
LUNDS TEKNISKA HÖGSKOLA Institutionen för datavetenskap

Valfri tentamen
EDAB05 Programmering, grundkurs

2026-01-07, 8:00-13:00

Instruktioner

• Skriv din anonymkod + personlig identifierare här:
Om du skriver icke-anonymt ange personnummer + namn i stället.

• Tillåtet hjälpmedel: Snabbreferens för Scala tryckt av institutionen. (Egna utskrifter tillåts ej då de
är svåra att kontrollera av tentavakt.)

• Del A (uppgift 1) ska besvaras genom att fylla i en tabell i detta häfte.

• Del B innehåller uppgift 2, 3, ... med svar i form av programkod som du ska skriva på separata
vita papper. Skriv bara på ena sidan av varje inlämnat blad. Skriv din anonymkod + personlig
identifierare (eller personnummer + namn om du skriver icke-anonymt) överst på varje inlämnat
blad. Det ska tydligt framgå vilken (del)uppgift du löser.

• Detta häftet ska lämnas in tillsammans med ifyllt omslag och svaren på uppgifterna i del B.

• Innan du går måste du lämna in detta häfte och ifyllt omslag, även om du inte löst några uppgifter.
Du får inte lämna salen innan du lämnat in. Du får tidigast lämna in 1 timme efter start.

• Du ska inte tentera om du ej är tentamensberättigad. För att vara tentamensberättigad ska du före
tentamen vara godkänd på alla obligatoriska moment (laborationer, projekt och muntligt prov).

Upplysningar

• Om du tenterar utan att vara tentamensberättigad annulleras din skrivning utan att bedömas. För att
undvika att någon skrivning annulleras av misstag kommer alla som, enligt institutionens noteringar,
tenterat utan att vara tentamensberättigade att kontaktas via epost. Felaktigheter i institutionens
noteringar kan därefter påtalas inom en månad.

• Tentamen är valfri för tentaberättigade och kan resultera i överbetygen 4 eller 5 om du uppfyller
kraven för överbetyg, enligt nedan. Om du är tentaberättigad får du minst betyg 3 oavsett resultat på
denna tentamen.

• Tentamen kan maximalt ge 100p, varav del A omfattar 20p och del B omfattar 80p.
• Poänggränser för överbetyg:

– För överbetyg krävs minst 10p på del A, samt totalt minst 67p för betyg 4 och 83p för betyg 5.
– Om det blir uppenbart under pågående bedömning att lösningarna inte kommer kunna uppfylla

lägsta gräns för överbetyg så kan vidare bedömning av resterande uppgifter komma att avbrytas.
– Poängangivelser i uppgifterna är preliminära och kan komma att justeras.

• Lösningar och bedömningsriktlinjer läggs ut på kursens hemsida efter tentamen.
• Resultatet läggs in i Ladok när bedömningen är klar. Visning sker på datavetenskaps expedition.

1



2(9)

Del A. Uppgift 1. Evaluera uttryck. Totalt max 20p.

Följande kod finns kompilerad utan kompileringsfel och tillgänglig på din classpath:

1 sealed trait Tomte:

2 def secret: Set[Julgodis] = Set()

3
4 enum Julgodis:

5 case Gurka, Choklad, Chilli

6
7 case class Troll(override val secret: Set[Julgodis]) extends Tomte:

8 var hack = secret

9
10 object Troll extends Tomte:

11 export Julgodis.*
12 override def secret = Set[Julgodis](Chilli, Chilli, Chilli)

13
14 def apply(styrka: Int = Julafton.tomat): Troll =

15 new Troll((this.secret.toSeq.sortBy(_.ordinal).reverse.drop(1)

16 ++ Seq.fill(styrka)(Chilli)).toSet)

17 end Troll

18
19 object Julafton:

20 private var n = 3

21 var tomtar: Map[Int, Tomte] =

22 (for i <- 1 until n yield i -> Troll(styrka = n + 39)).toMap

23 var a = Troll(1)

24 def tomat = n

25 def godis(): Unit = a.hack = a.hack ++ Julgodis.values.toSet

26 def xxx: Option[Tomte] = if tomtar == null then null else tomtar.get(42)

Du ska fylla i tabellen på nästa sida enligt följande. Antag att du skriver in nedan kod i Scala REPL rad
för rad. För varje variabel med namn u1, u2, ... , ange statisk typ (alltså den typ kompilatorn härleder),
samt det värde variabeln får efter initialisering, eller sätt i stället kryss i rätt kolumn om det blir ett
kompileringsfel respektive exekveringsfel. Vid frånvaro av fel, svara på samma sätt som Scala REPL
skriver ut typ respektive värde, enligt exempel u0 i tabellen.

1 val u0 = 42.0

2 val u1 = Julafton.tomtar.apply(0).secret.size

3 val u2 = Troll().hack.contains(Troll.Chilli)

4 val u3 = { Julafton.n = 42; Troll.apply().secret.size }

5 val u4 = ((Julafton.tomat + math.Pi) / 3).toInt

6 val u5 = Julafton.tomtar(2).secret.size

7 val u6 = { Julafton.godis(); Julafton.a.hack.size }

8 val u7 = { Julafton.a.secret = Set(); Julafton.a.hack.size; () }

9 val u8 = Julafton.xxx match { case a if a.get == Troll() => 42 case b => 42}

10 val u9 = { Julafton.tomtar = null; Option(Julafton.xxx).getOrElse(None) }

11 val u10 = Julafton.tomtar.size == 0



3(9)

Vid
kompi-
lerings-
fel sätt
kryss.

Vid
exekve-
ringsfel
sätt
kryss.

Ange statisk typ som
kompilatorn härleder om ej
kompilerings- eller
exekveringsfel.

Ange det värde som tilldelas vid exe-
kvering, med samma format som vid
utskrift av värdets toString, om ej
kompilerings- eller exekveringsfel.

u0 Double 42.0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10



4(9)

Del B. Uppgift 2–4. Totalt max 80p.

Karaoke-app i terminalen

Ditt har fått i uppdrag att hjälpa D-sektionens ak-
tivitetsutskott att skapa en terminalapp som visar
karaoke-sångtexter i Linux-terminalen. Karaoke (från
japanskans kara okesutora, som betyder ”tom orkes-
ter”) innebär aktiv underhållning i form av förinspelad
musik och sång till text på skärm.

Det finns givna styrtecken som möjliggör positio-
nering och markering (eng. highlighting) av text på
godtycklig plats i ett terminalfönster. Med hjälp av
dessa ska du färdigställa en app som läser en sångtext
i ett speciellt filformat och sedan visar några sång-
textrader i taget. Orden i texten ska markeras i takt
med musiken, så att aktiv teknolog kan sjunga med.

Huvudprogram och exempel

Vid körning av nedan huvudprogram med den epis-
ka sångtexten i textfilen rosa.txt som program-
argument, vars början återges i rutan till höger, så
visas sångtextrader med markerade ord steg för
steg, enligt skärmklippet nedan till höger.

@main def Main(path: String): Unit =

KaraokeTerminal(nRows = 5).play:

KaraokeTerminal.Lyrics.fromFile(path)

1 > scala run . -- rosa.txt

Takten styrs av det angivna tempot 152, med enhe-
ten taktslag per minut. Då markeras mer och mer
av texten i takt med detta tempo. Varje semikolon
i textfilen motsvarar ett taktslag. Varje taktslag
orsakar en fördröjning om 152/60.0 sekunder,
innan nästa markering sker av tecknen fram till
nästa taktslag. Notera att semikolon ej ska visas
i terminalen, utan enbart orsaka korrekt fördröj-
ning i enlighet med det angivna tempot. Sången
börjar med ett intro som ges av blanktecken och
6 taktslag – här alltså två vackra tretakter (vals).
Med nRows = 5 visas endast 5 textrader i taget
och nya rader scrollas nedifrån och upp. När tex-
ten är slut skrivs en tom rad ut och programmet
avslutas.

Början av rosa.txt, ”Rosa på bal” (Evert Taube)

tempo=152

; ; ; ; ; ;

Tänk; att; jag; dan;sar; med; An;;der;sson;;

Lilla; jag;; lilla; jag;;

med Fritiof; An;;der;sson;;;

Tänk; att; bli; upp;bjud;en; av;; en; sån;;

popu;lär;;; per;;;son!;;;

; ; ;

Tänk; vil;;ket un;der;bart; liv; de;; ni för;;;

Säj; mej; hur; känns; det; att; va;ra;; charmör;;;

Sjö;man; och; cow;boy; mu;si;ker; art;ist;;;

Det; kan; väl; ald;rig; bli; trist?;;;

; ; ;

Nej; al;drig; trist; frö;;ken Ro;;;sa;;;

har; man; som; er; ka;;valjer;;;

; ; ;

Vart; jag; än; stä;ller; min; ko;;;sa;;;

al;drig; för;glö;mmer; jag; er;;;

; ; ;

Ni; är;; en sång;mö;; från He;li;;kons; berg;;;

Oh,; frö;ken; Rosa;, er; li;nje; er; färg;;;

skul;dran,; pro;fil;en; med; lock;ar;nas; krans,;;;

ö;go;nens; vaaaaaa;;r;ma glans.;;;

Du ska göra klart de påbörjade implementationerna av klasserna i efterföljande uppgifter enligt givna
krav och tips. Klassen KaraokeTerminal ärver klassen Terminal, som i sin har en MutableMatrix.
Sångtexter läses från fil och tolkas med hjälp av klassen Lyrics och visas med metoden play i klassen
KaraokeTerminal.



5(9)

Uppgift 2. MutableMatrix. (10p)

MutableMatrix är en generisk, förändringsbar matris som erbjuder indexering och uppdatering på plats.

1 class MutableMatrix[T](val nRows: Int, val nCols: Int, val defaultValue: T):

2 require(nRows > 0 && nCols > 0, s"nRows and nCols must be non-zero")

3
4 import collection.mutable.ArrayBuffer

5
6 private val matrix: ArrayBuffer[ArrayBuffer[T]] =

7 ArrayBuffer.fill(nRows):

8 ArrayBuffer.fill(nCols)(defaultValue)

9
10 def apply(row: Int, col: Int): Option[T] = ??? //6p

11
12 def update(row: Int, col: Int, value: T): Unit = ??? //4p

13
14 def reset(row: Int, col: Int): Unit = update(row, col, defaultValue)

15
16 end MutableMatrix

Du ska implementera de saknade delarna ovan enligt dessa krav och tips:

• Metoden apply ska ge en Option som innehåller ett värde som finns på raden row i kolumnen col

om både row och col är giltiga index, annars ska en tom Option ges.

• Metoden update ska uppdatera värdet på raden row och kolumnen col om både row och col är
giltiga index, annars ska inget hända.



6(9)

Uppgift 3. Terminal. (33p)

Terminal på sidan 7 hanterar utskrift av positionerad och markerad text i terminalen med speciella
styrtecken, enligt vad som är standard i Linuxterminalen. Dessa styrtecken återfinns som teckenvärden i
kompanjonsobjektet Terminal, med tillhörande förklaring i resp. kommentar. Varje styrtecken föregås
av det speciella tecknet EscapeCode. Metoden moveCursor gör så att nästa utskrift sker på angiven rad
och kolumn och hanterar att index i buffer är noll-baserade medan terminalpositioner via styrtecken
är ett-baserade. Metoden hideCursor gömmer terminalens blinkande markör, så att den inte förvirrar
visningen av sångtextrader under pågående stegvis markering. Metoden showCursor återställer terminalens
blinkande markör.

Du ska implementera de saknade delarna och beakta dessa krav och tips:

• clear ska rensa terminalfönstret genom att blankställa alla buffer-värden och skriva ut styrtecknen
ClearScreen och MoveHome (terminalrensning, efterföljande utskrift överst till vänster).

• getChar ska ge ett teckenvärdet som eventuellt finns på raden row och kolumnen col i buffer.
Om värde saknas ska teckenattributet i CharData.Blank ges.

• Om row och col är giltiga index så ska putChar uppdatera buffer med en CharData-instans på
raden row och kolumnen col och även skriva ut tecknet med hjälp av printCharDataAt. Om row

eller col ej är giltiga index i buffer så ska inget hända.

• get ska ge ska ge de tecken som finns på rad row från kolumnen fromCol till (men inte med)
kolumnen untilCol. Du har nytta av metoden getChar.

• put ska uppdatera buffer och skriva ut tecknen i strängen text på rad row med start från kolumn
col. Om isHighlight är true så ska texten vara markerad annars inte. Du har nytta av putChar.

• highlight ska ånyo skriva ut tecknet på raden row och kolumnen col i markerat läge, oavsett om
det innan utskrift var markerat eller inte. Du har nytta av putChar och getChar.

• scroll ska förflytta alla rader i buffer upp ett steg och fylla på med en blankrad underifrån och
även visa motsvarande uppflyttade rader i terminalen. Du har nytta av metoderna update och reset

i MutableMatrix, samt printCharDataAt och printBlankAt.



7(9)

1 class Terminal(val nRows: Int, val nCols: Int):

2 import Terminal.*
3
4 private val buffer = MutableMatrix(nRows, nCols, CharData.Blank)

5
6 private def printBlankAt(row: Int, col: Int): Unit =

7 moveCursor(row, col)

8 print(' ')

9
10 private def printCharDataAt(row: Int, col: Int): Unit =

11 moveCursor(row, col)

12 val cd = buffer(row, col).get

13 if !cd.isHighlight then print(cd.char)

14 else print(s"${InvertBackground}${cd.char}${Reset}")

15
16 def clear(): Unit = ??? //5p

17
18 def getChar(row: Int, col: Int): Char = ??? //3p

19
20 def putChar(row: Int, col: Int, c: Char, isHighlight: Boolean): Unit = ??? //7p

21
22 def get(row: Int, fromCol: Int = 0, untilCol: Int = nCols): String = ??? //3p

23
24 def put(text: String, row: Int, col: Int = 0, isHighlight: Boolean): Unit = ??? //4p

25
26 def highlight(row: Int, col: Int): Unit = ??? //2p

27
28 def scroll(): Unit = ??? //9p

29
30 object Terminal:

31 case class CharData(char: Char, isHighlight: Boolean = false)

32
33 object CharData:

34 val Blank = CharData(' ')

35
36 val EscapeCode = 27.toChar // specialtecken som föregår styrkoder

37 val ClearScreen = s"${EscapeCode}[2J" // terminalen rensas

38 val MoveHome = s"${EscapeCode}[H" // nästa utskrift sker överst till vänster

39 val InvertBackground = s"${EscapeCode}[7m" // påbörjar markerad text

40 val Reset = s"${EscapeCode}[0m" // avslutar markerad text

41
42 def width(default: Int = 60) = // ger skärmbredd i antal tecken

43 sys.env.get("COLUMNS").flatMap(_.toIntOption).getOrElse(default)

44
45 def moveCursor(row: Int, col: Int): Unit = // nästa utskrift sker vid (row, pos)

46 print(s"${EscapeCode}[${row + 1};${col + 1}H")

47
48 def hideCursor(): Unit = print(s"${EscapeCode}[?25l") // gömmer blinkande markör

49
50 def showCursor(): Unit = print(s"${EscapeCode}[?25h") // visar blinkande markör

51 end Terminal



8(9)

Uppgift 4. KaraokeTerminal. (37p)

KaraokeTerminal visar en sångtext och markerar det som ska sjungas i takt med musiken. Endast nRows
rader visas i taget och texten scrollas när en rad är helt markerad, se exempel på sidan 4. Tempo representerar
takten i musiken. Klassen Lyrics representerar en sång med tempo och sångtextrader som innehåller
tecken som representerar taktslag.

1 import scala.compiletime.ops.double

2
3 object KaraokeTerminal:

4 case class Tempo(beatsPerMin: Int):

5 require(beatsPerMin > 0, "beatsPerMin must be more than zero")

6 val secondsPerBeat: Double = 60.0 / beatsPerMin

7 def waitBeat(): Unit = Tempo.waitSeconds(secondsPerBeat)

8
9 object Tempo:

10 def waitSeconds(seconds: Double): Unit = Thread.sleep((seconds * 1000).round)

11 val Default = Tempo(120)

12 val SettingPrefix = "tempo="

13 val Separator = ';'

14
15 def fromString(s: String): Option[Tempo] =

16 if s.startsWith(Tempo.SettingPrefix) then

17 val bpm = s.stripPrefix(Tempo.SettingPrefix)

18 .toIntOption

19 .getOrElse(Tempo.Default.beatsPerMin)

20 if bpm > 0 then Some(Tempo(bpm)) else None

21 else None

22 end Tempo

23
24 case class Lyrics(tempo: Tempo, lines: Vector[String]):

25 def showLine(i: Int): String = lines(i).filterNot(_ == Tempo.Separator)

26
27 object Lyrics:

28 private def loadLines(path: String): Vector[String] =

29 val s = io.Source.fromFile(path, enc = "UTF-8")

30 try s.getLines().toVector finally s.close()

31
32 def fromFile(path: String): Lyrics = ??? //7p

33 end Lyrics

34
35 class KaraokeTerminal(override val nRows: Int)

36 extends Terminal(nRows, Terminal.width()):

37 require(nRows >= 3, "nRows must be at least 3")

38 import KaraokeTerminal.*
39
40 def playLine(row: Int, lineWithBeats: String, tempo: Tempo): Unit = ??? //8p

41
42 def play(lyrics: Lyrics): Unit = ??? //22p

43 end KaraokeTerminal



9(9)

Du ska implementera de saknade delarna ovan och beakta efterföljande krav och tips:

• Tecknet Tempo.Separator är ett semikolon som representerar ett taktslag.

• Tecken som representerar taktslag ska inte visas i terminalen.

• fromFile ska läsa en textfil med hjälp av loadLines och konstruera en instans av klassen Lyrics.
Du har nytta av fromString som tolkar en eventuell inledande temporad som börjar med strängen
Tempo.SettingPrefix, se exempel på sidan 4. Om temporad saknas ska Tempo.Default användas.
Sångtextraderna i lines ska ej ha temporad.

• playLine ska för varje tecken i lineWithBeats antingen vänta (om tecknet representerar ett
taktslag) eller markera tecknet i motsvarande kolumn. Denna metod förutsätter att sångtextraden
redan visas i Terminalen på raden med index row i buffer.

• play ska fungera enligt följande:

– Först ska skärmen rensas och den blinkande markören ska gömmas.
– Sedan ska terminalen initialiseras genom att, med början på mittersta raden, visa de första

sångtextraderna som får plats fram till sista raden. I exempel på sidan 4 visar terminalen
med nRows == 5 rader. Initialt innehåller den två tomma rader och mittenraden (radindex 2)
består av 6 blanktecken eftersom första raden i sångtexten innehåller 6 blanktecken. Därefter
består den initialiserade terminalen av raderna Tänk att jag dansar med Andersson på
rad med index 3 samt Lilla jag lilla jag på rad med index 4. Exempelskärmbilden på
sidan 4 visar läget efter att initialisering och två steg i nedan repetition hunnit göras.

– Repetera så länge det finns ännu ej visade rader i lyrics:
∗ Spela upp aktuell rad genom stegvis markering i takt med musiken.
∗ Skrolla.
∗ Beräkna ny bottenrad som ska bestå av nästa kommande textrad utan taktslagstecken. Om

det inte finns fler rader i lyrics så ska bottenraden vara tom.
∗ Visa nya bottenraden.

– Efter att ovan repetition är klar så ska den blinkande markören visas igen och en tom rad ska
skrivas ut med println.

– Du har nytta av metoderna playLine, scroll, hideCursor, showCursor, put, showLine.


