

Strategic and Operational Planning Problems in CityLogistics

Sustainable CityLogistics Conference Copenhagen Business School, November 30th, 2010

DTU Transport Institut for Transport

Agenda

- Definition of the CityLogistics
 - Seen from a transport optimisation point of view
- Planning and optimisation problems
 - Strategic, tactical, operational and real-time levels
- A closer look at the cross-docking sub-problem
- Simulation of real-time operations in CityLogistics
- Closing and questions

DTU Transport

- The Department of Transport, DTU
 - Research, teaching, public sector consulting and innovation within traffic, transport and logistics
 - Approx. 80 employees
 - Organisation:
 - Transport Modelling
 - Decision Modelling
 - Transport Economy
 - Traffic Safety
 - ModelCenter
 - Logistics and Intelligent Transport Systems

CityLogistics (CL) – What?

- Basic idea:
 - Consolidation of goods between the senders, operators and customers
- The challenge:
 - Integration of stake holders' requirements so that a fully efficient and agile logistics system is created

people.hofstra.edu

CityLogistics (CL) – Why?

- Goals:
 - Reducing congestion improving mobility
 - Reducing emissions, local pollution, noise
 - Contributing to the CO2reduction goals
 - Improving urban life conditions
- ALSO:
 - Avoiding punishing activities in the city centres
 - "The empty city centres"

Drivers for CityLogistics (CL) – How?

• Through regulation

- Challenges with competition issues
- Conflicts with EU law on free trade access

• Through motivation/incentives

- Indirectly via for instance intelligent road charging schemes
- -Value-added services
 - Handling of waste etc. (including return logistics)
 - Operators moves the goods directly into the shops ("the last 3 steps")

people.hofstra.edu

CL – Advantages and Disadvantages? (I)

- Socio-economic interests versus interests of private companies
- Politicians, municipalities/regions, authorities, interests organisations etc.
 - Goal: minimising the transport impacts in the cities
- Retailers, shippers/producers, carriers and the customers (residents)
 - (Understandable) reluctancy against bringing in an extra step in the distribution/supply chain

Figure: Taniguchi et al. 2008

CL – Advantages and Disadvantages? (II)

- Important not only to analyse what the societal gains are of implementing a CL concept
- Detailed studies of advantages and disadvantages for each stake holder
- NEEDED: Simulation studies of a large-scale CL system with realistic data/components in each step of the supply chain

Figure: Taniguchi et al. 2008

CL – The strategic planning level

- The high-level design of the CL-system
- Analyses of possible locations of the distribution centres
- Only high-level forecasts of expected order mass
 Modeling of service networks (aggregated level)

CL – The tactical planning level

- High-quality and detailed forecasts of the order mass
- Design of the service network (timetables/schedules)
 - Fix routes for the route planning
 - High-level planning in the terminals

CL – The operational level

- Specific orders now given (changes may still occur)
- Detailed plans:
 - Routes for the vehicles (and the goods booked)
 - Schedules for drivers and terminal crew, etc.

CL – The ultra-short term Ultrashort Medium Short Long term term term term Planning **Operational** Real-time horizon **Tactical** Strategic time

- Control and dynamic updates of route plans, crew schedules in terminals etc.
- Updates from the infrastructure kan trigger re-planning processes
 - Examples:
 - Reduced speed in certain road segments due to congestion, bad weather etc.
 - Complete close-down of road segments due to accidents (or similar)
 - And so on (Murphy's law)

Cross-docking – a central component in CL

Cross-docking – Challenges

- Longer cycles for the goods
 - Goods via the CD terminal
- Manning and operating the CD terminal
 - -Labour costs -> not all operations can be automatised
- Complex coordination of in- and outgoing goods
- Producers/operators: Reluctancy against "sharing" a CD with competing companies

Cross-docking and transport optimisation

- Relatively new topic within the transport optimisation community (only few research papers)
- The CD-concept has been known in more than 20 years
- Examples of research within the CD-problem domain:
 - Physical lay-out of a CD
 - Location analyses
 - Gate (dock allocations) assigning doors to the trucks
 - Route planning for the in- and out-going trucks

Route planning and Cross-docking

3

Suppliers

ΠΤΙΙ

Simulation studies in CityLogistics (I)

- Robust plans are vital for the operational performance of a CLsystem
 - Coordination between in- and out-going flows in the CDterminal
 - Risk of "domino effects" in case of disruptions
 - A delayed in-coming vehicle can cause several outgoing vehicles
 - => example

A simple example of a late in-coming truck

time

DTU

Simulation within CityLogistics (I)

- Robust plans are vital for the operational performance of a CLsystem
 - Coordination between in- and out-going flows in the CDterminal
 - Risk of "domino effects" in case of disruptions
 - A delayed in-coming vehicle can cause several outgoing vehicles
 - Re-planning may be necessary
 - Parallels to the airline industry's challenges with hub-spoke networks

Simulation within CityLogistics (II)

- Simulation studies may help;
 - provide an assessment of the consequences
 - provide the planners with feed-back on needs for further slack in route plan and crew schedules
 - -train (newly hired?) planners in dealing with disruptions

Simulation within CityLogistics (III)

- Specific projects:
 - Simulating Cross-docking terminal operations with disruptions
 - Use generated data (customer locations, orders, layout of the CD etc.)
 - Implemented a simulation framework in the simulation modelling package Arena
 - Generated disruption scenarios
 - Simulation of internal operations in the CD
 - Studies on how the CD-terminal performs during disruption

Consolidation at the sender level

- CL does not necessarily <u>have to</u> be based on Distribution Centre
- "Consolidation" and "Coordination at the sender level
 - Vendor Managed Inventory systems
- Collaborative logistics
 - Competing entities work together buys and sells free capacity to each other

Closing

- The underlying planning problems in a CL system are by themselves interesting seen from a research perspective
 - The integration af these into one system add tremendously to the overall complexity of the planning problems
- Important to perform detailed studies of the impacts of implementing a CL system for all stake holders

Thank you for your attention!