LUNDS TEKNISKA HOGSKOLA Institutionen for datavetenskap

Bedomningsmall for tentamen
EDABO5 Programmering, grundkurs

2026-01-07, 8:00-13:00

Hjéalpmedel: Snabbreferenser for Scala och Java.

Checklista fore rittning

Kolla att:

antal inlamnade blad stimmer med omslaget,
anonymkoden pé varje inlimnat blad stimmer med omslaget,

annars kontakta réttningsansvarig som i sin tur kontaktar studierektor som i sin tur kontaktar Tentamensav-
delningen, for att reda ut var sddana allvarliga fel har uppstatt.

Generella bedomningsriktlinjer

Del A: Uppgift 1. Varje rad kan ge max 2p.

Typerna och vérdena ska skrivas som det star i 10sningstabellen for full podng. Dock fér svaret
skilja sig vad giller i betydelselos anvindning av blanktecken och radbrytningar. Citationstecken
runt strangar dr ok men behovs inte. Om vérdet dr ritt, sd ndr som pa mindre detaljer i toString-
representationen, till exempel 42.0 i stillet for 42, ges inget avdrag.

Om ritt svar dr ett kryss i kolumn 3 eller 4, men man kryssat for kompileringsfel nir det ska vara
exekveringsfel, eller tvirt om, eller om man kryssat i bada, ges —1 i avdrag.

Om man svarat med fel typ men ritt virde ges —1 i avdrag.

Ofullstiandig generisk typ, t.ex. Option istf. Option[String] ger —1 i avdrag.

Om man svarat med ritt typ men fel viarde ges —1 i avdrag.

Om béde virde och typ ar fel ges —2 i avdrag.

Om man svarat med typ/virde och kryss i kolumn 3 och/eller 4 pd samma rad ges —2 i avdrag.
Forvixling mellan ' eller " eller glomda citattecken ger inget avdrag.

Forvixling mellan stora och sma begynnelsebokstiver t.ex. True istf. true ger inget avdrag.

Del B:

Totala podngen for en uppgift kan inte bli negativ; om alla avdrag for en uppgift blir mer dn
maxpoidngen ges 0 poing.

Enkla misstag som &r ldtta att atgdrda ger —1 i avdrag eller —2 i avdrag, beroende pa hur allvarligt
felet r.

Allvarliga misstag eller stora ofullstindigheter ger upp till -maxpoding i avdrag, beroende pa hur
mycket av koden som maéste skrivas om for att det ska fungera och vara begripligt.

2(10)

Del A. Uppgift 1. Evaluera uttryck. Totalt max 20p.

Efter | Vid Vid Ange statisk typ som Ange det viarde som tilldelas vid exe-
init. | kompile- | exekve- kompilatorn hirleder om | kvering, med samma format som vid
av: ringsfel ringsfel ej kompilerings- eller utskrift av virdets toString, om ej
satt kryss. | sittkryss. | kortidsfel. kompilerings- eller kortidsfel.
0 boubte 420
ul X
u2 Boolean true
u3 X
u4 Int 2
u5 Int 1
u6 Int 3
u7 X
usg X
u9 Option[Tomte] None
ulo X

3(10)

Ritta en rad i taget enligt nedan och sitt minuspoédng vid felaktigt svar i marginalen, t.ex. —1 eller —2.
Rékna ut totala podngen och resultatet inringat 1angst ner pé sidan direkt i skrivningshiftet. Varje rad kan
ge max 2p.

Typerna och vérdena ska skrivas som det stér i tabellen ovan for full podng. Dock fér svaret skilja
sig vad giller i betydelselds anvidndning av blanktecken och radbrytningar. Om virdet ir ndstan
helt rditt, sd nir som pd obetydliga detaljer i toString-representationen, till exempel 10 i stéllet for
10.0 for ett viarde av Double-typ, ges inget avdrag.

Om ritt svar ir ett kryss i ndgon av kolumnerna for kompilerings- eller exekveringsfel, men man
kryssat for inkorrekt typ av fel, ges —1 i avdrag.

Om man helgarderat med tva kryss pd samma rad ges —2 i avdrag.
Om man svarat med fel typ men ritt virde ges —1 i avdrag.

Om man svarat med ritt typ men fel viarde ges —1 i avdrag.

Om béde virde och typ ar fel ges —2 i avdrag.

Om man svarat med typ/virde och kryss i nigon av kolumnerna for kompilerings- eller exekveringsfel
pa samma rad ges —2 i avdrag.

4(10)

Del B. Uppgift 2—4. Totalt max 80p.

Generella avdragsriktlinjer for del B:

Totala podngen for en uppgift kan inte bli negativ; om alla avdrag for en uppgift blir mer dn
maxpoéngen ges 0 poing.

Olika formateringsvarianter som skiljer sig frdn monsterlosning som ej paverkar funktionen och ej
allvarligt forsvarar lasningen, t.ex. extra (klammer)parentespar eller radbrytningar, ger inga avdrag.

Felaktigt matchade (klammer)parentespar, felaktig indentering, eller glomda nodvindiga (klam-
mer)parenteser ger —1 i avdrag.

Felaktigt avskriven metodsignatur frdn specifikationen ger inget avdrag om inte den felaktiga
signaturen innehdller pahittade parametrar som anvénds i 16sningen; d& ges —1 i avdrag per pahittad
parameter och eventuella extra avdrag for att efterfradgad 16sning saknas.

Om nodvindigt semikolon saknas (t.ex. mellan flera satser pa samma rad) ges —1 i avdrag.

Anvindning av try eller Try som féngar alltfor generella undantag ger, t.ex. case e: Exception
i stéllet for IndexOutOfBoundsException ger — — 1 i avdrag

Felaktig anvindning av tom parameterlista (om ej ska finnas eller om saknas) ger —1 i avdrag.

Mindre fel i likhet med foregdende tva punkter dir det framgar tydligt vad som egentligen avses ger
—11avdrag.

Ej anvidndning av befintliga abstraktioner, egen onddig kod som redan finns i andra metoder: —1 i
avdrag + ev. fel i onodig kod.

Deklaration av val ndr det maste vara var for att koden ska fungera ger —2 i avdrag.
Forlorat virde, t.ex. uttryck som riknar ut ngt viktigt men som aldrig sparas, ger —2 i avdrag.
Deklaration av var nir det skulle kunna vara en val och fungera lika bra ger —1 i avdrag.

Onodigt krangliga booleska uttryck, t.ex. quit = if (uttryck) true else false i stillet for
bara quit = uttryck, ger 1p avdrag.

Onddiga typannoteringar ger inget avdrag.

Enstaka onodiga this ger inga avdrag

Tillagg av element i samling pa fel sitt, t.ex. +: i stéllet for : + eller liknande, ger —1 i avdrag.
Anvindning av return ger —2 i avdrag.

Anvindning av metoden length pa samling som ej &r en sekvens, t.ex Set el. Map, ger —1 i avdrag.
Enkla misstag som ér litta att atgirda ger —1 eller —2 i avdrag, beroende pa hur allvarligt felet ar.

Allvarliga misstag eller stora ofullstindigheter ger frdn —3 upp till —maxpoding i avdrag, beroende
pa hur mycket av koden som maéste skrivas om for att det ska fungera.

Om precis samma typ av fel forekommer inom samma deluppgift (implementerad medlem) mer dn
en ging kan du vilja att bara gora avdrag en gang vid forsta forekomsten, om detta ger en rimligare
totalpoéng for deluppgiften. Om du bedomer att detta ar rimligt, skriv dd — Samma fel i kanten
for att indikera att avdraget redan dr gjort. I vissa speciella fall kan dven avdrag for samma fel
goras Over flera implementerade medlemmar eller till och med 6ver en hel uppgift eller for hela

5(10)

skrivningen, under forutséttning att felet &r trivialt, t.ex. for systematiska mindre syntaxfel s& som
onddiga semikolon vid radslut, konsekvent glomda }) then do eller upprepad anvindning av
return.

Dokumentationskommentarer, paketdeklarationer och importsatser i given kod behover ej upprepas
i 16sningen. Om ytterligare importsatser behdvs men helt saknas ska —1 i avdrag ges, men smirre
felaktigheter i sjalva sokvédgen ger inga avdrag. Om en fullstandig sokvig anges direkt pa plats
(i stillet for import), ges inget avdrag om sokvédgen har smirre felaktigheter. Dock ar det viktigt
att distinktionen mellan collection.mutable och collection.immutable blir ritt och sddana
felaktigheter ger —2 i avdrag.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

6(10)

Endast delarna markerade med // Xp ingér i bedomningen, ddr X dr maximala podngen for respektive del.
Uppgift 2. MutableMatrix. (10p)

package solution

class MutableMatrix[T](val nRows: Int, val nCols: Int, val defaultValue: T):
require(nRows > 0 && nCols > 0, s"nRows and nCols must be non-zero")

import collection.mutable.ArrayBuffer

private val matrix: ArrayBuffer[ArrayBuffer[T]] =
ArrayBuffer.fill(nRows) :
ArrayBuffer.fill(nCols) (defaultValue)

def apply(row: Int, col: Int): Option[T] = //tot 6p
if row >= 0 & row < nRows && col >= 0 && col < nCols
then Some(matrix(row) (col))
else None
// alternativ 16sning 1:
// matrix.lift(row).flatMap(_.lift(col))
//
// alternativ 16sning 2:
// if matrix.indices.contains(row) && matrix(row).indices.contains(col)
// then Some(matrix(row) (col))
// else None

def update(row: Int, col: Int, value: T): Unit = //tot 4p
if row >= 0 & row < nRows && col >= 0 && col < nCols
then matrix(row) (col) = value
else ()

def reset(row: Int, col: Int): Unit = update(row, col, defaultValue)

end MutableMatrix

O 00 3 N Lt AW N =

I S —
N o= O

7(10)

Uppgift 3. Terminal. (33p)

package solution

class Terminal(val nRows: Int, val nCols: Int):
import Terminal.x

private val buffer = MutableMatrix(nRows, nCols, CharData.Blank)

private def printBlankAt(row: Int, col: Int): Unit =
moveCursor(row, col)
print(' ')

private def printCharDataAt(row: Int, col: Int): Unit =
moveCursor(row, col)
val cd = buffer(row, col).get
if !cd.isHighlight then print(cd.char)
else print(s"${InvertBackground}${cd.char}${Reset}")

def clear(): Unit = //tot 5p
for
row <- 0 until buffer.nRows
col <- 0 until nCols
do buffer.update(row, col, CharData.Blank)
print(s"$ClearScreen$MoveHome")

def getChar(row: Int, col: Int): Char = //tot 3p
buffer(row, col).getOrElse(CharData.Blank).char

def putChar(row: Int, col: Int, c: Char, isHighlight: Boolean): Unit = //tot 7p
if row >= 0 && row < nRows && col >= 0 && col < nCols then
buffer.update(row, col, CharData(c, isHighlight))
printCharDataAt(row, col)
else ()

def get(row: Int, fromCol: Int = 0, untilCol: Int = nCols): String = //tot 3p
val chars = for col <- fromCol until untilCol yield getChar(row, col)
chars.mkString

def put(text: String, row: Int, col: Int = 0, isHighlight: Boolean): Unit = //tot 4p
for i <- text.indices if col + i < nCols do
putChar(row, col + i, text(i), isHighlight)

def highlight(row: Int, col: Int): Unit = //tot 2p
putChar(row, col, getChar(row, col), true)

def scroll(): Unit = //tot 9p
for row <- @ until nRows do
for col <- 0 until nCols do
if row < nRows - 1 then
buffer.update(row, col, buffer(row + 1, col).get)
printCharDataAt(row, col)
else
buffer.reset(row, col)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

8(10)

printBlankAt(row, col)
end for
end for

object Terminal:

case class CharData(char: Char, isHighlight:

object CharData:
val Blank = CharData(' ')

val EscapeCode = 27.toChar

val ClearScreen = s"${EscapeCode}[2]"
val MoveHome = s"${EscapeCode}[H"
val InvertBackground = s"${EscapeCode}[7m"
val Reset = s"${EscapeCode}[Om"

Boolean = false)

//
//
//
//
//

specialtecken som féregar styrkoder
terminalen rensas

nasta utskrift sker overst till vanster
pab6érjar markerad text

avslutar markerad text

def width(default: Int = 60) = // ger skarmbredd i antal tecken
sys.env.get("COLUMNS").flatMap(_.toIntOption).getOrElse(default)

def moveCursor(row: Int, col: Int): Unit = // nasta utskrift sker vid (row, pos)
print(s"${EscapeCode}[${row + 1};${col + 1}H")

def hideCursor(): Unit

def showCursor(): Unit
end Terminal

print(s"${EscapeCode}[?251") // gbémmer blinkande markor

print(s"${EscapeCode}[?25h") // visar blinkande markor

00 N N R WD =

oA A A B PP PP PP W W W W W W W W W WENNDNDNIDNDNDNDNDDND /= = = = e e e e
S O 00 NN N R WD = O OV 00NN R WD = O 0O 00NN R WD = O O 00NN R WD = O O

9(10)

Uppgift 4. KaraokeTerminal. (37p)

package solution
import scala.compiletime.ops.double

object KaraokeTerminal:
case class Tempo(beatsPerMin: Int):
require(beatsPerMin > 0, "beatsPerMin must be more than zero")
val secondsPerBeat: Double = 60.0 / beatsPerMin
def waitBeat(): Unit = Tempo.waitSeconds(secondsPerBeat)

object Tempo:
def waitSeconds(seconds: Double): Unit = Thread.sleep((seconds * 1000).round)
val Default = Tempo(120)
val SettingPrefix = "tempo="
val Separator = ';'

def fromString(s: String): Option[Tempo] =
if s.startsWith(Tempo.SettingPrefix) then
val bpm = s.stripPrefix(Tempo.SettingPrefix)
.toIntOption
.getOrElse(Tempo.Default.beatsPerMin)
if bpm > 0 then Some(Tempo(bpm)) else None
else None
end Tempo

case class Lyrics(tempo: Tempo, lines: Vector[String]):
def showlLine(i: Int): String = lines(i).filterNot(_ == Tempo.Separator)

object Lyrics:
private def loadLines(path: String): Vector[String] =
val s = io.Source.fromFile(path, enc = "UTF-8")
try s.getlLines().toVector finally s.close()

def fromFile(path: String): Lyrics = //tot 7p
var lines = loadLines(path)
Tempo.fromString(lines.lift(0).getOrElse("")) match
case None => Lyrics(Tempo.Default, lines)
case Some(tempo) => Lyrics(tempo, lines.drop(1l))
end Lyrics

class KaraokeTerminal (override val nRows: Int)

extends Terminal (nRows, Terminal.width()):
require(nRows >= 3, "nRows must be at least 3")
import KaraokeTerminal.x

def playLine(row: Int, lineWithBeats: String, tempo: Tempo): Unit = //tot 8p
var col =0 //1p
for ch <- lineWithBeats do //2p
if ch == Tempo.Separator then //1p
tempo.waitBeat() //1p

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

10(10)

else

highlight(row, col) //2p
col +=1 //1p

//Alternativ 1ésning:

// val it = line.iterator

// var col = 0

// while it.hasNext do

// val ¢ = it.next

// if ¢ == Tempo.separator then
// tempo.waitBeat()

// else

// highlight(row, col)

// col += 1

// end while

def play(lyrics: Lyrics): Unit = //tot 22p
clear() //1p
Terminal.hideCursor() //1p
val midRow = nRows / 2 //lp
val initLines = lyrics.lines.take(midRow + 1) //3p
for i <- initlLines.indices do //1p
put(lyrics.showLine(i), midRow + i, 0, isHighlight = false) //4p
var current = 0 //1p
while current < lyrics.lines.length do //1p
playLine(midRow, lyrics.lines(current), lyrics.tempo) //3p
scroll() //1p
current += 1 //1p
val nextBottomLine =
if current + nRows - midRow > lyrics.lines.length //2p
then "" //1p
else lyrics.showLine(current + nRows - midRow - 1) //2p
put (nextBottomLine, nRows - 1, isHighlight = false) //3p
end while
Terminal.showCursor() //1p
println() //1p

86 end KaraokeTerminal

