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Abstract

Virtual human characters in games are constanly interacting with their game
environment and need to be animated accordingly. This was previously done
by pre-recording all animations made possible by the interactions, giving an
exponential growth curve in the number of required pre-recorded animations.
Parametric dynamics expands upon pre-recorded animations by superimpos-
ing real-time simulated animations. These simulated animations are gener-
ated using Featherstone’s forward dynamics algorithm and are classified into
dynamic situations. A dynamic situation is controlled by a set of parameters
tunable by artists, that regulates how the simulated animation will behave.
A mathematical structure called the bone pose is developed along with a
blending pipeline, to formalize the superposing of animations.

The parametric dynamics method is developed and tested, using a set
of dynamic situations on a virtual human character, and the results are
analysed. State-of-the-art virtual human animation and dynamics algorithms
are scrutinized. Future work and enhancements are discussed.
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Chapter 1

Introduction

I wanted to do a thesis about some game programming aspect. Character
animation was one of three thesis proposals I discussed with Massive Enter-
tainment. I had been involved in a fighting game project in my spare time. In
that game called ”Kung Fu Fighters”, the main problem was to animate the
characters as life like as possible. Something I had been missing in fighting
games was dynamics or physics, which ignited my interest in the subject. To
be able to understand the discussions in the thesis one needs to know some
basic techniques in contemporary character animation that are discussed in
this introduction. These techniques cover areas such as mathematics and
physics. I start by putting computer graphics animation of characters in a
historical context.

1.1 Animation Techniques

Disney Inc was one of the pioneers of animation and many technical terms
come from the solutions they invented. In a video camera of the NTSC
standard, the world is sampled 30 times per second. Objects that move in
the physical world are thus sampled at different positions in time. If we play
back the recorded film we perceive it as a motion. The cartoon ”Snow White
and the Seven Dwarfs” by Disney Inc from 1937 was the first feature-length
cartoon. In it the actors did not actually exist so they had to be drawn on
pieces of paper. To have one second of film, you would need 25 or so pieces
of paper, where the character moved a little bit in every piece of paper.
Cartoons most often use a frame rate of 24 to 30 frames per second. If the
frame rate is lower than this the cartoon or video recording will look chopped
up, just like in the movies from the 1920’s. It is quite time consuming for
one person to draw all those pictures called frames. What Disney Inc did to
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CHAPTER 1. INTRODUCTION 2

speed up production and keep a good quality, was to let the most talented
artists draw key frames. Key frames have a lower sample rate of 5 per second
or less, so to be able to get the required 25 you have to draw the frames in
between. The in between frames were drawn by the less talented artists called
in-betweeners. When all the frames were ready the inkers filled them in with
colour. This system has actually changed very little for computer-generated
animations where the computer is now the in-betweener and the inker. Key
frames are still generated by people. This history is treated in [59].

King KongTM the movie from 1933 by Merian Cooper and Ernest B.
Schoedsack, needed non-existing animals that moved, but could not use
cartoons because they would not be believable for the theatre audience.
King KongTM was in fact an 18 inch tall miniature model, covered with
rabbit hair. The special effects department in the film studio, used puppets
of the animals that they animated by moving them a little, then taking a
picture and repeating the process. The technique is called stop motion and
has been used for many films such as the early Star WarsTM movies, and is
still used in animated clay films.

When computer games that immersed the player into a three dimensional
world, having virtual actors, started to appear in the 90’s they used the tools
that were available at the time. The most common technique was to represent
the actors using hierarchic rigid body animation. A rigid body animation is
a mesh and a way to scale, orient and position it. One way to transform the
mesh is to use frames. Frames in this context are not Disney Inc’s frames
but rather mathematical tools. A frame is a translation and a rotation. A
frame transforms the vertices in the mesh. Rigid body animation is good for
representing animation of objects that do not deform such as machine parts
in engines or robots. Ever wondered why early computer games had so many
robots?

To animate a character with rigid body animation one needs a mesh for
every limb in the body and a frame to accompany it. The limbs are animated
using key frames just as the Disney Inc key frames. In between frames are
computed by interpolation of the key frames. The resulting animation is
usually very blocky and if examined closely one can see that the limbs are
not stitched together. This kind of animation was used much in the early 3D
games such as Tomb RaiderTM by CORE Design Inc. One easy approach
to extend rigid body animation is to use stitched vertices that connect two
limbs. This was used in for example Die by the SwordTM by Treyarch LLC,
where the characters used rigid body animation except for the faces between
the limbs that were stitched together.

A method that was feasible as soon as computers had more memory, was
mesh animation. Mesh animation is in fact rigid body animation but the
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whole character is one continuous mesh. To animate the arms the whole
mesh has to be updated. It is based on the stop motion animation technique
of the animated clay movies. Examples of games that use this technique
are Ground ControlTM by Massive Entertainment AB, and QuakeTM and
Quake 2TM by Id Software Inc.

Lately a mix of mesh animation and rigid body animation is being used
in computer games. The character is built of a single continuous mesh but
is not stop motion animated. Bones transform the vertices in the mesh.
The mesh acts as a skin on a skeleton of bones, thus the method is called
skinning. An example of a game that uses this technique is Half-LifeTM by
Valve Software Inc. Most new games use this technique. It is memory cheap
and gives great visuals, but costs more than mesh animation and rigid body
animation in terms of processing.

1.2 Kinematics

Kinematics describes how objects move in space. There are two kinds of
kinematics, inverse and forward. Forward kinematics describes how to move
an object in some direction. Inverse kinematics on the other hand, tells
where the object is supposed to be, and the motion is derived from where the
object is at the moment. Most 3D editors today work using a mix of forward
and inverse kinematics, and can be told to produce forward kinematics key
frames.

Animations in 3D video games are mostly strictly forward kinematics.
Games that use inverse kinematics are very few, because of the complex-
ity involved in the computations and the loss of control. Inverse kinematics
is often used in modelling tools, relieving the animator from having to use
forward kinematics for long linkages. When the linkage is too long the con-
trol is lost though since the inversely generated motion is jerky or inexact.
The unwanted motion that the inverse kinematics generates, has to be con-
strained, by parameters set by the animator, on the individual linkages. A
constraining parameter that can be set, is for example the number of degrees
of freedom, and the angular limitations on the degrees of freedom. Inverse
kinematics is used for all kinds of linked structures that need to be animated,
not only humans, since it is a handy and fast technique, once one has learnt
how to control it. I had to ponder for quite a while to remember any game
that had used inverse kinematics. Actually Red Orb Entertainment Inc used
inverse kinematics in real-time in Prince of Persia 3TM , using a system called
MotivateTM . MotivateTM is a system developed by The Motion Factory Inc
and the system supposedly has intelligent actors. An intelligent actor is run
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by a high level system that feeds the actor with moves it needs to perform.
One part of the system uses inverse kinematics to control the motion in
real-time.

Industrial Light and Magic Inc, the world famous special effects studio,
ILM for short, made the special effects for the motion picture Jurassic ParkTM .
Steven Spielberg, the famous motion picture director, who directed the hit
movie Jurassic ParkTM , immediately wanted all of the dinosaurs to be ani-
mated by computers, when he was shown how good they looked. ILM was
faced with having to re-school all of their stop motion animators, who were
used to manipulate animatronics beasts covered with foam latex skin. An-
imatronics beast are elaborate remotely controlled models. What ILM did
was brilliantly simple. Instead of re-schooling all of the stop motion anima-
tors to use the computer animation tools, they told the stop motion ani-
mators to manipulate the animatronics skeletons, while a computer sampled
the skeletons. This way the animatronics skeleton generated key frames that
were then interpolated by the computer. The effect of this was very realistic
animation from the stop motion animatronics skeleton, and smoothly inter-
polated values by the computer. More of these historical details can be found
in [59]. Sampling of motion this way is called motion capture and is used in
many games that need motions from the real world. From reading Jeff Lan-
der’s article on motion capture [27] I know of House of Moves Inc, a studio
in the US that is often contracted to generate the moves needed by game
developers. Using professional acrobats or athletes the animation is of very
high quality. As told by Klas Nilsson at the computer science department
at Lund Institute of Technology, ”Snow White and The Seven Dwarfs” used
real dancers as motion capture data for the large dance numbers, featured in
the cartoon.

1.3 Dynamics

Dynamics is how objects interact with each other using forces. Forward dy-
namics applies a force on an object and the output is a motion, while inverse
dynamics is a desired motion and the output is the needed force. An example
of a computer game that uses forward dynamics is TrespasserTM . The player
can push, stack and manipulate objects in the world based on Newtonian
dynamics, in this game. Almost every game uses some kind of dynamics
algorithms. Frequently used dynamics are collision detection, repelling and
impulse force interactions. Mostly simulated objects are spheres or boxes
because of their simplicity that translates into fast and robust algorithms. A
game’s primary objective is to have a believable and enjoyable environment.
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If that means changing some parameters driving it far from earthly physics or
Newtonian laws, then that is what it takes. In fighting games the physics is
violent and instantaneous. Players want the opponent to drop down dramat-
ically and explosively when they throw them the final blow. Real dynamics
are not very interesting in this setting, just as in action movies where the
hero does a fly-kick and stays in the air for several seconds. What is often
boring about these games is that the animation looks the same every time
a certain event occurs, which becomes repetitive, just as this sentence. Dy-
namics could be added to the animations by mixing another animation to it
that is automatically and dynamically animated. This is the method I have
chosen to implement.

Before closing this section I would like to describe the use of inverse dy-
namics. There is a reason to why inverse dynamics is not needed in games
just now. Inverse dynamics decides which angular velocities and accelerations
an object must have to be able to create a force with its end effector. An end
effector is a term from robotics, and it is the last part of the robot that has
to interact with the world. For example in a human arm the hand would be
the end effector, if we were not to elbow someone that is. Just like inverse
dynamics there is a problem with multiple links, that need constraining pa-
rameters, so that they do not break. This is mainly an issue in industrial
design and simulation of robots. Robots that have to wash glass windows
need some kind of regulation, of how much pressure they can exercise on the
window so that they do not break it. Actually that is not even enough since
more often the glass window will have irregularities in the surface, or the
robot is not calibrated perfectly. What is then added is a haptic interface or
a sense interface just as we have in our finger tops. This interface measures
the pressure against the glass and adjusts the robot arm accordingly. Since
games do not need to do high precision simulations of force goals, there is
no interest in the area yet. The last part on haptic interfaces was inspired
by ongoing research done by Anders Robertsson at the department of auto-
matic control at Lund Institute of Technology. He helped me out when I had
questions about robot dynamics algorithms.

1.4 Problem

The problem is to add physically accurate dynamical motions to a character.
What kind of motion can we generate dynamically? How do we add it to the
recorded motion? What kind of parameters can be adjusted in run-time and
in build-time by an animator to gain control of the resulting animation?
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1.5 Approach

Formulating the problem in general is quite easy but to find a more specific
problem to solve is harder. When writing this document what hit me was
that there is no good distinction between the problem and the solution. Since
I didn’t know the problem more specifically I had to find a solution, which is
the research problem in general, pointed out to me by my supervisor Mathias
Haage at the computer science department at Lund Institute of Technology.
I did not have a magic wand unfortunately. Looking for a solution platform
I knew that if the solution was to be accepted it had to be easy to use for
animators. Mostly inventions that are quickly accepted by myself are those
that build upon some widely used standard, so I started looking at different
character modelling standards. A character built in a modelling program like
3D Studio MAXTM constitutes of a skeleton of bones that many times look
just like the real bones in a human being. The problem would then be to
consider the dynamics in a hierarchy of interconnected bones. A hierarchy
of bones resembles an interconnected chain of rigid bodies. Due to extensive
robotics research it is now a solvable problem, to simulate forces acting onto
such a hierarchy in real-time. I found a thorough explanation in a PhD
dissertation by Brian Mirtich [42] of Featherstone’s algorithm, originally in
Roy Featherstone’s article from 1983 [12], for the dynamics of articulated
bodies and of how to solve for tree structures. Driving a linked structure
with forces is comfortable. By approximating the limbs as pendulums the
addition of external forces is done by setting specific external torques. The
algorithm spreads the forces evenly to the connected bones. The problem
comes down to the control of the dynamically generated motion that is to
be mixed with the pre-generated one. One method is not to simulate those
bones that are not interesting for a specific motion. Choosing a set of bones
that are to be simulated I call generating a situation. On the other hand
one wants control of how much the dynamic motion is to be mixed with the
pre-generated one. This control is more low level and demands that the user
sets some kind of priorities for the bones. More control is necessary in form of
limbs that have variable mass and a specific vector for the angular freedom.
These parameters and more are needed to be able to control the dynamically
generated motion.

1.6 Report Layout

The rest of the report will deal with all of the specific details of an implemen-
tation of the system. The necessary theoretical background and algorithms
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are explained and analysed. I begin with dynamics, I then go on to com-
puter animation theory and conclude the reasoning with the actual system.
A thorough analysis of the system describing the pros and cons of it by test-
ing it on actual virtual actors. Further development and enhancement ideas
are discussed.



Chapter 2

Dynamics

Dynamics is the knowledge of how bodies interact with each other. The field
of dynamics is a tool for humans to try to understand and predict these be-
haviours. The behaviour I am interested in, and hopefully you too, is the
one of interconnected bodies. Why interconnected bodies? Well, since we
have a skeleton in our body, where the bones are connected to each other
by tendons and joints, I thought a suitable dynamic model of the skeleton
would be the one of a tree of interconnected bodies. This was my presump-
tion. There was a small problem though, as there is always in research, and
that was that I had not the slightest idea of where to start. I was quite
prepared though, since I had a thorough physics course in my first year at
Lund Institute of Technology. I still had the course book [66] in my shelf
and started to brush up on my physics, using it, and another book on dy-
namics [40]. I understood that what I wanted to do was not to be found in
these books. More advanced literature was needed. My thesis supervisor at
the computer science department at Lund Institute of Technology, Mathias
Haage, handed me a book that would prove to be very valuable, namely an
introductory book to the research field of robotics by John J. Craig [8]. I
read and later reread the first six chapters of this book. During this time
I found much interesting literature on the internet by following up on the
references in different articles. I started by searching on Gamasutra [13] for
articles about dynamics in computer games. There I found several interest-
ing magazine articles by Jeff Lander [32] through [35], which led me to Chris
Hecker’s magazine articles on dynamics [17] through [20]. From Hecker’s
magazine articles I found some interesting leads. In his articles I got to
know about the two dynamicists, Andrew Witkin and David Baraff, who
were working for the Oscar award winning Pixar Studios Inc. They applied
their dynamics knowledge on computer-animated characters. Feasting upon
their articles [61]-[63] and [3]-[5], they taught me of how to do a simulation
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of a rigid body. There was still something missing. Nowhere in these arti-
cles was there a treatise of how to simulate the dynamics of interconnected
jointed bodies. What I had learnt from the slew of articles on dynamics I
had read, was that I could now name my problem, which was multibody
or multiple body forward dynamics, as opposed to single body forward dy-
namics, obviously. Searching for documents with this word on my trusted
search engine google, at http://www.google.com, I finally was seeing some
light at the end of the tunnel. The first document I found, was a publication
on the web [22], on molecular dynamics by a Colombian dynamicist Andrés
Jaramillo-Botero. Since the document I found on the web had no title, I
contacted Andrés Jaramillo-Botero about it, and I got a swift reply, in which
he wondered if the document had been of use to me. The text had been of
use to me, since he in the article described different solution classes of how
to solve for multibody forward dynamics, and the special problems he had
been exposed to. The solution of Jaramillo-Botero was too complex for my
needs since I would not solve for closed chains of bodies, like those found
in molecular structures. His article introduced me to Roy Featherstone, a
robot dynamicist that had studied the problem of chains of multiple rigid
bodies in [12], terming them articulated bodies. I had now two big leads,
which were Featherstone and articulated body dynamics, which gave me a
lot of hits on articles on IEEE and ACM. Fortunately the university of Lund
had a license for IEEEs digital library so that I could search and download
articles. I became a student member of ACM to get access to the vast num-
ber of research papers online. I found out that dynamics in human bodies
was a hot topic from reading different articles from these resources on human
motion control [26], [36], [38], [43] and [45]. All of these articles mixed three
disciplines of engineering, which were computer science, dynamics or physics
and automatic control theory. I got feedback on this from the robotics book
of Craig [8], where he mentions that the field of robotics is a cross breed of
many disciplines. While I was pondering this, I found an interesting doc-
toral thesis on my computer, which I had neglected since the title had not
attracted my attention before. It was the dissertation of Brian Vincent Mir-
tich [42], where I found chapter four to be of outmost interest. Chapter four
treated the multibody forward dynamics method of Featherstone in a tree
structure of rigid bodies. It is like Zen monks tell you to look inside yourself,
you should look into your own computer for answers, treasures can be found.
The whole section about linked rigid body mechanics is very influenced by
Brian Mirtich’s dissertation [42]. If I was not lucky enough, Mirtich had also
published a complete implementation in C++ on the internet for this specific
problem. I was very happy. Months of hunting had finally bore fruit.

What I will do in this chapter is to try to flatten the learning curve I had
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for understanding the Featherstone solution for multibody dynamics. Start-
ing from point mass dynamics going to single body rigid body dynamics to
the grand finale in the Featherstone section using multibody dynamics. The
three sections have in common in how they update the velocities and forces
acting upon the bodies during time. This is discussed in the section on prop-
agation of dynamic state. The dynamic system developed here was not to
be found in the most advanced physics game engines such as MathEngineTM

[39] or the Havok EngineTM [16] when I started out a year ago, but now both
of them have articulated body dynamics implemented. Bear in mind though,
that my implementation is not a complete physics engine, merely a subset
of one, that deals with the force distribution of trees of linked rigid bodies.
If MathEngineTM had implemented multibody dynamics at the start of my
thesis, I would not have blinked to use it, but alas there was no alternative
than to roll ones own at the time. It turned out to be a very interesting
experience.

2.1 Point Mass Dynamics

Before we plunge into the waters of theory, let us first build a simple dynam-
ics model, without giving special notice to why it is done. In high school
dynamics all objects that can interact with forces are treated as particles. A
particle in dynamics is a point mass. Particles can be bullets, balls or other
such simple objects. Let’s start with Newton’s Second Law:

F = ma (2.1)

Breathing some 3D life into this formula is easily done by treating the
force F and acceleration a as vectors. The force F is the sum of all the forces
incident on the particle which makes it easy to add gravitational pull and
wind. To find the particle’s next location in space we need to express it with
some differentials. The position depends on the velocity that in turn depends
on the acceleration of the particle.

x(t + dt) = x(t) + v(t)dt (2.2)

v(t + dt) = v(t) + a(t)dt (2.3)

a(t + dt) =
F
m

(2.4)

Inserting (2.4) in (2.3) gives:
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v(t + dt) = v(t) +
F
m

dt (2.5)

Then inserting (2.5) in (2.2) gives:

x(t + dt) = x(t) + v(t)dt +
F
m

dt2 (2.6)

Using this differential form a computer can get the next position simply
by evaluating (2.6) and (2.5) exchanging dt for a time step ∆t. For clarity:

x(t + ∆t) = x(t) + v(t)∆t +
F
m

∆t2 (2.7)

v(t + ∆t) = v(t) +
F
m

∆t (2.8)

The integration method used is called Euler’s method. Euler’s method is
the simplest numerical solver for differential equations. It works by taking
small steps in the derivative’s direction. The step size ∆t determines how
well the method approximates the derivative. This and other approximation
methods will be discussed in the next section on state propagation.

2.2 Propagation of Dynamic State

A simple physics engine is essentially a small loop which, initialises the dy-
namic state of all dynamic objects, let the objects interact with forces, up-
dates the dynamic state of all objects and lastly resolves penetrations. This
is of course oversimplified but holds generally. What then is a dynamic state,
and how do you update one? Let us look at the previous section on point
mass dynamics and try to describe it, shall we. The dynamics state is the
characteristics that change with time for the point mass, which are position
pos and velocity vel. To simplify notation we put these two into a state
vector Y which is a column vector of the column vectors pos and vel

Y =
(

pos
vel

)

(2.9)

The point mass also has mass and force that acts upon it, but for now
we do not set them in the state vector, since mass is constant and force
is something that acts on the point mass. Initialising the state vector is
trivial, just set it to reflect the point mass characteristics. The state update
step, is the interesting one. What are we trying to update? Well position
and velocity, using acceleration or force to update the velocity, and using
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the previous velocity to update the position, as seen in equations (2.2) and
(2.5). This method of updating the state vector is called Euler integration.
The system is based on ordinary differential equations or ODE for short,
which means that the derivatives that are computed only depend on one
independent variable. Writing the Euler method down using state vectors
we get

Ynew = Yold + ∆t
d
dt

Y (2.10)

Eulers method is an explicit method for solving ODEs, as opposed to an
implicit method which runs backwards as

Ynew = Yold + ∆tf(Ynew) (2.11)

Implicit methods are more complicated but are needed when dynamics
systems become stiff, which means that the solving method is in a singular-
ity. Instead of converging on a solution a stiff system’s solution explodes.
Sometimes it helps taking smaller steps in stiff systems, but in some degen-
erate cases this is not enough, and an implicit solution is necessary. For more
information on implicit methods I refer to [3]. We will continue discussing
only explicit methods. In (2.10) how is d

dtY computed? It is a derivative
vector of the individual components expressed as

d
dt

Y =
d
dt

(

pos
vel

)

=
(

vel
acc

)

=
(

vel
f/m

)

(2.12)

To be able to have greater step sizes when evaluating a new state, Euler’s
method is not enough. Before we can improve on the Euler method, we need
to investigate it. The basis for the Euler method is the Taylor series

f(taylor)n = fold +
∆t1

1!
d
dt

fold +
∆t2

2!
d2

dt2
fold + . . . +

∆tn

n!
dn

dtn
fold (2.13)

As can be seen, Euler’s method is the first two terms of the Taylor series.
The series tries to approximate the real function at a certain time. Assume
the sought function is f(new) then it is a function of f(taylor)n, and the
error in approximation called the Lagrangian rest term. The rest term is
dominated by the last term n + 1 in the Taylor series that was not included.
How many terms should be included then? A five term approximation is
enough, such as the Runge-Kutta order four method which has an error of
only O(∆t5). Recently I visited the home page of MathEngineTM [39] and
noted that their articulated body solution is based on an implicit solver.
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Implicit solvers are always of interest, as they can handle much larger step
sizes than explicit methods.

2.3 Particle System Dynamics

If we put several particles together and say that they belong together, so
that they interact with each other, we have a particle system. Examples of
particle systems are gels and cloth simulations. They are good for describing
non-rigid structures, but are rather hard to define. Essentially a particle
system is a lump of particles where each particle has mass, position, velocity
and force or acceleration. Andrew Witkin has a good survey of how to build
a general particle system in [62]. Euler’s differential method is actually very
simple to apply to a whole system. A loop through the system is done by
first computing the forces on each particle and deriving a new acceleration
and velocity for it. Then using the time step every particles state is updated
using the derived state and the old state. The only problem in the method
is how to compute the forces for each particle. This function is called a force
law function. Deriving such a function from a certain behaviour is a pure
cookbook method. For example gels need to keep a constant volume and
thus the force law function should account for this. Even though the method
of deriving force law functions is mystical, good results have been achieved
by extensive experimentation. Particle system dynamics is then an art form.

In Figure 2.1 a table napkin is dropped onto a table. The picture is
from the home page of Hugo Elias [11] where he describes how to build force
law functions for cloth, gels and strings. A cloth is a grid of interconnected
particles much like a fisherman’s net. To have a realistic looking simulation
of the cloth each particle depends on 24 of its neighbours. The number of
neighbours a particle depends on determines how accurate and how fast the
computations will be. Too many neighbours and the cloth will behave stiffly.
Each particle is a mass point with springs to its neighbours and the force law
function simply computes how these springs drag the particle. Setting the
spring stiffness and particle mass to a good value is an empirical problem,
depending on how one wants the cloth to behave.

2.4 Rigid Body Dynamics

If an object has an extended mass such as a cylinder or a cube, that object
is called a rigid body. Rigid bodies have a centre of mass and a mass dis-
tribution. They can tumble and rotate about their own axes. For a great
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Figure 2.1: A cloth simulation of a napkin on a table. From [11].

survey of rigid body dynamics read [4]. Following the notation of the section
on propagation of dynamic state, a rigid body’s state becomes

Y (t) =









x(t)
R(t)
P (t)
L(t)









(2.14)

The position x(t) vector is straightforward. Orientating the body is done
using the rotation matrix R(t). Linear momentum P (t), is the mass of the
body times the linear velocity v(t).

P (t) = mv(t) (2.15)

Angular momentum L(t) is a bit more complicated, and is the inertia
tensor I(t) times the angular velocity ω(t).

L(t) = I(t)ω(t) (2.16)

An inertia tensor I(t) is a 3× 3 matrix that describes how the mass of a
rigid body is extended. It only has to be computed once in the local frame
of the rigid body, then orienting it using the rotation R(t).
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I(t) = R(t)IbodyR(t)T (2.17)

To be able to use Euler integration we need to express the derivative of
the state vector Y (t).

d
dt

Y (t) =
d
dt









x(t)
R(t)
P (t)
L(t)









=









v(t)
˜ω(t)R(t)
F (t)
τ(t)









(2.18)

Usage of the ( ˜ ) sign is explained in the section on spatial algebra but
in short it means that we express a cross product of ω(t) and R(t). The new
dynamic state simply becomes

Y (t0 + ∆t) = Y (t0) + ∆t
d
dt

Y (t0) (2.19)

What remains to be explained is the linear velocity v(t) and the angular
velocity ω(t). They are computed afterwards as

v(t) =
P (t)
m

(2.20)

ω(t) = I(t)−1L(t) (2.21)

To be perfectly clear let us not forget about the external torque τ(t) which
is the sum of the incident torques. An incident torque is the cross product of
the incident force Fi(t) and the distance from the centre of mass di(t), which
is the moment arm of the incident force.

τ(t) =
∑

τi(t) =
∑

di(t)× Fi(t) (2.22)

Until now the rigid body has not been linked to any other object. This
will change in the next section.

2.5 Multibody Forward Dynamics Algorithms

When we have several rigid bodies connected to each other we have a multi-
body dynamics system. Such a system is for example a robot arm where
every limb is a rigid body. Over the years several methods for solving the
forward dynamics problem have been proposed. Solving means calculating
new angular and linear velocities, accelerations and forces for the links that
define the multibody. Just as with point mass and extended mass single
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body dynamics, there are two problems. The first problem is to compute
the acceleration of the system, and the second is to integrate the next dy-
namic state. In general the multibody dynamics problem is formulated in
the following ODE equation found in [1]

τ = M(q)q̈ + c(q, q̇) (2.23)

On the left hand side, we have the N -element column vector which are
the torques applied to the joint actuators. Inspecting the right hand side
of the equation, q is the N -element column vector of joint parameters. A
joint parameter is either an angular displacement if the joint is revolute, or a
distance displacement if the joint is prismatic. Consequently q̇ and q̈ are joint
parameter velocity and acceleration N -element column vectors. Separating
the first product from the first term M is given, which is a N × N matrix
called the joint-space inertia matrix or the generalized inertia matrix. The
second term on the right is the N -element column vector of torques, induced
by gravity, centrifugals and Coriolis accelerations. Here N is the number of
degrees or equivalently the number of joints, since joints with three degrees
of freedom can be described by three joints where two joints have zero length.
If the problem is that of forward dynamics, we need to calculate the joint
acceleration given the forces and torques induced onto the manipulator, then
integrate the new dynamic state of joint parameters and their velocities.

The following exposition of algorithms was found in [22], which makes
several references to Walker and Orin 1982 [58] a text given to me by Klas
Nilsson at the computer science department at Lund Institute of Technology.
The direct method is a O(n3) method that considers a column at a time of
the mass matrix. The kth column of the mass matrix M is Mθ̈ for a vector
of joint accelerations given by

θ̈i =
{

0 for i 6= k
1 for i = k (2.24)

It follows that the kth column of M can be computed by applying the
Newton-Euler method, to find the forces for this set of joint accelerations.
The Newton-Euler method is a recursive inverse dynamics algorithm with
O(n) complexity. See [8] pages 196-200 for the details of the Newton-Euler al-
gorithm. Another O(n3) forward dynamics algorithm is the symmetry based
method. The mass matrix is symmetric for serial chains. Thus finding the
upper triangular portion of the mass matrix determines the complete M.
Yet another O(n3) method that deserves mentioning is the composite rigid
body method. As it is rather elaborate I simply refer to a good description
found in Dinesh K. Pai et al [44], where they also point out that it is faster
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than O(n) methods for small n. They base their description on the one found
in [58].

The second family of algorithms have O(n2) complexity. An iterative
procedure for solving a linear set of equations on the form Ax = b is used
by the conjugate gradient method. It assumes the coefficient matrix A to be
symmetric definite positive. By using a minimization function an approxi-
mate solution is found. See [58] for details. The last O(n2) algorithm is the
triangularised equations method. It is a recursive application of the LDLT

factorisation method using an alternate square factorisation of M.
The Featherstone algorithm is part of a family of algorithms that are

called articulated body methods. They all are variations on the same idea
and their complexity is O(n).

2.6 Serial Link Forward Dynamics

Before we can describe the Featherstone algorithm we need to set the founda-
tion with a lot of definitions. In this section we will develop an algorithm that
calculates the linear and angular velocities, of a serial link of rigid bodies.

Begin by considering the serial link chain in Figure 2.2. The links are
numbered 1 to n, where link 1 is attached to a fix base, called link 0. A link
i has an inboard joint i and an outboard joint i + 1 (1 ≤ i ≤ n). If every
joint has only one degree of freedom we can do a compact description of the
links as a vector of joint parameters q = (q1, ..., q1)T . A specific parameter
qi is a radian angle about the joint axis if the joint is revolute, while it is a
translation along the joint axis if the joint is prismatic. The problem now
becomes

Problem 1 Find the joint parameter accelerations q̈, given the joint param-
eters q, the joint parameter velocities q̇, the external forces acting upon the
links and the forces and the torques acting upon the joints.

2.6.1 Propagation of Velocity and Acceleration

To be able to solve the forward dynamics problem stated in Problem 1 we
have to determine the absolute motion of all the links in the chain. The links’
linear velocities and angular velocities depend only on q and q̇, that is the
state of the joints. The linear and angular accelerations of the links depend
on q, q̇ and q̈ even though q̈ is not yet determined. Let us first define what
a body frame for a link i is.
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Figure 2.2: A serial link chain. From [42].

Definition 1 Every link i is expressed in a body frame Fi with the origin in
the links centre of mass. The axes of Fi are in line with the principal axes
of the link. Vectors expressed in the link coordinates are relative to this body
frame.

We can now express Problem 1 using this new definition.

Problem 2 For each link compute, relative the frame of the link, the linear
velocity vi, angular velocity ωi, linear acceleration ai and angular acceleration
αi. Given the link parameters q, link velocities q̇ and accelerations q̈.

The quantities vi, ωi, ai and αi in Problem 2 describe the motion of frame
Fi relative the inertial frame O. The velocities and accelerations for link i
are completely determined by the velocities and accelerations of the link i−1
and the motion of the joint i. Since the velocities and accelerations of the
base link are 0, which is also the inertial frame, we can start in this one and
go from it inductively. From Figure 2.3 we see that ui is the unit vector in
the direction of the joint i axis, perpendicular to the direction axis di that
is the vector from the joint i origin, to the origin of frame Fi. The vector
ri is the vector from the origin of frame Fi−1 to the origin of frame Fi. The
motion of link i can be subdivided into two parts. One part that depends
on link i− 1 and one part that depends on the motion of joint i, where the
latter is called the relative motion. We need to define the relative quantities
first.
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Figure 2.3: A serial link chain. From [42].

Definition 2 The linear relative velocity vrel is the linear velocity of the
centre of mass for link i. It is the linear velocity link i would have if it was in
isolation. The relative angular velocity of link i is ωrel, and it is the angular
velocity link i would have if it was in isolation.

Using Definition 2 we can now describe how angular velocity is propagated
between links. The angular velocity of link i is the angular velocity of its
inboard link i− 1 and its own relative angular velocity.

ωi = ωi−1 + ωrel (2.25)

The linear velocity is transformed to other links like the angular velocity
except that the previous link’s angular velocity is added. You can think of
it as if the inboard link slings it forward.

vi = vi−1 + ωi−1 × ri + vrel (2.26)

Since acceleration is the derivative of the velocity, the propagation of
acceleration is merely the derivative of the velocity propagation. For angular
acceleration we derive the angular velocity propagation (2.25), and get

αi = αi−1 + ω̇rel (2.27)

For linear acceleration we derive the linear velocity propagation (2.26),
which gives

ai = ai−1 + αi−1 × ri + ωi−1 × ṙi + v̇rel (2.28)
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To loose the derivative of the vector ri we observe that it is vi − vi−1.
Thus expressing ṙi as ωi−1 × ri + vrel and inserting this in 2.28, we get

ai = ai−1 + αi−1 × ri + ωi−1 × (ωi−1 × ri) + ωi−1 × vrel + v̇rel (2.29)

Now we have expressed a link i’s linear and angular velocity and acceler-
ation in respect to the father link or its inboard link i− 1 and the link’s own
relative motion. However the relative quantities have not yet been defined.
A first step in doing so is to simplify the notation by defining two vectors
in the same direction as the joint directional vector ui. The lengths of these
two vectors depend on the velocity and acceleration of the parameters of the
joint. Remember that q can be either translation along the joint axis ui for a
prismatic joint i or an angle of rotation about the joint axis ui for a revolute
joint i.

νi = q̇iui (2.30)
ξi = q̈iui (2.31)

With these two definitions let us first consider a link with a prismatic
joint. Its relative angular velocity must be zero since it does not rotate
about the joint, but it has a linear velocity component which is of course in
the direction ui, of the prismatic axis of link i with a velocity of q̇i. It is
conveniently denoted using νi.

ωrel = 0 (2.32)
vrel = νi (2.33)

The relative velocities of a revolute joint, that is the angular velocity, is
simply the velocity about the joint, while the linear component vrel of link
i, is the orthogonal vector to the joint axis velocity vector and the length di

vector to the centre of mass of link i.

ωrel = νi (2.34)
vrel = νi × di (2.35)

When I first read this in Mirtich’s thesis I was caught in a logical loop since
I did not remember that q can either mean translation or angle depending
on the joint characteristics. Actually I had to reread Walkers and Orins text
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from 1982 [58], where I found on page 143 a list of terms. In Mirtichs thesis
the q vector is simply mentioned as the configuration space of the joints,
which did not light any bulbs for me. In retrospect it is obvious what he
meant. What is now missing is a definition of the relative angular and the
relative linear acceleration of a link. The following lemma can be found on
page 98 in Mirtich [42], which describes how to derive the quantities in (2.32)
through (2.35).

Lemma 1 For prismatic or revolute joints

ν̇i = ξi + ωi−1 × νi (2.36)

Revolute joints also have a cross product that needs to be derived.

d
dt

(νi × di) = ωi−1 × (νi × di) + ξi × di + νi × (νi × di) (2.37)

Proof 1 Proving Lemma 1 is of interest, and it is a short proof too. Starting
by deriving the joint axis velocity ν̇i, using the rule of derivation of product,
then exchanging the first term for the acceleration about the joint axis, we
get

ν̇i = q̈iui + q̇iu̇i = ξi + q̇iu̇i (2.38)

The second product of the term q̇iu̇i, which is u̇i, is how the joint axis
changes direction. The direction is dependent on the previous link’s position,
which gives that the direction changes depending on the rotational velocity
ωi−1 of the previous link. This gives u̇i = ωi−1 × ui. Multiplying this with q̇,
and noting that ν̇i is q̇ui we get the second term of (2.36). Proving (2.37) is
done deriving, using the rule of product on it.

d
dt

(νi × di) = ν̇i × di + νi × ḋi (2.39)

We have already proven ν̇i so what is left is left is to prove ḋi. As opposed
to the proof of (2.36) ḋi is dependent on the link i rotation. Since we cannot
have the link rotational velocity before we have computed the previous link’s
rotational velocity, we have to express it in the previous link’s rotational
velocity.

ḋi = ωi × di = (ωi−1 + νi)× di (2.40)

Inserting ḋi along with ν̇i into (2.39) we get
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d
dt

(νi × di) = (ξi + ωi−1 × νi)× di + νi × (ωi−1 + νi)× di (2.41)

Expanding the cross products gives

d
dt

(νi × di) = ξi × di + (ωi−1 × νi)× di + νi × (ωi−1 × di + νi × di) (2.42)

Expanding even more gives

d
dt

(νi×di) = ξi×di +(ωi−1×νi)×di +νi× (ωi−1×di)+νi× (νi×di) (2.43)

To have a more elegant expression we try to collect the terms to have
ωi−1 in one term. With the identity below in mind, the expression has to be
somewhat manipulated

A× (B × C) + B × (C × A) = −C × (A×B) (2.44)

The manipulated expression becomes

d
dt

(νi×di) = ξi×di+−di×(ωi−1×νi)+νi×(−di×ωi−1)+νi×(νi×di) (2.45)

To be able to use the identity we have to invert all occurrences of ωi−1

first

d
dt

(νi× di) = ξi×di +−di× (νi×−ωi−1)+ νi× (−ωi−1×−di)+ νi× (νi× di)

(2.46)
Now if −di is A, νi is B and −ωi−1 is C we get

d
dt

(νi × di) = ξi × di +−(−ωi−1)× (−di × νi) + νi × (νi × di) (2.47)

And finally cleaning the negations up, we get

d
dt

(νi × di) = ωi−1 × (νi × di) + ξi × di + νi × (νi × di) (2.48)

This concludes the proof of Lemma 1. �
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Finally we have enough information to complete the equations (2.25) to
(2.29). If joint i is prismatic, the equations become

ωi = ωi−1 (2.49)
vi = vi−1 + ωi−1 × ri + νi (2.50)
αi = αi−1 (2.51)
ai = ai−1 + αi−1 × ri + ξi + ωi−1 × (ωi−1 × ri) + 2ωi−1 × νi (2.52)

If joint i is revolute, the equations become

ωi = ωi−1 + νi (2.53)
vi = vi−1 + ωi−1 × ri + νi × di (2.54)
αi = αi−1 + ξi + ωi−1 × νi (2.55)
ai = ai−1 + αi−1 × ri + ξi × di +

ωi−1 × (ωi−1 × ri) + 2ωi−1 × (νi × di) + νi × (νi × di) (2.56)

The equations (2.49) to (2.56), express the quantities relative to the iner-
tial frame of link 0 or frameO. This means all the velocities and accelerations
are absolute. Not really necessary to mention but frame O can be set to any
arbitrary frame of choice, although the system will still regard it as inertial.
We have enough information to compute actually only the velocity compo-
nents of every frame in a linkage. By propagating the velocities from the
first frame to the last frame all absolute velocities are determined. This is
done using equations (2.49) and (2.50) for links with prismatic joints and
equations (2.53) and (2.54) for links with revolute joints. See Figure 2.4
for pseudo code. Hold your horses, we have not yet discussed how to elimi-
nate the unknown ξ from the acceleration equations, but we will do so using
the Featherstone algorithm, discussed in the Featherstone section. Actually
Figure 2.4 describes the first step in the algorithm.

2.6.2 Expressing Quantities in Different Frames

Let us model an example of a one link articulated body, called link 1, at-
tached to an inertial frame O as in Figure 2.5. Assume joint 1 rotates
counter-clockwise with a constant angular velocity q̇1. The equations for
linear velocity v1 and linear acceleration a1 expressed in the inertial body
frame then become

v1 =
[

−q̇1d1 sin(q1)
q̇1d1 cos(q1)

]

(2.57)
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compSerialLinkVelocities

// Initialize the root link state to zero
ω0, v0, α0, a0 ← 0

for i=0 to n
R ← rotation matrix from Fi−1 to Fi

r ← radius vector from Fi−1 to Fi (in Fi coordinates)
ωi ← Rωi−1

vi ← Rvi−1 + ωi × r
if joint i is prismatic

vi ← vi + q̇iui

else /* joint i is revolute */
ωi ← ωi + q̇iui

vi ← vi + q̇i(ui × di)

Figure 2.4: compSerialLinkVelocities

Figure 2.5: Link 1 attached to an inertial body frame O. From [42]
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a1 =
[

−q̇2
1d1 cos(q1)

−q̇2
1d1 sin(q1)

]

(2.58)

Actually these equations become much more manageable if expressed in
the body frame F1

v1 =
[

0
q̇1d1

]

(2.59)

a1 =
[

−q̇2
1d1

0

]

(2.60)

Why are they simpler? Well firstly joint 1 is not rotated in respect to
frame F1 as it is to frame O. Also all quantities are constant in the two
latter matrices. Since these quantities do not depend on an inboard link
nor an outboard link, it is a trivial articulated body, a term defined in the
Featherstone section, which means that the link is regarded in isolation.
Imagine we add one more link with an attached body frame F2. To be able
to use equations (2.49) to (2.56) on quantities expressed in frame F2, we
would need to transform them from frame F1 first. This only requires a
multiplication by a transformation matrix. We will develop matrices that do
this transformations for vectors of the 6th dimension, in the spatial algebra
section that follows.

2.7 Spatial Algebra

The spatial notation developed in this section has been described by several
dynamicists, such as Featherstone 1983 [12] and Rodriguez 1991 [49].

Spatial notation simplifies the description of the dynamics relations in
three dimensions. The operators make it easier to identify complicated math-
ematical relations in the mass matrix, mainly because it expresses the rela-
tions with a fewer number of symbols. A spatial vector is six dimensional and
substitutes two vectors in the third dimension. The spatial velocity vector
for example, describes both the linear velocity and the angular velocity in
three dimensions respectively of a rigid body. A spatial force applied to a
rigid body describes both the linear three dimensional force and the angular
force or torque in three dimensions. Spatial vectors are denoted with a caret
( ˆ ) following the notation of Featherstone.
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2.7.1 Transformation of Velocity and Force

We will develop a way to transform velocity, acceleration and force from one
body frame into another using spatial algebra. Firstly we need to define what
we mean by spatial velocity and acceleration.

Definition 3 For a rigid body that moves in space with a frame F attached
to it, let v be the linear velocity, ω the angular velocity, a be the linear ac-
celeration and α be the angular acceleration. These quantities are expressed
in the frame F relative to an inertial frame O, which means that they are
absolute quantities. Expressing these four vectors in a spatial notation gives
a spatial velocity v̂ and a spatial acceleration â.

v̂ =
[

ω
v

]

(2.61)

â =
[

α
a

]

(2.62)

In animation, rotation matrices are used to rotate vectors in one frame
into another. Now we have both acceleration and velocity defined spatially.
How do we go about relating the spatial quantities in a frame F to a frame
G? First assume these two frames are connected to a rigid body, where G is
translated relative F . Let r be the vector that translates G from the origin
of F . If vF and vG are the linear velocities of the frames, not the spatial
ones, and ω the shared angular velocity. Then vG becomes

vG = vF + ω × r (2.63)

This can be written in spatial form using a trick which makes a matrix
express a cross product and is denoted using a tilde ( ˜ ). Such a matrix is
composed as follows. Given two vectors a and b in three dimensional space,
the cross product between the two is defined as

a× b =





aybz − azby

azbx − axbz

axby − aybx



 (2.64)

It can be written also as

a× b = ãb (2.65)

Where ã is the skew-symmetric 3× 3 matrix
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ã =





0 −az ay

az 0 −ax

−ay ax 0



 (2.66)

Since (2.63) has both a linear component and an angular component it is
natural to express it using spatial quantities.

v̂G =
[

ω
vG

]

=
[

ω
vF + ω × r

]

=
[

I 0
−r̃ I

] [

ω
vF

]

(2.67)

The matrix on the right side with r̃ in it is called a spatial matrix and is
a 6× 6 matrix. We have only considered if G was not rotated relative F . To
do this we have to transform or rotate the vectors in F to vectors in G using
the rotation matrix R. The matrix R rotates vectors in frame F into vectors
in frame G. Doing this for spatial vectors we need to express the rotation
matrix in a 6× 6 spatial matrix.

[

R 0
0 R

]

(2.68)

We can now incorporate this rotational spatial matrix into a new defini-
tion.

Definition 4 Let F and G be two frames, r the vector that translates the
origin of frame G from frame F and R be the 3 × 3 rotational matrix that
transforms three dimensional vectors from F to G. Then the spatial trans-
formation matrix that transforms from F to G is defined as

GX̂F =
[

I 0
−r̃ I

] [

R 0
0 R

]

=
[

R 0
−r̃R R

]

(2.69)

Using the spatial transformation matrix, the spatial velocity v̂G can be
written as

v̂G = GX̂F v̂F (2.70)

The spatial transformation matrix GX̂F can be seen as the analog to
the homogenous transformation matrix in three dimensions that translates
and rotates vectors expressed in one frame into vectors expressed in another
frame. The spatial matrix GX̂F transforms spatial vectors from frame F
to frame G. Can this spatial matrix also be used to propagate spatial force
vectors? Well yes, the discussion following the next definition clarifies this.
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Definition 5 Given a rigid body with a frame F , let the total external forces
on the body be given by a linear force f that acts on the body with a vector
through the origin of F , and a torque τ . The spatial force is then

f̂ =
[

f
τ

]

(2.71)

Let G be the frame we have been using that is related to F using a
translation vector r and a rotational matrix R. The force that acts through
the origin of F is translated to act onto the origin of G. If a correction torque
of −r× f is added, then the torque τ needs no adjustment according to [40].
The forces in F are now expressed in G by

f̂G =
[

f
τG

]

=
[

f
τF − r × f

]

=
[

1 0
−r̃ 1

] [

f
τF

]

(2.72)

This is analogous to the spatial velocity transformation, thus the same
transformation matrix can be used to transform spatial force vectors ex-
pressed in frame F into spatial force vectors expressed in frame G. That
is

f̂G = GX̂F f̂F (2.73)

For the sake of completeness let us define the transpose of a spatial vector
and the inner product for two spatial vectors.

Definition 6 If x̂ is a spatial vector composed of two three dimensional vec-
tors a and b, written as

x̂ =
[

a
b

]

(2.74)

then the spatial transpose of x̂ is denoted x̂′ and is written

x̂′ =
[

bT , aT ]

(2.75)

Definition 7 The spatial inner product of two spatial vectors x̂ and ŷ is
given by x̂′ŷ

2.7.2 Transformation of Acceleration

With the previous definitions we are ready to tackle the problem of describing
the transformation of acceleration between two frames. The non spatial
notation equations for the prismatic joint i in (2.51) and (2.52) can be written
more compactly as
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[

αi

ai

]

=
[

αi−1

−ri × αi−1 + ai−1

]

+ q̈
[

0
ui

]

+
[

0
ωi−1 × (ωi−1 × ri) + 2ωi−1 × νi

]

(2.76)

Doing the same for the non spatial equations for the revolute joint i in
(2.55) and (2.56) we get

[

αi

ai

]

=
[

αi−1

−ri × αi−1 + ai−1

]

+ q̈
[

ui

ui × di

]

+
[

ωi−1 × νi

ωi−1 × (ωi−1 × ri) + 2ωi−1 × (νi × di) + νi × (νi × di)

]

(2.77)

We would now want to do the same for acceleration transformations as
we did for force and velocity transformation using the spatial transformation
matrix. For this we need some more definitions.

Definition 8 The spatial joint axis of joint i, for a prismatic joint is defined
as

ŝi =
[

0
ui

]

(2.78)

and for a revolute joint it is defined as

ŝi =
[

ui

ui × di

]

(2.79)

Definition 9 The spatial Coriolis force for a link i, given a prismatic inboard
joint, is the spatial vector

ĉi =
[

0
ωi−1 × (ωi−1 × ri) + 2ωi−1 × νi

]

(2.80)

and given a revolute inboard joint it is

ĉi =
[

ωi−1 × νi

ωi−1 × (ωi−1 × ri) + 2ωi−1 × (νi × di) + νi × (νi × di)

]

(2.81)
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Now let us analyse the equations for spatial acceleration propagation
(2.76) and (2.77). As can be noted the first vector in each equation resembles
the equations for velocity and force transformation in (2.63) and (2.72). This
vector is the transformed acceleration from frame Fi−1 to frame Fi. Thus
we can use the spatial transformation matrix FiX̂Fi−1 to transform this
acceleration vector. Further we can see that the spatial joint axis is the
second vector multiplied by q̈ and that the last vector is the spatial Coriolis
force. The general acceleration propagation then becomes

âi = FiX̂Fi−1 âi−1 + q̈ŝi + ĉi (2.82)

Now we have developed the spatial notation for acceleration propagation.
Is it not neat?

2.8 The Featherstone Algorithm

The Featherstone algorithm is a structurally recursive algorithm based on the
articulated body methodology. Featherstone’s algorithm is called a general-
ized coordinate approach, which means that it has as many state variables
as there are degrees of freedom in the system. This means that we can never
have an invalid state configuration. The opposite method is the maximal
coordinate approach. It is in a family of multiplier methods, which means
it has more state variables than degrees of freedom. Multiplier methods are
more complex and can be applied to looped chains, which Featherstone’s
cannot. Firstly we need to define what an articulated body is.

Definition 10 An articulated body is a subset of a chain of links in isolation,
that starts in a link called the handle and stops in the last link of the chain.
The last link in the chain has number n, thus the articulated body consist
of the links from the handle i to the last link, or links i...n. The trivial
articulated body consists of the last link in isolation where the handle i = n.

The Featherstone algorithm begins with treating the trivial articulated
body by adding inboard links one by one. The idea is to relate the spatial
acceleration âi for the handle in the articulated body i, to the spatial force
applied at its inboard joint. The outboard links for the handle i will have an
effect on this relation.

Definition 11 The spatial acceleration of link i is denoted âi, the spatial
force that its inboard link influences it with is f̂

I
i , the spatial force that its

outboard link influences it with is f̂
O
i . These spatial vectors are expressed in

the frame of link i which is Fi.



CHAPTER 2. DYNAMICS 31

Figure 2.6: A link influenced by its inboard and outboard links. From [42].

An interesting thing to note is that the spatial forces from the inboard
and outboard links that influence a link at its inboard and outboard joints
are the same forces simply translated to the origin of the frame Fi. This is
illustrated in Figure (2.6).

Theorem 1 Consider the articulated body of serial linkage that has link i as
a handle (1 ≤ i ≤ n). There exists a spatial matrix ÎA

i and a spatial vector
ẐA

i such that
f̂
A
i = ÎA

i âi + ẐA
i (2.83)

ÎA
i is called the spatial articulated inertia of link i and is independent of the

joint velocities and accelerations. ẐA
i is called the spatial articulated zero-

acceleration force of link i, and is independent of the joint accelerations.

The zero-acceleration force ẐA
i is termed so since it is the force that the

inboard joint must act upon link i so that it does not accelerate. Featherstone
calls these forces bias forces. I refer to Mirtich [42] pages 106-111 for the proof
of Theorem 1.
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Figure 2.7: The numbering of the links and joints. From [42].

2.8.1 Tree Topologies

Instead of writing the algorithm down for serial links, I would want to extend
it to tree-like linkages first. In a tree topology a link has several outboard
links, as apposed to a serial chain where links only have one outboard link.
Links have only one inboard link though, called link h or the father link. The
links are numbered depth-first, starting on the inertial link that is numbered
0 as seen in Figure 2.7.

The algorithm for tree topologies is an extension of the one for links in a
series. Instead of traversing the tree using the links we now traverse it using
the joints. In a serial link chain it does not matter but in a tree the links can
have several children. A joint is only coupled to one inboard link and one
outboard link. This means that the velocity propagation equations (2.51),
(2.52), (2.55) and (2.56) can be kept as they are by exchanging the inboard
index link from i − 1 to h. The velocity of a link must be computed before
it is used, which means that we have to go through the tree over the joints,
propagating the velocity from the joint’s inboard link to the joint’s outboard
link.

The first step in the algorithm is to determine all the absolute velocities
of all the links in the tree, which it determines using the absolute velocity of
the link itself, its parent link and its outboard joint. Using the joint-centric
approach previously discussed this step is the same as the one for serial links,
with minor modifications.

Propagating acceleration through the tree is analogous to the case for
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serial links. If link h is the father link to link i then the acceleration of link
i is computed from the positions, velocities and acceleration from link h and
joint i. The derivation of the propagation of acceleration is the same for the
one in the serial link case, thus the acceleration of link i is

âi = iX̂hâh + q̈iŝi + ĉi (2.84)

The next step in the algorithm is to calculate the spatial articulated
inertias and the spatial articulated zero-acceleration forces for all the links.
In a serial linkage this is done iterating from tip to base. In a tree topology
we must first compute the leaf values. The inner nodes are determined by
combining the children, that is depth first.

Definition 12 For a linked tree, consider the tree rooted in link i in isola-
tion. This sub tree is an articulated body of the original tree. Link i is the
handle of the articulated body. If the link is a leaf in the tree it is trivial, and
is simply the isolated rigid body of link i.

Armed with this definition that resembles Definition 10 we can now for-
mulate the tree link counterpart of Theorem 1.

Theorem 2 Consider the articulated body for a tree structure that has link
h as handle (1 ≤ h ≤ n). There exists a spatial matrix ÎA

h and a spatial
vector ẐA

h such that
f̂
I
h = ÎA

h âh + ẐA
h (2.85)

ÎA
h is independent of the joint velocities and accelerations. ẐA

h is independent
of the joint accelerations.

For the proof of Theorem 2 see Mirtich [42] pages 116-118.

2.8.2 Forward Dynamics Algorithm

Finally we can formulate the solution to the forward dynamics problem for
a tree structure of linked rigid bodies. The forward dynamics algorithm for
tree linkages consists of four steps.

1. Iterating over all the joints in increasing order of index, compute the
absolute spatial velocities of all the links. See Figure 2.8.

2. Initialising every link’s articulated inertia and articulated zero-acceleration
force for the isolated parts, compute the Coriolis vector for each link.
See Figure 2.9.
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compTreeLinkVelocities

// Initialize the root link state to zero
ω0, v0, α0, a0 ← 0

for i=1 to n
h ← index of link inboard to joint i
R ← rotation matrix from Fh to Fi

r ← radius vector from Fh to Fi (in Fi coordinates)
ωi ← Rωh

vi ← Rvh + ωi × r
if joint i is prismatic

vi ← vi + q̇iui

else /* joint i is revolute */
ωi ← ωi + q̇iui

vi ← vi + q̇i(ui × di)

Figure 2.8: compTreeLinkVelocities

3. Iterating over the joints in decreasing order of index, back propagate
the articulated inertia and zero-acceleration force from the outboard
link to the inboard link of the joint. See Figure 2.10.

4. Iterating over the joints in increasing order of index, compute the ac-
celeration of every joint and the spatial acceleration of the outboard
link of the joint. See Figure 2.11.
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initTreeLinks

for i=1 to n

ẐA
i ←

[

−mig
ωi × Iiωi

]

ÎA
i ←

[

0 Mi

Ii 0

]

h ← index of link inboard to joint i
if joint i is prismatic

ĉi ←
[

0
ωh × (ωh × ri) + 2ωh × νi

]

else /* joint i is revolute */

ĉi ←
[

ωh × νi

ωh × (ωh × ri) + 2ωh × (νi × di) + νi × (νi × di)

]

Figure 2.9: initTreeLinks

backPropagate

for i=n downto 2
h ← index of link inboard to joint i
ÎA
h ← ÎA

h + hX̂i

[

ÎA
i −

ÎA
i ŝiŝ′iÎ

A
i

ŝ′iÎ
A
i ŝi

]

iX̂h

ẐA
h ← ẐA

h + hX̂i

[

ẐA
i + ÎA

i ĉi +
ÎA
i ŝi[Qi−ŝ′i(Ẑ

A
i +ÎA

i ĉi)]
ŝ′iÎ

A
i ŝi

]

Figure 2.10: backPropagate

accPropagate

â0 ← 0̂
for i=1 to n
h ← index of link inboard to joint i
q̈i = Qi−ŝ′iÎ

A
i iX̂hâh−ŝ′i(Ẑ

A
i +ÎA

i ĉi)
ŝ′iÎ

A
i ŝi

âi = iX̂hâh + ĉi + q̈ŝi

Figure 2.11: accPropagate



Chapter 3

Animation

The part of computer animation that I have been interested in is the one of
human beings. Since to animate means to give life or to make alive, what is
then better than human animation? Some history of animation was treated
in the introductory chapter. I described how a human could be built from
separate parts just as with robots. The method is a branch of rigid body
animation and can be called hierarchical rigid body animation or articulated
figure animation. It is called hierarchical since the different parts have a
relative order. This method has been replaced lately by a deformed body
animation method called skinning. Hierarchical rigid body animation is the
basic building block in skinning and is crucial for the understanding of the
latter method.

The most important part of this chapter is the one on parametric anima-
tion, which is then used in the parametric dynamics chapter. To be able to
understand what it means and what it does we need to know the most basic
character animation techniques first.

3.1 Rigid Body Animation

Let us define the animation of a rigid body to be composed of two transforms
or a hierarchy of transforms. A transform is a way to position and orientate
an object. It is done most easily using a matrix that contains both of the
operators on an object. If we define that matrix concatenation is done left
to right, the transforms that are done first are the rightmost ones. Thus we
get a right to left concatenation order of the operators.

positionMatrix ∗ rotationMatrix (3.1)

If we use column-major ordering of the matrices we get two different

36
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matrices for the operators, where notation follows the one in OpenGLTM

found in the ”Red Book” [65].

positionMatrix =









1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1









(3.2)

The rotation operator is usually expressed as a rotation with an angle θ
about a certain axis. This was found in Graphics Gems I page 466 [14].

rotationMatrix =









tx2 + c txy + sz txz − sy 0
txy − sz ty2 + c tyz + sx 0
txz + sy tyz − sx tz2 + c 0

0 0 0 1









(3.3)

Where x, y and z are the components of the unit vector along the axis
and where s = sin(θ), c = cos(θ) and t = 1− c. See Craigs robotics book [8]
chapter 2 for the derivation, well actually you will have to derive it yourself
in exercise 2.6 in said book.

What we do to get the transform of these two operators is to concatenate
them into a single matrix. Such a concatenation is called a frame. The name
frame comes from the research field of robotics. We can analyse this trans-
form more deeply, and denote a frame A

BX as one that relates B’s coordinates
pB into A’s coordinates pA as

pA = A
BXpB (3.4)

If we take a closer look at the transform it is a rotation and a translation,
but what do they mean? Setting the transform as

A
BX = A

BT A
BR (3.5)

The translation matrix A
BT contains the vector offseting the origin of the

coordinate system B, expressed in A. Inspecting the rotation matrix A
BR it is

the basis vectors of coordinate system B expressed in A. Some other aspects
of rigid body systems are the fast inversions, inspired by Möller and Haines’
book [41]. Say we want B

AX instead of A
BX, and set them up as

B
AX = ( A

BX)−1 (3.6)

expanding the last expression

( A
BX)−1 = ( A

BT A
BR)−1 = A

BR−1 A
BT−1 (3.7)
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Rigid body transforms are thus very fast to invert, since the rotation
matrix inversion is a transposition, and a translation matrix inversion is a
negation of the translating component.

3.1.1 Parent-Child Hierarchy

In a hierarchical rigid body animation every object has its own local frame
which is a transform. Let us denote the transform that relates the local frame
i to i− 1 with i−1

i X. To get an object’s world coordinates or to transform it
into the world frame one has to concatenate all the frames of its ancestors.
You start by defining the frame that relates frame 0 to the inertial frame O
as the root O0 X and add children frames to it that in turn have children and
so forth. Using our notation this is equivalent to get the transform O

i X. This
tree of transforms is a directed acyclic graph. An example of a hierarchic rigid
body character is seen Figure 3.1. To get the transform of a certain target
frame that is to transform it into a certain frame, you start in the transform
O
0 X and multiply all the matrices for the path down to the target frame i.
This hierarchic structure is called a parent-child hierarchy. Expressed in our
notation the world transform O

i X is computed as

O
i X = O

0 X 0
1X . . . i−1

i X (3.8)

It is not very efficient to calculate all of these matrix multiplications every
time you need a transform a child relative a specific frame. Instead you can
update the whole tree at once, using a depth first traversal from the root
of the tree. When doing this traversal, and arrive at a specific child frame
you multiply this with the current parent matrix, and for all its children you
pass this matrix on as the new parent matrix. The passing of the parent
matrix could either be done implicitly, using the stack of the programming
language running environment, or it could be done explicitly using a specific
matrix stack. The parent matrix needs to be untouched or untransformed,
otherwise the other children will get the wrong transform. Now we have
enough information to go to the next step, namely bones.

3.2 Skinning Algorithms

One problematic area in character animation is the one on how to represent
the skin of a human or an animal. It is not a trivial problem and the so-
lutions range from systems that incorporate anatomical systems, that build
animated characters from muscles and fat, to solutions based solely on the
geometric characteristics of the hull of the body. Algorithms that try to
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Figure 3.1: A hierarchic rigid body character. From [9].

simulate human looks using physics are called deep algorithms, while the
ones that use geometric properties are called shallow. This division in deep
and shallow also describe the computational requirements where the former
is more complex. An example of a deep algorithm is the Layered Elastic
Model Animation system or LEMAN for short by Russel Turner [57]. The
system is based on the tissue configuration of vertebrate animals. Bones
build a skeleton to which muscles are attached, to which a fatty tissue layer
is applied, as seen in Figure 3.2. The system is quite complex using particle
dynamics systems, for the different layers. Skin will crease and stretch with
time, giving very natural looks to the characters, as seen in Figure 3.3.

On the other hand we have the shallow algorithms. Two examples of
such algorithms are Pose Space Deformation, PSD for short and Skeleton
Subspace Deformation, which is SSD for short. Both models describe how a
hull like the human skin, is deformed by a set of bones. Skeleton Subspace
Deformation has problems with collapsing vertices when the bones are in cer-
tain configurations as described in the next section. Pose Space Deformation
tries to correct these problems using a volume preserving metric along with
several subspace deformation parameters. The subspace parameters are such
that when the mesh is deformed into a certain position these parameters try
to correct the mesh, into a non-collapsed state. The parameters are human
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Figure 3.2: The LEMAN layers. From [57].

Figure 3.3: A penguin built using the LEMAN system. From [57].
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driven, so the animators have to set them by hand. There is no publicly
available implementation of PSD, but the authors of the original article [37]
report that animators are handling the configurable parameters with ease. I
have based my prototype on the Skeleton Subspace Deformation algorithm
which is described in the following section.

3.2.1 Skeleton Subspace Deformation or ”Skinning”

The inspiration to write about skinning comes from Jeff Lander’s article [30],
while the actual implementation technique was derived from an example ex-
porter for 3D Studio MaxTM by Discreet Inc. If you want computer animated
figures that have more of a real skin, hierarchic rigid body animation isn’t
enough. In 3D Studio MAXTM there has been for quite some time a tool
called bones. They facilitate the building of humanoid figures and animals.
What are they then? In our body the skeleton works as a supporting struc-
ture for the tissue and as levers for the muscles. Bones in 3D Studio MAXTM

make up both the skeleton and the muscles, that is the bones move by them-
selves and are not affected by any muscles. If the animators had to define
the muscles too, it would be much more complicated although such research
has been done as was discussed in the previous section.

To these bones a skin is attached, so that when the bones move, the skin
moves also. This means that we can regard 3D characters in computer games
as paper figures, driven by a mechanic skeleton. Every vertex in the skin is
attached to a few bones, mostly two or three with a weight for every bone.
The bones affect the vertices with a transformation. By weighting every
transformation with the weights for these bones we get a kind of averaged
transform for the vertex. I will explain how this is done. Every such trans-
form assumes that the vertex is expressed in the local frame of the bone.
This is done by transforming the vertex by the inverse world transform for
the bone in its reference position. Then the vertex is transformed by the
current world transform of the bone. We multiply the resulting vertex by
the weight (0 ≤ w ≤ 1) for that bone. By summing all of these weighted
vertices we get the final vertex. This can be expressed using a sum over the
weights. If vInit is the initial vertex, wv

i the weight for bone i for the vertex
v, X t

i the world transform of bone i at time t and (XInit
i )−1 the inverse of

the initial world transform of bone i, v(t) the vertex at time t becomes

v(t) =
n

∑

i=1

wv
i X

t
i (X

Init
i )−1vInit (3.9)

The sum of the weights to the bones for a specific vertex is one
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n
∑

i=1

wv
i = 1 (3.10)

What we do conceptually, is to create as many rigid body transforms of
the whole mesh as there are bones, and calculate a weighted final mesh. The
resulting animation looks convincing enough.

It is important to have proper tools to make it easier to do a good weight-
ing of the bones to the vertices. In 3D Studio MAXTM this is done using
envelopes. An envelope is a kind of force field where the weight to a ver-
tex decreases with the distance from the bone. If you don’t weight a vertex
properly to the bones it will have artefacts such as when the bone moves
into certain angles the mesh surface will be distorted. Ensuring that a ver-
tex close to two bones is equally weighted to both is important. These and
more things are found when dealing with bones in practice. Good tools will
however never make up for the flawed architecture of the algorithm. A prob-
lematic area is in the joints, where the limbs will sink in when bent, as seen
in Figure 3.4. Another artefact area is when two limbs are extended along a
common axis, and one of the limbs is rotated around the common axis. An
example of this last problem is when a character needs to open up a door,
which demands that the upper arm is rotated around the elbow. The arm
will thin out around the elbow area between the lower arm and upper arm,
yielding totally unrealistic visuals. An exaggerated such visual artefact is
seen in Figure 3.5, where the arm has been bent from its original position in
Figure 3.6.

We want the skin, not to be attached to a specific bone animation, just
a specific set of bones. The parameter (XInit

i )−1 is the inverse transform of
the bone animation pose that generated the specific mesh. Ensuring that
the transform is saved along with the mesh, we get independence of different
bone animations. Exporting the inverse transforms with the mesh is even
better as one does not have to invert them at load time. If one does not save
the transforms along with the mesh one would have to export a mesh for
every bone animation, which requires more storage. For example, the model
format of Half-LifeTM has a mesh with a bone reference set-up attached to
it. I noticed it while I was exporting models from Counter-StrikeTM , which
is a game built using Half-LifeTM technology. Another approach would be to
save the mesh, weighting information and the reference transform separately
from each other. This way the mesh would not be tied to a specific bone
structure, and the animation or bone structure would not be tied to a specific
mesh. Ultimate flexibility is not always practical though, since constraints
have to be maintained. Such constraints would be configuration management
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Figure 3.4: The elbow joint is sunken when it is bent.

Figure 3.5: Upper arm bent 180 degrees around the shoulder.
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Figure 3.6: Arm before any transformation.

of the three components.

3.3 Parametric Animation

A couple of interesting ideas emerge when considering that a mesh can use
any bone animation, since it is detached from a specific animation. The bones
can be manipulated in any way and then they are applied to the mesh. To be
able to change the parameters of a bone animation individually the animation
of the bones must be local and being divided into translation, rotation and
scale. In my work I have chosen only to discuss rotation. Actually it is
also useful to animate the scale of the bones. For example if you want an
animation where the figures breathe, you would only need to scale up and
down the bones affecting the torso, in the scale track of the bones. To keep
it simple we will only discuss rotations. One first observation is that we
can define some fundamental operators onto rotational hierarchies. Such an
operator I have chosen to call addition, which merges two animations. A
merge of rotations is done bone by bone. The root bone is merged with the
root bone in the second animation, and so on for all bones in the hierarchy.
This of course assumes that the trees of bones are the same. Why would
you want to add two animations? Well if you have an animation with a man
walking and another with a man waving, by adding the two animations a
third animation that is the composite of the two is produced. Merging two
animations this way saves a lot of extra work for the artists and requires
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less memory since we use one less animation. We can now produce all the
animations separately and have the composites of the animations by adding
the appropriate ones together. Transitions from one animation into another
are also handled by adding more of the starting animation than the target
animation in the beginning, and in the end add more of the target than the
start. This means that we can ramp up and down the addition coefficients.
That’s why it is called parametric animation.

3.3.1 Interpolation of Rotations - Quaternions

To interpolate rotations about different axes is not trivial. There is a fast
and easy way using quaternions. Quaternions were invented in 1843 by Sir
William Rowan Hamilton. They are used extensively by robotics researchers.
Robotics researchers have to deal with trajectories and rotations of robot
parts, which makes quaternions very useful for them. What are they then?
They are mathematically an extension of the complex numbers. Sir Hamilton
presented a complete algebra for them in 1853. I will use the algebra, defining
and deriving only parts of it. The interested reader should look for any book
by Sir Hamilton himself. A quaternion can be written as a complex triplet
and a real number.

q̂ = (qv, qw) = (qx, qy, qz, qw) = iqx + jqy + kqz + qw (3.11)

The numbers qx, qy and qz are called the imaginary part and qw is the
real part. For the algebra to hold we need to define some more, namely the
i, j and k relations.

i2 = j2 = k2 = −1 (3.12)

jk = −kj = i (3.13)
ki = −ik = j (3.14)
ij = −ji = k (3.15)

Using these definitions we can derive addition and multiplication which
become

q̂ + r̂ = (qv, qw) + (rv, rw) = (qv + rv, qw + rw) (3.16)

q̂r̂ = (qv × rv + rwqv + qwrv, qwrw − qvrv) (3.17)
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Note that multiplication is not commutative. To not lose perspectives, let
us remind ourselves that what we want, is to interpolate between rotations.
Conveniently enough a unit quaternion is the same as a rotation. A unit
quaternion is defined as

q2
x + q2

y + q2
z + q2

w = 1 (3.18)

This can be interpreted in the fourth dimension as if it lies on the unit
hypersphere. It can also be represented as

q̂ = cos(
θ
2
) + v sin(

θ
2
) (3.19)

This unit quaternion is the same as a rotation in three space about an
axis v with angle of θ.

Spherical linear interpolation or slerp interpolates two quaternions along
the shortest arc between them, as in

Slerp(q̂, r̂, t) = q̂
sin((1− t)Ω)

sin(Ω)
+ r̂

sin(Ωt)
sin(Ω)

(3.20)

Here 0 ≤ t ≤ 1 is the interpolation coefficient and cos(Ω) = q̂ · r̂. Where
q̂ · r̂ is the inner product which is defined as

q̂ · r̂ = qv · rv + qw · rw (3.21)

Given two quaternions q̂ and r̂ there are two different rotations that
interpolate q̂ into r̂. A rotation with a quaternion r̂ is the same as −r̂.
Such pairs of quaternions are called antipodal, since they lie opposite on
the hypersphere. We want the shortest way from q̂ to r̂. That can be
accomplished by first checking the magnitudes |q̂ − r̂| and |q̂ + r̂|. If |q̂ − r̂|
is less, then the shortest arc is between q̂ and r̂, but if |q̂ + r̂| is less, then
the shortest arc is between q̂ and −r̂, and we substitute r̂ with −r̂ before
doing a slerp. Thinking about quaternions is not straightforward as the path
they make is on a four-dimensional hypersphere. Doing a spherical linear
interpolation between more than a pair of quaternions is not trivial. Ken
Shoemake tackled the problem in 1985 [53]. He used a cubic Bézier curve
to interpolate the quaternions using six slerps, something that is called a
de Casteljau construction. A more refined method is the one presented in
Barr et al [6], that has better continuity of angular velocity than Shoemakes
curves, but the interpolation can take several minutes to perform, ruling out
real-time use. A more modest technique of interpolation of quaternions, is
using Kochanek-Bartels splines as described in [25]. They use only three
slerps and base their continuity on the tangents of the two keys in a spline
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section. 3D Studio MaxTM uses this kind of interpolation for the rotations. I
settled for a straight linear spherical interpolation for the animation system,
mainly because it is a simple approach, and since I had enough keys to keep
the orientation changes small.

3.3.2 Bone Poses

Using the slerp we can now define addition of two rotational hierarchies. For
every bone in the two hierarchies we transform the axis-angle representation
into quaternions, then do a slerp between them, giving an in between value.
This in between value is a new quaternion. To keep a simple way of thinking
and to facilitate the programming, I have developed a structure that I call a
bone pose. A bone pose is a set of rotations of a bone animation at a certain
time. You could also call a bone pose a photo of an animation frame that
is not further interpolated. This photo is a quaternion representation of the
rotations. With this way of thinking it is easier to treat a bone animation
addition since we now work in quaternion space all the time. For example
an addition of three animations is written as

BoneAnim(time1) → BonePose1
BoneAnim(time2) → BonePose2
BoneAnim(time3) → BonePose3
BonePose ← BonePose1 + BonePose2
BonePose ← BonePose + BonePose3
BoneAnim ← BonePose

(3.22)

The only thing we have to remember is to transform the quaternions into
regular rotations when we want to transform geometry. We have just defined
an addition operator for quaternion rotational hierarchies or bone poses for
short.

3.3.3 Key Reduction

If one has a lot of animation frames, key reduction can save some space. We
can use the quaternions for this also. By using the definition of the inner
product (3.21) we get the magnitude of the angle between two quaternions.
Using this angle one can reduce the number of keys one gets from a motion
capture sequence, that are not needed. Those that are not needed are of
course keys that have a small enough angle between each other. Most major
3D modelling packages already implement some kind of key reduction. An
idea that I have but did not implement, since there was no need for key
reduction, is to use a cubic spline on the quaternions. Instead of rejecting or
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keeping keys on the relative angular difference, one could refine the rejection
process by sampling cubically interpolated quaternions, between the first key
and the last key, using the threshold angle as the sampling rule. This would
require an integration along the quaternion path.

3.3.4 Animation Blending

The technique of adding animations was inspired by Jeppson [23], actually it
is his method that I have explained, but I had to find out the inner workings
for myself since I had to implement it as a subsystem. I was the opponent to
his master thesis in computer science and engineering at Lund Institute of
Technology, which led to that I was greatly inspired by his work. I adopted
the term parametric animation from Valve Software Inc who used it as a
name for their new motion blending feature in their Half-LifeTM engine. The
bone pose solution was inspired by GrannyTM , a bones SDK I read about
on the internet [15]. In the Granny FAQ they explained that their inverse
kinematics were applied to a hierarchy and then blended with the animation.
I figured that one could use the same approach to animation. That is, to have
a specific record with only a single animation frame. Thus bone pose algebra
was invented. Someone might argue that this is elementary, - I simply put it
in words. Sure, why not, I just like to call it an algebra. It is not an algebra
in the strict sense since there is no multiplicative inverse for a bone pose for
example.

Bone Importance

A bone pose consists of a hierarchy of bone structures that hold a transform
which consists of a quaternion, a translation and a bone importance weighting
value for the bone. I have only mentioned that the rotations are merged
with the use of the quaternion slerp. If we always wanted that the bones
in each animation were equally important we could do with a t-value of 0.5.
However consider an animation with a man walking and another with the
same man waving his arm. The resulting composite animation should look
like a man walking and waving his arm. This will not be the case if we use
equal weighting for the arms and legs in the two animations. Instead we can
weight the legs in the walking animation more and the waving arm in the
waving animation more. Let’s do it for a simple case. The quaternions q̂
and r̂ have weights wq̂ and wr̂. Here q̂ is the from quaternion and r̂ is the to
quaternion. Expressing this as a combination of the two we get

wq̂

wq̂ + wr̂
q̂ +

wr̂

wq̂ + wr̂
r̂ (3.23)
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We can now calculate the interpolation t-value.

t =
wr̂

wq̂ + wr̂
(3.24)

Using weights, bones that are more important are emphasized. I tried
to calculate the bone importance weights algorithmically. My presumption
was that limbs that move a lot, are more important. Using the quaternion
inner product (3.21), I calculated the sum of the relative angular displace-
ments. The result was not convincing but adequate for my initial tests,
where automation was my main concern. For example the arms in the walk-
ing animation were swinging a lot, although they are not as important in
the composite as the waving arm. A remedy would be to also consider the
angular derivative, which I did not test, since I am not convinced that subtle
movements would be emphasized enough. When I was an opponent to Jepp-
son [23] I asked him the question if he did not automate the bone importance
weighting somehow. He didn’t at the time, and relied on the artists to do
it. He used a weighting scale of unimportant, important and very important.
A set of weights could be 10, 50 and 400. It is mainly an editing ques-
tion. When adding more than two animations an idea is to keep the highest
bone importance weight in the bone pose structure. In my implementation
I simply created a text file that was parsed to set the weights for different
animations. This way editing was very easy.

Animation Transitioning

When adding two animations you have to blend in the new animation gradu-
ally to get a smooth transition between the two. For example blending with
the man waving and the man walking would become

WaveAnim(time) → WavePose
WalkAnim(time) → WalkPose
CompositePose ← (1− t)WavePose + (t)WalkPose
CompositeAnim ← CompositePose

(3.25)

The t parameter is the lead in of the walking animation, going from 0 to
1. The characteristic of the function of this lead in, depends on how fast you
want the other animation to take charge. A nice function is for example the
cosine of u ranging from 0 to π, where t is (1− cos u)/2. It will have a nice
gradual change of animation.
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3.4 Inverse Kinematics

As it was described in the introductory chapter, inverse kinematics is to
calculate a trajectory given starting and stopping conditions. It is trivial
to do it for a single object but not trivial if it is linked to another object.
This is why when you talk about inverse kinematics, you implicitly imply a
linked structure of two or more links. I encountered two different methods for
solving IK in Chris Welmans Master Thesis [60]. One is called the Jacobian
transpose method and the other is called Cyclic Coordinate Descent or CCD.

3.4.1 Cyclic Coordinate Descent - CCD

The CCD method is a heuristic iterative method for finding the trajectory
of a link in a chain. The method assumes that the outermost link or end
effector as it is called in robotics [8], wants to get as close to the end point as
possible. Since the links are not able to move relative to each other, the only
thing they can do is to rotate relative each other. CCD starts by rotating the
end effector so that it gets closer to the end point. If we aren’t near enough,
we do the same for the next link but we rotate it so that the end effector is
as close as possible, not the link itself. Doing this down to the root for all
links is one whole iteration. This is done until a maximum number of links
have been traversed or the end effector is near enough the end point. The
method does not necessarily find the optimal solution, since it is a greedy
locally optimising algorithm. CCD has its benefits though, because you as
a programmer do not have to care about special cases such as chains that
have no chance of reaching the end point. The chain will try to reach the
end point. When I first read about how the algorithm went about doing this
optimisation, I didn’t get why I had not thought of this super simple solution
before.

3.4.2 Jacobian Transpose

Also in Chris Welman’s thesis [60] I found a treatise of a more refined method
called the Jacobian transpose method. Although he used CCD in the running
test system of his, the Jacobian transpose method deserves an exposition.
Introduced 1984 by Wolovich and Elliot [64] it is based on the idea that an
elastic force attracts the end effector to the end point. If the destination
point is xd(t) and the end effector’s tip is xc(t) then the error metric e(t) is
simply

e(t) = xd(t)− xc(t) (3.26)
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A force F applied on the end effector consists of a pulling force f and
torque m.

F = [fx, fy, fz,mx,my,mz]T (3.27)

The force F will cause internal forces and torques on the joints of the
chain. Under the simplifying assumption of virtual work introduced by R. P.
Paul [48] the relation between F and the generalized forces τ is

τ = jT F (3.28)

If we are only interested in the angular velocity in the link joints, then it
is only needed to think of τ as the vector of joint angular velocities.

q̇ = jT F (3.29)

Here q is the angle of the joint in three dimensions. When q̇ has been
calculated, the next q can be integrated. This new q brings the end effector
closer to the destination. The algorithm iterates until e(t) is small enough or
some other criteria is true, for example number of iterations. One can regard
the error metric e(t) as a pulling force on the chain. A description of how to
calculate the Jacobian and its transpose is found in [60].

3.4.3 Comparison of the Two Methods

Which one of the two inverse kinematics methods is to be preferred then? The
Jacobian transpose method yields a more natural appearance to the links,
since they are calibrated using force calculations, which makes the chain
look more naturally balanced. The Jacobian method and CCD are equally
fast during normal operation, but the Jacobian method is slower, when the
destination point is in certain positions. Such positions are for example points
inside the chain. This will take more iterations and the Jacobian transpose
method will not give the chain the natural looking appearance any longer.
As a side note, Welman himself used the CCD method in his test system.

3.4.4 The Problem of Control

Other than considering an algorithm, it is equally important to select an
appropriate number of links, to be manipulated by the algorithm. The more
links the less control of the output. For two-link structures, there is a strict
analytical approach using geometrical analysis. Using a method such as
CCD is easier and more general. In an articulated figure, separating specific
chains of few number of limbs for solving, is preferable. An example by Chris
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Welman [60] is how un-intuitive it would be to change the position of the
spine by pulling the fingers of a character.



Chapter 4

Parametric Dynamics

A parametric function depends on one or more input values, that can change
within specific intervals. What then, is parametric dynamics? The name is
taken from the technique, of mixing animations of humanoid figures, which is
called parametric animation. What differentiates them is that the animations
that are mixed are not all recorded in parametric dynamics, rather some
are simulated in real-time. On the other hand they resemble each other in
that they both mix animations, which means it is an addition to parametric
animation or a hybrid model of static and dynamic animations.

One very important aspect of animation is a predictable or controllable
result. While a pre-generated animation is static, a simulated is dynamic.
We need to set regulating functions on the simulated animations, to control
their behaviour. This can be done by only simulating those body parts that
are interesting for the situation, or to simulate only a few set of bones. In
this spirit dynamic situations were invented, that besides telling which body
parts are interesting for the simulation, also contain more parameters.

Those animations that are produced from the simulation are mixed with
the recorded ones in a blending pipeline. The blending pipeline is the same
as the one developed in the animation chapter, using the so called bone pose
operators.

Ultimately the problem is then to feed the correct information into the
simulator, and to extract the right information from the simulator, to be
used in the blending pipeline. In the next chapter we will see this knowledge
into use and analyse the results.

53
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4.1 Dynamic Situations

In computer games there often arises dynamic situations, for example when a
character is affected by outside forces. Such a situation can be that someone
is shot, which is often the case, or that someone is pushed, or someone may
stumble and fall, or be run over by a car. To take care of all these varying
situations, in a single generic system is very complex. Why? To be able
to understand the question, we can start to ask ourselves another question.
What is it that makes us perceive something, as human behaviour, that is
what is it that distinguishes us from robots? We have muscles, sinews, bones,
joints, cartilage, skin and reflex behaviours. We have the ability to adapt
ourselves to situations that arise more than once, or those that appear similar.
To simulate a human is more than to simulate its physical body. You need
to take into account the human perception of the surrounding world as well.
There is a big difference in how a physically fit person performs its motions
when compared to an unfit person. To completely simulate a human being
we need to do a complete physical and mental simulation. This demands a
lot of knowledge of man, and right now we don’t have the knowledge of how
the mental processes in man work. It is also probably very costly to do a
complete simulation of a person. Martin Rystrand my supervisor at Massive
Entertainment AB, told me about the animator of the Paladin character in
the game Diablo IITM , by Blizzard Entertainment Inc. The character had
taken more than a year and a half to complete, with the animator working
on it full time. Tools of today are mostly recorded animations of humans
and animals. Such libraries of motion are supplied by several companies.

It hit me one day, that why not let the animator take care of the more
complex mental processes and let the computer take care of the easier phys-
ical. The physical processes could not run for a long time though, since
then the illusion of man, would disappear. A shorter physical influence of
a character mixed with a recording of a complex animation, would facili-
tate the working process of the animator, or so I believed. For example a
physical influence could be to be shot, and the complex could for example
be to walk or to run. By mixing the bone pose of the simulated animation,
with the bone pose of the recorded animation, we have achieved the hybrid
model. Is there then a limitation to what can be a dynamic situation, and
how many different recorded animations, it can be mixed with? Beforehand
we can say that instantaneous and simple motions, are best fit to be dynamic
situations. The longer a movement takes to simulate, the less convincing it
becomes. Defining what the best recorded animation would be, is a tougher
question, and has to be tested. The most attractive aspect of this method,
is that you can affect a character by several dynamic situations, at the same
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Figure 4.1: An example schematic of a blending pipeline.

time.

4.2 The Blending Pipeline

In Chapter 1 you were introduced to the bone pose operators, unary multi-
plication by a scalar and a binary addition of bone poses. Using these two
operators on a set of of identical hierarchies of quaternions, we can define
a bone pose blending pipeline. We can begin to illustrate it with a sim-
ple schematic as in Figure 4.1. Observe though that the transitioning units
which in this case would be multiplicative units, are not considered in the
schematic for the sake of legibility.

If we want to be able to insert dynamic bones into the scheme we need
to have a function or black box that gives us a bone pose. What does such
a black box look like? Let us take a look inside the DynAnim component,
referring to Figure 4.2. What have we here then? The two most important
components are the Dynamics Initialiser and the Dynamics to Pose compo-
nent. We need to know more about the dynamics system and how it relates
to bone poses. In the next section we will take a look at the initiating com-
ponent.
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Figure 4.2: An inside look of the DynAnim component.

4.3 Feeding the Dynamics Simulator

The dynamics simulator was originally written in 1998 by Brian Vincent
Mirtich and James Kuffner Jr, and is copyrighted by MEITCA1. Following
the test example that was done by Brian Mirtich and James Kuffner, and by
rigorously analysing the calls mathematically, I could understand how the
system worked. There was no documentation so this was the only way to
do it. But as the saying goes, don’t check the teeth of a horse given to you.
Porting the test from its original platform of OpenInventorTM to OpenGLTM

was quite easy, thanks to the authors who had been farsighted and prepared
the system for such a porting. The theory of the system was described in the
Chapter 2, that dealt with tree structures of rigid bodies and the reasoning
about Featherstone’s algorithm, where the dynamic links were connected by
joints. But we have only bones in 3D Studio MAXTM . Bones are transforms
in a hierarchic structure, so how do they relate to dynamic links? First we
need to know what a dynamic link is, and how we can describe one.

4.3.1 A Dynamic Link

A dynamic link is a pendulum, that is attached with its arm to an inboard
link, and where the centre of the pendulum ball is in the origin of the out-
board link. To visualise the direction of the pendulum system we can use a
rhombus. We place the rhombus origin in the outboard bone system, where
its direction is such that its z-axis points in the vector from the origin of the
inboard bone system to the origin of the outboard bone system. In Figure

1Mitsubishi Electric Information Technology Center America
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Figure 4.3: A dynamic link visualised using rhombi.

4.3 the Link Rhombus is the pendulum system and the Joint Rhombus is the
system of the joint.

The dynamic link’s axis of rotation must be orthogonal to the direction
of the link system, which also means it is orthogonal to the pendulum arm.
It is also rotated about the link system z-axis, to be able to control the plane
of motion of the pendulum. In Figure 4.3 the inboard bone system is B1

and the outboard bone system is B2. The reason to why I used rhombi, is
that you can then easily distinguish the system’s direction, which would be
harder if we used a sphere for the visualization of the pendulum origin. If
we instead describe the rhombi using coordinate system arrows, we can get
a clearer picture of how the dynamic link is related to the bone transforms.
Before we do that, we can stop to think for a while, and establish why we
need to do this analysis. To be able to represent the dynamic link to the
dynamics system, we need this analysis. When initiating the hierarchy to be
simulated by the system, you describe two dynamic links and their relation to
a common joint system, using two transforms. A new link that is connected
to the system is called an outboard link, while the link that is the anchor
in this relation is called the inboard link. The two transforms are such that
they are relative a common joint system. This joint system is local to the
outboard link with one transform and relative the inboard link with another
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transform. Since this analysis is quite extensive it demands a new section.

4.3.2 Dynamic Links’ Relation to Joints

This section and the next ones deal much with transforms. Chiefly the rigid
body transform will be used. We use the same notation as Chapter 1.

i
oX (4.1)

The above form means the transform that takes coordinates described in
the outboard system, and transforms them into coordinates described in the
inboard system. What this whole discussion will be about is the transform
from outboard to inboard coordinates and how it relates to the rotational
joint of the outboard link. Actually we can describe this relation using three
transforms

i
oX = i

jXXRj
j
oX (4.2)

The middlemost transform XRj is the local rotation in the joint, and is
simply a rotation about the z-axis. The interesting transforms are i

jX and
j
oX, that are fed into the call that connects two links. Why does the dynamic
system need these two transforms? After each update of the dynamics system
it computes the transform i

oX, but to be able to do this it needs information
of how the links relate to the joint so it needs these representations. Actually
i
jX and o

jX are fed and not the whole matrices either. Why o
jX is needed

instead of its inverse is a mystery to me, but I guess it makes it easier to
input the transforms by hand. I said that not the complete matrices are fed
into the connect call, and to know why we can take a closer look at the rigid
body transform which is a rotation followed by a translation, as in

o
jX = o

jT
o
jR (4.3)

Here o
jT is the origin of the joint system described in the outboard system,

and o
jR is the rotation for the joint system relative the outboard system. If

we fill the matrices with symbols and concatenate the two we get

o
jX =









1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

















X1 Y1 Z1 0
X2 Y2 Z2 0
X3 Y3 Z3 0
0 0 0 1









=









X1 Y1 Z1 Tx

X2 Y2 Z2 Ty

X3 Y3 Z3 Tz

0 0 0 1









(4.4)
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Figure 4.4: A dynamic link’s relation to its bones. The dynamic link system
D and the rhombic system R. Systems B1 and B2 are dotted.

The three rotational axes X, Y and Z are all orthogonal to each other,
which means it is enough with knowing two of them to get the third. The dy-
namics system then needs 9 parameters chosen to be X, Z and the translation
T. Naming these parameters as the system does, we have outRef, outAxis
and outLoc respectively. Now that we have analysed the matter exhaustively
we can go on to computing these relations based on the bone transforms. By
the way, I thank Brian Mirtich for ratifying my queries regarding the above
transforms.

4.3.3 Dynamic Links’ Relation to Bones

In the creation of a dynamic link we originate from the bone systems. An
illustration can be of help as in Figure 4.4, where B1 and B2 are the bone
transforms that create the dynamic link D. How then, is D related to B1?
We are looking for

B1
D X (4.5)

Since the dynamic link D is to be related to B1 the rhomb transform R
is used as the rotation for D and the offset for B2’s origin described in B1

becomes the translation, which gives us

B1
D X = B1

D T B1
D R = B1

B2
T B1

R R (4.6)
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Figure 4.5: The joint system J related to the dotted rhombus system R and
the dynamic link system D.

Great then, we now know how the dynamic links are built relative bone
transforms. It takes two bone transforms to build a dynamic link, but a
dynamic link can only affect one bone transform, otherwise it will not corre-
spond to how 3D Studio MAXTM handles bones.

4.3.4 Dynamic Links’ Relation to Joints II

Now what remains is to relate the bones to the rotational joints which we will
now term j. This is needed to be able to compute the transforms o

jX and i
jX.

First we need to graph how the joint system is related to the dynamic link,
as seen in Figure 4.5. The rotational joint system j is only rotated relative
to the rhombus system R. This rotation is such that the R system’s z-axis
is rotated from R so that it is aligned with its own x-axis. Then the system
is rotated around the R systems z-axis with α degrees. As always we can
express it with a beautiful transform

R
j X = R(α, 0, 0, 1)R(90, 0, 1, 0) (4.7)

With this knowledge we can now set up the following equation

D
j X = D

B1
X B1

R X R
j X (4.8)

We now know how an outboard link is related to its joint. To connect
two dynamic links we also need the relation between the inboard link and
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Figure 4.6: Inboard system i and outboard system o. Dotted bone systems
are B0, B1 and B2.

the joint. At the connecting moment we have two dynamic links, called the
inboard link which is the anchor and the outboard link which is the new link
that we want to attach. The rotational joint is part of the outboard link.
Let us again please our eyes with a figure, see Figure 4.6. To make the figure
more legible I did not include the joint system which is described in the bone
system B1. We already have o

jX as the outboard link is the dynamic link
system D as in the transform D

j X. What remains is i
jX but we have a number

of leads. The bone system B0 is related to B1 with the known transform B0
B1

X,
and we know how a bone is related to a dynamic link. This brings us the
following equation

i
jX = i

B0
X B0

B1
X B1

j X (4.9)

It is trivial to solve for B1
j X since it is

B1
j X = B1

R X R
j X (4.10)

Finally we can put the case with the dynamic link initiation to rest. What
awaits now, is how to transform the information we get from the simulator.
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4.4 Feeding the Blending Pipeline

When the simulator is given a description of a skeleton it gets the information
from the Initial Pose signal in Figure 4.2. From this Initial Pose the Dynamics
Initialiser knows how to connect the dynamic links. On the other hand the
Dynamic Situation signal, gives which bones that are to be simulated, and
with which angles about the dynamic links, the rotational joints are rotated.
When the simulator goes through an update we get back the new relations
between the dynamic links, in the transform

i
oX (4.11)

The problem is that what we really need is the transform for the bones
B0
B1

X. That is the outboard link in Figure 4.6 rotates the bone transform B1.
If we express this transform using dynamic links, and what we know of their
relations, we get

B0
B1

X = B0
i X i

oX
o
B1

X (4.12)

We can see clearly that all components are already known from the rea-
soning about the initiation of dynamic links. Knowing this we can feed a new
bone pose into the blending pipeline. The dynamic situation tells us what
bones are simulated, so these bones get a high mixing coefficient while the
not simulated ones get a mixing coefficient of 0. It is time to put the theory
into practice, which we will do in the next chapter.



Chapter 5

Tests

To be able to test something you need to be able to measure something. The
problem I was faced with was to make the simulated animation look good,
which is a subjective metric thus a subjective scale is needed. Such a metric
I have chosen to call the Gestalt Metric or GM for short, which I divide into
three categories,

GM Good

• The virtual character has natural motion. This is exhibited by
joints that are properly constrained, motion that is not too fast, a
sense of restrain in the limbs and a long enough relaxation period
for the muscles.

• The limbs cannot penetrate.

GM Less Good

• The virtual character has natural motion.

• The limbs can have some minor penetrations.

GM Bad

• The character has no natural motion and has no sence of balance.

• The limbs penetrate.
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5.1 Test Parameters

When I started the test phase I included quite a lot of test parameters, since
I did not know which ones were important for the outcome. I divide the
parameters into two categories, the static and the dynamic. A test such as
being shot in the arm has several static parameters, such as which bones are
affected by the simulation, the masses of the links, the initial link parameters
which are derived from the bones and the link dampenings. Then we have
the dynamic parameters, which are link velocity and link angular plane of
rotation. You might wonder why I set the angular plane of rotation into the
dynamic parameters, and it is a legitimate wondering. In the case of an arm
we do not have many degrees of freedom except for the shoulder which has
at least three rotational planes. Since I wanted to have simple manipulators
I used one degree of freedom for all the joints, which greatly simplified the
implementation. To add more degrees of freedom to a body part you need
to add extra bones in its vicinity, preferably with a length of zero. So it is
solvable, but for my testing I kept the skeleton as it was and instead changed
the plane of rotation whenever a joint with more than one degree of freedom
was hit. The static parameters are always the same while the dynamic are
dependant on the incident force.

Parameters that do not really fit into neither the static nor the dynamic
category are the transition parameters. I use terms from digital music synthe-
sising to define them. The attack is how long time it takes for the simulation
to take full effect, using a cosine ramp, of (1 − cos u)/2. When the attack
period is over the sustain period is reached, where the simulation is the only
rotation which affects the bones. The last period is maybe the most im-
portant, and I have chosen to call it relaxation instead of the synthesising
equivalent of release. It is necessary to have a long relaxation period to make
sure the person doesn’t look like a super human whenever he is shot. During
the relaxation the muscles should relax from the superimposed simulated an-
imation back into the kinematic animation. This is done using an inverted
cosine ramp. A complete transition sequence is seen in Figure 5.1.

An important parameter is how many and what bones are simulated
by the system. To simulate a gun shot in the arm, it may be better to also
simulate some bones in the torso to get a more dramatic effect. In the running
system linear linkages of bones are supported, not trees. This is currently
solved by using two separate linkages. The dynamics system supports trees,
as was discussed in Chapter 2.

It may be of interest to describe how these parameters were implemented
and edited. My philosophy was easy editing and easy parsing, so I used text
files where each bone was on a single line along with the parameter value. The
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Figure 5.1: A transition function for a shot in the arm. Note the short attack
time, and sustain time, followed by the long relaxation time.

parameters that are edited this way are; which bones that are simulated, link
mass, joint rotation, link velocity and link dampening. The other parameters
were defined similarly in a text file including, attack, sustain, relaxation and
simulation time. Using the approach of saving all parameters in text files,
fine tuning of individual links was comfortable. An example of such a text
file is shown in Figure 5.2

5.2 Tests

The tests describe what static and dynamic parameters were changed and
why. The static parameters within each test have to stay the same, because
all tests have at least two sub-tests where the character is shot from different
angles. All of these sub-tests need to have the same static parameters within
a test. These are mass, which bones that are affected and dampenings.
Actually dampening is the same for all tests, since it was dicovered that it
did not matter what the dampening was. It is not significant since it needs a
very long time before it can slow down the velocity of the links considerably.
Instead of a high dampening, a short simulation period was chosen. This way
when the linkage was going into an abnormal configuration, the simulation
was stopped using the simulation time parameter.

The mass parameter is actually radius but they are equivalent, just re-
member that mass is a cubic function of the radius. Most radiuses were set
to 10 meters which gives a mass of
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Figure 5.2: An example of a text file for editing of which bones that are to
be simulated. This one is for a shot in the shoulder. A value of 1 means it is
simulated.
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mass =
4
3
πr3 (5.1)

which is 4188 kilograms. It is quite humerous when thinking about it,
but then most arms are at least 5 and at most 11 meters long. I did not
consider the scale of the figures and the corresponding masses until after the
testing was done, but it did not matter as they were giants to the simulation
system anyway. The arms and legs have this scale in 3D Studio MaxTM and I
did not change it before exporting the figures into the dynamics engine. This
large scale made it necessary to apply high velocities to the limbs in the tests.
Something you will probably notice is the use of rhombi for the visualization
of the bones, which is a primitive most modelling packages make use of.

5.2.1 Test I - Walking and shot in shoulder, GM Good

For this test sequence I used four different angles which were; front, back,
inside and outside. The scene consists of a man being shot by a small caliber
gun, once in the shoulder. The static parameters were chosen so that the
person would be shot in a dramatical way. Quite a lot of bones were added,
as seen in Figure 5.3, which were the spine and arm bones. The reason to
include the spine, was that it made the character lean when shot. All radiuses
were 10 meters since it did not seem to matter what radius they had. For the
shot from the front and the back the dynamic parameters were as in Tables
5.1 and 5.2.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 Spine1 -90 600
Bip01 Spine2 45 300
Bip01 Spine3 45 300
Bip01 Neck 45 300
Bip01 L Clavicle -90 300
Bip01 L UpperArm -90 300

Table 5.1: Shot in the front.

As can be seen they are perfect opposites in velocity. The velocities are
high as mentioned in the section on test parameters, to give the shoulder
enough energy to react violently. Why then have I chosen to set the ”Bip01
Spine1” bone to have a higher velocity? It seemed as if this bone made the
animation more dramatic since the figure leaned over more, and as it is a
root bone it affects the other ones. This shows that maybe another parameter
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Bone Name Angle (deg) Velocity (deg/sec)
Bip01 Spine1 -90 -600
Bip01 Spine2 45 -300
Bip01 Spine3 45 -300
Bip01 Neck 45 -300
Bip01 L Clavicle -90 -300
Bip01 L UpperArm -90 -300

Table 5.2: Shot in the back.

such as a velocity multiplier would be a good idea. If there was a velocity
multiplier parameter this bone would also have a velocity of 300, which is
desirable since the velocities are to be automatically calculated, and there
is nothing that says that this bone would be faster. If we continue to the
shots from the inside and outside, we can observe some direct changes in the
rotational planes for the joints with more than one degree of freedom, as can
be read from Tables 5.3 and 5.4.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 Spine1 0 -600
Bip01 Spine2 -45 -300
Bip01 Spine3 -45 -300
Bip01 Neck -45 -300
Bip01 L Clavicle 0 -300
Bip01 L UpperArm 90 0

Table 5.3: Shot on the inside.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 Spine1 0 600
Bip01 Spine2 -45 300
Bip01 Spine3 -45 300
Bip01 Neck -45 300
Bip01 L Clavicle 0 300
Bip01 L UpperArm 90 0

Table 5.4: Shot from the outside.

That they are the opposite in their angular velocities is very good since
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Figure 5.3: Test I - Walking and shot in shoulder. The bones that are
dynamically simulated have a black joint rhombus attached. The spine and
the left arm are affected.

that scales well for automation. How do they differ from the front and back
shots? The limbs with more that one degree of freedom have a rotational
plane rotated 90 degrees. The upper arm bone has a velocity of 0 since it only
has one degree of freedom and it is shot in parallell with this plane. All the
parameters are indeed very good for automation. The transition parameters
were the same for all test cases and are summarised in Table 5.5.

Attack (sec) Sustain (sec) Relaxation (sec) Sim Time (sec)
0.1 0.1 2.5 0.15

Table 5.5: The transition parameters.

It seems as if the best choice of velocities are very high velocities, and
instead very short simulation times. If the simulation gets too much time it
will not look right at all, more likely the character will look like a big wheel
at an amusement park. All in all being shot in the shoulder looked very good
and got a GM Good.

5.2.2 Test II - Walking and shot in leg, GM Bad

Being shot in the leg or any other extremity is very common in combat
situations. I set the right leg to be affected by a force from the back, front,
inside and outside as seen in Figure 5.4. Just as in the shoulder shot scenario
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I froze the static parameters to have a radius of 10 meters. The rotational
joints were very easy to place using the editable text files, and the result
was the obvious one, that is a very mechanical behaviour. Being shot in the
legs is not very convincing due to the fact that the leg behaves stiffly. The
reason for this could be that I could not add more limbs to the animation.
For example a good extra situation would be to also add some motion to the
spines. Why could I not do this then? Since the root bone in the right leg
hierarchy is attached to another root bone with several children, we would
then have a tree structure which I did not support in the prototype. Another
reason was that when I did add the extra root bone in the spine, the whole
body would roll over like a beetle. What is disturbing is that the person
is too balanced during the whole procedure. This however is not a surprise
as the parametric dynamics method is a local method, working on isolated
chains. An idea could be to add a stumbling animation, which would blend
over the walking animation and mix with the simulated animation. As can
be seen from Tables 5.6 to 5.9 this situation lends very well to automation if
we consider the angles and velocities. The most troublesome animation was
the shot from the inside as the right leg penetrated the left leg. Penetrations
would here have to be calculated in real-time and avoided.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 R Thigh 90 300
Bip01 R Calf 90 300
Bip01 R Foot 90 300
Bip01 R Toe0 90 300

Table 5.6: Shot from the back.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 R Thigh 90 -300
Bip01 R Calf 90 -300
Bip01 R Foot 90 -300
Bip01 R Toe0 90 -300

Table 5.7: Shot from the front.

There was no change in the transition parameters. If the relaxation was
any shorter it would look like someone that was pulled gently by the leg. It
must look like the muscles and sinews had experienced stress and need some



CHAPTER 5. TESTS 71

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 R Thigh 0 -900
Bip01 R Calf 90 -600
Bip01 R Foot 90 -600
Bip01 R Toe0 90 -600

Table 5.8: Shot from the inside.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 R Thigh 0 900
Bip01 R Calf 90 600
Bip01 R Foot 90 600
Bip01 R Toe0 90 600

Table 5.9: Shot from the outside.

time to relax. Being shot in the leg only got a GM bad because of the lack
of balance disturbance in the stance of the figure.

Attack (sec) Sustain (sec) Relaxation (sec) Sim Time (sec)
0.1 0.1 2.5 0.15

Table 5.10: The transition parameters.

5.2.3 Test III - Walking and shot in chest, GM Good

The most obvious animation is the one of a person being shot in the chest
area. Several things happen when you are shot in the chest, for example you
could lose the air or be hit in the spine. The most obvious is that you bend in
some direction with the upper body, and because of this the spine is a good
candidate for affected bones. I included most spinal bones into the situation
as seen in Figure 5.5. The motion looked convincing and lends very well to
automation, since the velocities in the back and front are mirrored. Walking
and shot in the chest got a GM Good.
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Figure 5.4: Test II - Walking and shot in leg. The bones that are dynamically
simulated have a black joint rhombus attached. The right leg is affected.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 Spine1 90 600
Bip01 Spine2 90 600
Bip01 Spine3 90 600

Table 5.11: Shot from the back.

Bone Name Angle (deg) Velocity (deg/sec)
Bip01 R Spine1 90 -600
Bip01 R Spine2 90 -600
Bip01 R Spine3 90 -600

Table 5.12: Shot from the front.

Attack (sec) Sustain (sec) Relaxation (sec) Sim Time (sec)
0.1 0.1 2.5 0.15

Table 5.13: The transition parameters.
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Figure 5.5: Test III - Walking and shot in chest. The bones that are dynam-
ically simulated have a black joint rhombus attached. The spine bones are
affected.

5.2.4 Tests IV-VI - Waving, GM Good except for Test
V

Test I through III were also done on a waving animation to test that these
situtations are adaptable to other animations. This was done by only chang-
ing what animation the dynamic simulator would use to initialise from and
to mix with. No static or dynamic parameters were changed. The exact
same results were seen in tests IV to VI as in I to III, which means that at
least a waving animation is easily adaptable. This means that tests IV and
VI got a GM Good while test V got a GM Bad, because it too had problems
with balance in the legs. When someone is shot in the legs, he or she should
lose their balance and not stand still or be unaffected. A picture of a waving
man being shot in the soulder is seen in Figure 5.6.

5.3 Analysis

Let us analyse the results from the test phase, beginning with a discussion
of the static parameters mass, dampening, angle and affected bones, then
discussing the dynamic velocity. The mass parameter or radius was never
changed from 10 meters, although it does have some significance. If for
example a bone has a small mass parameter it will easily be affected by
nearby bones. On the other hand when shooting characters mass is of minor
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Figure 5.6: Test IV - Waving and shot in shoulder. The bones that are
dynamically simulated have a black joint rhombus attached. The spine bones
and the left arm are affected.

significance, since the dynamic events are brief. If one would want a bone
to move faster the only remedy is to alter its velocity. If an impulse affects
a bone with a greater mass, it will not have a high local velocity as a limb
with less mass, if they have the same rotational plane. The problem is that
if you want to emphasize a certain bone by decreasing its mass, it will be
more willing to change direction because of its neighbours. That is why a
velocity multiplier independent of the dynamics properties is needed. This
velocity multiplier affects how much initial velocity a limb will have, before
it is simulated.

An even less significant factor is the dampening, which regulates how
much kinetic energy that dissipates. It is not a good approximation of a
muscle, and to make it significant it would have to be greatly exaggerated.
In the short events used in the tests, energy dissipation was not given enough
time to make any difference. Strongly coupled to the velocity is the angle
or vector of rotation about which the bone revolves. In my implementation
I only used one degree of freedom per bone. Setting this single degree per
bone was done very intuitively and gave great results. The problem was in
limbs that have more that one inherent degree of freedom. This was solved
by manipulating the vector to gain an extra degree of freedom. Freezing
a degree of freedom is quite convenient if control is considered, as the less
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freedom the limbs have the more control the animator is given. Too many
degrees of freedom leads to another type of dynamics for humans, called rag-
dolling which is the opposite of parametric dynamics. The number of bones
that are simulated controls the freedom of the simulation in conjunction with
the rotational vectors. If one wants a shot in the arm, one activates these
bones to be simulated. This gave good results and it was very intuitive to
set the correct bones.

One of the most important parameters is the velocity which tells the
dynamics system how fast the bones move. In the beginning I thought that
I would have to take into account the initial velocity of the limbs from the
kinetic animation. But since they are so small in comparison to the violent
velocities of a dramatic shot, I disregarded them. The velocity is dependent
on the dynamic event, and probably smaller velocities will make the simulated
bones more sensitive to the initial velocities. However setting the velocity
should be done dynamically by the event, and as commented in the tests
this should be simple to automate since orthogonal velocites were used for
orthogonal directions of interacting force.

The transition parameters are dependent on the type of dynamic event.
In all the test I used shots, demanding a dramatic transition of events. Using
a very short attack period followed by a short sustain and a long relaxation
period the character looked as if it was shot. If the attack period was too
long, it looked as if something pushed the figure rather than if something hit
it. The sustain period was short, since the dynamics in itself is not suited
to animate the figure, which is what happens when the blending is in the
sustain period. A long relaxation made the character look convincing as
it slowly relaxed back into the original animation. If the simulation time
was too long the resulting animation looked very strange as the figure would
get its limbs in unnatural positions, due to the high velocities involved. If a
slower dynamic event would affect the figure, the simulation could run during
a longer period.

The overall test results are given in Table 5.14. The Gestalt Metric was a
good pruning tool to tune the parameters, since one could define what the end
result should look like. Tests II and V were the bad ones and they are both
shots in the leg. Since no animation was given GM Less Good, maybe the
scale is too crude and needs some more refined criterias. Hopefully though
some day the Gestalt Metric will not be used, as we can replace it with an
automated model to test against.

All of the test ran in real-time on a Pentium IITM 300 MHz with a
Matrox MilleniumTM card at approximately 30 frames per second. Due to
the experimental physics engine it took more processing power than neces-
sary, as it can be highly optimized.
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Test Gestalt Metric
Test I GM Good
Test II GM Bad
Test III GM Good
Test IV GM Good
Test V GM Bad
Test VI GM Good

Table 5.14: The tests and their Gestalt Metrics.
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Further Work

The most obvious enhancement is a penetration system for dealing with limbs
that intersect. Supporting tree structured chains of bones was to be added
initially but was left out of time constraints. Tree structures are supported
by the simulator already.

When I did the tests I was not thinking of how fast the limbs needed to
go to be convincing. If the limbs are that fast such as 360 degrees per second
or more, which is a whole turn per second, physical rules tend not to matter.
A more light weight simulator could be used, such as every limb only rotates
with its velocity disregarding the other limbs, and there would be no need
for any integration of any sort. This special simulator would only be used
for shots or other such dramatical and instant situations and would be very
fast.

A detail I disregarded in the tests was how to initiate the velocities of
the links, which would be done using a force transform from world force into
local force, since all velocites are local. However most part of the work would
not be on the computational side, but on the interface side to the animator.

A new parameter that was found during testing was the velocity multi-
plier, that would help to emphasize certain limbs.The dynamic situation has
to be extended to also incorporate extra transitional animations such as a
stumbling animation in the case of legs being shot at. Since I have had so
many ideas of how to add features and new parameters to the parametric
dynamics method, I think it will be used in some hybrid form.
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Conclusion

The resulting simulated animations were quite convincing and it was easy
to parametrize them. There was a problem with intersection though in for
example test II when the right leg cut into the left leg. Actually it was
very fun to parametrize the different situations and test them, which means
at least I found the system intuitive, but then again I designed and built
it. It should however not be a problem for a skilled animator to use the
system, obviously in a more refined form where the velocity parameters are
dynamically computed.

The first time I began to simulate the shot in the shoulder I was excited
as it looked so real. In the first few moments of a shock such as a bullet that
hits a body, the limbs could very well be considered to be pendulums. For
more complex interactions such as being shot in the leg merely accelerating
the leg is not enough. Another complex pre-recorded animation has to be
superimposed. This is now a practical problem, which means that the system
has to be built, used and redesigned to fit special needs. I am quite certain
that this method has at least brought many new ideas into the field of human
animation in computer games, and will be used in some form. Personally I
would use the system to add some life - or death which is more accurate -
into the characters in a computer game. For example a man being shot can
be shot from almost any angle and still look good.

The dynamic interactions that can be achieved using the method are
numerous, but it needs a system for dealing with penetrations. Another
problem that occurred when the animation was not correctly parametrized
was that the bones could take the wrong shortest paths. This happened
when a bone such as the spine bone was spun almost all the way around the
hip, which made the quaternion interpolation take the shorter path between
the legs instead of around the hip. However these extreme situations rarely
happen, but if they do a second overriding system that checks legal angles
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could be used.
In closing I would say that it is easy to tune the parameters, it is a

simple and extendable technique, it can be used on several animations and
fits perfectly into a bone blending pipeline. Parametric dynamics takes up
very little memory and demands quite small computational costs.
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