DISCOVERING BIOACTIVE SUBSTANCES IN THE FOOD CHAIN

Dr. Joseph Schwager DSM Nutritional Products Basel, Switzerland

Joseph.Schwager@dsm.com

Elements of the presentation

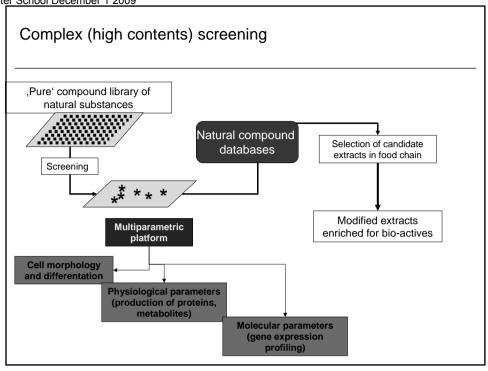
- Bioactives and their importance in nutrition
- Concepts of screening and its application in nutrition science
- Identifying bioactives present in the food chain
- From identification to application in the real world

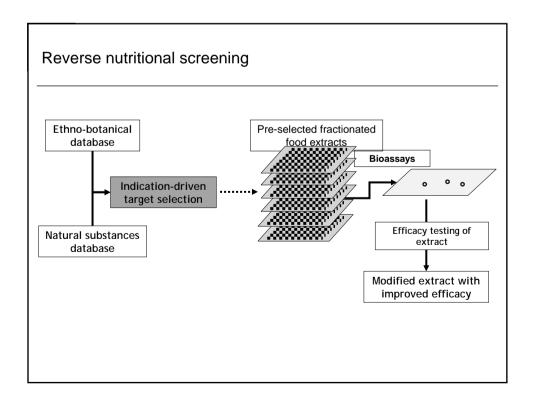
Nutrition and health

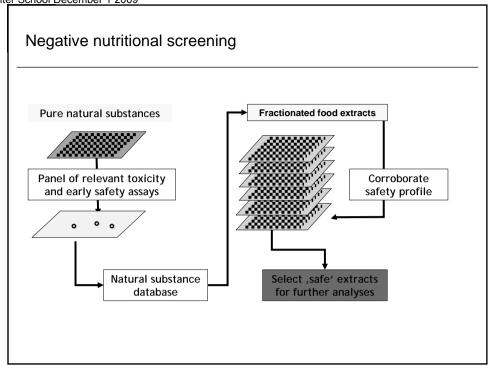
- (Pharmaceutical approach to bioactives)
- Food components condition and impair/improve our health
- Ethnobotanical evidence
 - · Accumulation of empirical knowledge at the food/health interface
 - · Different patterns of nutrition in different societies
 - · Association of types of nutrition and benefits on health conditions
- ,Du bist, was du isst' (,you are what you eat')
- Rise (and fall) of functional food / nutraceuticals

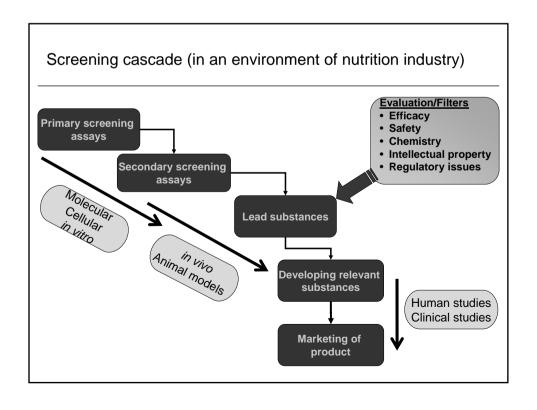
Identification of bioactives in the food chain

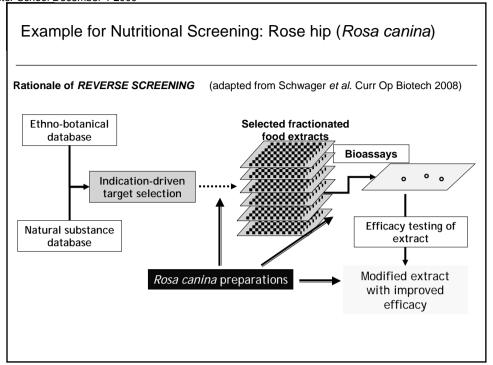
The screening cascade

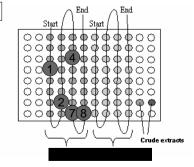

- Selection of health indication
- Definition of target (moelcular, cellular)
- From primary screening assays to lead compounds
- Efficacy and safety
- Steps from bench to product: molecular target → humans


Health indications and screening approach


Definition and selection of molecular target


- Indication Diabetes: Receptor, ligand to receptor
- Indication Joint Health Arthritis: enzymes
- Indication Neurodegenerative diseases mood/mental performance: re-uptake of neurotransmittors


Natural ,pure' compound library Fractionated extract Screening Matural compound databases Selection of candidate extracts in food chain Modified extracts enriched for bio-actives



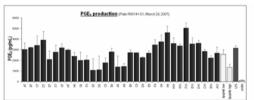
Bio-assay guided fractionation

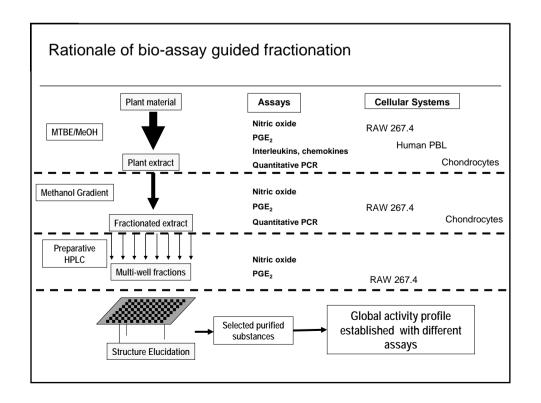
Testing fractions in bioassays (*i.e.* enzyme inhibition, receptor binding, production of proteins in cellular response to stimuli, metabolites)

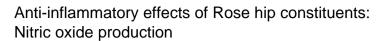
High degree of automatization/robotization

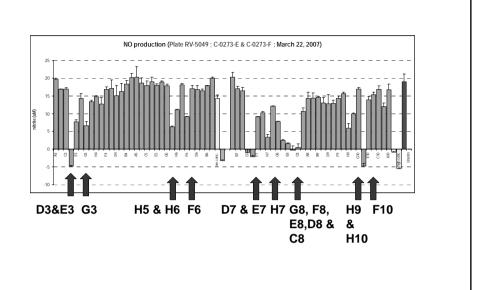
Adaptation to high throughput screening platforms

Bioactives identified in Cajanus cajan (pigeon pea)

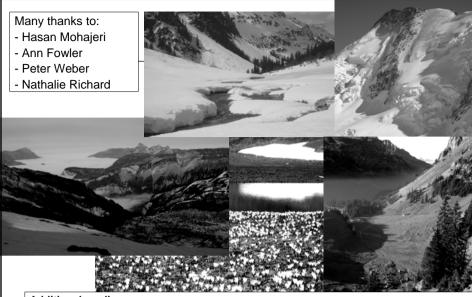

Rationale and approach


- Fractionation of Cajanus cajan extracts by standard procedures
- Individual testing of inhibitory potential of each fraction (in NO and PGE₂ production)
- Identifying of ,hot spots'
- Structure elucidation of material contained in active wells


100 Market Marke


Outcome

- Numerous ,hot spots' in NO inhibition profile; this is consistent with the overall activity of the extract
- Some hot spots identified in the PGE₂ inhibitory profile
- The two profiles are not overlapping



Rose hip extracts: fractionation /structure identification

Table 3: Target and Isolated Peaks:

Peak-No.	RT (min) 1	Megdex	contained in fraction	MW ²	Structure
1	28,01	2706	C-0273-S-01 ?	0	- 3
2	30,40	2945	C-0273-S-02	278	Linolenic acid
3	31,37	3036	C-0273-S-03, -04	280	Linoleic acid
4	31,83	3078	C-0273-S-05	456	I (Terpenoid)
5	32,06	3099	C-0273-S-06, -07, -08	256	Palmitic acid
6	33,18	3202	C-0273-T-06, -07, -08	936	II (Glycolipid)
7	33,74	3245	C-0273-U-04, -05	774	III (Glycolipid)
		3340	C-0273-U-06	914	IV (Glycolipid)
8	37,70	3614	C-0273-U-06	0	- 3
9	38,55	3692	C-0273-U-10	0	- 3

1

Additional reading:

- Current Opinion in Biotechnology Volume 19, issue 2 /April 2008
- Schwager J, Fowler A & Weber P. Challenges in discovering bioactives for the food industry. *Current Opinion in Biotechnology* 2008, 19:66-72

Questions (ex officio)

- What is the state of the art within the field in question?
- What are the hypotheses?
- · Which results have been achieved?
- · What does future work focus on?

Questions (ex officio) / Answers (quoque ex officio)

- What is the state of the art within the field in question?
 - High level of tools in analytical and preparative platforms in natural product chemistry, large databases
 - For pharmaceutical approaches: mature
 - For nutraceutical approaches: expanding
- What are the hypotheses?
 - Not unlimited universe of the bioactives. Redundances (dependent on indications)
 - Bioactives contribute to therapeutic approaches; prevention of diseases
- Which results have been achieved (by described screening approaches)?
 - Limited additional results to what is already published → virtual screenings
 - Corroboration of previous observations and screening results
- · What does future work focus on?
 - Interactions between bioactives
 - Marketing potential of bioactives (dietary supplements, food ingredients)
 - Revival of interest of pharmaceutical industry in bioactives?