

Even a Green Coin has two sides ...

Conference in Lund 26 October, 2011

Lennart Holm
Chairman Perstorp Group

Perstorp a chemical company with green roots

• <u>History</u>:

- Established 1881 in the forests of South Sweden
- Original raw material was biomass (Beech), dry distillation biorefinery producing Acetic Acid and Formaldehyde
- Switched to petrochemicals in the 50's

• <u>Today</u>:

- Specialty Chemicals group with a 1.7 bn € turnover and 2 200 employees across the globe
- Delivers vital properties to modern products in surface materials and composites
- Big scale reentry in biorefinery business in 2007 through the investment into Scandinavia's largest plant for production of Biodiesel (160.000 ton/year)
- Performs active R&D in the field of renewable rawmaterials / biorefinery concepts since 2005
- Introduced several "green" products during recent years

Mo och Domsjö's Chemistry Tree 1945

Svensk Kemisk Tidskrift 1962 s.132. Festskrift till Carl Kempe, Uppsala 1964

Up to 1945 utilization of oil was limited by its availability, then came the "Oil Economy" ...

The Oil Economy

Product composition of a Naphtha Cracker

Oil is a fantastic raw material, concentrated energy in liquid form

Availability of Oil and Gas is not endless, "Peek Oil" is a reality but when?

... but we will not run out of oil & gas!

- Supply and demand will regulate consumption
- The consequence will be substantially higher oil and gas prices
- When will oil & gas demand will outstrip supply?
 - Fewer new findings
 - More expensive and risky exploration (deep sea)
 - Consumption in China, India and other fast growing regions is rising fast

Perstorp WINNING FORMULAS

8

Green Pentaerythritol as a Green Product Example Voxtar™ gives you pure performance every time

Perstorp – All chemicals can be produced from renewable feedstocks

... so what's the problem going green?

- Overall system efficiency?
 - Global perspective
 - Resource consumption
 - Environmental impact
 - Long time effects
 - Function and true need of product
 - Compared to alternatives

Taking a holistic view is complex and things are often not what they appear to be at first sight!

Which gives the best resource utilization?

Electrical Car

Top of the Class Performance

- Loading time: 3,5 hours

- Range: 395 km

- Infrastructure: partly existing

Diesel / Gasoline Car

Standard Performance

- Loading time: 3 minutes

- Range: 1000 km

- Infrastructure: existing

Eco footprint: Zero emission cars?

Tesla Roadster

- Fuel consumption: 2,27 km/MJ
- CO2 emission from coal: 263 g CO₂/MJ
 - → 116 g CO₂/km

Audi A3 1,6 Tdi

- Fuel consumption: 0,65 km/MJ
- CO2 emission from oil: 73 g CO₂/MJ
 - → 112 g CO₂/km

... and with new hybrid diesel utilizing RME → < 35 CO₂/km)

Eco footprint: Your pet vs. your car ...

Source: New Scientist

WWF - Living Planet Report 2010

Human demand on the biosphere more than doubled from 1961 to 2007 (Global Footprint Network 2010)

Population consumption!

The Living Planet Index (LPI)

Reflects changes in the health of the planets ecosystems

resource consumption = population growth \mathbf{x} standard of living!

Taking the right decision / making the correct priorities is not easy!

And each individual stakeholder tends to favor his / her needs above the holistic solution ...

Eco footprint: biofuel vs. biochemical?

TODAY – HIGH VALUE FUNCTIONAL GREEN CHEMICALS

Arizona Chemical in Sandarne:

- Tall oil biorefinery producing high value sustainable functional chemicals for a wide variation of applications
- A sustainable and competitive alternative to petrochemical raw materials in products such as lubricants and chewing gum to printing inks, tires, fuel additives, adhesives and paints.
- Utilizes Crude Tall Oil (residue from black liquor recycling)
 - Top fraction = Tall Oil Rosin (TOR) → "green" binders & adhesives
 - Middle fraction = Tall Oil Fatty Acids (TOFA) → "green" additive in paper, paint, etc
 - Bottom fraction = Pitch → Pitch Fuel → "green" heavy fuel oil

Value from the Tree

Eco footprint: biofuel vs. biochemical?

TOMORROW - LOW VALUE BIODIESEL with questionable LCA profile and Economy

• Production of Biodiesel from Tall Oil:

- Swedish high profile investment heavily supported by government funding and tax
- incentives
 - Limited availability of raw materials, hence no real alternative to fossil diesel
 - Questionable LCA and Economy:
 - 1. Raw material collected at pulp mills
 - 2. Base product produced in Piteå
 - 3. Required refining done at Preem in Gothenburg
 - 4. Blended into Diesel and distributed to petrol stations all over Scandinavia

Limited Raw Material available:

 Consequence: Unfair price competition making Sandarne products uncompetitive vs. fossil alternatives / low value products win over high value products

Global warming will be correlated to the development of carbon sinks!

The Carbon Cycle

Unit: Gt = 1 billion tons

Living biomass: 500 Gt

Soil (1 m): 1500 Gt

Ocean (surface): 1000 Gt

Emissions from industries and combustion of fossil fuels:

• 10 Gt per year (global)

Forest as forest or ...

US South: rotation time 15 years

Central Sweden: rotation time 75 years

• We are not always as green as we believe ...

Focus on the problem not the symptoms Our resources are limited and we are many who need to share

Human demand on the biosphere

Growing population

... even a green coin has two sides!

Best solution often to do without?

No resource consumption!

Better alternative solutions ?

Optimal resource utilization!

What are our true motives?

Global perspective not for individual!

• When should we go for **biomass** solutions and when not?

- incorrect utilization of biomass will add to resource depletion / global warming ...
- Depletion of natural forests and biodiversification
- Destruction of ecosystems
- Competition with production of food
- Destruction of existing infrastructure
- Increased global warming

ly utilized and taking a holistic approach ...

... Biomass is a very efficient option!

- Based on Sun Energy / Renewable
- Globally available in different forms
- Robust and existing technologies
- Enables utilization of existing infrastructure
- Scalable from small to large
- Work intensive / creates jobs → local support
- **Drawbacks**: Multiple but manageable!
- Vital consideration: 1. Be fact driven not emotional
 - 2. Resources are limited!

"Green" Chemicals - BioPlastics as example ... Transformation of Sugar Cane into Bioethylene / Bio PE

- Global production of Ethylene: ~120 million tpa
- What would it take to convert this to "Green Ethylene"?

Agricultural perspective:

- Only viable option: Brazilian sugar cane
- Volume corresponds to ~240 million liters of Ethanol
- Brazilian sugar cane give ~ 6000 l/ha, year
- Surface required: 40 mHa = 60 % of Brazil's entire cropland
- Serious competitor to food production / price increases

Financial perspective:

- Investment in Bioethylene capacity: ~ 2000 USD/ton capacity
- The volume would require a Capex of 230 bn USD (~ 50 % of the entire investment budget for the global chemical industry under 10 years)

Market perspective:

Massive overcapacity would be created / price collapse

