Keeping Many Cores Busy:
Scheduling the Graphics Pipeline

Jonathan Ragan-Kelley, MIT CSAIL
20 September 2010

So, this morning Kayvon showed how shaders can use large, coherent batches of work to achieve high throughput.
I’m going to pop up a level to some of the essentials of how graphics pipelines keep these shaders fed.

...But First, | want to emphasize that everything | say should be attributed only to my independent, academic voice.
And all of this is based on publicly available information and non-NDA personal correspondence.

This talk

How to think about scheduling GPU-style pipelines
Four constraints which drive scheduling decisions

Examples of these concepts in real GPU designs

Goals

Know why GPUs, APIls impose the constraints they do.
Develop intuition for what they can do well.

Understand key patterns for building your own pipelines.

In this talk, | want to set up a simple framework for how to think about scheduling GPU-style pipelines.

As part of this, I’'m going to focus on 4 constraints which drive how we can schedule.

I’m then going to show some examples of these concepts in a few real GPU architectures.

My goal is to help elucidate these so:

- you can better understand why GPUs and Graphics APIs impose the constraints they do.
- develop intuition for what GPUs can do well.

- and understand these patterns for one day building your own pipelines,

in a world of computational graphics.

First, a definition

Scheduling [n.]:

But first, | want to define what | mean by “scheduling,” since it’s an overloaded word.

- I’'m defining it broadly as placing all the computations and data which make up a program’s execution, onto physical resources
in space and time.

It isn’t just some unit or single algorithm responsible for choosing what instruction or thread to run next,
it’s woven through systems all the way up to the order of their outermost loops,
and even the choice of structure and nesting of those loops.

And with systems built around leveraging the enormous potential concurrency of data-parallelism for performance,

this is the essential question.
Because of the huge degree of latent parallelism in the graphics pipeline,
we have many choices to make in how we map computations and data onto resources in space and in time.

First, a definition

Scheduling [n.]:
Assigning computations and data

to resources In space and time.

But first, | want to define what | mean by “scheduling,” since it’s an overloaded word.

- I’'m defining it broadly as placing all the computations and data which make up a program’s execution, onto physical resources
in space and time.

It isn’t just some unit or single algorithm responsible for choosing what instruction or thread to run next,
it’s woven through systems all the way up to the order of their outermost loops,
and even the choice of structure and nesting of those loops.

And with systems built around leveraging the enormous potential concurrency of data-parallelism for performance,

this is the essential question.
Because of the huge degree of latent parallelism in the graphics pipeline,
we have many choices to make in how we map computations and data onto resources in space and in time.

The workload: Direct3D

For this talk, the main workload we want to schedule is Direct3D.

The logical pipeline is a series of fixed-function and programmable shader stages,
- taking in triangles at the top,

- transforming data through the pipeline

- and producing pixels at the bottom.

- From here on, I’'m going to denote logical stages by these rounded rectangles,
and distinguish fixed-function from programmable items by color.

The workload: Direct3D

For this talk, the main workload we want to schedule is Direct3D.

The logical pipeline is a series of fixed-function and programmable shader stages,
- taking in triangles at the top,

- transforming data through the pipeline

- and producing pixels at the bottom.

- From here on, I’'m going to denote logical stages by these rounded rectangles,
and distinguish fixed-function from programmable items by color.

The workload: Direct3D

data flow

For this talk, the main workload we want to schedule is Direct3D.

The logical pipeline is a series of fixed-function and programmable shader stages,
- taking in triangles at the top,

- transforming data through the pipeline

- and producing pixels at the bottom.

- From here on, I’'m going to denote logical stages by these rounded rectangles,
and distinguish fixed-function from programmable items by color.

The workload: Direct3D

data flow

For this talk, the main workload we want to schedule is Direct3D.

The logical pipeline is a series of fixed-function and programmable shader stages,
- taking in triangles at the top,

- transforming data through the pipeline

- and producing pixels at the bottom.

- From here on, I’'m going to denote logical stages by these rounded rectangles,
and distinguish fixed-function from programmable items by color.

The workload: Direct3D

Logical pipeline
. Fixed-function stage

. Programmable stage

data flow

For this talk, the main workload we want to schedule is Direct3D.

The logical pipeline is a series of fixed-function and programmable shader stages,
- taking in triangles at the top,

- transforming data through the pipeline

- and producing pixels at the bottom.

- From here on, I’'m going to denote logical stages by these rounded rectangles,
and distinguish fixed-function from programmable items by color.

The machine: a modern GPU

Input | Logical pipeline

aAssemblel ' '
Assembler Fixed-function stage

Programmable stage

Physical processor
- Fixed-function logic

- Programmable core
- Fixed-function control

The machine we have to run that workload is a multicore GPU, like Kayvon introduced this morning.

It has a number of programmable shader cores, fixed-function logic,
and fixed-function control for managing the execution of the pipeline, and movement of data through it.

I’'m going to denote physical resources by sharp-cornered boxes,
and use the same color scheme as for the logical pipeline stages
to distinguish programmable from fixed-function resources.

(breathe)
...Given that setup, the first thing we need is a way to map the logical, sequential D3D pipeline onto this machine.

Scheduling a draw call as a series of tasks

Input

Assembler

time

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of

vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

Input
Assembpler

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

Input
Assembpler

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

Input
Assembpler

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

Scheduling a draw call as a series of tasks

You should think about scheduling a draw call through the pipeline
as mapping a series of tasks, onto the processor resources over time.
These tasks correspond to the execution of logical stages over specific data items.

To see what that might look like in practice, I've spread some of the machine resources out horizontally.
The vertical axis shows the progression of time.

- To process one draw call, first an Input Assembler unit runs the Input Assembly stage of the pipeline, loading a batch of
vertices from memory.

- It passes these vertices to a Shader Core, which runs the Vertex Shader stage over them.

- The shaded vertices are fed to a Primitive Assembler unit which runs the Primitive Assembly stage to batch up triangles
- ...which are then fed to the Rasterizer.

- The Rasterizer generates a stream of fragments, which may be fed to multiple Shader Cores for Pixel Shading.

- Finally, the shaded fragments are fed to the blend units where they update the framebuffer.

An efficient schedule keeps hardware busy

Input

In this view, one of our key goals is to pack this graph as tightly as possible.

A dense packing completes a given amount of work in the least amount of time,
and it means we are using all our resources efficiently.

Choosing which tasks to run when (and where)

Resource constraints

Tasks can only execute when there are sufficient resources for their
computation and their data.

Coherence

Control coherence is essential to shader core efficiency.
Data coherence is essential to memory and communication efficiency.

Load balance
Irregularity in execution time create bubbles in the pipeline schedule.

Ordering

Graphics APls define strict ordering semantics, which restrict possible schedules.

Once we’ve turned our problem into a huge pool of tasks, the next question is which tasks to generate and run when, and
where we want to run them.

Our choices here are especially driven by four things:

- Resource constraints: Tasks can only execute when we can fit their computation and data into the same place, at the same
time.

- Coherence:

Control coherence—doing many similar things together—is essential to shader execution efficiency.
Data coherence—using similar data close together in space and time—is essential to memory system efficiency.

- Load balance:
irregularity in execution creates bubbles and can dominate the time it takes to complete an entire set of tasks.

- and Ordering: graphics APIs (like D3D) define strict ordering semantics, which restrict the range of possible schedules.

Resource constraints limit scheduling options

time

To see how resource constraints impact scheduling,
Imagine we’ve done a good job.

All 4 shader processors are busy with existing work,
and all their storage is full—everything is fully utilized.

- the input assembler is ready to fetch the next chunk of primitives.
- but where should it push the vertex shading tasks it will generate?

Clearly in this case we have no choice—it needs to stall until there is space available.

This is the simplest way resource constraints drive scheduling.

With a feed-forward pipeline, this stall is fine...

Resource constraints limit scheduling options

time

To see how resource constraints impact scheduling,
Imagine we’ve done a good job.

All 4 shader processors are busy with existing work,
and all their storage is full—everything is fully utilized.

- the input assembler is ready to fetch the next chunk of primitives.
- but where should it push the vertex shading tasks it will generate?

Clearly in this case we have no choice—it needs to stall until there is space available.

This is the simplest way resource constraints drive scheduling.

With a feed-forward pipeline, this stall is fine...

Resource constraints limit scheduling options

Input
Assembler

time

To see how resource constraints impact scheduling,
Imagine we’ve done a good job.

All 4 shader processors are busy with existing work,
and all their storage is full—everything is fully utilized.

- the input assembler is ready to fetch the next chunk of primitives.
- but where should it push the vertex shading tasks it will generate?

Clearly in this case we have no choice—it needs to stall until there is space available.

This is the simplest way resource constraints drive scheduling.

With a feed-forward pipeline, this stall is fine...

Resource constraints limit scheduling options

Input
Assembler

time

But what if the completion of the shaders on which the Input Assembler is stalled, depended on freeing resources held by
that Input Assembler?

- This can cause deadlock.

- So another key concept in scheduling is that static preallocation of all necessary resources before starting a task is often
necessary to avoid this condition and guarantee forward progress.

Resource constraints limit scheduling options

Input
Assembler

time

But what if the completion of the shaders on which the Input Assembler is stalled, depended on freeing resources held by
that Input Assembler?

- This can cause deadlock.

- So another key concept in scheduling is that static preallocation of all necessary resources before starting a task is often
necessary to avoid this condition and guarantee forward progress.

Resource constraints limit scheduling options

time

Key concept: Preallocation of resources helps
guarantee forward progress.

But what if the completion of the shaders on which the Input Assembler is stalled, depended on freeing resources held by
that Input Assembler?

- This can cause deadlock.

- So another key concept in scheduling is that static preallocation of all necessary resources before starting a task is often
necessary to avoid this condition and guarantee forward progress.

Coherence is a balancing act

Intrinsic tension between:

Horizontal (control, fetch) coherence and
Vertical (producer-consumer) locality.

Locality and Load Balance.

Our next key concern, coherence, is fundamentally a careful balancing act.

There are several axes of coherence which are naturally at odds.

What | call horizontal—or control and memory fetch coherence—is optimized by breadth-first execution,

while vertical—or producer-consumer locality—is optimized by running consumers immediate after producers, and in the
same place.

Similarly, locality and load balance are naturally at odds—distributing tasks for load balance destroys the coherence of
keeping similar items in the same place.

Graphics workloads are irregular

Coherence and Load Balance are also at odds with the fact that graphics workloads are irregular.
The most obvious example is rasterization.

- one triangle might generate only a few fragments,
— while another might cover the whole screen.

- What’s more, one might be running a shader which takes thousands of cycles for every fragment, while the other is only one
instruction long.

— This creates several problems.

First, if you remember from Kavyon’s talk, shaders are optimized to around the assumption of fairly regular, self-similar
work.

Second, imbalanced work creates bubbles in the pipeline schedule, destroying efficiency.

— The solution...

Graphics workloads are irregular

Coherence and Load Balance are also at odds with the fact that graphics workloads are irregular.
The most obvious example is rasterization.

- one triangle might generate only a few fragments,
— while another might cover the whole screen.

- What’s more, one might be running a shader which takes thousands of cycles for every fragment, while the other is only one
instruction long.

— This creates several problems.

First, if you remember from Kavyon’s talk, shaders are optimized to around the assumption of fairly regular, self-similar
work.

Second, imbalanced work creates bubbles in the pipeline schedule, destroying efficiency.

— The solution...

Graphics workloads are irregular

—)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII---!

Coherence and Load Balance are also at odds with the fact that graphics workloads are irregular.
The most obvious example is rasterization.

- one triangle might generate only a few fragments,
— while another might cover the whole screen.

- What’s more, one might be running a shader which takes thousands of cycles for every fragment, while the other is only one
instruction long.

— This creates several problems.

First, if you remember from Kavyon’s talk, shaders are optimized to around the assumption of fairly regular, self-similar
work.

Second, imbalanced work creates bubbles in the pipeline schedule, destroying efficiency.

— The solution...

Graphics workloads are irregular

=3 [T1] [1 SuperExpensiveShader()
[1 TrivialShader()
|

= [T I T 111]----

Coherence and Load Balance are also at odds with the fact that graphics workloads are irregular.
The most obvious example is rasterization.

- one triangle might generate only a few fragments,
— while another might cover the whole screen.

- What’s more, one might be running a shader which takes thousands of cycles for every fragment, while the other is only one
instruction long.

— This creates several problems.

First, if you remember from Kavyon’s talk, shaders are optimized to around the assumption of fairly regular, self-similar
work.

Second, imbalanced work creates bubbles in the pipeline schedule, destroying efficiency.

— The solution...

Graphics workloads are irregular

- [T1] [1 SuperExpensiveShader()
[1 TrivialShader()
I

= [T I T 111]----

But. Shaders are optimized for reqular, self-similar work.
Imbalanced work creates bubbles In the task schedule.

Coherence and Load Balance are also at odds with the fact that graphics workloads are irregular.
The most obvious example is rasterization.

- one triangle might generate only a few fragments,
— while another might cover the whole screen.

- What’s more, one might be running a shader which takes thousands of cycles for every fragment, while the other is only one
instruction long.

— This creates several problems.

First, if you remember from Kavyon’s talk, shaders are optimized to around the assumption of fairly regular, self-similar
work.

Second, imbalanced work creates bubbles in the pipeline schedule, destroying efficiency.

— The solution...

Graphics workloads are irregular

=3 [1T] [1 SuperExpensiveShader()
[1 TrivialShader()
|

= [T I T I T T 11 1]----

» - N‘l - ".— aly
hasterizer

But. Shaders are optimized for reqular, self-similar work.
Imbalanced work creates bubbles In the task schedule.

Solution:
Dynamically generating and aggregating tasks
Isolates irregularity and recaptures coherence.
Redistributing tasks restores load balance.

- The solution is to design the logical pipeline to split stages at points of irregularity,
and dynamically generate a new, dense set of tasks for the next stage.
These tasks can then be redistributed to restore load balance.

You should think of the fixed-function pieces of the graphics pipeline first and foremost as an efficient task-generation and

aggregation system
which keeps the Shader Cores busy running your code.

Redistribution after irregular amplification

Blend
Blend

Blend

...back in the task schedule,
our example had one primitive batch assembled from one vertex shading task on one core,

- but rasterization generated multiple Pixel Shading tasks, which were spread across multiple cores.

Rasterization has created, aggregated, and redistributed new pixel shading tasks based on its irregular output stream.

— Careful placement of redistribution after likely amplification points is a key concept in designing and scheduling graphics
pipelines.

Redistribution after irregular amplification

Input
Assembpler

...back in the task schedule,
our example had one primitive batch assembled from one vertex shading task on one core,

- but rasterization generated multiple Pixel Shading tasks, which were spread across multiple cores.

Rasterization has created, aggregated, and redistributed new pixel shading tasks based on its irregular output stream.

— Careful placement of redistribution after likely amplification points is a key concept in designing and scheduling graphics
pipelines.

Redistribution after irregular amplification

time

Blend

Blend

Key concept: Managing irregularity by dynamically generating,
aggregating, and redistributing tasks — L

...back in the task schedule,
our example had one primitive batch assembled from one vertex shading task on one core,

- but rasterization generated multiple Pixel Shading tasks, which were spread across multiple cores.
Rasterization has created, aggregated, and redistributed new pixel shading tasks based on its irregular output stream.

— Careful placement of redistribution after likely amplification points is a key concept in designing and scheduling graphics

pipelines.

Ordering

Rule:

All framebuffer updates must appear

as though all triangles were drawn In
strict sequential order

...but there’s a natural tension between redistribution for load balance and coherence and our last constraint: ordering.

APls like D3D specify strict ordering semantics.

They mandate that all framebuffer updates must appear as though all triangles were drawn in strict sequential order.

— This obviously heavily impacts the ways in which tasks can be redistributed, and is another key concept in designing
pipeline scheduling strategies.

Ordering

Rule:

All framebuffer updates must appear

as though all triangles were drawn In
strict sequential order

Key concept: Carefully structuring task redistribution
to maintain API ordering.

...but there’s a natural tension between redistribution for load balance and coherence and our last constraint: ordering.

APls like D3D specify strict ordering semantics.

They mandate that all framebuffer updates must appear as though all triangles were drawn in strict sequential order.

— This obviously heavily impacts the ways in which tasks can be redistributed, and is another key concept in designing
pipeline scheduling strategies.

Building a real pipeline

(pause)
Given that background for thinking about scheduling the graphics pipeline, let’s look at a few real examples.

Static tile scheduling

The simplest thing that could
possibly work.

Vertex Pixel Pixel Pixel Pixel

Multiple cores:
1 front-end
n back-end

Exemplar:
ARM Mali 400

The simplest thing you could imagine doing is recognizing that most of the amplification is in pixel processing,
and statically assigning tiles of the screen to multiple Pixel Processors.

This is how, for example, the ARM Mali GPU works.

| consider this scheduling not because some dedicated unit called a scheduler is necessarily involved, but because it’s a
strategy for mapping pipeline computations to a parallel machine.

Static tile scheduling

Pixel

Pixel

Vertex

Pixel

Pixel

Exemplar:
ARM Mali 400

If we imagine we have a simple division of the screen into 4 quadrants, one assigned to each of 4 pixel processors.

- A single triangle comes in.

Static tile scheduling

Pixel

Pixel

/\ Vertex

Pixel

Pixel

Exemplar:
ARM Mali 400

If we imagine we have a simple division of the screen into 4 quadrants, one assigned to each of 4 pixel processors.

- A single triangle comes in.

Static tile scheduling

Pixel

Pixel

Pixel

Pixel

Exemplar:
ARM Mali 400

The Vertex Processor transforms it into the screen

Static tile scheduling

Pixel

Pixel

Vertex

Pixel

Pixel

Exemplar:
ARM Mali 400

The tiles are statically assigned to processors.

- Each processor performs pixel processing on the parts of any primitives which land in its tile.

Static tile scheduling

Pixel

Pixel

Vertex

Pixel

Pixel

Exemplar:
ARM Mali 400

The tiles are statically assigned to processors.

- Each processor performs pixel processing on the parts of any primitives which land in its tile.

Static tile scheduling

Locality _
captured within tiles Pixel
Resource _
. Pixel
constraints
static = simple
. Pixel
Ordering
single front-end,
sequential processing Pixel
within each tile
Exemplar:
ARM Mali 400

This actually works pretty well.
- The tiles naturally capture significant locality at each processor.

- Since all processing is in-order, and all pixel processors process a fixed portion of the screen at a time, resource management
is simple.

- And most significantly, since all parallelism is statically partitioned over different locations on the screen, and there’s a

single front-end processor,
the apparent ordering of updates to any individual pixel is as strictly ordered.

Static tile scheduling

Pixel
The problem:
load imbalance Bixel
only one task creation
point.
: Pixel
no dynamic task
redistribution.
Pixel
Exemplar:
ARM Mali 400

...but because the allocation of tiles to pixel processors is static, hotspots can create load imbalance.

- if too much of the work lands on the tiles assigned to one processor,
- ...that processor maxes out, while the others sit idle.

The problem is that tasks are only distributed statically, not according to dynamic load.

Static tile scheduling

Pixel
The problem:
load imbalance Bixel
only one task creation
point.
: Pixel
no dynamic task
redistribution.
Pixel
Exemplar:
ARM Mali 400

...but because the allocation of tiles to pixel processors is static, hotspots can create load imbalance.

- if too much of the work lands on the tiles assigned to one processor,
- ...that processor maxes out, while the others sit idle.

The problem is that tasks are only distributed statically, not according to dynamic load.

Static tile scheduling

The problem:
load imbalance

only one task creation
point.

no dynamic task
redistribution.

Pixel

Pixel idle...

Pixel idle...

Pixel idle...

Exemplar:
ARM Mali 400

...but because the allocation of tiles to pixel processors is static, hotspots can create load imbalance.

- if too much of the work lands on the tiles assigned to one processor,
- ...that processor maxes out, while the others sit idle.

The problem is that tasks are only distributed statically, not according to dynamic load.

Sort-last fragment shading

-

Sterzer{ T T I T T T1T1T111

Exemplars:
NVIDIA G80, ATI RV/770

The obvious solution is not to statically tile the screen, but to turn it all into a big soup of fragments which get shaded by a
dynamically assigned pool of pixel shaders.

- This smoothly load balances across pixel shaders by dynamically redistributing tasks,

but because shaders now process fragments in parallel and asynchronously,
the key question is how can we maintain order?

Sort-last fragment shading

Redistribution restores
fragment load balance.

But how can we
maintain order?

Exemplars:
NVIDIA G80, ATI RV/770

The obvious solution is not to statically tile the screen, but to turn it all into a big soup of fragments which get shaded by a
dynamically assigned pool of pixel shaders.

- This smoothly load balances across pixel shaders by dynamically redistributing tasks,

but because shaders now process fragments in parallel and asynchronously,
the key question is how can we maintain order?

Sort-last fragment shading

PV A

r -

Rasterizer{ T T T T TTTTTT1] HNEEEEEEEEEE

Preallocate

outputs in

FIFO order

Exemplars:
NVIDIA G80, ATI RV/770

The key strategy to making this work is to pre-allocate output storage in FIFO order.

Sort-last fragment shading

PIX ~\

astenzer{ T T T T T T 111711 IIIIIIIIII

Complete
shading
asynchronously

Exemplars:
NVIDIA G80, ATI RV/770

The Pixel Shaders can then complete asynchronously,
writing their outputs to the pre-reserved location associated with the item they are shading.

Sort-last fragment shading

=1[Tele
fragments in
FIFO order

Output
Blend

Exemplars:
NVIDIA G80, ATI RV/770

The backend then blends the fragments in FIFO order, producing the same apparent order as if the fragments were
processed serially, in the order of the input primitives.

(breathe)

This approach is called sort-last fragment, because it allows out-of-order fragment shading, but restores order at the end
of the pipeline.

This type of architecture is used in most any NVIDIA or ATI GPU.

But what I’ve shown so far can still suffer from load imbalance between vertex and pixel shading.

Unified shaders

Solve load balance by time-multiplexing different
stages onto shared processors according to load

|dCier;

'\'
o
S—

onader
(\-
-

ohaader

o ore

Exemplars:
NVIDIA G80, ATI RV/770

Modern NVIDIA and ATl GPUs—starting with G80 and Xenos in the Xbox—also introduced a unified shader architecture, where
the same physical processors are used to run all shader stages.

This solves the vertex vs. pixel shading load balance problem by time-multiplexing different stages onto the same shared

Processors.

Unified Shaders: time-multiplexing cores

time

Blend

Blend

Blend
Exemplars:

NVIDIA G80, ATI RV770

If we go back to our original simple example,

- notice that we execute both vertex and pixel shading on the same processor at different points in time.

But the key question now is how to choose what stage to run at any given time.

Unified Shaders: time-multiplexing cores

time

Exemplars:
NVIDIA G80, ATI RV/770

If we go back to our original simple example,

- notice that we execute both vertex and pixel shading on the same processor at different points in time.

But the key question now is how to choose what stage to run at any given time.

Prioritizing the logical pipeline

Moving back to a simple logical D3D9 pipeline,
- the first thing we can do is assign unique priorities to each stage.

One logical choice is to prioritize the top of the pipeline over the bottom.
This helps ensure that there is always work in the pipeline, keeping any stage from starving.

But now what’s to stop the system from running wild, assembling and processing all vertices before consuming any,
generating a huge stream of intermediate data?

Prioritizing the logical pipeline

Moving back to a simple logical D3D9 pipeline,
- the first thing we can do is assign unique priorities to each stage.

One logical choice is to prioritize the top of the pipeline over the bottom.
This helps ensure that there is always work in the pipeline, keeping any stage from starving.

But now what’s to stop the system from running wild, assembling and processing all vertices before consuming any,
generating a huge stream of intermediate data?

Prioritizing the logical pipeline

1oLd

A

The next thing we can do is introduced fixed-sized queues in between the stages.

Fixed queues, combined with our top-down priority order,
create backpressure:

early stages run until they run out of queue space, at which point later stages—which consume those queue items—are the
highest-priority stages available to run.

Prioritizing the logical pipeline

fixed—size/

AlJoud

The next thing we can do is introduced fixed-sized queues in between the stages.

Fixed queues, combined with our top-down priority order,
create backpressure:

early stages run until they run out of queue space, at which point later stages—which consume those queue items—are the
highest-priority stages available to run.

Scheduling the pipeline

time

Switching back to a few cores on our actual processor, let’s imagine the vertex stage’s input queue is full.

It’s the highest-priority stage with available work,
- so at the next chance, each of the shader cores dequeues and begins processing a batch of vertex shading.

Scheduling the pipeline

time

Switching back to a few cores on our actual processor, let’s imagine the vertex stage’s input queue is full.

It’s the highest-priority stage with available work,
- so at the next chance, each of the shader cores dequeues and begins processing a batch of vertex shading.

Scheduling the pipeline

The output of these fills up the Primitive Assembly queue.

Scheduling the pipeline

High priority, but
stalled on output

time

Lower priority,
but ready to run

...50 now, even though the vertex queue has work and is higher priority, the two shaders run pixel shaders next,
because the logical vertex stage is stalled on backpressure from its fixed output queue.

Scheduling the pipeline

...and so on until the entire pipeline is drained.

Scheduling the pipeline

Queue sizes and backpressure provide a
natural knob for balancing horizontal batch
coherence and producer-consumer locality.

The last thing | want to point out here is that queue sizes provide a natural mechanism to control the tradeoff between
horizontal coherence by building larger batches at one stage, and producer-consumer locality between stages.

Summary

To pop back up for a little review,

Key concepts

Think of scheduling the pipeline as mapping tasks onto cores.

Preallocate resources before launching a task.
Preallocation helps ensure forward progress and prevent deadlock.

Graphics is irregular.

Dynamically generating, aggregating and redistributing tasks at irregular
amplification points regains coherence and load balance.

Order matters.
Carefully structure task redistribution to maintain ordering.

First, you should think of scheduling the pipeline as mapping tasks onto cores. This is a natural model within which to think
about everything else.

When scheduling a task, it is often easiest to preallocate all resources it might need to complete. This helps ensure forward
progress and prevent deadlock.

(IF TIME!) THIS SUGGESTS A FEW LESSONS
The graphics pipeline has substantial irregularity. Dynamically generating, aggregating, and redistributing tasks at irregular

amplification points helps regain coherence and load balance.
This is a key responsibility of the fixed-function pipeline.

And finally, order matters. Any scheduling system for today’s graphics pipelines needs to deeply consider how it will maintain
API ordering, especially when doing task redistribution.

Why don’t we have dynamic resource allocation?
e.g. recursion, malloc() in shaders

Static preallocation of resources guarantees
forward progress.

Tasks which outgrow available resources can stall,
causing deadlock.

This leads to another lesson:

One reason today’s graphics pipelines don’t allow most forms of dynamic resource allocation—
things like malloc or arbitrary recursion in shaders,

is that

Geometry Shaders are slow because they allow
dynamic amplification in shaders.

Pick your poison:

Always stream through DRAM.
exemplar: ATl R600
Smooth falloff for large amplification, but very slow for
small amplification (DRAM latency).

Scale down parallelism to fit.
exemplar: NVIDIA G80
Fast for small amplification, poor shader throughput (no
parallelism) for large amplification.

And this is also a key reason the first geometry shader implementations were slow:
Geometry Shaders allow programmable amplification in shaders.

This leads to a dilemma in how to cope with the resulting resource allocation.
You can assume the worst-case, and always stream the outputs through very large storage, like DRAM.

This is what ATI’s first implementation did, and it behaved relatively well at large very amplification, but had high overhead for
small amplification which should be kept on-chip.

You can also just bound the worst case and then scale down the degree of parallelism in your scheduler until you know you
can fit on chip.
This is fast for small amplification, but leaves the shaders underutilized when larger amplification requires .

Key concepts

Think of scheduling the pipeline as mapping tasks onto cores.

Preallocate resources before launching a task.
Preallocation helps ensure forward progress and prevent deadlock.

Graphics is irregular.

Dynamically generating, aggregating and redistributing tasks at irregular
amplification points regains coherence and load balance.

Order matters.
Carefully structure task redistribution to maintain ordering.

The graphics pipeline has substantial irregularity. Dynamically generating, aggregating, and redistributing tasks at irregular
amplification points helps regain coherence and load balance.

This is a key responsibility of the fixed-function pipeline.

ANOTHER LESSON
And finally, order matters. Any scheduling system for today’s graphics pipelines needs to deeply consider how it will maintain
API ordering, especially when doing task redistribution.

Why isn’t rasterization programmable?

Yes, partly because it is computationally intensive, but also:

It Is highly irregular.
It must generate and aggregate regular output.

It must integrate with an order-preserving task
redistribution mechanism.

This leads to one lesson:

an obvious reason today’s GPUs don’t have programmable rasterization is that it’s computationally intensive.

but it’s also a key point of highly irregular data amplification.

It’s responsible for quickly carving up triangles,
generating an irregular stream of fragments,
and then re-aggregating that irregular stream into coherent batches of fragment shading tasks.

And it has to help redistribute these in a way that still maintains ordering semantics.

Key concepts

Think of scheduling the pipeline as mapping tasks onto cores.

Preallocate resources before launching a task.
Preallocation helps ensure forward progress and prevent deadlock.

Graphics is irregular.

Dynamically generating, aggregating and redistributing tasks at irregular
amplification points regains coherence and load balance.

Order matters.
Carefully structure task redistribution to maintain ordering.

And finally, order matters. Any scheduling system for today’s graphics pipelines needs to deeply consider how it will maintain
API ordering, especially when doing task redistribution.

Questions for the future

Can we relax the strict ordering requirements?

Can you build a generic scheduler for
application-defined pipelines?

What application-specific information would a
generic scheduler need to work well?

A few questions for the future:

As we’ve seen in many examples,

order is the enemy of load balance. It is the biggest shackle around flexibility in scheduling.

It would be interesting to see how we might relax this constraint, and how much it might enable scheduling to improve
efficiency.

Another question is whether it would be possible to build a completely generic scheduler for any application-defined pipeline,
and what application-specific hints it might need to work well.

This is a key question if we want to move towards a world of programmable graphics pipelines.

Starting points to learn more

The next step: parallel primitive processing

Eldridge et al. Pomegranate: A Fully Scalable Graphics Architecture.
SIGGRAPH 2000.

Tim Purcell. Fast Tessellated Rendering on Fermi GF100. Hot3D,
HPG 2010.

Scheduling cyclic graphs, in software, on current GPUs

Parker et al. OptiX: A General Purpose Ray Tracing Engine.
SIGGRAPH 2010.

Details of the ARM Mali design

Tom Olson. Mali-400 MP: A Scalable GPU for Mobile Devices.
Hot3D, HPG 2010.

Here are a few starting points to learn more, and sources for some of the ideas | included here.

I’d especially encourage you to look at the Pomegranate architecture, which is similar to the parallel primitive processing
added to NVIDIA’s Fermi GPU. Maintaining order gets even more challenging with parallel primitive processing and rasterization.

And also NVIDIA’s OptiX ray tracing system, which defines another pipeline-style graphics API, but with recursion, and all
scheduled in software on current GPUs. These same ideas apply there.

Thank you

Special thanks:

Tim Purcell, Steve Molnar, Henry Moreton, Steve Parker, Austin Robison - NVIDIA
Jeremy Sugerman - Stanford

Mike Houston - AMD

Mike Doggett - Lund University

Tom Olson - ARM

