" format Int y right justified at least five chars wide

777Iterable[A]

What Usage Explanation f is a function, pf is a partial funct., p is a predicate.
Traverse: xs.foreach(f) Executes f for every element of xs. Return type Unit.
Add: xs ++ ys A new collection with xs followed by ys (concatenation).
Map: xs.map(f) A new collection created by applying f to every element in xs.

xs.flatMap(f) A new collection created by applying f (which must return a
collection) to all elements in xs and concatenating the results.

xs.collect(pf) A new collection created by applying the pf to every element in
xs for which it is defined (undefined ignored).

Convert: toVector toList toSeq
toBuffer toArray

Converts a collection. Unchanged if the run-time type already
matches the demanded type.

toSet Converts the collection to a set; duplicates removed.
toMap Converts a collection of key/value pairs to a map.

Array Copy: xs.copyToArray(arr,s,n) Copies at most n elements of xs to array arr starting at index s
(last two arguments are optional). Return type Unit.

Size info: xs.isEmpty Returns true if the collection xs is empty.
xs.nonEmpty Returns true if the collection xs has at least one element.
xs.size Returns an Int with the number of elements in xs.

Retrieval: xs.head xs.last The first/last element of xs (or some elem, if order undefined).
xs.headOption
xs.lastOption

The first/last element of xs (or some element, if no order is
defined) in an option value, or None if xs is empty.

xs.find(p) An option with the first element satisfying p, or None.
Subparts: xs.tail xs.init The rest of the collection except xs.head or xs.last.

xs.slice(from, to) The elements in from index from until (not including) to.
xs.take(n) The first n elements (or some n elements, if order undefined).
xs.drop(n) The rest of the collection except xs take n.
xs.takeRight(n)
xs dropRight n

Similar to take and drop but takes/drops the last n elements
(or any n elements if the order is undefined).

xs.takeWhile(p) The longest prefix of elements all satisfying p.
xs.dropWhile(p) Without the longest prefix of elements that all satisfy p.
xs.filter(p) Those elements of xs that satisfy the predicate p.
xs.filterNot(p) Those elements of xs that do not satisfy the predicate p.
xs.splitAt(n) Split xs at n returning the pair (xs take n, xs drop n).
xs.span(p) Split xs by p into the pair (xs takeWhile p, xs.dropWhile p).
xs.partition(p) Split xs by p into the pair (xs filter p, xs.filterNot p)
xs.groupBy(f) Partition xs into a map of collections according to f.

Conditions: xs.forall(p) Returns true if p holds for all elements of xs.
xs.exists(p) Returns true if p holds for some element of xs.
xs.count(p) An Int with the number of elements in xs that satisfy p.

Folds: xs.foldLeft(z)(op)
xs.foldRight(z)(op)

Apply binary operation op between successive elements of xs,
going left to right (or right to left) starting with z.

xs.reduceLeft(op)
xs.reduceRight(op)

Similar to foldLeft/foldRight, but xs must be non-empty, starting
with first element instead of z.

xss.flatten xss (a collection of collections) is reduced by concatenation.
xs.sum xs.product Calculates the sum/product of numeric elements.
xs.min xs.max Finds the minimum/maximum of numeric elements.
xs.minBy(f) xs.maxBy(f) Finds the min/max of value after applying f to each element.
xs.minOption xs.maxOption Finds a min/max value based on implicitly available ordering.
xs.minByOption(f) Finds a min/max value after applying f to each element.

Iterable[A] contiues on next page...

888
Iterable[A] (continued)

What Usage Explanation
Iterators: val it = xs.iterator An iterator it of type Iterator that yields each element one

by one: while (it.hasNext) f(it.next)
xs.grouped(size) An iterator yielding fixed-sized chunks of this collection.
xs.sliding(size) An iterator yielding a sliding fixed-sized window of elements.

Zippers: xs.zip(ys) An iterable of pairs of corresponding elements from xs and ys.
xs.zipAll(ys, x, y) Similar to zip, but the shorter sequence is extended to match

the longer one by appending elements x or y.
xs.zipWithIndex An iterable of pairs of elements from xs with their indices.

Compare: xs.sameElements(ys) True if xs and ys contain the same elements in the same order.
Make string: xs.mkString(start,

sep, end)
A string with all elements of xs between separators sep enclosed
in strings start and end; start, sep, end are all optional.

Seq[A]

Indexing xs(i) xs.apply(i) The element of xs at index i.
and size: xs.length Length of sequence. Same as size in Iterable.

xs.indices Returns a Range extending from 0 until xs.length.
xs.isDefinedAt(i) True if i is contained in xs.indices.
xs.lengthCompare(n) Returns -1 if xs is shorter than n, +1 if it is longer, else 0.

Index xs.indexOf(x) Index of first element in xs equal to x, or -1 if not found.
search: xs.lastIndexOf(x) Index of last element in xs equal to x, or -1 if not found.

xs.indexOfSlice(ys)
xs.lastIndexOfSlice(ys)

The (last) index of xs such that successive elements starting
from that index form the sequence ys. Returns -1 if not found.

xs.indexWhere(p) Index of first element in xs satisfying p, or -1 if not found.
xs.segmentLength(p, i) The length of the longest uninterrupted segment of elements

in xs, starting with xs(i), that all satisfy the predicate p.
xs.prefixLength(p) Same as xs.segmentLength(p, 0)

Add: x +: xs xs :+ x Prepend/Append x to xs. Colon on the collection side.
xs.padTo(len, x) Append the value x to xs until length len is reached.

Update: xs.patch(i, ys, r) A copy of xs with r elements of xs replaced by ys starting at i.
xs.updated(i, x) A copy of xs with the element at index i replaced by x.
xs(i) = x
xs.update(i, x)

Only available for mutable sequences. Changes the element of
xs at index i to x. Return type Unit.

Sort: xs.sorted A new Seq[A] sorted using implicitly available ordering of A.
xs.sortWith(lt) A new Seq[A] sorted using less than lt: (A, A) => Boolean.
xs.sortBy(f) A new Seq[A] sorted by implicitly available ordering of B after

applying f: A => B to each element.
Reverse: xs.reverse A new sequence with the elements of xs in reverse order.

xs.reverseIterator An iterator yielding all the elements of xs in reverse order.
xs.reverseMap(f) Similar to map in Iterable, but in reverse order.

Tests: xs.startsWith(ys) True if xs starts with sequence ys.
xs.endsWith(ys) True if xs ends with sequence ys.
xs.contains(x) True if xs has an element equal to x.
xs.containsSlice(ys) True if xs has a contiguous subsequence equal to ys
(xs corresponds ys)(p) True if corresponding elements satisfy the binary predicate p.

Subparts: xs.intersect(ys) The intersection of xs and ys, preserving element order.
xs.diff(ys) The difference of xs and ys, preserving element order.
xs.union(ys) Same as xs ++ ys in Iterable.
xs.distinct A subsequence of xs that contains no duplicated element.

999Mutation methods in mutable.{ArraySeq[A], ArrayBuffer[A], ListBuffer[A]}

xs(i) = x xs.update(i, x) Replace element at index i with x. Return type Unit.
xs.insert(i, x) xs.remove(i) Insert x at i, ret. Unit. Remove elem at i, ret. removed elem.
xs.append(x) xs.addOne(x) xs += x Insert x at end. Return xs itself.
xs.prepend(x) x +=: xs Insert x in front. Return xs itself.
xs -= x Remove first occurance of x (if exists). Returns xs itself.
xs ++= ys xs.addAll(ys) Appends all elements in ys to xs and returns xs itself.
xs.clear() xs.sortInPlace Remove all elements, return Unit. Sort in place, return itself.
xs.filterInPlace(p).mapInPlace(f) ArrayBuffer, ListBuffer: update in place. Return itself.

Set[A]
xs(x) xs.apply(x) xs.contains(x) True if x is a member of xs.
xs.subsetOf(ys) True if xs is a subset of ys.
xs + x xs - x
xs + (x, y, z) xs - (x, y, z)

Returns a new set including/excluding elements.
Addition/subtraction can be applied to many arguments.

xs.intersect(ys) A new set with elements in both xs and ys. Also: &
xs.union(ys) A new set with elements in either xs or ys or both. Also: |
xs.diff(ys) A new set with elements in xs that are not in ys. Also: &~

Mutation methods in mutable.Set[A]
xs += x xs.addOne(x) xs -= x Returns the same set with included/excluded element x.
xs ++= ys xs.addAll(ys) Adds all elements in ys to set xs and returns itself.
xs.add(x) xs.remove(x) Adds/removes x to xs and returns true if xs was mutated.
xs(x) = b xs.update(x, b) If b is true, adds x to xs, else removes x. Return type Unit.
xs.filterInPlace(p).mapInPlace(f) Update in place, no duplicates remain. Returns itself.

Map[K, V]

ms.get(k) The value associated with key k an option, None if not found.
ms(k) ms.apply(k) The value associated with key k, or exception if not found.
ms.getOrElse(k, d) The value associated with key k in map ms, or d if not found.
ms.isDefinedAt(k) True if ms contains a mapping for key k. Also: ms.contains(k)
ms + (k -> v) ms + ((k, v))
ms.updated(k, v)

The map containing all mappings of ms as well as the mapping
k -> v from key k to value v. Also: ms + (k1 -> v1, k2 -> v2)

ms - k Excluding any mapping of key k. Also: ms - (k, l, m)
ms ++ ks The mappings of ms with the mappings of ks added/removed.
ms.keys ms.values ms.keySet An Iterable/Set containing each key/value in ms.
ms.view.mapValues(f).toMap A new Map[K, U] created by applying f: V => U to each value.

Mutation methods in mutable.Map[K, V]

ms(k) = v ms.update(k, v) Adds mapping k to v, overwriting any previous mapping of k.
ms += (k -> v) ms -= k Add or overwrite k -> v / Remove k if key exists or no effect.
ms.put(k, v) ms.remove(k) Adds/removes mapping; returns previous value of k as an option.
ms.mapValuesInPlace(f) Update all values in place by applying f: (K, V) => V to each pair.
ms.filterInPlace(p) Filter in place, keep elems that satisfy p. Returns xs itself.

java.lang.Array[A] implicitly mutable.Seq[A] via ArrayOps

Array has efficient update, but is strange with generics, and gives reference equality on xs == ys. Shallow
equality test: xs.sameElements(ys) Deep equality test: java.util.Arrays.deepEquals(xs, ys)
val xs = new Array[Int](n) Allocate n Int values initialized to default value for number types: 0
val ys = new Array[String](n) n String references initialized to default value of reference types: null
Copy from start: Array.copyOf(xs, newLen) From pos: Array.copy(xs, pos, xs2, toPos, n)
Array.ofDim[Int](3,2) gives Array(Array(0, 0), Array(0, 0), Array(0, 0))
Prefer: ”normal” collection: immutable.ArraySeq, mutable.ArraySeq, or immutable IArray

101010
scala.{Option, Some, None} to handle missing values

Option[T] is like a collection with zero or one element. Some[T] and None are subtypes of Option.
def rnd(): Option[String] = if math.random() > 0.9 then Some("bingo") else None
rnd().getOrElse(expr) if rnd() == Some[T] then x else expr
rnd().map(f) if rnd() == Some(x) then Some(f(x)) else None
rnd().get if rnd() == Some[T] then x else throws NoSuchElementException
rnd() match a match on Option where expr1 if Some(x) or expr2 if None
case Some(x) => expr1 or use if rnd().isDefined then expr1 else expr2
case None => expr2 or use if rnd().isEmpty then expr2 else expr1

or use if rnd().nonEmpty then expr1 else expr2
Some collection methods also work on Option: map, foreach, filter, toVector, flatten, flatMap, ... with None discarded.

scala.util.{Either, Left, Right} to handle errors as values

def rnd(): Either[String, Int] = // normally returns Int but can report error
if math.random() > 0.9 then Right(42) else Left("Bad") // Left wraps message

Either[E, V] wraps a normal value or error. Left[E] error of type E. Right[V] normal value of type V.
rnd().isRight Predicate that tests if normal value. To test if error: rnd().isLeft
rnd().merge Unraps any value, will get precice common supertype, here union type: String | Int
rnd().swap Turns a Right to Left and vice versa, with swapped type parameters.
Some collection methods also work on Either: map, foreach, flatMap, ... with Left discarded.

scala.util.{Try, Success, Failure} to handle exceptions as values

Try[T] is like a collection with Success[T] or Failure[E]. import scala.util.{Try, Success, Failure}
Try{ ...; ...; expr1 }.getOrElse(expr2) evaluates to expr1 if successful or expr2 if exception
Try(expr1).recover{case e: Exception => expr2} Success(expr2) if exception else Success(expr1)
Try(1/0) match

case Success(x) => println("happy path") or use predicate: isSuccess
case Failure(e) => println("exception") or use predicate: isFailure

Some collection methods also work on Try: map, foreach, flatMap, ... with Failure discarded.

scala.io.{Source, StdIn} java.nio.file.{Path, Paths, Files}

Alternative to scala.io, java.nio: use Scala toolkit os.write os.read etc, see page 12, which normally is preferred.

Read string of lines from file, fromFile gives BufferedSource, getLines gives Iterator[String]
val source = scala.io.Source.fromFile("f.txt", "UTF-8") or fromURL(adr, enc)
val lines = try source.getLines.mkString("\n") finally source.close

Read string from standard in (prompt string is optional) using readLine; write to standard out using println:
val input = scala.io.StdIn.readLine("> ") Reads keystrokes in terminal after printing prompt >

Write string to file using java.nio:
import java.nio.file.{Path, Paths, Files}
import java.nio.charset.StandardCharsets.UTF_8

def save(fileName: String, data: String): Path =
Files.write(Paths.get(fileName), data.getBytes(UTF_8))

Other common character encoding: java.nio.charset.StandardCharsets.ISO_8859_1

111111
scala.jdk.CollectionConverters
Enable .asJava and .asScala with import scala.jdk.CollectionConverters.*

xs.asJava on a Scala collection of type: xs.asScala on a Java collection of type:
Iterator ←→ java.util.Iterator
Iterable ←→ java.lang.Iterable
Iterable ← java.util.Collection

mutable.Buffer ←→ java.util.List
mutable.Set ←→ java.util.Set
mutable.Map ←→ java.util.Map

mutable.ConcurrentMap ←→ java.util.concurrent.ConcurrentMap

java.util.Scanner

A Scanner reads tokens separated by whitespace from a String or File. Throws NoSuchElementException if end of file.
val s = java.util.Scanner("hello 42 42.0 world") Create a Scanner from a String.
val f = java.util.Scanner(java.io.File("f.txt")) Create a Scanner from a File.
val in = java.util.Scanner(System.in) Create a Scanner that reads from standard in.
s.hasNext s.hasNextLine True if at least one more token or line is available.
s.hasNextInt s.hasNextDouble s.hasNextBigDecimal etc. True if number tokens is next.
s.next() s.nextLine() Read next token or rest of line as a String.
s.nextInt() s.nextDouble() s.nextBigInteger etc. Parse next token as number type.

Create a single page web app using ScalaJS

In file hello-js.scala Note double colon before version when using dependencies for ScalaJS.

//> using scala 3.5.2
//> using platform scala-js
//> using dep org.scala-js::scalajs-dom::2.8.0

import org.scalajs.dom

@main def hello: Unit =
val p = dom.document.createElement("p") // create a paragraph node
p.textContent = "Hello ScalaJS!"
dom.document.addEventListener("DOMContentLoaded",
(e: dom.Event) => dom.document.body.appendChild(p))

Compile and package javascript to hello.js:
scala package hello-js.scala

In file page.html

<!DOCTYPE html>
<head><script src="hello.js"></script></head>
</html>

Open file page.html in browser e.g. Firefox.

Reserved words in Scala
These words and symbols have special meaning. Can be used as identifiers if put within `backticks`.
abstract as case catch class def derives do else end enum export extends extension false
final finally for forSome given if implicit import infix inline lazy macro match new null
object opaque open override package private protected return sealed super then this throw
trait transparent true try type using val var while with yield
_ : = => <- <: <% >: # @

121212
Using the Scala toolkit os, munit, ujson, upickle

scala run hello.scala --toolkit default Use stable vers. of Scala toolkit, an extended std libary.
//> using toolkit default Directive in source. //> using toolkit latest for unstable vers.

Manage files and os processes with os-lib
os.pwd os.root os.home Absolute path of type os.Path to working directory, root, and home dir.
os.root/"tmp" os.pwd/"src" Absolute paths to /tmp dir and src in working dir.
val wd = os.pwd/"myDir"; val p = wd/"myFile.txt" Absolute paths to dir and file.
p.ext p.segments p.last Methods on os.Path, returns "txt", iterator, last segment.
os.remove.all(wd) os.makeDir(wd) Remove all files in wd if exists. Create wd if not exists.
os.write(os.pwd/"f.txt", "hi") os.read(os.pwd/"f.txt") Write text to f.txt. Read as String.
os.exists(os.pwd/"f.txt") os.list(os.pwd) true if exists. List files as Seq.
os.write.append(os.pwd / "f.txt", "text to append") Append text at end of existing file.
os.write.over(os.pwd / "f.txt", "replace contents") Overwrite text to existing file.
os.copy(os.pwd/"f.txt", os.pwd/"cpy.txt", replaceExisting = false) conditional copy
os.move(os.pwd/"f.txt", os.pwd/"f2.txt", replaceExisting = false) conditional move

Call OS process in host shell in wd and get output as String:
val output = os.proc("cat", wd/"f.txt", wd/"cpy.txt").call(cwd = wd).out.text()

Write and run tests with munit compatible with junit, scala, sbt, metals, vscode etc
In file MyTests.test.scala in a class extending munit.FunSuite as follows:
Run with: scala test MyTests.test.scala --toolikt deafult

class MyTests extends munit.FunSuite:
test("sum of two integers"):
val sum = 2 + 2
assert(sum == 4)

Read and write JSON with ujson and upickle
val jsonString = """{"name": "Anna", "age": 42, "pets": ["Cat", "Dog"]}"""
val json: ujson.Value = ujson.read(jsonString)
val name = json("name").str // "Anna"
val nameOpt = json("name").strOpt // Some("Anna")
val pets = json("pets").arr // ArrayBuffer("Cat", "Dog")
val petsOpt = json("pets").arrOpt // Some(ArrayBuffer("Cat", "Dog"))
val m: Map[String, Int] = Map("Dog" -> 3, "Cat" -> 5)
val js: String = upickle.default.write(m) // """{"Dog":3,"Cat":5}"""
import upickle.default.*
case class PetOwner(name: String, pets: List[String]) derives ReadWriter
val po = PetOwner("Kim", List("Cat", "Dog"))
val jsPo: String = write(po) // """{"name":"Kim","pets":["Cat","Dog"]}""""
val po2: PetOwner = read[PetOwner](jsPo)

Using dependencies from Maven central, Github
Using library dependency from Maven central, here introprog for simple graphics, as using-directive in source:
//> using dep "se.lth.cs::introprog:1.4.0" Note: double colon adds Scala version to jar.

Or as argument in terminal: scala repl --dep "se.lth.cs::introprog:1.4.0"

Using library dependency from Github, one line per dependency, note single colon:
//> using dep "termut:termut:0.1.0,url=https://github.com/bjornregnell/termut/
releases/download/v0.1.0/termut_3-assembly-0.1.0.jar"

