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Abstract

The purpose of this master thesis has been to investigate the architecture of
massive multiplayer online games, MMOGs. As broadband is spreading around
the world as well as powerful PCs are available, more computer graphics can be
applied in MMOGs. The users of today want to see more graphics, i.e. more
graphics features results in more users involved in the game.

The established knowledge from the investigation was used for implementing a
part of the International Football Manager game, the IFM game. The imple-
mented part of the IFM game consists of a graphical platform for showing the
highlights from a certain football match.

Design techniques concerning MMOGs are discussed, including the game bal-
ancing for MMOGs. The investigation regarding networking aspects of MMOGs
is addressed, where main areas have been inquired such as the client/server op-
erations needed for the programming of a MMOG.

Computer security aspects as well as the importance of database systems of
MMOGs are brought up. Industry analysis added by a market research for
MMOGs are discussed in detail. Recommendations for future work regarding
the nature of this master thesis are made.
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1.1 Background and Purpose

MMOG stands for Massive Multiplayer Online Game. MMOG were first named
as MMORPG, i.e. Massive Multiplayer Online Role Playing Game and many
companies still use that term. This is the kind of online game that allows
thousand of players to play simultaneously, from all parts of the world. Players
which play these kinds of games are able to stay in the game over longer time of
period which is typically 6-12 months. During this time they are able to develop
their own game style. Even if a player stops playing the game the servers will
still be online with other players. Online games are a blooming market with
many opportunities as well as challenges for game developers.

The purpose of this thesis project has been to investigate the architecture of
MMOGs. We have both studied general principles for games already which
exist on the Internet and as a concrete case chosen to study the International
Football Manager game, the IFM game, in more detail. To gain insight in
how animated graphics should be included in a MMOG, we also implemented a
graphical platform for a new feature in the IFM game, showing highlights from
a certain football match.

Design techniques concerning MMOGs are being discussed in this thesis project,
where it is clarified what audience of different kind, expect out of MMOGs. How
these should be designed according to the audience type is also discussed. Under
the very same topic the architecture of the MMOGs in general is being presented
along with the architecture of the IFM game where a comparison between these
two can be made.

Networking aspects regarding MMOGs is addressed where main areas as the
client/server operations, needed for the programming of a MMOG, are revealed.
Issues like bandwidth limits and refresh frequency are brought up, as they play
an important part in the design of a MMOG itself, affecting the maximum
amount of data that can be sent over the Internet.

The importance of computer security aspects of MMOGs are also brought up.
According to the current situation in the world, where hackers are the dominat-
ing threat to the computer based industry overall, security is a pressing issue
for those who are interested in the development of a MMOG. Vulnerabilities
of MMOGs are therefore addressed, as effective solutions concerning these are
given.

As database systems are used for storing and maintaining data for MMOGs a
separate chapter is used for illustration of their functionality and usage. The
importance of a structured database is also given as it could be extremely time-
saving.

Industry analysis added by a market research for MMOGs are being discussed
in detail as it is of great importance having an idea of how much a MMOG
costs to develop and for example what game categories that one should consider
having its game developed within.
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In the history of MMOGs, the first games were of role playing type with poor
graphical presentation. This was not because of the non interest from the de-
velopers’ point of view, but simply because of the bandwidth limit. Computing
power had also become cheap enough, in the mid 1990’s, so that companies
could build enough powerful PCs, devoted to computer graphics.

Nowadays, when broadband connections are increasing by number around the
world as well as powerful PCs available for reasonable prices, more computer
graphics can be applied. This is yet another reason why the MMOGs can be
found in additional genres.

Even back in the days when the arcade games were most popular the main
thing that attracted players was the graphics in the game. Even then a simple
rule was applied among players, the better graphics within the game the more
players will the game attract.

As the situation is at the IFM game today, no animation graphics are available,
generally because it is a manager game which mainly consists of statistics and
tables. During our education at Lund Institute of Technology we have learned
how to use computer graphics in real time games and the investigation itself gave
us a knowledge overview on why graphics is important in MMOGs. The users of
today want to see more graphics, i.e. more graphics features results in more users
involved in the game. Experimental implementations within the IFM game have
been done. The accomplished implementation includes a platform for future
graphical representation of the feature, for showing the highlights from a certain
football match. Everything from physics needed to the artificial intelligence that
has been implemented in the IFM game feature is being described.

A comparison between 3D programming tools is also made, where the estab-
lished result can be used as a guidance for those who someday would like to
develop a MMOG on their own. Finally, recommendations for future work re-
garding the nature of this master thesis project are made.

1.2 Disclaimer

This master thesis was created and written by Sladjan Bogojevic and Mohsen
Kazemzadeh. The information within the master thesis was obtained from
publicly available sources, including company Websites, company annual reports
and news sites dedicated to games.

First of all, only 3 weeks of the total amount of 20 were used for the IFM game
feature implementation. We have, according to our own opinion, managed to
produce very satisfying results. It is obvious that we would be able to produce
much more as a matter of programming code if we would have all the 20 weeks
for programming to our disposal. We shouldn’t forget though, that our research
has given us tremendous insight in what in the end of the 20 week period came
out to be a wide scientific area.
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2.1 Creating and Designing MMOGs

When creating and designing MMOGs it is necessary at the early stages of
development to get an overview and thereby also good understanding of what
the goal should be. General topics as whom the game should be designed for
and what the main purpose of the game should be are a few questions that are
going to be discussed in this chapter. Concurrently, the IFM game is going to
be used as a case study for comparing these aspects.

The IFM game as a MMOG can be classified as something between sport strat-
egy and multiplayer role game. The IFM game could contain several game
worlds but the status of the IFM game today is that there exists only one world.
A game world includes 200 countries and their international teams where each
country has 4 divisions with 12 teams in each division. This results in 9.600
teams totally. As 9.600 teams are the maximum capacity of one world, a new
world could be created by the IFM game if this would be necessary. Another
solution would be additional divisions for each country, in case of user overload.

2.2 Encouraging Cooperative Play in MMOGs

The expression "building community" has become one of the key goals of a
successful MMOG design development over the past several years. There are
three reasonable arguments regarding encouraging cooperative play which are
listed below:

• Firstly : Cooperative play reduces system overhead. If a server can handle
a maximum of 3.000 concurrent players and each player can fight one
monster alone, the server must be capable of handling 3.000 concurrent
beasts. This includes also for example their AI routines, collision detection
etc. If the number of players that are required to defeat one enemy instead
increases to three, only 1.000 concurrent monsters must be provided.

• Secondly : Cooperative play modes increase a game’s variability which in
turn leads to longer time where players will reduce the likeliness of being
bored. The longer time the players stay in the game, the more monetary
gain the game will collect. Another thing that is worth mentioning is that
players will probably bring more friends and family to their game world,
which will also benefit the game economically.

• Thirdly : People playing MMOGs in general often build social bonds, which
eventually will spread outside the game. Even if the players quit playing
a certain MMOG the people they used to play with usually remain their
friends outside the online society.

Unfortunately in the IFM game there are no monsters to kill. The IFM game’s
system capability has to face another type of scenario. This scenario is about
taking care of the football match simulations which need to be calculated and
presented as quick as possible. This involves calculations needed for every match
played in the world.

MMOG Design Techniques 5



These calculations are going to take approximately 15 minutes independently
of how many players that are playing in the current world.

Concerning the second and the third argument mentioned earlier, players often
build social bonds outside the game. Every successful game on the market has
some sort of chat system. The developer’s of the IFM game have already in
the early stage of development thought of having a chat room that would let
players communicate with each other and thereby create social bonds and even
exchange experience concerning the game.

Yet another chat room slightly different in design, is to be developed for the
IFM game. This chat room will be of virtual type and referred to as a virtual
pub where managers could meet and discuss tactics. In the virtual pub area a
table could be reserved within the private chat room, where up to ten managers
could chat with each other. The managers in question are going to be seen on
the screen in form of 3D characters, representing themselves.

These added features will hopefully, in the end, result in more players playing
the IFM game which will also mean that there will be a economical benefit
to the game in addition to creating a pleasurable atmosphere for all of those
playing the game.

As the IFM game is implemented today, only one player can manage a certain
team. In the future there are plans on letting 20-30 players manage one team
together in the IFM game. This will of course lead to more frequent commu-
nication between players where each and everyone are going to have a special
role in the team they choose to represent. Those roles could consist of being a
trainer, marketing representative, financial manager etc. This improvement of
the game will fulfill the third argument already described earlier.

2.3 Building MMOGs for the Masses

Creating a MMOG has some practical challenges. Since there are different
types of players existing one should keep in mind also that there are basically
two different extremes of gamers when designing a MMOG. The two different
types are:

• The mass audience: Gamers who often are not skilled or experienced e.g.
kids.

• Hardcore gamers: Gamers with experience and good game knowledge.

The games for a mass audience should be pleasant and fun to play. But the
truth is that to create an interesting game, some kind of conflict is required.
The challenge is to make the conflict meaningful and important to players, but
not so intense that it alienates crucial segments of the audience.

Since hardcore gamers have a higher level of patience, the excitement when
playing the game is not a primary factor, i.e. the difficulty level should be
challenging from the start. Hardcore gamers’ preconceived thinking about the
implications is also different comparing with the mass audience gamers.
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If the complexity is initially hidden from the mass audience and the difficulty
level is sufficiently low at the start, the players will support long playing game
designs.

The philosophy of the development for the mass audience games should be never
to let the framework get in the way of a player having fun playing the game.
The following illustrate some helpful rules regarding the application of game
principles for mass audience games.

• Let the excitement begin right away

• Avoid forcing a player to make uninformed choices

• Game play should dictate geography

• Play session can and should be short

• Allow and encourage players to be spectators for learning tactics

• Teamwork is often more rewarding than individual accomplishments

It is important to keep who the players are and to not forget the design prin-
ciples while designing the games. The IFM game is developed for players with
experience of manager games. So, those players with experience who join this
game will know what to expect. However, there is still hope for newcomers.
There is a fully documented online manual and tutorial for the game so even
beginners are able to play. After a while anyone should be able to manage the
game but of course the strategy of how to play is something that comes with
some serial game playing.

In IFM’s case the players who participate in the game enthusiastically are going
to be rewarded for it. Since the IFM game has its own newspaper, every user
is able to write his/hers own articles and possibly get them published in the
newspaper. Every article is studied by the administrator where only the best
ones get published. For every published article the player gets awarded with
one point. At the end of a season the three best players who have the highest
amount of points, get to play another season for free.

2.4 Game Balance for MMOGs

Balancing in an MMOG environment is a process that begins at the early stages
of development. MMOGs should theoretically be played hundreds or even thou-
sands of hours by each player. Action of one player in MMOGs is capable of
affecting others which means that imbalance in the game itself could indirectly
affect the entire community. This makes balancing an extremely important issue
that should be handled at the early stages in development.
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Yet another important part of effective game balancing is game metrics. Game
metrics are methods by witch game values are measured and recorded. By using
these resulting data decisions, on how future balance of the values should be
set, can be made.

The following illustrates common factors to track in MMOGs for balancing
purposes:

• Player advancement : By measuring a player’s progression through the
game the designer is enabled to determine if advancement is occurring at
the expected rate.

• Item use: The item use measurements are very useful for checking the
balance of items such as weapons, armors etc. Having a situation where
one certain item is used 100 times more than the subsequent one, there is
a clear hint that the items are unbalanced.

• Actions: What do players spend their time on while playing MMOGs?
Is it fighting monsters, recovering from previous losses or do they spend
time on something completely different? It is therefore important to track
players for representing the best possible balance.

When it comes to the IFM game an administrator is set to monitor the action
and thereby correct the balance if necessary. The IFM game does not have a
monitor program as a tool for helping the administrator to keep the balance in
check. However, a monitor program is planned to be implemented in the near
future.

An unbalanced situation that could occur in the IFM game is that a statisti-
cally stronger team would continuously beat a statistically weaker team. On
the other hand, an inexperienced player that keeps loosing while playing with
more experienced players is not considered as an unbalanced situation. In this
situation the inexperienced player needs to learn more about the game tactics.
This could be done by exchanging tactics tips with other players playing the
game, within the IFM game’s chat room or simply go through the online manual
once again.

It is common to add new features to an online game after launch. These addi-
tions are first of all an excellent way to maintain and even increase interest in
the game. They also carry the same dangers as rebalancing. Even a small fea-
ture that seems to be of small importance can have a large effect as it interacts
with all of the other game systems. The feature that will show highlights of a
football match will have a very small effect when it interacts with other parts
of the game. This feature will increase game pleasure but it will not disturb the
balance of the game as such.
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2.5 The Architecture of MMOGs

Developing an MMOG is a task which is often underestimated. The architecture
of a MMOG often becomes quite complex. It is important to notice that there
is not any single best or standard solution. In the figure 2.1 a functional, highly
simplified MMOG architecture is shown.

ClientClient Client

A.I.Player
Actions

Chat

Game Logic Server

Game
World

Client

Client

Client

Account
Database

Action and Response
Multiplexor

Client specific game
"world views" or 
distributed object

change notifications

Account and Login Services

Web Services 
e.g. billing tools 

"Shard" Line

Figure 2.1: Simplified MMOG architecture

Having the highly simplified example of a MMOG architecture represented in
figure 2.1 at our disposal, the figure is going to be explained in general terms,
from bottom up.
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The first layer consists of clients who request different actions from the Game
Logic Server segment. The clients can be seen as input to a MMOG where they
are ported to the Game World segment.

When a client performs an action it is queued by the Action & Response Multi-
plexor segment which is located in the second layer. This data will be forwarded
to the Game Logic Server segment. The information exchange is performed
similarly, when responses and confirmations are returned from the Game Logic
Server segment. The information exchange can also stream via the client’s view
of the game world.

The third layer in the figure 2.1 includes the Game Logic Server and the Game
World segments. Depending on what kind of implementation has been applied,
memory, database or some combination of these two, it can be used to store the
Game World data. As there is different kind of data, like the one describing im-
portant transactions or the one describing non critical data different techniques
needs to be applied. Non critical data, e.g. player skills should be stored in an
SQL database while important transactions, e.g. positions and health should
be hold in memory to reduce processing overhead. Considering the Game Logic
Server segment as such, it mainly provides tasks associated with the Game
World segment and the Action & Response Multiplexor segment. One of the
tasks is managing the game world model and the other one is providing addi-
tional services to players such as chat, artificial intelligence that is AI, NPC,
etc.

The fourth layer handles the Web interfaces for account management. This layer
is becoming standardized as more and more games are using the Web services
to deliver information such as customer service tools, consisting of client code
and billing to the Game World segment. It is worth mentioning that billing and
other customer service tools are hard tasks to manage and are unfortunately
often neglected until late in development.
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2.6 The Architecture of the IFM game

In the IFM’s case clients login through the so called Account and Login Ser-
vices to access the game environment, i.e. Game World Visuals. Game environ-
ment uses the Game Database in turn, to display relevant data from the Game
Database. Then there are the Game World Update Tools that keep the data up
to date and control the live matches which can be seen using the Game World
Visuals.

Client

Client

Client Account and Login Services

Game  / Account Database

Game  World Update Tools

Game  World Visuals

Figure 2.2: Simplified architecture of the IFM game

If the demand for playing the IFM game would increase so that the existing
capacity of 9.600 clients would not be enough, new game worlds would need to
be set up. In that case the IFM game could use a common account login server
and so called "director" to refer the clients to appropriate game world servers.

2.7 Platforms for MMOG Development

Most MMOGs on the market today are what is called platform specific. The
games have, for example, been developed using the C++ language for Windows.
Standard programming environments such as Visual C++ along with DirectX
have been used.

On the other hand programming languages such as Java and the increasingly
used Python are worth considering, especially if a development team has an
established expertise, or if a chosen middleware is based on these platforms. It
is important to notice that the difference in language performance is minimal
when compared to the differences that efficient design and careful optimization
can make to performance.
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To accelerate MMOG development and at the same time make it a bit easier,
there are companies offering complete MMOG network solutions and software
infrastructure, i.e. tools and middleware.

A few examples of companies that provide network solutions and software in-
frastructure are presented below in alphabetical order:

• Big World Technologies

• Butterfly.net

• Global Gaming Innovation

• Nevrax

• Quazal

• Silver Platter Software

• Terraplay

• Touchdown Entertainment

• Turbine

• Twisted Matrix Laboratories

• Zona

None of the above mentioned companies have yet launched a commercial MMOG
game based on their technology except for Turbine. One reason could be the
fact that the above mentioned companies have not been on the market for a
long time as it takes approximately four years for a MMOG to be developed.
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Chapter 3

Networking Aspects of
MMOGs



3.1 Introduction to Networking

The worlds largest network, Internet, is the network that MMOGs take advan-
tages of. For using its capacity efficiently, one needs to investigate the theory
of the Internet and how the Internet works.

In a network two or more computers use a language to communicate and share
information with each other. The language in this network is called the protocol
of the network. This means that computers who want to communicate with
each other must use the same protocol standard e.g. Transmission Control
Protocol/Internet Protocol, TCP/IP or User Datagram Protocol, UDP. The
protocol that is used in Internet communications is the TCP/IP.

A protocol defines the format of the data and the rules for communication.
This implies that different computers that even run different types of operating
systems can share information as long as they are connected to the network.

3.2 Differences between TCP and UDP

The TCP is a reliable protocol that guarantees packet delivery and is for that
matter responsible for verifying the correct delivery of data from client to server.
The risk is that data sent from client to server can be lost in the intermediate
network. The protocol adds support for retransmitting the data until either
a timeout condition is reached or until successful delivery has been achieved.
If the sending computer is transmitting too fast for the receiving computer,
the protocol will activate the flow control mechanisms to slow down the data
transfer. It is worth mentioning that these are just some of the services that
the protocol has to offer.

The UDP protocol does just about as little as a transport protocol can, in other
words it offers only a minimal transport service. The protocol is mainly used for
applications that do not want TCP’s flow control and wish to provide their own.
The protocol is an unreliable one in a way that it does not guarantee delivery
nor does it require a connection. All error processing and retransmission, on
the other hand, must be taken care of by the application program. The UDP
protocol is generally better for real time interactions.

The IP handles the movement of data between host computers. It provides
among other things error reporting of information. It is important to observe
that the IP only delivers the data packets between host computers. It’s up to
another protocol, for example, the TCP to put them back in the right order.
Both TCP and UDP are connected to the IP protocol.

Networking Aspects of MMOGs 14



3.3 Client/Server Programming

The server’s task is to wait for an incoming request of connection from client/
clients. Once a connection is established the server proceeds by serving the
client/clients in question. The structure and functionality of a server and a
client are very much different and will therefore be discussed in this section.

3.3.1 Server Methods

If there are no client/clients to serve, then there is not much for a server to
do. It is therefore very important to keep in mind when creating a server that
it sometimes can be a very passive application. It is simply a waste of CPU
time letting a server constantly run an empty loop when there are no client
connections.

There two types of servers, iterative servers and the concurrent ones. The main
difference, between these two types, is that the iterative ones can only serve one
client connection at a time. However, iterative servers are not very useful.

Assume that there is an iterative server handling a MMOG. This would not be
so appropriate since this type of server can only handle one client connection at
a time, which may put the rest of the clients on hold.

A concurrent server handles several clients at a time in an appropriate way.
When this kind of server is started, its first task is to listen for incoming con-
nections requested by clients. Now, the thread for listening for incoming con-
nections requested by clients will instantly create a child process, a thread.
Thereafter the main thread will continue to listen for incoming connections.

Server

Establishing
connection

Listening
Client 1

Client 2

Client 3

Client 4

Figure 3.1: Simplified representation of a concurrent server

The figure 3.1 shows how the concurrent server works. Depending on the state
of the application it will successively accept all the connections requested from
the clients. This will continue until it reaches an upper limit of possible clients
that it can take care of.
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In the figure 3.1 one can see that clients 1-3 have already established a connection
with the server. Client 4 is on the other hand still establishing one.

It is important to add that a server uses a socket for listening and in figure 3.1
this socket is already free and has started the listening process for more connec-
tions. A socket is basically a pipe which data flows through.

3.3.2 Different Types of Sockets

In the industry two kinds of sockets are available, A stream socket is a connection
oriented socket which means that a connection must be established before data
exchange.

A datagram socket is on the other hand a connectionless socket which means
that whenever there is any data to send, the data in question is sent to a
predefined address. This implies that data in a datagram socket is transmitted
in datagrams. If one of the hosts crashes the others will not be able to notice this.
This fact makes it more challenging for the developers to create the application.

Client 0 1 0 1 0 1 Server

Figure 3.2: A stream socket connection

The stream socket types are used in the TCP technique and the datagram
sockets types are used in the UDP technique.

3.3.3 Clients

Clients are the ones initializing the connection to the server. Clients only wait
for data from the server to be received. In MMOGs the clients are normal users
which can be seen as part of the game itself. The clients are only interested
in knowing the address and the port number of the server. In some MMOGs
this information is built in to the game, so that the players need for setting up
the connection is taken care of automatically. This is implemented in the IFM
game, i.e. when a player/client uses the login and password, the connection to
fsdata Company is established automatically. The fsdata Company is a so called
Web hotel that provides the IFM game concerning computer security, database
management, data storage area, etc. for a low monthly cost.
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3.4 Client/Server Operations

In this section a few TCP and UDP client/server operations are going to be
discussed.

3.4.1 An Easy Transport Protocol

TCP is an easy transport protocol for developers to manage as it is for creating
TCP servers as well. The only thing that has to be done is for the servers to
listen for incoming connections and accept them. After that, data between the
server and client units can be exchanged. At the end, if a client requests to close
the connection to the server, a request is sent to the server and it is thereafter
confirmed by the server. The figure 3.3 illustrates these procedures in time.

Server Client
Request Connection

Accept Connection

Server Client
Data

Data feedback

Server Client
Close Connection

Close Connection

Time Time

Figure 3.3: A normal TCP client/server operation

3.4.2 A Connectionless Protocol

As mentioned earlier, TCP servers have to listen for incoming connections. Deal-
ing with UDP servers, one does not need to listen for incoming connections since
UDP is a connectionless protocol.

This type of model just reads the incoming datagrams and acts depending on
what information it holds and how the programmer wants it to act. A client
host could simply notify a server by sending a datagram that holds relevant
information about the client.
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This kind of system is called a knocking system where a "knock" message is
sent in the beginning. When the server receives this message it will update its
list of clients or just create a new child process depending on the design. A
problem may occur when there are lots of clients who want to connect to the
server. Then the socket may be overloaded which would lead to delays on the
client sides. That is why the child process technique is to be preferred.

Dealing with UDP servers, one server only uses one socket to interact with the
clients. To be able to exchange data, the hosts must know about their address
information. The figure 3.4 shows a normal UDP client/server operation.

Server Client

Data

Data feedback

Figure 3.4: A normal UDP client/server operation

3.5 Server Side Development

In this section the basic issues considering the development of MMOGs on the
server side will be discussed. The development on the server side is extremely im-
portant and should be considered through early stages of game design. There are
many options, procedures and potential solutions that will have consequences
throughout the life of the game.

3.5.1 Seamless Servers

MMOGs usually have to manage thousands of players concurrently. Because of
this, they require a server environment that should be distributed in such way
so that it is able to spread all game related computation across not only one but
several host machines. One of the most usual ways of doing so is by splitting
the game world into different regions and thereafter letting them be managed
by different server processes.

In an environment such as the one where different regions are managed by
different server processes, the game world itself can be categorized as either
seamless or zoned. The difference is in whether the server process boundaries
are directly observable inside the game or not.

One could say that the seamless world is one where a player without knowing
may interact with objects that are in turn handled by several game processes.
Zoned world on the other hand are geographically independent areas. Between
these areas there is often very little or no contact at all. In that case players
interact only with other objects on the very same server.
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The decision on whether to implement a seamless or zoned world will have
effect on every single part of a game’s development and is therefore of extreme
importance.

3.5.2 Partitioning the Server Load

Breaking the game world up into pieces simply results in better balance because
it spreads various types of game processing equally across server machines. By
doing so, it is going to be easier to add more game content without impacting
current server loads.

There are several different solutions of partitioning the server load. To split
the game simulation along the geographical lines and thereafter assign them to
multiple servers is one of the most common solutions.

As there are other solutions, what other ways of partitioning the server load for
a certain game design could be obtained? The answer to this question is that
it all depends on the game design itself and the number of players populating
the MMOG in question. These factors are the ones controlling the amount of
computations being executed.

The following solutions are some of the possible ones:

• Splitting physics and game computation

• Letting artificial intelligence run free

• Spend more money

The alternative solutions that are going to be discussed in more detailed form,
correspond to methods for speeding up the CPUs.

3.5.3 Splitting Physics and Game Computation

Latest MMOGs are most often 3D worlds. Handling a 3D world involves large
amount of time updating the character movement, executing collision detection
and updating other physics related activities in a 3D world as well.

One possibility would be to separate the updating of the character movement
and the performance of collision detection from one another. These could there-
after be handled in separate severs.

As it is shown in the figure 3.5, what is chosen to be called the physics server
would handle the movement and collision and thereafter update what is chosen
to be called the game server.
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A scenario could contain clients connecting to a front end server. The very same
server would then redirect the packets to either the physics or the game server.
Redirection is depending on the type of the data packet in question.

C1

C2

Cn

Front End
Server

Database
Server

Physics
Server

Game
Server

Figure 3.5: The architecture of a server with separate physics and game servers

3.5.4 Letting Artificial Intelligence Run Free

One could partition the server load by simply letting the Artificial Intelligence,
AI processing be handled on its own server. Unfortunately this also causes some
negative effects which must be handled.

First of all, data must be replicated since AI decision making most often relies
on the properties of, for example, player characters and other game objects.

Assume a scenario where the decision making of a character is based on the
position of another game object. If the position of the game object in question is
not updated concurrently because of badly scaled bandwidth, the AI processing
will get out of synchronization. Synchronization must be applied as well as
increased communication between the servers.

If replication is not carefully managed, obviously the code in question could get
out of synchronization. The last mentioned facts will most certainly lead to
abnormal behaviour and bugs in the code that would be very hard to find.

3.5.5 Spend More Money

At the end one could always invest more money in better and more powerful
server machines. By doing so, one could make use of multiprocessor boxes and
multiple threads. Making use of multiprocessor boxes is equivalent to increasing
the CPU power and the processor clock speed.
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3.5.6 Benefits of Seamless World

As time goes by the world will become more populated. In a seamless world the
servers can be adjusted to handle the increased load. There are two different
types of server boundaries, the dynamic and the static ones. The dynamic server
boundaries are able to perform the balancing of the increased load at run time,
by itself. As a matter of static boundaries the balancing of the increased load
can be adjusted during down time.

Another great benefit of the seamless world is its potential for higher reliability.
The server boundaries can be adjusted to spread the load over the remaining
servers if one of the server machines would break down or a server process would
crash.

An interesting detail is that a dynamic server boundary implementation might
automatically spread the load over the remaining servers when it detects a server
crash.

The time required for map loading is greatly decreased as smaller parts of the
world are loaded in, only when required which in turn has a great affect on the
clients in the end.

3.6 What Data Needs to be Sent?

When a player, that is a client gets his/hers login and password, there will
be several types of data sent forward and backward between him/her and the
server. This also counts for the rest of what could be thousands of MMOG
players. All kind of data sent between the client and the server needs to be
taken care of differently, depending on how time critical it is.

Some examples of common interactions in a MMOG, generated by players or
by non player characters, NPCs could be combat, movement, chat or trade.
Taking combat as a triggered interaction it is far more time critical and highly
prioritized, for that matter, than chat or trade interaction. To be able to give a
player a good sense of continuity and game feeling as well, movement information
does not need to be more than medium prioritized interaction. This is why
interactions like the combat one, should constitute a large portion of a data
stream.

Taking the IFM game as a case study along with the feature comprehending the
visualization of the football match highlights, interactions slightly differs from
other MMOGs. In IFM’s case the client/clients use so called "pull technique" for
retrieving the information needed. When a client wishes to perform an action,
a request is sent to the server which will thereafter serve the client in question.
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3.7 Bandwidth Limits

There are two reasons why one kilobyte per second, which games on the market
all share, is a good bandwidth measurement per player. The first one is that
even a low speed modems like those that has a rate of 28.8k are able to keep
up with the data rate of one kilobyte per second per player. The second one is,
considering one kilobyte per second bandwidth measurement of which MMOGs
are charged for leads to the fact that even if players would keep on playing a
MMOG constantly for a month, the game would still be profitable. In other
words there would be money left from their monthly subscription for paying
MMOG maintenances as well as ongoing expenses.

3.7.1 Refresh Frequency

The refresh frequency itself affects the average amount of transferred data be-
tween the hosts. Independent of what network delivery protocol is used, TCP
or UDP, a header will be attached to the data packet. These headers vary in
size, which are 28 bytes for a UDP package and 72 bytes for a TCP package.

Assume that a frequent refresh is being made. This means that the extra header
data will also be sent along with the rest of the package. Ideally, the sending of
a package should include all the available information concerning a player. Even
if the packet in question should include several different types of information
concerning a player, it would be ideal to send it over the network as one packet.

As mentioned earlier the TCP is used for exchanging the information between
the hosts via the Internet while the IFM game is making use of this functionality.
A scenario could appear where both TCP and UDP techniques are used in
combination at a same time for sending data packages. In this case, data that
needs to be sent should be broken up in two subpackages. One sub package
should include all TCP data merged into one package and the other send should
include all UDP merged data into another package.

As a developer of a MMOG one will always attempt to send the information
needed from server to its clients as often as possible. This might seem like a
good idea but in some cases this consumes extra bandwidth unnecessarily. By
doing so one would not only consume extra bandwidth but one would make it
easy for the players to notice lag, i.e. delays, when they occur during playing a
MMOG. However, these lags could be used in an inappropriate way by cheating
clients.

On the other hand, not sending the data packages frequently emphasizes some
serial visualization issues. These issues could include visual popping and warp-
ing of the characters. Warping could be recognized from a client point of view
if an object hops from location to location instead of, for example, gliding. Yet,
another issue regarding infrequently sending data packages is that these will
increase in size.

Consider an example which explains what happens when a large amount of data
needs to be sent over the network.
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This large amount of data could for example be split up in four smaller data
amounts that could each be put into a data packet. After sending these from, for
example, a server to a client, assume that one gets lost. Losing a part or any part
of a great amount of data, that could be representing some kind of a message,
would result in this whole message being thrown away and resent again. This
will in turn once again result in unnecessary bandwidth consumption.

3.8 Data Storage Required for Each Player

To be able to maintain and manage the clients belonging to a specific server,
the server must first of all have a predefined storage area per client. In IFM’s
case there is information such as last time a client logged in for playing the
MMOG, last time a client won a football match, last time a client bought a
certain player, etc. This information has to be stored somewhere on the server.
This is where the supervision administrator keeps track of the game history.
This information must be managed in a proper way.

In IFM’s case, thousands of players could be involved in the game. Some players
are active ones and others are not. As there could be thousands of players
to manage, proper use of every space of memory available becomes extremely
important.

Assume that a certain client’s subscription period has expired. Any detailed
information about this client is now unnecessary data to keep stored. This data
can now be handled in several different ways. It could be stored separately
from the server’s storage area or recycled within it. Before these actions can be
executed a certain procedure must be followed.

A client whose subscription has expired will be contacted via an email. The
client is going to be notified of the expired subscription and at the same time be
encouraged to pay for another one. If the player after being contacted does not
reply to the email sent to him/her after a predefined period of time, the account
of the client in question will be closed. The supervisor will then save the data
information by removing it outside the server memory as the initial condition
and structure of the team is being reset. The information being removed consists
of the team history during the period the client was an active user of the MMOG.

In order to save memory space at the chat handling part on the server, a com-
press technique will be needed for minimizing the storage data. One solution
could be applying a method of encrypting every word to a "key_id" consisting
of letters and numbers.

3.9 Handling of Game Events

Because of the great number of users causing all sorts of things to happen at
any given time, the events are more important in MMOGs than ever. Event
based programming handles concurrency in processes without using threads.
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Comparing threads with events one can say that threads are more difficult to use
because other processes might interrupt the current thread at any given time.
This requires more out of the application itself, e.g. mutual exclusion which
means that only one process can access the shared data at a time. Threads are
also hard to debug and they are often hard to schedule.

On the other hand using events, one does not need to worry about any process
interrupting the current one. Additionally neither the mutual exclusion needs to
be considered. When the application invokes the events they execute and run
until they have completed their task. Event based programming is therefore
much easier to understand, debug and schedule. It is important to observe that
using event based programming does not exclude the usage of threads for other
parts of the MMOG.

In IFM’s case the usage of events is applied. There is a main loop whose purpose
is reading changes in the output of the game engine. The game engine creates
among other things also actions and events depending on a team’s current status.
Pseudo code for the main loop already described, which also could be found in
the IFM game could look like the following one:

mainloop()
{

while(game_is_running)
{

// wait for incoming requests
waitForRequests();

// handle requests
processRequests();

}
}

Once an event is generated it will be stored in the game server register. As a
client requests to visualize a certain highlight of the game, the event is broad-
casted to him/her. There are about thousands of different events. An event
can, for example, contain information about player A at position P1 passing to
player B at position P2 where from player B scores by performing a so called
"shoot with his right foot" action.

The broadcasted event is then used for creating the 3D environment showing
the requested highlight. The creation of the environment is actually an activeX
component which is done in the clients RAM memory.

3.10 Movement Prediction

This section essentially discusses techniques for movement prediction on client
side in MMOGs. Although this subject is not applied in the IFM game, the
prediction itself is a broad and important issue to consider.
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The players’ movement perception of the characters in a MMOG will have an
affect on how deep the players will involve themselves in the game. An example
of problems that may occur is when characters move through closed doors or
boxes. These problems are common in all networked games, nevertheless in
MMOGs.

Client side movement prediction has to be considered from two points of views.
First of all, the players’ requirement of immediate feedback has to be considered
as well as the variance of network delays. An obvious thing is that players have
a small waiting tolerance when they perform an action until the action itself is
displayed on their screen. Clients, in most cases, do not care to think about
that every action performed by a player has to be computed at the server and
rebroadcast to the player in question.

There are lots of ways to deal with immediate user feedback. A simple solution
might be to give an audio signal to the client which indicates that the order has
been received while the order itself is passed to the server. This signal is used
to camouflage the time delay.

Another trick is to initiate a command delay into an action signal at the client
side. The predefined delay is used to reduce the expectation of immediate user
feedback at the client side. However, this solution is considered to be disturbing
for hard core gamers.

Although the above mentioned solutions can be considered as proper ones, there
are factors that might not be controlled. In most cases for MMOGs, the client
side is being constructed in such way that it is expecting to be updated in a
constant rate, normally 4 to 20 times per second.

Since the Internet uses TCP protocol for data package delivery where the delays
are not predictable, a situation may occur where a package gets delayed or lost.
In case of a lost package, the package will be redelivered. If the data package
in question contains position data of an object, extreme amounts of variance in
the time between position updates will contribute to warping.

3.11 Movement Prediction Techniques

Following subsections will illustrate some useful techniques concerning wrapping
and popping of characters. As mentioned earlier these problems are generated
because of network latency. However, these techniques are presented below:

• Command time synchronization

• Extrapolation

• Reversible simulation

3.11.1 Command Time Synchronization

In certain MMOGs where objects have to be moved to specific positions based on
path finding requests, the command time synchronization technique is suitable.
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These MMOGs are in general of real time strategy type. The problem appears
when the client A wishes to move an object to a specific position. This request
is first of all sent to the server. Due to network latency rest of the clients will
receive this information when the client A’s object has already been moved a
bit.

To be able to compensate for this, the other clients must receive client A’s
request as well, so that the moving object gets to it’s final location at the right
time based on the latency of the move command from the server.

Sending the message "Would you be kind and move object O to position P"
from server to all of its clients, it will result in a scenario where object O will
reach its final position differently depending on how far on the average, the
clients are located from the server.

A better solution would be applying the command time synchronization tech-
nique which serves the clients by sending the message "Would you be kind and
move object O to position P at time T in the future nearby". Assuming that
the time is synchronized between the hosts and that the speed of the object in
question can be regulated in such way that it reaches its final position at each
client in correct time.

3.11.2 Extrapolation

In the figure 3.6 a line and a curve are shown. The straight line represents what
the client knows about the traveling of the object in question. The curve, on
the other hand, represents the turn that the object is actually making on the
server.

Client

Server

Figure 3.6: Server’s view and client extrapolation of an object position

Each dot in the figure 3.6 represents a unit of time. If the client does not receive
the updated position within a predefined time range, the extrapolation technique
is going to be applied. The equation is simple, the longer the server waits until
sending the updated position to a client, the further out of the position the two
objects will be.
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A technique that uses extrapolation method is the "dead reckoning" technique.
Dead reckoning technique is a form of client side prediction. This technique
is widely used in MMOGs that distribute positional data and it is a way of
compensating for latency. Dead reckoning as such, could be described as a
technique that will decide where an object should be positioned "now" based
on where it has been positioned "before" and which velocity it had.

Making it more understandable, assume for a moment that it is time to move an
object and that the updated position for the very same object has not arrived
yet. The dead reckoning technique then simply estimates the new position. It
is important to notice that this last mentioned estimate of the new position is
often based on where the object was last time and how fast it was moving. The
acceleration at the previous position is yet another fact that is sometimes used
for estimating the new position of the object.

The usage of the dead reckoning technique requires that the designers and pro-
grammers of a MMOG work together to be able to make the best choices getting
out the most of the technique. It will for example make a great difference in
movement of an object, which is clearly going to be seen at the end the final
result is presented, if the simulation time is used in the calculations of dead
reckoning technique, or not.

So, what could happen if simulation time is not applied? Well, because of the
latency, the updated position for the object in question could be in the past.
The position at that time could already be estimated. This will result in the
object suddenly popping to the position that has been already guessed, in the
past. Figure 3.7 shows an example of this where it clearly can be seen that the
object will suddenly pop, so to say, from guessed position to its true one.

Perceived path

Position update
at local time T

Estimated position
based on local time - T

Actual path

Figure 3.7: Basic dead reckoning

Now, considering the difference between the time of the update and the current
simulation time, the scenario described in figure 3.7 could be avoided. In fig-
ure 3.8 it can be seen that the displayed path does not get back on the actual
path. Instead, the perceived path is repredicted based on the difference be-
tween the time of the update and the current simulation time. This will result
in getting smoothness of the object movement.
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It is on the other hand depending on the type of the MMOG in question what
kind of dead reckoning technique is more suitable. In some cases the true path of
an object is of absolute importance, then considering the difference between the
time of the update and the current simulation technique is not to be preferred.

Perceived path

Position update
at simulation time Ts

Estimated position
at simulation time Ts

Actual path

Figure 3.8: Dead reckoning with time compensation

Not only does it depend on what type of the MMOG designers and developers
are working on, every object in the game does not need to play by the same
rules. This is why considering the usage of the dead reckoning technique is
not just a technique that is implemented by the programmers. It requires that
the designers and programmers of a MMOG discuss and work together before
applying it at all.
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3.11.3 Reversible simulation

This technique is used in MMOGs where shooting a target occurs. In these
games a scenario might occur when a client shoots at an object that it thought
had at its sight. Network latency would delay the shooting command getting to
the server. This targeting object may now be at another position on the server
by the time the trigger was pulled. What happens is that the client misses the
target, even though the target was in its sight. The figure 3.9 will help visualize
this scenario.

Bullet Target

Servers vision of the target

Figure 3.9: Differing client and server views leads to missed shot

Taking advantage of reversible simulation will however, lead to fair play. The
idea is that the server goes back to the last acknowledged command from the
targeting object i.e. the position where the object was insight when being shot.
The server will then start to extrapolate what would have happened as if the
target had not moved at all.

Figure 3.10: Using reversible simulation to change from server to client view

The server will simulate a scenario were commands are received in the right order
from the clients. The figure 3.10 shows that in this case the target is placed
at the correct position when being shot simultaneously as the client makes it’s
shooting correct. This is then confirmed by the server who then eliminates the
target.
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Chapter 4

Computer Security Aspects of
MMOGs



4.1 Computer Security in General

In short, one can state that security is all about the protection of assets. This
type of definition implies that one has to have an accurate evaluation of the
assets that he/she have to protect. There are three different types of rough
classifications of protective measures that have to be considered. These protec-
tive measures are:

• Prevention: taking measures preventing assets being damaged, for exam-
ple locking a doors and window bars, thus making it more difficult for a
burglar to break into ones home.

• Detection: allowing one to detect when an asset has been damaged, how
it has been damaged and who has caused the actual damage.

• Reaction: enabling one to recover his/hers assets.

4.2 To be Able to Play MMOGs

To be able to play MMOGs requires that you first of all have an approved CD
Key, username and a password. Once you got your username, password and you
have a correct CD Key you will then have to pay for a monthly subscription.

The information about people who would then like to play MMOG will, apart
from personal information such as approved CD Key, username and password,
be stored on the company’s server for necessary verification.

4.3 Why Would Security Services be Hacked?

When it comes to MMOGs and security, implementations of these can be re-
alized in two different ways. One solution would be having the company de-
veloping the MMOGs take care of all the security aspects by itself. The other
option is letting a company, who is already specialized in computer security for
MMOGs, secure the computer system in question.

The latter solution is often preferred from a developer company’s point of view.
Then companies do not need to take care of security implementation at all but
instead their time can be spent on e.g. implementation of game logics.

It is essential to add that the service for the security of MMOGs is often not
very expensive. This conclusion is based on the fact that when comparing the
amount of time developers at a certain company need to spend on programming
from scratch simultaneously as well as maintaining the system by themselves,
it is much cheaper to allow a company specialized on computer security to set
up the security system for the intended program.
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Following is a list of possible motives for hackers to compromise a security
system:

• Companies which provide the security services withhold private informa-
tion about people/players.

• People often pirate games, which they would like to play online. To play
online a client is most often forced to give an approved CD Key to be able
to do so. CD Key has to be approved so that the server would be able
to set up a clients account, therefore they are obviously one of the goods
that hackers are keen to put their hands on.

• If a client, as a player, wants to join a certain MMOG he/she must pay
a fee for playing the online game in question for a predetermined time
period. To be able to pay the fee the client will probably use a credit card
number, which is another reason why companies need to provide security
services so that this information does not get uncovered by hackers.

• Hacking the companies that provide the security services also means ob-
taining valuable information so that hackers can cheat ahead.

• To be able, for example, to delete other peoples characters etc.

4.4 The Cryptography Issues of MMOGs

Cryptography is the science of secret writing. To encrypt information that is
sent from a player when he/she is logging in to play a MMOG, is one thing that
has to be done. To thereafter encrypt every little message that is sent between
a player and the server, that holds MMOG information would be devastating.
Full encryption encapsulation would therefore be detrimental to the industry.

A part of the nature of MMOGs is that there are thousands of users who are
always online. These players are not interested in how the implementation of
the MMOG that they are playing is done. Cryptography exaggeration would
lead to a poor updating rate in the game which in turn will result in players
abandoning the game.

4.5 Vulnerabilities of MMOGs

MMOGs in general are often exposed to client hacks. Players are constantly
looking for ways to take advantage of the system. Using "how to cheat" sheets
posted on different Websites, cheaters are stealing accounts, hacking into the
servers, duplicating items, weapons and even whole characters.

In the following subsections vulnerabilities of MMOGs are pinpointed followed
by a description and possible solution.
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4.5.1 Server Masquerading

Problem

One variety of a server masquerading is "server spoofing". Server spoofing is
when attacker poses as a game server. This allows attacker to get usernames
and passwords and the attacker may also be able to get CD Keys.

Yet another attack is called "man in the middle" attack and implies that at-
tacker accepts the connection and passes credentials on to the server. This
will allow the attacker to take part of valuable information as mentioned in the
case of server spoofing. When information is sent from client to server, it will
usually be sent via several different computers before reaching its final destina-
tion. The "man in the middle" attack is in most cases caused by lack of server
authentication protocols.

Solution

Digital certificate system should be introduced so that no one else but the server,
to whom the information is devoted, could take part of the information. The
digital certificate system must be implemented in such way so that it has to be
changed often.

In general use, a certificate is a document that attests to the truth or ownership
of something. A digital certificate is a digital document that serves the same
purpose.

Assume Client A using his/her private key, decrypting a message that has been
encrypted by his/her public key. Client A can therefore prove that he/she owns
the public key. The digital certificate confirms that the owner of that particular
public key is Client A. Thus the digital certificate binds Client A and his/hers
public key in a sort of digital ID Card. There are three main practical uses for
digital certificates:

• to prove identity for purposes of electronic commerce

• to prove identity for purposes of access control

• to prove identity to prevent spoofing

4.5.2 Client Masquerading

Problem

Client masquerading is when a player has the role of an attacker acting as a
valid user. This case allows the attacker unauthorized access to service and to
obtain or modify client information. This problem is for the most time a result
of poor password requirement of service.
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Solution

Solution to this problem would be to introduce stricter password requirements.
In combination with these stricter requirements, letting people who want to
play a MMOG make notice when choosing a password is also part of a solution.
To choose a word from dictionary to have as password is inadvisable, as the
password then becomes an easy prey for the attacker. By forbidding dictionary
passwords, dictionary attacks are effectively prevented.

Another solution to the problem would be letting the company provide each
user with a password, which they can guarantee is relatively hard to crack.
Giving password to a certain user should not be based on this user’s username,
password, or CD Key.

4.5.3 Distributed Denial of Service, DDOS

Problem

A "denial of service" attack is characterized by an explicit attempt by attackers
to prevent legitimate users of a service from using that service. For those players
who have bought a game for playing online the game server will be unavailable.

The main reason why MMOGs are vulnerable to this attack is because they
must accept connections from any client at any time. A "denial of service"
attack could therefore result in huge monetary losses to companies.

Solution

A solution to this problem would be to introduce routers. Routers would come
to play a role when attackers are preventing a user from using a service. Their
responsibility would be to direct the user to another direction so that the usage
of a certain service could be possible.

A solution to the problem could be downloading patches that automatically,
by installing them on a user’s machine, could enable the user to get a service
that he/she required. Introducing network monitoring tools is a solution where
a server is simply supervising the whole network in case sudden changes would
appear, like for example sudden disappearances of many users etc.

4.5.4 Cheating

Problem

One could ask oneself what the expression cheating actually means and involves.
The expression cheating could be defined as using a service in an unintended
way.
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For example making oneself invincible and progressing in the game without
completing certain steps is considered cheating. Those players that might wit-
ness this kind of cheating will most certainly complain until cheating is fixed
which will certainly cause expensive problem solving. If the cheating is not fixed
players could decide to leave the game, which leads to a loss of income.

Alongside the outright cheating and hacking, MMOGs have also been having
problems with issues concerning gray market activities. One of the side effects
that arise is grey market activities providing monetary gains for the player who
cheats by selling game items obtained in inappropriate ways. These game assets
or so called virtual game assets could be swords, magical spells or characters,
which are sold in open Internet auctions, such as on eBay. Internet auctions
are places where the gray market activities are taking place and "virtual goods"
can be sold for real money.

A key argument against Internet auctions are for example when someone buys
the account of a powerful character but does not really understand how to play
the game effectively, then he/she can get himself/herself into trouble and may
ruin the play experience for others.

This could lead to an unbalanced game. Cheating is a vulnerability that is
caused by various bugs in the game and lack of testing during game development.

And then there is the case of fraud, where a player buys a virtual item with real
money and does not receive the item. The player usually attempts to have the
people running the service to help them, which makes it impossible tracing the
fraud, since they have no way to verify the transaction.

MMOGs are also vulnerable to system attacks not only for the normal type of
hackers that most often want to cheat themselves through the game but also
for malicious hackers. A definition of a malicious hacker is simply a hacker who
wants to destroy the game for all other players playing the same game as the
hacker himself/herself.

When it comes to the IFM game, cheating scenario could occur when a client
of the IFM game for example has registered himself/herself as owner of two
different teams. To own two different teams doesn’t really constitute a problem
itself. Problem occurs when a client tries to build up one of the teams he/she
owns by selling football players to the other team that has the very same owner
for an extremely low price. After this procedure he/she could sell these players
to the teams he/she does not own and in that way build up a strong team and
earn money while doing it.

Solution

Developers must make security a top priority, ensuring the effectiveness of fire-
walls and securing the databases containing personally identifiable information
on subscribers.

Storing critical information on server is one solution and to not allowing client
to modify directly is yet another. To implement efficient patching system and
fix bugs as soon as they are found is also a part of solution.
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Developers must pay special attention to this kind of cheating and develop better
ways to control the situation. One of the latest ideas is that as a developer
support a blacklist of troublemaking players shared on an industry wide basis.

Solution to the cheating problem at the IFM game could be solved by having
a monitor program, which the administrator uses, for signaling when heavily
unbalancing is taking place. By noticing this signal the administrator can easily
solve the problem by suspending the player who from then on is seen as a
cheater.

4.5.5 Server Control of Client Systems

Problem

How much of the control should a server be able to have over the client systems?
Problems that are security related may occur when a game server forces a client
to perform action without user consent.

For example, a server could have an auto download of client updates. Then
a situation could occur where server is causing client software to scan user’s
machine for other software etc. The phenomenon mentioned is caused because
of implicit trust of game servers by clients.

Solution

File verification is one possible solution and includes a maneuver of file checking
and asking the user of the machine before performing any actions without user
consent. Server masquerading issues should be handled by limiting implicit
trust of servers in general as well as implementing an intruder detection system,
which would be able to give away a signal when intruders get detected.

4.5.6 User Modified Client Software

Problem

The case where attacker modifies client software and adds functionality to it
could appear as well. This could lead to a scenario where the attacker can be
able to exploit flaws in server system.

Solution

Even this problem contains storing critical files on server i.e. moving client files
to secure servers. Introducing client verification would reduce the vulnerability
as well. Then there are potential privacy issues, how much of the information
about the user should be revealed anyway?
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4.5.7 Computer Security Aspects of the IFM game

The IFM game is using a Web hotel, managed by the fsdata Company, for
enabling its players to play their game.

Advantages with a Web hotel are presented below:

• The IFM game does not have to pay the gigantic cost, which it would have
to pay had the game been loaded and driven from the IFM game itself.

• The IFM game does not have to worry about the firewall. Firewall is used
as a common name for any security system protecting the boundary of an
internal network.

• The IFM game does not have to worry about backing up the system
constantly.

• The IFM game leaves all the computer security aspects regarding MMOG
itself to the fsdata Company who is specialized in security issues and offers
its services for a low monthly cost.

• The IFM game uses FTP for communication between its development
computer and the Web hotel at the fsdata Company for updating and
diverse adjustments.

• The IFM game can set up optional number of users with individuals user-
names. This is done when a user registers himself/herself and has paid
his/hers fee.
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5.1 Databases in General

A database is nothing more than a collection of information arranged in some
meaningful way that exists over a long period of time, often many years. Data-
bases are today essential to every kind of business. Databases are often used to
maintain internal records, to present data to customers and clients on the World
Wide Web and to support many other commercial processes. Yet, another area
for using databases is for storing and maintaining data, for MMOGs.

Knowledge that has been developed over several decades and that today is
representing the true power of databases has been embodied in a specialized
software called Database Management System, DBMS, or in everyday language
a database system.

A DBMS is a software program that via other programs handles the adminis-
tration and all contact within the database. This means that the access to the
database has to happen via the DBMS. It is a powerful tool for creating and
managing large amounts of data efficiently and allowing it to persist safely over
long periods of time.

A DBMS is also, what is called a general purpose program, which means that
it is not just written for a certain application or database. It could be used to
create and administrate several different databases as well. These systems are
among the most complex types of software available.

The capabilities that a DBMS provides the user with are:

• Persistent storage: A DBMS supports, like a file system, the storage of
very large amounts of data. This data exists independently of any process
that is using the data. A DBMS, also provides flexibility and finesse
that goes far beyond those of a file system. These are, for example, data
structures that support efficient access to very large amount of data.

• Programming interface: A DBMS allows the user or an application for that
matter, to access and modify data, using a powerful query language. It is
important to observe that the advantage of a DBMS over a file system is
not only the flexibility of being able to manipulate stored data, but doing
so in much more complex ways than reading and writing of files.

• Transaction management : A DBMS supports simultaneous access by many
transactions at once. To avoid some of the undesirable consequences of
simultaneous access, the DBMS supports isolation so that it appears that
the transactions execute one at a time. The DBMS supports atomicity
which means that the requirements that transactions execute are either
done completely or not at all. A DBMS also supports durability, the
ability to recover from failures or errors.

A key element of all databases created from a certain DBMS is that, they have
a predetermined structure which allows users to access all databases in the same
way.
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To be able to get data from a database and modify it, there is a procedure
called manipulation of data. A database language which supplies these functions
is called a Data Manipulation Language, DML. Changing the structure in a
database is yet another ability that has to exist. A language for being able to
do so is called Data Definition Language, DDL.

Both of these languages can be represented as one database language in a DBMS.
Other types of database management systems could have one language for defi-
nition and one language for manipulation. It is important to observe that DDL
and DML are not different examples of database languages, but a description
of what functions the language itself contains.

It is not necessary to use a general database management system. In that case
developers are forced to specially design their database system which will lead
to writing all of the programs and functions required for administrating the
database.

Database System

Program/Request

User A User B

Program/Request

Handling of request/command 

DBMS program

Database language
-DDL
-DML

Databases

Figure 5.1: The database management system
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5.2 The Designing Process

The process of designing a database begins with an analysis of what information
the database must hold. This analysis includes also the relationship among
the components of that information. The structure of a database is called the
database schema, which is specified in one of several languages or notations
suitable for the design in question. A database takes its physical existence after
the design has been committed into a form called the Database Management
System, DBMS.

There are several popular design approaches for a database. Some of these
popular approaches are going to be discussed in the following subsections.

5.2.1 Entity-Relationship Data Model

This model, also referred as the E/R model, is the most common model of ab-
stract representation of a database schema. The representation of the structure
is performed graphically. The abstract E/R design is converted to a schema
in the data specification language of some DBMS. Most commonly this DBMS
uses the relational model. There are no DBMS that uses E/R model directly.
The reason is that this model does not support an efficient data structure which
is motivated in database manner.

Ideas E/R
design

Relational
schema

Relational
DBMS

Figure 5.2: The database modelling and implementation process
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5.2.2 Relational Data Model

The relational model provides a single way to represent data. This represen-
tation of data is done as a two dimensional table called a relation. It is often
easier to design databases using the E/R notation at first, and then translating
them into relational notation. Relational models have a design theory of their
own. This theory is called normalization which is in MMOGs case discussed
later on in this chapter. The relational model is very flexible and supports a
very high level programming language such as the Structured Query Language,
SQL.

Football playerFootball club
Owns a

Diffrent types of relations:
1 : 1, one to one
1 : m, one to many
m : n, many to many 

Figure 5.3: A simple approach of some possible relations

5.2.3 Object Oriented Data Model

This approach is extended from the concept of object oriented programming
languages such as C++ or Java. In the database world the idea is used for
database design and for extending relational DBMSs with new features. Object
Definition Language, ODL is a standardized language specifying the structure of
databases in object oriented terms. Object oriented database is most suitable
for applications that work with more complex data structures such as CAD
system drawings.

Name

Height

Weight

Speed

Strength

Texture

Owner

Football Player  object

Football Owner object

Figure 5.4: An object representing a football player
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5.2.4 Object Relational Model

This model is an extension from the relational model to the object oriented
model. The reason is to take advantage of the most common object oriented
concepts, such as classes, object identities, attributes etc. This model itself is a
part of the most recent SQL standard called SQL-99.

5.2.5 Semi Structured Data Model

This model is suitable for integration of databases. In other words it describes
the data contained in two or more databases that contain similar data with
different schemas. It serves as a document model in notations such as XML
as well. The last mentioned is used to share information on the Web and is
explained in the following subsection.

The structure of the data representation is very similar to a hierarchical one but
with the difference that a parent node in this case could refer to another parent
node, see figure 5.5. The hierarchical structure itself is described in a top to
bottom approach.

Root

Football stadium

Football player
Fooball
club

Height
Nam

e

Owns

Plays in

Belongs to

Owns

Division
Nam

e

Name

Capacity

Speed

Figure 5.5: Semi Structured Data Model representing a football stadium, a foot-
ball club and a football player

5.2.6 Extensible Markup Language

Extensible Markup Language, XML is a tag based notation for marking docu-
ments. A XML document contains characters and the XML notations are very
similar to HTML. However, while an HTMLs tag describes the representation
of the information contained in the document for example font style, XML tags
describes the meaning of substrings within the document. The XML model in
MMOGs case is going to be discussed later on.
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5.3 Database Management in Data Driven
Systems for MMOGs

A database management system is powerful piece of software which takes care
of a heavy workload in industrial applications. There are many MMOGs on the
market already, taking advantage of database management systems to provide
better service for their customers. The purpose of data driven systems is to
separate the source code from the game rules. Yet, this separation could be
managed in more appropriate ways.

Most game rules in MMOGs can be summed up in different types of objects,
behaviours etc. Following examples are game objects that can be represented
by data:

• Weapons

• Spaceships

• Character skills

• Types of terrain

• Planets

Some examples of the IFM’s game objects could be following:

• Football player

• Football manager

• Football player skills

• Football stadium

• Football club

Not choosing to have data driven systems, major problems could occur. In
the IFM game we have thousands of players. Without data driven systems all
players would have to be defined in the source code. This would result in a
scenario where recompiling the entire code would have to be done for every
little change made.

Lower costs of development, maintaining and extending are other benefits that
data driven systems results in. There are different media that can be used for
storing the data used for data driven systems. Each type of data source has
different characteristics and complexity. Following subsections are descriptions
of some of the ways that data for driving the systems of a MMOG can be stored.
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5.3.1 Relational Databases

Relational databases can be used as data sources. A Relational Database Man-
agement System, RDBMS is a program that is used for creating, updating and
administrating a relational database. RDBMS also organises the data and gives
users the possibility to find the information again.

The service that the software RDBMS is designed to provide, is implemented
via a standardized language, SQL. As software, SQL is the one which is de facto
standard in business applications throughout the corporate world. There are
many software trademarks providing RDBMS, it is worth mentioning that there
are open source options such as MySQL also.

In MMOGs, one might find tables representing a Player, a Character, a Monster
and a Bank. A character table could, for example, contain attributes as ClassId,
Name, Height, Weight, etc. These attributes are on the other hand not relevant
for the games in general, which means that they are different from a game to
another.

This example shows SQL code for creating a table to store different types of
players as well as inserting data into the created table.

CREATE TABLE playertypes
(

player_id int PRIMARY KEY,
name varchar(32) NOT NULL,
height int NOT NULL,
weight int NOT NULL,
speed int NOT NULL,
strength int NOT NULL,
texture varchar(32) NOT NULL,

);

INSERT INTO playertypes VALUES (1, "shortPlayer", 160, 65, 9, 9,
"shrtP.bmp");

INSERT INTO playertypes VALUES (2, "tallPlayer", 185, 85, 6, 8,
"tallP.bmp");

A football player table in the IFM game’s database could look like the following
one:

Id Name Height Weight Speed Strength Texture
1 shortPlayer 160 65 9 9 shrtP.bmp
2 tallPlayer 185 85 6 8 tallP.bmp

Table 5.1: A football player table

Data in relational databases is organized into units called tables. A table con-
tains columns of various data types and each entry in a table is called a row.
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A table will usually have a primary key. This key is a combination of one or more
columns that uniquely identifies a single row in the table. This unique index,
created as the key of the table, is typically the optional method of accessing a
single row from the table. The profit that comes with relational databases is a
more flexible model which can be modified in the future.

The IFM game organizes its game data by using a relational database. The
software that is used as a standardized language for this purpose is MySQL.
The main reason why MySQL is used in the IFM game, is that the software is
an open source project. Yet another reason is that relational database systems
are suitable for data driven systems and games. They are also more practical
when it comes to manipulating data, searching for data, storing data etc.

RDBMS offers robust tools for viewing, manipulating, defining and managing
schemas. Administration can however be very complex to install and maintain.
The IFM game continuously updates the game database application on fsdata
Company’s Web hotel. This is done by using fsdata Company’s FTP services.

5.3.2 Text Files

Software development is all about choosing the right tools for the job. Using
text files as data source solution is certainly the simplest way. Text files are
also often referred to as a tab delimited or colon separated files. Text files can
at best simulate the concept of a database, although text files are commonly
incorrectly referred to as databases.

It is important to not forget that databases are created for handling and storing
data, so using a database is considerably easier then for example using text files.
The main reason why databases are easier to use is because they take care of
the information details for the users.

One could let SQL do the work instead of writing routines to parse text files.
Managing large amounts of text files for data can become difficult using text files.
As parts of, for example, a MMOG get more complex during the development,
it is better to use a database instead of functions to operate on text files. If one
chooses to stick to text files despite large amounts of data the solution would
be to use a parser, written by the developer, for creating tables.

RDBMS, as already mentioned, is built for eliminating the complexity of in-
formation handling. This fact is the main advantage for using a real database
model. One could describe a MMOG as a highly dynamic data area, an area
where things change a lot. Database performance improvements will therefore
likely be significant. Not only is the server going to perform fewer steps, but
each of those steps will also be a lot faster to execute.

One should not go around and think that plain text files are useless for using as
a data source solution. Text files and text file operations are good candidates
for managing data sources for MMOGs. The structure of a text file is arbitrary
and not predefined. This forces the programmer to write and handle syntaxes,
relationships between rules in a way so that the information in a file could be
validated.
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Following example shows how a colon separated text file is parsed into a table.

# Class: Name: Height: Weight: Speed: Strength: Texture
CShrtP: shortPlayer: 160: 65: 9: 9: shrtP.bmp
CTallP: tallPlayer: 185: 85: 6: 8: tallP.bmp

# Class Name Height Weight Speed Strength Texture
CShrtP shortPlayer 160 65 9 9 shrtP.bmp
CTallP tallPlayer 185 85 6 8 tallP.bmp

Table 5.2: An alternative way of representing a football player table which is
generated by a parsed text file

5.3.3 XML

XML allows developers to easily describe and deliver structured data from any
application in a consistent way. It is a little bit hard to understand at first, but
XML does not actually do anything. XML was created to structure, store and
to send information.

An XML database has several advantages over other type of databases. XML
data can be inserted directly into the database. The game data does not need
to be manipulated or extracted from a document in order to be stored. When
data gets inserted into the database, most parts of an XML document, includ-
ing white space, are maintained exactly. Queries return XML documents or
fragments. This means that the hierarchical structure of XML information is
being maintained.

In general, XML databases allow programmers to handle XML data and store
it quickly. This also includes performing the last mentioned task with the mini-
mum of programming time required. Eliminating the need for converting XML
into other data structures is an advantage.

Looking at the disadvantages of XML, the lack of good tools can be mentioned.
However, there are more advantages than disadvantages with XML. Developers
are often forced to build custom tools to manipulate the game data anyway.

XML data is a little bit harder for people to read than other data sources. Fol-
lowing examples shows how data for different type of players could be presented
by XML.

<\<>object name = "shortPlayer">
<property name = "height" value = 160>
<property name = "weight" value = 65>
<property name = "speed" value = 9>
<property name = "strength" value = 9>
<property name = "texture" value = "shrtP.bmp">

</object>
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<\<>object name = "tallPlayer">
<property name = "height" value = 185>
<property name = "weight" value = 85>
<property name = "speed" value = 6>
<property name = "strength" value = 8>
<property name = "texture" value = "tallP.bmp">

</object>

5.3.4 Scripting Languages

Other types of techniques that are used for data sourcing are scripting languages.
Possible languages that are used are Python, TCL, Lua, Java or languages
written by the developers.

So, why use a scripting language? Well, using scripting languages simply puts
most of the game logic scripted for functionality, rather than coding it as part
of the engine. By using these scripting languages there would be no need for
developers to write a data parser and the integration with the system will get un-
complicated as well. Thus scripting languages becomes tremendously powerful
if the game engine uses it for storing or manipulating data. From a developers
point of view the stored data gets easy to access and manipulate by using tools
made by the developer.

As an example, think about loading or initializing a level. When the level gets
loaded, one would maybe like to cut a scene to play or maybe show some game
credits, etc. With a scripting system, one could get individual game entities to
do specific tasks. This means that several entity activities could be executed at
the same time, in other words in parallel.

Yet, another useful area is using scripting languages for AI. Take for example a
Non Player Character, NPC, it needs to know what to do. Coding each NPC in
the game engine each at a time, could be a frightening task in a matter of time
the task would need to be taken care of. If one would change a behavior of a
certain NPC, one would have to recompile the whole system. Using a scripting
system on the other hand, one could interactively change the behavior and save
the time required for recompiling.

Following example shows how Python code could be used for defining different
types of players at the IFM game.

InitialPlayerTypes = [
["shortPlayer", 160, 65, 9, 9, "shrtP.bmp"],
["tallPlayer", 185, 85, 6, 8, "tallP.bmp"]

]
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5.3.5 Database Services Offered by the fsdata Company

The IFM game organizes its game data by using a relational database. The
work that involves continuous updating of the applications does get a lot easier
by using the services that the company fsdata Company offers. There is no
point reeling off all services that fsdata Company has to offer, only those that
are relevant for the IFM game are going to be discussed here.

The Web based administration at fsdata Company contains several functions,
which one easily can control via a Web based interface. At an allotted Web
page one can adjust how the system should work and correspond to commands.
In that way one can take advantage of its finesse without completely under-
standing how a Web server works in detail. The understanding of how a server
works, users of an fsdata Company’s Web hotel avoid functions that might take
programmers days or weeks to develop. Using fsdata Company’s Web adminis-
tration, it becomes very easy:

• to change passwords

• to protect Web pages by passwords

• to create Open DataBase Connectivity, ODBC connections

• to control the usage of disc space, etc.

ODBC is an Application Programming Interface, API which has a series of
functions that other programs can use to make the operating system do the so
called hard work. ODBC is actually a DBMS program, which has been discussed
earlier, that fsdata Company has developed. Using Windows APIs for example,
a program can open windows, files, and message boxes as well as perform more
complicated tasks by passing a single instruction.

If one would like a program to talk to for example three different databases using
three different scripting languages one would need to code a program with three
different database scripting languages. This can be a quite frightening task.
When programming to interact with ODBC one only needs to talk the ODBC
language and the ODBC Manager will figure out how to contend with the type
of database that is targeted. The only thing that one needs to do is to install
an ODBC driver that is specific to the type of database that will be used.

Another service that fsdata Company has to offer is for updating a database,
this could be done by sending the updated files to one’s allotted domain along
with the usage of FTP software.

The server supports a large number of scripting languages that are embedded
in HTML. Scripting languages as PHP 4, SSI, Embperl and ePerl are available
for usage. Possibility to access powerful software as MySQL is another advan-
tage. One is able to create over 60 databases and there is also a Web based
administrator for using MySQL.
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The company is able to offer very detailed statistics. The generated statistics
can, among other things, give answers, to questions such as:

• what Web page has most visitors

• where the Web page visitors comes from

• at what time people do visit one’s Web pages

• what operative system and Web browser the users use, etc.

All this information can be used to improve a certain Web page or in IFM’s
case, improving its game in different ways.

5.4 Types of Data Driven Game Architectures

There are many types of game architectures. In the following subsections, three
possible game architectures that can be driven by data are going to be discussed.

5.4.1 Generated Classes

Using data for generating source code in this architecture, results in a program-
ming language class for each type of game objects that the game contains. Using
a module as a back bone of this system one can generate class definitions from
a set of data for language that is used in the game.

Generating these class files from data and compiling the class files beside the
source code is a two step process. It is important to observe that the generating
class files step must be performed before the compilation of the class files. This
must be done in mentioned order due to header files that must be available
when the non generated code is compiled.

Following are some of the advantages of using the above mentioned procedure:

• It is more efficient because all data is at the class level, not at the instance
level.

• The code is consistent, as it is generated by the same source.

• It is also more efficient because there is no loading time, all data is pre-
sented as class attributes.
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Following are some of the disadvantages of using the above mentioned procedure:

• The fact that compiling is a two stage process.

• The fact that code must be recompiled for even the smallest change.

• It might be a bit hard for people to read the generated code.

Following example shows how a generated C++ header files code for different
types of players might look like in the IFM game’s case.

class CShrtP : public CPlayer
{
static const string mLabel = "shortPlayer";
static const int mHeight = 160;
static const int mWeight = 65;
static const int mSpeed = 9;
static const int mStrength = 9;
static const string mTexture = "shrtP.bmp";

CShrtP(void);
virtual ~CShrtP();
};

class CTallP : public CPlayer
{
static const string mLabel = "tallPlayer";
static const int mHeight = 185;
static const int mWeight = 85;
static const int mSpeed = 6;
static const int mStrength = 8;
static const string mTexture = "tallP.bmp";

CTallP(void);
virtual ~CTallP();
};

5.4.2 Dynamic Properties

In this architecture different type of game objects are completely separated from
the programming language model, where these game objects have a dynamic set
of priorities that are entirely driven by data.

Even this system is implemented as a module where game objects, as the archi-
tectures name implies, have a dynamic set of attributes where each of these has
a value. At the programming language level, only one class can be found. So,
comparing different types of game objects we come to a conclusion that these
are all instances of this single class but with different attributes.
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Below are some of the advantages, of using the above mentioned procedure,
presented:

• There are certainly a small number of classes, as there is only one.

• On the other hand this architecture provides high flexibility as every single
instance of data can be different.

• It is also allowed to use dynamic run time modification of object attributes.

Below are some of the disadvantages, of using the above mentioned procedure,
presented:

• There is only instance data and no class data.

• This type of architecture requires loading time creating all objects.

• It can also be difficult to determine the type of game objects as it is
common to have instances of the same type that in turn also have the
very same attributes.

Following examples shows how code for constructing player prototype objects
with properties that have different values might look like in the IFM game’s
case. These prototype objects are then used as bases to copy from when creating
actual game instances of these types.

GameObject shortplayerTemplate = new GameObject();
shortplayerTemplate.addProperty("height", 160);
shortplayerTemplate.addProperty("weight", 65);
shortplayerTemplate.addProperty("speed", 9);
shortplayerTemplate.addProperty("strength", 9);
shortplayerTemplate.addProperty("texture", "shrtP.bmp")

GameObject tallplayerTemplate = new GameObject();
tallplayerTemplate.addProperty("height", 185);
tallplayerTemplate.addProperty("weight", 85);
tallplayerTemplate.addProperty("speed", 6);
tallplayerTemplate.addProperty("strength", 8);
tallplayerTemplate.addProperty("texture", "tallP.bmp")

5.4.3 Category Objects

In this case an instance of a category object for each type of game object can
be found. There is also a set of category classes for the categories of types of
game objects. This type of architecture can be seen as a compromise solution
between the two previously mentioned architecture solutions.
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This system is also implemented as a module but here a hierarchy of category
classes can be found instead. These classes represent a wide area consisting
of categories, which are different types of game objects. These types of game
objects could have differing behaviour or data requirements. A big difference
in architecture design in relation to previously mentioned dynamic properties
system is that each category class here, is a corresponding category instance
class. Every category instance object has in turn a category class attribute.
This attribute holds the data that is specific to its category.

The advantages of this system include:

• There are a small number of classes. Only one category of game objects
exists.

• Category classes can be created at run time.

• By changing the category object instance, all instances of a category can
be changed.

The disadvantages of this system include:

• This type of architecture requires loading time for creating all objects.

• This type of architecture requires a parallel class hierarchy for category
types and instance types.

• Some data must be accessed from the category instance rather than the
object instance.

In this chapter different types of architectures that developers have available
have been discussed. By summing all these up, a wide variety of choices when
implementing game systems for MMOGs is given.

Following example shows how a category class for types of players and the
corresponding game object class for player instances in C++ might look like in
the IFM game’s case.

class CPlayerType
{

CPlayerType(string label, int height, int weight,
int speed, int strength, string texture) :
mLabel(label), mHeight(height), mWeight(weight),
mSpeed(speed), mStrength(strength),
mTexture(texture) {}

virtual CPlayerType();
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const string mLabel;
const int mHeight;
const int mWeight;
const int mSpeed;
const int mStrength;
const string mTexture;

};

class CPlayer
{

CPlayer(type) : mType(type) {};
Virtual ~CPlayer();

const CPlayerType &mType;
};

//Creating Type instance objects
CPlayerType shrtp = CPlayerType("shortPlayer", 160, 65,

9, 9, "shrtP.bmp");

CPlayerType tallp = CPlayerType("tallPlayer", 185, 85,
6, 8, "tallP.bmp");

5.5 Managing Game State Data Using a Database

With MMOGs tending to massive number of players and with worlds growing
larger and larger, it is very important to prepare for the enormous amount of
data a game will generate. A MMOG could easily have thousands of players
and a millions of game objects with these. Several questions such as "Which
of these objects should be stored?", "How will the objects live on?" need to be
answered. To properly manage these large volumes of data that a MMOG will
generate, continuous planning is going to be required.

Substantial growth of the MMOGs size and complexity is a matter of time.
During a phase when a database is reaching a state where it is considered as
large, attention to their design and implementation is required.

As a developer using powerful databases, one is constantly tempted to use
database features in wrong ways. Below are the most common pitfalls, everyone
under their own subsection.

5.5.1 Indexing

Why do databases use indexes after all? Well, indexing is simply speeding up
the access to the records that are stored in a table. Record is another term for
a row in a table. One could request for example a database to retrieve all the
players that have scored more than 20 goals during the last football season.
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The information could later be used for raising the transfer sum for the player
in question. This will in turn benefit his team and further the team’s manager
which in the IFM’s case is a player of the IFM game.

But one of the greatest benefits with indexing in databases is its capacity of
retrieving a record table based on multiple conditions. Using the IFM game as
a case study, a scenario might occur where the database is to retrieve all the
players that have a yellow card assigned in each of the two previously played
matches. This information for example, could later on be used for suspending
the player/players from the next coming match. The whole idea with indexes
is to provide a way for the database system to speed up data retrieval.

It is important to observe that indexing does not only have a positive impact.
Indexing will slow down the updates to the tables in question. This will occur
because the database system must not only update the data in question when
it is being modified, but also all the corresponding indexes as well.

A possible scenario concerning this situation would be having a tournament
where a couple of players have received one yellow card each, in a group play.
If the team they are playing for should qualify for the play offs, their yellow
card status would need to be restored to zero yellow cards. In database terms
this means that the database must first off all modify the card status for the
players in question that are going to join the play offs and thereafter modify the
database. The reason why the last mentioned step must be executed is because
players in question must be assigned new indexes as they no longer belong in
"the players with one yellow card" segment. This is what is meant by claiming
that the database must modify all the corresponding indexes as well.

5.5.2 Normalization and Referential Constraints

Normalization and referential constrains will be under the very same topic be-
cause these two concepts are closely connected with one another. Normalization
means that a table should only contain such data that is relevant to the key of
the table. Thus, it is the practice of reducing the redundancy of data within a
database. Referential constrains on the other hand are used when a player table
itself must contain a "team_id" that in turn exists in the team table.

So, what could happen if the database would not be well normalized? Assume
that all the information is put in one table. Then, the table could grow to
be very large. Splitting up this large table into smaller ones, not using the
normalization guideline will result in needing to update all tables also when
only one table changes so as to keep the data synchronized. So, splitting up
a large table in smaller ones and not using the normalization guideline is not
recommended from efficiency point of view, as more work is needed maintaining
the databases.

Too much normalization is not ideal either. The retrieval of data itself if it
requires data from many tables, multiple table joins, could result in slower
retrieval since data is not located in one place. The retrieval could be so slow
that retrieving data from a single large table would take less time.
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In this case certain parts should be carefully denormalized for obtaining high
performance for that certain retrieval.

5.6 Misused Techniques

Topics that are going to be discussed in the following subsections are some of
the techniques frequently misused when working with MMOGs.

5.6.1 Database in a database

The concept of this technique is choosing a string for representing data. Database
in a database technique is a very tempting one to use in a MMOGs database,
which is to represent more than one piece of information in a single string col-
umn.

Suppose an eight byte string is used for information transferring. The structure
of this string column could be written so that the first byte is the colour of the
player’s hair, the second byte could represent the players power ability to kick
a football, etc. By choosing this technique the information will be packed into
a smaller space. Thereafter there would be no need for additional columns to
the table.

As with everything else in this world, there is a positive and a negative aspect
of using this technique. It is almost impossible to index such a column which
leads us to the fact that referential constraints cannot be applied. As already
mentioned this technique may be very tempting to use, but the data integrity
is placed in the hands of the application itself and not in the database, where
it also should be.

5.6.2 Multipurpose Columns

This is a technique where a basic column is made for storing one type of data
for one record and storing another type of data for another record, at the same
time.

An example is having a column named "slot1_data". In this case the goals
scored could be stored in one record and the location of the player object at
another. This technique reduces the number of columns. If one would like
to add new records for a certain object, this could be done easily, since these
records are reusing the existing table structure.

Multipurpose columns is on the other hand a technique where indexing of the
columns is difficult to manage. It is possible, but the performance of such
indexing is unpredictable, as data on these columns may be unrelated.

It is impossible for the database to know what data "slot1_data" column con-
tains as it is different from record to a record. The application itself is in control
of that, instead of the database. Integrity is in this case also being placed in
the hands of the application itself and not in the database, where it should be.
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It is almost impossible for the database systems to apply referential constraints,
as several records could use the same column for different sort of things.

5.7 Considerations Concerning Data System

Concerning data system as a whole there are both internal and external perfor-
mance influences. Few of those are presented in following subsections.

5.7.1 Performance

It has already been discussed what performance loss that huge tables, extensive
joins and indexing could cause. The performance consequences of the overall
database system have however not been discussed.

The maintenance of a massively huge table is catastrophically time consuming.
Should a database containing such a table, crash or be affected by a data virus,
it would be extremely difficult to recover the lost data.

Heavy performance losses can also occur if table joins are used, where for ex-
ample, a 10 table join is required to retrieve the information desired. When it
comes to MMOGs a join consisting of maximum two to three tables should only
be allowed. Even table joins of this size could generate high performance losses
if they are used with high frequency.

MMOGs are most often using queries and updates as database utilities. In
addition, at some point of time, deletes are going to be required, hence they are
very expensive to perform. These deletes should not be executed during high
activity but during maintenance of the database.

5.7.2 Networks

The fact that database systems allows an application to send or retrieve huge
amounts of data are just some of the advantages showing the great flexibility of
a database system. Unfortunately, these benefits of database systems are not
always used in a proper way which can be rather problematic.

No matter what object is studied, it is simply, a waste of bandwidth sending
all attributes of that certain object, if only one of the objects attribute is being
requested to be retrieved.

Using the IFM game as a case study, assume that a player object has an attribute
representing its position on the football field and an attribute for how many goals
he has scored in a current tournament, among others. Consider the feature at the
IFM game for showing highlights from a chosen match already played. However,
it would be completely meaningless to send information about a player scoring
goal including his entire tournament attends that he has made since he started
playing football.
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So, instead of very large requests it would be much better to break it up into
smaller ones.

Using this technique, only the data that is absolutely required are sent. The last
mentioned lowers the bandwidth and improves database system performance in
general.

5.7.3 Transaction Loads

A typical MMOG game contains millions of records of valuable information.
Imagine how hard a database system would need to work if it did not use
indexing. The database system would literally need to scan every record that
exists in the table.

A shortcut to a solution to this problem is to take a closer look at what con-
ditions the request itself is imposing. For example, in IFM’s case, assume that
the information presenting all the players who scored in the first ten minutes of
a game that also has a yellow card assigned is wanted.

There should be indexes on goals scored for a certain player, yellow card status
for a certain player, red card status for a certain player, goals scored at certain
time for a certain player etc.

Also, there should be indexes presenting all these four conditions together. In
this way it is possible to request the database system on information fitting
the player who both has scored in first ten minutes and who has a yellow card
assigned. If these conditions were indexed, this will facilitate the query and the
answer to the request will be given faster. Reducing the time for each request
will reduce the overall transaction load of the database system.

5.8 Alternative Ways of Managing Data

Even if a developer chooses to follow all the suggestions given, the database
system in question can still be overloaded and slowed down. In the follow-
ing subsections some additional topics discussing things that consider MMOG
database systems will be discussed.

5.8.1 Data caching

Using data cashing technique will gain database system performance. The big
difference between the usual data caching inside a database system and the one
that is going to be described here is that this one is external. It is an additional
process placed between the application and the database system itself, as the
figure 5.6 shows.
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In this model all requests made from the database in question will come through
the data cache. After arriving at the data cache the request will be passed on
to the database.

MMOG
Server

Data
Cache

MMOG
Database

Figure 5.6: A data cashing process

If the request in the future would be for the same information this would be
returned from the data cache memory instead of the database system. Using
this technique could significantly decrease the load on the database system.
Concerning update requests, the process is done in reverse. If the data already
exists in the data cache it is going to be modified and sent on to the database
later.

According to what has been said here about the data caching technique it has its
own so called challenges. Dramatic reduction of load on the database and better
performance to it makes the additional work to set this process up worthwhile.

5.8.2 Data Caching in Practice

The game design architecture of a MMOG must be such that no direct line
between the user and the database should be available. Assume just for the
moment, that there is a direct line between the user and the database. Then,
the users would have a direct performance impact on the database. If a user
would click at a button that generates a request to the database several times,
it would cause some serious problems.

A typical MMOG game might have thousands of users. If every user would
press a button that generates a request to the database, that database would
obviously be completely occupied. A solution to this problem would be to filter
the requests which would then be executed only after certain time delay.

The previously mentioned data caching system could also help to ease the total
workload of the database system.

5.8.3 Maintenance and Connectivity

After releasing a MMOG, the number of users will continuously grow with
time. As time goes by, the maintenance on regular basis of the MMOGs
database gets more and more important. Being able to get the most out of
the MMOGs database, to improve its performance, the database should be pe-
riodically brought down for maintenance.
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Regarding connectivity when it comes to database systems, they are usually
able of handling several connections simultaneously. Instead of having only
one connection handling and taking care of all the requirements coming in a
database system should have a pool of connections to the database.

Having a pool of connections where every one of them could be managed as a
separate thread with its own database connection creates an advantage. This
advantage signifies the fact that as requests come in, they can be handed off to an
available thread and handled immediately. By finding a balance of connections
and threads, no request should need to wait to be able to communicate with
the database.

Dynamic connections, the ones that are shut down after completing of the re-
quest should be avoided as they are time consuming operations. Hence, these
need to be avoided as the database system has a direct impact on the perfor-
mance of a MMOG.

Taking a closer look on what have been discussed in the last subsection a con-
clusion of managing game state data in a database really comes down to under-
standing the following:

• What the requirements are

• What must be stored

• How much will be stored

• Choosing how to store it

• Applying the strategies and techniques for the each phase
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Chapter 6

Industry Analysis and Market
Research of MMOGs



6.1 The Economic Aspects of MMOGs

The MMOGs have been around for a couple of years. The basic idea with
this type of game is gathering thousands of players in one place, making them
interact with or against each other. At the same time as the interaction between
the players is taking place it will also result in simultaneous game play.

The question is, how big is the MMOG industry going to be? According to a
detailed industry analysis "State of MMOG 2002: A New World in Electronic
Games", written by Zona, Inc. and Executive Summary Consulting, Inc., the
estimated number of players in the year of 2002 was approximated to six million
players, playing the MMOGs worldwide. The very same amount of players would
result in a subscription revenues of USD$494 million, in the year of 2002 alone.
By the year of 2006, the very same industry analysis is estimating that MMOG
subscription revenues will generate USD$2.7 billion.

One could, of course, as sceptics who do not predict any bright future for the
MMOGs, view these future estimated results as an extreme exaggeration. Being
able to answer to this scepticism a closer look will be taken at the game software
company NCSoft in South Korea. Referring to the industry analysis, the soft-
ware company NCSoft made about USD$100 million in the year of 2001. This
profit was mainly made off one of the NCSoft products which shortly was de-
scribed as a massive multiplayer fantasy game. This MMOG had an estimated
USD$1.2 million of paid monthly subscribers in the year of 2002.

The final conclusion is that if one company alone in a small country can make
about USD$100 million on one game, which could easily be described as a fast
growing market worldwide, one can widely claim that there is a multibillion
industry out there. As it is mentioned in the research itself, the remaining
question is how much time it will take before this market will start to get fully
used, and for whom.

It is important to notice though, according to the industry analysis, that MMOGs
were already tremendously popular in South Korea when the game software com-
pany NCSoft broke through with their massive multiplayer fantasy game. This
is only five years since the genre of MMOGs first appeared on the market.

On the U.S. market there are more than 100.000 monthly MMOG subscribers,
paying USD$10-13 per month. This large number of subscriber payments rep-
resents the top ten games which have more than 100.000 monthly subscribers
each. In Asia on the other hand there are subscribers paying up to USD$20 a
month for playing a MMOG. At the moment, there are more than 50 MMOG
titles active around the world. More than 40 MMOG titles are known to be
under development and the tension is rising constantly, with people waiting
to see which of the MMOGs that will gain more than one million subscribers
worldwide.

Even the MMOG sceptics can not disregard the fact that the MMOG phe-
nomenon as such is spreading fast around the world. MMOGs are gaining
subscribers all across Europe, in the U.S., Canada, Japan, Taiwan, Singapore,
Australia and even China.

Industry Analysis and Market Research of MMOGs 62



6.2 Different Type of Gamers Worldwide

There are different types of people playing games, called gamers, worldwide. In
this section several types are going to be discussed and they are:

• PC Gamers

• Arcade Gamers

• Mobile Phone Gamers

• Console Gamers

• Handheld Gamers

• Casual Online Gamers

• Massive Multiplayer Online Gamers

It was back in the year of 1964 that the game software company Sega introduced
the game named Periscope. This was the first of its kind, an arcade game. In
the year of 2001, almost 30 years after, the electronic game industry generates
more than USD$30 billion in consumer spending worldwide per year. This is
nearly double what people spend on movie tickets worldwide per year.

6.2.1 PC Gamers

Having an amount of 500 million people owning PCs in total worldwide it is
certainly a platform that has more people playing electronic games than any
other game platform. Independent of game kind, the PC owning people playing
games will constitute to 40% of the total amount of 500 million people owning
a PC.

6.2.2 Arcade Gamers

These types of games are not as popular as they were at their peak in the late
1980s. Because they are still distributed in the arcades worldwide, the arcade
game playing is not yet to be dismissed.

6.2.3 Mobile Phone Gamers

Concerning the European and the Asian market, mobile game play is extremely
popular and the amount of those playing mobile phone games continues to grow.
There has not been any real indication of MMOGs for mobile phones to date
yet. The market of North America is on the other hand not as developed as the
European and Asian ones concerning mobile phone games. It’s depending on
the fact that the mobile phone gaming is fast growing but still relatively small
worldwide.
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6.2.4 Console Gamers

It is estimated that 40% of all U.S. households have game consoles. One should
notice that the number of gamers using their home consoles continues to grow
and that the amount of these kind of players, are usually growing in proportion
to release cycles of new platform upgrades. Three of the biggest game console
companies, Sony’s PlayStation2, Nintendo’s GameCube and Microsoft’s Xbox
sold more than 40 million of their systems in the year of 2001 alone. As these
three previous companies continue to sell their game consoles, Sega as well as
Sony and Nintendo continue to service millions of users with new game titles,
who use their older console systems.

6.2.5 Handheld Gamers

Nintendo’s game device Game Boy holds a significant market share of the total
handheld game device market. Personal Data Assistants, PDAs such as Sony’s
Clie, Palm and Handspring are growing in popularity as many of these could also
be connected online. This possibility makes it possible to play online games.
Due to the fact that the Game Boy device itself does not connect wirelessly
online it does not look like there will be a large number of players soon anyway.

6.2.6 Casual Online Gamers

It has been estimated that in the year of the 2002, people playing games on the
Internet would include as many as 85 million people worldwide. One should
notice though, that the majority of online game play is free to users.

6.2.7 Massive Multiplayer Online Gamers

The amount of players who have played MMOGs have been estimated to 6
million people worldwide in the year of 2002. MMOGs have been around since
the beginning of the 1990’s. According to the industry analysis global subscriber
figures will rise to 19 million by 2006.

6.3 High Profit Economics of MMOG

The main reason for the enormous popularity of the MMOGs among publishers
is their huge potential for profit. The profitability of the MMOGs depends on
the number of monthly subscribers.

As it has been mentioned earlier, the monthly subscription fees lie in the range
of USD$10-13 in the U.S. and in the range of USD$20 in Asia. In some popular
game cafes in Asia one hour of playing the MMOGs could lie in the range of
USD$1-2 which suddenly makes the price of an average monthly subscription
fee in Asia of USD$20 a reasonable price to pay for playing a MMOG.
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These subscription fees are often associated with newly arrived hot titles on
the market that will potentially be able to have up to 200.000 subscribers per
month. For smaller independent games the monthly subscription fees usually
lie in the range of USD$5. In the IFM’s case the subscription fee for one season
is USD$5.

So, what about the costs of developing a MMOG, launching it on the market and
the time needed before making it profitable? Well, without getting too involved
in details, the development itself of a MMOG game costs about USD$4 million.
The marketing of the MMOG will cost about USD$3 million and another USD$2
million will be needed for the capital investment and integration of the server
network. It will in other words cost about USD$9 million in total before the
game is even turned on.

It is extremely important to notice that these figures concern MMOGs which
are assumed to have a base of monthly subscribers that will eventually reach
200.000, two years after being launched on the market. It is also assumed that
the monthly subscribers fee will be USD$12 per month. The total cost of USD$9
million includes the MMOG in question having 75.000 monthly subscribers in
the first quarter which is a realistic figure only for a really huge MMOGs.

First of all, there are some huge differences between diverse kinds of MMOGs.
There are MMOGs on the market, like the one mentioned earlier, where millions
of dollars have been invested. The equation is simple, if one chooses to invest
a large amount of money in a MMOG, the chance of making a great profit will
certainly increase. But investing large amounts of money will lead to a greater
risk as well.

Then there are MMOGs where the publishers have not been involved in the
marketing of them and where the total investment is considerably less than
in the example mentioned above. Obviously, every investors dream would be
investing as little as possible and still be able to have a monthly subscriber
amount of one million people. Smaller companies developing MMOGs which are
not able of investing large amount of money would therefore certainly satisfy
themselves with a considerably lesser amount of profit, rather than those which
have invested several million of dollars.

The IFM game belongs to the genre of smaller independent game companies
which do not have a publisher marketing their game. Instead, the marketing of
the game is managed by registration of the game in several search engines such
as Google, Yahoo, etc. The game development team consists of three software
engineers and a 3D artist.
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Assume a MMOG which has one million subscribers per month where the sub-
scription lies in the range of USD$10-13 per month. The figure 6.1 represents
the accumulative monthly subscriber’s fee over one year period having a sub-
scription fee equal to USD$13. The MMOG in question would then achieve
USD$156 per year and player which can be seen in figure 6.1, as well.
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Figure 6.1: Accumulative monthly subscribers fee over one year period

This means that a MMOG will be able to achieve more than USD$150 million
in gross profit in a year. In three years, the gross profit will be USD$450 million.
Selling an ordinary PC game that costs USD$50 to one million buyers through
the retail channel, the achieved sum will be equal to USD$50 million in gross
profit in a year.

Some MMOGs on the market are played by installing the software on the users
PC. This software can either be bought or downloaded for free. In case of buying
the software, the price lays in the range USD$15-50. In the IFM’s case there is
no need for any software installation at all. This is of great advantage, because
one does not need to pay for any initial purchase as well as avoiding software
installation. When playing the IFM game, one could still be able to join the
game from different PCs, while not needing any initial software on these at all.

Considering that there is a huge market out there to conquer as well as no
standardized way of receiving payment, there are a few companies envisioning
and at the same time pursuing alternative revenue strategies. Some of these are
hourly pricing, prepaid coupons, and payment via mobile phones.

According to the industry analysis, selling the initial purchase in stores reduces
the barrier of gamers entering the game. This concerns only the MMOGs where
a player must make an initial purchase to be able to play a game. There is
therefore no question of replacing a retail channel but to add another channel
online.
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There are expenses on the operating side which have to be included as server
costs, that are estimated to be USD$1.25, as well as bandwidth expenses which
are estimated to be USD$1.50 per user and month. The costs on the server side
include warranty costs, network operation, firewall maintenance, data backup,
database administration, etc. In the IFM’s case all of the previous mentioned
services are handled by the fsdata Company which is specialized in these kinds
of services.

According to the industry analysis model, another USD$1.4 million are invested
into ongoing development expenses as there is a customer related technical sup-
port cost estimated at USD$1 per subscriber per month. By the eighth quarter
the model is estimated to have 250.000 monthly subscribers. After a two year
period, it is assumed in this model that no increase in subscription fees will
occur as there are no revenues from sales of initial game setup software. In
the figure 6.2 it is shown that the model breaks even by the sixth quarter and
returnes a cumulative profit of USD$15.9 million in two and a half years.
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Figure 6.2: Two year revenue versus expense growth

A MMOG that achieves 100.000 users within two years, according to this model,
will turn a profit in the eighth quarter. For a MMOG that reaches one million
monthly subscribers within 18 months, this model generates a cumulative profit
of USD$100 million after two and a half years.

For a MMOG to be able to achieve one million monthly subscribers, its graphical
and audio richness, speed of action and technical sophistication has to be better
in comparison with the standalone games.

MMOGs have their downsides as well. A PC or console game takes less than
two years to develop in comparison with four years or more for a MMOG.
Despite four years or more of development, up to USD$10 million in development
expenses, the MMOG as such will return a tremendous profit if it breaks through
on the market as a title hit.
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6.4 MMOGs versus Hollywood

As the movie industry makes a great profit on their movies, the MMOG industry
sees Hollywood as an unexplored market with great potential profitability. In
order to generate a great profit return in the movie industry, the audience dose
not need to be as large as in the MMOG industry. A costumer usually pays
USD$7 in average for seeing a movie while a MMOG player pays USD$13 for
12 consecutive months.

According to an industry analysis "The Challenges of MMOG Development:
Learn more about the issues that MMOG developers face with their projects"
written by Zona, Inc. and Executive Summary Consulting, Inc., the storylines
of the games must be rich and compelling enough to keep gamers engaged for
hundreds of hours of play over several months. Many games now feature regular
updates of content, almost more like TV programs. For standalone games,
developers need to program the game only once. MMOGs must be rich enough
in content to sustain gamers for hundreds of hours of players. Players will not
settle for less than what they can get from standalone games in terms of story
complexity, server stability and multiplayer interactions.

According to the Internet Movie Database, there have been about 30 movie
successes that have grossed USD$450 million in history, over their life time.
However, an average movie costs about USD$50 million to make in comparison
with the development of a MMOG which costs about USD$10 million. This
fact makes the movie industry in Hollywood to invest in MMOGs. Some famous
Hollywood movies that have also become MMOGs are:

• Star Wars

• The Matrix

• Crouching Tiger Hidden Dragon

• Minority Report

• Lord of the Rings

• Harry Potter

6.5 MMOGs Around the World

MMOGs have in the past years grown into a million player industry worldwide
in Asia, Europe and North America. An interesting case worth mentioning
is South Korea that has more than four million players which corresponds to
nearly 10% of the population. It is not a coincidence that MMOGs are a huge
industry in South Korea. The country has broadband connections in more than
50% of all households making it one of the leading countries in broadband field.
According to Business Week magazine, South Korea has over 20.000 gaming
cafes which had an estimated cost of USD$862 million in year 2000 alone.
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According to the article "MMOG - Game On!" written by Michael Singer, there
are 25% of Internet households in the U.S. with broadband connections. In
Europe the MMOGs are a blooming market as the number of developers and
gamers is increasing across the continent, to be precise in France, Germany,
Italy, Russia and Scandinavia. In Germany, Japan and Netherlands, more than
40% of Internet homes have broadband. The Internet connection status in
these countries increases every day and today it is more than enough to reach
the expected amount of subscribers in the future.

There are significant differences in the European market according to "State of
MMOG 2002: A New World in Electronic Games", written by Zona, Inc. and
Executive Summary Consulting, Inc. Martin Rogard, an employee in a French
game development firm which produces strategy based MMOG with 150.000
subscribers worldwide, claims that: "Real-time strategy games are more popular
for the European market than the role-playing types of games that dominate
the American market," he says. "Lots of European players do not want to be a
character in the game, they prefer strategy. This is very important in Germany,
for example."

In the current state of the world, the U.S. market with its 1.2 million active
MMOG players is the most significant market for the MMOG sector. From the
developers point of view the MMOG market has a bright future. Several MMOG
projects are to be implemented around the world such as the U.S., South Korea,
Japan, France, Norway and Iceland.

6.6 Pirating MMOGs

Pirating MMOGs is an impossible task to manage because of one simple reason.
Even if an initial purchase of a MMOG is cracked down and copied, the user
cannot play the MMOG without paying the monthly subscription fee.

This is on the other hand a huge problem concerning single games. The game
pirating business in Asia is a huge industry which publishers around the world
have condemned. According to the Interactive Digital Software Association,
IDSA, the publishers lost USD$3 billion on these kinds of game revenues in
year 2001 worldwide. But despite the aforementioned attempt to pirate the
initial game setup CDs of MMOGs, publishers do not lose nearly as much as
when the single games are pirated.

6.6.1 MMOG Payment Systems

A vulnerability concerning MMOGs is that the players most often pay via credit
card or bank transfer across the Europe and U.S. This indirect vulnerability of
MMOGs is not a concern of the publishers. There are no standardized ways of
paying monthly subscription fees as of yet. The Asian market has alternative
ways of paying the monthly subscription fees such as cash by the hour at game
cafes, coupons and mobile phone payments.
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PayPal is an account-based system that lets anyone with an email address se-
curely send and receive online payments using their credit card or bank account.
Along with the service that PayPal provides, the IFM game is capable of ac-
cepting online credit card payments.

It does not cost the IFM game to sign up for PayPal. The company charges
modest fees for its members to receive payments. Players playing the IFM game
are not charged any extra when paying their subscription fees.

To manage the payment without involving other parts such as PayPal in the
process, in order achieve as high profitability as possible, the developers of
the IFM game plan to come up with optional ways for players paying their
subscription fees. One solution might be managing the payment process within
the game itself. Other solutions could be paying via mobile phones.

6.7 Global MMOG Subscription Revenue

The MMOGs and similar online games may conquer a quarter of the electronic
game market by the end of this decade. Referring to industry analysis 60% of
all Americans, i.e. nearly 170 million people are playing electronic games on a
regular basis.

2001 2002 2003 2004 2005 2006
Europe $29 $46 $74 $118 $189 $302

North America $93 $156 $267 $414 $700 $1.085
Asia $200 $290 $421 $610 $884 $1.282

Elsewhere $1 $2 $4 $8 $16 $32
Global $323 $494 $765 $1.149 $1.789 $2.701

Table 6.1: Estimated Consumer Spending on MMOG Subscription Worldwide
in Millions of Dollars

As can be seen in table 6.1, it is estimated that global MMOG subscription
revenue will hit USD$2.7 billion by 2006. In order to achieve USD$1 billion in
subscription revenue in the U.S. market, only 4.4% of all existing gamers, i.e.
7.5 million people, need to play MMOGs.

The Themis Group, an international provider of marketing and management
services for developers and publishers of online PC and console games, estimates
that online gaming revenues for year 2003 are going to be USD$635 million in
the U.S. alone.

DFC Intelligence, a strategic market research and consulting firm which focuses
on interactive entertainment, forecasts that 114 million people worldwide are
expected to be playing online games by the year 2006.

There is as of yet no standardized way of distributing MMOG initial game setup
software. In Europe and Asia the free model which means that the MMOG
initial game setup software is given away for free online is likely to be more
prominent.
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In the U.S. on the other hand it is still to be decided if the free model as
the one applied in Europe and Asia is to be used. First of all, this is mainly
because there is a possibility for some so called hybrid approaches. These hybrid
approaches include, for example, charging for the CD in stores while giving the
software away online or requiring the setup software to be purchased retail.
Secondly, there are huge numbers of offline channels which in the end will result
in preserving the physical sale distribution on the U.S. market.

Independent of what model that will be applied in the different MMOG mar-
kets worldwide the retail revenues will still be small in comparison to monthly
subscription revenues. By assuming 50% of the 19 million MMOG subscribers
worldwide by the year 2006 in assumption that will be privileged of not paying
for any initial game setup software, only less than 10% of the total profit will
be lost. This estimation assumes an average price of initial game setup software
to be USD$25 which will lead to USD$237.5 million in total.

According to the article: "Trends in MMOG development" written by Mirjam
Eladhari researcher at the Zero-Game Studio Interactive Institute in Sweden,
there were 51 MMOGs available and about 120 MMOGs in development by
April 2003.

6.8 MMOG Genre Trends

Considering MMOGs one could think that game types in the future will be a
combination of different game genres, such as real time strategy or first person
shooter combined with role playing. One could think of larger number of game
worlds having unique themes as well.

Looking at the figure 6.3 one can see that world theme genres for games in
development is about the same as for existing ones. An observable change that
is not clear from what is presented in the figure 6.3 is the increase of world
themes inspired by either comics or movies.
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Figure 6.3: Balance among themes of game worlds
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As there were 51 different MMOGs available worldwide by April 2003, the fan-
tasy theme genre dominated these which can be observed in figure 6.3. It
should be noticed that the percentage numbers representing the already exist-
ing MMOGs in figure 6.3 are based on 34 different games out of 51 in total.
For the MMOGs under development the percentages are based on 68 different
games out of 114 in total. The rest of the games are not of interest as they
could for example be vehicle games.

The abbreviations Sci-Fi or P.A. stands for science fiction or post apocalyp-
tic. The description post apocalyptic refers to a scenario in a world where a
catastrophe has occurred, e.g. such as world wide atomic war.

Comparing genres of world themes between game titles, those available versus
the ones being under development, the percentages are roughly the same. By
looking at the figure 6.4, a significant difference can be observed, since the
number of real time strategy games is much lower.
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Figure 6.4: Balance among themes of game worlds

The shortenings R.P. and R.T.S. stands for role playing and real time strategy.
The percentage numbers for the MMOGs under development are based on 94
different games out of 114 in total. The remaining 20 games which are not
included in the figure 6.4 are too early in production to form an opinion of.

6.9 Risk Management

While MMOGs can be a tremendously profitable investment, they are over-
whelmed by technical and competitive risks as well. Implementation of the
MMOGs is significantly more complex than the implementation of the single
player games and actually requires skills that in the existing games industry are
not yet very common.
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According to a detailed industry analysis, to be able to reduce the risk of in-
vesting in a MMOG "IGDA Online Games White Paper 2nd Edition - March
2003" written by the International Game Developers Association, IGDA, Online
Games Committee, careful prototyping and an incremental development process
that exposes the game to players early and often should be applied.

MMOGs are like any game and software project difficult to schedule accurately.
Despite considerable, large financial risks associated with MMOGs which often
make the publishers nervous, publishers should not jeopardize entire investment
by forcing the game to a schedule which could lead to poor results in the end.

To avoid heavy MMOG competition like Star Wars: Galaxies, EverQuest 2,
Middle-Earth Online, etc. new developers should seek after alternative genres
for increasing their chances of succeeding.

6.10 Market Analysis for the IFM game

As mentioned previously, the IFM game’s subscription fee is USD$5 which will
result in achieving USD$60 per year per player which can be observed in fig-
ure 6.5. Comparing the total subscribers fee over a one year period for the
example represented in the figure 6.1, with the one represented in figure 6.5,
there is a difference in USD$96.
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Figure 6.5: Accumulative monthly subscribers fee over one year period for IFM

It should be observed that the amount of money invested in the MMOGs in
question differs as the company behind the IFM game has not been able to
spend millions of dollars in development and marketing. Hence the IFM game’s
way of attracting the clients of playing their game is by not charging as much
for the monthly subscription fee as the giants in the MMOG market does.
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Should the game attract more players than expected, new features will be im-
plemented in the game as well as an increase of the subscription fee.

It took almost three years of development to create the IFM game. Since the
start of he development phase, approximately USD$7.500 have been invested in
the game. The game itself is the creation of a couple of enthusiastic football
game players who have been designing and developing this game during their
free time.

Hence, the reason why the amount of money invested is not greater than
USD$7.500 is that no salaries have been given to the designers and the develop-
ers during the implementation period. The expenses included in the amount of
money invested in the IFM game, computer hardware and software investment,
telephone and Internet bills, monthly rent for premises, etc.

In the model represented in the figure 6.6, it has been estimated that the increase
in the number of clients is going to be exponential by the factor of 35% in the first
six quarters whereas a linearly increase in the number of clients is to follow. In
this, which in our opinion represents a realistic model, an amount of 500 clients
at the point of releasing the game and a maximum amount of 5.000 clients at
end of the tenth quarter, have been estimated.

Cumulative Revenue
Cumulative Costs (inc. Q0) 

$ 0

$ 100000

$ 200000

$ 300000

$ 400000

$ 500000

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

Figure 6.6: Two year revenue versus expense growth for the IFM game

According to this model a cumulative profit of USD$168.500 after two and a
half years could be obtained. This profit is calculated out of expenses regarding
the development, which includes a developer working full time at USD$9.400
and two developers working part time at USD$3.800 during a quarter of a year.
The amount of USD$380 is used for the maintenance of the game, simplified
as cumulative costs. In the figure 6.6, these two quantities versus cumulative
revenues during a period of two and a half years are represented.
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Using the very same model with 40% client increasing factor, 1.100 clients at the
point of releasing the game and 9.600 clients at end of the tenth quarter instead,
results in a cumulative profit of USD$633.500 after two and a half years. This
profit is calculated out of expenses regarding the development, which includes
two developers working full time at USD$18.800 and one developers working
part time at USD$1.900 during a quarter of a year. The amount of USD$380 is
used for the maintenance of the game, simplified as cumulative costs.

Being able to invest millions of dollars in developing and marketing a MMOG,
the developers and publishers of these games are taking great risks as they are
expecting huge profits at the same time. Despite the huge difference in the
money that has been invested between these to models, a sufficiently smaller
risk is taken by investing in the IFM game. For that reason the profit made out
of the IFM game’s model is more than satisfying for the investors.

If the demand of playing the IFM game should exceed the 9.600 maximum
available player positions, second team players could be introduced in every
team as the junior player activity. Beside these extensions, new servers in the
most demanding countries could be set up as well as new worlds within the
IFM game could be created which would result in sufficient satisfaction of client
accounts.
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Chapter 7

MMOGs versus Computer
Graphics



7.1 Computer Graphics in MMOGs

Why is graphical representation within the MMOGs of importance? In the
history of MMOGs, the first games were of role playing type with poor graphical
presentation. This was not because of the non interest from the developers’
point of view, but simply because of the bandwidth limit. As computing power
became cheap enough, in the mid 1990’s, the companies could build powerful
PCs, devoted to computer graphics.

As already mentioned, in the IFM game no animation graphics are available. By
adding a visualization program for showing the highlights of a football match,
the IFM game would be able to market the game in a whole new perspective.

The answer to the question "Why is graphical representation within the MMOGs
of importance?" is that users of today want to see more graphics, i.e. more
graphics features results in more users involved in the game. This is also a
reason why the MMOGs can be found in additional genres.

7.2 Graphical Platform Implemented in the IFM
game

The additional graphics feature in the IFM game might not bring additional
hardcore manager gamers, but for beginner gamers it would perhaps be the
main reason for playing the game. People today are keen on to see action, i.e.
animation graphics which would lead to completeness of a game.

Figure 7.1: One animation sequence of a player running with the ball

Figure 7.1 shows a football player running in a football field with a ball. The
player itself consists of a texture, se figure 7.2, and a MD2 model that has 21
different animations such as running, shooting etc.

MD2 is the 3D model file format used by the Id Software Company which created
the Quake games. In the first Quake game the Id Software Company used the
.MDL extension for 3d models where MDL were short for MoDeL. For Quake2
they used the extension .MD2 where MD means MoDeL and the 2 refers to
Quake2. MD2 supports key frame animations and this format is the easiest way
to use animations. For the game Quake3, Id Software Company uses the .MD3
extension.
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Figure 7.2: A texture of a football player

The football field consists of a flat box with a texture applied on it and the ball
is a 3DS MAX model without any intelligence, which is simply a polygon net
colored black and white.

The challenging task is to arrange these entities, a football player, the football
field and the ball to perform a sequence of realistic animations for an event
generated by the IFM’s game engine. In the following sections, subjects such as
physics and AI regarding computer graphics animation in a football game will
be discussed. This might, for example, be of interest for ordinary football player
gamers who often do not have knowledge of what really is going on behind the
screen. It would also bring out the complexity of such a task for making it
realistic.
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7.3 Game Physics Used in the IFM game’s
Visualization Program

In the IFM game’s visualization program, the challenging part of the implemen-
tation is focused on physics. The movement of the ball is defined through two
types of paths. Following subsections will discuss the linear and the projectile
path of a ball, followed by the ball physics.

7.3.1 Linear Motion

To start simulating a linear movement of the ball, the definition for a line in the
three dimensional space, often referred to as 3D space, is used and implemented.
The figure 7.3 shows the orientation of the ball in a 3D space.

Ps = (xs, ys, zs)

Pd = (xd, yd, zd)

-z
x

y

Figure 7.3: The linear motion of a ball in the 3D space

To be able to move the ball, there has to be two data points known. These
are the actual position of the ball Ps and the target position Pd, which the ball
should reach.

The position of the ball (x, y, z) given a specific time t along the line in the 3D
space, due to the above description, is represented below: x = xs + t(xd − xs)

y = ys + t(yd − ys)
z = zs + t(zd − zs)

Once these data points are known, the parameterization of the line is to be
considered. Different parameterization will affect how fast the ball will move
from its start position to its destination. If the parameterization is constant
during the whole period of time, i.e. constant acceleration, the movement is not
going to be realistic. Therefore, some experiments with the parameterization
have to be done.
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7.3.2 Projectile Motion

To be able to calculate a projectile motion of the ball some simplifications have to
be done. For instance, the aerodynamic drag of the ball and the earth curvature
and rotation has to be neglected. Figure 7.4 illustrates a projectile movement
of a ball which is going to be used when a player attempts to perform a long
pass.

x z

y

v0

θ

v

vz
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vz

vy v

(vy)0=
v0 sinθ

(vz)0=
v0 cosθ

g

Figure 7.4: The projectile motion of a ball in the 3D space

To be able to determine the path of the ball in a projectile motion way, there
has to be four data points known. These are the actual position of the ball Ps,
the initial velocity v0 and the initial angle to the ground θ, of the ball. The
direction of the ball is also needed, which is simply determined by knowing the
targeting position Pd.

Since this theory is applicable in the 2D space, yet another problem has to be
solved, considering 3D simulation of the ball. One solution that was used was
applying a "LookAt", function to the ball with the targeting position as the
point to redirect after.

The position of the ball (y, z) given a specific time t along the curve, in the 3D
space due to the above description, is represented below:{

z = z0 + (vz)0t
y = y0 + (vy)0t− 1

2gt2

Even in this case it is very important to choose the parameterization in a way
to make the movement realistic.

Next step is to decide the angle and determine the initial velocity of the ball, so
that the ball arrives to the desired position. This is simply done by setting up
some fixed angles for different kind of passes and then calculating the velocity.
For example, a 20 meter long pass should have an angle of 20◦. Then the
velocity is determined by eliminating t in path equations. The result of the last
mentioned is given below.

v0 =

√
g(zd − zs)2 · (1 + tan2 θ)

2(ys − yd) + 2(zd − zs)tanθ
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Once the velocity for different positions and angles is defined, the only thing
that remains beside the parameterizations is to make the ball spin along the
projectile path. This is done by changing the x-magnitude in a proper way.
The thing one has to consider is that the x-magnitude at the start and finish
has to be equal. Figure 7.5 illustrates this scenario.

x z

y

Figure 7.5: The projectile spinning motion of a ball in the 3D space

7.3.3 Ball Physics

Figure 7.6 shows the path of the ball with a 35◦ angle shot. One can realize
that when the ball hits the football field, a bounce motion has to be applied to
the ball.

Figure 7.6: An illustration of a football’s bouncing pattern

The physics of the ball is much more complex then one can imagine. There are
several parameters that affect the ball during its motion. The flight of the ball
is determined by Newton’s second law of motion:

Force = mass · acceleration

In the general case there are three forces acting on the ball. These are:

• The force of gravity

• The drag force

• The Magnus force
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The drag force and the Magnus force are forces that arise from interaction with
the air. The drag force acts in the opposite direction to the ball’s velocity
and the Magnus force acts in the presence of the spin. With a spin about the
horizontal axis the Magnus force can provide a lift of the ball, and with a spin
around the vertical axis the flight of the ball is made to bend. To be more
realistic in modeling the drag force one has to consider the effect of the wind as
well. In the model that is implemented, in the graphical platform for the IFM
game, the Magnus force and the effect of the wind are neglected.

During a bounce, the ball initially undergoes an increasing deformation as the
bottom surface is flattened against the ground. The deformation is among other
factors depending on the ball’s velocity and its angle before it hits the ground.
There are several parameters that have to be considered regarding the resulting
force. The item list below illustrates some of these parameters.

• The initial velocity and angle of the ball

• The ground friction

• Air pressure in the ball

• The area of contact

• The size and elasticity of the ball

• Angular momentum

• The spinning of the ball

In the model that is implemented, in the graphical platform at the IFM game,
the bounce of the ball is modeled with the initial velocity and angle of the ball as
well as the ground friction. This means that every time the ball hits the ground
the initial velocity of the ball in all directions is subtracted by a ground friction
constant and then the resulting force is reapplied to the ball at the opposite
incoming direction.

Combining the previous mentioned gravity and drag force with the simplified
bouncing model one can obtain a surprisingly realistic motion of the ball.
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7.4 Artificial Intelligence

The field of game artificial intelligence, AI, has existed since the beginning of
video games back in the 1970s. AI in games is usually used for creating the
player’s opponents. Applying AI in games is equal to rescuing the player from
the boredom of repetition and letting him/her focus on the interesting aspects
of the game.

Surely, there are games on the market where the opponents AI could be written
in a better way. There are two possible scenarios which will result in a player
quit playing a game.

The first one is if it is too obvious that the opponents are not playing well or if
the opponent AI’s are too good so that they are continuously winning. Getting
the game balanced is not an easy task.

Because of understanding people’s decisions we perceive other people as intel-
ligent. Opponents in a game could end up as emotionally boring characterless
creatures sliding around the screen. To make computer opponents challenging
one has to try to make a computer think like or better than a human being.
Achieving the previously mentioned claim a player has to be provided with
more insight considering their actions, intentions, thoughts and emotions for
perceiving them as intelligent.

A couple of games worth mentioning which proved the potential of AI were the
shooter game Half-Life developed by the Valve Software company and the so
called Sim games, such as SimCity. Another Sim game title that is particularly
worth noting for the depth of personality of its AI agents is the MMOG Sims
Online.

The result of the fact that the developers are nowadays taking the game AI
a bit more seriously than before is the great success of recent games such as
The Sims. Development of the game AI used to be a last minute rush job that
developers implemented in the final phase. Yet another reason for not having
well written AI earlier was the fact that the graphics rendering traditionally
required a huge part of the available CPU power leaving little memory for it.

7.5 Different Types of AI Techniques

There are many interesting AI techniques that have been developed over the
past decades on AI field of research. As the history of the evolution of this
field is outside the scope of this section, only a couple of AI techniques that are
considered relevant to present and future AI games are going to be discussed.

• Random Methods: A simple example of an opponent that uses random
methods could be a bee that flies from one part of the screen to another
in an impulsive and random fashion. This will of course not result in
something of a humanistic nature, but is used quite often in most shooter
types of games.
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It does not take much to realize that this method is not highly intelligent
which will lead the fact that a player would not have any problem of
fighting this bee unless there were many of them.

• Deterministic Methods: An example of an applied deterministic method
is the brown turtle in the Mario Series games that would walk in circles.
The brown turtle will move in an x-axis direction until it meets a barrier
or a pitfall, where it will finally stop and turn. This action is deterministic
in behavior because of the predefined positions in which the turtle cannot
go over and turns it to move in a new direction.

• Tracking Methods: Applying this method the opponent will respond to the
player behavior in a tracking type of way. In other words, the opponent
will follow the player which in this case is the object being tracked. An
example of an object with applied tracking method is a heat seeking missile
or opponent objects that fly towards a player in a game.

• Predefined Paths: Suppose that opponents have paths that are fixed such
as starting in the top left corner, move a number of steps right, then down,
then left and etc. Instead of writing in this fashion, it is possible to write,
for example, an array of moves representing the definite path in which the
opponent will move. For each increment of the game step the opponent
follow the instruction by reading a new element in the predefined array.

• Finite State Machines, FSM : As a game object can have a high number
of different behaviors, applying the FSM to it simply means that its FSM
will occupy exactly one state at any moment. This will generate a game
object that will be easier to control in such a way that it would not act
unexpectedly, from a developer’s point of view.

• Decision Trees: An opponent’s decision, for example, is being based on a
set of inputs by starting at the root of the tree and at each node selecting a
child node based on the value of one input. There are several basic search
tree methods that can be used in programming the AI in games such as
Depth First Search, Breadth First Search, etc.

• Fuzzy Logic: This is a method that has been used in AI quite often lately.
Simplifying the explanation of the method, one can say that the method
is an applied form of statistics in AI. Consider two persons that may find
40◦C respectively 30◦C, to be very hot temperatures. Since different peo-
ple have different perceptions, there is actually no right or wrong answers.
Fuzzy Logic method deals well with this kind of reasoning, that is non
monotonic reasoning.

• Multi agent systems: The agents in multi agent systems are considered to
be autonomous entities. Their interactions can be either cooperative or
competitive. That is, the agents can share a common goal, e.g. an ant
colony or they can pursue their own interests.
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• Artificial life: Refers to multi agent systems that attempt to apply some
of the universal properties of living systems to AI agents in virtual worlds.

• Flocking : This is a subcategory of artificial life that focuses on techniques
for coordinated movement such that AI agents maneuver in remarkably
lifelike flocks and herds.

7.5.1 Limitations and Other Considerations

It is important to notice that there are many limitations and other consider-
ations that the developers have to consider when implementing AI in a game.
As the computer resources have to be shared with a number of different mod-
ules this represents the main limitation in a game. Applying methods such as
deterministic methods or predefined paths will certainly help lower processing
requirement. Good and robust AI for games is a huge challenge which differs
depending on type and genre of games in question.

7.6 Artificial Intelligence in the IFM game
Implemented Feature

Managing game AI is one of the most challenging parts of the visualization
program that is going to be used for showing the highlights of a football match
in the IFM game. The game AI at this stage contains the movement of all
team members in a structured formation. The movement of the team should be
determined by the position of the ball on the football field.

There are several solutions to obtain a fairly realistic behaviour of the players. A
very complex and sophisticated solution might be obtaining more information of
players, and add more computation. Yet, another solution might be introducing
distributed behavioral models, like flocks, herds, and schools in artificial life.

In the following subsection a very famous simulated flocking algorithm designed
by Craig Reynolds in 1987 is illustrated.

7.6.1 Craig Reynolds Flocking Algorithm

The flocking behavior in the Craig Reynolds flocking algorithm consists of two
opposing factors. The first one is a desire of each flock member to stay close to
the flock. The second one is a desire to avoid collision within the flock. This
behavior can be simulated by the following three rules:

• Collision avoidance: avoid collisions with nearby flock mates

• Velocity matching : attempt to match the velocity of nearby flock mates

• Flock centering : attempt to stay close to nearby flock mates
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A short overview considering the final result after implementing the Craig
Reynolds flocking algorithm is that flock members tend to stay near one an-
other which is the same as flock centering. Flock members always maintain
cautious separation from their neighbors which is the same as collision avoid-
ance. They are heading in approximately the same direction at approximately
the same speed which is the same as velocity matching. When they change
direction they do it in synchronization.

Separation: steer to avoid 
crowding local flockmates 

Alignment: steer towards the 
average heading of local 
flockmates 

Cohesion: steer to move 
toward the average position 
of local flockmates

Figure 7.7: Craig Reynolds flocking algorithm

7.6.2 Formation Considered AI Used in the IFM game

By reviewing the Reynolds flocking algorithm in the previous subsection, one
realizes that it is not suitable for the movements of a football team because
of the formation that the team must hold. Therefore an algorithm for the
movement, which considers the formation of the team members, is developed.
The consideration of a traditional 3-4-3 formation is managed by dividing the
football field in 35 equally squares where each player’s position, depending on
the position of the ball, is predetermined. The figure 7.8 shows the distribution
of the squares on the football field.
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29 34

23

1

Figure 7.8: The distribution of the squares on the football field

MMOGs versus Computer Graphics 86



The algorithm uses the main loop, i.e. a simple thread, which makes it non
complex. The pseudo code below illustrates the idea behind the algorithm.

for each frame {
determine the position of the ball

determine on which square the ball is positioned

for player 1 to 10 {
determine the target position of the player -
in comparison with the ball

calculate the movement step on each axis

if players position near target position
do not move

else
move the player one step

}
}

The goalkeeper’s AI is at this stage considered as a simple observer that follows
the ball on the goal line.

7.7 Blitz 3D

Blitz 3D always seems to be mentioned in comparisons to other programs of
the same genre as soon as 3D programming is being discussed. Blitz Basic was
released in October 2000 and Blitz 3D in September 2001. Blitz 3D was devel-
oped by Amiga games programming legend Mark Sibly and this programming
language has a history of being stable and judging by the Forums it will have a
large following of faithful users in the future.

Our impression during the time period where the feature concerning the IFM
game has been developed is that the programming language is easy to learn.
The truth is that a majority of 3D games available on the market are built
around the C++ language, but Blitz 3D is easier to grasp and can handle 3D
programming much easier than C++.

Blitz Basic itself is written in Visual C++. Many of its commands are imple-
mented just for the 3D environment which makes them more efficient than one
might expect.
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Blitz 3D provides its users with the possibility using many of the DirectX ca-
pabilities and full Network TCP/IP and UDP support, as well. As far as 3D
graphics is concerned, following features are available in Blitz 3D:

• Mipmapped Textures

• Transparent Textures

• Animated Texture Support

• Multi Textures

• Deformable Meshes

• Level of Detail Terrain

• High Speed Collision Engine

• Directly load of .X, .3DS or .MDL files

• Support for MD2 Animation

• Vertex Coloring

• A Flexible Entity System

• Reflection Effects

• Multiple Cameras

According to the online Forums what puts Blitz 3D slightly ahead of the other
3D programming languages is its speed. Being satisfied with the programming
code implemented one is always keen on seeing the created graphical results.
Blitz 3D’s compile time is one of the fastest for programs in this genre.

Blitz 3D uses a single runtime library for everything, which is compiled directly
into an executable file, this makes the executable file fairly large, but it does
also mean that one does not have to distribute DLLs with the game created.

This is done partly to speed up development, as Blitz Basic focuses on program
speed and stability before RAM and disk storage space, which is generally not
much of an issue these days.

Blitz Basic also has the Maplet program which can be added. With Maplet one
can easily create 3D indoor levels that can then be implemented into the Blitz
3D applications.
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7.8 Blitz 3D in Comparison to Other
Programming Tools

During our education at Lund Institute of Technology we have been in touch
with OpenGL and Crystal Space.

Well, first of all it is important to understand that Blitz 3D is a programming
language. Blitz 3D is not an engine, it will do things such as load 3D ob-
jects and textures, but it is up to the programmer how he/she will get to use
them in a game. Blitz 3D contains instructions that one can use to write your
game/program, such as LoadMesh("model.3ds"), which will load in an entire
3D model.

Crystal Space on the other hand is an open source 3D game engine. In general,
open source refers to any program whose source code is made available for use
or modification as users or other developers see fit. Open source software is
usually developed as a public collaboration and made freely available. Crystal
Space works like a sort of a pre-built game. One could think of it as a sort of
source for ones game ideas.

Beside from the fact that Blitz Basic and Crystal Space are used for creating
3D games they also share the fact that they are both written in Visual C++.

Both OpenGL and DirectX are graphics APIs and are used in the games one is
able of buying today, depending on which API one would like to use. As already
been explained in "Database Systems for MMOGs" chapter, API stands for
Application Programming Interface. API can be used for creating and managing
graphic images and multimedia effects in applications such as games.

Blitz 3D is written for the DirectX and it is a kind of bridge between a user and
DirectX. It allows one to use the full power of DirectX without having to fully
understand how, or what is going on under the hood of it, so to say. There is
also a possibility of using OpenGL in Blitz 3D by simply getting an OpenGL
plug-in.

As Blitz 3D is written for the DirectX it is only possible to run it on Windows
platforms with an official version of DirectX 7 or above installed. This means
that Windows 9x, Windows Me, Windows 2000 or Windows XP can be used
as a platform. Windows NT4 is not supported by Blitz Basic or Blitz 3D, as it
only has DirectX versions up to 3.

A great advantage in using Crystal Space lies in the fact that it is able to
run it on GNU/Linux, general Unix, Windows, Windows NT, and MacOS/X
platforms. Crystal Space can also optionally use OpenGL on all mentioned
platforms as well as others.

One can probably get a very simple game up and running in fewer than 20 lines
of Blitz 3D code. To do that using OpenGL or for that matter Crystal Space,
one would need lines and lines of code.
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7.9 Established Implementation Overview

Our final result over what could be described as solid foundation for those
interested in developing a football game is summarized in seven different game
demos. These demos illustrate what we have been able to do. The first demo
contains following parts:

• Running Player Animation: The ability of handling a running player ani-
mation is represented. With this knowledge we are hereafter able to handle
all type of different player animations.

• Ball Handling : A ball is positioned close to the player. The ball follows
the player as a player can be moved around the football field using the
arrow keys on the keyboard.

• Manual Camera Positioning : A camera is installed and can be regulated
manually in x-, y- and z-axis.

The second demo contains following parts:

• Automatic Camera: To be able to have a feature that is capable of au-
tomatically handling the graphical representation of the highlights in a
football match an automatic camera management is needed, which is ex-
actly what we have established in this demo.

• Camera AI : The camera management is programmed in such way that it
sees the football field as a field divided in several minor segments. A finite
state machine, FSM, have been used for modeling this kind of AI.

The third demo contains following parts:

• Team AI : An illustration of a team AI is represented. One is able to move
the ball with the arrow keys on the keyboard which will result in specific
individual movement among players, within the team, towards the ball.

• Automatic Camera & Camera AI : The camera AI developed in the pre-
vious demo is used here for following the ball around the football field.

The fourth demo contains following parts:

• Ball Physics: A representation of physics considering the ball are shown
in this demo. It is worth mentioning that our ball physics parameters are
fewer by number in comparison with the number of parameters in reality.
Despite this fact, our model is behaving like a realistic one.

• Shooting Animations: Being able of managing the ball physics we chose to
demonstrate this by letting our player kick the ball in different directions
and letting it bounce against the football field.
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• Different Shoot Angles: Adding more excitement to this demo, the ability
of choosing the shoot angle on your own is added.

The fifth demo contains following parts:

• Ball Finding AI : First of all, this demo contains two players. After having
a player kicking the ball in a certain direction the other player’s AI triggers
an automatically ball finding algorithm.

• Manual Passing : After having a player reaching the ball destination one
is now once again able of shooting out the ball which the other player
automatically will aim to reach.

• Player - Ball Collision: Using our selves of invisible collision spheres,
which could also be referred as bounding volumes, attached at the players’
bodies and at the ball’s centre, we are able of detecting a collision between
a player and the ball.

The sixth demo contains following parts:

• Automatic Ball Passing : This demo also includes two players. The big
difference here is that this demo is automatically run by itself. We have,
in other words created a visual representation of what could be a certain
scenario in a football match.

• Player Turning AI : In this demo we added a turning sequence which will
be executed as soon as a player gets in touch with the ball. This adds an
extra bit of realism in this demo.

• Sound Effects: A demonstration of sound effect handling is shown in this
demo as one is able of hearing a sound as a ball gets kicked by a player as
well as the ball bounces against the football field.

The seventh demo contains following parts:

• Automatic Ball Heading : Here we have a scenario where we have a player
who is about to perform a free kick. He is positioned at a certain distance
from what is representing a player blocking wall. As soon as he performs
a free kick, the player blocking wall, consisting of four players, are going
to try to block the ball by jumping a bit from the ground and perform a
forward heading.

• AI for Finding Jump Position: An algorithm is triggered for finding the
right position for performing the heading. Goalie AI is also available in this
demo as he follows the position of the ball continuously, goalies "saving
the ball" animation is added as well.
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• Sound Effects: A demonstration of sound effect handling is demonstrated
in this demo as well. Besides from what has been implemented in the
previous demo, a background sound is added presenting the attending
crowd at the stadium. This is accomplished by having different sound
channels managing different sound actions. A heading sound is also added
as the player, having a role of a forward, heads the ball towards the goal.
The sound of a cheering crowd appears as the ball passes the goal line.

7.10 Current and Future Work

Concerning what have been established during this 20 week period there are
huge posibilities for future work. First of all, our thesis truly constitutes an
introduction for those who are intreseted in the MMOG field and it reflects all
the steps one needs to take in consideration when creating a MMOG. Every-
thing from designing techniques concerning MMOGs to industry analysis are
discussed.

Advantages and disadvantages of the programming language, Blitz 3D that we
have been using is also brought up. This will definetelly make it easier when
it comes to choosing the programming language that one would like to use for
his/hers game.

The Blitz 3D code that we have produced is public, which means that anyone
interested can take part of what we have acomplished.
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