
Realtime Character Animation Blending Using Weighted
Skeleton Hierarchies

Master Thesis

by Daniel Jeppsson (danne@southend-interactive.com)

Department of Computer Science
Lund Institute of Technology
Sweden

Supervisor: Mathias Haage, mathias.haage@cs.lth.se, Lund Institute of Technology

August 2000

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 2 of 53 Lund Institute of Technology

Abstract

It is both time-consuming and expensive to create animations, regardless if they
are created by hand or by using motion-capture equipment. If the animators
could reuse old animations and even blend different animations together, a lot
of work would be saved in the process. The main objective of this thesis is to
examine a method for blending several animations together in realtime. This
will make smooth interactive animations possible while keeping the reuse of
existing animations in mind. It will also solve the problem of transitioning
between two overlapping animations, for example going from a walking to a
running animation without resulting in jerky motion. This thesis presents and
analyses a solution using Weighted Skeleton hierarchy Animation (WSA)
resulting in limited CPU time and memory waste as well as saving time for the
animators. The idea presented is described in detail and implemented. Finally
the results are analyzed from a visual / realism viewpoint.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 3 of 53 Lund Institute of Technology

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies .1
Abstract ...2
1. Introduction – About character animation....................................5

1.1 Tools for an animation system..6
1.1.1 Quaternions instead of rotation matrices ...6
1.1.2 Interpolation of points (morphing) ...9
1.1.3 Interpolation of rotations (SLERP) ..9

1.2 Animation techniques ...10
1.2.1 Vertex Animation VEA...11
1.2.2 Linked Skeleton Animation L-SKA ...12
1.2.3 Deformed Skeleton Animation D-SKA..13
1.2.4 Memory usage ...14

1. 3 Animation blending and transitioning..16
2. Animation blending and transitioning using WSA17

2.1 Transitional blending..19
2.2 Animation blending ..19
2.3 The interpolation of animation sequences20
2.4 The character animation system prototype20

2.4.1 Animation Blending Unit ...23
2.5 Inverse Kinematics Joints...25
2.6 Synchronized transitions between looped animations.....................25

3. Animation engine prototype result...27
3.1 The WSA Animator ..27
3.2 The blending results..30

3.2.1 The basic animation set ...30
A1 Standing Idle...31
A2 Walking ..31
A3 Running ..31
A4 Jumping ..31
A5 Rolling..31
A6 Waving ...31
A7 Guards Up...32
A8 Punch Right ..32
A9 Punch Left ..32

3.2.2 Evaluation of blended animations ..33
A. Idle to walking (transition)...34
B. Walking to idle (transition) ..34
C. Walking to running (transition) ..34
D. Running to walking (transition)..34
E. Walking to rolling to walking (transition).......................................35
F. Walking to jumping (transition)..35
G. Running to jumping (transition) ...35
H. Walking and waving (blending) ...35
I. Running and waving (blending)...36
J. Walking and running (blending)..36
K. Idle and guards up (blending)...36

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 4 of 53 Lund Institute of Technology

L. Walking and guards up (blending)..36
M. Running and guards up (blending)...37
N. Walking, waving and guards up (blending)37
O. Running and jumping (blending)..37
P. Idle and walking (blending) ..37
Q. Jumping and punching (blending) ..38
R. Jumping and rolling (blending) ..38

3.2.3 The results ...39
4. Conclusions and future work..40
5. References..42
Appendix..45

A. Dictionary...46
B. Quaternion Example ..48

Defining the quaternion class ...48
Using the quaternion class ...53

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 5 of 53 Lund Institute of Technology

1. Introduction – About character animation

This chapter explains how most character animation systems work today and
what the problems and difficulties are. First of all it describes some
mathematical tools needed to interpolate animations and then the two most
common methods for 3D animation used in games up until now. A discussion
around the problems of connecting animations, also called transitioning, and
the idea of blending several different animations together with each other end
the chapter. These issues are actually part of the same problem.

The second chapter will start out by introducing the WSA method for solving
the problems mentioned above. Details of this method are examined and an
algorithm for blending animations together is defined. An animation system
prototype using WSA, Weighted Skeleton Animations, is set up and described.
The end of the chapter discusses inverse kinematics in conjunction with this
system and how to synchronize looping animations together with animation
blending.

The third chapter shows results from the developed prototype. The results are
subjectively analyzed regarding the realistic “look and feel” of several different
blended animations.

The fourth chapter presents the conclusions and ideas for future development.
These include inverse kinematics constraints and an advanced collision
detection subsystem for better character animation response when colliding
with environment and non-environment objects.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 6 of 53 Lund Institute of Technology

1.1 Tools for an animation system

Animations can be many things and can be collectively described as pictures or
objects that change or move over time. Ten years ago most people would
associate the word animation with cartoons. These animations were produced
by drawing the frames needed for each scene in a movie. Although many
different techniques were employed to simplify the work it still took a lot of
time and effort for the animators. These included creating only important
frames and doing quick in-between frames as well as using static backdrops
with moving characters drawn on top.

Today the word animation mostly makes people think of special effects in
movies and computer games. These animations are mostly created in 3D and
are much more versatile than the old 2D animations. By moving to three
dimensions, the result can be so good that it fools the critical human eye in
believing it is real.

A number of mathematical tools are used in the field of 3D animation. First of
all, a way to describe the animation from one frame to the next is needed. Some
methods use only point positions of the 3D mesh (see 1.2.1) while others use
matrices or Euler angles to describe rotations of objects or bodyparts from one
frame to another (see 1.2.2-1.2.3). Rotations can also be described as
quaternions, which are described mathematically in paragraph 1.1.1.

A way to create frames between keyframes, also called in-between frames, is
needed for smooth animation. Depending on the animation method, there are
different ways to create these. Point positions can be interpolated using linear
or spline interpolation, also called morphing which is covered in section 1.2.
Rotations can also be interpolated but trying linear interpolation using Euler
angles or rotation matrices will not work very well as can be read about in [2].
Instead quaternions can be used for fast interpolation as seen in paragraph
1.1.3.

1.1.1 Quaternions instead of rotation matrices

Just as a single complex number, z = x + iy, can be used to specify a point or
vector in a 2 dimensional space, a single quaternion, q = a + bI + cJ + dK, can
be used to specify a point in a 4 dimensional space. A quaternion with a=0 can
be used to describe vectors in Euclidean 3 space. A quaternion can be re-
written as (s,v) where s = a, and v = bI + cJ + dK. s is the scalar part of the
quaternion, and v is the vector part.

What has all this to do with rotations? Any rotation in Euclidean 3 space can be
described with a direction vector and an rotation angle, in effect a vector on the

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 7 of 53 Lund Institute of Technology

unit 4D sphere (s,x,y,z). For more information about quaternions, look in [2] or
[3]. All quaternions discussed below are unit quaternions i.e. the length of the
4D vector is one.

It can be shown that a quaternion is equivalent to using Euler angles or rotation
matrices. For instance, the quaternion q = (s,v) =)),,(,(ZYXW =

)*)2/sin(),2/(cos(nφφ is equivalent to the rotation matrix (proof of this can be
found in [2]):

−−+−
−−−+
+−−−

1000
02212222
02222122
02222221

22

22

22

YXWXYZWYXZ
WXYZZXWZXY
WYXZWZXYZY

Rotating a point using quaternions is defined as Rq(p) = q*p*q-1, where
multiplication of quaternions are defined as:

),(* 211221212121 vvvsvsvvssqq ×++⋅−=
where v is the vector part of the quaternion and s is the scalar part.

Quaternions offer some advantages over rotation matrices and Euler angles:

• Better accuracy using floating points and avoids drifting matrices. A
drifting matrix appears when rotations are added to the same matrix over
time. The rounding errors of floating point math will add up and result in
visual errors (drifting).

• Interpolations of rotations are possible (see 1.1.3). This is very hard to do
using rotation matrices or Euler angles. [2] shows some problems of
interpolation using Euler angles.

• Multiple rotations can be calculated faster using quaternions. A
standard 4x4 matrix multiplication uses 64 multiplications and 48 additions
while a quaternion multiplication only uses 16 multiplications and 12
additions.

• No "Gimbal-lock" problem. This appears when a rotation decreases the
total degrees of freedom (DOF), in the animation part. Read more about
“Gimbal-locks” in [2].

To be able to use quaternions there should exist fast conversion routines
between Euler angles, rotation matrices and quaternions. This is because most
3D engines usually uses different ways to describe rotations depending on what
is convenient at the time and therefore need quick conversions for good
performance. Appendix B shows how this is done in practice. Appendix B also

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 8 of 53 Lund Institute of Technology

shows some important mathematical operations that can be used on quaternions
like inverses, multiplications and more.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 9 of 53 Lund Institute of Technology

1.1.2 Interpolation of points (morphing)

If a node is keyframed to the position P1: (x1,y1,z1) at the time t1 and the next
key is positioned at P2: (x2,y2,z2) at the time t2 the easiest way to find the
approximate position at a time t somewhere between t1 and t2 is to linearly
interpolate between the two positions (keyframes).

12

1
121 *)(

tt
tt

PPPPt −
−−+=)(21 ttt ≤≤

See figure 1.1.

Several ways exist to improve the results of simple linear interpolation, for
example interpolation using splines. See [1] and [2].

1.1.3 Interpolation of rotations (SLERP)

Many methods use keyframed rotations and use these rotations to simulate
motion, for instance skeleton-animation L-SKA and D-SKA. If these frames
are stored as rotation-matrices, in the keys, interpolation is difficult to achieve.
This is where quaternions may help. A method called SLERP (Spherical Linear
intERPolation) interpolates between two unit quaternions along the shortest arc
on the unit sphere. The SLERP function is defined as:

φ
φ

φ
φ

sin
sin

sin
))1sin((),,(2121

uququqqSLERP +−= []1,0
)cos(21

∈
=⋅

u
qq φ

Where q1 and q2 are two quaternions (rotations) and u is the fraction between
these rotations along the 4D sphere that we are interested in, remember that a
quaternion is a vector in 4D. Appendix B shows how this is done in practice.

P1

Pt

P2 Pt

P1

P2

Position
Interpolation

Rotation
Interpolation

Fig 1.1 The figure shows position interpolation between two positions in time and rotation interpolation between two
rotations in time.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 10 of 53 Lund Institute of Technology

1.2 Animation techniques

To animate complex objects, such as the human body, today's 3D games
mainly use two different methods. Since many different names appear in the
literature I use my own terms, Vertex Animation (1.2.1) and Skeleton
Animation (1.2.2-1.2.3), abbreviated in this text to VEA and SKA. VEA
animates the mesh directly while SKA animates a mesh through a skeleton.

Those using SKA have two ways of binding their animated skeleton hierarchy
to the mesh involved, here called Linked and Deformed Skeleton Animation
(L-SKA and D-SKA).

This work focuses on the use of SKA. The information needed for animation
blending is not easily available inside the VEA animation method and in VEA
only the vertex positions are stored for each keyframe, making it very hard or
impossible to extract animation data for different bones. Instead VEA relies on
mesh morphing, to linearly interpolate meshes (see 1.2.1). Figure 1.2 shows
how this kind of blending would look like with our running and waving
animation.

The figure shows how deformation of bodyparts occurs, using vertex
morphing. The result can be much worse if the animations are totally different.
For example, if the body was rotated, the result would look like the one in
figure 1.3.

Fig 1.2 This figure shows a vertex morph from a running keyframe to a waving keyframe in six steps. In the figure we can
 see how some limbs get deformed, most noticibly the right foot and right arm.

Fig 1.3 This figure shows the same morph as the one in fig 1.1 but with the wave animation turned in the
 opposite direction resulting in unusable interpolation steps.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 11 of 53 Lund Institute of Technology

1.2.1 Vertex Animation VEA

When using this method the animator creates his animations and saves all
information for the entire mesh for every keyframe. Each keyframe includes
information about changes in position for each vertex in the mesh.

The main advantage of VEA is total freedom for the animator when creating
the animation. Any kind of motion and flexing deformations can be done
limited only by the 3D software package used for creating the animation.
Detailed and realistic animations where muscles bulge and the number of
vertices increase when needed are possible.

Some major disadvantages exist with this method. The animation data is huge
in size even when compressed, and is inflexible since the animator must decide
on the maximum animation framerate when exporting the animation. Figure 1.8
compares the memory usage for the different methods. No general way to
blend animations exists other than interpolation between vertex positions
(linear or splinebased interpolation) i.e. morphing, which can deform the object
severely. (See fig 1.2 and fig 1.3 above and read section 1.2)

This method was common a few years ago since it is low on processor load and
is simple to implement. The demand for interactivity wasn’t too high in those
early days of 3D games either. If a character could not run while shooting, it
wasn’t a big deal because of the huge leap from 2D to 3D anyway.

Examples where it is used within the computer games industry are easy to find.
The popular game Quake by ID Software and the successors Quake II and
Quake III Arena uses VEA, although Q3A has a somewhat improved version
where they have split their characters in three parts, head, body and legs. This
way the animators can blend some animations together in a simple way.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 12 of 53 Lund Institute of Technology

1.2.2 Linked Skeleton Animation L-SKA

To decrease the size of animations and to make interpolation easier, another
method for character animation is widely used today. The animator splits the
character or object in a number of body parts and links them together in the
joints (bones) forming a skeleton. He can then bind every bone to a separate
part of the original split character mesh and rotate or move these bones of the
skeleton. By doing this, only the bones position / rotation and the binding
information needs to be stored to animate the mesh.

The two main advantages with L-SKA are a radically decreased data size
compared to VEA and the fact that the computation load is still cheap. Figure
1.8 compares the memory usage in the different methods. Another advantage is
the ability to interpolate in-between frames using quaternions and SLERP
interpolation between keyframes!

The greatest disadvantage is the visual errors that occur when two separate
bodyparts rotate into and/or penetrate each other. Figure 1.7 shows what this
visual error can look like. A reason for this is the fact that different bodyparts
are not considered to affect parts connected to them. Taking this into
consideration lead to deformed skeleton animation, D-SKA, which is covered
in paragraph 1.2.3.

L-SKA has been used in such titles as LucasArt’s Jedi Knight and Novalogic’s
Delta Force.

Fig 1.4 This figure shows a character as a simple skeleton, with a mesh attached and fully textured.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 13 of 53 Lund Institute of Technology

1.2.3 Deformed Skeleton Animation D-SKA

To remove the visual errors of L-SKA, another way to bind the skeleton to the
mesh is used. The modeler or the animator binds every vertex in the mesh to
different bones in the skeleton. Using weights for each binding (vertex to
bone), the problem of L-SKA is reduced. Every vertex can be bound to one or
more bones and the weights are used to interpolate the final position based
upon the rotation and position of the bones. The figure below shows how
different vertices are bound to different skeleton joints in a geometrically
modeled hand. Black vertices are bound to a single bone, gray vertices are
bound to several bones.

No partitioning of the mesh is needed and the same skeleton and animation
data can be used on several different meshes. (See fig 1.6)

Fig 1.5 This figure shows a character hand using 20 bones. It also shows how different vertices are bound to different bones.
The vertices between bones (gray) are bound to both bones, and the rest (black) are bound to a single bone.

Fig 1.6 This figure shows two different meshes using the same skeleton which means the same animation data can also be
 used. Since the animation data for a skeleton is based on rotations, a scaled version of the same skeleton could also
 be used for characters of different sizes and shapes.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 14 of 53 Lund Institute of Technology

The advantages of D-SKA over L-SKA are visual improvements (see figure
1.6) and less data size. (See the table in figure 1.8 for comparisons)

Two disadvantages exist. The first is the increased computational cost
compared to L-SKA since all vertices bound to more than one bone must be
transformed one time for each and every bone. The second is the fact that some
meshes still might experience strange deformations in extreme positions if too
few vertices are used near the bending joint. See the rightmost arm shown in
figure 1.7.

D-SKA is becoming increasingly popular and is used in such famous titles as
Valve’s Halflife and Shiny Entertainment’s Messiah.

1.2.4 Memory usage

In table 1.8 below, three different animations are tested using two different
character meshes. The tests are made using VEA and SKA methods for
animation.

The VEA memory usage has been calculated as the number of vertices
multiplied with the number of frames in the animation loop. This number is
then multiplied with 12 as in the size of three floating-point precision numbers.
The “packed memory usage” column assumes that only the moving points are
stored for each frame to save memory. The “interpolated memory usage”
column assumes that points moving only a little distance can be interpolated
and therefore skips many frames in the animation which can degrade the
animation quality if compressed too much.

The SKA memory usage has been calculated as the number of bones multiplied
with the number of frames in the animation loop. This number is then
multiplied with 16 as in the size of four floating-point precision numbers. The
“packed memory usage” column assumes that only the rotating bones are
stored for each frame to save memory. The “interpolated memory usage”
column assumes that only important keyframes are stored and the in-between
frames are interpolated. This can degrade the animation quality if compressed
too much.

Fig 1.7 This figure shows the visual difference between L-SKA (the leftmost figure) and D-SKA (the other two
figures).

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 15 of 53 Lund Institute of Technology

The numbers in the table are approximate but should give a hint of the memory
advantage of using SKA over VEA.

Method Animation # Vertices # Bones
(SKA)

#
Frames

Memory
Usage

Packed
Memory

Usage

Interp.
Memory

Usage
VEA Running Loop 1000 N/A 16* 192 kB 150 kB 100 kB
VEA Running Loop 2500 N/A 16* 480 kB 375 kB 250 kB
SKA Running Loop 1000*** 30 16** 8 kB 7 kB 6 kB
SKA Running Loop 2500*** 60 16** 16 kB 14 kB 10 kB

VEA Walking Loop 1000 N/A 30* 360 kB 250 kB 150 kB
VEA Walking Loop 2500 N/A 30* 900 kB 650 kB 400 kB
SKA Walking Loop 1000*** 30 30** 15 kB 14 kB 9 kB
SKA Walking Loop 2500*** 60 30** 30 kB 28 kB 14 kB

VEA Waving 1000 N/A 60* 720 kB 350 kB 200 kB
VEA Waving 2500 N/A 60* 1800 kB 800 kB 350 kB
SKA Waving 1000*** 30 60** 30 kB 19 kB 8 kB
SKA Waving 2500*** 60 60** 60 kB 37 kB 15 kB

* VEA would use even more memory if a higher number of frames per second was desirable.
** SKA can interpolate new frames without experiencing the visual artifacts of linear morphing.
*** Number of vertices in the mesh does not increase memory size for SKA animations.

Fig 1.8 A table of approximate figures comparing a calculated memory usage of vertex animation (VEA) with skeleton
animation (SKA). Please note that the figures are approximate calculations and maybe not fully optimized.
The Packed Memory Usage column uses some scheme for packing the animation data and the Interpolated
Memory Usage column uses the fact that small movements can be interpolated for even smaller data size.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 16 of 53 Lund Institute of Technology

1. 3 Animation blending and transitioning

Games in the past have relied upon hard work and advanced animation
software as the main solution to animation blending. If a running, waving
character was needed, the animators had to animate a running, waving
character without being able to reuse old exported animations.

If a transition between a walking and running character was needed it had to be
hand-made. This also required the character to be in a special transition state
before being able to make the switch from walking to running, destroying
interactivity by introducing delays. If interactivity was important, the jerk
between the running animation and the walking animation was very apparent
and ruined the smoothness of the animation.

An ability to blend different animations together and being able to smoothly
transit between animations are very useful tools in computer animation,
especially for interactive graphics such as needed in the computer games
industry.

In the next chapter, a method will be presented to solve both transitioning and
more generic blends with only minor preparatory work needed by the animator.

Fig 1.9 This figure shows the result of a (1) Walking animation, (2) Waving animation and the (3) Blended animation.

(2) Waving Animation (3) Blended Animation (1)+(2)

+ =

(1) Walking Animation

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 17 of 53 Lund Institute of Technology

2. Animation blending and transitioning using WSA

This chapter will introduce WSA as a way to blend several animations together
without jerky motion between frames or different animations. The human eye
is very astute in noticing jerky or unnatural movement, especially in human
characters, and it is therefore important to remove such behavior in an
animation system. Jerkiness in a skeleton animation system can be defined as
movement of bones in too large steps between frames, or movement of bones at
different speeds during a short time. The first case occurs when the computer
has a constant low framerate and the second case when framerate changes
quickly or when an animation makes alternating quick and slow movements.

An animation using D-SKA stores the rotation of each bone in a skeleton
hierarchy, preferably in quaternion format for easy interpolation between
frames using SLERP. All rotations are stored on a per-frame basis.

The problem with D-SKA is that not enough information is available to enable
blending. For example, it is not known how important different animations are
compared to each other. In an animation where the character waves his arm, the
arm is very important but his lower body is not.

WSA solves this problem by attaching a weight to each bone that tells how
important it is in the overall animation. This means the animator must prioritize
different bodyparts (bones) in an animation. By defining weight functions w(t)
for the bones in an animation the extra information needed to blend different
animations together can be obtained. The functions can be constant for the
entire animation sequence or more advanced if needs be.

Approximately the same idea is applied when binding a skeleton to the mesh in
D-SKA where vertices belonging to different bones are weighted between
joints. WSA extends D-SKA with weight functions w(t) to enable blending and
transitioning of animations.

For example, a running animation will have "heavy" weight functions for the
legs and hips but only "light" weight functions for the arms. The arm-waving
animation will have "heavy" weight functions for the waving arm and "light"
weight functions for the rest of the skeleton. See figure 2.1.

Lower
Arm
Left

Upper
Arm
Left

Lower
Leg Left

Upper
Leg Left

Head Neck Spine

Running L(t) L(t) H(t) H(t) L(t) L(t) L(t)
Waving H(t) H(t) L(t) L(t) L(t) L(t) L(t)

Fig 2.1 The figure shows a table of weight functions for different animations and bodyparts. L(t) is a ”light” weight
function and H(t) is a ”heavy” weight function.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 18 of 53 Lund Institute of Technology

Given WSA, what kind of function should w(t) be; constant, linear or some sort
of spline function over time? Another question is how to interpolate two
animations based on these weights to achieve a blended animation?

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 19 of 53 Lund Institute of Technology

2.1 Transitional blending

Transitional blending means smoothly switching from one animation to
another. Figure 2.2 illustrates an example where a switching occurs from
walking to running in an animation. During a transition from one animation to
another, the first animation is gently increased in weight as the other gently
decreases.

Transitional blending is a specialized case of the more general animation
blending technique illustrated in figure 2.3.

2.2 Animation blending

The more general case of animation blending is to blend together two or more
animations at the same time. By using weight functions to weight interpolations
(SLERP) among different animations, blending and transitioning can be
achieved.

Fig 2.2 The figure shows a transition blending from a walking to a running animation.

Fig 2.3 The first row shows a walking animation. The second shows a blend between a walking and a waving
 animation.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 20 of 53 Lund Institute of Technology

2.3 The interpolation of animation sequences

An animation sequence consists of a sequence of quaternion rotation data for
each bone in a skeleton hierarchy. How can we blend different animation
sequences together if their weight functions are known?

Two quaternion rotations coming from two different animations can be blended
by utilizing the SLERP function:

Qtotal(t) = SLERP(Q1(t), Q2(t), I(w1(t),w2(t)))

where Qtotal(t) is the end rotation of the bone and Q(t) is the rotation of the same
bone for two different animations. I(w1(t),w2(t)) is a function between 0.0 and
1.0 that controls how different weights should be compared. If I(w1(t),w2(t)) is
0.0 the SLERP result is simply the Q1(t) rotation and if I(w1(t),w2(t)) is 1.0 the
result is the Q2(t) rotation. For values in-between the SLERP function returns
the linearly interpolated rotation on the unit 4D sphere.

In this same way an arbitrary number of animations can be blended together.
The only remaining problem is deciding how I(w1(t),w2(t)) should look for
different weight functions w1(t) and w2(t). More on this subject later.

SLERP-interpolation of animations may result in unnatural movement, but
adding IK constraints increases the computational cost so we will begin by
trying out WSA on the original constraints inherited from the basic animations
and see how it works out.

2.4 The character animation system prototype

This section introduces the developed prototype that utilizes WSA for character
animation blending.

The design goals for this animation system were:

• To be able to transition between different animations
• To be able to blend an arbitrary number of animations together
• To perform smooth transitions, lead-ins and lead-outs

A Lead-In is a function that smoothly increases the weight of an animation
until it is running with full weight. The Lead-Out is the reverse, a function that
smoothly decreases the weight of an animation until it is removed.

The system should work as a black box. We should only tell it when to start
animations and end animations, with parameters like lead-in time, lead-out
time, loop, etc. The system should then produce smooth animations.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 21 of 53 Lund Institute of Technology

A typical code example using this system should be something like:

// Play a walking animation loop with Lead-In time 0.1s.
animationSystem.playAnimationLoop(walkingAnimation, 0.1);

// Play a single waving animation cycle with Lead-In time 0.1s and
Lead-Out 0.1s.
animationSystem.playAnimationSingle(wavingAnimation, 0.1,

0.1);

A running animation is an animation that should be blended into the resulting
animation. If it is active it currently goes from one frame to the next using a set
speed or framerate and if it is deactivated the animation stays on the same
frame until it is activated again. An animation either has a starting and an
ending point if it should run once, or only a starting point if it is a looping
animation. Looping animations can also have an ending point but is usually
stopped as an event in the game, not at a specific time decided from the start of
the animation.

Figure 2.4 shows an overview of the main components in the prototype. To the
left is the Animation Execution unit that takes care of the active animations and
removes finished animations from the Running Animations list as well as
handles looping and makes them go from one frame to the next. The system
then blends these running animations, shown in the middle of figure 2.4 using
the Animation Blending unit, and delivers the resulting character animation.
The set of global animations to the right in the figure can be shared by different
characters, each with its own animation system. Being able to use the same
animation data on several characters saves a lot of memory in most applications
using multiple character animations.

Walking

Waving

Running

Active

Global Animation

Active

Active

Animation Blending
Unit

Animation Execution
Unit

Running

Idle Animation
Resulting character

Fig 2.4 This figure shows an overview of the animation system.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 22 of 53 Lund Institute of Technology

The most interesting component of this setup is the Animation Blending Unit
and the problem of how it should blend the active animations together without
jerky movement between frames or animations.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 23 of 53 Lund Institute of Technology

2.4.1 Animation Blending Unit

As mentioned earlier we have a powerful mathematical tool at our disposal, the
SLERP function, (interpolation of rotations on the unit sphere). With it the
system can interpolate between two different resulting rotations. The only
problem using it is calculating the I(w1(t),w2(t)) function, a function between
0.0 and 1.0 that decides where between the two rotations the resulting rotation
should be, i.e. the blending factor.

In short, when the system arrives at this point, it has a list of active animations,
which frame and sub-frame they are in and Lead-In / Lead-Out times for them.
(See figure 2.5 for an example). With sub-frame I mean the point between two
frames in an animation. For example, a running animation could be in frame
1.5 that means halfway between frame 1 and 2.

Active Animation Time
(frames)

Length
(#frames)

Loop Lead-In
(#frames)

Lead-Out
(#frames)

Walking 5.5 10.0 TRUE - -
Waving 3.6 20.0 FALSE 5.0 5.0

In the figure above, the character is currently walking and waving at the same
time. He happens to be exactly halfway between keyframe 5 and keyframe 6 of
the walking animation which is 10 frames long, and has just begun waving his
arm being little more than halfway between keyframe 3 and 4 in the 20 frames
long waving animation.

The walking animation is a looping animation and the waving animation
should be smoothly blended in with a Lead-In since the Time is less than the
Lead-In time.

This leads to the question what the Lead-In / Lead-Out functions should look
like. The three functions in figure 2.6 shows different possible functions to use.
All of them result in jerky motion in special cases though the first one worked
for almost all test cases.

Fig 2.6 Three different lead-in functions going from 0.0 to 1.0.

Fig 2.5 An example of two running animations to be blended, a walking and a waving animation.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 24 of 53 Lund Institute of Technology

A lot of experimenting arrived at the conclusion that the Lead-In / Lead-Out
functions for a specific animation should depend on the currently active set of
animations. This is because of the large differences in weight functions
between some skeleton joints and certain animations.

For example, the arm in the waving animation had a way of jerking when
starting the Lead-In transition. This happened because of a factor difference
between the arm weight in the walking animation, which was already active
and the new waving animation which was in a Lead-In transition. In this
particular case the arm had a very small weight, 10 for some frame in the
walking animation, and an extremely heavy weight, 100.000 for some frame in
the waving animation. The Lead-In function should either take this into
account, or the system would need better weight-functions for the animation
taking Lead-In and Lead-Out into account as well. The latter case would be too
specialized and wouldn’t work for some cases so the first alternative should be
used which changes with the animations already active.

A method for blending animations together will now be described. The method
uses a summation function that for parameters takes any number of quaternion
rotations, one for each animation A1, A2, etc., their weight for a specified frame
and then calculates a final output rotation.

The last problem of blending quaternion rotations together is to define
I(w(A1),w(A2)) which is a function from 0.0 to 1.0 deciding how to blend two
rotations into a single rotation. This rotation will have a new weight wres which
can be calculated as the combined weight w(A1+A2) = w(A1)+ w(A2) as well.
This can be used for adding more than two animations together:

How should I(w1(t),w2(t)) be defined? When first introduced I only said it was
a function that compares to weights and returns a value from 0.0 to 1.0. If an
animation is running with a ten times higher weight than another, should it be a
linear factor 10 times more in that direction than the other? This is one way to
do it of course but to almost totally take over an animation in some bones, the
weights would have to be set ridiculously high for those bones in that
animation. Typically you would want to set the weight to only two or three
times the weight of another animation and still expect it to be the totally
dominating one when compared to each other.

...)()()()(321 +++== ∑ AQAQAQAQQres i

)))(),((),(),(()()(212121 AwAwIAQAQSLERPAQAQ =+

)))(),((),())),(),((),(),((()()()(32132121321 AwAAwIAQAwAwIAQAQSLERPSLERPAQAQAQ +=++

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 25 of 53 Lund Institute of Technology

Figure 2.7 shows two different I(w1(t),w2(t)) functions (the figures only show
the denominator part of the equations for clarity) with function (2) being much
stronger in the sense that a small difference in weight means a much greater
dominating presence of the animation with the heavier weight.

2.5 Inverse Kinematics Joints

In addition to using prerecorded animation data, the system allows for other
animation controllers to be used. One is the Inverse Kinematics Joint controller
(IKJ) which can animate a character interactively. For example, the character
neck could be controlled by an IKJ and interactively make the character look in
different directions. With WSA the controller just blends into the other
animations.

Real inverse kinematics could also be attached to the system to enable the
character to point with his hand and arm or do other interactive animations
blended with motion-captured animations. This would be really useful with
several interacting characters as well.

2.6 Synchronized transitions between looped animations

To be able to transition between looping animations in a realistic manner, for
example switching from a walking to a running animation, the two animations
must comply with a single rule. To always start and stop in the same way. For
example, starting out with the left foot going forward in both the walking and
the running animation.

If this rule is followed, the animation prototype is able to do a transitioning
between two looping animations. The system calculates the speed of both

110
1

),()2()2log(/)/log(212 21 +
= wwwwI

12
1

),()1()2log(/)/log(211 21 +
= wwwwI

Fig 2.7 Two different I(w1(t),w2(t)) functions.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 26 of 53 Lund Institute of Technology

animations and interpolates a transition from the first animation to the other.
The speed is used to calculate what frame should be shown in both animations.

To see why this is so, consider a transition from a walking animation loop to a
running animation loop. The walking animation is slower than the running
animation and has therefore more frames. A transition will look natural if the
speed of the two animations slowly blend together. If we have a framerate of
20 frames per second, a walking animation with 20 frames and a running
animation with 10 frames, the speeds of the animations are 1 complete walking
cycle per second and 2 complete running cycles per second. These speeds must
now be interpolated from the first to the second if a transition is to be made.
Using this scheme for looped animations removes the strange motions which
can appear when transitioning.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 27 of 53 Lund Institute of Technology

3. Animation engine prototype result

This chapter shows the program developed to try out the WSA animation
system. Some resulting animations that were created are shown and analyzed.

3.1 The WSA Animator

Figure 3.1 shows the output window of the BDA1 Animator program written by
the author using the WSA animation system. The viewport to the right shows a
character system as vertices, edges and bones. This is the user view where the
user can rotate the character around to get a better view while binding the mesh
to the skeleton and testing various animations. The three smaller viewports to
the left in figure 3.1 shows the top, front and left of the character with different
view settings. Top and left view shows only the skeleton while the front view
shows polygons and light with no texture attached. These viewports can be
used for a better view of the animations and the user may configure them
according to preference.

Figure 3.2 shows the main control dialog where the user selects viewport
settings, bind the mesh to the skeleton and toggles from mesh binding mode to
animation mode. The user can set the desired framerate for the resulting
animation. It is in this dialog that the user sets the WSA weights for the bones
used in different animations.
1 BDA is the engine developed by SouthEnd Interactive AB (www.southend-interactive.com)

Fig 3.1 The BDA Animator program’s main output window.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 28 of 53 Lund Institute of Technology

Figure 3.3 shows the animation blending control dialog where the user can load
animations into one of four slots. He can set starting times for the animations
and lead-in / lead-out times for them as well as number of loops. At the bottom
of the dialog are the animation controls which can start, stop and rewind an
animation. There are buttons to save and load an animation setup for later.

Fig 3.2 The main control dialog for the BDA Animator.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 29 of 53 Lund Institute of Technology

The last figure 3.4 shows the animation blending control dialog loaded with the
blended walking and waving animation. It shows the character fully textured in
the large user viewport.

Fig 3.4 A walking and waving blended animation in the BDA Animator program.

Fig 3.3 The animation control dialog for the BDA Animator.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 30 of 53 Lund Institute of Technology

3.2 The blending results

This section analyzes WSA by conducting a series of tests that are empirically
evaluated using subjective criteria.

3.2.1 The basic animation set

A number of motion-captured animations were chosen to test the animation
system. Below is the complete list of the test animations.

Animation # frames Description
(A1) Standing Idle 60 The character stands idle, breathing and

moving his fingers and head a little.
(A2) Walking 38 The character walks forward with a little

attitude.
(A3) Running 17 The character sprints really fast with large

arm and leg movement.
(A4) Jumping 101 The character makes a jump from a standing

position.
(A5) Rolling 67 The character throws himself forward from

a standing position and rolls on his shoulder
and back to a standing position.

(A6) Waving 41 The character waves his left arm high above
his head.

(A7) Guards Up 30 The character moves his arms and fists in
front of his chest and face for protection
(like a boxer).

(A8) Punch Right 14 The character punches a straight punch
using his right arm.

(A9) Punch Left 14 The character punches a straight punch
using his left arm.

Fig 3.5 A list of basic animations used for conducting WSA evaluation.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 31 of 53 Lund Institute of Technology

Below is a detailed description of the nine basic animations covering how they
are weighted to different bodyparts and why.

A1 Standing Idle
This animation is a simple animation of the character standing still, his chest
heaving when he breathes, and his fingers flexing from time to time. It is
looped. The entire skeleton is only weighted with a low weight since almost
any animation supercedes this one.

A2 Walking
This animation is a walking loop with a little attitude in the way that the
character moves. The legs of the skeleton are weighted with heavy weight since
they are important for this animation, and the arms are weighted with medium
weight since they are of little importance for the balance while walking. The
rest of the skeleton is low weight.

A3 Running
This animation is a running loop with the character sprinting at full speed using
almost an exaggerated motion. As in the walking animation, the legs are very
important and get a heavy weight while the arms get a medium weight and the
rest is low weight.

A4 Jumping
In this animation the character goes from a standing still position to a jump and
back to standing still again. He uses his arms and legs to get momentum. It is
not looped. In this animation, the spine and legs are heavy weight with arms of
medium weight. The rest is low weight.

A5 Rolling
This animation is a forward roll. The character throws himself forward and
rolls over his shoulder and back to a sitting and then standing position. At the
end of the animation he uses his arms to get the momentum he needs to rise
quickly and with balance. It is not looped. The entire skeleton is important in
this animation and therefore everything is heavy weight.

A6 Waving
In this animation the character waves his left arm from a standing position. It is
not looped. The left arm is important and is weighted heavy, part of the spine
gets medium weight, the rest is low weight.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 32 of 53 Lund Institute of Technology

A7 Guards Up
In this animation the character protects himself with his arms and hands like a
boxer. It is looped. Only the arms and shoulders are important in this animation
and get heavy weight. The spine gets a medium weight and the rest low weight.

A8 Punch Right
This animation is a straight, forward punch using the characters right arm and
shoulder. The upper body is also used somewhat for positioning. The right arm
is important and gets a heavy weight, the spine gets medium weight and the
rest low weight.

A9 Punch Left
This animation is a straight, forward punch using the characters left arm and
shoulder. The upper body is also used somewhat for positioning. The left arm
is important and gets a very heavy weight, the spine gets medium weight and
the rest low weight.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 33 of 53 Lund Institute of Technology

3.2.2 Evaluation of blended animations

Animations to test Description
A. Idle to walking Transition from standing idle to walking.
B. Walking to idle Transition from walking to standing idle.
C. Walking to running Transition from walking to running.
D. Running to walking Transition from running to walking.
E. Walking to rolling to
walking

Transition from walking to a roll and back to
walking again.

F. Walking to jumping Transition from walking to jumping.
G. Running to jumping Transition from running to jumping.
H. Walking and waving Blend of a walking and arm waving animation.
I. Running and waving Blend of a running and arm waving animation.
J. Walking and running Blend of walking and running at the same time.
K. Idle and guards up Blend between an idle animation and a guard up

animation (ready to punch).
L. Walking and guards up Blend between a walking animation and a guards

up animation (ready to punch).
M. Running and guards up Blend between a running animation and a guards

up animation (ready to punch).
N. Walking, waving and
guards up

Blend between a running animation and a guards
up animation (ready to punch) and a waving
animation.

O. Running and jumping Blend of running and walking at the same time.
P. Idle and walking Blend of standing idle and walking at the same

time.
Q. Jumping and punching Blend of a punching and jumping animation at the

same time.
R. Jumping and rolling Blend of a rolling and jumping animation at the

same time.

Since it is hard to show the quality of animations in still pictures, I will discuss
the different test cases. What are the problems and how should it be evaluated?
Some of the animations can be found on the web as mpeg movies at my
homepage: www.efd.lth.se/~d94dj. The final result is shown in figure 3.7.

Fig 3.6 The set of test cases used for evaluation of the WSA method.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 34 of 53 Lund Institute of Technology

A. Idle to walking (transition)
The first test case is a simple transition from standing idle to walking in a
looped walk using only two small animations (A1) and (A2) from figure 3.5.

This transition worked very well with both small and large lead-in times, but
about ten frames seemed to be best since the start frame of the walking
animation was so different from the idle animation.

B. Walking to idle (transition)
This test case is the reverse of test A above, a transition from walking to
standing still using only the two same small animations (A1) and (A2) from
figure 3.5.

This transition also worked very well with both small and large lead-in times
but about ten frames seemed to be best for the reason as in test case A.

C. Walking to running (transition)
This test makes a transition from walking to running. Both animations start
with the same foot and both animations complete one cycle of animation but
with different number of frames since the walk is slower than the run. The test
used animations (A2) and (A3).

The two animations used for this transition had to be synchronized together as
discussed in section 2.6 to achieve good results in all startup cases. A lead-in /
lead-out time of six to ten frames looked best.

D. Running to walking (transition)
This test makes a transition from running to walking. The test used animations
(A2) and (A3).

The two animations used for this transition also had to be synchronized
together to achieve good results in all startup cases. A lead-in / lead-out time of
about ten frames looked best.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 35 of 53 Lund Institute of Technology

E. Walking to rolling to walking (transition)
This test makes a transition from walking to rolling and back to walking again.
The test used animations (A2) and (A5).

The resulting animation looks very good even though the rolling animation
begins in a standing position. A lead-in and lead-out time of about ten looks
best.

F. Walking to jumping (transition)
This test makes a transition from walking to jumping. The test used animations
(A2) and (A4).

The resulting animation looks very good even though the jumping animation
begins in a standing position. A lead-in and lead-out time of about ten looks
best.

G. Running to jumping (transition)
This test makes a transition from running to jumping. The test used animations
(A3) and (A4).

The resulting animation looks very good even though the jumping animation
begins in a running position. A lead-in and lead-out time of about ten looks
best.

H. Walking and waving (blending)
This is the first blending test case. The character walks using the cycled
walking loop (A2) and wave his left arm using animation (A6).

The resulting animation looks exactly as predicted. The character walks and
waves his arm in a natural way. A lead-in and lead-out time of about five to ten
for the waving animation looks best.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 36 of 53 Lund Institute of Technology

I. Running and waving (blending)
This is also a non-transitioning test case. The character runs using the cycled
running loop (A3) and wave his left arm using animation (A6).

Yet again the resulting animation looks exactly as predicted. The character runs
and waves his arm independent of each other in a natural way. A lead-in and
lead-out time of about five to ten for the waving animation looks best.

J. Walking and running (blending)
This is an interesting test case since the animations to blend are very
interdependent. The animations used are the walking animation (A2) and the
running animation (A3).

A variation of the synchronization discussed in section 2.6 was used to get the
same number of frames in the two looping cycles. If no synchronization is used
the resulting animation still works but the legs move in an unnatural way since
the walking animation might retract a leg at the same time as the running
animation extends it which results in unnatural movement.

K. Idle and guards up (blending)
This is another example of animation blending with an animation of the
character standing about idle (A1) and another animation where the character
protects himself using arms and hands like a boxer (A7).

The resulting animation looked very good and natural. A lead-in time and lead-
out time of ten to fifteen frames looked best for the guard animation.

L. Walking and guards up (blending)
This is another example of animation blending with an animation of the
character walking (A2) and another animation where the character protects
himself using arms and hands like a boxer (A7).

This resulting animation also looked very good and natural. A lead-in time and
lead-out time of ten to fifteen frames looked best for the guard animation.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 37 of 53 Lund Institute of Technology

M. Running and guards up (blending)
This is yet another example of animation blending with an animation of the
character running (A3) and another animation where the character protects
himself using arms and hands like a boxer (A7).

The resulting animation looked very good although it was a bit stiff in the
upper body. This could be corrected by changing the weights of the upper body
in any one or both of the source animations.

N. Walking, waving and guards up (blending)
This animation will blend three different animations together. It uses the
running animation (A3), the waving animation (A6) and the guards up
animation (A7).

The resulting animation looked very good and natural. Lead-in times of about
ten to fifteen were best for the guards up animation and about ten for the
waving animation.

O. Running and jumping (blending)
This animation will blend the jumping animation (A4) and running animation
(A3) at the same time. The predicted result should be a character continuing to
run in the air while jumping.

The resulting animation looked exactly as predicted and the character made a
running jump instead of one standing still. A lead-in time of ten for the
jumping animation and a lead-out of about five to ten looked the best.

P. Idle and walking (blending)
This animation will blend the animation of the character standing idle (A1) and
the walking animation (A2).

Since no part of the idle animation is truly important in the animation itself we
would suspect the result to be the walking animation itself, and this was exactly
what happened.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 38 of 53 Lund Institute of Technology

Q. Jumping and punching (blending)
This animation will blend the animation of the character jumping (A4) and the
two punching animations (A8) and (A9).

The result looked natural although it was a bit tricky to set appropriate lead-in
and lead-out times for the punching animations. A lead-in of about 2 frames
and a lead-out of five frames seemed to work best. The punches looked a bit
awkward since the character uses his arms so much in the jumping animation
too.

R. Jumping and rolling (blending)
This animation will blend the animation of the character jumping (A4) and the
rolling animation (A5). Since both animations uses the entire skeleton it could
lead to problems.

The result as seen above was way above expectations and could certainly be
tweaked by setting rules in the interactive system as to when the animations
could be triggered. This testcase shows a weakness of the system. The blending
unit doesn’t use any constraints or laws of physics to determine how a blended
move should result! Future additions in this area could possibly solve this
problem. Most users of this animation system should be able to work around
this weakness and use WSA without these kind of blended animations.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 39 of 53 Lund Institute of Technology

3.2.3 The results

Animation Type Result
A. Idle to walking Trans. Very good results.
B. Walking to idle Trans. Very good results.
C. Walking to running Trans. Very good results if

synchronized. Otherwise only
acceptable.

D. Running to walking Trans. Very good results if
synchronized. Otherwise only
acceptable.

E. Walking to rolling to walking Trans. Very good results.
F. Walking to jumping Trans. Very good results.
G. Running to jumping Trans. Very good results.
H. Walking and waving Blend. Very good results.
I. Running and waving Blend. Very good results.
J. Walking and running Blend. If synchronized together the

result is very impressive,
otherwise very unnatural.

K. Idle and guards up Blend. Very good results.
L. Walking and guards up Blend. Very good results.
M. Running and guards up Blend. A bit stiff in the upper body,

otherwise good results.
N. Walking, waving and guards up Blend. Very good results.
O. Running and jumping Blend. Very good results.
P. Idle and walking Blend. Very good results.
Q. Jumping and punching Blend. Good results although a bit

awkward.
R. Jumping and rolling Blend. Way above expectations.

Especially if constraints are set
as to when the animations can
be triggered.

As can be seen in the table above (figure 3.7) the results are quite impressive,
for the chosen test cases. To make the animation system fail, you would have to
blend totally impossible animations together such as walking in two directions
at the same time.

Fig 3.7 The results of the blending animation system.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 40 of 53 Lund Institute of Technology

4. Conclusions and future work

The previous chapter showed great results by using the WSA method and still
having moderate computational cost and memory footprint. We solved the
difficulties with Lead-In / Lead-Out functions, added Inverse Kinematics joints
and weighted an arbitrary number of animations together.

The system is currently implemented into the BDA Engine by SouthEnd
Interactive (www.southend-interactive.com), and is running perfectly without
seams or jerkiness.

Future additions to the animation engine will include IK restraints and
advanced collision detection subsystems. By adding IK restraints, it will be
impossible to blend into impossible poses, for example bending the arm so that
it would break. Advanced collision detection will make it possible for the
character to for instance walk up a staircase and interact in a natural way with
his environment. Building in the laws of physics and dynamics should make it
possible to blend even the most complex animations together and will also be
added in the future.

The method also lends itself to other forms of animation, like facial animation,
which will also be incorporated into the system in the near future. Facial
animation is a set of bones inside the character head, which can be be animated
using WSA. Therefore we can simply apply the same blending rules and
SLERP functions to interpolate different facial expressions.

To optimize animation, reduced detail in the skeleton and mesh will be added
so that characters far from the viewpoint or not in focus will use less CPU time.

Fig 4.1 A successful blend between a walking and a waving animation.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 41 of 53 Lund Institute of Technology

This can be achieved by having several levels of detail (LOD) of both the
skeleton and the mesh itself.
Other future development include ways to flex bones and create effects like
bulging muscles, etc. But it will of course cost some additional CPU time. With
faster and faster computers and 3D hardware, we will soon see detailed
characters easily rivaling the ones seen in movies and cut-scenes.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 42 of 53 Lund Institute of Technology

5. References

[1] Foley, J.D., van Dam, A, Feiner, S.K. and Hughes, J.F.
Computer Graphics – Principles and Practice – Second Edition in C
Addison-Wesley, Reading MA
1996

[2] Watt, A. and, Watt, M.
Advanced Animation and Rendering Techniques – Theory and practice
Addison-Wesley, Reading MA
1995

[3] Bobick, N.
Rotating Objects Using Quaternions
Game Developer Magazine article, Miller Freeman Inc.
February 1998

[4] Lander, J.
Slashing Through Real-Time Character Animation
Game Developer Magazine article, Miller Freeman Inc.
April 1998

[5] Corley, S.
Architecting A 3D Animation Engine
Game Developer Magazine article, Miller Freeman Inc.
April 1998

[6] Steed, P.
The Art of Quake 2
Game Developer Magazine article, Miller Freeman Inc.
April 1998

[7] Knight, D. and Tolles, T.
When Motion Capture Beats Keyframing
Game Developer Magazine article, Miller Freeman Inc.
September 1997

[8] Ridgway, W.
Incorporating Motion Capture Animation into an AI Engine
Game Developer Magazine article, Miller Freeman Inc.
June 1998

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 43 of 53 Lund Institute of Technology

[9] Rodgers, J.
Animating Facial Expressions
Game Developer Magazine article, Miller Freeman Inc.
November 1998

[10] Lander, J.
Oh My God, I Inverted Kine!
Game Developer Magazine article, Miller Freeman Inc.
September 1998

[11] Lander, J.
Making Kine More Flexible
Game Developer Magazine article, Miller Freeman Inc.
November 1998

[12] Steed, P.
No Pain, No Gain: Implementing New Art Technology in Quake 3:
Arena – G.D. Magazine article
Game Developer Magazine article, Miller Freeman Inc.
December 1999

[13] Lee, A.W.F., Dobkin, D., Sweldens, W. and Schröder, P.
Multiresolution Mesh Morphing
Princeton University

[14] Lander, J.
Read My Lips: Facial Animation Techniques
Game Developer Magazine article, Miller Freeman Inc.
June 1999

[15] Steed, P.
Mo-Cap and Keyframing, Sittin’ in a Tree
Game Developer Magazine article, Miller Freeman Inc.
November 1999

[16] Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A.
and Thalmann, D.
Real-Time Animation of Realistic Virtual Humans
IEEE Computer Graphics and Applications
September / October 1998

[17] Earnshaw, R., Magnenat-Thalmann, N., Terzopoulos, D.
and Thalmann, D.
Computer Animation for Virtual Humans
IEEE Computer Graphics and Applications
September / October 1998

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 44 of 53 Lund Institute of Technology

 [18] Rose, C., Cohen, M.F. and Bodenheimer, B.
Verbs and Adverbs: Multidimensional Motion Interpolation
IEEE Computer Graphics and Applications
September / October 1998

[19] Willis, P.J.
Computer Animation and Human Animators
Proceedings of the Winter School of Comp. Graph. and Visualization
1995

[20] Sowsy, D.
A Survey of Animation Techniques (Computer Graphics 2: 91.547)
Published on the web.
 (http://www.cs.uml.edu/~dsowsy/coursework/AnimPaper.html)

[21] The Character Animation FAQ
Maintained by Hexapod (hexapod@netcom.com)
Published on the web.

 (http://www.flipcode.com/documents/charfaq.html)

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 45 of 53 Lund Institute of Technology

Appendix

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 46 of 53 Lund Institute of Technology

A. Dictionary

Animation Blending Combining several animations to form a new
one. Example, using a walking and a waving
animation to create a walking and waving
animation at the same time.

Animation Transition The transition from one animation to another.
Example, going from a walking to a running
animation.

Bone A bone is a part of a skeleton hierarchy.

D-SKA Deformed Skeleton Animation – Skeleton
Animation with a single mesh skinning the
skeleton.

Forward Kinematics (FK) The reverse of IK (Inverse Kinematics). Using
FK you have to start in the root node of a
skeleton and animate each bone in turn before
traversing deeper down into the skeleton
hierarchy. See Inverse Kinematics.

FPS Frames per second.

Framerate Frames per second.

In-between An in-between frame is an interpolated frame
between two keyframes. See Interpolation.

Interpolation To calculate positions or rotations between
keyframes.

Inverse Kinematics (IK) A way to set a position for a bone and having
the skeleton hierarchy follow along. For
example, using IK you can just set the hand of
a character in a certain way and the arm bones
will automatically be positioned. The reverse
of IK is FK (Forward Kinematics). IK is
expensive for the CPU because of the math
involved. See Restraints and Forward
Kinematics.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 47 of 53 Lund Institute of Technology

Keyframe A keyframe (or key) is set for each change in
an animation on discreet times depending on
the animation framerate. If a higher output
framerate is desired the program will have to
interpolate between keyframes.

L-SKA Linked Skeleton Animation – Skeleton
Animation with separate bodyparts / objects
for each bone.

Mesh The polygons and points describing a character
or object.

Morphing Interpolation of vertices in a mesh to animate
the change from one mesh to another.

Node A node is the place where two or more bones
meet in a skeleton hierarchy.

Quaternion Quaternions are a mathematical tool and are
really unit vectors on the 4D sphere. They can
describe 3D rotations in a better way than
ordinary rotation matrices.

Restraints Restraints are used to set rules for rotations in
a skeleton so that unnatural movements can’t
be done. See Inverse Kinematics.

SKA Skeleton Animation (see Skeleton). A way to
animate a character using a skeleton put inside
the mesh. The skeleton controls the mesh and
if a bone is moved, part of the mesh is moved
as well.

Skeleton A skeleton is a “tree” of bones building the
necessary joints inside the character. Instead of
animating the mesh, a program can animate the
skeleton.

Skinning Another word for having a skeleton inside a
mesh and then animating the skeleton to make
the skin (mesh) move naturally.

VEA Vertex Animation. A way to animate a
character using stored keyframe positions for
each vertex in the mesh.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 48 of 53 Lund Institute of Technology

B. Quaternion Example

This appendix will show an example quaternion class written in C++ and
compiled with Microsoft Visual Studio 6.0. Any ANSI-compliant compiler
should be able to compile the code.

Defining the quaternion class

Below is the header code for the class itself.

The class itself uses a few other classes such as Matrix and Vector that are
defined later in this chapter.

(x,y,z) is the vector part and w is
the scalar part of the quaternion.

Note the constructor to the left uses
SLERP interpolation of two other
quaternions to create a new one.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 49 of 53 Lund Institute of Technology

Below follows the implementation of the various member functions and
constructors declared above.

This is a constructor which creates a quaternion
from a vector v with no rotation around it.

This constructor creates a rotation quaternion using
a vector v and a rotation angle (using radians)
around that vector.

An empty constructor setting the entire quaternion
to zero.

This constructor converts Euler angles (yaw, pitch, roll) to
a quaternion rotation. If anti is true the rotation is made as
ZYX not XYZ order..

Here is another interesting constructor creating a quaternion
from a rotation matrix morg.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 50 of 53 Lund Institute of Technology

This is the single most interesting constructor. It uses SLERP
interpolation to create a rotation from two other unit quaternions
q1, q2 and a step value between them (0.0 - 1.0).

This function normalizes the quaternion
(makes the length one). x2+y2+z2+w2 = 1

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 51 of 53 Lund Institute of Technology

This function reverses the rotation. It really
reverses the vector part of the quaternion
which in effect means rotating in reverse.

This function multiplies the
quaternion with another
quaternion quat and returns the
resulting quaternion.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 52 of 53 Lund Institute of Technology

As promised, below follows the (abbreviated) matrix and vector classes used in
the code above.

The 4x4 matrix components.

Realtime Character Animation Blending Using Weighted Skeleton Hierarchies

Jeppsson page 53 of 53 Lund Institute of Technology

Of special interest in the Matrix class is the constructor creating a rotation
matrix from a quaternion rotation:

Using the quaternion class

After having defined these classes how does one use them? First of all we want
to use the quaternion to simply rotate a vector:

The example shows how a vector can be converted to a quaternion, rotated by
multiplying with the quaternion to the left and the inverse of the quaternion to
the right. The resulting quaternion can then be converted back to a vector by
simply removing the scalar (w) component.

Another example is shown below. It creates two different quaternions out of
two rotation matrices and interpolates them using the SLERP constructor to the
rotation halfway between them. Last of all it converts back to a matrix for
future use in for example a 3D pipeline:

