

ETSN15 (2024)
Requirements Engineering

Lecture 6 part a:

Market-Driven Requirements Engineering [MDRE]

Requirements inter-dependencies [INTDEP]

Release Planning [RP]

Preparations for Lab 2

Part 6b in separate pdf:
RE for Open Source Software [OSSRE]

Björn Regnell

http://www.cs.lth.se/krav

Product Management and Market-Driven
Requirements Engineering (MDRE)

Book chapter [MDRE] in
compendium

● Market-Driven Requirements Engineering for
Software Products

● Regnell, B., & Brinkkemper, S.
● Engineering and Managing Software

Requirements, Eds. A. Aurum and C. Wohlin,
Springer, ISBN 3-540-25043-3, 2005

RE vs. Product & Project Mgmt

Marketing
Organization

Development
Organization

Product Management

Project Management

Top-level management

Business Stra
tegy

Portfolio Mgmt

Requriements
Engineering

The investment cycle

[MDRE]

Different types of products

1. Generic product on the open market

2. Customer-specific product developed based on contract

● The distinction is often blurred:
the same organization combines several types

– e.g., generic + customized

● Sometimes products evolve from customer specific to generic

[MDRE]

Characteristics of MDRE
● Success through sales and market share

– (not just customer satisfaction)

● Release Planning focus on

– Time-to-market

– Multiple release

● Continuous evolution

– (not just maintenance)

● Inventing requirements + market analysis

– (not just collecting 1-on-1)

● Stakeholders

– Market segments with potential customers

– Competitors (confidentiality often needed)

● Continuous inflow of requirements
[MDRE]

Some challenges in MDRE

● Balancing market pull and technology push
● Chasm between marketing and development
● Requirements dependencies
● Cost-value-estimation and release planning

– Over- and under-estimation
● Overloaded requirements management

– Stage gates and triage

[MDRE]

Decisions outcomes in MDRE

[MDRE]

Product Quality:

Decision Quality:

Finding the golden grains despite
uncertain cost-value estimates

[MDRE]

Some inter-related challenges in MDRE

● Requirements dependency management
● Requirements prioritization
● Release planning

– Balancing market pull and technology push
– Chasm between marketing and

development
– Cost-value-estimation (over- & under-est.)
– Overloaded requirements management

[INTDEP]

An industrial survey of requirements
interdependencies in software product
release planning

Carlshamre, P., Sandahl, K., Lindvall, M.,
Regnell, B., Natt och Dag, J.

IEEE Int. Conf. on Requirements
Engineering (RE01), Toronto, Canada, pp.
84–91 (2001)

Research Method

• survey of five different companies
• a manager of a product/project

was asked to identify and classify
interdependencies among
20 high priority requirements.

Data collection

Different types of interdependencies

Examples:
AND. A printer requires a driver to function, and the driver requires a printer to function.
REQUIRES. Sending an e-mail requires a network connection, but not the opposite.
TEMPORAL. The function Add object should be implemented before Delete object. (This type is doubtful,

which is discussed in section 3.1)
CVALUE. A detailed on-line manual may decrease the customer value of a printed manual.
ICOST. A requirement stating that “no response time should be longer than 1 second” will typically increase

the cost of implementing many other requirements.
OR. In a word processor, the capability to create pictures in a document can either be provided as an

integrated drawing module or by means of a link to an external drawing application.

Not always straight forward …

• “if R2 is completely worthless to the customer without R1,
and we would thus never do R2 without R1, do we classify
the relationship as REQUIRED or just CVALUE?”

• REQUIRES sometimes arises from the opposite reasoning:
“If we do R2, then we can do R1 too!”, which implies that
the direction of the relationship could be the opposite;
could e.g. be called “ENABLES” or "HELPS"

Summary of identified interdependencies

1. 10% of the requirements are responsible for roughly 50% of
the interdependencies

2. 20% of the requirements are responsible for roughly 75% of
all interdependencies

3. About 20% of the requirements are singular
4. Customer-specific: more functionality-related ;

Market-driven: more value-related dependencies

Example of dependency structures

Coupling measures

I =#dependencies
R =#requriements

i = #dep. betw. 2 partitionsRelease
coupling:

In survey:
10-22%

Expressing dependencies in reqT
• An AND relation is equivalent to two mutual requires-relations:
Feature("printerX1") requires Feature("driverX")
Feature("driverX") requires Feature("printerX1")

• A requires relation can be non-mutual :
Feature("sendEmail") requires Feature("networkAccess")

• Temporal relations regarding a preferred implementation order can be expressed using precedes:
Function("add") precedes Function("delete")

• Exclusion (xor) can be expressed by an excludes relation (only one is needed as exclusion is mutual):
Design("centralized") excludes Design("distributed")
Design("distributed") excludes Design("centralized")

• Entities that support or hinder each other can be modeled using hurts and helps relations :
Goal("secure") helps Goal("safe")
Goal("secure") hurts Goal("simple")

[Some examples modified from Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag: "An industrial survey of requirements interdependencies in software product release
planning", J.: Int. Conf. on Requirements Engineering (RE01), Toronto, Canada, pp. 84–91, 2001]

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(

 Req("x") has (Order(1), Benefit(100)),

 Req("y") has Order(1)) // Same release

val c = Constraints(

 Req("y")/Benefit :: {0 to 1000},

 Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),

 Var("SumXY") :: {0 to 2000},

 IfThenElse(

 Req("x")/Order === Req("y")/Order, //If same release

 Var("SumXY") === 400, //then more valuable

 Var("SumXY") === 200 //else less valuable

))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model(
 Req("y") has (Benefit(300), Order(1)),
 Req("x") has (Order(1), Benefit(100)),
 Constraints(
 Var("SumXY") === 400))

Expressing CVALUE dependencies as
Constraints in reqT

val m = Model(

 Req("x") has (Order(1), Benefit(100)),

 Req("y") has Order(2)) // Different releases

val c = Constraints(

 Req("y")/Benefit :: {0 to 1000},

 Sum(Req("x")/Benefit, Req("y")/Benefit) === Var("SumXY"),

 Var("SumXY") :: {0 to 2000},

 IfThenElse(

 Req("x")/Order === Req("y")/Order, //If same release

 Var("SumXY") === 400, //then more valuable

 Var("SumXY") === 200 //else less valuable

))

val m2 = (m + c).satisfy
m2: reqT.Model =
Model(
 Req("y") has (Benefit(100), Order(2)),
 Req("x") has (Order(1), Benefit(100)),
 Constraints(
 Var("SumXY") === 200))

Requirements Prioritization
(summary from week 1)

Estimating cost-benefit

Karlsson, Joachim, and Kevin Ryan. "A cost-value approach for prioritizing
requirements." IEEE software 14.5 (1997): 67-74.

Prioritization scales

[PRIO][PRIO]

Ratio scale

ex: $, h,

% (relative)

Numeric relations:
A=2*B

Categorization

e.g.: must, ambiguous,
volatile

Partition in groups
without greater-less
relations

Ordinal scale

e.g.: more expensive,
higher risk,
higher value

Ranked list
A>B

Prioritization techniques
● Grouping, numbering assignment (grading)

● Ranking (sorting)

● Top-ten (or Top-n)

● Analytical Hierarchy Process (AHP)

● 100$ test

● Combination of techniques

On Lab 1 you used:

– ordinal-scale prio with Ranking (sorting) by pair-wise comparisons and

– ratio-scale prio with the 100$ test

One (simplistic) approach to manage interdependencies:

– grouping

[PRIO][PRIO]

Release Planning

Paper [RP] in compendium

● The art and science of software release planning
● Ruhe, G., & Saliu, M. O.
● IEEE software, 22(6), 47-53. 2005

What is Release Planning?

[RP]

Release Planning involves...

● ...prioritization + scheduling under various
constraints, e.g., resource and precedence
constraints

[RP]

Example planning parameters

● Requirements priorities (from prioritization)
● Available resources
● Delivery time
● Requirements dependencies

– Precedence, Coupling, Excludes
● System architecture
● Dependencies to the code base

[RP]

What is a good release plan?

● A good release plan should
– Provide maximum business value by

● offering the best possible blend of features
● in the right sequence of releases

– satisfy the most important stakeholders
involved

– be feasible with available resources, and
– take dependencies among features into

account

[RP]

Simplistic Release Planning

● Informal process
● Unclear rationale behind decisions
● No systematic management of dependencies
● Simplistic greedy allocation is no good
● A zillion possibilities already with

20 features and 3 releases:

4
20

 > 1.000.000.000.000 = 10
12

 possibilities

[RP]

Why greedy allocation is bad
val m = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has Capacity(100),
 Release("r2") has Capacity(90))

def features(m: Model): Vector[Feature] = m.tip.collect{case f: Feature => f}
def releases(m: Model): Vector[Release] = m.tip.collect{case r: Release => r}
def allocate(m: Model, f: Feature, r: Release): Model = m + (r has f)
def isAllocated(m: Model, f: Feature): Boolean = releases(m).exists(r => (m/r).contains(f))
def allocatedCost(m: Model, r: Release): Int = (m/r).entities.collect{case f => m/f/Cost}.sum
def isRoom(m: Model, f: Feature, r: Release): Boolean = m/r/Capacity >= allocatedCost(m,r) + m/f/Cost
def featuresInGreedyOrder(m: Model): Vector[Feature] = features(m).sortBy(f => m/f/Benefit).reverse

def random(m: Model, r: Release): Option[Feature] = scala.util.Random.shuffle(features(m)).
 filter(f => !isAllocated(m,f) && isRoom(m,f,r)).headOption

def greedy(m: Model, r: Release): Option[Feature] =
 featuresInGreedyOrder(m).find(f => !isAllocated(m,f) && isRoom(m,f,r))

def plan(input: Model,
 pickNext: (Model,Release)=>Option[Feature]): Model = {
 var result = input
 releases(input).foreach { r =>
 var next = pickNext(result, r)
 while (next.isDefined) {
 result = allocate(result, next.get, r)
 next = pickNext(result, r)
 }
 }
 result
}

plan(m, random)
plan(m, greedy)

https://gist.github.com/bjornregnell/80897de5b109f36c1b7ae29f43e4aa7b

https://gist.github.com/bjornregnell/80897de5b109f36c1b7ae29f43e4aa7b

Optimal vs. Greedy

val optimal = Model(
 Feature("a") has (Benefit(90), Cost(100)),
 Feature("b") has (Benefit(85), Cost(90)),
 Feature("c") has (Benefit(80), Cost(25)),
 Feature("d") has (Benefit(75), Cost(23)),
 Feature("e") has (Benefit(70), Cost(22)),
 Feature("f") has (Benefit(65), Cost(20)),
 Feature("g") has (Benefit(60), Cost(10)),
 Feature("h") has (Benefit(55), Cost(30)),
 Feature("i") has (Benefit(50), Cost(30)),
 Feature("j") has (Benefit(45), Cost(30)),
 Release("r1") has (Capacity(100), Feature("c"), Feature("d"), Feature("e"), Feature("f"),

Feature("g")),
 Release("r2") has (Capacity(90), Feature("h"), Feature("i"), Feature("j")))

def sumAllocatedBenefit(m: Model) =
 releases(m).map(r => (m/r).collect{case f: Feature => m/f/Benefit}.sum).sum

val beneftitOptimal = sumAllocatedBenefit(optimal)
val benefitGreedy = sumAllocatedBenefit(plan(m,greedy))
val ratio = benefitGreedy.toDouble / beneftitOptimal

Example from [RP]

WAS:
weighted
average
satisfaction
of stakeholder
priorities

Example (Part 2)

TODO!
● Skim read before exercise and lab next week:

[AGRE, PROTO1 & 2] for exercise, [MDRE, INTDEP, RP, OSSRE] for lab 2
● Exercise this week on prototyping + functional requirements

(Lau: 3-5 from last week)
● Hand in Release R1
● Book meeting with your supervisor

● Next week: note: only one lecture that week; topic: Quality Requirements (QR):
– Watch the QUPER-video (before or after the lecture)

link to video on open course home page: https://cs.lth.se/krav/quality-requirements/
– Come to the lecture on Tuesday in E:C as usual - any questions on QR are welcome
– Do Exercise 4 where you work on QR in your project
– Do Lab 2 (preferably in pairs) bring preparations

● Lab2 is next week but you need to start preparing this week...
– Two parts: Quality Requirements (QR) and Release Planning (RP)
– Preparations mean a lot of reading + work and take significantly more time

compared to lab1

https://cs.lth.se/krav/quality-requirements/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	[INTDEP] in compendium
	Research Method
	Data collection
	Different types of interdependencies
	Not always straight forward …
	Summary of identified interdependencies
	Example of dependency structures
	Coupling measures
	Expressing interdependencies in reqT
	Expressing CVALUE dependencies as Constraints in reqT_clipboard0
	Expressing CVALUE dependencies as Constraints in reqT
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 43
	Slide 44

