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Abstract

This thesis presents a novel method for importance sampling the product of two-
dimensional functions. The functions are represented as wavelets, which enables rapid
computation of the product as well as efficient compression. The sampling is done by
computing wavelet coefficients for the product on-the-fly, and hierarchically sampling
the wavelet tree. The wavelet multiplication is guided by the sampling distribution.
Hence, the proposed method is very efficient as it avoids a full computation of the prod-
uct. The generated sampling distribution is superior to previous methods, as it exactly
matches the probability density of the product of the two functions. As an application,
the method is applied to the problem of rendering a virtual scene with realistic mea-
sured materials under complex direct illumination provided by a high-dynamic range
environment map.
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1 Introduction

Many applications in science involve complicated integrals that need to be evaluated ef-
ficiently. Often, the integrand is a multi-dimensional function and no analytical solution
exists. To evaluate such integrals, a common approach is to use Monte Carlo integration,
which relies on random sampling. Essentially, the value of the integral is approximated as the
average of the function values sampled at a number of different locations, chosen at random
in the integration domain. Monte Carlo sampling is a powerful tool, as it gives an unbiased
estimate of the true value, together with a statistical error bound for the estimate. However,
the convergence rate is slow, making the method computationally expensive.

The performance can be improved if we incorporate knowledge about the function being
integrated into the sampling process. The idea is to concentrate samples to parts of the
function where it is likely to be large. This technique is called importance sampling, and can
vastly reduce the variance in Monte Carlo techniques.

One way of importance sampling a high-dimensional function is to express the function as
Haar wavelets, and use a probabilistic sampling algorithm. Haar wavelets are basically a
set of basis functions, constructed so that they make up an orthonormal basis with certain
useful properties. Wavelet theory is a relatively new tool in mathematics, which enables both
efficient (lossy) compression and hierarchical reconstruction of the function. By exploiting
the hierarchical properties of wavelets, samples can be distributed very efficiently according
to the wavelet representation.

The first contribution of this work is a new technique for hierarchically sampling a wavelet
tree. The algorithm starts at the coarsest resolution and recursively moves down to finer
resolutions. At each step, the number of samples in different areas of the function domain
is deterministically chosen proportional to the average value of the function in each area.
This way, we can efficiently distribute any number of samples with a single traversal of the
wavelet tree. The end result is a sampling distribution that accurately matches the function,
and gives a lower variance than pure random sampling of the wavelet representation.

It was recently demonstrated that two-dimensional Haar wavelet representations can be di-
rectly multiplied and the compressed result obtained, without first decompressing the func-
tions. Due to the narrow support of the basis functions and the sparsity of the representation,
it is possible to compute the product of two wavelet representations very rapidly. Using this
new theory, we apply wavelet importance sampling to products of functions, something that
has never been done before.

The proposed method is a new general tool for evaluating the integral of a product with
several two-dimensional terms. To show its strengths in a real application, we use wavelet
importance sampling of products to render a virtual scene with realistic measured materials
under complex direct illumination from a high-dynamic range environment map [8].

1



1.1 Previous Work

In this section, we give a brief overview of the previous work on Monte Carlo rendering
and importance sampling. We focus on techniques used in computer graphics, although the
proposed importance sampling scheme is useful in other applications as well.

The use of Monte Carlo techniques for rendering photo-realistic images started with the
seminal work by Cook et al. [6] and Kajiya [14]. Today, a variety of methods exists — see the
book by Dutré et al. [9] for an overview. Common to all methods is that they try to evaluate
the rendering equation [14] as efficiently as possible. The rendering equation involves an
integral over the product of lighting and surface properties:

L(x, ~ωo) = Le(x, ~ωo) +
∫
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi) cos θid~ωi, (1)

where fr(x, ~ωi, ~ωo) is the bidirectional reflectance distribution function (BRDF) of the surface,
Li(x, ~ωi) describes the incident radiance, and cos θi is a simple cosine-term. Most previous
work uses importance sampling of either the BRDF or the incident lighting, while we address
the problem of sampling the product of the two.

A wide range of methods for importance sampling the BRDF exists. Some of the common
analytical BRDF models such as the Phong model, the Ward model, and the Lafortune
model, can be directly importance sampled [35, 39, 18]. See Pharr and Humphreys [32]
for more examples. Other BRDF models, such as the Torrance-Sparrow model, cannot be
analytically inverted, and hence require numerical approximations.

It is becoming increasingly important to be able to use measured BRDF data instead of
analytical models. These data sets are usually very large, and efficient methods for repre-
senting the BRDFs are needed. Lalonde [19] used a 4D wavelet representation of the BRDF,
and presented an importance sampling scheme based on random sampling of the wavelet
tree. Similar methods were used by Claustres et al. [4, 5] and by Matusik [26]. Another
approach is to factorize the BRDF into lower-dimensional terms. For example, Lawrence et
al. [21] presented a technique based on non-negative matrix factorization (NMF) [22]. They
represent the BRDF in Rusinkiewicz’s parameterization [34], which is compact and com-
presses well, and decompose the BRDF into a set of one and two-dimensional terms. These
lower-dimensional terms can then be efficiently importance sampled.

Although BRDF importance sampling significantly improves the result, the technique is best
suited for relatively specular BRDFs. For more diffuse BRDFs, a very large number of
samples are needed to capture a complex lighting environment.

In the case where a scene is illuminated by a high-dynamic range environment map [8], we can
evaluate the rendering equation by importance sampling the environment map instead of the
BRDF. Such techniques have been presented by, among others, Agarwal et al. [1], Kollig and
Keller [17], and Ostromoukhov et al. [31]. These methods resample the environment map by
placing directional lights at the brightest locations, which can be directly used for rendering
the scene. The intensity of each light source is the pre-integrated value of the environment
map over the area the light represents. This is an efficient method for rendering non-specular
materials under environment map lighting as it significantly reduces the complexity of the
environment map, at the expense of precomputing a set of pre-integrated lights. However,
with increasingly specular BRDFs, these methods become inefficient as a very large number
of lights are needed to truthfully represent the environment map.
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In summary, BRDF importance sampling is better suited for specular materials, while envi-
ronment map importance sampling is better for diffuser BRDFs. To address this problem,
Veach and Guibas [38] presented a novel technique for combining estimators in Monte Carlo
methods using multiple importance sampling. Multiple importance sampling is a powerful
method for the case where either the lighting or the BRDF is complex, as it will pick the
best of the available sampling techniques. However, when both the lighting and the BRDF
are complicated, their technique provides a smaller advantage.

Recently, Burke et al. [2] introduced a technique for rendering objects with complex materials
illuminated by an environment map. Their technique uses importance sampling of either the
environment map or the BRDF, and then applies rejection sampling to discard samples for
which the product of the BRDF and the lighting is not large enough to motivate sampling.
This helps reduce the number of samples, but at the expense of densely evaluating the
functions in order to generate samples that are possibly rejected. If both the BRDF and the
lighting are complex, Burke et al. report that more than 90% of the samples are rejected.

1.2 Outline

In contrast to the previous work, our method is capable of efficiently importance sampling
the product of the lighting and the BRDF. In the following sections, we will describe how this
is done by using a compact wavelet representation together with fast wavelet multiplication.
As wavelets play an essential role in the proposed importance sampling scheme, a good
understanding of the basic concepts of Haar wavelets is needed to fully appreciate this thesis.
In Section 2, the Haar basis is reviewed and the theory for wavelet products is explained.

Section 3 first gives a short overview of Monte Carlo integration and importance sampling
in mathematical terms. Then, our method for distributing samples is presented. As a
practical example, we use wavelet importance sampling for rendering a scene under complex
direct illumination. This application is described in Section 4. Implementation details are
given in Section 5. Here, focus is given to the wavelet-specific parts of the system, and
the implementation of the sampling scheme. Important parts of the algorithm are given as
pseudo-code. Finally, results and conclusions are presented and discussed in Section 6 and 7
respectively.
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2 Wavelets

Wavelet theory has its roots in Fourier analysis dating back to 1805. The Fourier transform
decomposes a signal into a sum of sinusoids of different frequency, making it possible to
determine all frequencies present in a signal. It does not, however, give any information about
when they occur. Wavelets address this problem, providing means to analyze a function in
both time and frequency.

Although the term ”wavelets” is relatively new (early 1980s), the concepts have been around
for a long time and were developed independently in the fields of quantum physics, electri-
cal engineering, and seismic geology. In the 1980s, Mallat and Meyer unified the previous
work and developed the theory of multiresolution analysis [23]. In multiresolution analy-
sis, wavelets are used to analyze a signal at many different resolutions. During the last two
decades, many new applications of wavelets have been found. In the field of computer science,
wavelets are used in, for example, data compression, image analysis and computer graphics.

Wavelets are a family of hierarchical and usually orthogonal basis functions with compact
support. Fast wavelet transforms exist, making wavelets practically useful. The simplest
wavelet basis, the Haar basis, was first described already in 1910. The following sections give
a brief introduction to Haar wavelets in one and two dimensions. For further reading, a good
textbook on wavelet theory is recommended [24, 36].

2.1 The Haar Basis

Consider all piecewise constant functions defined on the interval [0, 1) with 2l subintervals of
equal length. The functions can be said to be vectors in the vector space V l. That is, the
space V l includes all piecewise constant functions defined on the unit interval with 2l equal
subintervals. For example, V0 is the space of all constant functions on the unit interval, V1 is
the space of all functions with two constant pieces over the intervals [0, 1

2 ) and [12 , 1), and so
on. Note that every such function with 2l intervals can also be described with 2l+1 intervals.
Thus, the spaces V l are nested:

V0 ⊂ V1 ⊂ V2 ⊂ · · · . (2)

In the Haar basis, a simple set of basis functions are defined for each space V l. The basis
functions are called scaling functions and consist of dilations and translations of a step
function. In the normalized form, the scaling functions are given by:

φl,t(x) := 2l/2φ(2lx− t), t = 0, . . . , 2l−1, (3)

where

φ(x) :=
{

1, for 0 ≤ x < 1
0, otherwise. (4)

A one-dimensional image, F , with 2l pixels can be represented in the basis defined by the
scaling functions as follows:

F =
∑

t

F 0
l,tφl,t, (5)

where the F 0
l,t are called scaling coefficients.
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The scaling functions have a set of corresponding basis functions called wavelet functions,
ψl,t, that are orthogonal to the scaling functions. This means that the inner product of each
scaling function with each wavelet function at the same level is zero. The wavelet functions
are given by:

ψl,t(x) := 2l/2ψ(2lx− t), t = 0, . . . , 2l−1, (6)

where

ψ(x) :=

 1, for 0 ≤ x < 1/2
−1, for 1/2 ≤ x < 1

0, otherwise.
(7)

Note that the wavelet functions ψl,t, together with the scaling functions φl,t for a space V l,
form a basis for V l+1. By induction, this implies that our image F , can be expressed using
only the first scaling function plus a number of wavelet functions:

F = F 0
0,0φ0,0 +

l−1∑
k=0

∑
t

F 1
k,tψk,t, (8)

where the F 1
l,t are called detail coefficients.

2.2 The 2D Haar Basis

The Haar basis can be generalized into two dimensions in two different ways. In the standard
decomposition, the one-dimensional wavelet transform is applied independently on the two
dimensions. The other method, the non-standard decomposition, alternates between opera-
tions on the two dimensions. We are only considering the non-standard decomposition as it
is more suitable for our application, and also slightly more efficient to compute.

In the nonstandard decomposition, the normalized basis functions are given as dilations and
translations of a two-dimensional mother scaling function and three two-dimensional mother
wavelet functions (illustrated in Figure 1):

φl,t(x, y) = 2lφ(2lx− t1, 2ly − t2), (9)
ψm

l,t(x, y) = 2lψm(2lx− t1, 2ly − t2), m = 1, 2, 3, (10)

where we have used vector notation t = (t1, t2) for the translation in two dimensions. The
mother scaling function is given by:

φ(x, y) = φ(x)φ(y), (11)

and the two-dimensional mother wavelet functions are defined as:

ψm(x, y) =

 ψ(x)φ(y), if m = 1,
φ(x)ψ(y), if m = 2,
ψ(x)ψ(y), if m = 3.

(12)

As in the one-dimensional case, a two-dimensional image can be expressed as a sum of the
first scaling function plus the wavelet functions. Here, F is a two-dimensional image with
2l × 2l pixels:

F = F 0
0,0φ0,0 +

l−1∑
k=0

∑
t

∑
m

Fm
k,tψ

m
k,t =

∑
i

FiΨi, (13)

6



φ(x, y) = ψ1(x, y) = ψ2(x, y) = ψ3(x, y) =

Figure 1: The mother scaling function and the three mother wavelet functions. The functions
are +1 where white and −1 where black, and implicitly zero outside the unit square.

In the last step, we have introduced a shorthand notation that combines the first scaling func-
tion and all the wavelet functions into a single set of basis functions Ψi, with corresponding
basis coefficients Fi. The subscript i is a sequential index, with i = 0 for the scaling function
and i > 0 for the wavelet functions. In the next section, this notation will be convenient for
discussing wavelet products.

2.3 Lossy Compression

The wavelet transform effectively analyzes a function in time and space, concentrating the
information to a small number of wavelet coefficients. The rest of the coefficients will be
close to zero. Hence, efficient compression is possible by setting small coefficients to zero.
This compression method is lossy, but in practice a compression factor of 10–100 is realistic
with very little loss of precision.

It is a well-known fact that, for Haar wavelets, the approximation error introduced by dis-
carding some coefficients is the sum of the squares of the discarded coefficients [36]. If F is the
original image, and FA is an image reconstructed from a subset A of the wavelet coefficients,
the L2-error is given by:

||F − FA|| =

(∑
i/∈A

|ψi|2
)1/2

, (14)

where ψi are the detail coefficients. It is obvious that the optimal method for minimizing
the error, is to remove the smallest coefficients in absolute value. In practice, we perform the
compression by thresholding all coefficients against a threshold α, removing all coefficients
with an absolute value below that threshold:

ψ̃i :=
{

0, if |ψi| < α
ψi, otherwise, (15)

where ψ̃i are the detail coefficients for the compressed function. The benefit of thresholding,
as compared to removing a fixed number of coefficients, is that we avoid the time-consuming
process of first sorting all the coefficients.

2.4 2D Wavelet Product

Given two functions expressed in an orthonormal basis, it is possible to multiply them to-
gether and get the product expanded in the same basis. Ng et al. [28] showed how this
can be done for the case where the functions are two-dimensional images represented in the
Haar basis. Let G =

∑
GjΨj and H =

∑
HkΨk be the two images. The wavelet product,

F =
∑
FiΨi, of G and H is then given by:

F = G ·H ⇔
∑

FiΨi =
(∑

GjΨj

)
·
(∑

HkΨk

)
. (16)
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By integrating against the ith basis function, we can directly obtain the ith coefficient for the
wavelet representation of the product F as follows:

Fi =
∫∫

Ψi(x)F (x)dx =
∫∫

Ψi(x)G(x)H(x)dx

=
∫∫

Ψi(x)

∑
j

GjΨj(x)

(∑
k

HkΨk(x)

)
dx

=
∑

j

∑
k

GjHk

∫∫
Ψi(x)Ψj(x)Ψk(x)dx

=
∑

j

∑
k

CijkGjHk. (17)

The terms Cijk are called tripling coefficients, and are given by:

Cijk =
∫∫

Ψi(x)Ψj(x)Ψk(x)dx. (18)

Note that these equations are valid for any domain and suitable orthonormal basis, only
the tripling coefficients will differ. Due to the compact support of the Haar basis functions,
most of the tripling coefficients will be zero. The non-zero coefficients are given by the Haar
tripling coefficient theorem [28]. The integral of three 2D Haar basis functions is non-zero if
and only if one of the following three cases holds:

1. All three are the scaling function. In this case, Cijk = 1.

2. All three functions occupy the same wavelet square, and all are of different wavelet
types. Cijk = 2l, where the square is at level l.

3. Two are identical wavelets, and the third is either the scaling function or a wavelet
that overlaps at a strictly coarser level. Cijk = ±2l, where the third function exists at
level l.

The tripling coefficient theorem is written in general terms, and describes the cases where
the tripling coefficients are non-zero. In this application, where we are looking at a specific
basis function, Ψi, the theorem can be rewritten to make the different cases more clear:

1. Ψi is the mother scaling function:

(a) Ψj and Ψk are also the mother scaling function. Cijk = 1.

(b) Ψj and Ψk are identical wavelets (at any level). Cijk = 1.

2. Ψi is a wavelet function at level l:

(a) All three functions occupy the same wavelet square and all are of different wavelet
types. Cijk = 2l.

(b) Ψj and Ψk are identical wavelets under the support of Ψi and exist at a strictly
finer level. Cijk = ±2l.

(c) One of the wavelets is identical to Ψi, and the other is either the mother scaling
function or a wavelet that overlaps at a strictly coarser level. Cijk = ±2l′ , where
the coarser function exists at level l′.

8



2.5 Optimized Product

As we will show later, in wavelet importance sampling it is unnecessary to compute detail
coefficients for the product, as only the scaling coefficients at each level are needed for sam-
pling. Therefore, we have developed a simplified wavelet product that directly gives the
scaling coefficients for the product. In equation 17, we replace Ψi with the specific scaling
function φl,t, for which we want to compute the scaling coefficient. The scaling coefficient
for the product is then given by:

F 0
l,t =

∫∫
φl,t(x)F (x)dx =

∫∫
φl,t(x)G(x)H(x)dx

=
∫∫

φl,t(x)

∑
j

GjΨj(x)

(∑
k

HkΨk(x)

)
dx

=
∑

j

∑
k

GjHk

∫∫
φl,t(x)Ψj(x)Ψk(x)dx

=
∑

j

∑
k

C ′ijkGjHk, (19)

where C ′ijk are modified tripling coefficients, defined as:

C ′ijk =
∫∫

φl,t(x)Ψj(x)Ψk(x)dx. (20)

As in the general case, a theorem for the computation of these modified tripling coefficients
can be developed. It turns out that the C ′ijk for a scaling function at level l are non-zero if
and only if one of the following two cases holds (see proof in Appendix B.1):

1. Ψj and Ψk are either the mother scaling function or wavelets at strictly coarser levels,
lj and lk. Cijk = ±2lj+lk−l.

2. Ψj and Ψk are identical wavelets under the support of φl,t, and exist at the same or
finer levels. Cijk = 2l.

It is not obvious why this new theorem provides any advantage over the previous general
theorem. A key observation is that the first case corresponds to a multiplication of the
scaling coefficients for G and H at level l that overlap φl,t, scaled by 2l, i.e., a multiplication
of the scaling coefficients G0

l,t and H0
l,t. The derivation is presented in Appendix B.2. Hence,

we can compute scaling coefficients for the product as:

F 0
l,t = 2lG0

l,tH
0
l,t + 2l

∑
l′≥l,t′∈t,m

Gm
l′,t′Hm

l′,t′ , (21)

where the summation is over all wavelet coefficients that are under the support of φl,t. To
use this formula in practice, we must know the values of the scaling coefficients G0

l,t and
H0

l,t. These can easily be computed separately for the two functions, using standard wavelet
reconstruction from their respective wavelet coefficients.

2.6 Implementation

In Appendix C.1, we present pseudo-code for the general two-dimensional wavelet product, as
well as for the optimized product for computing only scaling coefficients. First, we introduce
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a helper function called parent sum (psum). This function was used by Ng et al. [28] in
their computation of wavelet triple products. The parent sum of a square s = (l, x, y) in
a wavelet representation F , is the reconstructed function value over the square, which we
call F (s). The reconstructed value is found by taking the sum of the coefficients of basis
functions overlapping the square, scaled by the value of the corresponding basis functions
over the square we are considering. We implemented the parent sum as a recursive function
that caches the computed values in a hash table, see Appendix C.1.1.

Second, we also define another helper function, which we call children sum (csum). The
children sum of two wavelet representations, G and H, at a square s, is the sum of the
product of the coefficients of identical basis functions that overlap the square at the same
or finer levels. We start by computing all the non-zero children sums and storing them in a
hash table. The children sums are very sparse, since both coefficients for an identical basis
function need to be non-zero for the result to be non-zero. Pseudo-code for computing the
children sums is given in Appendix C.1.2.

Now, with the necessary support functions, psum and csum, it is straightforward to im-
plement the wavelet product. We implement the wavelet multiplication as a function that
takes two wavelets as input, and returns a specific wavelet coefficient for the product, see
Appendix C.1.3. This function can be used in the general case for computing coefficients of
the product of two wavelet representations. For importance sampling, we are only interested
in computing scaling coefficients for the product. Using the theory in Section 2.5, we arrive
at the optimized function described in Appendix C.1.4.
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3 Sampling

In this chapter, we will describe how wavelets can be used for efficient evaluation of integrals,
where we have some prior knowledge of the integrand. Specifically, we are considering the
case when the integrand is a product with several terms, of which some are known functions
and other unknown. We represent the known functions as Haar wavelets and use a novel
method for distributing sample points according to the intensity in different areas. The
samples are used for evaluating the value of the integral through Monte Carlo integration.
The basics of Monte Carlo integration is reviewed in the following section.

3.1 Monte Carlo Integration

We want to estimate the integral of a complicated multi-dimensional function, f(x):

I =
∫
f(x)dx, (22)

for which no analytic solution exists. For one-dimensional integrals, classical numerical
quadrature rules such as the Newton-Cotes formulas and the Gaussian quadratures can be
used. For an overview of these methods, see [7]. In multi-dimensional problems these meth-
ods quickly become inefficient. An alternative is Monte Carlo integration [11, 15], which has
an error bound that decreases by 1/

√
N independent of the dimension of the integral. Monte

Carlo integration relies on random sampling of the integral, and an estimate for the integral
can be written

〈I〉 =
1
N

N∑
n=1

f(xn), (23)

where xn are random points in the integration domain. This estimator is unbiased, which
means it converges to the true value of the integral as N goes towards infinity,

lim
N→∞

1
N

N∑
n=1

f(xn) = I. (24)

It can be shown that the error in the estimate is on average σ(f)/
√
N , where σ(f) is the

standard deviation of f . The variance σ2(f) of f is given by:

σ2(f) =
∫

(f(x)− I)2 dx. (25)

In practice, the variance cannot be computed easily, but an estimate of the variance can be
written:

〈σ2(f)〉 =
1

N − 1

N∑
n=1

(f(xn)− 〈I〉)2 ≈ 1
N

N∑
n=1

(f(xn))2 − 〈I〉2. (26)

For higher dimensional problems, Monte Carlo integration is often the only practically pos-
sible option. However, the convergence rate of 1/

√
N is still relatively slow. To decrease the

error of the estimate, a number of variance reduction techniques can be applied. One such
technique is importance sampling.
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3.2 Importance Sampling

Importance sampling is a powerful technique for reducing the error in Monte Carlo inte-
gration. The idea is to pick sample points according to a distribution that resembles the
function being integrated, instead of using uniformly distributed random points. Mathemat-
ically speaking, this corresponds to a change of integration variables:

I =
∫
f(x)dx =

∫
f(x)
p(x)

p(x)dx =
∫
f(x)
p(x)

dP (x). (27)

We restrict p(x) = dP (x)/dx to be a probability density function, that is, a positive p(x) ≥ 0
function normalized to unity: ∫

p(x)dx = 1. (28)

By drawing random numbers from the density function p(x), we can estimate the integral
as:

〈I〉 =
1
N

N∑
n=1

f(xn)
p(xn)

. (29)

The average error of the estimate is now given by σ(f/p)/
√
N , where an estimator for the

variance σ2(f/p) can be written as:

〈σ2(f/p)〉 ≈ 1
N

N∑
n=1

(
f(xn)
p(xn)

)2

− 〈I〉2. (30)

It is easy to show that the best possible solution is p(x) = |f(x)|/I, which reduces the variance
to zero. But, if we already knew the value of I, there would be no reason to estimate the
integral. In practice, p(x) is chosen so that it approximates |f(x)| as closely as possible, and
so that we can efficiently draw random numbers from p(x).

3.3 Distribution of Samples

For importance sampling, we need random numbers with a distribution that follows some
density function p(x). One way of generating such numbers is to find a transformation that
transforms a sequence of uniformly distributed random numbers in [0, 1] into a sequence with
the desired distribution. If the analytical inverse of the cumulative distribution function P (x)
is known, the inverse transform can be directly applied. Given a sequence of uniform random
numbers u, the transformed sequence is then given by:

x = P−1(u). (31)

However, the inverse P−1(u) is often not known, so we have to resort to other methods. In,
for example, the acceptance-rejection method, random numbers are generated according to
some other density function h(x) and then compared to the target function p(x). Points that
are inside p(x) are accepted and the rest rejected. The function h(x) is often chosen to be
the uniform density function, or some other function whose cumulative distribution function
can be easily inverted.

As a side note, it is worth mentioning that the error in Monte Carlo integration can be further
reduced by using quasi-random numbers instead of ordinary random numbers. Quasi-random
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numbers are deterministic and designed to sample the d-dimensional space as uniformly as
possible. As long as the integrand is smooth, the error bound will decrease faster than σ/

√
N .

For an overview of quasi-random sequences, see the book by Niederreiter [30].

3.4 Wavelet Importance Sampling

In this section, we will describe how wavelets can be used for generating samples distributed
according to an arbitrary function. The function is assumed to be two-dimensional, although
the same techniques can be used in the general case with only minor modifications.

3.4.1 Preliminaries

Our goal is to distribute samples according to the probability density function p(x) =
|f(x)|/I, where I is the integral over f(x). In this work, we consider the case where f(x) is
a positive two-dimensional function.

In wavelet importance sampling, we approximate the function f(x) with an image F (x),
expressed in the Haar wavelet basis. For simplicity, the image is defined to cover the unit
square. Consider a wavelet square s = (l, t) at level l and translation t. The square has an
area of A(s) = 2−l×2−l = 2−2l. The average function value over the square s, can be found by
integrating the function over s. However, due to the constant and disjoint scaling functions,
the average function value is given by the scaling coefficient for the square as follows:

F (s) =
∫∫
s

F (x)dx = 2l

∫∫
φ0

l,t(x)F (x)dx = 2lF 0
l,t, (32)

where the 2l factor is derived from the area of the square and the value of the scaling function
over the same. Hence, at the top level, the first scaling coefficient holds the average value
over the whole image:

I =
∫∫

F (x)dx = F 0
0,0. (33)

Thus, the probability density of the square s, is given by:

p(s) =
F (s)
I

= 2l
F 0

l,t

F 0
0,0

, (34)

which leads to the conclusion that the probability of placing a sample at a coordinate x
within the square s, should be equal to:

P (x ∈ s) = p(s)A(s) = 2−2lF (s)
I

= 2−l
F 0

l,t

F 0
0,0

. (35)

For recursive algorithms, it is useful to know the conditional probabilities for each child
square, given that the parent square is sampled. Let s be the parent square at level l, and let
si, i = 1 . . . 4, be the four child squares at level l+ 1. The conditional probability for each of
the four children can be expressed in the function values for the parent and child squares as:

P (x ∈ si|x ∈ s) =
P (x ∈ si)
P (x ∈ s)

=
2−2(l+1)F (si)/I

2−2lF (s)/I
=

1
4
F (si)
F (s)

, (36)
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and similarly expressed in scaling coefficients as:

P (x ∈ si|x ∈ s) =
P (x ∈ si)
P (x ∈ s)

=
2−(l+1)F 0

l+1,ti
/F 0

0,0

2−lF 0
l,t/F

0
0,0

=
1
2
F 0

l+1,ti

F 0
l,t

. (37)

Now, with the probabilities defined, there are different ways of sampling the wavelet tree.
First, a method for generating a single sample through random sampling is presented. Then,
our methods for generating multiple samples are described.

3.4.2 Random Sampling – Single Sample

A näıve solution for sampling the wavelet representation, would be to build a histogram of the
probabilities for all wavelet squares at the finest resolution, and choose one of them based on
a random number. However, this method requires a full reconstruction of the wavelet image,
and does not exploit the hierarchical properties of the wavelet basis.

Instead, the sampling can be done by treating the probabilities as a decision tree. Starting
with a uniform random number at the top level, a recursive search is performed. At each level,
the random number decides which of the child quadrants to sample, based on the probability
associated with each square. Practically, this can be done by building a simple histogram of
the four child probabilities at each level. During sampling, the function is reconstructed on-
the-fly from the wavelet representation, and the function values are used for computing the
conditional probabilities using Equation 36. At the finest resolution, a sample point is placed
at random within that pixel, and the recursion terminates. This algorithm is illustrated in
Figure 2, and given as pseudo-code in Appendix C.2.1.

Figure 2: Random sampling of the wavelet tree through a recursive search based on the
probabilities at each level. In the final square, a single sample point is placed at random.

This method of random sampling a wavelet representation was introduced by Lalonde [19],
and was also used by Claustres et al. [4, 5] and Matusik [25]. In some applications such as
path-tracing, only one sample at the time is needed. However, in our application, where we
want to generate many samples from the same distribution, this method of random sampling
becomes inefficient. To generate N samples, the above recursive search has to be repeated
N times.

3.4.3 Random Sampling – Multiple Samples

The above described algorithm for generating a single sample according to the wavelet repre-
sentation, can be easily extended to generate many samples in a single recursive tree traversal.
Let Ntotal be the total number of samples to generate. The modified algorithm proceeds in
the same manner. Starting at the top level, the probabilities are treated as a decision tree,
but instead of just picking a single child quadrant to sample, we place Ntotal samples accord-
ing to the conditional probabilities of the four children. In practice, we do this by building
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a histogram over the four child probabilities as before. Let N(si) be the number of samples
placed in each of the child squares si, i = 1 . . . 4.

The process is repeated recursively for the child quadrants that have at least one sample allo-
cated, i.e., where N(si) > 0. For each of those squares, N(si) samples are distributed over its
children, and so on. The recursion terminates at the finest resolution, and sample points are
placed at random within the sampled pixels as before. Pseudo-code for our implementation
of this algorithm is given in Appendix C.2.2.

3.4.4 Deterministic Sampling – Multiple Samples

The main disadvantage of the random sampling algorithms is that there is no guarantee that
the generated sampling distributions are well spread out over the function domain. Due to
the randomness, clumping of samples often occur, and we arrive at situations where large
portions of the integration domain are not being sampled. Note, however, that the sample
points still have the correct distribution.

In this section, we introduce a deterministic variant of the above random sampling scheme
that is capable of directly generating multiple samples according to the wavelet representation
of an importance function. The new algorithm provides variance reduction by producing a
sampling distribution that more uniformly covers the function domain. Input to the algorithm
is the number of samples to generate, and output is a list of sample points with a distribution
that follows our wavelet approximated importance function F .

Let Ntotal be the total number of samples to generate over the whole function, and N(s) be
the number of samples to place in a given wavelet square s. The expected value of N(s) is
given by:

E[N(s)] = NtotalP (x ∈ s), (38)

where we have multiplied the total number of samples by the probability of sampling the
square (Equation 35). Similarly, we can express the expected number of samples for each of
the four child squares si, using the conditional probabilities defined earlier:

E[N(si)] = N(s)P (x ∈ si|x ∈ s). (39)

At each step in our algorithm, we use this equation to determine the number of samples
allocated to each child square. Instead of randomly placing each sample according to the
probabilities, we directly allocate N(si) samples for each square. In practice, we need an
integer number of samples, so the floor operator is used to determine the minimum number
of samples to place in each child square:

N(si) = bN(s)P (x ∈ si|x ∈ s)c. (40)

If there are samples leftover, i.e., if n = N(s) −
∑
N(si) > 0, those extra samples need

to be placed randomly in the four child quadrants. For this, we must compute new child
probabilities under the condition that we have already placed N(si) samples in each square,
as the conditional probabilities defined earlier (Equation 36) are no longer applicable. The
probability of sampling a square si, which already has N(si) samples, is given by:

P (x ∈ si|x ∈ s, N(si)) =
frac(N(s)P (x ∈ si|x ∈ s))

n
. (41)
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In the last equation, the probability is computed as the fractional part of the expected
number of samples given by Equation 40, divided by the number of samples that are left.
No normalization is needed as the fractions for the four quadrants sum up to n. We build
a simple histogram over these new probabilities, and use that for distributing any leftover
samples.

As before, squares that receive at least one sample are visited recursively down to the finest
resolution. The final sample points are then chosen at random within those squares. Pseudo-
code for this algorithm is given in Appendix C.2.3. The importance function is reconstructed
from the wavelet representation on-the-fly, and the algorithm generates multiple samples in a
single recursive traversal of the wavelet tree. The sampling is very efficient, as sample points
are allocated in chunks instead of one at the time.

In all three sampling methods presented here, only the parts of the function that are being
sampled need to be reconstructed from the wavelet representation. This is the key to fast
sampling as large portions of the wavelet coefficients are never accessed. In the next section,
we will show how these algorithms are directly applicable to sampling of products of functions.

3.5 Sampling of Wavelet Products

In many applications, the importance function f(x) is a product of two functions, f(x) =
g(x)h(x). Intuitively, to distribute samples according to the product, the two functions must
first be multiplied together. With discrete representations of the functions, the multiplication
can be done value by value over the entire function domain. However, this is time consuming
and limits the flexibility. If one of the functions changes, the full product needs to be
recomputed.

We store approximations of g(x) and h(x) as images, G and H respectively, expressed as
Haar wavelets. Using the theory in Section 2.4, coefficients for the product F = G ·H of the
two wavelets can be computed very efficiently. These wavelet coefficients can then be used for
reconstructing the function, and the above sampling algorithms used for distributing samples
according to the product. However, since we only need scaling coefficients for sampling a
wavelet representation, we use the optimized product presented in Section 2.5 instead of the
general wavelet product.

The time complexity is further reduced by computing the product on-the-fly during the
sampling process. This method has many advantages. First, only the parts of the function
that are sampled need to be evaluated. Second, the product does not need to be stored, since
the wavelet product coefficients are used only once during the sampling and then discarded.
The flexibility of having separate representations of the two functions is retained. Changing
one of the functions, does not cause any pre-processed data to become invalidated.

Algorithmically, sampling of wavelet products requires no changes to the pseudo-code given in
Appendix C.2.1—C.2.3. The only difference is that all accesses to the wavelet coefficients Fm

l,t,
should be replaced with calls to a function that evaluates the wavelet product for the specified
coefficient and returns the result. This, of course, includes the initial scaling coefficient, F 0

0,0,
which should be replaced with the scaling coefficient for the product.
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4 Application

Our method for importance sampling products of functions is a new general technique, which
is not limited to a specific application. However, motivation for our research came from
the field of computer graphics, where many problems involve complicated integrals. Most
rendering techniques rely on computing an approximation of the rendering equation [14]:

Lo(x, ~ωo) = Le(x, ~ωo) +
∫
Ω

fr(x, ~ωi, ~ωo)Li(x, ~ωi) cos θid~ωi, (42)

which describes the outgoing radiance in the outgoing direction ~ωo at a point x in the
scene. The rendering equation is fundamental for photorealistic rendering, and involves an
integral over the product of the BRDF, fr, the incident radiance, Li, and a simple cosine-
term. As we saw in Section 1.1, there are numerous techniques for evaluating this integral
through importance sampling. We use wavelet importance sampling for distributing samples
according to the product of BRDF and lighting, for the case when the scene is under direct
illumination by an environment map.

4.1 Direct Illumination

The rendering equation can be split into several components:

Lo(x, ~ωo) = Le(x, ~ωo) + Ldir(x, ~ωo) + Lind(x, ~ωo), (43)

and expressed as a sum of the contributions from the direct illumination, Ldir, the indirect
illumination, Lind, and the self-emitted radiance, Le. Here, the direct illumination is given
by the integral:

Ldir(x, ~ωo) =
∫
Ω

fr(x, ~ωi, ~ωo)L(x, ~ωi)v(x, ~ωi) cos θid~ωi, (44)

where the incident radiance, L(x, ~ωi), is provided by light sources in the scene, and v(x, ~ωi) is
the visibility of a light source in direction ~ωi. In order to apply realistic lighting to a virtual
scene, it is common to capture real lighting in a high-dynamic range environment map [8],
and use that for L during rendering.

With both fr and L defined, the only unknown quantity in Equation 44 is the visibility
term v(x, ~ωi). For a fixed outgoing direction, the BRDF and the environment map can be
expressed as two-dimensional functions. We store approximations of both as Haar wavelets
and use wavelet importance sampling for distributing samples according to the product of
the two. The generated samples are then used for evaluating the integral by sampling the
visibility.

In the following section, we describe our way of representing BRDFs and environment maps
in a format that is suitable for wavelet importance sampling.
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4.2 Wavelet Representation

4.2.1 BRDF

The bidirectional reflectance distribution function (BRDF) characterizes the reflection of light
on a surface. The BRDF was first formally defined by Nicodemus et al. [29]. In radiometric
terms, the BRDF is the surface radiance divided by the surface irradiance, i.e., the incident
light flux per unit illuminated surface area:

fr(x, ~ωi, ~ωo) =
differential radiance

differential irradiance
=
dLo(~ωo)
dLi(~ωi)

=
dLo(~ωo)

Li(~ωi)cosθid~ωi
, (45)

where x is the surface position, ~ωi is the incident direction, and ~ωo is the outgoing (viewing)
direction. See Figure 3 for an illustration. Theoretically, the BRDF also depends on other
variables such as wavelength and polarization of the light, but we are usually considering
only unpolarized light of one specific wavelength at the time. Therefore, the BRDF can be
written as a four-dimensional function. For a detailed discussion of the BRDF and its use in
computer graphics, see the books by Glassner [10].

θo
θi

φo

φi

Figure 3: The bidirectional reflectance distribution function (BRDF) describes the ratio of
outgoing radiance to incident radiance (irradiance). The function is typically parameterized
over the spherical coordinates for the incident direction ~ωi = (θi, φi), and outgoing direction
~ωo = (θo, φo).

In our application, we combine the BRDF with the cosine term in Equation 44, and work
with the reflectivity function ρ(x, ~ωi, ~ωo), instead of the BRDF:

ρ(x, ~ωi, ~ωo) = fr(x, ~ωi, ~ωo) cos θi. (46)

The incident and the outgoing directions are typically given as spherical coordinates, ~ωi =
(θi, φi) and ~ωo = (θo, φo), relative to a local surface frame at the point x on the surface, see
Appendix A.1–A.3 for definitions. In this parameterization, most BRDFs are not particularly
simple and do not compress well. For example, a shiny surface will have a high-intensity
specular peak that lies in the direction of ideal specular reflection. In terms of outgoing
direction, the position of this peak varies rapidly as the incident direction is changed.

By a change of variables, the BRDF can be transformed into a function that is more com-
pact. There are many options for such reparameterizations. For example, in Rusinkiewicz’s
parameterization [34], the BRDF is expressed in terms of the half vector, i.e., the vector
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halfway between the incident and the outgoing vectors. In our application, we need a param-
eterization that is suitable for both the BRDF and for the environment map. Therefore, as
noted previously [33], Rusinkiewicz’s parameterization cannot be used as it is unsuitable for
the environment map. The half vector depends on outgoing direction, while the environment
map depends only on the incident direction.

We use a parameterization about the reflection vector as in [33]. In this representation, the
BRDF is centered about the reflection vector ~ωr = (θr, φr), instead of around the surface
normal ~n. The reflection vector is defined as the ideal reflection of the incident direction in
the surface normal:

~ωr = 2~n(~n · ~ωi)− ~ωi. (47)

The directions ~ωi and ~ωo are now given with respect to ~ωr, and the dependence on the normal
is implicit. The advantage of this parameterization is that specular lobes are usually aligned
with ~ωr, which makes the function much more compressible. As noted by Cabral et al. [3],
the variation over ~ωo is usually slow. Thus, we can store the BRDF with a relatively sparse
sampling over outgoing directions.

In practice, we store the BRDF tabulated as a sparse 2D set of 2D wavelet compressed
reflection maps. The tabulation is done over outgoing direction ~ωo, expressed in spherical
coordinates. Each reflection map represents the reflectance over incident direction, centered
about the reflection vector for a specific tabulated outgoing direction. The maps are stored
at the resolution 64×64 or 128×128. For the tabulation, we use a lower resolution of 16×16
or 32 × 32 different outgoing directions, although an even lower resolution is motivated for
some materials.

4.2.2 Environment Map

An environment map is typically defined as a two-dimensional function L(~ω), representing
the incident radiance as a function of world space direction ~ω. The lighting is assumed to
be distant, meaning that L(~ω) depends only on the direction and does not vary across the
scene.

We want to apply wavelet importance sampling to the product of an environment map and
a BRDF. A fundamental limitation of using wavelet multiplication is that the two functions
must be expressed in the same coordinate system. As noted previously by Ng et al. [28], there
is no straightforward way of rotating wavelets. In our application, the BRDF is given in local
coordinates with respect to the reflection vector, while an environment map is commonly
expressed in global coordinates.

We solve this problem by rewriting the environment map as a four-dimensional function
L(~ω, ~ωr), that explicitly depends on the global coordinates of the reflection vector ~ωr. In our
representation, the direction ~ω is given with respect to ~ωr. Essentially, for a fixed reflection
vector, L(~ω, ~ωr) represents a pre-rotated two-dimensional environment map centered about
that vector. Hence, the environment map is in the same local space as the BRDF.

Similarly to the BRDF, we store the environment map as a 2D tabulation of 2D wavelet
compressed images. The tabulation is done over the reflected direction ~ωr, expressed in global
spherical coordinates, ~ωr = (θr, φr), with 0 ≤ θr ≤ π and 0 ≤ φr < 2π. For each tabulated
direction, the corresponding wavelet image is the full environment map centered about that
direction. Unfortunately, we cannot use a sparse tabulation as the environment map usually
has high-frequency content, i.e., it has rapidly varying light intensity. Therefore, to get pixel
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accuracy, we use a tabulation of the same resolution as the wavelet image. Specifically, we
store a 128 × 128 tabulation of 128 × 128 environment maps, or alternatively a 64 × 64
tabulation of 64 × 64 maps. During rendering, the current reflection vector is computed
and the environment maps corresponding to the nearest tabulated directions are bi-linearly
interpolated and used for importance sampling.

The integral in the equation for direct illumination (Equation 44) is over solid angle, d~ωi.
In order to get the correct result, we must take the solid angle of each pixel in the discrete
representations of the BRDF and the environment map into account. We have chosen to
normalize the environment for solid angle, and leave the values in the BRDF unchanged.
Each pixel in the environment map is multiplied by a normalization factor, whose value is
derived in Appendix A.4.

It is worth noting that the representation presented here is not the only solution. Ng et al. [28]
rewrite the BRDF as a 6D function expressed in global coordinates, which depends on the
surface normal. Thus, they can directly multiply the BRDF with a 2D environment map.
However, even with efficient compression they report memory usage in the order of hundreds
of megabytes for each BRDF. In a scene with many materials, their representation quickly
becomes unusable.

4.3 Rendering

For rendering an image, we trace rays from the camera through each pixel. When a surface is
hit at a point x, we compute the relevant vectors such as the surface normal ~n, the outgoing
direction ~ωo, and the reflection vector ~ωr. These are then used to find the correct ”slices”
of the tabulated environment map and the BRDF. With wavelet representations of the two
functions at hand, we can apply our importance sampling scheme to the wavelet product of
the two functions, generating a set of sample points expressed in spherical coordinates.

Each sample point corresponds to an incident direction ~ωi, given in a local frame relative
to ~ωr. The sampling directions are transformed back to world coordinates, and used for
evaluating the visibility through ray tracing. In practice, we cast a shadow ray from the
surface point x in direction ~ωi. Each visibility sample returns a binary value:

v(x, ~ωi) :=
{

1, if background is visible in direction ~ωi

0, otherwise. (48)

Now, with all the terms in Equation 44 known for every sample, we can evaluate the value
of the integral using Monte Carlo integration. We first show how an unbiased result can
be obtained, and then show how the variance can be drastically reduced, at the expense of
introducing a slight bias.

4.3.1 Unbiased Rendering

An unbiased estimator of the integral for direct illumination can be written as:

L̄dir(x, ~ωo)=
1
N

N∑
i=1

ρ(x, ~ωi, ~ωo)L(x, ~ωi)v(x, ~ωi)
p(~ωi)

, (49)

where we have replaced the BRDF and the cosine term with the reflectivity function, ρ(x, ~ωi, ~ωo).
To obtain the unbiased estimate of the lighting, L̄dir(x, ~ωo), we evaluate the true value of
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the reflectivity and the environment map for each sampling direction, and divide by the
probability associated with each sample.

Using our deterministic wavelet sampling scheme, we distribute samples according to the
product of the reflectivity (BRDF) and the environment map. Let F = G ·H be the wavelet
product, whereG is the reflectivity andH is the environment map. The probability associated
with a sample ~ωi, is given by:

p(~ωi) =
F (s)
F 0

0,0

, (50)

where s is the wavelet square at the finest resolution, in which the sample point corresponding
to ~ωi is located. These probabilities are directly given by the wavelet reconstruction during
the sampling. Hence, we can compute an unbiased estimation of the direct illumination by
evaluating Equation 49.

4.3.2 Biased Rendering

Unbiased techniques generally produce a fair amount of noise, unless a very large number of
samples is used. In many cases, it is better to introduce some bias to significantly reduce the
noise level. This is particularly true in our application.

Our wavelet representations of the reflectivity and the environment map approximate the
functions fairly well, i.e., G(s) ≈ ρ(x, ~ωi, ~ωo) and H(s) ≈ L(x, ~ωi). In the sampling process,
the wavelet product gives the approximated value of the product of reflectivity and lighting for
each sample, F (s) ≈ ρ(x, ~ωi, ~ωo)L(x, ~ωi). Combining this approximation with Equation 49
and 50, yields:

L̄dir(x, ~ωo) ≈ 1
N

N∑
i=1

F (s)v(x, ~ωi)
F (s)/F 0

0,0

=
F 0

0,0

N

N∑
i=1

v(x, ~ωi). (51)

By accepting the small bias introduced with the wavelet approximation, we drastically reduce
the noise in the rendered image. Effectively, two of the terms in the Monte Carlo estimator,
which are a major source of variance, are eliminated. Using Equation 51, rendering is reduced
to a summation of the visibility terms, multiplied by the scaling coefficient for the product.
Rendering is also very fast, since we do not have to evaluate the true values of the BRDF
and the environment map for each sampling direction.

The first scaling coefficient of the product, F 0
0,0, is available for free as it is needed in the sam-

pling process. A key observation is that this scaling coefficient represents the pre-integrated
value of the reflectivity multiplied by the environment map, assuming full visibility. In areas
with no occlusion, the rendered image will be completely noise-free. In shadow areas, noise is
inevitable, but since the samples are distributed according to the combination of the BRDF
and the lighting, our method quickly converges towards a noise-free result.
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5 Implementation

In this chapter, we briefly describe some of the implementation specific details of our example
application. This chapter is not necessary for the understanding of our method, but should
provide useful information for the reader who wants to use wavelet importance sampling of
products in practice.

5.1 Wavelet Framework

5.1.1 Creation

As noted earlier, we use normalized Haar wavelets and the non-standard decomposition.
Starting with an image with n × n pixels, where n is a power of two, the one-dimensional
wavelet transform is applied first on rows and then on columns. The wavelet transform is
done using the lifting scheme [37], which is a fast linear-time operation that does not require
any additional temporary storage. Each pass splits the data into a set of scaling coefficients
and a set of detail coefficients. The transform is applied recursively on the scaling coefficients,
until only a single scaling coefficient remains. This is the normal approach and many good
textbooks describe the algorithm in more detail [24, 36].

After our data has been wavelet transformed, we apply lossy compression by thresholdning
the wavelet coefficients, as described in Section 2.3. In our implementation, we manually
set the threshold to give the desired amount of compression. One could alternatively use an
automatic method for determining a reasonable threshold.

5.1.2 Storage

After compression, the sparse set of wavelet coefficients needs to be represented in a compact
way. The options are to use a hash map or a wavelet coefficient tree [19]. We have chosen to
use hash maps, as they allow for quick constant-time O(1) random access and easy insertion
of elements.

We use Knuth’s multiplicative hash function [16], and key on the sequential index of the
wavelet coefficient. The key is multiplied by the golden ratio of 232, which is 2654435761,
to produce a hash result. Since these two numbers have no common factors, this method
produces a complete mapping of keys to hash values with no overlap. The method is fast
and works well if the keys have small values.

The hash map is implemented with open addressing and linear probing to handle collisions.
For a load factor of α, the expected number of lookups in an unsuccessful search is at most
1/(1−α). The size of the hash map is chosen as a power of two, such that the size of the map
is approximately twice the number of elements. In our case, this means an average of two
lookups per unsuccessful search, which is an acceptable tradeoff between speed and memory.
See Knuth’s book [16] for more details.

5.1.3 Color

We handle color information by storing wavelet coefficients as RGB-triplets instead of single
values, i.e., Ψi = (ΨR

i ,Ψ
G
i ,Ψ

B
i ). All mathematical operations on the coefficients are done
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component-wise. However, for computing the probabilities needed for sampling, we are only
interested in the intensity of the function. Thus, we distribute samples according to average
value of the three color components, I = (R+G+B)/3.

The drawback of storing color information in a single wavelet representation, as compared
to having a separate wavelet image for each color channel, is less efficient compression. We
believe, however, that this method is faster as the coefficients are kept together in the memory
instead of being scattered in three different places.

5.1.4 Interpolation

In our application, both the BRDF and the environment map are represented as 2D tabula-
tions of 2D wavelets. In order to get a smooth result, we use bilinear interpolation between
the four nearest wavelets in the tabulation of each function. The interpolation is done
on-the-fly, directly on the wavelet coefficients, as coefficients are looked up in the wavelet
representations.

In practice, we first pre-compute the bilinear interpolation weights (α, β), 0 ≤ α, β < 1, and
then compute the value of each wavelet coefficient as:

Ψi = (1− α)(1− β)Ψ1
i + α(1− β)Ψ2

i + (1− α)βΨ3
i + αβΨ4

i . (52)

5.1.5 Wavelet Product

We have implemented the functionality required for computing the wavelet product of two
images as a separate class in our object-oriented system. This class provides the same inter-
face as the classes representing a single wavelet-expressed function, and hence allows us to
directly sample the product without any modifications to the implementation of the sampling
scheme. Internally, the wavelet product class uses the optimized wavelet product described
in Section 2.5, and computes scaling coefficients on-the-fly as they are needed during the
sampling. Our implementation closely follows the given pseudo-code, and could probably be
further optimized.

5.2 Wavelet Data

5.2.1 BRDF

In our renderings, we use isotropic BRDFs acquired from real materials. The BRDF data
sets we use were created by Matusik [25, 26], and consist of dense reflectance measurements
in color for over 100 different materials. The measurements were done for 90× 90× 180 dis-
crete directions represented in Rusinkiewicz’s parameterization [34], with a denser sampling
around the specular highlight. A few of the BRDFs and source-code for loading them can
be downloaded from Matusik’s website1.

We resample the measured reflectance data into our BRDF representation described in
Section 4.2.1. Each two-dimensional reflectance map is first created at a high resolution
(256× 256), and then subsampled to the desired resolution to avoid aliasing.

1http://graphics.csail.mit.edu/∼wojciech/BRDF/
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For testing purposes, we also use the traditional Lambertian model [20], and the Phong
model [35]. We center the Lambertian (a perfectly diffuse BRDF) around the surface normal,
and the Phong lobe around the reflection vector. In this representation, the functions are
independent of the outgoing direction, so we only need to store a single two-dimensional
reflectance map for each.

5.2.2 Environment Map

We use high-dynamic range environment maps [8], so called light probes, for rendering scenes
under realistic illumination. Paul Debevec’s Light Probe Gallery2 has a selection of envi-
ronment maps available for download. The light probes are stored in Ward’s RGBE format,
described in [40]. The maps represent the full sphere, 4π steradians, and use a simple angular
parameterization. For viewing and manipulating high-dynamic range images, we recommend
the program HDRShop3.

The light probes are resampled into our environment map representation described in Sec-
tion 4.2.2. For each tabulated two-dimensional environment map, we loop over its pixels and
sample the light probe in the corresponding direction. To avoid aliasing, the resampling is
done at a higher resolution than the final result, usually 512×512 or 1024×1024, and the
image is downsampled to the desired resolution using a box filter. Each two-dimensional
environment map is then wavelet compressed, and only the non-zero coefficients are stored.

5.3 Ray Tracer

A simple Monte Carlo ray tracer was implemented in order to evaluate how well wavelet
importance sampling of products performs compared to other methods. The system was
written in C++ and uses Windows MFC for providing a graphical user interface.

5.3.1 Scene Description

We use XML as a scene description language, describing all properties of the scene with
custom nodes. The use of XML makes the scene description human readable, and simplifies
the implementation tremendously as good parser libraries such as TinyXml4 are available.

The renderer supports triangle-based geometry in the PLY5 format and in the Wavefront
OBJ format. Plugins for importing and exporting objects in for example Alias Maya, exist
for both formats, making it relatively easy to create or modify geometry.

5.3.2 Ray Shooting

Ray tracing of large scenes is inherently slow unless an efficient acceleration technique is used.
Most methods rely on the use of a spatial data structure to limit the number of intersection
tests required. Naturally, the choice of best acceleration technique largely depends on the
application. However, it was shown by Havran [13] that for a set of 30 example scenes,

2http://www.debevec.org/Probes/
3http://www.debevec.org/HDRShop/
4http://sourceforge.net/projects/tinyxml/
5http://graphics.stanford.edu/data/3Dscanrep/
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algorithms based on the kd-tree performed on average better than methods based on BSP
trees, octrees, uniform grids, bounding volume hierarchies, and hierarchical grids.

A kd-tree is a binary space partioning with axis-aligned splitting planes. The location of
the splitting planes has a big impact on the performance. By constructing the tree using a
cost model for estimating the average cost of traversing a ray through the tree, the traversal
time can be minimized. In our ray tracer, the ordinary surface area heuristic (OSAH) cost
model [13] is used for constructing the tree, and a recursive ray traversal algorithm introduced
by Havran et al. [12] is used for tree traversal.

Ray-triangle intersection testing was done with code based on the algorithm by Möller and
Trumbore [27].
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6 Results

It is difficult to fully evaluate the performance of wavelet importance sampling of products, as
the parameter space is very large. The result depends on the wavelet resolution, the sparsity
of the BRDF and the environment map, which sampling method is used, the number of
samples per pixel, and so forth. Naturally, the performance of our method, like any other
method, is also very dependent on the scene. In this chapter, we try to evaluate what effect
some of these parameters have on the result. Our goal is to find a set of parameters that
work well for most scenes.

First, we compare the random sampling method to our deterministic sampling method de-
scribed in Section 3.4.4. Second, we investigate how BRDF compression affects the rendered
images. Finally, we compare our method to environment map importance sampling, by vi-
sually comparing the result on a complex scene with many different materials. In the last
section, we present the computation times for creating wavelet representations of the envi-
ronment map and the BRDFs. All results were generated on a PC with an AMD Athlon
XP2600+ (1.91GHz) processor and 1GB memory. The biased rendering technique presented
in Section 4.3.2, was used for rendering all of the images.

6.1 Sampling Method – Random vs Deterministic Sampling

In this section, we compare our deterministic sampling algorithm introduced in Section 3.4.4
against ordinary random thresholdning, as described in Section 3.4.3. We render a simple
scene under direct illumination captured in a high-dynamic range environment map of St.
Peters Basilica. The scene consists of a sphere on a plane, both using a measured rose-
quartz BRDF. This BRDF was chosen because it contains both a sharp specular peak and
a relatively large diffuse component. The reference image shown in Figure 4, was computed
using brute-force ray tracing with 1 million samples per pixel.

Figure 4: Reference image showing the simple test scene, rendered using brute-force ray
tracing. A measured rose-quartz BRDF was used, and the lighting is from St. Peters Basilica.
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10 samples 100 samples 1000 samples

Figure 5: The top row was rendered with random sampling of the wavelet product, and the
bottom row was rendered with our deterministic sampling algorithm. From left to right: 10,
100, and 1000 samples/pixel.

To evaluate the performance of the two sampling algorithms, we rendered the test scene using
wavelet importance sampling with the number of samples per pixel gradually increasing from
1 to 1000. The wavelet resolution was 64×64 for both the environment map and the BRDF,
and the BRDF was compressed to 2.84% sparsity (a compression of 1:35). Figure 5 shows
the result for 10, 100, and 1000 samples/pixel. For the top row, random sampling was used,
and for the bottom row we used the deterministic sampling method. From these images, it is
obvious that the limited wavelet resolution introduces some error. The low resolution (64×64)
wavelet representations are essentially low-pass filtered representations of the original data,
and hence the result is blurred reflections.

Since the biased rendering technique was used, it is only in shadow areas there is any difference
between the two sampling methods. To quantitatively compare them, we study the noise in
a section of the shadow region. Figure 6 shows this part of the scene, rendered with 1 to 1000
samples/pixel. We measured the variance in the difference to the reference image, and the
results are presented in Figure 7. The left diagram shows the variance versus the number of
samples for the two methods, while the variance versus rendering time is shown on the right.

The conclusion is that our deterministic sampling technique gives better results than the
random sampling method. The difference is largest when an average number of samples
is used. In the range 10–100 samples/pixel, the deterministic sampling algorithm performs
significantly better than random sampling. Both methods converge towards a low, but larger
than zero, error due to the bias introduced by the wavelet approximation.
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1 sample 3 samples 10 samples 30 samples 100 samples 300 samples 1000 samples

Figure 6: Part of the shadow region showing the difference between random sampling (top
row) and deterministic sampling (bottom row). The scene was rendered with 1, 3, 10, 30,
100, 300, and 1000 visibility samples per pixel.
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Figure 7: Variance in the rendered images compared to the reference image.

6.2 BRDF Compression

In this section, we study the effect of BRDF compression on the rendered result. In the
first example, we rendered the test scene using a wavelet resolution of 64× 64 and different
levels of BRDF sparsity, ranging from 8.64% to 2.02%. The rendered images are presented in
Figure 8, and variance diagrams are shown in Figure 9. The left plot shows the variance as a
function of the number of samples, and the right image shows the variance versus rendering
time.

We repeated the test using a wavelet resolution of 128 × 128, and BRDFs with sparsities
in the range 4.72% to 0.84%. These images are shown in Figure 10, and the corresponding
variance diagrams can be found in Figure 11. The higher wavelet resolution gives a result
much closer to the reference image. The specular reflections of strong light sources in the
environment map, appear much sharper than with lower resolution wavelet representations.

The level of BRDF compression does not seem to have a significant impact on the visual
result. This is confirmed by the variance diagrams, which show that there are only minor
differences between the images. The only noticeable artifact from using a too high level
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of compression, is that the shading appears slightly ”blocky”. However, as shown by the
variance-vs-time diagrams in Figure 9 and 11, the level of BRDF compression has a huge
impact on the rendering speed. As always, there is a tradeoff between quality and rendering
time. For short rendering times, the best results are obtained by using highly compressed
BRDFs, but for longer rendering times a lower degree of compression gives better results.

For a wavelet resolution of 64 × 64, a BRDF sparsity in the range 2%–3% generally gives
good results. For 128 × 128 wavelets, the corresponding number is 1%–1.5%. The variance
diagrams show that these levels of sparsity give close to optimal results when 30–100 samples
per pixel are used for rendering. Fewer samples tend to give too much noise in the shadows,
while more samples only give a slight improvement in quality, at the expense of considerably
longer rendering times.

8.64% 4.78% 2.84% 2.02%

Figure 8: The test scene rendered using wavelet importance sampling with 100 samples/pixel,
but for different levels of BRDF sparsity. The wavelet resolution was 64× 64.
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Figure 9: Variance as a function of the number of samples (left), and as a function of rendering
time (right), for different levels of BRDF sparsity. The wavelet resolution was 64 × 64, and
the variance was computed over the area shown in Figure 6.
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4.72% 2.45% 1.39% 0.84%

Figure 10: The test scene rendered using wavelet importance sampling with 100 samples/pixel
for different levels of BRDF sparsity, but at a wavelet resolution of 128× 128.
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Figure 11: Variance as a function of the number of samples (left), and as a function of
rendering time (right), for different levels of BRDF sparsity. The wavelet resolution was
128× 128, and the variance was computed over the same area as before.
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6.3 Visual Results

We rendered a more complex scene consisting of a set of objects with various measured BRDFs
on a perfectly diffuse table. The lighting is provided by a high-dynamic range environment
map captured in Galileo’s Tomb. Figure 12 was rendered using deterministic sampling of
the wavelet product of BRDF and lighting, with 30 visibility samples per pixel. The wavelet
resolution was 64 × 64, and the BRDFs were compressed to about 2%–3% sparsity. The
rendering time was 31 minutes for 1600× 1200 pixels resolution with 2× 2 anti-aliasing.

Figure 12: Objects with various measured BRDFs on a diffuse table, under direct illumination
from Galileo’s Tomb. The image was rendered using deterministic sampling of the wavelet
product with 30 samples/pixel. Rendering time: 31 minutes.

To compare our method with environment map importance sampling, we rendered the same
scene using structured importance sampling [1]. For Figure 13, we used 100 samples per
pixel, giving a rendering time of 32 minutes. The number of samples was chosen to achieve
approximately the same rendering time as for Figure 12. For equal rendering times, about 3
times as many samples can be used since structured importance sampling is a preprocess that
incurs no additional run-time cost. On the other hand, for wavelet importance sampling, in
addition to ray tracing we have the cost of computing and sampling the wavelet product for
each pixel.

Although structured importance sampling is a popular technique for rendering scenes under
environment map lighting, the technique is clearly only usable for rendering non-specular
materials. For BRDFs with a sharp specular peak, the reflections of the pre-integrated lights
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Figure 13: The same scene as in Figure 12, rendered using structured importance sampling
of the environment map, with 100 samples per pixel. Rendering time: 32 minutes.

become very disturbing. The same applies to all other environment map sampling techniques
that approximate the lighting by a set of pre-integrated directional lights.

Figure 14 highlights the differences between our wavelet product sampling technique and
environment map importance sampling. In the top two rows, the scene was rendered using
30 samples/pixel, generated by wavelet importance sampling of the product of BRDF and
lighting environment for two different wavelet resolutions: 64×64 and 128×128 respectively.
Using the higher wavelet resolution has no visible effect on the shadows or on the diffuser
BRDFs, but the glossy objects look better because the reflection of the environment map
is less blurred. For the bottom two rows, we used structured importance sampling, and
rendered the scene using 100 and 1000 samples/pixel respectively. With 100 lights, there is
clearly visible banding of the shadows. Increasing the number of samples to 1000 improves
the shadows, but for rendering glossy objects, even this large number of samples is not nearly
enough. Rendering times for these four examples are presented in the following table:

Method Samples/Pixel Time
Wavelet product sampling, 64× 64 30 31 min
Wavelet product sampling, 128× 128 30 46 min
Structured importance sampling 100 32 min
Structured importance sampling 1000 346 min
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Figure 14: Top row: Wavelet importance sampling, 30 samples/pixel, 64 × 64 wavelet res-
olution, 31 min. Second row: Wavelet importance sampling, 30 samples/pixel, 128 × 128
wavelet resolution, 46 min. Third row: Structured importance sampling, 100 samples/pixel,
32 min. Bottom row: Structured importance sampling, 1000 samples/pixel, 346 min.
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6.4 Precomputation Time

In precomputation time, we include the creation of wavelet representations of the environ-
ment map and the BRDFs. Note that this needs to be done only once, as the wavelet
representations can be compactly stored to disk and reused later.

Computing a wavelet representation of a full measured 4D BRDF took 20 seconds for a
16× 16 tabulation of 64× 64 reflectance maps, using 4× 4 super-sampling to avoid aliasing
(i.e., BRDF was sampled at 256× 256 and downscaled to the desired resolution). For higher
resolution BRDFs (32× 32× 128× 128), the computation finished in 79 seconds. The level
of wavelet compression did not affect the computation time noticeably.

For computing a pre-rotated wavelet environment map (a 2D tabulation of 2D wavelet com-
pressed maps) we must use a much denser sampling, since the lighting is typically not as
smooth as the BRDFs. The resolution of a light probe is also much higher than that of a
typical measured BRDF. Hence, aliasing is much more of a problem. We sample the origi-
nal environment map at a resolution of 1024× 1024, and downscale the result to the target
wavelet resolution. For a wavelet resolution of 64× 64× 64× 64, the computation time was
about 1 hour, and for 128× 128× 128× 128 resolution it was approximately 4 hours.

The majority of the computation time is spent super-sampling the environment map. Note
that these computation times are not the final word. By, for example, using graphics hard-
ware to generate the pre-rotated and subsampled environment maps, we could drastically
reduce the precomputation time. Another solution would be to low-pass filter the original
environment map, in order to reduce the amount of super-sampling needed.
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7 Conclusions and Future Work

In this thesis, a new general tool for importance sampling products of two-dimensional func-
tions has been introduced. The proposed method uses fast wavelet multiplication together
with an efficient sampling algorithm to produce sampling distributions that accurately match
the energy distribution in the product of two functions. The generated samples are used for
significantly reducing the variance in Monte Carlo techniques.

For the example application, i.e., rendering objects with realistic measured materials under
complex distant illumination by a high-dynamic range environment map, our new sampling
method proved to give high-quality renderings with a very small number of samples per pixel.
Our technique compares favorably to environment map importance sampling. The extra cost
of evaluating and sampling the wavelet product on-the-fly during rendering, is well motivated
by the reduction in variance.

With today’s computers, the maximum wavelet resolution is still somewhat limited by the
memory usage. One future research direction is to find better parameterizations of the
environment map and the BRDF, in order to enable better compression and reduce the
memory requirements. Quantization of the wavelet coefficients could also help reduce the
size. Another direction of research is to develop better sampling algorithms, both in terms
of speed and in the properties of the final point distribution.
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ration. I would also like to thank Henrik Wann Jensen for fruitful discussions and for hosting
me at the University of California at San Diego, where I was visiting during my work. The
implementation of the system was done together with Wojciech Jarosz, who deserves a thank
for many useful ideas. Last, I am grateful for all the love and support received from my
family, my girlfriend Kristen, and her family during the intense work of finishing this thesis.

37



38



A Mathematical Definitions

A.1 Spherical Coordinates

Spherical coordinates (r, θ, φ) are natural for describing positions on the sphere. We define θ
to be the polar angle (the zenith) from the positive z-axis with 0 ≤ θ ≤ π, and φ as the
rotation about the z-axis in the xy-plane with 0 ≤ φ < 2π. The distance (radius) from the
origin is r.

The conversion from Cartesian coordinates is given by:

r =
√
x2 + y2 + z2

θ = sin−1

(√
x2 + y2

r

)
= cos−1

(z
r

)
φ =

{
tan−1

(
y
x

)
, x ≥ 0

π + tan−1
(

y
x

)
, x < 0 .

It is convenient to use the atan2(y, x) function for calculating φ with correct sign. The
atan2-function gives the four quadrant arctangent, and is supported in most programming
languages.

The opposite conversion, from spherical to Cartesian coordinates, is defined as:

x = r cosφ sin θ
y = r sinφ sin θ
z = r cos θ.

In many applications, the coordinate axes are rotated so that the y-axis points up and the
zx-plane defines the equatorial plane. In this case it is convenient to define θ as the polar
angle (zenith) from the positive y-axis, and φ as the azimuth in the zx-plane.
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A.2 Surface Frame

The basis vectors (~u,~v, ~n) combined with a point x define the surface frame at x. The normal
~n is perpendicular to the surface, and the vectors ~u and ~v are surface tangents. ~u is called
primary tangent or just tangent, and ~v is called secondary tangent, bitangent or sometimes
binormal.

The basis (~u,~v, ~n) is right-handed, so positive rotations will be counter-clockwise about the
normal. We usually want the basis to be orthonormal, in which case:

~n = ~u× ~v
~v = ~n× ~u.

A.3 Spherical Surface Coordinates

Spherical coordinates relative to a given surface frame are useful in many cases. For example,
the standard parameterization of a BRDF is with respect to the incident direction ~ωi and
viewing direction ~ωo relative to the local surface frame at a point x.

The spherical coordinates (θ, φ) of a vector ~ω relative to the surface, are given by:

cos θ = ~n · ~ω
~ωp = norm(~ω − ~n(~n · ~ω))

cosφ = ~u · ~ωp

sinφ = ~v · ~ωp,

where ~ωp is the projection of ~ω on the tangent plane, and norm(~v) is a function that normalizes
~v, such that ||~v|| = 1. To get the azimuth φ, the atan2(y, x) function can be used.
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A.4 Solid Angle

We use two-dimensional images to represent functions on the unit sphere, parameterized over
spherical coordinates. For normalization purposes, it is important to know the solid angle
each pixel in such a map represents. The value can be found by integrating over the pixel
projected onto the unit sphere.

Consider a small patch on the sphere with spherical coordinates (θ, φ). The patch is located at
a radius r = sin θ from the center, and covers a solid angle of dAΩ = dφ

2π 2πrdθ = sin θ dφdθ.
We integrate over the range of spherical coordinates the pixel represents. Hence, in an
image H with n × m pixels, a pixel with integer coordinate (i, j), with 0 ≤ i < n and
0≤ j<m, has the following solid angle on the unit sphere:

AΩ(i, j) =

π(j+1)
m∫

πj
m

2π(i+1)
n∫

2πi
n

sin θ dφdθ

=
2π
n

π(j+1)
m∫

πj
m

sin θ dθ

=
[
−2π
n

cos θ
]π(j+1)

m

πj
m

=
2π
n

(
cos
(
πj

m

)
− cos

(
π(j + 1)

m

))
, (53)

where the unit is steradians [sr]. The full sphere covers 4π sr, which is easy to prove if we
evaluate the above equation for n = m = 1. To normalize a spherical map for solid angle,
we multiply each pixel with its normalized area on the sphere, AΩ(i, j)/4π, and divide by its
area, 1/nm, in the image:

H̃(i, j) =
AΩ(i, j)/4π

1/nm
H(i, j) =

m

2

(
cos
(
πj

m

)
− cos

(
π(j + 1)

m

))
H(i, j), (54)

where H̃(i, j) is the normalized pixel.
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B Optimized Wavelet Product

We first make a number of general observations about the properties of two-dimensional Haar
basis functions and products of such. The following statements are easily verifiable:

1. The wavelet functions have vanishing integrals:
∫∫

ψm
l,tdx = 0.

2. The integral over a scaling function at level l is equal to:
∫∫

φl,tdx = 2−l.

3. The product of two basis functions (scaling or wavelet functions) is zero if they do not
overlap.

4. The product of a scaling function and a wavelet function in the same wavelet square
(l, t), is the wavelet function scaled by 2l.

5. The product of two different wavelet functions in (l, t) is the third wavelet function in
the same square, scaled by 2l. For instance: ψ1

l,tψ
3
l,t = 2lψ2

l,t.

6. The product of two identical wavelet functions at level l is equal to the scaling function
at the same level, scaled by 2l, i.e., ψm

l,tψ
m
l,t = 2lφl,t.

7. The product of two overlapping basis functions at different levels l < l′, is the finer
function scaled by±2l, with the sign determined by the sign of the coarser basis function
over the support of the finer function.

B.1 Proof of Optimized Wavelet Product Theorem

In this section, we present the proof of the theorem presented in Section 2.5. We are consid-
ering the modified tripling coefficients:

C ′ijk =
∫∫

φl,t(x)Ψj(x)Ψk(x)dx, (55)

where φl,t(x) is a scaling function at level l, and Ψj(x) and Ψk(x) are either the mother
scaling function or wavelet functions at level lj and lk respectively. For clarity we divide the
proof into three cases:

Case A: l ≤ lj ≤ lk

The scaling function exists at the same or a coarser level than the two wavelet functions. By
applying observation 4 (l = lj) or 7 (l < lj), we arrive at φl,t(x)Ψj(x)Ψk(x) = 2lΨj(x)Ψk(x).
If the two wavelet functions are at different levels, or if they are at the same level but
of different type, the integrand is further reduced to ±2l2lj Ψk(x) by observation 7 and 5
respectively, and C ′ijk = 0 due to vanishing integrals. If the two wavelet functions are
identical and exist in the square (l′, t′), then 2lΨj(x)Ψk(x) = 2l2l′φl′,t′ . In which case
C ′ijk = 2l.

Case B: lj < l ≤ lk

One of the functions is at a strictly coarser level than the scaling function, and the other is
at the same level or at a finer level. Observation 4 (l = lk) or observation 7 (l < lk) reduces
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the integrand to 2lΨj(x)Ψk(x). Applying observation 7 results in ±2l2lj Ψk(x) and C ′ijk = 0,
again due to vanishing integrals.

Case C: lj ≤ lk < l

Both functions are at a strictly coarser level than the scaling function. By applying observa-
tion 7 twice, we arrive at φl,t(x)Ψj(x)Ψk(x) = ±2lj 2lkφl,t(x). The integral over the wavelet
square yields the modified tripling coefficient C ′ijk = ±2lj+lk−l.

B.2 Derivation of Simplified Multiplication

We want to show that case 1 of the optimized tripling coefficient theorem presented in
Section 2.5 on page 9, corresponds to a multiplication of the scaling coefficients of the two
functions G and H at level l. Case 1 says that the tripling coefficients are C ′ijk = ±2lj+lk−l,
when both basis functions Ψj and Ψk are at strictly coarser levels and overlapping the scaling
function.

We start by examining the expansion of a single scaling coefficient at level l. Here, we use
G0

l,t, but the expression for H0
l,t is of course the same. We have:

G0
l,t =

∫∫
φl,t(x)G(x)dx

=
∫∫

φl,t(x)

∑
j

GjΨj(x)

 dx

=
∑

j

Gj

(∫∫
φl,t(x)Ψj(x)dx

)
=

∑
j

CjGj , with Cj =
∫∫

φl,t(x)Ψj(x)dx. (56)

Here Cj = ±2lj−l, if and only if lj < l and the two basis functions Ψj(x) and φl,t(x) are
overlapping. In all other cases Cj = 0. We prove this by considering the two different cases:
lj ≥ l and lj < l. In the first case, because of observation 4 and 7, Cj is reduced to the integral
over a single wavelet function, which is zero due to vanishing integrals. In the second case,
observation 7 gives: Cj = ±2lj

∫∫
φl,t(x)dx = ±2lj−l. In summary, it is only the overlapping

wavelets at strictly coarser levels that affect the value of the scaling coefficient.

Using this result, the product of the two scaling coefficients, scaled by 2l, can be expanded
as:

2lG0
l,tH

0
l,t = 2l

∑
j

CjGj

(∑
k

CkHk

)
= 2l

∑
j

∑
k

CjCkGjHk. (57)

This concludes the proof, as 2lCjCk = ±2lj+lk−l when Ψj and Ψk are overlapping φl,t(x),
and exist at strictly coarser levels. The sign is given by the product of the signs of the two
basis functions in the wavelet square we are considering.
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C Pseudo-code

C.1 Wavelet Product

We first give pseudo-code for our two helper functions, psum and csum, which were defined
in Section 2.6. Then, we present code for the wavelet product and the optimized wavelet
product for computing scaling coefficients.

In these algorithms, we often need to refer to the sign of a particular 2D Haar basis function
over one of its four quadrants. Therefore, we introduce a function, sign(m, qx, qy), that returns
the sign of a wavelet function ψm of type m = 1, 2, 3 in the quadrant (qx, qy) ∈ {0, 1}. This
function can either be hard-coded or implemented as a simple lookup-table.

C.1.1 Parent Sum (PSUM)

In this algorithm we use a hash map, psum table, for caching the computed values. In
the sampling algorithms, we access coefficients hierarchically, starting at the coarsest level
and moving down to finer resolutions. Thus, the hash map will fill up with cached values as
parent sums are requested, and each call will only access the previously cached values instead
of doing a full recursion.

Algorithm 1 Parent Sum
function psum(wavelet F , square s)

if s ∈ psum table then
return psum table(s)

else
if s = (0, 0, 0) then

value = F 0
0,0

else
s′ = (l′, x′, y′) = (l − 1, bx/2c, by/2c)
(qx, qy) = (x− 2x′, y − 2y′)
value = psum(F, s′) + 2l′

∑3
m=1 Fm

l′,x′,y′ · sign(m, qx, qy)
psum table−>insert(s, value)
return value
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C.1.2 Children Sum (CSUM)

Before a new wavelet multiplication is initiated, we first call the function ComputeCsums.
The function computes the sparse set of children sums for the product G ·H of two wavelets,
storing the non-zero values in a hash map. The computation is efficient, as we only need
to loop over the sparse set of coefficients in one of the functions, multiplying each with the
coefficient for the identical wavelet in the other function. If the result is non-zero, it is added
to the children sum for the wavelet square s and to all squares overlapping at coarser levels.

Later, the children sums are accessed through a function csum(s) that simply returns the
value stored in the hash map, or zero if there is no value associated with the square s.

Algorithm 2 Compute Children Sums
function ComputeCsums(wavelet G, wavelet H)

for Gm
l,x,y ∈ G, Gm

l,x,y 6= 0 do
if Hm

l,x,y 6= 0 then
c = Gm

l,x,y ·Hm
l,x,y

s = (l, x, y)
while l′ ≥ 0 do

csum table(s) = csum table(s) + c
s = (l′ − 1, bx′/2c, by′/2c)

C.1.3 Wavelet Product

The following function returns the wavelet coefficient of type m at a square s, for the product
of two wavelets, F = G ·H. We also need the first scaling coefficient for the product, which
is given by the simple expression: F 0

0,0 = G0
0,0H

0
0,0 + csum(s).

Algorithm 3 Wavelet Product
function product(square s = (l, x, y), int m)

// All wavelets at the same square but of different type
m1 = ((m+ 1) mod 4) + 1
m2 = ((m+ 2) mod 4) + 1
c1 = 2l

(
Gm1

l,x,yH
m2
l,x,y +Gm2

l,x,yH
m1
l,x,y

)
// The product of identical wavelets at strictly finer levels
c2 = 2l sign(m, 0, 0) · csum(l+1, 2x, 2y)

+ 2l sign(m, 1, 0) · csum(l+1, 2x+1, 2y)
+ 2l sign(m, 0, 1) · csum(l+1, 2x, 2y+1)
+ 2l sign(m, 1, 1) · csum(l+1, 2x+1, 2y+1)

// One identical wavelet and the rest at coarser levels
c3 = Gm

l,x,y · psum(H, s) + Hm
l,x,y · psum(G, s)

// Return sum of the contributions
return c1 + c2 + c3
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C.1.4 Optimized Product

This function directly returns the reconstructed average function value for a wavelet square s
in the product of two wavelet represented functions, that is, the returned value is the scaling
coefficient in s for the product, scaled by 2l.

Algorithm 4 Optimized wavelet product
function product(square s = (l, x, y))

// Both are scaling functions
c1 = psum(H, s) · psum(G, s)

// The product of all identical wavelets at finer levels
c2 = 4l · csum(s)

// Return sum of the contributions
return c1 + c2
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C.2 Wavelet Sampling

In this section, we present three different algorithms for sampling a wavelet tree. During
the sampling, we reconstruct the wavelet represented function hierarchically from its wavelet
coefficients. To sample wavelet products, all accesses to wavelet coefficients should be replaced
by calls to the function for computing wavelet product coefficients (Appendix C.1.3). To use
the optimized wavelet product, we instead use the function given in Appendix C.1.4, which
directly returns the reconstructed value for the given square in the wavelet product.

C.2.1 Random Sampling – Single Sample

This function generates a single 2D sample point by randomly sampling the wavelet repre-
sentation.

Algorithm 5 Single Random Sample
// s = (l, x, y) is the current wavelet square, initially s = (0, 0, 0).
// F (s) is the average function value in s, initially F (s) = F 0

0,0.
// r is a uniformly distributed random number, r ∈ [0, 1)
function SampleSingleRandom(square s, float F (s), float r)

if l < maxlevel then
// Reconstruct the four children quadrants
F (s1) = F (s) + 2l(+F 1

l,s + F 2
l,s + F 3

l,s), s1 = (l + 1, 2x, 2y)
F (s2) = F (s) + 2l(−F 1

l,s + F 2
l,s − F 3

l,s), s2 = (l + 1, 2x+ 1, 2y)
F (s3) = F (s) + 2l(+F 1

l,s − F 2
l,s − F 3

l,s), s3 = (l + 1, 2x, 2y + 1)
F (s4) = F (s) + 2l(−F 1

l,s − F 2
l,s + F 3

l,s), s4 = (l + 1, 2x+ 1, 2y + 1)

// Compute conditional probabilities, pi, and build histogram with four bins, hi

h0 = 0
for i = 1 . . . 4 do

pi = 1/4 · F (si)/F (s)
hi = hi−1 + pi

// Pick quadrant si to sample
for i = 1 . . . 4 do

if r < hi then
return SampleSingleRandom(si, F (si), r)

else
// Return random point within square
return random(s)
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C.2.2 Random Sampling – Multiple Samples

This algorithm generates multiple samples by randomly sampling the wavelet tree, returning
an array (samples) of 2D sample points.

Algorithm 6 Multiple Random Samples
// s = (l, x, y) is the current wavelet square, initially s = (0, 0, 0).
// F (s) is the average function value in s, initially F (s) = F 0

0,0.
// N(s) is the number of samples to place in s, initially N(s) = N .
function SampleMultipleRandom(square s, float F (s), integer N(s))

if l < maxlevel then
// Reconstruct the four children quadrants
F (s1) = F (s) + 2l(+F 1

l,s + F 2
l,s + F 3

l,s), s1 = (l + 1, 2x, 2y)
F (s2) = F (s) + 2l(−F 1

l,s + F 2
l,s − F 3

l,s), s2 = (l + 1, 2x+ 1, 2y)
F (s3) = F (s) + 2l(+F 1

l,s − F 2
l,s − F 3

l,s), s3 = (l + 1, 2x, 2y + 1)
F (s4) = F (s) + 2l(−F 1

l,s − F 2
l,s + F 3

l,s), s4 = (l + 1, 2x+ 1, 2y + 1)

// Compute conditional probabilities, pi, and build histogram with four bins, hi

h0 = 0
for i = 1 . . . 4 do

pi = 1/4 · F (si)/F (s)
hi = hi−1 + pi

N(si) = 0

// Place samples according to the histogram
for i = 1 . . . N(s) do

r = random()
for i = 1 . . . 4 do

if r < hi then
N(si) = N(si) + 1; break

// Recurse to children with one or more samples
for i = 1 . . . 4 do

if N(si) ≥ 1 then
SampleMultipleRandom(si, F (si), N(si))

else
// Place N(s) samples randomly within square
for i = 1 . . . N(s) do

samples−> append(random(s))
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C.2.3 Deterministic Sampling – Multiple Samples

Function for deterministically sampling a 2D wavelet representation, returning an array
(samples) of 2D sample points.

Algorithm 7 Multiple Deterministic Samples
// s = (l, x, y) is the current wavelet square, initially s = (0, 0, 0).
// F (s) is the average function value in s, initially F (s) = F 0

0,0.
// N(s) is the number of samples to place in s, initially N(s) = N .
function SampleMultipleDeterministic(square s, float F (s), integer N(s))

if l < maxlevel then
// Reconstruct the four children quadrants
F (s1) = F (s) + 2l(+F 1

l,s + F 2
l,s + F 3

l,s), s1 = (l + 1, 2x, 2y)
F (s2) = F (s) + 2l(−F 1

l,s + F 2
l,s − F 3

l,s), s2 = (l + 1, 2x+ 1, 2y)
F (s3) = F (s) + 2l(+F 1

l,s − F 2
l,s − F 3

l,s), s3 = (l + 1, 2x, 2y + 1)
F (s4) = F (s) + 2l(−F 1

l,s − F 2
l,s + F 3

l,s), s4 = (l + 1, 2x+ 1, 2y + 1)

// Compute probabilities and allocate samples
for i = 1 . . . 4 do

pi = 1/4 · F (si)/F (s)
N(si) = bpiN(s)c

// Place the n remaining samples (if any)
n =

∑
N(si)−N(s)

if n > 0 then
// Update probabilities and build a histogram
h0 = 0
for i = 1 . . . 4 do

pi = frac(piN(s))/n
hi = hi−1 + pi

// Distribute samples according to the histogram
for i = 1 . . . n do

r = random()
for i = 1 . . . 4 do

if r < hi then
N(si) = N(si) + 1; break

// Recurse to children with one or more samples
for i = 1 . . . 4 do

if N(si) ≥ 1 then
SampleMultipleDeterministic(si, F (si), N(si))

else
// Place N(s) samples randomly within square
for i = 1 . . . N(s) do

samples− > append(random(s))
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