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Human pattern recognition uses all available data



Human pattern recognition uses all available data

Definitions

• Chemometrics:
“Application and development of mathematical and 

statistical methods to extract information from 
multivariate chemical data”

• Exploratory chemometric data analysis:• Exploratory chemometric data analysis:
– Seeking latent variables in data
– Graphics
– Hypothesis generating analysis



Multivariate ”sensors”

• Fluorescence, ultraviolet-visual, nearinfrared (NIR), FT-
Infrared (FT-IR), FT-IR Microscope, Raman, Raman
Microscope, Nuclear Magnetic Resonance (NMR)

• GC-MS, MS-MS, HPLC-DAD• GC-MS, MS-MS, HPLC-DAD

• Physical-chemical measurements

• Process parameters

• Or mixtures of the above-mentioned…

Co-variance – a central point
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Important tools

• One data-structure, X:
– Principal Component Analysis (PCA)

• Two data-structures, X & Y:
– Partial Least Squares Regression (PLS)– Partial Least Squares Regression (PLS)

• Classification, X & Class
– Extended Canonical Variate Analysis (ECVA)

Burger King – Analyzed by PCA



Burger King – Bi-plot/Overview

Burger King

TableTableTableTable orororor graphicsgraphicsgraphicsgraphics????



Important tools

• One data-structure, X:
– Principal Component Analysis (PCA)

• Two data-structures, X & Y:
– Partial Least Squares Regression (PLS)– Partial Least Squares Regression (PLS)

• Classification
– Extended Canonical Variate Analysis (ECVA)

Tablets – Analyzed by PLSR

Concentration of water (y) in tablets by near infrared spectroscopy (X)

*) http://www.thestrategicvet.com/Water -Droplet-1039X761.jpg



Tablets - Options

5230.5cm -1

Univariate

Multivariate

Tablets - Options

5230.5cm -1

7035.8cm -1

5076.3cm -1



Tablets - MLR (1 variable)

Perfect fit

Tablets - MLR (2 variables)



Tablets - MLR (3 variables)

Tablets - PLS (3 factors out of 780 variables)



Important tools

• One data-structure, X:
– Principal Component Analysis (PCA)

• Two data-structures, X & Y:
– Partial Least Squares Regression (PLS)– Partial Least Squares Regression (PLS)

• Classification
– Extended Canonical Variate Analysis (ECVA)

Cancer diagnosis – Analyzed by ECVA
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Cancer diagnosis - Overview

• A fluorescence landscape measured directly on the serum sample 
(undiluted or diluted) yields a multivariate spectroscopic 
fingerprint that contains information about health status of the 
individual
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• Group 1:    13 Group 1:    13 Group 1:    13 Group 1:    13 healthyhealthyhealthyhealthy femalesfemalesfemalesfemales

Patient Group (26 females)Patient Group (26 females)Patient Group (26 females)Patient Group (26 females)

Cancer diagnosis

Patient Group (26 females)Patient Group (26 females)Patient Group (26 females)Patient Group (26 females)

• Group 3:    11 females with Group 3:    11 females with Group 3:    11 females with Group 3:    11 females with solitarysolitarysolitarysolitary metastasesmetastasesmetastasesmetastases

• Group 5:    15 females with Group 5:    15 females with Group 5:    15 females with Group 5:    15 females with progressiveprogressiveprogressiveprogressive diseasediseasediseasedisease



Find w for which:Find w for which:Find w for which:Find w for which:
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Cancer diagnosis - Options

ECVA - Extended Canonical Variance Analysis
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Cancer diagnosis - Results
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Biomarkers in food

Metabolomics / metabonomics

Onion powderControl Onion extract Onion residual

Control feed 1000g 900g 930g 970g

Composition 
of rat feed 
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Biomarkers – interval ECVA
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Control = 0% onion
3% onion residue 
7% onion extract
10% onion powder

Biomarkers - Results

• Onion contains many sulfoxides
• Oxidation product of 

dimethylsulfoxid (DMSO) 
• Respiration of dimethylsulfone

has recently been linked with the 
occurrence of skin cancer

3.143.153.163.173.183.193.23.21 [ppm]

[ppm]4 3 2 [ppm]4 3 2 

Urine from rat on an onion diet

Dimethylsulfone

• FACTFACTFACTFACT: Onions have potentially 
beneficial effects on health

• AIMAIMAIMAIM: Evaluate the in vivo
metabolome following intake of 
onion by-products
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Biomarkers - Results

onion by-products
• RESULTRESULTRESULTRESULT: HR NMR spectroscopy 

combined with adv. multivariate 
data techniques discovers 
exclusive biomarkers in urine 
followed by onion feed 
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Why chemometrics & spectroscopy?

Spectrometer

Sample preparation
for chemical analysis

Remote
Non-destructive

Rapid
Enviromentally friendly

Multivariate
Taking care of co-variance

Invasive
Destructive

Slow
Environmentally harmfull

Univariate
Breaking co-variance

Summary

• StateStateStateState----ofofofof----thethethethe----artartartart
– Exploratory data analysis by Principal Component Analysis
– Multivariate classification tools, i.e. Extended Canonical Variate

Analysis

• HypothesesHypothesesHypothesesHypotheses
– There should be a covariate underlying structure in data– There should be a covariate underlying structure in data

• Results achievedResults achievedResults achievedResults achieved
– Successfully applied to a many scientific disciplines

• Future workFuture workFuture workFuture work
– Dissemination of the methods to other scientific disciplines
– Better and more user-friendly methods, i.e. less need for an expert 

user for the analysis


