Plant bioactives for the regulation of metabolism and energy expenditure.

Karsten Kristiansen Professor of Molecular Biology Department of Biology University of Copenhagen and BGI-Shenzhen

Still a serious need for novel activators of PPAR γ for the treatment of type 2 diabetes

Plants	Indications from literature and own preliminary results, prevention/treatment	Classes of compounds
1. Food plants		
Cabbage, many kinds (<i>Brassica oleracea</i> ssp.)	Cancer	Glucosinolates (e.g., glucotropaeolin, glucobrassicin) and degradation products (e.g., indole-3- carbinol, benzyl isothiocyanate)
Carrot (<i>Daucus carota</i>)	Cancer, cardiovascular disorders, inflammation	carotenes, polyacetylenes (e.g., falcarinol, falcarindiol)
Buckwheat (Fagopyrum esculentum/tartaricum)	Cardiovascular disorders, obesity, insulin resistance,	Flavonoids (e.g. rutin, quercetrin)
2. Herbs and spices		
Savory (Satureja hortensis/montana)	Diabetes, inflammation,	Essential oils/ flavonoids, phenolic acids, polyacetylenes
Sage (Salvia officinalis)	Insulin resistance, Inflammation, Alzheimer	Essential oils/ flavonoids, phenolic acids
Oregano (Origanum vulgare)	Inflammation	Essential oils/ flavonoids, phenolic acids
Rosemary (Rosmarinus officinalis)	Inflammation, Alzheimer	Essential oils/ flavonoids, phenolic acids

3.Medicinal plants	Indications from literature and own preliminary results, prevention/treatment	Classes of compounds
Purple coneflower (<i>Echinacea</i> ssp.)	Immunostimulatory, neuroprotective, obesity, insulin resistance	Alkamides, polyacetylenes, phenolic acids (e.g., chicoric acid)
Elderflower, Elderberry (Sambucus nigra)	Insulin resistance, obesity	Flavonoids (e.g. rutin, quercetrin), phenolic acids (e.g., chlorogenic acid)
Ginseng (Panax ginseng/quinquefolium)	Insulin resistance, immunomodulatory, cancer, inflammation, CNS modulatory	Ginsenosides, (e.g., Rb ₁ , Rg ₁ , Re), polyacetylenes (e.g., falcarinol, panaxydol)
Thyme (Thymus vulgaris)	Inflammation	Essential oils, flavonoids
Rosenrod (Rhodiola rosea)	Obesity, insulin resistance, cancer	Phenylpropanoid glycosides (e.g., salidroside, rosavin) flavonoids, phenolic acids

Determination of insulin-dependent glucose uptake in adipocytes and muscle

- · Medium-througput microtiterplate-based assays.
- Determines the ability of compounds to stimulate glucose uptake in adipocytes or pig muscle cells

Alternative test systems for evaluation of bioactivity

- C. elegans model system of obesity
 - The entire genome of this nematode is known
 - As fast and easy to perform as a microorganismbased system while offering features of higher organisms e.g. intestine and muscles
 - Optical transparency with easy visualization of lipid accumulation
- · Zebrafish models
 - Sequencing of the genome has been completed
 - "Fertile" animal model with genetic and physiological similarities to mammals
 - Models for e.g. glucose metabolism, atherosclerosis, and certain forms of cancer

K. Ashrafi (2007) www.wormbook.org

Identification of bioactive compounds from purple coneflower

- Preparations of purple coneflower (*Echinacea purpurea*) are some of the most used herbal medicinal products
- Preparations of *Echinacea* are primarily used for the treatment of upper respiratory tract infections due to their immunomodulatory activities
- Two other species are used for medicinal purposes: *E. pallida* and *E. angustifolia*
- Bioactive compounds are:
 - Polysaccharides
 - Caffeic acid derivatives
 - Alkamides

Purple coneflower (Echinacea purpurea)

Identification of bioactive compounds from elderflowers

- Elderflowers (*Sambucus nigra*) is used in traditional medicine as a diuretic and to treat colds, influenza, and inflammation
- The leaves of elder have been used traditionally to treat diabetes
- Elderflowers is a rich source of bioactive metabolites e.g.
 - Triterpenoids
 - Flavonoid derivatives
 - Phenolic acids

A study on aq. extracts of elderflowers showed that they exhibit insulinlike and insulin-releasing actions *in vitro*. However, the bioactive metabolites were not identified.

- Two types of fat: White fat stores energy as fat Brown fat burn fat producing heat
- Humans like other mammals, except pigs, have brown fat at birth, but brown fat has generally been thought to disappear rapidly after birth
- Recent findings, however, have shown that adults do contain brown fat, and that the amount of brown fat can be regulated
- Perspective:
- 1 g brown fat can dissipates 6 kcal per day
- · 333 g brown fat can dissipates 2000 kcal per day

<section-header><section-header><complex-block><image>

