
Sustainability Assessment of Biorefinery Systems

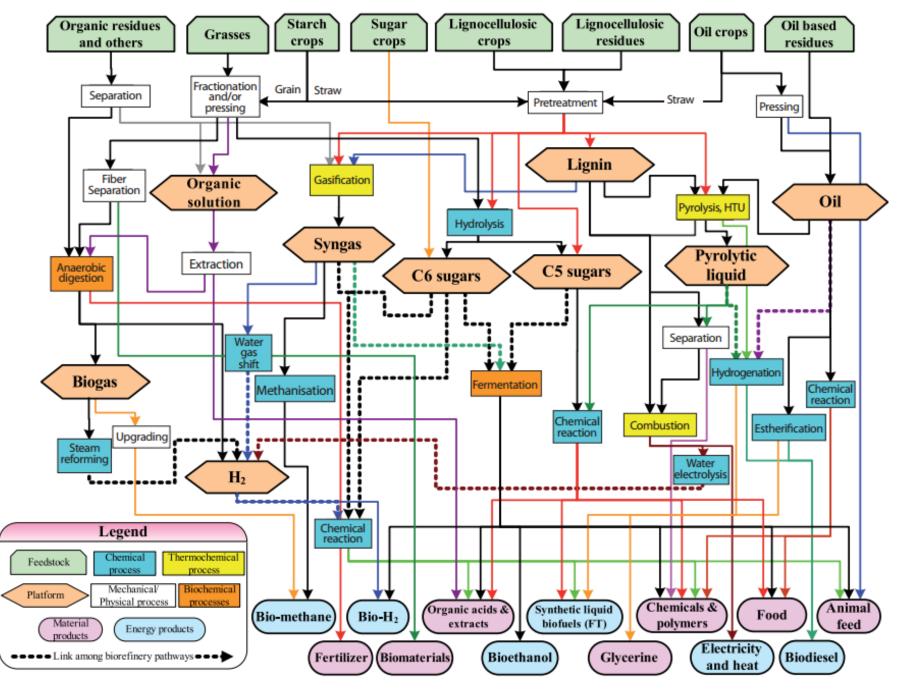
Conference: Biorefining from raw material to high value products Bioraffinaderi Öresund

Dr. John A. Posada

Universiteit Utrecht, Faculty of Geosciences, Copernicus Institute of Sustainable Development <u>www.uu.nl/geo/energyandresources</u>

Öresund, 18th September 2013

Biorefinery



2

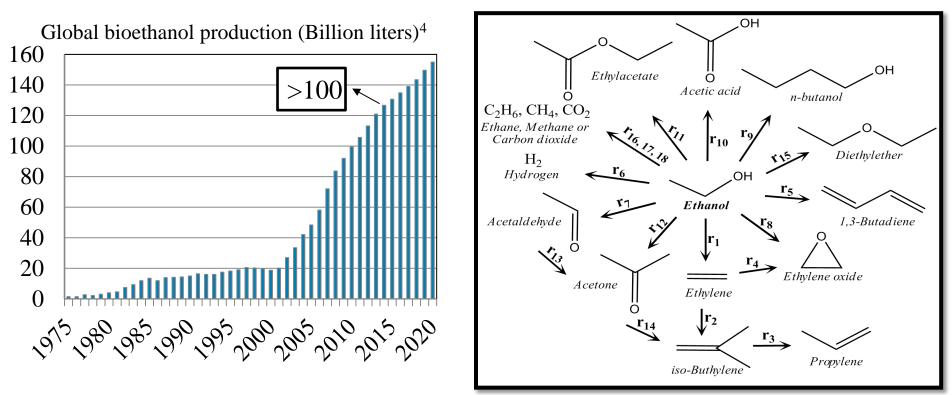
Definition (one among many others):

 A biorefinery is a facility (or a network of facilities) that integrates <u>biomass</u> <u>conversion technologies</u> to <u>produce fuels</u>, <u>chemicals</u>, <u>polymers</u>, <u>pharmaceuticals</u>, <u>food and/or feed</u>.

Biomass ^{1,2}	Conversion Technologies	Products
<u>cellulose:</u>	<u>Thermochemical:</u>	platform chem.
10-95% (av.: 43%)	gasification, pyrolysis, combustion, liquefaction,	building blocks
<u>hemicellulose:</u>	Chemical:	secondary chem.
5-65% (av.: 20%)	hydrolysis, esterification, WGS	intermediates
lignin:	Biochemical:	consumer prod.
5-40% (av.: 27%)	fermentative, enzymatic	heat/electricity

Adapted from 2. Cherubini & Strømman, Biofuels, Ch.1. Principles of biorefining,

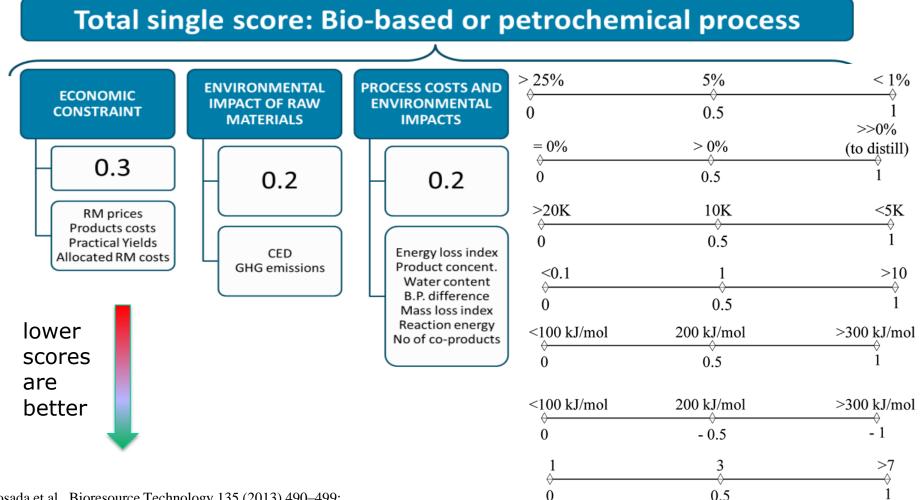
Biorefinery Systems



- There is a wide variety of raw materials, conversion routes, technologies and end products/configurations.
 - What are the best raw materials, conversion routes, technologies for an specific product (configuration)?
 - (successful) development of biorefinery systems

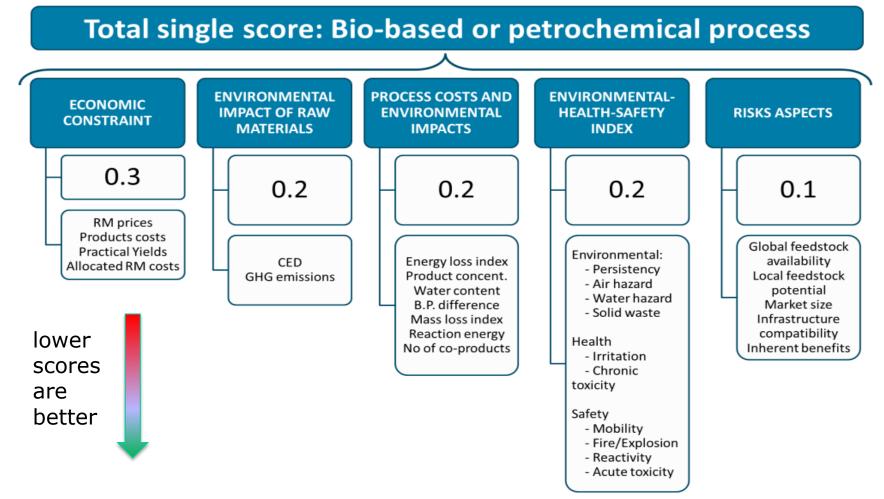
concept	proof of	process	pilot	commercial
development	concept	design	trials	production
ideas,	experiments	in-depth	refining data	exploitation
first testing	<u>feedback</u>	analysis	and analysis	
alternatives	preliminary sustainability assessment !	processing model no-economic ana onmental assess	llysis, \	

• <u>case study</u>: derivatives of bioethanol³



Goals:

- Identify those bioethanol derivatives that offer largest benefits in sustainability terms.
- Explore whether the applied methodology is applicable to <u>screen</u> the conversion steps that are particularly attractive for future biorefinery systems.


3. Posada et al., Bioresource Technology 135 (2013) 490–499.; 4. OECD-FAO, Agricultural Outlook 2011-2020. <<u>http://stats.oecd.org/Index.aspx</u>> 5

case study: derivatives of bioethanol^{3,4,5}

- 3. Posada et al., Bioresource Technology 135 (2013) 490–499;
- 4. Patel et al., Energy Environ. Sci., 2012, 5 (9), 8430-8444 ;
- 5. Sugityama et al., AIChE Journal. 54 (2008) 1037-1053

• <u>case study</u>: derivatives of bioethanol^{3,4,5}

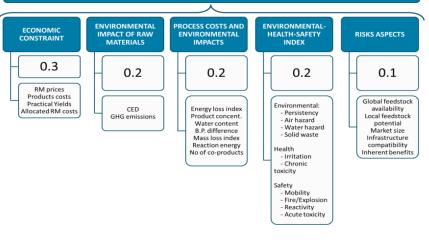
- 3. Posada et al., Bioresource Technology 135 (2013) 490–499;
- 4. Patel et al., Energy Environ. Sci., 2012, 5 (9), 8430–8444 ;
- 5. Sugityama et al., AIChE Journal. 54 (2008) 1037-1053

• <u>case study</u>: derivatives of bioethanol^{3,4,5}.

sed or petrochemical process **Normalization!** - Scores for the new process are > 25%5% < 1%normalized against the respective S COSTS AND ONMENTAL 0.5 0 scores for the comparable 1PACTS >>0% = 0%> 0%(to distill) conventional process 0.5 0 0.2 -Scores are normalized to 1 >20K 10K <5K -Weighting 0.5 0 -Single score indicator ergy loss index roduct concent. < 0.1>10Water content B.P. difference 0 0.5 Mass loss index Reaction energy lower <100 kJ/mol 200 kJ/mol >300 kJ/mol No of co-products scores 0.5 0 are <100 kJ/mol 200 kJ/mol >300 kJ/mol better - 0.5 - 1 >7

0

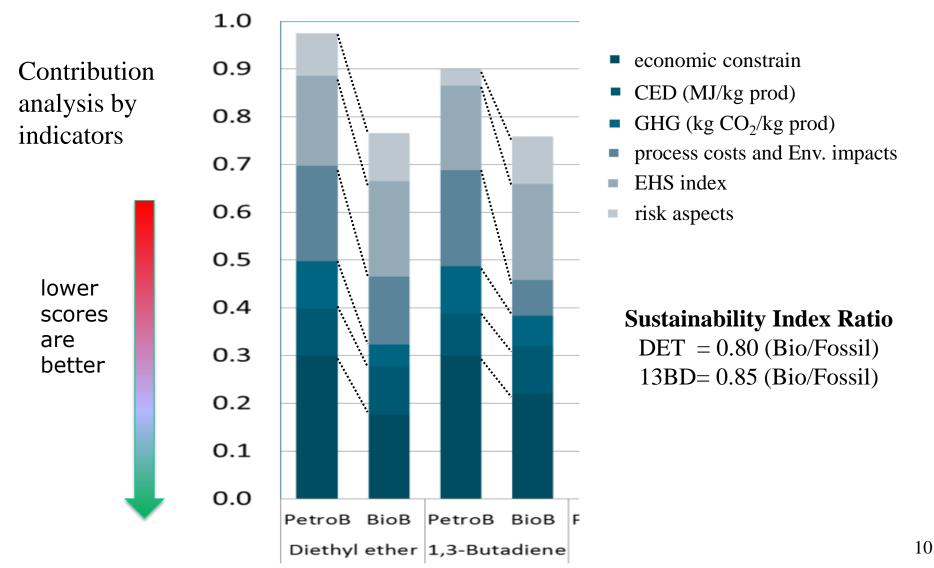
- 3. Posada et al., Bioresource Technology 135 (2013) 490-499;
- 4. Pater et al., Energy Environ. Sci., 2012, 5 (9), 8430-8444 ;
- 5. Sugityama et al., AIChE Journal. 54 (2008) 1037-1053


0.5

• <u>case study</u>: derivatives of bioethanol.

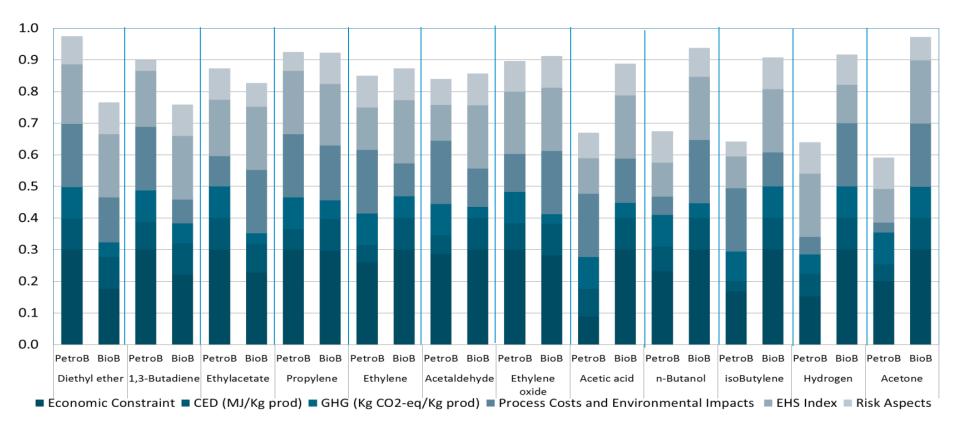
Product	Mass & (molar)	Temp (^O C)	Involved Reactions*	Conventional process	Main uses	Commerci al price
	Yields*			•		(€/tonn)**
Ethylene	0.60 (0.99)	450	$\gamma_1,\gamma_7,\gamma_{15},\gamma_{16}$	Steam Cracking of naphtha	Raw material	1230
Propylene	0.32 (0.35)	550	$\gamma_1, \gamma_2, \gamma_3$	Steam cracking of naphtha	Raw material	1245
1,3-butadiene	0.51 (0.44)	350	$\gamma_7,\gamma_{13},\gamma_{14}$	Steam cracking of naphtha	Raw material	2050
iso-Butylene	0.34 (0.28)	450	$\gamma_1, \gamma_5, \gamma_7$	Steam cracking of naphtha	Raw material	581
Hydrogen	0.21 (4.79)	450	γ_6 , γ_{17} , γ_{18}	Methane steam reforming	Chemical agent	1940
Acetaldehyde	0.75 (0.78)	230	γ ₇ , γ ₁₈	Oxidation of ethylene	Raw material	826
Ethylene oxide	0.92 (0.96)	325	γ ₁ , γ ₄ ,	Oxidation of ethylene	Raw material	1375
n-Butanol	0.21 (0.13)	400	Ŷ ₁ , Ŷ ₅ , Ŷ ₇ , Ŷ9,	Propylene hydroformilatio n	Raw material and solvent	1025
Acetic acid	1.25 (0.96)	150	γ_{10},γ_{18}	Methanol carbonylation	Raw material and solvent	850
Ethyl acetate	0.63 (0.33)	260	γ ₇ , γ ₁₁ ,	Esterif. of acetic acid with ethanol	Solvent and coating agent	1120
Acetone	0.57 (0.46)	400	γ_1, γ_{12}	Cumene oxidation (Hock process)	Raw material and solvent	1024
Diethyl ether	0.59 (0.37)	350	γ ₁ , γ ₁₅ ,	Direct hydration of ethylene	Solvent	1925

Total single score: Bio-based or petrochemical process

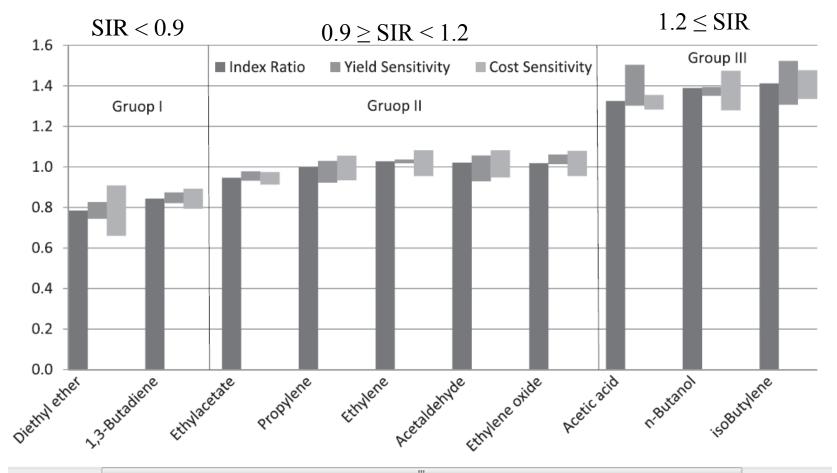


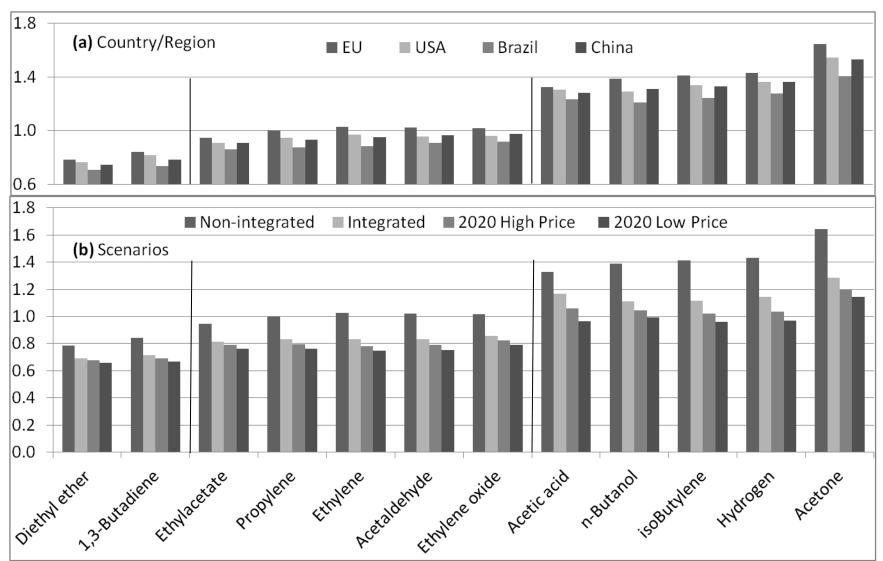
functional unit: 1 kg of ethanol-derivative

* see Figure 1., ** for 2008-2011.


Universiteit Utrecht

• <u>case study</u>: derivatives of bioethanol.

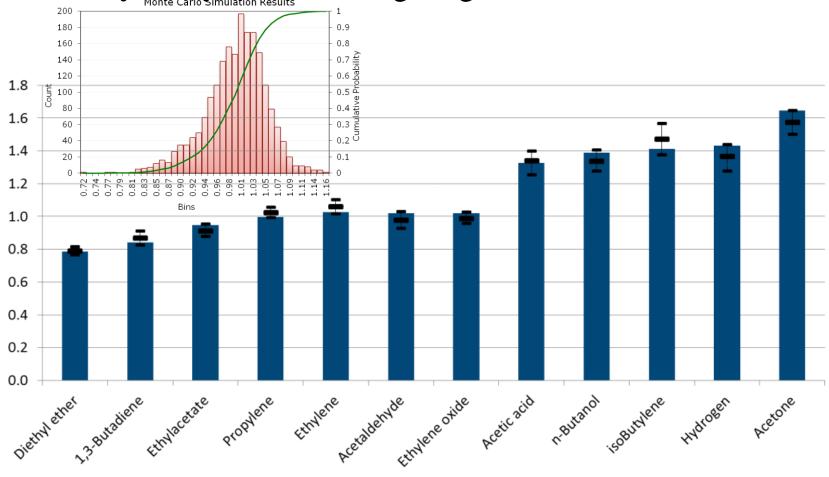

• <u>case study</u>: derivatives of bioethanol. <u>results</u>



• <u>case study</u>: derivatives of bioethanol.

Single Index Ratio (Biobased/Petrochem) sensitivity analysis on <u>yields</u> (theo. & -20%) and <u>costs</u> (\pm 20%)

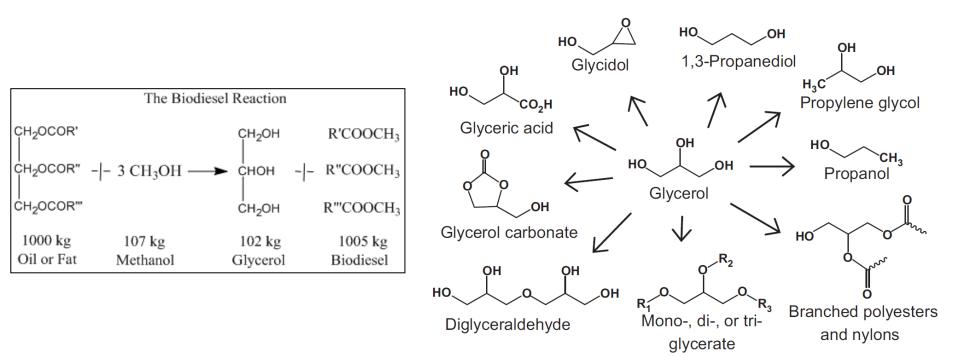
scenarios analysis on: location, BR integration, timeframe (2020)



• <u>case study</u>: derivatives of bioethanol.

Single Index Ratio (Biobased/Petrochem)

uncertainty analysis on the weighting factors


• <u>case study</u>: derivatives of bioethanol.

Type of	Country	Diethyl	1,3-bu	Ethyl	Propyl	Ethyl	Acetal	Ethylene	Acetic	n-Buta	isoButyl	Aceto	Hydro
BR	/Region	ether	tadiene	acetate	ene	ene	dehyde	oxide	acid	nol	ene	ne	gen
	EU	G-I	G-I	G-II	G-II	G-II	G-II	G-II	G-III	G-III	G-III	G-III	G-III
	USA	G-I	G-I	G-I	G-I	G-I	G-II	G-II	G-III	G-III	G-III	G-III	G-III
Non-int. BR	Brazil	G-I	G-I	G-I	G-I	G-I	G-I	G-I	G-III	G-III	G-III	G-III	G-III
	China	G-I	G-I	G-I	G-I	G-I	G-II	G-II	G-III	G-III	G-III	G-III	G-III
	EU	G-I	G-I	G-I	G-I	G-I	G-I	G-I	G-III	G-III	G-III	G-III	G-III
	USA	G-I	G-I	G-I	G-I	G-I	G-I	G-I	G-III	G-III	G-III	G-III	G-III
	Brazil	G-I	G-I	G-I	G-I	G-I	G-I	G-I	G-II	G-II	G-II	G-III	G-III
	China	G-I	G-I	G-I	G-I	G-I	G-I	G-I	G-III	G-III	G-III	G-III	G-III

Considered indicators	Diethyl ether	1,3-buta- diene	Acetal- dehyde	Ethyl- ene	Ethyl acetate	Propyl- ene	Ethylene oxide	Acetic acid	n-Buta- nol	isobutyl- ene	Hydro- gen	Ace- tone
All (1 to 5)	G-I	G-I	G-II	G-II	G-II	G-II	G-II	G-III	G-III	G-III	G-III	G-III
(EC, EI & PCEI)	G-I	G-I	G-I	G-II	G-II	G-II	G-II	G-III	G-III	G-III	G-III	G-III
(EC & PCEI)	G-I	G-I	G-I	G-I	G-II	G-II	G-III	G-III	G-III	G-III	G-III	G-III
(EI & PCEI)	G-I	G-I	G-I	G-I	G-II	G-II	G-II	G-II	G-III	G-III	G-III	G-III

• <u>case study</u>: derivatives of glycerol

Production has increased by 400%.

Sale price has decreased by 10 fold

High functionality and occurrence in

nature allow it to be transformed by a chemical route or by a fermentative way.

• <u>case study</u>: derivatives of glycerol

Aim: process design, simulation and economic assessment of new technological schemes

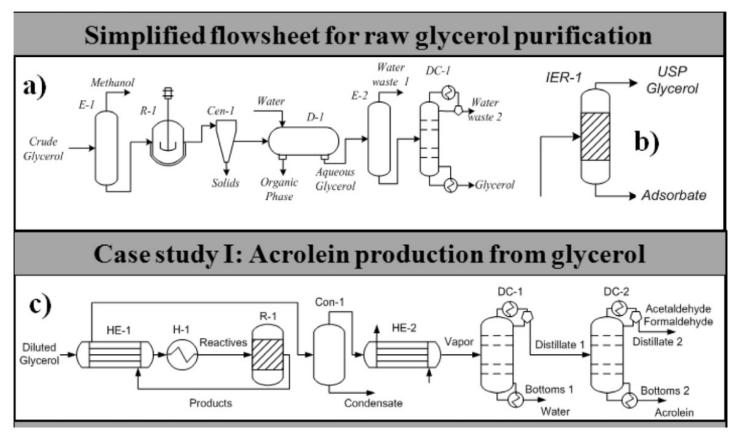
Full Process Characterization (detailed technical data):

- -actual conversion and selectivity
- -process units
- -process temperature
- -process pressure
- -productivity (scale)
- -energy requirements

a process design strategy based on knowledge

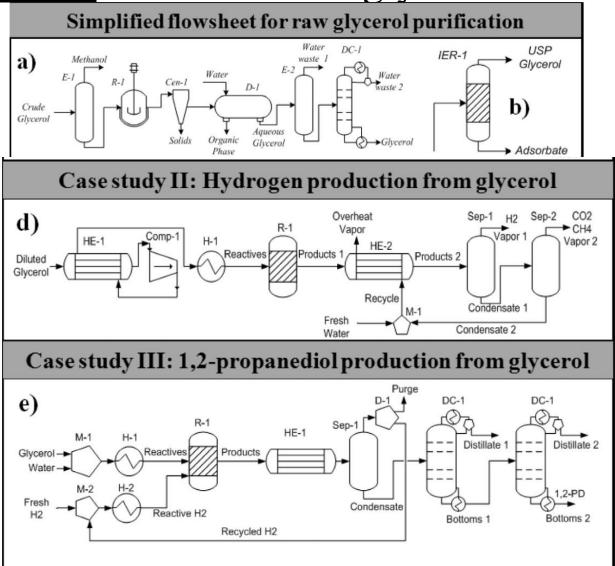
- Considers both heuristic rules and researcher's experience.
- Economic and environmental advantages and disadvantages are also considered.

process simulation using Aspen Plus

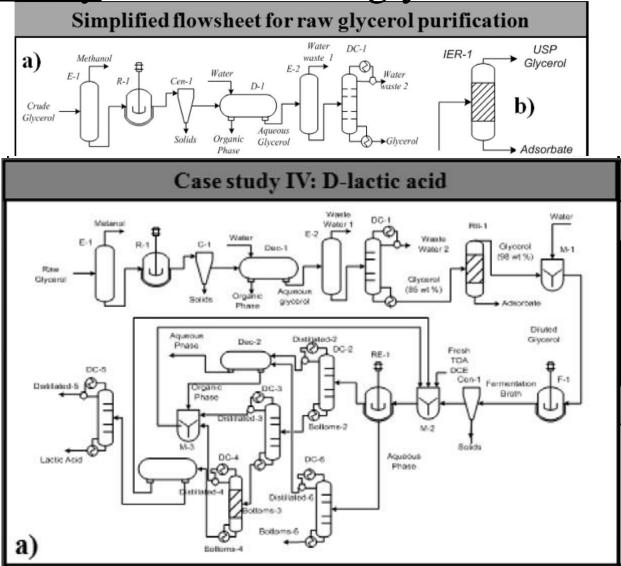

- material balances
- energy balances

economic assessment using Aspen Icarus

- capital costs
- operation costs
- production costs

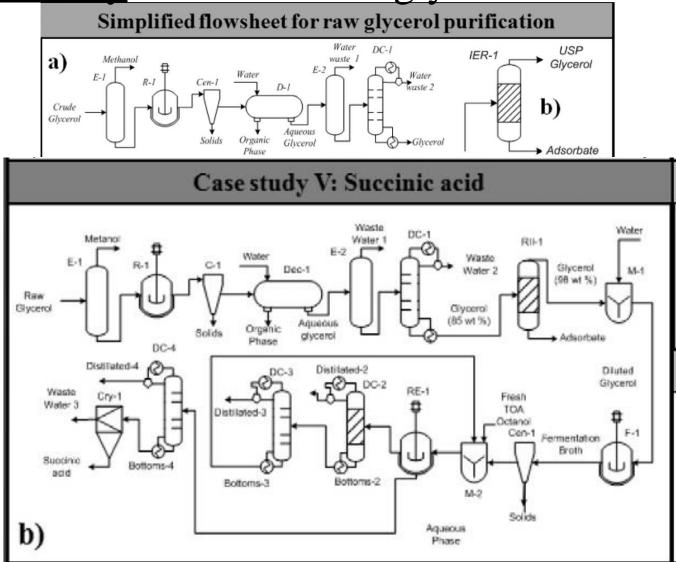

Universiteit Utrecht

• <u>case study</u>: derivatives of glycerol


Universiteit Utrecht

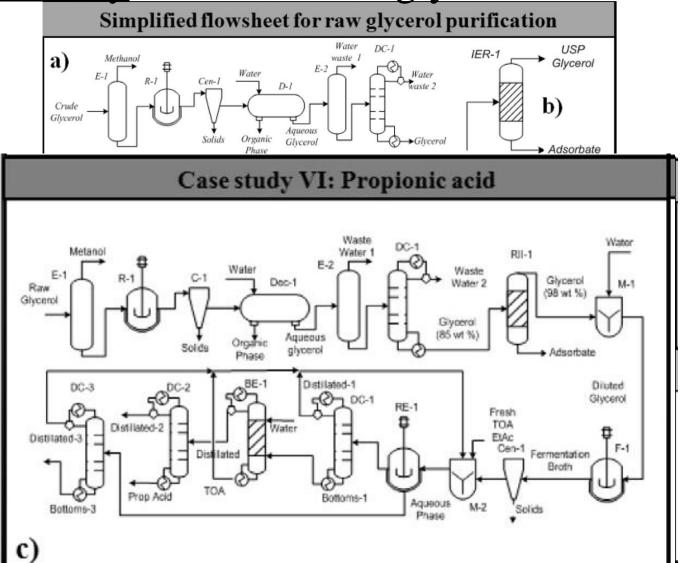
• <u>case study</u>: derivatives of glycerol

Universiteit Utrecht

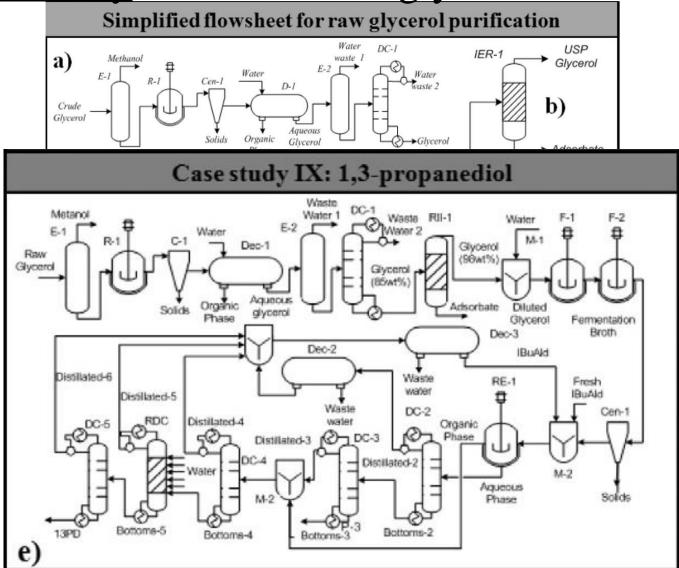

• <u>case study</u>: derivatives of glycerol

20

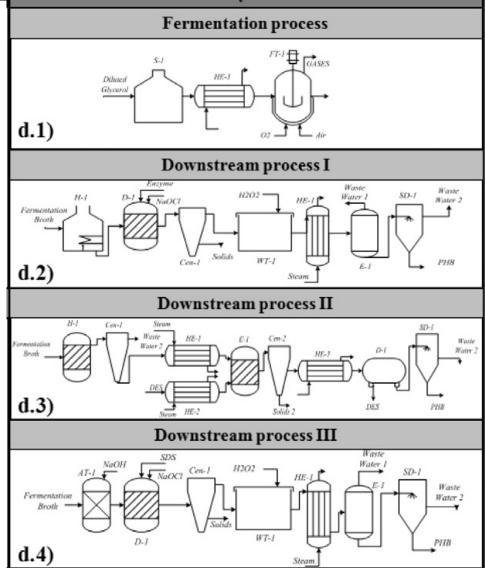
Universiteit Utrecht


• <u>case study</u>: derivatives of glycerol

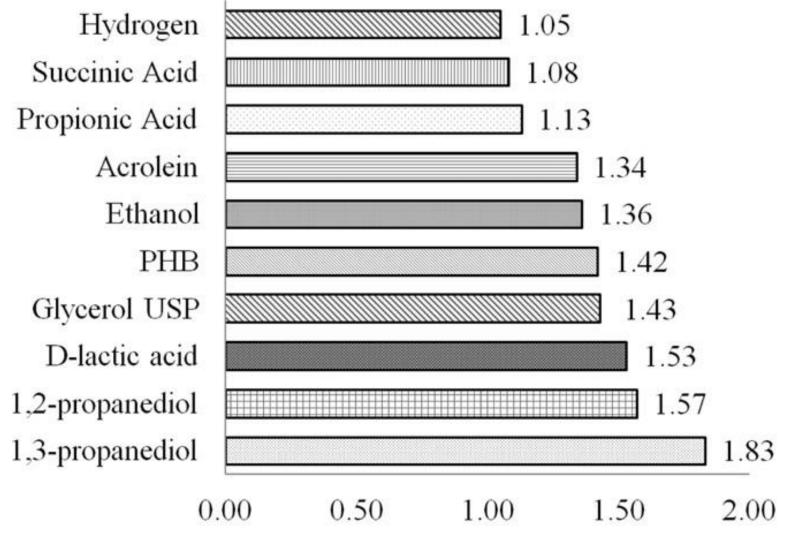
21


Universiteit Utrecht

• <u>case study</u>: derivatives of glycerol



Universiteit Utrecht


• <u>case study</u>: derivatives of glycerol

• <u>case study</u>: derivatives of glycerol

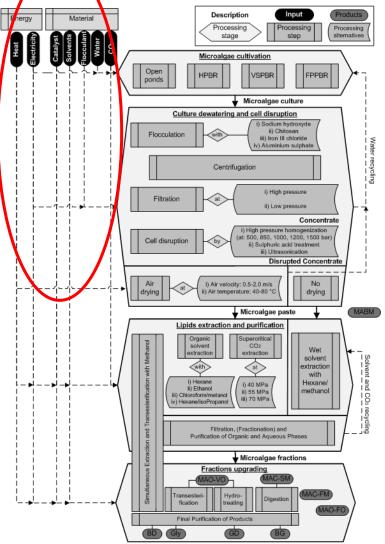
• <u>case study</u>: derivatives of glycerol

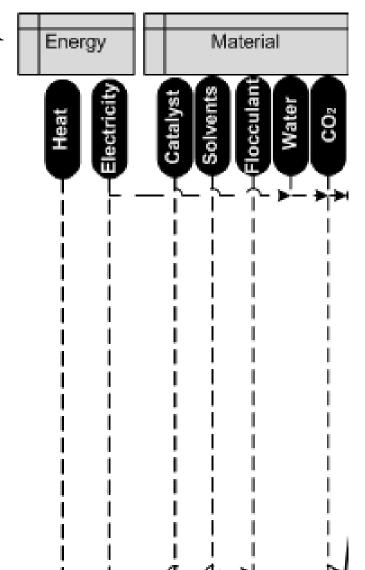
Sale Price/Total Production Cost Ratio

• <u>case study</u>: microalgae biorefinery system definition

- Comparative cradle-to-gate LCA:
 - *i*) microalgae cultivation, *ii*) culture dewatering,
 - *iii)* lipids extraction and purification,

iv) fractions upgrading.

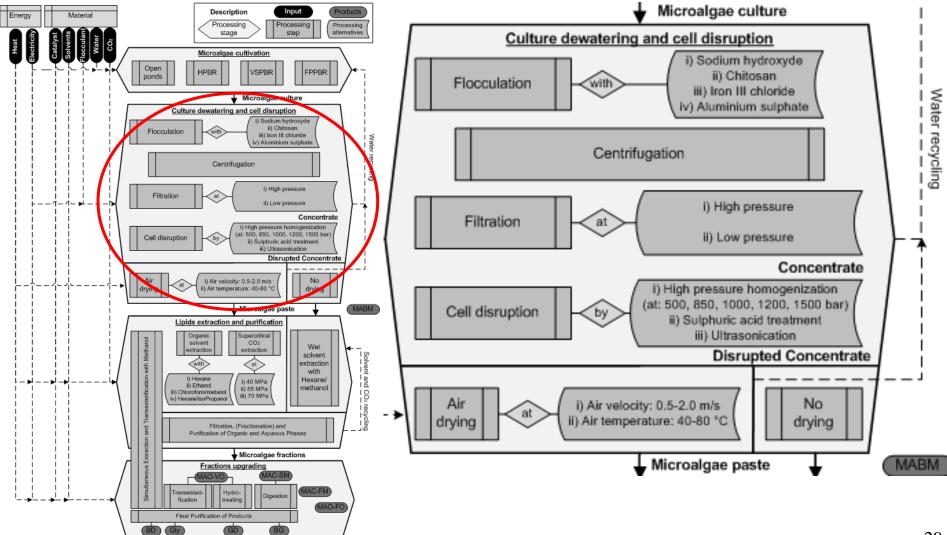

• Impact categories:


- Non-renewable energy use (NREU) and net energy ratio (NER),
- Greenhouse gas emissions (GHG) and net GHG ratio (N-GHG-R),

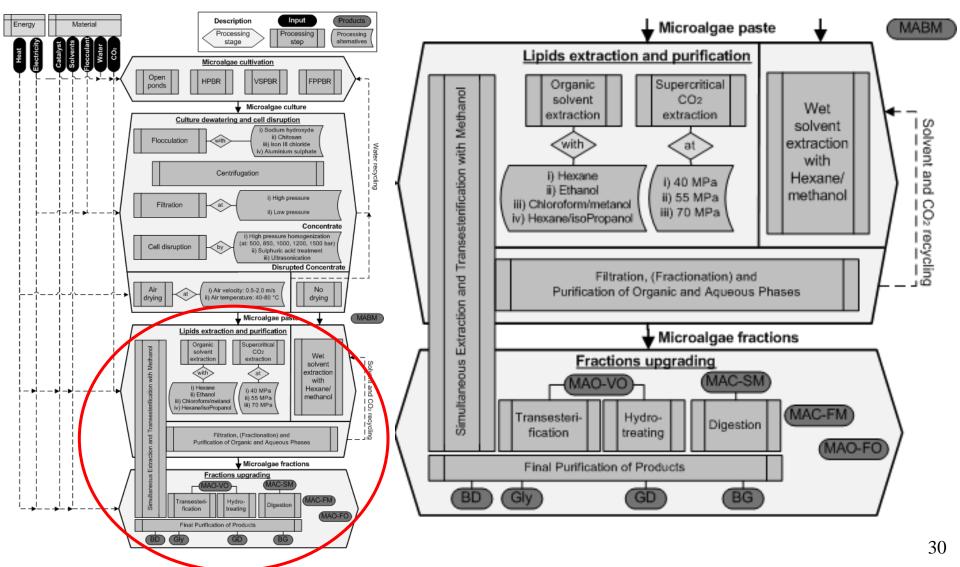
• Functional unit:

- 1 MJ on main (energy) product (*i.e.*, biomass, oil, green diesel, biodiesel).
- **System expansion** for by-products (*i.e.*, Cake for fishmeal/soybean meal substitution, Oil for fish-oil substitution, Glycerol and Biogas).
- Intended to cover **different species and locations**.





• <u>case study</u>: microalgae BR



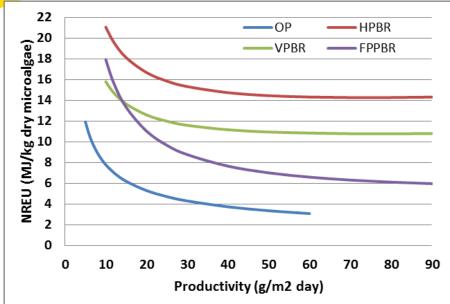
• <u>case study</u>: microalgae BR

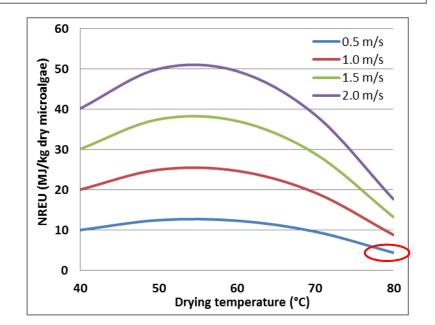
• <u>case study</u>: microalgae BR

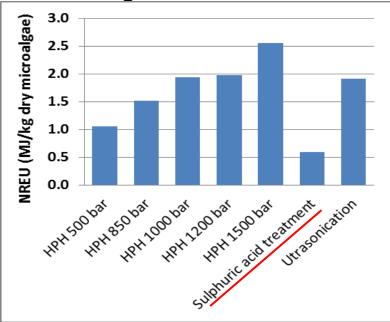
• <u>case study</u>: microalgae BR

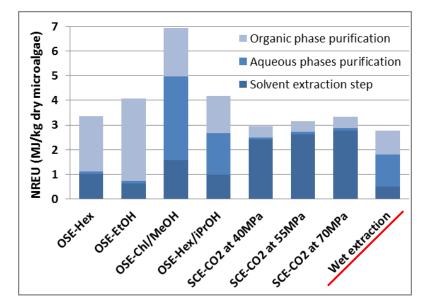
Table 1. Products distribution for MABRS

MABRS	MABM	MAC-FM	MAC-SBM	MAO-VO	MAO-FO	GD	BD	Gly	BG*
BR1	<u>X</u>								
BR2		Х		<u>X</u>					
BR3			Х	<u>X</u>	Х				
BR4				<u>X</u>					X
BR5		Х				X			
BR6			Х		Х	X			
BR7						<u>X</u>			X
BR8		Х					<u>X</u>	Х	
BR9			Х		Х		X	Х	
BR10							X	Х	X

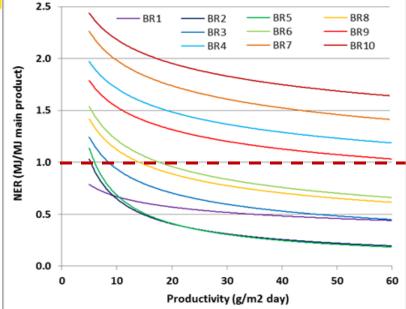


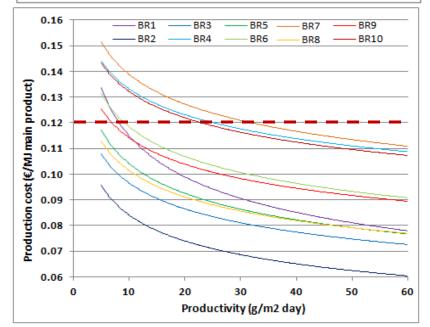

• <u>case study</u>: microalgae BR


- All operation conditions and mass/energy balances are <u>based on design</u> <u>equations</u> and <u>actual lab/processing data</u>, *i.e.* process design approach.
- Parametric analysis.


 Table 2. Microalgae productivities and culture concentration (at harvest)

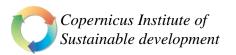
	ОР		HP	HPBR		VPBR		PBR
Processing parameter	Low	High	Low	High	Low	High	Low	High
	Perform.							
Productivity (g m ⁻² day ⁻¹)	10	30	18	45	20	50	22	55
Culture con. (g l ⁻¹)	0.2	0.4	1.5	2.5	1.5	2.5	1.5	2.5

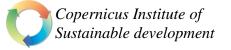




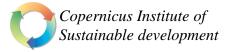
Ranking	ОР	HBPR	VPBR	FPPBR	Group
1	BR2	BR2	BR2	BR2	
2	BR3	BR3	BR3	BR1	I
3	BR8	(BR1)*	(BR8)*	BR3	
4	BR5	BR5	BR5	BR5	П
5	BR1	(BR8)*	(BR1)*	BR8	
6	BR9	BR9	BR9	BR6	Ш
7	BR6	BR6	BR6	BR9	
8	BR10	BR10	BR10	BR10	
9	BR4	BR4	BR4	BR4	IV
10	BR7	BR7	BR7	BR7	

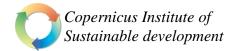
In summary


- The early-stage sustainability assessment method is suitable to (quickly) screen different options of: raw materials, processing pathways, technologies and products arrangement.
 - The reference system is the fossil-based product
- In-depth analysis provides more technical, economic and environmental details.
 - It is very time intensive
 - It requires process related data
- The early-stage sustainability assessment method has been validated for two systems.

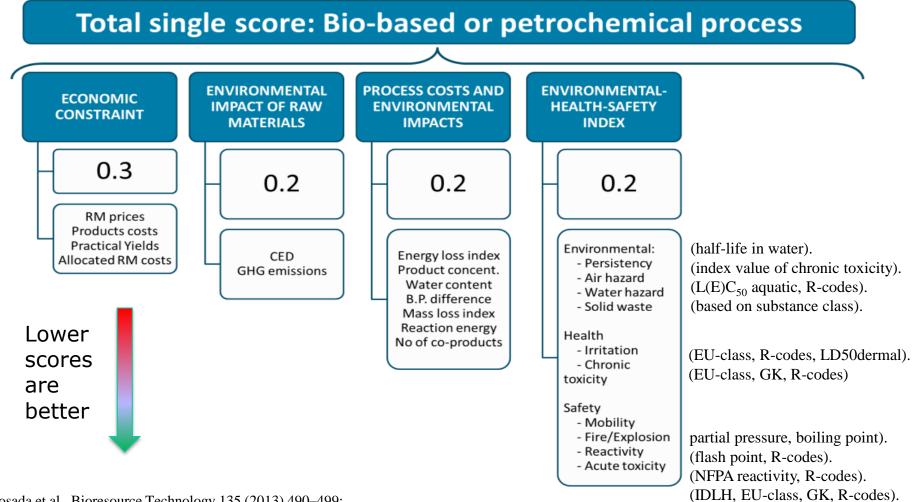

Thanks for your attention!

Are there any questions?


John A. Posada J.A.PosadaDuque@uu.nl



			Universiteit Utr	recht
Economic constraint	$EC = \sum_{i=1}^{r} m_i^{RM} C_i^{RM} / \sum_{j=1}^{p} m_j^{P} C_j^{P}$	And P	(1) 1.0	0.3
	$AF_n = m_n^p C_n^p / \sum_{j=1}^p m_j^p C_j^p$		(1.1) NA	NA
Environmental impact of Raw material	$EIRM = CED_n + GHG_n$ $CED_n = AF_n(1/m_n^P) \sum_{i=1}^r m_i^{RM} CED_i^{RM}$ $GHG_n = AF_n(1/m_n^P) \sum_{i=1}^r m_i^{RM} GHG_i^{RM}$		 (2) 1.0 (2.1) 0.5 (2.2) 0.5 	0.2
Processing cost and environmental impacts	$PCEI = \sum_{i=1}^{PCEIc} IWF_i \cdot PCEI_i$ $PCEI_1 = 0.0, if water is NOT present$ 0.5, if water IS present 1.0, if water must be distilled		(3) 1.0 (3.1) 0.143	0.2
	$PCEI_{2} = 1 - (1/2)(\log_{5}(100 \cdot C_{n}))$ $PCEI_{3} = 1 - (1/2)(\log_{2}(\Delta T_{bp}/5))$		(3.2) 0.143 (3.3) 0.143	
	$\begin{aligned} PCEI_4 &= (1/2)(\log_{10}MLI + 1) \\ PCEI_5 &= (\Delta H^0_{Rxn} - 100)/200, if : \Delta H^0_{Rxn} \ge 0 \\ or \ if : \Delta H^0_{Rxn} < 0 \ and \ T_R < 200^{\circ}C \\ + (100 - \Delta H^0_{Rxn})/200, \ when : \Delta H^0_{Rxn} < 0 \ and \ T_R > 200^{\circ}C \end{aligned}$		(3.4) 0.143 (3.5) 0.143	
	$PCEI_6 = -0.015 \cdot N_{cp}^2 + 0.28 \cdot N_{cp} - 0.25$	((3.6) 0.143	
	$PCEI_7 = 0$, if feedstock pretreatment is NOT required 1, if feedstock pretreatment IS required		(3.7) 0.143	

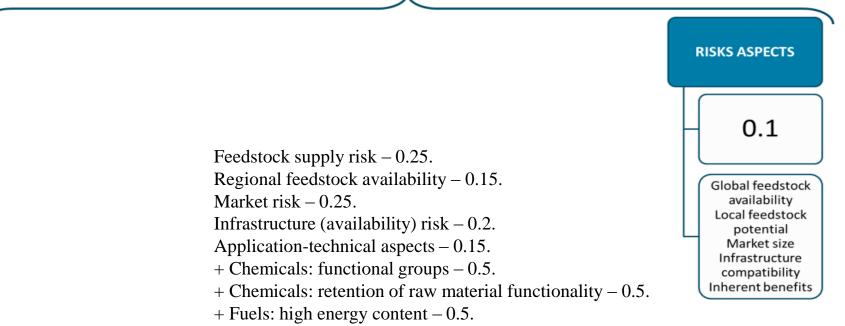

Note: AF: allocation factor, C: commercial price or cost (ϵ /kg), c: concentration (mol/mol), CCI: compatibility with current infrastructure, CED: cumulative energy demand (MJ/kg), EC: economic constraint, ECat: specific category of environmental hazards, EH: environmental hazards, EHSI: Environmental-Health-Safety Index, EIRM: environmental impact of raw materials, GFA: global feedstock availability, GHG: greenhouse gas (kg CO_{2 eq}/kg), HCat: specific category of health hazards, HH: health hazards, I: index value of one specific component for either category (EH, HH or SH), IB: inherent benefits, IWF: internal weight factor, LFP: local feedstock potential, m: mass flow (kg/kg product), L(E)C₅₀ aquatic: aquatic lethal or effect concentration using daphnia magna, MLI: mass loss index, calculated as the ratio of the total mass of all components in the reactor outlet except for the main- and co-products, to the mass of main and co-products from the reaction, MS: market size, N_{cp}: number of co-products, PCEI: process costs and environmental impacts (1 to 7, see methodology), PCEIc: specific category of process costs and environmental impacts, p: number of products, r: number of raw materials, RA: risk aspects, SCat: specific category of safety hazards, SH: safety hazards, T_R: temperature of reaction (°C), Z: fraction of mass emitted to the environment in case of an accident from the maximum mass present in the overall process (=0.1), ΔH^0_{rxn} : standard enthalpy of reaction (kJ/mol), ΔT_{bp} = smallest absolute difference between the boiling point of the product and another substance that has to be separated from this product (°C). *Sub-indexes:* i, j, n: counter for species i, j and main product; cp: number of co-products. *Super indexes:* F: refers to a any internal stream in the process, Out: refers the stream leaving the process (contains main product and co-products), P: refers to the main stream leaving the process (contains the main product), P: refers to the main stream leaving the process

Hazard Index	$\begin{split} EHSI &= AF_n \cdot (IWF_{EH} \cdot EH + IWF_{HH} \cdot HH + IWF_{SH} \cdot SH) \\ EH &= \sum_{ECat} \sum_i (Z \cdot \max_F (m_i^F) I_i^{ECat}) + \sum_{Ecat} \sum_j (m_j^{Out} I_j^{ECat}) \\ HH &= \sum_{HCat} \max_i (m_i^{UN} I_i^{HCat}) \end{split}$	 (4) 1.0 (4.1) 0.4 (4.2) 0.2 	0.2
	$SH = \sum_{SCat} \max_{F} (\max_{i}(m_{i}^{F}I_{i}^{SCat}))$	(4.3) 0.4	
Risk aspects	$\begin{aligned} RA &= IWF_{GFA} \cdot GFA + IWF_{LFP} \cdot LFP + IWF_{MS} \cdot MS + IWF_{CCI} \cdot CCI + IWF_{IB} \cdot IB \\ GFA &= 0.0, \text{ for Large scale availability}(Commodity chemical or fuel). \\ 0.5, \text{ for Potential for near term bulk availability}. \\ 1.0, \text{ for Conceptual feedstock}(Needs fundamental development). \end{aligned}$	(5) 1.0 (5.1) 0.25	0.1
	 LFP = 0.0, for Feedstock is locally available in bulk quantities. 0.5, for Feedstock available in other parts of the world in free and open markets. 1.0, for Feedstock primarily available in regulated markets with limited global market access 	(5.2) 0.15	
	 MS = 0.00, for Existing bulk chemical/fuel market. 0.33, for Existing commodity(ex.Lacticacid, levulinic acid). 0.66, for Near term bulk chemical/fuel market potential. 	(5.3) 0.25	
	 1.00, for Long term market potential, possibly accelerated by interesting properties. CCI = 0.00, Process can be integrated or retrofitted into existing processing infrastructure, and the existing target product enters existing processing and supply chains. 0.33, New processing plants required based on known technologies, and the existing target product enters existing processing and supply chains. 0.66, New processing plants required based on known technologies, and new target product which would need new processing and supply chains. 1.00, New greenfield process plants built with new technologies, 	(5.4) 0.20	
	and new target product which would need new processing and supply chains. <i>IB</i> , Chemicals, Functional groups, = 0.0, Between2 <i>and</i> 4functional groups.Platform molecule. = 0.5, More than 4 functional groups.Difficult platform molecule to work with. = 1.0, One functional group.Limited potential for platform chemical. Retention of raw material functionality, = 0.0, Complete functionality is preserved. = 0.5, Limited modification of functionality. = 1.0, All functionality stripped off. <i>or</i> Fuels, Energy density, = 0.0, High energy density, more than or equivalent to gasoline = 0.5, Energy content80 – 90%that of gasoline. = 1.0, Energy content below80%of gasoline. Engine compativility, = 0.0, Perfectly compatible.Gasoline/Diesel equivalent. = 0.5, Potential for use in existing engines in mixture with gasoline. = 1.0, Engine modification necessary for use.	(5.5) 0.15 or 0.15	

Early stage analysis

• <u>Case study</u>: Derivatives of bioethanol^{3,4,5}.

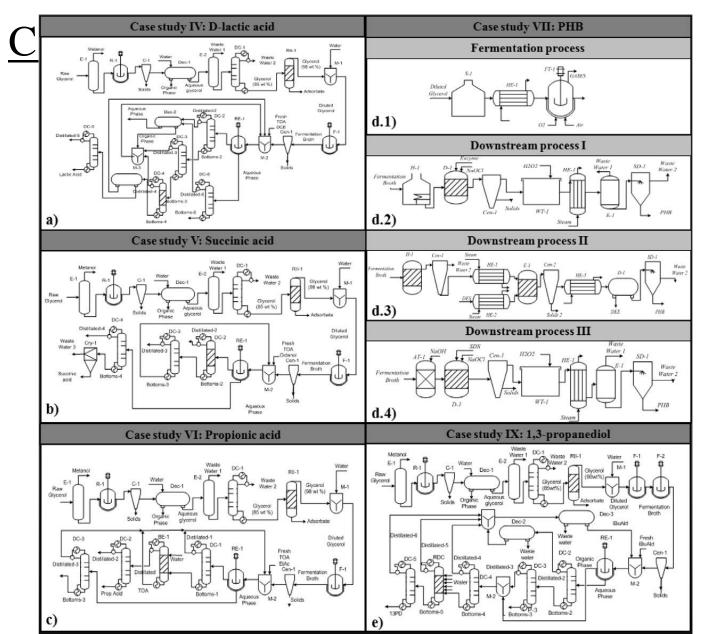
3. Posada et al., Bioresource Technology 135 (2013) 490–499;


4. Pater et al., Energy Environ. Sci., 2012, 5 (9), 8430–8444 ;

5. Sugityama et al., AIChE Journal. 54 (2008) 1037-1053

Early stage analysis

• <u>Case study</u>: Derivatives of bioethanol^{3,4,5}.


+ Fuels: engine compatibility -0.5.

3. Posada et al., Bioresource Technology 135 (2013) 490-499;

4. Pater et al., Energy Environ. Sci., 2012, 5 (9), 8430-8444 ;

5. Sugityama et al., AIChE Journal. 54 (2008) 1037-1053

Universiteit Utrecht

43