
LUNDS TEKNISKA HÖGSKOLA Institutionen för datavetenskap

Bedömningsmall för tentamen
EDAB05 Programmering, grundkurs

2026-01-07, 8:00-13:00

Hjälpmedel: Snabbreferenser för Scala och Java.

Checklista före rättning

Kolla att:

• antal inlämnade blad stämmer med omslaget,
• anonymkoden på varje inlämnat blad stämmer med omslaget,

annars kontakta rättningsansvarig som i sin tur kontaktar studierektor som i sin tur kontaktar Tentamensav-
delningen, för att reda ut var sådana allvarliga fel har uppstått.

Generella bedömningsriktlinjer

Del A: Uppgift 1. Varje rad kan ge max 2p.

• Typerna och värdena ska skrivas som det står i lösningstabellen för full poäng. Dock får svaret
skilja sig vad gäller i betydelselös användning av blanktecken och radbrytningar. Citationstecken
runt strängar är ok men behövs inte. Om värdet är rätt, så när som på mindre detaljer i toString-
representationen, till exempel 42.0 i stället för 42, ges inget avdrag.

• Om rätt svar är ett kryss i kolumn 3 eller 4, men man kryssat för kompileringsfel när det ska vara
exekveringsfel, eller tvärt om, eller om man kryssat i båda, ges −1 i avdrag.

• Om man svarat med fel typ men rätt värde ges −1 i avdrag.
• Ofullständig generisk typ, t.ex. Option istf. Option[String] ger −1 i avdrag.
• Om man svarat med rätt typ men fel värde ges −1 i avdrag.
• Om både värde och typ är fel ges −2 i avdrag.
• Om man svarat med typ/värde och kryss i kolumn 3 och/eller 4 på samma rad ges −2 i avdrag.
• Förväxling mellan ' eller " eller glömda citattecken ger inget avdrag.
• Förväxling mellan stora och små begynnelsebokstäver t.ex. True istf. true ger inget avdrag.

Del B:

• Totala poängen för en uppgift kan inte bli negativ; om alla avdrag för en uppgift blir mer än
maxpoängen ges 0 poäng.

• Enkla misstag som är lätta att åtgärda ger −1 i avdrag eller −2 i avdrag, beroende på hur allvarligt
felet är.

• Allvarliga misstag eller stora ofullständigheter ger upp till –maxpoäng i avdrag, beroende på hur
mycket av koden som måste skrivas om för att det ska fungera och vara begripligt.

1

2(10)

Del A. Uppgift 1. Evaluera uttryck. Totalt max 20p.

Efter
init.
av:

Vid
kompile-
ringsfel
sätt kryss.

Vid
exekve-
ringsfel
sätt kryss.

Ange statisk typ som
kompilatorn härleder om
ej kompilerings- eller
körtidsfel.

Ange det värde som tilldelas vid exe-
kvering, med samma format som vid
utskrift av värdets toString, om ej
kompilerings- eller körtidsfel.

u0 Double 42.0

u1 X

u2 Boolean true

u3 X

u4 Int 2

u5 Int 1

u6 Int 3

u7 X

u8 X

u9 Option[Tomte] None

u10 X

3(10)

Rätta en rad i taget enligt nedan och sätt minuspoäng vid felaktigt svar i marginalen, t.ex. −1 eller −2.
Räkna ut totala poängen och resultatet inringat längst ner på sidan direkt i skrivningshäftet. Varje rad kan
ge max 2p.

• Typerna och värdena ska skrivas som det står i tabellen ovan för full poäng. Dock får svaret skilja
sig vad gäller i betydelselös användning av blanktecken och radbrytningar. Om värdet är nästan
helt rätt, så när som på obetydliga detaljer i toString-representationen, till exempel 10 i stället för
10.0 för ett värde av Double-typ, ges inget avdrag.

• Om rätt svar är ett kryss i någon av kolumnerna för kompilerings- eller exekveringsfel, men man
kryssat för inkorrekt typ av fel, ges −1 i avdrag.

• Om man helgarderat med två kryss på samma rad ges −2 i avdrag.

• Om man svarat med fel typ men rätt värde ges −1 i avdrag.

• Om man svarat med rätt typ men fel värde ges −1 i avdrag.

• Om både värde och typ är fel ges −2 i avdrag.

• Om man svarat med typ/värde och kryss i någon av kolumnerna för kompilerings- eller exekveringsfel
på samma rad ges −2 i avdrag.

4(10)

Del B. Uppgift 2–4. Totalt max 80p.

Generella avdragsriktlinjer för del B:

• Totala poängen för en uppgift kan inte bli negativ; om alla avdrag för en uppgift blir mer än
maxpoängen ges 0 poäng.

• Olika formateringsvarianter som skiljer sig från mönsterlösning som ej påverkar funktionen och ej
allvarligt försvårar läsningen, t.ex. extra (klammer)parentespar eller radbrytningar, ger inga avdrag.

• Felaktigt matchade (klammer)parentespar, felaktig indentering, eller glömda nödvändiga (klam-
mer)parenteser ger −1 i avdrag.

• Felaktigt avskriven metodsignatur från specifikationen ger inget avdrag om inte den felaktiga
signaturen innehåller påhittade parametrar som används i lösningen; då ges −1 i avdrag per påhittad
parameter och eventuella extra avdrag för att efterfrågad lösning saknas.

• Om nödvändigt semikolon saknas (t.ex. mellan flera satser på samma rad) ges −1 i avdrag.

• Användning av try eller Try som fångar alltför generella undantag ger, t.ex. case e: Exception

i stället för IndexOutOfBoundsException ger −− 1 i avdrag

• Felaktig användning av tom parameterlista (om ej ska finnas eller om saknas) ger −1 i avdrag.

• Mindre fel i likhet med föregående två punkter där det framgår tydligt vad som egentligen avses ger
−1 i avdrag.

• Ej användning av befintliga abstraktioner, egen onödig kod som redan finns i andra metoder: −1 i
avdrag + ev. fel i onödig kod.

• Deklaration av val när det måste vara var för att koden ska fungera ger −2 i avdrag.

• Förlorat värde, t.ex. uttryck som räknar ut ngt viktigt men som aldrig sparas, ger −2 i avdrag.

• Deklaration av var när det skulle kunna vara en val och fungera lika bra ger −1 i avdrag.

• Onödigt krångliga booleska uttryck, t.ex. quit = if (uttryck) true else false i stället för
bara quit = uttryck, ger 1p avdrag.

• Onödiga typannoteringar ger inget avdrag.

• Enstaka onödiga this ger inga avdrag

• Tillägg av element i samling på fel sätt, t.ex. +: i stället för :+ eller liknande, ger −1 i avdrag.

• Användning av return ger −2 i avdrag.

• Användning av metoden length på samling som ej är en sekvens, t.ex Set el. Map, ger −1 i avdrag.

• Enkla misstag som är lätta att åtgärda ger −1 eller −2 i avdrag, beroende på hur allvarligt felet är.

• Allvarliga misstag eller stora ofullständigheter ger från −3 upp till –maxpoäng i avdrag, beroende
på hur mycket av koden som måste skrivas om för att det ska fungera.

• Om precis samma typ av fel förekommer inom samma deluppgift (implementerad medlem) mer än
en gång kan du välja att bara göra avdrag en gång vid första förekomsten, om detta ger en rimligare
totalpoäng för deluppgiften. Om du bedömer att detta är rimligt, skriv då – Samma fel i kanten
för att indikera att avdraget redan är gjort. I vissa speciella fall kan även avdrag för samma fel
göras över flera implementerade medlemmar eller till och med över en hel uppgift eller för hela

5(10)

skrivningen, under förutsättning att felet är trivialt, t.ex. för systematiska mindre syntaxfel så som
onödiga semikolon vid radslut, konsekvent glömda }) then do eller upprepad användning av
return.

• Dokumentationskommentarer, paketdeklarationer och importsatser i given kod behöver ej upprepas
i lösningen. Om ytterligare importsatser behövs men helt saknas ska −1 i avdrag ges, men smärre
felaktigheter i själva sökvägen ger inga avdrag. Om en fullständig sökväg anges direkt på plats
(i stället för import), ges inget avdrag om sökvägen har smärre felaktigheter. Dock är det viktigt
att distinktionen mellan collection.mutable och collection.immutable blir rätt och sådana
felaktigheter ger −2 i avdrag.

6(10)

Endast delarna markerade med // Xp ingår i bedömningen, där X är maximala poängen för respektive del.

Uppgift 2. MutableMatrix. (10p)

1 package solution

2
3 class MutableMatrix[T](val nRows: Int, val nCols: Int, val defaultValue: T):

4 require(nRows > 0 && nCols > 0, s"nRows and nCols must be non-zero")

5
6 import collection.mutable.ArrayBuffer

7
8 private val matrix: ArrayBuffer[ArrayBuffer[T]] =

9 ArrayBuffer.fill(nRows):

10 ArrayBuffer.fill(nCols)(defaultValue)

11
12 def apply(row: Int, col: Int): Option[T] = //tot 6p

13 if row >= 0 && row < nRows && col >= 0 && col < nCols

14 then Some(matrix(row)(col))

15 else None

16 // alternativ lösning 1:

17 // matrix.lift(row).flatMap(_.lift(col))

18 //

19 // alternativ lösning 2:

20 // if matrix.indices.contains(row) && matrix(row).indices.contains(col)

21 // then Some(matrix(row)(col))

22 // else None

23
24 def update(row: Int, col: Int, value: T): Unit = //tot 4p

25 if row >= 0 && row < nRows && col >= 0 && col < nCols

26 then matrix(row)(col) = value

27 else ()

28
29 def reset(row: Int, col: Int): Unit = update(row, col, defaultValue)

30
31 end MutableMatrix

•

7(10)

Uppgift 3. Terminal. (33p)

1 package solution

2
3 class Terminal(val nRows: Int, val nCols: Int):

4 import Terminal.*
5
6 private val buffer = MutableMatrix(nRows, nCols, CharData.Blank)

7
8 private def printBlankAt(row: Int, col: Int): Unit =

9 moveCursor(row, col)

10 print(' ')

11
12 private def printCharDataAt(row: Int, col: Int): Unit =

13 moveCursor(row, col)

14 val cd = buffer(row, col).get

15 if !cd.isHighlight then print(cd.char)

16 else print(s"${InvertBackground}${cd.char}${Reset}")

17
18 def clear(): Unit = //tot 5p

19 for

20 row <- 0 until buffer.nRows

21 col <- 0 until nCols

22 do buffer.update(row, col, CharData.Blank)

23 print(s"$ClearScreen$MoveHome")

24
25 def getChar(row: Int, col: Int): Char = //tot 3p

26 buffer(row, col).getOrElse(CharData.Blank).char

27
28 def putChar(row: Int, col: Int, c: Char, isHighlight: Boolean): Unit = //tot 7p

29 if row >= 0 && row < nRows && col >= 0 && col < nCols then

30 buffer.update(row, col, CharData(c, isHighlight))

31 printCharDataAt(row, col)

32 else ()

33
34 def get(row: Int, fromCol: Int = 0, untilCol: Int = nCols): String = //tot 3p

35 val chars = for col <- fromCol until untilCol yield getChar(row, col)

36 chars.mkString

37
38 def put(text: String, row: Int, col: Int = 0, isHighlight: Boolean): Unit = //tot 4p

39 for i <- text.indices if col + i < nCols do

40 putChar(row, col + i, text(i), isHighlight)

41
42 def highlight(row: Int, col: Int): Unit = //tot 2p

43 putChar(row, col, getChar(row, col), true)

44
45 def scroll(): Unit = //tot 9p

46 for row <- 0 until nRows do

47 for col <- 0 until nCols do

48 if row < nRows - 1 then

49 buffer.update(row, col, buffer(row + 1, col).get)

50 printCharDataAt(row, col)

51 else

52 buffer.reset(row, col)

8(10)

53 printBlankAt(row, col)

54 end for

55 end for

56
57 object Terminal:

58 case class CharData(char: Char, isHighlight: Boolean = false)

59
60 object CharData:

61 val Blank = CharData(' ')

62
63 val EscapeCode = 27.toChar // specialtecken som föregår styrkoder

64 val ClearScreen = s"${EscapeCode}[2J" // terminalen rensas

65 val MoveHome = s"${EscapeCode}[H" // nästa utskrift sker överst till vänster

66 val InvertBackground = s"${EscapeCode}[7m" // påbörjar markerad text

67 val Reset = s"${EscapeCode}[0m" // avslutar markerad text

68
69 def width(default: Int = 60) = // ger skärmbredd i antal tecken

70 sys.env.get("COLUMNS").flatMap(_.toIntOption).getOrElse(default)

71
72 def moveCursor(row: Int, col: Int): Unit = // nästa utskrift sker vid (row, pos)

73 print(s"${EscapeCode}[${row + 1};${col + 1}H")

74
75 def hideCursor(): Unit = print(s"${EscapeCode}[?25l") // gömmer blinkande markör

76
77 def showCursor(): Unit = print(s"${EscapeCode}[?25h") // visar blinkande markör

78 end Terminal

•

9(10)

Uppgift 4. KaraokeTerminal. (37p)

1 package solution

2
3 import scala.compiletime.ops.double

4
5 object KaraokeTerminal:

6 case class Tempo(beatsPerMin: Int):

7 require(beatsPerMin > 0, "beatsPerMin must be more than zero")

8 val secondsPerBeat: Double = 60.0 / beatsPerMin

9 def waitBeat(): Unit = Tempo.waitSeconds(secondsPerBeat)

10
11 object Tempo:

12 def waitSeconds(seconds: Double): Unit = Thread.sleep((seconds * 1000).round)

13 val Default = Tempo(120)

14 val SettingPrefix = "tempo="

15 val Separator = ';'

16
17 def fromString(s: String): Option[Tempo] =

18 if s.startsWith(Tempo.SettingPrefix) then

19 val bpm = s.stripPrefix(Tempo.SettingPrefix)

20 .toIntOption

21 .getOrElse(Tempo.Default.beatsPerMin)

22 if bpm > 0 then Some(Tempo(bpm)) else None

23 else None

24 end Tempo

25
26 case class Lyrics(tempo: Tempo, lines: Vector[String]):

27 def showLine(i: Int): String = lines(i).filterNot(_ == Tempo.Separator)

28
29 object Lyrics:

30 private def loadLines(path: String): Vector[String] =

31 val s = io.Source.fromFile(path, enc = "UTF-8")

32 try s.getLines().toVector finally s.close()

33
34 def fromFile(path: String): Lyrics = //tot 7p

35 var lines = loadLines(path)

36 Tempo.fromString(lines.lift(0).getOrElse("")) match

37 case None => Lyrics(Tempo.Default, lines)

38 case Some(tempo) => Lyrics(tempo, lines.drop(1))

39 end Lyrics

40
41 class KaraokeTerminal(override val nRows: Int)

42 extends Terminal(nRows, Terminal.width()):

43 require(nRows >= 3, "nRows must be at least 3")

44 import KaraokeTerminal.*
45
46 def playLine(row: Int, lineWithBeats: String, tempo: Tempo): Unit = //tot 8p

47 var col = 0 //1p

48 for ch <- lineWithBeats do //2p

49 if ch == Tempo.Separator then //1p

50 tempo.waitBeat() //1p

10(10)

51 else

52 highlight(row, col) //2p

53 col += 1 //1p

54 //Alternativ lösning:

55 // val it = line.iterator

56 // var col = 0

57 // while it.hasNext do

58 // val c = it.next

59 // if c == Tempo.separator then

60 // tempo.waitBeat()

61 // else

62 // highlight(row, col)

63 // col += 1

64 // end while

65
66 def play(lyrics: Lyrics): Unit = //tot 22p

67 clear() //1p

68 Terminal.hideCursor() //1p

69 val midRow = nRows / 2 //1p

70 val initLines = lyrics.lines.take(midRow + 1) //3p

71 for i <- initLines.indices do //1p

72 put(lyrics.showLine(i), midRow + i, 0, isHighlight = false) //4p

73 var current = 0 //1p

74 while current < lyrics.lines.length do //1p

75 playLine(midRow, lyrics.lines(current), lyrics.tempo) //3p

76 scroll() //1p

77 current += 1 //1p

78 val nextBottomLine =

79 if current + nRows - midRow > lyrics.lines.length //2p

80 then "" //1p

81 else lyrics.showLine(current + nRows - midRow - 1) //2p

82 put(nextBottomLine, nRows - 1, isHighlight = false) //3p

83 end while

84 Terminal.showCursor() //1p

85 println() //1p

86 end KaraokeTerminal

•

