AOCS's Phospholipids seminar: Nutrition, application and technology

Copenhagen, Denmark, October 23 - 24, 2008

Chemoenzymatic Synthesis of Structured Phosphatidylcholine Positionally Labelled with Pure EPA and DHA

Gudmundur G. Haraldsson

Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland

Objectives

To synthesize positionally labelled structured PC comprised of MCFA and n-3 PUFA

Outline

- Description of structured lipids
- Previous synthesis of structured lipids
- Synthesis of structured PC
- Summary

Structured Lipids

Lipids that have a predetermined composition and distribution of fatty acids at the glycerol backbone

Structured Acylglycerols

Acylglycerols containing one type of fatty acids (MCFA) at the end-position(s) and a different type (PUFA) at the mid-position of the glycerol backbone

Structured Triacylglycerols Comprising EPA and DHA

Reaction Conditions

Enzymatic Reaction

- Candida antarctica lipase
- Vinyl esters of MCFA (25% excess)
- Solvent: Dichloromethane
- Temperature: 0 4 °C
- Reaction time: 3 5 hours
- Purification: Crystallization (Hexane)
- Yields: Excellent (>90%)

Reaction Conditions

Coupling Reaction

- EDCI (20% excess); DMAP (0.4 eq.)
- Stoichiometric amount of EPA or DHA
- Solvent: Dichloromethane
- Room temperature
- Reaction time: 4 5 hours
- Purification: Silica gel chromatography
- Yields: Excellent (>90%)

Structured Ether Lipids

1-O-Alkyl-2,3-Diacyl-sn-glycerols

Synthesis of Structured TAG and EL Enzymatic Step

- Candida antarctica lipase: the perfect catalyst
- MCFA as Vinyl Esters
- Reaction temperature: 0 4 °C
- Reaction time: 3 5 hours

Chemoenzymatic Synthesis of Structured PC by Lipase

Synthesis of Asymmetrically Structured PC Main Challenges

- Enantiocontrol
- Regiocontrol and regiopurity
- Lipase activity towards GPC
- Acyl migration
- Analytical aspects
- Purfication and full characterization

Chemoenzymatic Synthesis of Structured PC Starting material

sn-Glycerol-3-phosphatidylcholine, GPC

Synthesis of Structured PC Enzymatic Step

Candida antarctica lipase

- Excellent regioselectivity
- Slow: 90% Conversion after 96 hours
- High yields

Lipase Investigation

Enzymatic Step (C₁₂; CH₂Cl₂; 24 h)

Lipase	Conversion (%)	Regio- selectivity
Rhizomucor miehei	94	Excellent
Thermomyces lanuginosa	92	2% migration
Candida antarctica	54	Excellent

Lipase Investigation

Conversion of RML (C_8 in CH_2CI_2)

Time (h)	Conversion (%)
14	82
18	91
24	98

Chemoenzymatic Synthesis of Structured PC Enzymatic Step

Synthesis of Structured PC

Enzymatic Step

- Rhizomucor miehei lipase: excellent regioselectivity
- Excellent yields
- MCFA as Vinyl Esters
- Solvent: Dichloromethane
- Room temperature
- Reaction time: 24 hours

Results of Enzyme Reaction

Compound	MCFA	Conv. (%)	Yields (%)	[α] _D ¹⁾
(R)- 1a	-C ₅ H ₁₁	98	90	+3.1
(R)- 1b	-C ₇ H ₁₅	98	97	+2.4
(R)- 1c	-C ₉ H ₁₉	92	91	+2.5
(R)- 1d	-C ₁₁ H ₂₃	90	88	+3.7

 $^{1)}$ c = 1, CH₃OH

PC Reaction Conditions

Coupling Reaction

• DCC (2-fold excess); DMAP (1 eq.)

• EPA: 2-fold excess

Solvent: Chloroform

Room temperature

· Reaction time: 24 hours

Purification: Silica gel chromatography

Yields: High to excellent (73 - 91%)

Results of Coupling Reaction

Compound	MCFA	PUFA	Yields (%)	$[\alpha]_D^{(1)}$
(R)- 2a	-C ₅ H ₁₁	EPA	84	+9.0
(R)- 2b	-C ₇ H ₁₅	EPA	91	+8.8
(R)- 2c	-C ₉ H ₁₉	EPA	88	+9.4
(R)- 2d	-C ₁₁ H ₂₃	EPA	88	+8.8

 $^{1)}$ c = 1, CHCl₃/CH₃OH (1:1)

Results of Coupling Reaction

Compound	MCFA	PUFA	Yields (%)	$[\alpha]_D^{(1)}$
(R)- 2a	-C ₅ H ₁₁	DHA	87	+4.3
(R)- 2b	-C ₇ H ₁₅	DHA	94	+5.1
(R)- 2 c	-C ₉ H ₁₉	DHA	85	+3.9
(R)- 2d	-C ₁₁ H ₂₃	DHA	73	+4.4

 $^{1)}c = 1$, CHCl₃/CH₃OH (1:1)

Summary

- Enantiopure structured PC
- Rhizomucor miehei lipase: The best catalyst
- Outstanding regioselectivity of the lipase
- Acyl migration eliminated by mild conditions
- Very high to excellent yields in all cases
- Only two steps
- Full characterization by ¹H, ¹³C and ³¹P NMR

Application

- Clinical research
- Individual fatty acid investigations
- Pure compounds useful as standards
- Isotopically labelled fatty acids
- Liposomes

Acknowledgements

- Björn Kristinsson and Carlos D. Magnusson
- Dr. Sigridur Jonsdottir for NMR analysis
- Dr. Sigurdur Smarason for High Resolution MS
- Icelandic Research Fund for financial support
- Avanti Polar Lipids for Pure GPC
- Pronova Biocare in Norway for pure EPA and DHA and Novozyme in Denmark for the lipase

