
A Real-Time Soft Shadow
Volume Algorithm

ULF ASSARSSON

Department of Computer Engineering
School of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2003

This page intentionally contains only this sentence.

Thesis for the degree of Doctor of Philosophy

A Real-Time Soft Shadow
Volume Algorithm

Ulf Assarsson

Department of Computer Engineering
School of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden 2003

A Real-Time Soft Shadow Volume Algorithm
Ulf Assarsson
ISBN 91-7291-333-9

Copyright c© 2003 Ulf Assarsson, All Rights Reserved

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie 2015
ISSN 0346-718X

School of Computer Science and Engineering
Chalmers University of Technology
Technical Report No. 18D

Department of Computer Engineering
School of Computer Science and Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Phone: +46 (0)31–772 1000
www.ce.chalmers.se

Author email address: uffe@ce.chalmers.se

Printed by Vasastadens Bokbinderi AB
Göteborg, Sweden 2003

A Real-Time Soft Shadow

Volume Algorithm

Ulf Assarsson
Department of Computer Engineering, Chalmers University of Technology

Abstract

Rendering of shadows is a very important ingredient in three-dimensional
graphics since they increase the level of realism and provide cues to spa-
tial relationships. Area or volumetric light sources give rise to so called
soft shadows, i.e., there is a smooth transition from no shadow to full
shadow. For hard shadows, which are generated by point light sources,
the transition is abrupt. Since all real light sources occupy an area or vol-
ume, soft shadows are more realistic than hard shadows. Fast rendering
of soft shadows, preferably in real time, has been a subject for research
for decades, but so far this has mostly been an unsolved problem.

Therefore, this thesis, which is based on five papers, focuses on how
to achieve real-time rendering of soft shadows. The first four papers
constitute the foundation and evolution of a new algorithm, called the
soft shadow volume algorithm, and the fifth paper provides an essential
proof for correctness and generality of this and some previous shadow
algorithms.

The algorithm augments and extends the well-known shadow volume
algorithm for hard shadows. Two passes are used, where the first pass con-
sist of the classic shadow volume algorithm to generate the hard shadows
(umbra). The second pass compensates to provide the softness (penum-
bra). This is done by generating penumbra wedges and rasterizing them
using a custom pixel shader that for each rasterized pixel projects the
hard shadow quadrilaterals onto the light source and computes the cov-
ered area.

A result of the thesis is an algorithm capable of real-time soft shadows
that utilizes programmable graphics hardware. The algorithm produce
high-quality shadows for area light sources and volumetric light sources.
It also handles textured light sources, which currently is a very rare capa-
bility among real-time soft shadow algorithms. Even video textures are
allowed as light sources.

Keywords: Computer Graphics, Three-Dimensional Graphics and Re-
alism, Shading, Shadowing, Soft Shadows, Graphics Hardware, Pixel
Shaders.

i

This page intentionally contains only this sentence.

List of Papers

This thesis is based on the following papers. References to the papers
will be made using the Roman numbers associated with the papers.

I. Tomas Akenine-Möller and Ulf Assarsson, “Approximate Soft Shad-
ows on Arbitrary Surfaces using Penumbra Wedges,” 13h Euro-
graphics Workshop on Rendering, Eurographics, Pages 309–318,
June 2002.

II. Ulf Assarsson and Tomas Akenine-Möller, “Interactive Rendering of
Soft Shadow using an Optimized and Generalized Penumbra Wedge
Algorithm”, conditionally accepted by the Visual Computer, submit-
ted May 2002.

III. Ulf Assarsson and Tomas Akenine-Möller, “A Geometry-Based Soft
Shadow Volume Algorithm Using Graphics Hardware,” Proceedings
of ACM SIGGRAPH 2003, Pages 511–520, 2003.

IV. Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas
Akenine-Möller, “An Optimized Soft Shadow Volume Algorithm
with Real-Time Performance,” Graphics Hardware 2003, ACM SIG-
GRAPH / Eurographics Workshop Proceedings, Pages 33–40, 2003.

V. Tomas Akenine-Möller and Ulf Assarsson, “On Shadow Volume Sil-
houettes”, Submitted to Journal of Graphics Tools, April 4, 2003.

Papers by the author of this thesis that are not included:

• Ulf Assarsson and Tomas Möller, “Optimized View Frus-
tum Culling Algorithms,” Technical Report 99-3, Department
of Computer Engineering, Chalmers University of Technology,
http://www.ce.chalmers.se/staff/uffe/, March 1999.

• Ulf Assarsson and Tomas Möller, “Optimized View Frustum Culling
Algorithms for Bounding Boxes,” Journal of Graphics Tools, 5(1),
Pages 9–22, 2000.

iii

• Ulf Assarsson and Per Stenström, “A Case Study of Load Dis-
tribution in Parallel View Frustum Culling and Collision Detec-
tion,” Euro-Par 2001 Parallel Processing Proceedings, Pages 663–
673, 2001.

• Jonas Lext, Ulf Assarsson, and Tomas Möller, “BART: A Bench-
mark for Animated Ray Tracing,” IEEE Computer Graphics and
Applications, Pages 22–31, March/April 2001.

iv

Table of Contents

1 Introduction 1
1.1 Overall Objective and Research Question 3
1.2 Why Previous Methods Do Not Suffice 4

1.2.1 High Quality but Insufficient Speed 4
1.2.2 High Speed but Insufficient Quality 5

1.3 Methodology . 5
1.4 Main Contribution . 6
1.5 Thesis Structure . 7

2 A Real-Time Soft Shadow Volume Algorithm 9
2.1 Preliminaries . 9
2.2 Approximate Soft Shadows using Penumbra Wedges . . . 11

2.2.1 Problem . 11
2.2.2 Methodology . 11
2.2.3 Contribution . 11

2.3 An Optimized and Generalized Penumbra Wedge Algorithm 13
2.3.1 Problem . 13
2.3.2 Methodology . 13
2.3.3 Contribution . 13

2.4 A Geometry-Based Soft Shadow Volume Algorithm 14
2.4.1 Problem . 14
2.4.2 Methodology . 15
2.4.3 Contribution . 15

2.5 Soft Shadows with Real-Time Performance 16
2.5.1 Problem . 16
2.5.2 Methodology . 17
2.5.3 Contribution . 17

2.6 On Shadow Volume Silhouettes 18
2.6.1 Problem . 18
2.6.2 Methodology . 19
2.6.3 Contribution . 19

3 Discussion 21

v

4 Future Work 23

5 Acknowledgements 25

References 27

Paper I 33

Paper II 57

Paper III 83

Paper IV 113

Paper V 133

vi

Preface

”If something is hard, then it is not worth doing.”
–Homer J. Simpson, words of wisdom to his son Bart.

Comment: This statement may sound a bit controversial to many, but
if the word hard is interpreted as complicated, what Homer says is often
true. If a solution is complex, then it is probably not a very good one. We
strive to derive simple algorithms, because they are often faster and less
error-prone. Furthermore, the real-time demands of computer graphics
often prohibits complicated computations. The beauty lies within simple
and fast solutions.

Ulf Assarsson

When reading really old articles, written decades or even centuries ago,
one thing that have struck me is that it often is extremely hard to judge
the validity of the statements or results in the document. Any problem or
solution comes from a context. A clue to such a context could be a time
stamp, since it is then possible to investigate the relevant circumstances
at that time. Preferably the environment for the problem and solution
should be clearly given in the text.

In my thesis I want to clarify the context for which it is written so
that the validity of the results can be estimated and understood in the
future.

The latest available commodity graphics hardware is the Geforce FX
5900 and the ATI 9800. The Geforce FX consists of 125 million transistors
clocked at 500 MHz, typically has 128 or 256 MB texture memory, 20GB/s
internal bandwidth, and according to the specifications processes 330M
triangle vertices/s and 3GPixels/s. In theory, this correspond to about

vii

100M triangles per second. In reality, this probably means that about
1M triangles can be drawn to the screen at 50 fps, i.e., in real time.

A typical example of the latest commodity CPU is the Intel Pentium 4,
clocked at 3GHz, and a common memory size in a desktop computer is
1GB.

Which computer algorithms that are the most efficient will always
depend on the hardware. But the available hardware will also depend on
what algorithms are intended to run on it. For the soft shadow algorithms
in this thesis, I have not restricted the research to algorithms for a specific
hardware. If existing hardware is not suitable, it has been valid to suggest
changes. However, the suggestions should be realistic at the present time.
In the end, the algorithm was adapted to suit the new programmable
hardware that just have entered the market.

Since the conditions for the algorithms change as hardware change, a
question that arise is how long the results of this thesis will be of interest.
How long will it take before it is more efficient to compute real-time soft
shadows in a very different way than described in this thesis? No one,
of course, knows, but it is reasonable to assume that the fundamentals
of hardware design still applies during the foreseeable future of perhaps
5 to 10 years. Someone once said that a good algorithm in computer
graphics should at least have a life time of 5 years. The successfulness of
graphics hardware of today relies on the streaming architecture. Trian-
gle rendering allows for efficient parallelism, pipelining, and tolerance of
relatively high memory latency, because the processing of elements can
be done independently of each other. That is, the result of processing
vertices are independent of the results from other vertices, and the same
applies between pixels.

Due to the above, it seems reasonable that the streaming architecture
will stay around for a while for graphics hardware, instead of turning into
one or several general purpose processors. A very important property
of the proposed soft shadow algorithm is that it can efficiently utilize
graphics hardware built on the streaming architecture, and therefore the
algorithm will likely still be efficient a long time from now.

The soft shadow volume algorithm is based on the shadow volume
algorithm [14] for hard shadows, also called the stencil buffer method [20],
that originates from 1977. It has taken about 20 years for that algorithm
to mature, with improved speed and robustness [16], and I hope that the
soft shadow volume algorithm has a similar fate. In other words, I do not
believe that what is presented here is the final version of the algorithm.

One thing I really want to have in my thesis is some nice color plates,
so here they are. These are relevant, since these plates demonstrate the
quality of the soft shadows produced by the algorithm.

viii

Plate 1: Screen shot of a lizard model, using the implementation
described in IV.

Plate 2: Screen shots from implementation in IV.

ix

This page intentionally contains only this sentence.

1 INTRODUCTION

1 Introduction

Computer graphics is the science of how to generate (render) images with
the help of computers. In three-dimensional computer graphics, a scene
is modelled geometrically, typically using triangles, and the computer is
then used to calculate what the scene looks like from a specific view point
at a particular instant.

Since the dawn of computer graphics, a major goal has been to create
photo-realistic images in real time. Since this has not been and still is not
possible, there, generally, are two approaches. One is to compute photo-
realistic images using more time than real-time performance permits. The
other is to compute as realistic images as possible and still meet the real-
time requirement.

In computer graphics, the meaning of real-time is practically never
used in the strict sense. Real-time typically refers to soft real-time, as
opposed to hard real-time. That is, it is acceptable not to meet the tim-
ing requirements all the time. On top of this, real-time graphics generally
means more than one frame per second (fps) and typically within an in-
terval of 20-80 fps. If a television or monitor is the target of presentation,
the refresh rate may control the amount of time and computations that
can be spent on a frame.

Shadows are very important ingredients to increase the realism of a
scene, and they also provide important spatial cues [30]. For instance,
without shadows it can be impossible to determine whether an object is
located on the floor or some distance above the floor (see Figure 1).

In computer graphics, it is common to differentiate between hard

Figure 1: Example of the importance of shadows as spatial cues.

1

Figure 2: a) no shadows, b) hard shadows, c) soft shadows.

shadows and soft shadows. For a hard shadow, the transition from no
shadow to full shadow is instant at the border of the shadowed region.
For soft shadows, the transition is smooth. Hard shadows can only be
generated by infinitely small point light sources, and thus do not occur in
reality. All real light sources have an area or volume, which gives rise to
a soft transition, called the penumbra. It should be noted, though, that
the soft region can be very small, and therefore a hard shadow sometimes
is a reasonable approximation. The fully shadowed region is called the
umbra. Soft shadows typically increase the perceived realism significantly
over hard shadows [27]. The hardness also makes it possible to misinter-
pret the shadows as geometric features [3]. Figure 2 illustrates a scene
with no shadows, hard shadows, and soft shadows.

Simple, non-accurate shadows have been used for long, such as a dark
ellipse or rectangle below an object, since some representation of shadows
is better than no shadows at all [31]. Accurate dynamic hard shadows
on arbitrary geometry has been possible to compute in real time since
1991, when Heidmann [20] presented his implementation, using the stencil
buffer, of the shadow volume algorithm [14]. At that time, it only worked
on fairly expensive systems. This kind of shadows started to become
commonly used around 1999-2000 as graphics hardware evolved, and due
to that an important generalization of the algorithm was presented by
Bilodeau & Songy and Carmack [16].

The next natural step for games and virtual reality applications is
likely to be accurate dynamic soft shadows, but so far no algorithm has
been capable of producing this with commodity hardware, unless expen-
sive clusters are used [21]. This is due to that soft shadow generation
is an inherently difficult problem. There has been research on the sub-

2

1 INTRODUCTION

ject for decades [5, 11, 23, 24, 25], but so far it has been an unsolved
issue. Many algorithms on shadows and soft shadows have been sug-
gested over the years and been presented at the most prominent confer-
ences [1, 6, 14, 15, 29]. Recently, a new survey on soft shadow algorithms
has been published [18].

The problem of generating soft shadows is related to cell-based oc-
clusion culling, which also is a very difficult problem, generating lots of
research [3, 13].

1.1 Overall Objective and Research Question

One of the major remaining unsolved problems in real-time three-
dimensional graphics is how to generate soft shadows. So far, all al-
gorithms have either produced disturbingly inaccurate shadow quality,
or the algorithms have been too computationally intensive for real-time
purposes. Solving this problem is the overall objective of this thesis.
It is assumed that the target system is a PC or similar, equipped with
commodity hardware acceleration for graphics.

The shadows do not necessarily have to be physically accurate down
to the level of available precision for the hardware, but they should look
and behave realistically and preferably be free from obvious artifacts.
These requirements are sufficient for many applications, such as games
and virtual reality systems. Thus, the main research question is: Can
these soft shadows be achieved in real time without waiting for hardware
to be much faster, and if so, how would such an algorithm work?

A common method to achieve speed for graphics algorithms is to
utilize graphics hardware. This hardware is targeted towards rendering
of triangles that are sent to the card sequentially. Triangle rendering can
be implemented in hardware very efficiently through pipelining and due
to the inherent amount of parallelism.

One way to obtain a fast soft shadow algorithm can therefore be to uti-
lize graphics hardware. The speed of graphics hardware has so far more
than doubled each 12 months [2], compared to CPU:s that double ap-
proximately each 18 months1 [3]. For cases where real-time performance
cannot be achieved today, an algorithm that utilize graphics hardware
will therefore probably reach real-time performance before an algorithm
that is CPU-based. A more specific research question is then: Is it pos-
sible to create a soft shadow algorithm that efficiently utilizes graphics
hardware, and how?

1Moore’s law says that the number of transistors per square inch on integrated
circuits double approximately each 18 months, which is the major reason why CPU’s
approximately double in speed at the same pace.

3

1.2 Why Previous Methods Do Not Suffice

The short answer is that high quality real-time soft shadows can be
achieved today by using graphics hardware. How, is explained in the
remainder of this thesis.

1.2 Why Previous Methods Do Not Suffice

According to a recently published State-of-the-Art report [18], the soft
shadow volume algorithm presented in this thesis is the only currently
existing soft shadow algorithm that provides both high quality and good
real-time performance for dynamic scenes. In that report, the algorithm
is called Penumbra Wedges.

1.2.1 High Quality but Insufficient Speed

Worth noting is that one way to achieve soft shadows using graphics
hardware is to compute the superposition of hard shadows from several
point lights [9]. Point light samples are then used to approximate the
area or volumetric light source. The hard shadow contribution from each
point light can be computed using graphics hardware and for instance
the stencil buffer method [20]. The running time is proportional to the
number of point light samples and the scene complexity (actually it is only
dependent on the complexity of the shadow casters, not shadow receivers).
Several hundreds of point light samples are required to avoid obvious
sampling artifacts. Although this method uses graphics hardware, it is
currently two orders of magnitude too slow even for fairly simple scenes
(∼ 10.000 triangles) to be useful for real-time purposes such as in games.
This approach also uses two orders of magnitude more bandwidth than
the soft shadow volume algorithm, which is an undesirable property since
high bandwidth usage can be a performance bottleneck [6].

If current acceleration rate of graphics hardware performance holds,
it is reasonable to believe that approximately seven years of evolution is
required before using superpositions of hard shadows to approximate soft
shadows can be used in real time even for simple scenes. At that time,
it is likely that the soft shadow volume algorithm presented in this thesis
has experienced a similar performance increase, and therefore also will
be two orders of magnitude faster. This means that the algorithm can
handle two orders of magnitude more complex scenes in real time than
now, which clearly is desirable.

It should be possible to achieve real-time performance for point light
samples using a cluster of PC’s to distribute the computations of hard
shadows using the shadow volume algorithm, in a similar fashion as Isard
et al. distribute hard shadows using the shadow map algorithm [21].

4

1 INTRODUCTION

However, such an expensive system falls outside the target platform of
this thesis.

1.2.2 High Speed but Insufficient Quality

Hasenfratz et al. [18] reports that existing soft shadow algorithms with
real-time performance but with low quality are; 1) Distributed Multi-
samples [21], i.e., using a PC-cluster for distributing computations for
several point light samples, 2) Single Sample Soft Shadows [26, 8], and
3) Smoothies [10]. Both Single Samples and Smoothies produce usually
very noticeable incorrect umbra and penumbra regions, when compared
side by side with the correct result. Distributed Multi-samples is based
on the superposition of hard shadows from point light samples created
using shadow maps [32], and the reportedly [18] low quality likely stems
from the fact that Isard et al. only use 32 point light samples in order to
achieve real-time performance, and also that shadow maps suffers from
aliasing artifacts.

Penumbra Maps [33] is a recently published method that reaches real-
time performance, but has similar quality as Smoothies and Plateaus [17].
These methods approximate the umbra region with that of a hard shadow,
which gives a too large umbra region. The difference is pronounced as
the size of the light source and corresponding penumbra regions increase.

1.3 Methodology

The method used to measure the quality of the produced soft shadows,
was side-by-side visual comparisons with reference examples. In I and
II, Heckbert/Herf shadows [19] and Soler/Sillion shadows [29] were used
as references. III and IV instead used the superposition of hard shad-
ows, created using the shadow volume algorithm and 1024 point light
samples, to create accurate reference soft shadows for more general sit-
uations. When the number of point light samples reaches infinity, the
corresponding soft shadows approach a correct result, and 1024 samples
was shown to be sufficient.

Speed comparisons was performed by observing the frame rate and
also using the reported results of other algorithms. See Hasenfratz et
al. [18] for a more thorough examination. The running time of the algo-
rithms depends on factors such as for instance the screen resolution, the
number of shadow casters, number and size of the light sources, desired
quality, graphics hardware and CPU speed. No detailed comparison us-
ing various parameter configurations has been performed and is left for
future work.

5

1.4 Main Contribution

The test scenes are depicted in several of the images in the papers
I–IV. The Quake2-models were downloaded from NVIDIA and are used
in several other shadow papers [10, 16, 28]. They are good examples of
complex and arbitrarily shaped objects. In addition, cylinders, cubes,
spheres and other objects at hand were used.

The soft shadow volume algorithm and the reference algorithm using
point light samples were implemented and tested on PC:s with CPU:s
from 1.3 GHz to 2.4 GHz and the Geforce FX 5800 Ultra, ATI 9700 and
ATI 9800. The test system configuration were determined by what was
available at the time being.

1.4 Main Contribution

The main contribution of this thesis is a soft shadow algorithm that
achieves both real-time performance and high quality soft shadows for
fairly complex scenes with existing graphics hardware, and as hardware
evolves, will be able to handle more and more complex scenes.

The algorithm augments the classic shadow volume algorithm for hard
shadows [14], to capture the umbra, and is then extended with a second
pass that compensates for the first pass in order to produce the penumbra.
This second pass uses a new primitive, called the penumbra wedge, that
each contains a portion of the penumbra volume, and together includes all
penumbra regions. The penumbra wedges are rasterized using a custom
pixel shader [22] that can be implemented on programmable graphics
hardware.

The algorithm is suitable for applications where speed is essential and
where it is more important that the shadows look and behave realistic
than that they are physically accurate. Examples of such applications
are games and virtual reality systems. However, since the produced soft
shadows often are of very high quality, they could likely also be used in
effect tools for movie production. The soft shadow algorithm is possible
to use together with ray tracing. The only requirements are that the
shadow receiving geometry is represented in a z-buffer or an equivalent,
and that the occluders can be described by planar polygons and are closed
(two-manifold). Transparent occluders have been ignored and constitute
a potential problem. The latter applies to most real-time shadow algo-
rithms, such as for instance the shadow volume algorithm [14] and the
shadow map algorithm [32].

The computation time of the algorithm is proportional to the number
of pixels rasterized by the wedges, which typically is proportional to the
number and complexity of the shadow casters, number and size of the
light sources and also the screen size if the algorithm is fill rate limited.

6

1 INTRODUCTION

It also depends on the viewing position relatively to the soft shadows.
Most algorithms for soft shadows use trade-offs between quality and

speed. No detailed performance comparison has been done between the
soft shadow volume algorithm and others in terms of speed and quality,
but a firm estimation is that the proposed soft shadow volume algorithm
is between one and two orders of magnitude faster than using point light
samples, for the same visual quality. Compared to other algorithms, it is
often both significantly faster and produces higher quality [18, 7].

1.5 Thesis Structure

This thesis is based on five papers. Each of the first four paper incremen-
tally refines the soft shadow volume algorithm by identifying limitations
or unsolved problem areas and investigating different solutions. The fifth
paper provides an important proof of generality and correctness of this
and other shadow volume related algorithms.

The remainder of this thesis is organized into three sections and then
the five papers are appended.

• Section 2 is divided into a subsection for each paper, which de-
scribes the problems, methodology and the contribution for each
paper.

• Section 3 discusses the results and also contains miscellaneous
comments about the work in this thesis.

• Section 4 concludes and suggest how to follow up on the work in
this thesis.

7

This page intentionally contains only this sentence.

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

2 A Real-Time Soft Shadow Volume Al-

gorithm

This section starts with some preliminaries and then continues with a
subsection for each appended paper containing the presentation of the
problem, methodology and contribution of the corresponding paper.

2.1 Preliminaries

In soft shadow rendering, a common approximation is to separate lighting
from visibility [1]. The desired irradiance computation for an area light
source with homogeneous radiation over the surface is shown below [12]:

E =
∫

A

L cosφi cosφl

πr2
vdA. (1)

Here, E is the incoming irradiance at point p, A is the area of the light
source, L is the radiance from the light source, v is the binary visibility
term, r is the distance from the point to be shaded to the point on the
light source, φi is the incident angle, and φl is the angle between the
normal of the light source and the vector from the light to the point to
be shaded (see Figure 3).

A

r

φi

φl

L
v = false if occluder is present

p

Figure 3: Lighting model

9

2.1 Preliminaries

By separating lighting and visibility, as shown in equation 2:

E ≈ lv (2)

we can compute the average visibility term as shown below [1]:

v =
1
A

∫
A

v dA. (3)

Lighting can be computed as if the area light source was a point light
source, or more accurate lighting computation can be used if necessary.

It should be noted that for a volumetric light source, the radiance L
could be a more complex function of surface location and direction. For
all papers in this thesis, spherical light sources are treated as they are
spherical area light sources with homogenous radiation for all locations
of the surface. The implication is that the amount of shadow at a location
is directly proportional to the visibility of the light source from that
location.

An area light source with non-homogenous radiation over the surface
can be approximated into several piecewise constant sections. This is
essentially how soft shadows from textured area light sources are handled
in III.

For real-time purposes, the above approximations are reasonable, and
the presented algorithms in this thesis therefore focus on computing v,
which is the major contributor to the appearance of soft shadows.

In the test applications and screen shots of I–IV, the lighting is com-
puted using a point light source, typically at the center of the area or
volumetric light source. The consequence of this approximation is that
diffuse shading and specular effects will correspond to a point light source
and shadows will correspond to an area light source. The diffuse and
specular deviations are often much more subtle than for shadows, which
makes this approximation very suitable for real-time purposes.

A common method to render soft shadows is to approximate an area
or volumetric light source with several point light sources, and use the av-
erage (superposition) of the hard shadows from each sample point. This
is of course slow if many sample points are used, and the computation
time typically scales linearly with the number of sample points. To avoid
obvious sample artifacts, a great number of point light samples is nec-
essary. For 256 levels of softness, at least 256 point light sources are
required in the general case, but often more have to be used. For some
of the test scenes in this thesis, sampling artifacts have been observed for
512 samples, although such situations seem to be fairly uncommon. No
artifacts have been detected when using 1024 samples.

10

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

2.2 Approximate Soft Shadows using Penumbra Wedges

2.2.1 Problem

No previous algorithms exist that are capable of rendering high quality
soft shadows that are cast onto arbitrary, animated objects in real time
[18, 4].

Pursuing the goal of creating such an algorithm, I suggests and inves-
tigates a new technique using penumbra wedges. The approach includes
identifying and solving problems such as creating penumbra wedges from
shadow casters and developing an efficient rasterization method for the
wedges.

2.2.2 Methodology

The penumbra wedge algorithm was implemented in software on a
PC. The quality and speed of the soft shadows was then compared to
Heckbert/Herf shadows [19] and Soler/Sillion shadows [29]. The Heck-
bert/Herf shadows averaged the hard shadows from 128 point light sam-
ples which gives fairly accurate shadows on planar surfaces. The soft
shadow method by Soler and Sillion was chosen because it is one of the
few methods that give real-time performance, but it has problems for
general scenes. The speed were compared by observing the frame rates.
The quality of the soft shadows was compared visually.

2.2.3 Contribution

The contribution of I is the first generation of a new soft shadow algo-
rithm, which is capable of rendering soft shadows on arbitrary geometry at
interactive frame rates (1–10 fps). It only handles spherical light sources,
so light sources with other shapes are approximated by a surrounding
bounding sphere. The algorithm extends Crow’s hard shadow volume
algorithm [14], by using 256 levels of shadow intensity instead of just
two (no shadow and full shadow). This is done by replacing the shadow
quadrilaterals in the shadow volumes with penumbra wedges that models
the penumbra regions (see figure 4).

The behavior of the shadows correspond to the following goals: 1) the
softness of the penumbra increases linearly with the distance from the
occluder, and 2) the umbra region disappears when the light source is
large enough. A strong advantage is that typical sampling artifacts are
avoided, such as from superpositioned hard shadows.

The algorithm handles the same shadow casting objects as the com-
monly used shadow volume algorithm for hard shadows by Crow [14],

11

2.2 Approximate Soft Shadows using Penumbra Wedges

shadow casting

object

shadow wedge

(penumbra region)

umbra

volume

shadow wedge

(penumbra region)

light source

shadow casting

object

shadow

quad

shadow

quad
shadow

volume

a

bc

+1

+1

-1

light source

0

shadow casting

object

shadow

quad

shadow

quad
shadow

volume

a

bc

+1

+1

-1

light source

(a) (b)

(c) (d)

2D:

3D:3D:

Figure 4: The quads in the shadow volumes for hard shadows, are re-
placed with penumbra wedges to achieve soft shadows. a) and c) show
the shadow quads for a point light source. b) and d) shows the penumbra
wedges for a volumetric light source.

with some limitations on the quality for complex scenes. The former con-
straints are that the occluders must be polygonal, closed (2-manifold) and
the polygons must be planar. The shadow receivers should be represented
in a z-buffer. Since real-time computer graphics is based on triangle ras-
terization, these limitations are of very little importance, as all objects
typically consist of triangles, rendered into a z-buffer used for the depth
sorting. Non-closed objects are often easy to convert to closed objects,
and it can often be done automatically. Multiple light sources can be
handled.

The main problem with the approach presented in this paper is that
it is hard to compute reasonable wedges that approximate the penumbra
for all silhouette edge situations. The wedges should approximate the
inner and outer surface of the penumbra volume, which can be a fairly
complicated geometrical problem for complex occluders. However, when
such wedges are at hand, soft shadows can be generated at interactive
frame rates.

12

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

An approximate version of the algorithm that utilizes graphics hard-
ware was also implemented. For real-time performance, much fewer levels
of shadow intensity were used - typically 6-16 instead of 256. The qual-
ity and smoothness was judged visually. This algorithm is very similar
to using several shadow volumes from point light samples, but can give
slightly smoother results. To get really smooth shadows, however, the
computation cost becomes similarly high, and therefore this approach
was discarded from further investigations in this thesis.

2.3 An Optimized and Generalized Penumbra Wedge Al-
gorithm

2.3.1 Problem

The algorithm in I has a few shortcomings of which the most important
are: 1) it does not run in real time since the wedge rasterization has
no efficient hardware accelerated implementation, 2) it has robustness
problems and visible artifacts, and 3) it does not correctly treat the case
when the viewer is inside a shadow volume, since the usual solution of
using the z-fail algorithm [16] cannot easily be incorporated.

Therefore, II investigates how the number of computations of the
wedge rendering can be reduced and how the well-known problem with the
viewer inside a shadow volume can be solved [16]. The resulting algorithm
is also evaluated from a future hardware implementation perspective in
terms of memory accesses of a single-pass version versus a three-pass
version.

2.3.2 Methodology

The algorithms and modifications were implemented in software and the
speedups were compared against the original algorithm in I. Except for
that the problem when the viewer is inside the shadow volume is removed,
the quality of the soft shadows is unaffected.

2.3.3 Contribution

The algorithm is restructured so that the umbra and penumbra render-
ing is split into different parts which enables 1) the z-fail algorithm for
correctly managing the case when the viewer is in shadow, 2) using com-
modity graphics hardware rasterization for the umbra, 3) efficient culling
with speedups of 3-4 times, and 4) significantly reducing the number of
computations for wedge rasterization.

A single pass version of the algorithm is then compared to a three-
pass version in terms of memory reads and writes. The single pass version

13

2.4 A Geometry-Based Soft Shadow Volume Algorithm

requires fewer memory accesses and is targeted for a future hard-wired
implementation added into graphics hardware, whereas the three-pass
version can utilize non-modified existing graphics hardware for the umbra
contribution.

2.4 A Geometry-Based Soft Shadow Volume Algorithm

2.4.1 Problem

Two shortcomings of the previous algorithms are that 1) they still do not
run in real time, since there is no fully hardware accelerated implementa-
tion of the rasterization, and 2) there are robustness issues during wedge
construction (see Figure 5b and 6). To add a new hardware mechanism
that would provide support for rendering of penumbra wedges, graphics
cards vendors would have to be convinced to add it into their designs. At
the time for this paper, massively2 programmable graphics hardware has
very recently appeared on the market. Although the number of instruc-
tions, memory lookups and length of programs are still very restricted, it
is highly probable that better programmability will come shortly. Prefer-
ably, the soft shadow volume algorithm should be implementable using
programmable graphics hardware instead of requiring a new hardware
mechanism.

A major problem with the previous algorithms of I and II is that
they need an explicit computation of the umbra volume. That is, the
polygons that constitute the border between the umbra and the penumbra
should preferably be computed exactly. If they are not computed exactly,
artifacts may appear, such as visible cracks in the umbra. These polygons
are generated from the back plane polygons of the wedges, but they must
be clipped against each other. This is a geometric problem that can
be difficult and inconvenient to solve in real time for a large number of
polygons, especially since a back plane polygon may have to be clipped
against more than just its two neighboring wedges’ back plane polygons
(see Figure 5a). For a large light source and a small shadow generator, the
umbra will disappear when the shadow receiver is far enough away, which
further complicates the matter, since it then is unclear what to use as
back planes. Furthermore, it is very difficult to generate sensible wedges
for silhouette edges that makes sharp angles to each other. Another
particularly difficult case is when a silhouette edge is nearly parallel to
its direction to the light source, and also when silhouette edges forms a
zigzag pattern along the direction to the light source (see Figure 6 and
Figure 5b).

2Programs longer than 100 pixel shader instructions.

14

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

(b)(a)

light source

silhouette edge

Figure 5: a) Example of a soft shadow volume with the back planes
clipped against each other. b) Zigzag patterns along the direction to the
light source cannot be handled with the wedge generation method in I
and II. This situation is also illustrated in the right of figure 6.

The robustness issues were ignored in the previous approaches. For
simplicity, when computing the umbra volume, clipping of back plane
polygons is done only against the two neighboring wedges’ back planes.

Another undesirable property of the algorithms is that the shadow
from a polygon or any other object differs from that when the polygon or
object is split in two halves and shadows are generated from each part.

To overcome the problems mentioned above, an algorithm is devel-
oped that does not need explicit computation of the umbra volume. It
uses the ordinary hard shadow volumes, which can be computed both
easily and robustly. Furthermore, the shape of a wedge is decoupled from
the shape of the neighboring wedges, which avoids problems with difficult
silhouette edge situations. The algorithm uses a more physically accurate
penumbra computation, which requires more calculations than the previ-
ous algorithms, but can be implemented using programmable hardware
and therefore reaches real-time performance.

2.4.2 Methodology

The algorithms were implemented in software on a commodity PC, and
the wedge rasterization was also implemented targeting a software em-
ulator of upcoming programmable graphics hardware. The soft shadow
quality was compared against the superposition of 1024 hard shadows
from point light samples, since that produces very accurate results. New
test scenes were added, with animated and more complex shaped objects.

2.4.3 Contribution

This paper presents a method targeted for real-time soft shadows that
is implementable using programmable graphics hardware, handles spher-
ical light sources or arbitrarily shaped planar light sources that can be

15

2.5 Soft Shadows with Real-Time Performance

light source

silhouette edge

Figure 6: Left: The edge nearly points towards the light center, resulting
in a non-convex wedge. Right: The edge is shadowed by one adjacent
edge that is closer to the light source, making the left and right planes
intersect inside the wedge. Unfortunately, the two tops of the cones can-
not be swapped to make a better-behaved wedge, because that results
in a discontinuity of the penumbra wedges between this wedge and the
adjacent wedges.

textured. The algorithm has no known robustness issues, for instance con-
cerning the appearance of the shadow casters, as long as they are polygo-
nal and two-manifold, or shadow receivers. It handles all scenes that the
hard shadow volume algorithm handles. The shadows are usually of very
high quality, although two approximations are known to sometimes cause
artifacts.

An important feature of the algorithm is that the resulting soft shad-
ows always are smooth, i.e., there are no artifacts that cause erroneous
sharp steps in the penumbra, which can be the case for other algo-
rithms [8]. Undesirable steps in the penumbra are particularly disturbing,
since the human visual perception system is very good at detecting edges
and may try to interpret them as geometric features.

2.5 Soft Shadows with Real-Time Performance

2.5.1 Problem

At the time of writing and developing the algorithm in III, there was
no programmable hardware at hand on which to do test runs of the
implementation. Later, when the soft shadow algorithm was tested on
such hardware (the Geforce FX) unforseen bottlenecks appeared which
required major changes in the algorithm. Also, it stood clear that the

16

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

pixel shader was too computationally intensive to provide good real-time
performance.
IV investigates how the computational time can be further reduced

and also how the quality of the soft shadows can be increased.

2.5.2 Methodology

The algorithm of III was tested on a Geforce FX 5800 Ultra, since this
was the only available graphics hardware that manages pixel shaders with
the required length of about 250 instructions. The implementation in IV
were targeted towards the ATI 9700, since two of the co-authors had these
cards. The ATI 9700 is only capable of running pixel shaders with length
of at most 64 instructions, and this affected the solutions.

The speedups of the optimizations were measured by frame rate, using
the implementation in III running on the Geforce FX and the implemen-
tation in IV running on the ATI 9800. Due to practical reasons, the two
implementations currently do not run on the same graphics accelerators.
However, this probably only has fairly subtle impact on the results, since
the official reported speed differences between the cards are at a small
percentage level.3 The test scenes from III were reused.

2.5.3 Contribution

The algorithm in III can render real-time soft shadows, but only for small
resolutions and fairly small scenes, since it is heavily fill-rate limited due
to a long pixel shader. In paper IV, the pixel shader is brought down
from ∼ 250 instructions to about 60 instructions. This is done by, among
other things, using hand optimized assembler and more lookup tables,
stored in textures. It should be emphasized that these lookup tables only
depend on the shape of the light source, which must be planar, and not
on the occluders or shadow receivers. Furthermore, the lookup tables
are independent of any light source transformation, such as for instance
rotation, scaling or shearing.

A large part of the shader consisting of coordinate transformations is
lifted out and now done by ordinary triangle rasterization, which proved
to be much faster.

A culling technique is added to avoid running the pixel shader for
pixels with points outside the wedges and thus will get zero contribution.
Additionally, a new wedge creation method is developed that is not as
conservative as the previous method. Thus, tighter wedges around the

3See for instance Tom’s Hardware: http://www.tomshardware.com.

17

2.6 On Shadow Volume Silhouettes

penumbra regions can be created, which lowers the number of pixels that
will be processed by the pixel shader.

A previous problem of either having to use several passes for the wedge
rendering or using few levels of penumbra for the shadows, is solved by
utilizing the 8 bit per component rgba-buffer to get 12 bits of precision
for the intermediate soft shadow results.

Together, all the presented optimizations provide 15-20 times speedup,
which results in real-time performance for fairly complex scenes and large
resolutions.

Due to the fundamental approximations of the soft shadow algorithms,
two major artifacts can still appear; 1) the single silhouette artifact, and
2) the object overlap artifact [6]. Therefore, two methods for increasing
the quality of the shadows are presented. The first method takes a heuris-
tical approach and requires an extra rendering pass for each wedge. The
second approach is capable of producing the correct result by splitting
the light source into smaller pieces, and is a classical trade-off between
speed and accuracy.

2.6 On Shadow Volume Silhouettes

This paper presents a proof essential for the correctness of Crow’s hard
shadow volume algorithm [14], and also for the soft shadow volume algo-
rithm.

2.6.1 Problem

The shadow volume algorithm and soft shadow volume algorithms in I–
IV use the silhouette edges as seen from a point light source to create
wedges. The true silhouettes are hard to compute and they will generally
not form closed loops, i.e., there can be discontinuities between the edges
of a silhouette. A simple example is the silhouette for two overlapping
polygons, as seen from the light source. Usually, possible silhouettes [16]
are computed instead, which consist of the true silhouette edges and edges
that would have been silhouette edges if they were not shadowed by an
object closer to the light source. The definition of a possible silhouette
edge is an edge between two triangles of which one is front facing and the
other is back facing as seen from the point light source. These possible
silhouette edges are very easy to compute and form closed loops for two-
manifold objects.

For correctness of the shadow volume and soft shadow volume algo-
rithms, it is important that the generated set of all possible silhouette
edges can always be split into one or more separate single loops. These
loops must not have to share the same generated edge instances. Then,

18

2 A REAL-TIME SOFT SHADOW VOLUME ALGORITHM

the shadow volumes for any silhouette edge configuration can be split
into independent volumes that do not share the same surface instance,
i.e., it is true that each silhouette edge correspond to one and only one
hard shadow quad in a shadow volume, and one and only one wedge in a
soft shadow volume.

If a shadow quad or wedge would have to be shared, this quad or wedge
would need to be duplicated with one instance for each loop that contains
the shared edge instance, which would complicate the algorithms, since a
detection and copying mechanism would have to be added. It would also
be bad for the soft shadow algorithm, since a duplicated wedge would
duplicate the corresponding amount of shadow contribution as well.

2.6.2 Methodology

A proof that the silhouette edge connectivity must be even is presented.
It is then shown with a simple example that the connectivity can be
larger than two. Therefore, if a number of silhouette edge loops meet at
a single vertex, each loop can be assigned two unique silhouette edges
(one incoming and one outgoing) at the vertex. This implies that no edge
instances need to be shared between the loops.

2.6.3 Contribution

The proof shows that possible silhouettes, computed as described above,
always can be split into separate closed loops, which means that the
creation and rendering of a hard shadow quad and wedge can be done
only dependent on the corresponding silhouette edge and the light source,
and totally independently of other possible silhouette edges. It should be
noted that it is not necessary to actually compute the splitting.

The algorithm in III and IV computes the correct soft shadows for an
object whose silhouette remains constant as seen from all locations within
the light source. Since this proof states that all possible silhouette edges
can be grouped into closed loops, this fact might be used to create correct
soft shadows for more general objects as well. This is briefly discussed in
paper IV, in section 5.1, on how to reduce the overlap artifact.

19

This page intentionally contains only this sentence.

3 DISCUSSION

3 Discussion

The first four papers in this thesis presented the evolution of the al-
gorithm. In III, the algorithm significantly matured through major im-
provements, and I refer to the algorithm in III and IV as the soft shadow
volume algorithm.

The algorithm in III and IV can handle any planar light source in
two slightly different ways; it can use a bounding rectangle and precom-
pute the coverage texture from 1) either a discretized two-dimensional
image of the light source, or 2) the exact representation of the planar
light source. The planar light source could also be translated, sheared or
rotated without requiring recomputation of the coverage textures.

Spheres have been used as simple examples of volumetric light sources.
Volumetric lights could also be created from combining several area light
sources. For instance, a cubical light can be represented using 6 rectan-
gular area light sources.

It should be mentioned that the single silhouette artifact [6] can be
accentuated if the light source is moving. On the other hand, splitting
the light source into several smaller area light sources, covering the same
area as the larger, can remove the artifacts, at an additional cost.

21

This page intentionally contains only this sentence.

4 FUTURE WORK

4 Future Work

I will continue the research on real-time soft shadows, since paper IV has
given rise to several new questions. The last algorithm of this thesis is
based on two major approximations that leave room for improvements.
My experience is that the overlap artifact typically is more apparent than
the single silhouette artifact – at least for complex objects. To solve the
overlap artifact, information about which parts of the light source that
are covered has to be stored. Regarding the single silhouette artifact, it
should be possible to remove by adding wedges from silhouettes created
from more than one sample point on the light source. By selectively
choosing the added sample points, it is likely that this latter solution can
be done without extensively increasing the computational load. Thus,
the next goal is real-time soft shadows that are visually indistinguishable
from correct ones.

Other interesting subjects for investigation are if the soft shadow vol-
ume algorithm can be used for rendering of soft shafts of lights or as a
hardware accelerated solution to the closely related problem of cell-based
occlusion culling [3, 13].

23

This page intentionally contains only this sentence.

5 ACKNOWLEDGEMENTS

5 Acknowledgements

My first thanks goes to Tomas Akenine-Möller, my supervisor. Without
his help my life as a Ph.D. student would have been much more compli-
cated, if not almost impossible. He is a great person, both as a friend and
as a supervisor. The second thanks goes to my professor Per Stenström
who has forced me to learn how to perform and write about academic
research - not without me silently swearing from time to time, just to
realize in the end that he is right. The third thanks, and a major one,
goes to my grandmother for following my research, keeping track of my
publishing results and also forcing me to explain my algorithms and work
to someone who has never used a computer.

There are several good fellows at the department I like to thank for
various reasons, such as Björn, Thomas, Jim, Biff, Fredrik W, Cecilia and
Jonas J. I want to thank Jonas Lext as a computer graphics colleague
and all the other boys and girl at Illuminate Labs. I also thank Henrik
Holmdahl and Erich Björnekull for lots of beer talk and the former also
for keeping track of the games world for me.

Other thanks, more closely related to soft shadows, goes to Eric
Haines, Michael Dougherty and Michael Mounier, Mark Segal and
Michael Doggett at ATI, and Greg James, Gary King, Randy Fernando,
Mark Kilgard and Chris Seitz at NVIDIA.

The final thanks goes to my whole family, and this includes a special
thanks to my brother Tor for, among other things, keeping the engine on
the motor cycle alive, and to my beloved Ewelina for making my heart
burning!

25

This page intentionally contains only this sentence.

REFERENCES

References

[1] Agrawala, M., R. Ramamoorthi, A. Heirich, and L. Moll, “Efficient
Image-Based Methods for Rendering Soft Shadows,” Proceedings of
ACM SIGGRAPH 2000, ACM Press/ACM/Siggraph, New York. K.
Akeley, Ed., Computer Graphics Proceedings, Annual Conference
Series, ACM, 375–384. 3, 9, 10

[2] Akeley, Kurt, and Pat Hanrahan, ´´Real-Time Graph-
ics Architectures,” Course CS448A Notes, Fall 2001.
http://graphics.stanford.edu/courses/cs448a-01-fall/
lectures/lecture1/walk015.html. 3

[3] Akenine-Möller, Tomas, and Eric Haines, Real-Time Rendering, AK
Peters, Ltd., 2nd edition, June 2002. 2, 3, 23

[4] Akenine-Möller, Tomas, and Ulf Assarsson, “Approximate Soft
Shadows on Arbitrary Surfaces using Penumbra Wedges,” Euro-
graphics Workshop on Rendering 2002, pp. 309–318, June 2002. 11

[5] Amanatides, J., “Realism in Computer Graphics: A Survey”, IEEE
Computer Graphics and Applications, Vol 7(1), pp 44-56, January
1987. 3

[6] Assarsson, Ulf, and Tomas Akenine-Möller, “A Geometry-Based Soft
Shadow Volume Algorithm Using Graphics Hardware,” Proceedings
of ACM SIGGRAPH 2003, Pages 511–520, 2003. 3, 4, 18, 21

[7] Assarsson, Ulf, Michael Dougherty, Michael Mounier, and Tomas
Akenine-Möller, “An Optimized Soft Shadow Volume Algorithm
with Real-Time Performance,” Graphics Hardware 2003, ACM SIG-
GRAPH / Eurographics Workshop Proceedings, Pages 33–40, 2003.
7

[8] Brabec, Stefan, and Hans-Peter Seidel, “Single Sample Soft Shadows
using Depth Maps,” Graphics Interface 2002, pp. 219–228, 2002. 5,
16

[9] Brotman, Lynne Shapiro, and Norman I. Badler, “Generating Soft
Shadows with a Depth Buffer Algorithm,” IEEE Computer Graphics
and Applications 4, 10, pp. 5–12, October, 1984. 4

[10] Chan, Eric, and Fredo Durand, “Rendering Fake Soft Shadows with
Smoothies,” Rendering Techniques 2003 (14 Eurographics Sympo-
sium on Rendering), Springer-Verlag, 2003. 5, 6

27

REFERENCES

[11] Cohen, M.F. and D.P. Greenberg, “The Hemi-Cube: A Radiosity
Solution for Complex Environments,” Computer Graphics, 19(3), pp.
31-40, July 1985. 3

[12] Cohen, M. F., and J. R. Wallace, Radiosity and Realistic image Syn-
thesis, Academic Press Professional, 1993. 9

[13] Cohen-Or, D., Y Chrysanthou, F. Durand, N. Greene, V. Koltun,
and C. Silva, “Visibility: Problems, Techniques, and Applications,”
Course #30 at SIGGRAPH 2001, August, 2001. 3, 23

[14] Crow, Frank, “Shadow Algorithms for Computer Graphics,” Com-
puter Graphics (Proceedings of ACM SIGGRAPH 77), pp. 242–248,
July 1977. viii, 2, 3, 6, 11, 18

[15] Drettakis, George, and Eugene Fiume, “A Fast Shadow Algorithm
for Area Light Sources Using Backprojection,” Computer Graphics
(SIGGRAPH 1994), Annual Conference Series, pp 223–230, ACM
SIGGRAPH, 1994. 3

[16] Everitt, Cass, and Mark Kilgard, “Practical and Robust Sten-
ciled Shadow Volumes for Hardware-Accelerated Rendering,”
http://developer.nvidia.com/, 2002. viii, 2, 6, 13, 18

[17] Haines, Eric, “Soft Planar Shadows Using Plateaus,” Journal of
Graphics Tools, 6(1):19–27, 2001. 5

[18] Hasenfratz, J.-M., M. Lapierre, N. Holzschuch, and F.X. Sillion, “A
Survey of Real-Time Soft Shadows Algorithms,” Eurographics State-
of-the-Art Report, Eurographics, 2003. 3, 4, 5, 7, 11

[19] Heckbert, Paul, and Michael Herf, Simulating Soft Shadows with
Graphics Hardware, Carnegie Mellon University, Technical Report
CMU-CS-97-104, January, 1997. 5, 11

[20] Heidmann, Tim, “Real shadows, real time,” Iris Universe, no. 18,
pp. 23–31, November 1991. viii, 2, 4

[21] Isard, M., M. Shand, and A. Heirich, “Distributed rendering of inter-
active soft shadows,” 4th Eurographics Workshop on Parallel Graph-
ics and Visualization, pp. 71–76, Eurographics Association, 2002. 2,
4, 5

[22] Mark, William R., R. Steven Glanville, Kurt Akeley, and Mark J.
Kilgard, “Cg: A system for programming graphics hardware in a C-
like language,” Proceedings of ACM SIGGRAPH 2003, pp 896–907,
2003. 6

28

REFERENCES

[23] Nishita, T. and E. Nakamae, “Half-Tone Representation of 3-D Ob-
jects Illuminated by Area or Polyhedron Sources,” Proc. of IEEE
Computer Societys Seventh International Computer Software and
Applications Conference (COMPSAC83), pp. 237-242, Nov 7-11,
1983. 3

[24] Nishita, T., I. Okamura, and E. Nakamae, “Shading Models for Point
and Linear Sources,” ACM Trans. on Graphics, 4(2), pp. 124-146,
April 1985. 3

[25] Nishita, T. and E. Nakamae, “Continuous Tone Representation of
Three-Dimensional Objects Taking Account of Shadows and Inter-
reflection,” Computer Graphics, 19(3), pp. 23-30, July 1985. 3

[26] Parker, S., P. Shirley, and B. Smits, Single Sample Soft Shadows,
University of Utah, Technical Report UUCS-98-019, October 1998.
5

[27] Rademacher, Paul, Jed Lengyel, Eward Cutrell, and Turner Whitted,
“Measuring the Perception of Visual Realism in Images,” Eurograph-
ics Workshop on Rendering 2001, 2001. 2

[28] Sen, Pradeep, Michael Cammarano, and Pat Hanrahan, “Shadow Sil-
houette Maps,” Proceedings of ACM SIGGRAPH 2003, Pages 521–
526, 2003. 6

[29] Soler, Cyril, and F. X. Sillion, “Fast Calculation of Soft Shadow Tex-
tures Using Convolution,” Computer Graphics (SIGGRAPH 1998),
Anual Conference Series, pp 321–332, ACM SIGGRAPH, 1998. 3,
5, 11

[30] Wanger, Leonard R., James A. Ferwerda, and Donald P. Greenberg,
“Perceiving Spatial Relationships in Computer-Generated Images,”
IEEE Computer Graphics & Applications, pp. 44–58, 1992. 1

[31] Wanger, Leonard, “The effect of shadow quality on the perception
of spatial relationships in computer generated imagery,” Computer
Graphics (1992 Symposium on Interactive 3D Graphics), vol 25, no.
2, pp 39–42, 1992. 2

[32] Williams, Lance, “Casting Curved Shadows on Curved Surfaces,”
Computer Graphics (Proceedings of ACM SIGGRAPH 92), pp. 270–
274, August 1978. 5, 6

[33] Wyman, Chris, and Charles Hansen, “Penumbra Maps: Approxi-
mate Soft Shadows in Real-Time,” Proceedings of the 2003 Euro-
graphics Symposium on Rendering, pp 202–207, 2003. 5

29

REFERENCES

The numbers after an entry list the pages that have a reference to that entry.

30

Paper I

Approximate Soft Shadows on Arbitrary
Surfaces using Penumbra Wedges

Published at

13h Eurographics Workshop on Rendering,
Eurographics, Pages 309–318, June 2002.

This page intentionally contains only this sentence.

Approximate Soft Shadows
on Arbitrary Surfaces using Penumbra

Wedges

Tomas Akenine-Möller and Ulf Assarsson

Department of Computer Engineering,
Chalmers University of Technology, Sweden

Abstract

Shadow generation has been subject to serious investigation in computer
graphics, and many clever algorithms have been suggested. However,
previous algorithms cannot render high quality soft shadows onto arbi-
trary, animated objects in real time. Pursuing this goal, we present a
new soft shadow algorithm that extends the standard shadow volume al-
gorithm by replacing each shadow quadrilateral with a new primitive,
called the penumbra wedge. For each silhouette edge as seen from the
light source, a penumbra wedge is created that approximately models the
penumbra volume that this edge gives rise to. Together the penumbra
wedges can render images that often are remarkably close to more pre-
cisely rendered soft shadows. Furthermore, our new primitive is designed
so that it can be rasterized efficiently. Many real-time algorithms can only
use planes as shadow receivers, while ours can handle arbitrary shadow
receivers. The proposed algorithm can be of great value to, e.g., 3D com-
puter games, especially since it is highly likely that this algorithm can be
implemented on programmable graphics hardware coming out within the
next year, and because games often prefer perceptually convincing shad-
ows.

CR Categories: I.3.7 [Computer Graphics] Three-Dimensional Graph-
ics and Realism
Keywords: soft shadows, graphics hardware, shadow volumes.

1 Introduction

Shadows in computer graphics are important, both for the viewer to determine
spatial relationships, and for the level of realism. When rendering shadows on
arbitrary receivers in real time using commodity graphics hardware, the only

33

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

currently feasible solution is to render hard shadows. A hard shadow consists
only of a fully shadowed region, called theumbra. Therefore, a hard shadow
edge can sometimes be misinterpreted for a geometric feature. However, in the
real world, there is no such thing as a true point light source, as every light
source occupies an area or volume. Area and volume light sources generate soft
shadows that consist of an umbra, and a smoother transition, called thepenum-
bra. Thus, soft shadows are more realistic in comparison to hard shadows, and
they also avoid possible misinterpretations. Therefore, it is desirable to be able
to render soft shadows in real time as well. However, currently no algorithm
can handle all the following goals:

I. The softness of the penumbra should increase linearly with distance from
the occluder, starting at zero at the occluder [13].

II. The umbra region should disappear given that a light source is large enough.
III. Typical sampling artifacts should be avoided. For example, often a num-

ber of superpositioned hard shadows can be discerned [17]. The result should
be visually smooth [13].

IV. The algorithm should be amenable for hardware implementation giving
real-time performance (and interactive rates for a software implementation).

V. It should be possible to cast soft shadows on arbitrary surfaces, and work
for dynamic scenes as well.

Our algorithm, which is an extension of the shadow volume (SV) algorithm
(see Section 3), achieves these goals with some limitations on the type of scenes
that can be used.

Instead of creating a shadow quadrilateral (quad) for each silhouette edge (as
seen from the light source), a penumbra wedge is created. Each such wedge rep-
resents the penumbra volume that a silhouette edge gives rise to. See Figure 2.
Together these shadow wedges represent an approximation of the soft shadow
volume with more or less correct characteristics (see Section 7). For example,
the results often look remarkably close to those of Heckbert and Herf [9]. Some
approximations are introduced, but still the results are plausible (as can be seen
in Figure 12). In addition to the new algorithm, an important contribution is
a technique for efficiently rasterizing wedges. Our software implementation of
the algorithm runs at interactive rates on a standard PC. Assuming that the algo-
rithm can be implemented using graphics hardware that comes out within a year,
which is very likely, the algorithm will reach real-time speeds. Our focus has
therefore been on generating soft shadows that approximate true soft shadows
well, and that can be rendered rapidly, instead of a slow and accurate algorithm.
This is a significant step forward for shadow generation in, e.g., games.

Next, some related work is reviewed, followed by a description of the stan-
dard shadow volume algorithm [1], which is the foundation of our new algo-
rithm. In Section 4, our algorithm is described. Then follows optimizations,

34

PAPER I

implementation notes, and results. In Section 8, we discuss limitations of our
work, and finally we offer some ideas for future work, and a conclusion.

2 Related Work

In this section, the most relevant work for soft shadow generation at interactive
rates is presented. Consult Woo et al. [20] for an excellent survey on shadow
algorithms in general, and Haines and Möller [6] for a survey on real-time shad-
ows.

By averaging a number of hard shadows, each generated by a different sam-
ple point on an extended light source, soft shadows can be generated as pre-
sented by Heckbert and Herf [9]. This is mostly suitable for pre-generation
of textures containing soft shadows, because a high number of samples (64–
256) is needed so that a soft shadow edge does not look like a number of su-
perpositioned hard shadows. These types of algorithms can normally only get
n + 1 different levels of shadow intensities forn samples [11]. Once the soft
shadow textures have been generated, they can be rendered in real time for a
static scene. Such algorithms only apply to planar shadow receivers. Gooch et
al. [5] also project hard shadows onto planes and compute the average of these.
Light source samples are taken from a line parallel to the normal of the receiver.
This creates approximately concentric hard shadows, which in general look bet-
ter than the method by Heckbert and Herf [9], and so fewer samples can be
used.

Haines [7] presents a novel technique for generating planar shadows. The
idea is to use a hard shadow from the center of a light source. Then a cone is
“drawn” from each silhouette (as seen from the point light source) vertex, with
shadow intensity decreasing from full (in the center) to zero (at the border of the
cone). Between two such cones, inner and outer Coons patches are drawn, with
similar shadow intensity settings. These geometrical objects are then drawn
to theZ-buffer to generate the soft shadow. Our algorithm can be seen as an
extension of Haines’ method and the SV algorithm. Haines’ algorithm produces
umbra regions that are equal to a hard shadow generated from one point on
the light source, and thus the umbra region is too large [7]. Our algorithm
overcomes this limitation and also allows soft shadows to be cast on arbitrary
receiving geometry. The only requirement is that it should be possible to render
the receiving geometry to theZ-buffer.

For real-time work, there are two dominating shadow algorithms that cast
shadows on arbitrary surfaces. One is the shadow volume algorithm (Section 3),
and the other is shadow mapping. The shadow mapping algorithm [19] ren-
ders an image, called the shadow map, from the point of the light source. This
shadow map captures the depth of the scene at each pixel from the point of view
of the light. When rendering from the eye, each pixel’s depth is tested against

35

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

the depth in the shadow map, which determines whether the point is in shadow.
Reeves et al. [15] improve upon this by introducingpercentage closer filtering,
which reduces aliasing along shadow edges. Segal et al. [16] describe a hard-
ware implementation of shadow mapping. Today, shadow mapping with per-
centage closer filtering is implemented in commodity graphics hardware, such
as the GeForce3. Heidrich et al. [11] extend the shadow mapping to deal with
linear light sources, where two shadow maps are created; one for each end-
point of the line segment. Visibility is then interpolated across the light source
into a visibility map used at rendering. For dynamic scenes, the process of
creating the visibility map is quite expensive (may take up to two seconds per
frame). All shadow mapping algorithms have biasing problems, which occur
due to numerical imprecisions in theZ-buffer, and the problem of choosing a
reasonable shadow map size to avoid aliasing. One notable exception is the
adaptive shadow map algorithm, which iteratively refines the shadow map reso-
lution where needed [4].

Parker et al. [13] extends ray tracing so that only one sample is used for
soft shadow generation. This is done by using a “soft-edged” object, and using
the intersection location with this object as an indicator of where in the shadow
region a point is located. This was used in a real-time ray tracer. In 1998,
Soler and Sillion [17] presented an algorithm based on convolution. Their in-
genious insight was that for parallel configurations (a limited class of scenes), a
hard shadow image can be convolved with an image of the light source to form
the soft shadow image. They also present a hierarchical error-driven algorithm
for arbitrary configurations by using approximations. Hart et al. [8] present a
lazy evaluation algorithm for accurately computing direct illumination from ex-
tended light sources. They report rendering times of several minutes, even for
relatively simple scenes. Stark and Riesenfeld [18] present a shadow algorithm
based on vertex tracing. Their algorithm computes exact illumination for scenes
consisting of polygons, and is based on the vertex behavior of the polygons.

There are also several algorithms that use back projection to compute a dis-
continuity mesh, which can be used to capture soft shadows. However, these
are often very geometrically complex algorithms. See, for example, the work
by Drettakis and Fiume [2].

3 Shadow Volumes

In 1977, Crow presented an algorithm for generating hard shadows [1]. By us-
ing a stencil buffer, an implementation is possible that uses commodity graphics
hardware [10]. That implementation of Crow’s algorithm is called theshadow
volume (SV) algorithm. It will be briefly described here, as it is the foundation
for our new algorithm. The SV algorithm builds volumes that bound the shadow.
This is done by taking each silhouette edge (as seen from the light source) of the

36

PAPER I

shadow casting object, and creating a shadow quad. A shadow quad is formed
from a silhouette edge, and then extending lines from the edge end points in the
direction from the light source to the edge end points. The shadow volume is
illustrated in Figure 1. In theory, the shadow quad is extended infinitely. The

shadow casting

object

shadow

quad

shadow

quad
shadow

volume

a

bc

+1

+1

-1

light source

+1
0

0

Figure 1: The standard shadow volume algorithm. Rayb is in shadow, since the
stencil buffer has been incremented once, and the stencil buffer values thus is
+1. Raysa andb are not in shadow, because their stencil buffer values are zero.

SV algorithm is a multipass algorithm. First, the scene is rendered from the
camera’s view, with only ambient lighting. Then the front facing shadow quads
are rasterized without writing to the color andZ-buffer. For each fragment that
passes the depth test, i.e., that is visible, the stencil buffer is incremented. Back-
facing shadow quads are rendered next, and the stencil buffer is decremented
for visible fragments. This means that the stencil buffer will hold a mask (after
all shadow quads have been rendered), where zeroes indicate fragments not in
shadow. The final pass renders with full shading where the stencil buffer is zero.

See Everitt and Kilgard’s paper for a robust implementation of shadow vol-
umes [3].

4 New Algorithm

Our new algorithm replaces the shadow quads of the SV algorithm with penum-
bra wedges (Section 4.1), as illustrated in Figure 2. For the rest of this descrip-
tion, we assume that the light source is a sphere. The light intensity (LI),s, in a
pointp, is a number in[0,1] that describes how much of a light source the point
p can “see.” A point is infull shadow (in the umbra) whens = 0, andfully lit
whens = 1, and otherwise in a penumbra region. The LI varies inside a wedge,

37

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

and our goal is to approximate a physically-correct value as well as possible,
while at the same time obtaining fast rendering.

shadow casting

object

penumbra

wedge

umbra

volume

penumbra wedge

light source

exit point (p
b
)entry point (p

f
)

Figure 2: The new algorithm uses penumbra wedges to capture the soft region
in the shadow.

The wedges that model the penumbra regions also implicitly model the um-
bra volume. The difference between our algorithm and the standard SV algo-
rithm is that for our algorithm, one need to pass through an entire wedge (or a
combination of wedges) before entering the umbra volume.

For a visually appealing result, the light intensity interpolation must be con-
tinuous between adjacent wedges. Thus, the idea of our algorithm is to introduce
a new rendering primitive, namely, the penumbra wedge, that can be rasterized
quickly and that achieves continuous light intensity. The details of this interpo-
lation are given in Section 4.2.

Just as the SV algorithm requires a stencil buffer to rapidly render shad-
ows using graphics hardware, so does our algorithm. However, the presence of
penumbra regions makes the precision demands on the buffer higher. For this,
we use a signed 16-bit buffer, which we call the light intensity (LI) buffer. So
the LI buffer is just a stencil buffer with more precision. It is likely that the LI
buffer can be implemented by rendering to a HILO texture, where the two com-
ponents are 16 bits each. For certain scenes, a 12-bit buffer may be sufficient,
and another implementation could use the an 8-bit stencil buffer, at the cost of
fewer shades in the penumbra region.

By multiplying each LI value withk, it is possible to getk different gray
shade levels in the penumbra region. We usek = 255 since color buffers typ-
ically are eight bits per component. This choice allows for at least 256 over-

38

PAPER I

lapping (e.g., in screen-space) penumbra wedges, which is more than sufficient
for most applications. It is also worth noting that this is similar to commodity
graphics hardware that often has a 8-bit stencil buffer, which thus also allows
for 256 overlapping objects, using the the SV algorithm. The penumbra wedges
add or subtract from the LI buffer. For example, when a ray from through a
wedge (from light to umbra), 255 will be subtracted.

The algorithm starts by clearing the LI buffer to 255, which implies that the
viewer is outside shadow. Then the entire scene is rendered with only diffuse
and specular lighting. Penumbra wedges are then rendered independently of
each other to the LI buffer using the conceptual pseudocode (not optimized for
hardware) below, where the entry and exit points are illustrated in Figure 2. See
also Figure 3 for an example of thepi value used in the code below.

1 : rasterizeWedge()
2 : foreach visible fragment(x,y)...
3 : ...on front facing triangles of wedge
4 : p f = computeEntryPointOnWedge(x,y);
5 : pb = computeExitPointOnWedge(x,y);
6 : p = point(x,y,z); – z is theZ-buffer value at(x,y)
7 : pi = choosePointClosestToEye(p,pb);
8 : s f = computeLightIntensity(p f);
9 : si = computeLightIntensity(pi);

10 : addToLIBuffer(round(255∗ (si − s f)));
11 : end;

Lines 4 and 5 compute the points on the wedge where the ray through the pixel
at (x,y) enters (first intersection) and exits (second intersection) the wedge. A
point is formed from(x,y,z), wherez is the depth at(x,y) in theZ-buffer (line
6). If this point, transformed to world-space, is determined to be inside the
wedge, thenpi is set equal to that point, as this is a point that is in the penumbra
region. Otherwise,pi is set topb. This is done on line 7. Lines 8-9 compute the
light intensity[0,1] at the points,p f andpi, and finally, the difference between
these values are scaled with 255 and added to the LI buffer.

After all wedges have been rasterized to the LI buffer, the resulting image
in the LI buffer is clamped to[0,255], and used to modulate the rendered im-
age (using diffuse and specular shading). This correctly avoids highlights in
shadows. In a final pass, ambient lighting is added.

The clamping of the LI buffer is needed because it is possible to have over-
lapping penumbra wedges, e.g., it is possible to enter the umbra volume more
than once. This would result in a negative LI value—clamping this to zero is
correct, as the umbra volume cannot be darker than zero. LI values larger than
255 implies that we have gone out of shadow more than once—this is possi-
ble when the viewer is inside shadow to start with. Again clamping to 255 just
means it cannot be lighter than being totally outside shadow.

In the following subsections, we discuss how penumbra wedges are con-

39

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

light source

silhouette edge
penumbra wedge

eye

p
f

p
bp

i

p
i=pb

Figure 3: Illustration of thep f , pb, andpi values for two rays.

structed, and how light intensity interpolation is done.

4.1 Constructing Penumbra Wedges

In two dimensions, creation of penumbra wedges is trivial. In three dimensions
it is more difficult. We approximate the penumbra volume that a silhouette edge
gives rise to with a wedge defined by four planes: thefront, back, left side, and
right side planes. As Haines point out, a more correct shape would be a cone at
each silhouette edge vertex, and two Coons patches connecting these [7]. The
creation of the front and back planes is illustrated to the right in Figure 4, where
the corresponding SV quad is shown the left.

Assuming a spherical light with centerc and radiusr, two points are created
asb = c + rn andf = c− rn, wheren is the normal of the SV quad. The front
plane is then defined byf and the silhouette edge; and similarly for the back
plane. Two adjacent wedges share one side plane, and it is created from these
two wedges’ front and back planes. See Figure 5. More specifically, a side plane
is constructed from two adjacent wedges by finding the line of intersection of
the two front planes. The same is done for the two back planes, and these two
lines define the side plane between these wedges. An example of a wedge is
shown to the left in Figure 9.

For very large light sources, or sufficiently far away from the silhouette
edge, the two side planes of a wedge may intersect. In such cases, the wedge is

40

PAPER I

front plane

back plane

normal of

SV quad

parallel to normal

of shadow quad

c
f

b

n
silhouette edge

point light source

Figure 4: Left: shadow volume quad. Right: front and back planes of a wedge.

silhouette edges

side planeback plane 1

ack p

back plane 2

back plane

back plane 2
front plane 1 front plane 2

front plane

Figure 5: Two adjacent wedges in general configuration. Their front and back
planes define their shared side plane.

41

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

defined as shown in Figure 6.

back

front

left
right

A

B

C

D

E
F

A

B

C

D

G

H

Figure 6: Left:ABDC define the front plane’s quadrilateral, andABFE the back
plane’s quadrilateral,ACE the left side plane, andBFD the right side plane. The
wedge on the right is used when rendering soft shadow, in cases where the side
planes overlap.

It should be noted that by simply setting the light source radius to zero,
hard shadows can be rendered with our algorithm in the same way as the SV
algorithm.

In Section 4.2, a ray direction that lies in each side plane is needed to make
the interpolation across adjacent wedges continuous. This direction is shared by
two adjacent wedges, and it is computed by taking the average of the two SV
quad normals (whose corresponding silhouette edges share side plane), project-
ing it into the side plane, and then normalizing the resulting vector.

When two adjacent silhouette edges form an acute angle, the difference be-
tween our algorithm and Heckbert/Herf shadows is more obvious. However,
those cases can easily be detected, and extra wedges around such vertices can
be introduced, as in Figure 7, to create a better approximation. The number of

Figure 7: A (partial) soft shadow of a triangle with an acute angle. Left: one
wedge per silhouette edge. Middle: one wedge per silhouette edge plus 6 ex-
tra wedges around each vertex. Right: Heckbert/Herf shadows. Also, when
comparing images on screen, a stepping effect of Heckbert/Herf shadows is ap-
parent, while our algorithm inherently avoids stepping effects.

42

PAPER I

extra wedges should depend on the angle between two adjacent silhouette edges:
the smaller angle, the more extra wedges are introduced. It is worth noting that
often the performance drop from using extra wedges around acute angles only
was about 20 percent. This is because those wedges often are long and thin, and
do not contribute much to the image, and are therefore cheap to render.

4.2 Light Intensity Interpolation

In this section, we describe how the light intensity,s, for a point,p, inside a
penumbra wedge is computed. Recall thatp is a point formed from the pixel
coordinates,(x,y), and the depth,z, in theZ-buffer at that pixel. This is shown
in Figure 8.

edge

wedge

p

light

Figure 8: The pointp is in the penumbra wedge volume. The rationale for our
interpolation scheme is thats should approximate how much the pointp “sees”
of the light source.

Clearly, the minimal level of continuity ofs between two adjacent wedges
should beC0. Our first attempt created a ray fromp with the same direction as
the normal of the SV quad. Then, the positive intersection distances,t f andtb,
were found by computing the intersections between the ray and the front and
the back plane, respectively. The light intensity was then computed as:

s = tb/(t f + tb) (1)

However, this does not guaranteeC0 continuity of the light intensity across ad-
jacent wedges. Instead, the following approach is used. Two intermediate light

43

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

intensities,sl andsr, are computed (similarly to the above) usingp as the ray
origin, and ray directions that lie in the left and right side plane, respectively
(see Section 4.1 on how to construct these directions). See Figure 9. The com-

front

back
left righttl tr

tlb

tlf

trb

trf

left

right

back

front

silhouette edge left plane

direction

right plane

direction

Figure 9: Light intensity interpolation inside a penumbra wedge. Left: penum-
bra wedge. Right: cross-section of the wedge, where the positive intersection
distances,t ’s, from the point (black dot) to the planes are shown.

putations are:

sl =
tlb

tl f + tlb
, sr =

trb

tr f + trb
(2)

The light intensity is linearly interpolated as below, wheretl andtr are the pos-
itive intersection distances fromp to the left and right side planes. The ray
direction used for this is parallel to the silhouette edge.

s =
tr

tr + tl
sl +

tl
tr + tl

sr (3)

Since the side directions are shared between adjacent wedges, this equation
givesC0 light intensity continuity. Also, we avoid any form of discretization
(such as using a number of point samples on a light source) here, so the penum-
bra will always be smooth inside a wedge no matter how close to the shadow
the viewer is. This choice of light intensity interpolation also has the added
advantage that reciprocal dot products, used in ray/plane intersection to find
the differentt-values, can be precomputed at setup of the wedge rasterization
in order to avoid divisions. Also, by simplifying and using the least common
denominator in Equation 3, the number of divisions can be reduced to one per
evaluation instead of four.

Parker et al. [13] report that the attenuation factor is a sinusoidal for spheri-
cal lights, and approximate it bys′ = 3s2−2s3. This can easily be incorporated
into our model as well.

44

PAPER I

5 Optimizations

In this section, several optimizations of the algorithm will be presented. As can
be seen in the pseudocode in Section 4, a value ofsi−s f is added to the LI buffer
for each rasterized fragment. The most expensive calculation in computingsi

ands f is when Equation 3 needs to be evaluated. For points,(x,y,z), inside a
wedge, this evaluation must be done. Here, we will present several other cases
where this evaluation can be avoided.

When a ray enters (exits) a side plane, it will also exit (enter) a side plane
on an adjacent wedge, and their LI values,s, will cancel out, and thus the LI
values need not be computed. This is illustrated in Figure 10. Also, when

entry point

exit point
wedge 1

wedge 2

side plane

Figure 10: A cross-section view through two adjacent wedges. The square
shows where the ray intersects the shared side plane of the wedges. The LI
values for wedge 1 and 2 in the shared side plane cancel each other.

entering or exiting points are on front or back planes of the wedge, then we can
simply use a value of 0 or 255, depending on entering/exiting and front/back
planes. Using these two optimizations, we only evaluate Equation 3 for points
inside the penumbra wedge, that is, where the computations contribute to the
final image, which is minimal. Also, before rasterization of a wedge starts,
we precompute several reciprocal dot products that are constant for the entire
wedge, and used in Equation 3. The above optimizations gave about 50% faster
wedge rasterization.

Visibility culling can also be done on the wedges. For each 8×8 Z-buffer
region, the largestz-value, zmax, could be stored in a cache as presented by
Morein [12]. Fragments on a front facing wedge triangle can thus be culled
if the z-values are larger thanzmax. This type of technique is implemented in
commodity graphics hardware, such as ATI’s Radeon and NVIDIA’s GeForce3.
Wedge rasterization (both hardware and software) can gain performance from
using this technique.

All optimizations work for dynamic scenes as well, however, the wedges
and the side direction vectors need to be recomputed when light sources or
shadow casting geometry moves.

45

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

6 Implementation

The main objective of our current implementation was to prove that the algo-
rithm generates plausible soft shadows reasonably fast. Since pretty large vertex
and pixel shader programs are needed in order to implement this using graphics
hardware, we need to await the next-generation graphics hardware before true
real-time performance can be obtained.

Our current implementation works as follows. First, the scene is rendered
using hardware-accelerated OpenGL. Wedge rasterization is implemented in
software (SW), and therefore theZ-buffer is read out before rasterization starts.
The front facing triangles of a wedge are rasterized using Pineda’s edge function
algorithm [14]. Since it thus is known which plane the rasterized wedge trian-
gle belongs to, the plane of the entry point is known. The exit point is found by
computing the intersection of the ray with all back facing planes, and picking
the closest. Thez-value is read, and a point in world space is formed by applying
the (precomputed) screen-to-world transform. Thereafter, that point is inserted
into all plane equations to determine whether the point is inside the wedge. If
the point is inside the wedge, Equation 3 is evaluated by computing intersection
distances from the point to the planes along the directions discussed in Sec-
tion 4.2. We also implement the optimizations presented in Section 5, except
for the culling techniques.

7 Results

In Figures 12 and 14, the major strength of our algorithm is shown, namely
that soft shadows can be cast on arbitrarily complex shadow receivers. Note
that only the spheres and the EG logo are casting shadows for the first figure,
and only the “@” is casting shadow in the second figure. In Figure 12, a rather
complex object is casting shadows on a complex receiver formed from several
teapots, while the light source size is increased. As can be seen, the rendered
images exhibit typical characteristics of soft shadows: the shadows are softer
the farther away the occluder is from the receiver, and they are hard where the
occluder is near the receiver. Furthermore, the umbra region becomes smaller
and smaller with increasing light source size. At 512× 512, those render at
about 1.8 frames per seconds (fps).

To test the quality of our algorithm, we have compared it to both Heck-
bert/Herf (HH) shadows [9] with 128 samples, and Soler/Sillion (SS) shad-
ows [17]. HH shadows are more precise given sufficiently many samples, and
the ultimate goal is to render images like that in real time. The SS shadow
algorithm is interesting to compare to, because it is targeted for real-time soft
shadows. Some results are shown in Figure 12. The motivation for choosing
such a simple scene is that we know what to expect, and that it still includes

46

PAPER I

the most important effects of soft shadows (increasing penumbra width, etc).
Despite the approximations introduced by our algorithm, the results are here
remarkably similar to Heckbert and Herf’s more precisely generated soft shad-
ows. Our algorithm rendered those images at about 2 fps (in software), while
HH shadows were rendered at about 20 fps (using hardware). Note, however,
that there are two reasons why HH shadows are not really a feasible solution for
real-time applications with dynamic objects. First, shadows can only be cast on
planar surfaces. It is worth noting here that a soft shadow texture (generated on
a plane) that is projected onto a curved surface cannot produce correct results.
This is because the penumbra and umbra regions change in space in such a way
that it does not correspond to a simple projection. Second, the rendering of 128
passes per frame consumes a lot of capacity of a graphics system that could be
used for better tasks.

The SS shadows fail to produce believable results. This is because it only
produces correct results for parallel configurations, and scenes (including this
one) are in general not configured like that. To their advantage, both SS and HH
shadows are image-based and therefore quite independent of shadow generating
geometry, and they can also handle arbitrarily shaped light sources. Also, the
SS shadow algorithm could split up the object into different cylinders to bet-
ter capture the soft shadows, but it is highly likely that this would give rise to
discontinuities in the shadows.

We have also implemented an approximation of our algorithm using current
graphics hardware. See Figure 15. Each wedge is discretized with a number
of quads sharing the silhouette edge and dividing the space between the front
and back plane into different constant LI regions. This implementation render
approximately concentric shadows, but a stepping effect can still be seen as
for other sampling methods, and also a large amount of rasterization work is
done. Everitt and Kilgard [3] implement a similar algorithm, but put samples
on the light source in the Heckbert/Herf manner, and let each sample point add
in shadow contribution without the need for an accumulation buffer.

Two lights are used in the test scene of Figure 16. The only modification
we made to our algorithm was to multiply the light intensities,s, by 255/n
instead of 255, wheren is the number of lights. All test results are from our
software implementation using a standard PC with an AMD Athlon 1.5 GHz,
and a GeForce3 graphics card.

8 Discussion

Here we will discuss the limitations and possible artifacts of our algorithm.
In this paper, we have restricted the light source to be a sphere. Approxi-

mations of arbitrary, convex light sources are possible: when creating the front
and back planes (which must pass through the silhouette edge), rotate these until

47

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

they touch opposite sides of the light source. Our choice of light source shape
restricts the number of applications, but certain applications, e.g., games, will
most likely be satisfied. Also, the SV algorithm cannot handle non-polygonal
shadow casting geometry, such as N-patches or textures with alpha, and nei-
ther can our algorithm. It is also worth noting that no shadow volume-based
algorithm can handle transparent surfaces in a proper manner.

For all shadow volume algorithms, one must be careful when the viewer is
in shadow. For hard shadows, this can be solved with theZ-fail technique. See
Everitt and Kilgard [3] for a presentation on this. We have very recently solved
this problem for our algorithm. Briefly, capping of the soft shadow volumes
is needed, together with theZ-fail method, and with a restructured rendering
algorithm. That technique will be described elsewhere due to space constraints.

One approximation is that we, as do Haines [7] and the classic SV algorithm,
use the same silhouette for the entire volume light source. Since soft shadows
are generated by area or volume light sources, the silhouette cannot in general
be the same for all points on such a light source. Errors are visible, but only
for very large light sources, and in practice, we have not found this to be a
problem. The cost of the SV algorithm, Haines’, and ours is to first find the
silhouette edges of the model, and the rendering of the shadows is proportional
to the number of silhouette edges and the area of the shadow primitives (e.g.,
wedges).

A silhouette edge is an edge that is connected to two triangles, where one tri-
angle is facing toward the light, and the other facing away. Such silhouette edges
form closed loops. Our algorithm can render shadows of geometry whose ver-
tices in the silhouette edge lists only connects to two silhouette edges. However,
this is not always the case. A vertex may connect to more than two silhouette
edges. Currently, we do not handle this problem, and this limits the types of
scenes that we can render. It may be possible to construct the wedges around
such problematic vertices in other ways, or to interpolate shading differently
there. We leave this for future work.

There may also be rays that pierce through a face on the wedge, but that
do not exit through a wedge face. This occurs, for example, when the viewer
is located close to the position of the light source. However, such rays do not
pose any problem. The reason for this is that for any shadow volume algorithm
to work properly, the shadow quads must penetrate the geometry of the scene
to be rendered. The same holds for penumbra wedges: they must also intersect
the geometry of the scene. This implies that rays that enter a wedge, must either
hit geometry inside the wedge, or exit the wedge through one of the four wedge
planes.

If a silhouette edge is nearly parallel or parallel to the direction of the in-
coming light, another problem may arise: the side plane construction will not
be robust. To avoid this, we remove such edges, and shorten & connect its

48

PAPER I

neighbors. This may give shadow artifacts near the shadow generating object.
When two objects overlap, as seen from a light source, it is very likely that

wedges from these two objects also will overlap. Our algorithm automatically
subtracts the light intensities from both wedges. This is not always correct.
Sometimes it may be more correct to multiply their contributions, and some-
times it may be more correct to subtract only the contribution from one wedge
(when wedges coincide). There does not seem to be a straightforward way to
solve this. However, even though it is possible to see differences in images, it is
often very hard to see which is correct. See Figure 11.

As can be seen, there are several limitations of our algorithm. However, it
should be noted that it is only recently that the standard shadow volume algo-
rithm has matured so that it can handle all cases [3], and a maturing process can
be expected for our algorithm as well. Next, some ideas for future work, and
some early initial results are presented.

9 Future Work

We are continuing to explore our algorithm, and the most valuable contribu-
tion to make in the future, would be to increase the complexity of geometrical
models that can cast soft shadows. Currently, we are exploring several new
ways of interpolating inside a wedge, and initial results show that several of the
limitations from Section 8 can be overcome using different light intensity inter-
polation techniques. It remains to unify these in a single technique, and make it
render rapidly.

Another avenue for future research is also to make more, and more accurate,
comparisons to more algorithms, and to stress all algorithms. Finally, it will be
interesting to implement this on graphics hardware that comes out within a year,
which is expected to be massively programmable.

10 Conclusions

We have presented a new soft shadow algorithm that is an extension of the classi-
cal shadow volume algorithm. The shadow penumbra wedge is a new primitive
that we have introduced, and that can be rasterized efficiently. The generated
soft shadow images have been shown to often give similar results to the algo-
rithm of Heckbert and Herf [9], despite the approximations that we introduce.
It is important to note that our algorithm can render soft shadows on arbitrary
geometry. Also, the performance is independent of the receiving geometry since
the contents of theZ-buffer is used as a receiver. The software implementation
of our algorithm gives interactive rates on a standard PC. Thus, it seems highly
likely that next-generation hardware would give real-time performance, which

49

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

Figure 11: Overlapping soft shadows. Top: rendered with Heckbert/Herf’s al-
gorithm with 128 samples. Bottom: result produced with our algorithm.

50

PAPER I

would increase the quality of real-time games and other applications. Therefore,
we believe that this algorithm is a major leap forward for soft shadows in real
time.

Acknowledgement

Thanks to Eric Haines, Kasper Høy Nielsen, and Jacob Ström for many good
suggestions, and for improving our description.

References

[1] Crow, Franklin C., “Shadow Algorithms for Computer Graphics,”SIG-
GRAPH 77 Proceedings, pp. 242–248, July 1977. 34, 36

[2] Drettakis, George, and Eugene Fiume, “A Fast Shadow Algorithm for Area
Light Sources Using Back Projection,”SIGGRAPH 94 Proceedings, pp.
223–230, July 1994. 36

[3] Everitt, Cass, and Mark Kilgard, “Practical and Robust Stenciled Shadow
Volumes for Hardware-Accelerated Rendering,”http://developer.
nvidia.com/view.asp?IO=robust_shadow_volumes 37, 47,
48, 49

[4] Fernando, R., S. Fernandez, L. Bala, and D. P. Greenberg, “Adaptive
Shadow Maps,”SIGGRAPH 2001 Proceedings, pp. 387–390, August
2001. 36

[5] Gooch, Bruce, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and Richard
Riesenfeld, “Interactive Technical Illustration,”Proceedings 1999 Sympo-
sium on Interactive 3D Graphics, pp. 31–38, April 1999. 35

[6] Haines, Eric, and Tomas Möller, “Real-Time Shadows,”Game Developers
Conference, March 2001. 35

[7] Haines, Eric, “Soft Planar Shadows Using Plateaus,”Journal of Graphics
Tools, vol. 6, no. 1, pp. 19–27, 2001. 35, 40, 48

[8] Hart, David, Philip Dutre, and Donald P. Greenberg, “Direct Illumination
with Lazy Visbility Evaluation,” SIGGRAPH 99 Proceedings, pp. 147–
154, August 1999. 36

[9] Heckbert, P., and M. Herf,Simulating Soft Shadows with Graphics Hard-
ware, Technical Report CMU-CS-97-104, Carnegie Mellon University,
January 1997. 34, 35, 46, 49

51

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

[10] Heidmann, Tim, “Real shadows, real time,”Iris Universe, No. 18, pp. 23–
31, Silicon Graphics Inc., November 1991. 36

[11] Heidrich, W., S. Brabec, and H-P. Seidel, “Soft Shadow Maps for Linear
Lights,” 11th Eurographics Workshop on Rendering, pp. 269–280, June
2000. 35, 36

[12] Morein, Steve, “ATI Radeon—HyperZ Technology,” SIG-
GRAPH/Eurographics Graphics Hardware Workshop 2000, Hot3D
session, 2000. 45

[13] Parker, S., Shirley, P., and Smits, B.,Single Sample Soft Shadows, TR
UUCS-98-019, Computer Science Department, University of Utah, Octo-
ber 1998. 34, 36, 44

[14] Pineda, Juan, “A Parallel Algorithm for Polygon Rasterization,”SIG-
GRAPH 88 Proceedings, pp. 17–20, August 1988. 46

[15] Reeves, William T., David H. Salesin, and Robert L. Cook, “Rendering
Antialiased Shadows with Depth Maps,”SIGGRAPH 87 Proceedings, pp.
283–291, July 1987. 36

[16] Segal, M., C. Korobkin, R. van Widenfelt, J. Foran, P. and Haeberli, “Fast
Shadows and Lighting Effects Using Texture Mapping,”SIGGRAPH 92
Proceedings, pp. 249–252, July 1992. 36

[17] Soler, Cyril, and François X. Sillion, “Fast Calculation of Soft Shadow
Textures Using Convolution,”SIGGRAPH 98 Proceedings, pp. 321–332,
July 1998. 34, 36, 46

[18] Stark, Michael M., and Richard F. Riesenfeld, “Exact Illumination in
Polygonal Environments using Vertex Tracing,”Rendering Techniques
2000, pp. 149–160, June 2000. 36

[19] Williams, Lance, “Casting Curved Shadows on Curved Surfaces,”SIG-
GRAPH 78 Proceedings, pp. 270–274, August 1978. 35

[20] Woo, A., P. Poulin, and A. Fournier, “A Survey of Shadow Algorithms,”
IEEE Computer Graphics and Applications, vol. 10, no. 6, pp. 13–32,
November 1990. 35

52

PAPER I

Figure 12: Increasing light source size from left to right. Only the EG logo, and
the spheres are casting shadows. Notice that the umbra region correctly gets
smaller and smaller with increasing light source.

Figure 13: Comparison of our algorithm (top), Heck-
bert/Herf (middle), and Soler/Sillion (bottom). Our al-
gorithm provides the accuracy of the much more expen-
sive Heckbert/Herf algorithm. In addition, our algorithm
handles all surfaces, and so casts a shadow from the right
cylinder onto the left, which the other two algorithms
cannot do.

Figure 14: A fractal
landscape with
100k triangles is
used as a complex
shadow receiver
from different
viewpoints.

53

Approximate Soft Shadows on Arbitrary Surfaces using Penumbra Wedges

Figure 15: Rendered at 5 fps on a 1.5 GHz PC with a Geforce3. We modified
nVidia’s shadow volume demo (left) to render soft shadows (right).

Figure 16: Two light sources are used in this simple test scene.

54

Paper II

Interactive Rendering of Soft Shadow using an
Optimized and Generalized Penumbra Wedge

Algorithm

Conditionally accepted for publication by

the Visual Computer,
submitted May 2002.

This page intentionally contains only this sentence.

Interactive Rendering of Soft Shadows using
an Optimized and Generalized Penumbra

Wedge Algorithm

Ulf Assarsson and Tomas Akenine-Möller

Chalmers University of Technology
Hörsalsvägen 11

412 63 Gothenburg
Sweden

Abstract

This paper presents a significant improvement of our recently proposed
penumbra wedge algorithm for simulating soft shadows. By restructuring
the algorithm, we can considerably simplify the computations, introduce
efficient occlusion culling with speedups of 3-4 times, thus approaching
real-time performance, and also generalize the algorithm to produce cor-
rect shadows even when the eye is inside a shadowed region. We present
and evaluate a three pass implementation of the restructured algorithm
for near real-time rendering of soft shadows on a computer with a com-
modity graphics accelerator. However, preferably the rendering of the
wedges should be implemented in hardware, and for this we suggest and
evaluate a single pass algorithm.

CR Categories: I.3.7 [Computer Graphics]Three-Dimensional Graph-
ics and Realism.
Keywords: soft shadows, graphics hardware, shadow volumes.

1 Introduction

Rendering realistic shadows in real time is highly desirable, both for increas-
ing the level of realism, and because shadows give important spatial clues. For
real-time purposes, it is common to approximate all light sources as point lights,
i.e., with an infinitely small extension. This gives rise to, so called hard shad-
ows, where the transition from no shadow to full shadow is instant. However,
in reality, all light sources have some extension (area or volume), which gives a
smooth transition, called the penumbra region, from no shadow to full shadow,

57

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

called the umbra region. Several soft shadow algorithms exist, but most of them
suffer from 1) either not being suitable for real-time rendering, or 2) only being
able to handle planar shadow receivers, or 3) suffering from sampling artifacts.
Our recently presented penumbra wedge algorithm [1] can handle all of the fol-
lowing goals:

I. The softness of the penumbra should increase linearly with distance from
the occluder, starting at zero at the occluder [16].

II. The umbra region should diminish in size with increasing light source size.
III. Typical sampling artifacts should be avoided. Often a number of super-

positioned hard shadows can be discerned [18]. The result should be visually
smooth [16].

IV. The algorithm should be amenable for hardware implementation giving
real-time performance (and interactive rates for a software implementation).

V. It should be possible to cast soft shadows on arbitrary surfaces, and work
for dynamic scenes as well.

Our penumbra wedge algorithm is based on Crow’sshadow volume (SV)
algorithm, described in section 2. We do not require that the soft shadows are
totally physically correct, but rather they should be perceptually pleasing with-
out obvious artifacts. Although the algorithm is mainly targeted for spherical
or circular light sources, it can approximate the soft shadow generated by any
convex light source.

The algorithm still suffers from problems when automatically generating
wedges from silhouette edges that are nearly parallel with the direction from the
edge vertices to the light position. Artifacts can also appear if wedges incor-
rectly are generated for silhouette edges that are inside shadow. Furthermore,
artifacts may appear when the light source is so large that there is no umbra
region at all. Still, we strongly believe that the penumbra wedge algorithm is an
important step in the right direction towards real-time soft shadows, because it is
likely that those problems can be solved with a new light intensity interpolation
method inside the wedges.

Therefore, we present some speedup techniques that gives near real-time
performance, and generalizations to our previously presented penumbra wedge
algorithm. In particular, we examine the algorithm from a hardware implemen-
tation perspective.

The contributions of this paper are as follows; 1) We present a restructured
version of our original algorithm that significantly reduces the number of cal-
culations to rasterize a wedge. 2) A method for very efficient occlusion culling,
made possible by the restructuring, is presented, and it gives general speedups
of 3-4 times for our test scenes. 3) We show how the restructuring also enables
the use of thez-fail algorithm [2] to correctly handle the case when the eye is
inside a shadow region. Neither occlusion culling nor the z-fail algorithm can be

58

PAPER II

Figure 1: This image of Venus was rendered using the three pass algorithm (see
Section 6.1) in 1 fps using a P4 1700MHz and a GeForce3 graphics accelerator.
The Venus model casts soft shadows onto itself, the sphere and the floor. The
image size is 640×427 pixels.

59

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

incorporated in any obvious way in the originally proposed algorithm without
the restructuring. 4) We suggest two different implementations of the restruc-
tured algorithm; a single pass algorithm for a possible hardware implementation
of the wedge rasterization, and a three pass algorithm when no special hardware
support of rasterizing the wedges is available. Furthermore, we evaluate soft-
ware implementations of the two algorithms and present figures for the number
of memory access used and frame rates.

The contributions of this paper are independent of the type of wedge con-
struction being used, and what kind of light intensity interpolation that is done
inside the penumbra wedges. Therefore, we strongly believe that the results in
this paper applies for future improvements of the algorithm that may overcome
the remaining problems with artifacts.

The paper is organized as follows. In the next section, the soft shadow al-
gorithm using penumbra wedges is reviewed. In Section 3, we describe how
to restructure the algorithm to reduce the number of calculations needed to ras-
terize a wedge. Section 4 introduces efficient occlusion culling, and then in
Section 5 follows a generalization that correctly handles the case when the eye
is inside shadow. In Section 6, two implementations are presented that suits
software rasterization and hardware rasterization respectively, and that uses dif-
ferent number of rendering passes. Section 7 gives the experimental results for
the two implementations, and the paper ends with related work, discussion and
future work, and a conclusion.

2 Review of the Soft Shadow Algorithm using Penum-
bra Wedges

In 1977, Crow presented his shadow volume (SV) algorithm for hard shad-
ows [3]. Tim Heidmann extended the algorithm, in 1991, with hardware ac-
celeration using the stencil buffer [12]. For each shadow casting object, its
shadow volume is created. The shadow volume is created in the following man-
ner. Each silhouette edge, as seen from the light position, and rays from the
edge’s two vertices in the direction from the light source forms a quadrilateral
(quad). Together, all quads represent the shadow volume (see Figure 2). First
the scene is rendered from the eye with only ambient light enabled. Secondly,
all front facing quads, as seen from the eye, of the shadow volumes are rendered
to the stencil buffer, incrementing each rasterized pixel that passes the depth
test. Each pixel in the stencil buffer has now recorded the number of times a
virtual ray from the eye through the pixel to the point represented by its z-value,
enters a shadow region. Then, all the back facing quads are rendered, counting
the number of times the virtual rays exits the shadow regions. Afterwards, if the
stencil value for a pixel is larger than zero, the point is in shadow. That is, the

60

PAPER II

virtual ray from the eye to the point enters shadow regions more times than it
exits shadow regions on its way from the eye to the point. This algorithm has
to be modified if the eye is inside a shadow volume (see Section 5). Finally, the
stencil buffer is used as a mask when rendering the specular and diffuse con-
tribution. For the stencil passes, the depth test is set to accept objects closer
than the stored value, as usual, but no new depth values are written to the depth
buffer and no color values are written to the frame buffer.

shadow casting

object

shadow

quad

shadow

quad
shadow

volume

a

bc

+1

+1

-1

light source

0

Figure 2: The standard shadow volume algorithm. The shadow volume here
consists of seven quads. Rayb is inside shadow with a stencil value of 1. Raya
andc are outside shadow with stencil values of 0.

Our soft shadow algorithm [1] is based on Crows’s SV algorithm in the
sense that it also uses shadow volumes and a stencil buffer. However, instead of
an instant transition from no shadow to full shadow, given by the quads, those
are replaced by penumbra wedges, where the light intensity (LI) varies linearly
inside the wedge (see Figure 3 and Figure 4). The penumbra wedges can be
thought of as a new volumetric primitive, conceptually rasterized as outlined
below:

1 : rasterizeWedge()
2 : foreach pixel(x,y) on front facing tris of wedge
3 : p f = computeEntryPointOnWedge(x,y);
4 : pb = computeExitPointOnWedge(x,y);
5 : p = point(x,y,z); − z is depth buffer value
6 : pi = choosePointClosestToEye(p,pb);
7 : s f = computeLightIntensity(p f);
8 : si = computeLightIntensity(pi);
9 : addToLIBuffer(round(255∗ (si − s f)));
10 : end;

The wedge is rasterized into a 16-bit stencil buffer, which we further on
refer to as the light intensity (LI) buffer.

61

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

p f is the point on the wedge where a ray from the eye through the pixel
(x,y) enters the wedge. This disregards the case when the eye is inside the
wedge, which we handle in section 5.pi is the point stored at the pixel position
in the z-buffer, if that point is inside the wedge. Otherwise it is the point where
the ray exits the wedge.

The light intensity is represented with a value from 0 to 255, which makes
the precision demands higher on the stencil buffer than for the SV algorithm in
order to avoid overflowing when a virtual ray passes several shadow regions.
Given a 16-bit signed stencil buffer, we can guarantee that at least 127 shadow
volumes can have overlapping regions without causing overflow in the LI buffer.
This is the same type of restriction as for the SV algorithm with an 8-bit stencil
buffer.

Figure 3: Example of a shadow volume for five silhouette edges. Each wedge is
outlined.

The soft shadow algorithm works as follows: First all the geometry of the
scene is rendered into the frame and depth buffer. with only specular and dif-
fuse lighting enabled. Secondly, the LI buffer is cleared to 255, implying that
everything in the scene is outside shadow. Then all shadow volume wedges are
rasterized to the LI buffer with ordinary depth testing enabled, but without writ-
ing new z-values. In this way light intensity values will be written into the LI
buffer. After this, the LI buffer is used to modulate the color intensity of each
pixel in the frame buffer. Finally, the ambient contribution is added in a sepa-
rate rendering pass. If the ambient contribution is rendered first into the frame
buffer, as for the SV algorithm, we would have to multiply the diffuse and spec-
ular contribution in the following pass with the content in the LI buffer at the
corresponding pixels before adding it to the frame buffer. In current hardware it
is easier to instead multiply the whole frame buffer with the LI buffer between
a first diffuse and specular rendering pass and a postponing ambient pass. The
SV algorithm uses the stencil buffer as a binary mask, but the LI buffer holds
16-bit weights.

62

PAPER II

left

right

back

front

silhouette edge

Figure 4: A penumbra wedge with its light intensity interpolation inside.

3 A Restructured Soft Shadow Algorithm

To computep f andpb, our original algorithm calculates the intersections be-
tween the four wedge planes (front, back, left and right) and the ray through the
pixel, and finds the closest and furthest intersection points. This requires 4 divi-
sions per pixel. There are ways to avoid at least two of these divisions, since we
basically only are interested in finding the closest and the furthest point, but it
is a bit messy and requires testing the signs of the numerator and the denomina-
tor with corresponding if-statements. If-statements are often undesirable, since
they may cause branch-predict misses. However, in this section we will show
how to avoid computingp f andpb at all.

Previously, we observed that the contribution of the left and right planes al-
ways cancels out with the neighboring wedges [1]. Now, we will further reduce
the computations needed, and also restructure the algorithm to enable efficient
occlusion culling and correctly handle the case when the eye is inside a shadow
region (see Section 4 and 5).

In our implementation we have chosen 255 to represent full light and 0 to
represent full shadow. This means that the back plane of the wedge will only
contribute with entry or exit intensity values of 0, and their rasterization can
thus be skipped. We could arbitrarily have chosen 0 to represent full light and
255 as full shadow, so that the front planes could be ignored instead. This
could possibly have the advantage that fewer pixels need to be rasterized, since
normally in a closed shadow volume, the total area of the back planes is smaller
that that of the front planes.

Using the fact that the rasterization of the back planes can be skipped, the

63

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

algorithm can be restructured as follows:

1 : rasterizeWedge()
2 : rasterizeUmbra(f ront plane,−255);
3 : rasterizePenumbra(all f ront f acing planes);
4 : end
5 :
6 : rasterizeUmbra(primitive,value)
7 : for each pixel(x,y) of primitive
8 : if primitive is front facing
9 : addToLIbuffer(value);

10 : else addToLIbuffer(−value);
11 : end
12 : rasterizePenumbra(primitive)
13 : for each pixel(x,y) of primitive
14 : p = point(x,y,z); − z is depth buffer value
15 : if p is inside the wedge
16 : sp = computeLightIntensity(p);
17 : addToLIBuffer(round(255∗ sp));
18 : end;

rasterizeUmbra() is very similar to the SV algorithm, but is using the front
planes of the wedges to define the shadow volumes and adds or subtracts 255
instead of 1.rasterizePenumbra() computes light intensities,sp, for all pixels
inside the wedges, and adds light contribution between 0 and 255 to the penum-
bra regions. This is done for all wedges by rasterizing all front facing triangles
of the wedge and adding an interpolated intensity value for all pixels with corre-
sponding depth buffer points located inside the wedge. The test if a point(x,y,z)
is inside the wedge is done in screen-space to avoid transforming the point to
world space with a full matrix multiplication, which would include a division
of thew-component. The screen-space wedge-plane equations are precomputed
once each frame per wedge.

For rasterizeUmbra(), depth testing is enabled but without writing new z-
values. ForrasterizePenumbra(), no depth test is needed. Instead we can use
the occlusion culling described in Section 4.

With this restructured algorithm, no intersection points need to be computed
at all, and all the corresponding divisions are eliminated. There is still one divi-
sion required in the linear interpolation and one division required for transform-
ing p to world-space, when computing the light intensity (line 16) [1]. However,
these are done only for points located inside the wedge, that is, where penumbra
is present.

64

PAPER II

4 Occlusion Culling

The functionrasterizePenumbra() affects only the pixels with points located
inside the wedge. With our restructured algorithm, very efficient occlusion
culling can be implemented.

Normally, hardware occlusion culling avoids rendering for pixel tiles where
the object to be rendered is behind everything that is stored in the z-buffer posi-
tions for the tile. This can be done in hardware by storing the maximum z-value,
zmax, for each tile [15]. A common tile size is 8×8 pixels.

In our method, we cull rendering of the penumbra for pixel tiles that are
totally behind or totally in front of the wedge. For this, we need to store both
thezmax and thezmin for each tile, wherezmin is the minimum z-value for the tile.
With this occlusion culling, only tiles that intersect the wedge will be rasterized,
resulting in significant speedup.

a

b
wedge

a=(x,y,zmin)

b=(x+tile size, y+tile size, zmax)

Figure 5: The screen space bounding box of a tile is tested for intersection with
the wedge. Only if they intersect, the tile is rasterized for the penumbra con-
tribution. Here, the box contains a piece of a fractal mountain (see Figure 10).
Since the box does not intersect the wedge, in this example, the tile will be
culled from penumbra rasterization.

Before rasterizing a wedge, its screen space plane equations are precom-
puted in a setup routine. Upon rasterizing the wedge triangles, the screen space
axis aligned bounding box of a tile that is about to be rasterized is tested for
intersection with the wedge (see Figure 5). If the bounding box is outside the
wedge, the whole tile is culled. The Separating Axis Theorem can be used to
determine whether they overlap [6]. The theorem states that for two convex,
disjoint polyhedra, A and B, there exists a separating axis where the projections
of the polyhedra also are disjoint. Furthermore, it states that it is sufficient to
test only the axes that are orthogonal (i.e., the planes with its normal orthogonal)
to a face of A or B, or an edge from each polyhedron. If such an axis cannot
be found, we know the box and the wedge are overlapping. Testing all the axes

65

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

is often unnecessarily time consuming. It is usually better to only do the tests
corresponding to the faces of A or B, and ignore the tests corresponding to the
edges of the polyhedra. This may sometimes give incorrect indication of over-
lap, but that will only force the tile to be rasterized with occlusion tests for each
pixel, and causes no visual error. The advantage is that the tile overlap test will
be significantly faster.

The test is done by inserting the vertices of the bounding box of the tile into
the wedge plane equations in screen space. If all vertices are outside any of the
wedge planes, the box is outside the wedge. If all vertices are inside all wedge
planes, the box is fully inside. Otherwise, we consider the box as intersecting,
although there are circumstances where the box can be outside. To avoid some
of these occasions, testing of the wedge vertices against the box planes could
be added. Notice, that only the screen-spacezmin andzmax of the wedge need
to be tested against thezmin andzmax of the tile, since the wedge and box must
intersect at thex- andy-coordinates due to the rasterization. Since this latter test
is a so called quick rejection test and can cull the region with just one simple
test, it should be done first of all tests if it is being used. The wedge’szmin and
zmax are computed in a setup routine before rasterizing the wedge.

When testing the box vertices against a wedge plane, it is sufficient to test
only the closest and the furthest of the vertices instead of all eight, which saves
a lot of computations [7, 8]. The two vertices are easily recognized by the signs
of thex, y andz components of the normal of the wedge plane (see Figure 6).

plane

Figure 6: This figure illustrates then and p vertices of two boxes with respect
to a plane.

In our software implementation, the occlusion culling test only takes about
1.5% of the total execution time. We investigated different combinations of
tests. The test of the box vertices against the wedge planes seem to be the most
important. When the test of the wedge’szmin andzmax against the regionzmin

andzmax is included, there is hardly any noticeable increase in performance. If
only this latter test is used, the performance drops significantly. For the scenes
that we have tested, the occlusion culling generally provides a speedup of 3-4
times for the software penumbra rasterization. This results in an up to three-fold
overall performance enhancement of the frame rate.

66

PAPER II

It should be noted that this occlusion culling for the penumbra rendering
does not require that the rendering is done in any depth order to reach optimal
results. This is opposed to occlusion culling for ordinary object rendering to the
frame buffer, where the objects should be rendered in front-to-back order for
maximum efficiency. The reason is that the penumbra rendering does not affect
the depth buffer. It only uses the content of the depth buffer from the ordinary
rendering of the scene, to apply soft shadows to the image. Also, thereforezmin

andzmax need not be written to during wedge rasterization.

5 Eye Inside Shadow Regions

The original SV algorithm [3] , does not properly handle the case when the eye
is inside a shadow volume, and the same applies to our original algorithm. An
elegant solution for the SV algorithm was documented by for instance Everitt
and Kilgard [2], although the algorithm had been known to the gaming industry
since 2000 through John Carmack. Instead of determining if a point is in shadow
by testing intersections with the shadow volumes of a virtual ray from the eye
to the point, a virtual ray from the point to the infinity could be tested. In this
way, the testing will be independent of the eye position. In practice, this is
achieved by modifying the stencil buffer passes. The first stencil buffer pass
becomes: render all back facing shadow volume polygons and increment the
stencil value when the polygon is equal to or farther than the stored z-depth. In
the second stencil pass, all front facing shadow volume polygons are rendered,
decrementing the stencil value when the polygon is equal to or farther than the
stored z-depth. This algorithm is often called the z-fail algorithm [2].

Since the depth test has been altered, it is now also necessary to render
the top of the shadow volume. The top consists of all polygons of the shadow
generator that are front facing with respect to the light source center. If the
shadow volume is of finite length, the volume must be closed at thebottom, by
for instance adding a far capping polygon. The top and the bottom polygons
should be rendered in exactly the same way as the shadow quads. Problems can
still occur if the polygons are clipped by the far plane of the view frustum. This
could, however, be solved by extensions in the rasterizing hardware. Such an
extension is included in NVIDIA’s GeForce3 [2].

The solution for the SV algorithm described above can be applied to our
soft shadow algorithm as well. If the wedge planes are of finite length, a cap-
ping bottom plane of the wedge must be added too, and rasterized byraster-
izePenumbra() when it is back facing. InrasterizeUmbra(), the front planes
of all wedges plus the top and bottom polygons of the shadow volume are ras-

67

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

terized. The pseudo code for rasterizing a soft shadow volume now becomes:

1 : renderShadowVolume()
2 : rasterizeUmbra(top+bottom polygons,255);
3 : for all wedges
4 : rasterizeWedge()
5 : end
6 : rasterizeWedge()
7 : rasterizeUmbra(f ront plane,255);
8 : rasterizePenumbra(all back f acing planes);
9 : end

The reason the back facing planes are chosen inrasterizeUmbra() is that
if the eye is inside a wedge, none of the wedge’s planes are front facing with
respect to the eye position. Notice that since we are using the z-fail algorithm,
rasterizeUmbra() is now called with a value of 255 instead of -255 (compare
the listing in Section 3, line 2).

6 Implementation

In this section, we present two different implementations of the restructured al-
gorithm. The first one, which we call thethree pass algorithm, is most suitable
when wedge rendering has to be done without special hardware support, but
when a commodity graphics accelerator is available. It splits the wedge ren-
dering into three passes, and uses commodity graphics hardware to render the
umbra contribution (two passes), and software to render the penumbra contri-
bution (one pass). The second implementation, which we call thesingle pass
algorithm, is targeted for hardware implementation of the wedge rasterization.
It tries to minimize the number of memory accesses by rasterizing the umbra
and penumbra contribution simultaneously when possible.

6.1 Three Pass Algorithm

To rasterize the penumbra wedges efficiently, without full hardware support, we
suggest a three pass algorithm. First, common hardware is used to render the
front planes, and then software is used to render the inside of the penumbra
wedges. With occlusion culling for the software rendering, real-time perfor-
mance can be achieved (see Section 7). The occlusion culling is very effective,
since the contents of the z-buffer does not change when rendering the wedges,
and only pixels potentially inside the wedges need to be considered (see Sec-
tion 4).

Current graphics hardware normally do not have a 16-bit stencil buffer, but
an 8-bit stencil buffer usually suffices for the rendering of the front planes. Ini-

68

PAPER II

tially, the 8-bit stencil buffer is cleared with a value of 0. In the first pass all
front facing front planes of the wedges are rasterized, and for each time a pixel
passes the depth-test, the corresponding stencil value is decremented by one. In
the second pass all back facing front faces are rasterized similarly, but incre-
menting the stencil values by one instead. The buffer is then added to the 16-bit
software light intensity (LI) buffer, which has been initialized with a value of
255, pre-multiplying each 8-bit stencil value with 255, or -255 if the z-fail algo-
rithm is used. In the third pass, software rendering of the penumbra regions is
done as outlined in the pseudo code forrasterizePenumbra() in section 3.

If the stencil buffer does not handle negative stencil values and clamps them
to zero, an offset of, for instance, 128 could be used to circumvent the problem.

6.2 Single Pass Algorithm

In a hardware implementation of the wedge rasterization, it can be advantageous
to minimize the number of memory accesses, since the memory bandwidth and
latency often are the bottlenecks. For each pass and each pixel that is being
rasterized, and is not culled by the occlusion culling (see Section 4), the z-value
needs to be read from the z-buffer, and values are possibly written to the stencil
buffer.

In the single pass algorithm, we want to rasterize the umbra and penumbra
in the same pass. The umbra is rasterized by the front planes of the wedges. The
penumbra is rasterized by all front facing planes of the wedge, or all back facing
planes of the wedge if the z-fail algorithm is being used. Thus, for front facing
front planes, rasterization of the umbra and penumbra could be done in the same
pass. This saves one stencil buffer write access and one z-value read access for
each pixel of the front plane that will receive a contribution from both umbra and
penumbra. The rasterization will be slightly more complex, since we want to
use occlusion culling withzmin andzmax for the penumbra contribution, but only
zmax for the umbra contribution. In the z-fail algorithm, the back facing front
planes, should be rasterized in a single pass instead of the front facing front
planes, andzmin should then be used for the occlusion culling for the umbra
contribution.

The advantage is that the front plane of each wedge is rasterized only once
and thus saving z-value read accesses and stencil value write accesses.

7 Simulation Results

In this section, experimental results for the three pass algorithm and the single
pass algorithm are presented. We did not implement the single pass algorithm
in custom hardware. Instead, all tests were done using software implementa-
tions. The only hardware acceleration used was for rendering the front planes

69

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

for the umbra contribution inrasterizeUmbra() in the three pass algorithm. For
this, we rendered quads into an 8-bit stencil buffer using a GeForce3 graphics
accelerator.

The test scenes used are shown in Figure 9, 10, and 11. All the test scenes
were rendered with an image size of 640×427 pixels. The software rasterization
is highly fill-rate limited. A hardware implementation would presumably suffer
significantly less from this.

The restructured algorithm reduces the number of calculations, compared
to the original algorithm, and in itself contributed with a general speedup of
30−40% (i.e., 1.3-1.4 times), without any occlusion culling. This was measured
with the three pass algorithm, without using hardware acceleration for the umbra
rasterization. If hardware acceleration is added, the speedup is 60−80%. The
single pass algorithm is also 30−40% faster than the original algorithm.

Next, the results using occlusion culling is presented. We investigated the
performance with different tile sizes for the occlusion culling described in Sec-
tion 4. Tiles of 2n ×2n pixels withn ∈ [1..8] where tested.

Memory Accesses

0

500

1000

1500

2000

2500

3000

2x
2

4x
4

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

tile size (pixels)

*1
0

0
0

 a
c

c
e

s
s

e
s column scene 3-pass

fractal scene 3-pass

2002 scene 3-pass

column scene 1-pass

fractal scene 1-pass

2002 scene 1-pass

Figure 7: This graph shows the total number of z-buffer reads and stencil buffer
writes for different tile sizes, when rendering one frame of the column scene,
fractal scene, and 2002-scene. The results from using the three pass algorithm
and the single pass algorithm are shown. The images can be seen in Figure 9,
10, and 11.

Figure 7 shows the total number of stencil buffer writes and z-buffer reads,
needed to render one frame of each test scene. As can be seen, the optimal tile
size for minimizing the number of memory accesses, is from 8×8 to 32×32
pixels for these scenes. This correlates very well with the graph for the frame
rates, in Figure 8. It means that the optimal tile size for minimizing memory

70

PAPER II

Frame Rates

1

2

3

4

5

6

7

2x
2

4x
4

8x
8

16
x1

6

32
x3

2

64
x6

4

12
8x

12
8

25
6x

25
6

tile size (pixels)

fp
s

column scene 3-pass

fractal scene 3-pass

2002 scene 3-pass

column scene 1-pass

fractal scene 1-pass

2002 scene 1-pass

Figure 8: The graph shows the frame rates, using different tile sizes for render-
ing the column scene, fractal scene, and 2002-scene. Result from the single pass
algorithm and the three pass algorithm are shown.

accesses matches the optimal tile size for minimizing the rasterization work,
which seems natural. As expected, the frame rates are higher for all scenes
using the three pass algorithm, than the single pass algorithm, since we do not
have any hardware implementation of the latter.

The single pass algorithm was generally 20−60% faster than the three pass
algorithm when software rasterization of the umbra regions was used for the
latter, i.e., when both algorithms were using only software rendering. This in-
dicates that for a full hardware implementation of wedge rasterization, the extra
complexity of a single pass algorithm could be worthwhile. Additionally, a
hardware implementation could benefit even more from the savings in memory
accesses, since these often are the bottlenecks. In the range of tile sizes from
8× 8 to 32× 32 pixels, the single pass algorithm used about 5% fewer sten-
cil buffer write accesses and 30− 60% fewer depth buffer read accesses than
the three pass algorithm. Together, this saves 20−30% of the total number of
memory accesses. The significant savings in execution time for the software
implementation comes from not needing to rasterize a front facing front plane
twice.

The occlusion culling described in section 4 generally gave a speedup of
3-4 times for the penumbra rasterization, resulting in an up to three-fold overall
frame rate improvement compared to not using occlusion culling. If onlyzmax

is used, which is common in current hardware, and notzmin, then practically no
speedup is obtained in any of the test scenes, since almost nothing in the scenes
occludes the shadows. This is a strong argument for accepting the extra com-

71

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

plexity of storingzmin in hardware as well. As an example of this, only using
zmax lowers the frame rate from 7.0 frames per second (fps), to 2.6 fps, and in-
creases the number of depth buffer read accesses with 50% for the three pass
algorithm with hardware rendering of the umbra contribution, when rendering
the column scene in Figure 9. The number of stencil buffer write accesses is
unaffected by occlusion culling, since the occlusion culling only avoids unnec-
essary rasterization. If a tile is rasterized although it correctly could be culled,
the corresponding points in the depth buffer are tested whether they are inside
the wedge. Since all points will be found outside, no stencil buffer values will
be written for this tile.

In total, the three pass algorithm with occlusion culling, is up to almost
six times faster for the column scene, in Figure 9, than the original algorithm.
Our conclusion for the single pass algorithm is that the added complexity of
rendering the umbra and penumbra contributions in the same pass definitely
could pay off, for a hardware implementation. To get efficient occlusion culling
both zmin and zmax should be used, and the optimal tile size is from 8× 8 to
32×32 pixels.

All test results were done using a standard PC with an Intel P4 1.7 GHz, and
a GeForce3 graphics card. For the Venus scene in Figure 1, we used a differ-
ent interpolation technique that we have developed recently. This modification
computes the light intensity more exactly than the previously presented linear
interpolation [1], and thus avoids several of the artifacts with the old method.
Currently, it uses much more calculations though, giving lower frame rates. We
are currently refining and optimizing the modification and will present those
details in a future paper.

8 Related Work

In this section, we will briefly mention the most relevant related algorithms for
generating hard or soft shadows. For a more thorough presentation, consult Woo
et al [20] or Haines and Möller [9].

There are two dominating algorithms for generating hard shadows in real-
time. One is the shadow volume algorithm (see Section 2) presented by Crow
in 1977 [3], and the other one is shadow mapping, which was first introduced
by Williams in 1978 [19].

Shadow mapping, also called the shadow z-buffer algorithm, first renders a
z-buffer image from the view of the light source. This shadow z-buffer image is
then used to determine if an object point visible from the eye is also visible from
the light source, and thus lit by it. The main problems with shadow mapping
are 1) biasing is needed due to numerical imprecisions in the z-buffer, and 2)
choosing a reasonable size of the shadow map to avoid aliasing. In 1987, Reeves
et al. [17] introducedpercentage closer filtering to reduce aliasing along shadow

72

PAPER II

edges. Shadow mapping with percentage closer filtering is now implemented in
commodity hardware, such as the the GeForce3. Adaptive shadow maps [4],
which iteratively refines the shadow maps where needed, could also be used
to avoid aliasing. In 2000, Lokovic and Veach present an extension calleddeep
shadow maps [14] that can render shadows from objects like hair, fur and smoke.
It stores fractional visibility for each pixel at different depths.

A method for generating soft shadows for linear light sources was presented
in 2000 by Heidrich et al [13]. Two shadow maps are created; one for each end
point of the light source. The visibility is then interpolated across the linear light
into a visibility map used at rendering.

In 1997, Heckbert and Herf presented their algorithm for generating hard-
ware accelerated soft shadows [11]. Their method handles arbitrary shapes of
the light source and arbitrary shadow generators. An extended light source is ap-
proximated by several point lights. For each point light, the corresponding hard
shadows are generated by projecting the scene, as seen from the light source,
onto a receiving plane. The major disadvantages are that many point light sam-
ples are needed (64-256) to give the impression of a soft shadow instead of
several superimposed hard shadows, and the shadow receivers must be planar.
It should be noted that non-planar shadow receivers could be split up in sev-
eral individual planar objects and soft shadows could then be generated for each
of them. However, for real-time purposes of complex receivers, this is mostly
suitable for pre-generation of textures containing static soft shadows. Gooch
et al. presented an alternative method for generating soft shadows in 1998 [5].
It produces more concentric hard shadows, which in general looks better, and
thus requires fewer sample points. The method also project hard shadows onto
planes and compute the average of these, but takes the sample points from a line
parallel to the normal of the receiver that passes through the light center.

The SV algorithm could be used to create soft shadows, by simply averaging
a number of images generated for different point light positions on the area or
volume light source [2]. This method can be used to approximate any shape of
the light source. However,n samples only allows forn+1 different shadow in-
tensity values [13], and also requires a proportionally amount of computations.
Our technique avoids this.

In 1998, Soler and Sillion presented an algorithm based on the insight that
for parallel configurations a soft shadow image can be generated by convolving
the hard shadow image with an image of the light source [18]. This approach
was then extended in the same paper with a hierarchical error-driven algorithm
to compute soft shadow textures with a given precision.

A technique for generating approximate planar soft shadows was presented
2001 by Haines [10]. It uses hardware and is thus very fast. The algorithm
renders the soft shadow to a ground plane texture. It begins with a hard shadow
from a point light, then uses the object’s silhouette edges to generate penum-

73

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

brae in a single pass. Our original penumbra wedge algorithm [1], which is the
base of this paper, can be seen as an extension of Haines’ method and the SV
algorithm. The umbra regions in Haines’ method is the umbra region of a hard
shadow from a point light source. Thus the region is overestimated. Our penum-
bra wedge algorithm overcomes this limitation and also allows soft shadows to
be cast on any shadow receiver that can be rendered into a z-buffer.

9 Discussion and Future Work

The modifications to the original penumbra wedge algorithm [1] introduced in
this paper are independent of how the shapes of the wedges are computed and
what kind of interpolation that is used inside the penumbra. Thus, we strongly
believe that the results presented in this paper will apply even for future modifi-
cations of the algorithm that may overcome the remaining artifacts.

If the eye-space distances are stored in the z-buffer, instead of the eye-space
distances divided byw, one division can be eliminated for computing the light
intensity of a point inside the penumbra. Currently, the point is transformed
from screen-space to world-space, requiring one division with thew-component.
That could be avoided, leaving just one division, and that is for the linear inter-
polation (see Section 3).

In software it could possibly be preferable to only compute and storezmin

andzmax on demand, i.e., for the regions with values that are accessed. However,
we could not measure any significant change in performance of our implemen-
tation when trying this.

The need for a 16-bit stencil buffer to store the light intensities could proba-
bly be circumvented by using HILO textures. HILO textures contains two 16-bit
components for each element, and is available in for instance GeForce3. One of
the 16-bit components could perhaps be used as the LI buffer.

Possibly,zmin could be used for ordinary hardware triangle rasterization as
well, to save z-buffer reads when rendering visible geometry to the frame buffer.

10 Conclusion

We have presented a restructured version of our original penumbra wedge al-
gorithm, which significantly reduces the number of calculations to rasterize a
wedge. We have also shown how to incorporate occlusion culling using both
zmin and zmax, to get a substantial speedup of the rasterization and reach near
real-time performance on a standard PC. Empirical results show that the op-
timal tile size is between 8× 8 and 32× 32 pixels for our three test scenes.
Furthermore, the restructured algorithm allows the use of the z-fail algorithm to
correctly handle the case when the eye is inside a shadowed region. We want to

74

PAPER II

emphasize that neither occlusion culling nor the z-fail algorithm can be incorpo-
rated in any natural way with the original penumbra wedge algorithm, presented
in [1]. Thus, the restructuring presented in this paper significantly enhances the
efficiency and usability of penumbra wedges for simulating soft shadows.

Two different implementations are presented and evaluated; a single pass
algorithm for a possible hardware implementation of the wedge rasterization,
and a three pass algorithm when only commodity graphics hardware is avail-
able. The single pass algorithm uses 20−30% fewer memory accesses than the
latter, to rasterize the wedges. This could be important for a hardware imple-
mentation, since the memory bandwidth and latency often are the bottlenecks.
With the improvements presented in this paper, we believe that we have taken
an important step forward for rendering soft shadows in real time.

References

[1] T. Akenine-Möller, U. Assarsson (2002) Approximate Soft Shadows on
Arbitrary Surfaces using Penumbra Wedges. 13th Eurographics Workshop
on Rendering 2002, 309–318. 58, 61, 63, 64, 72, 74, 75

[2] C. Everitt, M. J. Kilgard (2002) Practical and Robust Stenciled Shadow
Volumes for Hardware-Accelerated Rendering. Published on-line at
http://developer.nvidia.com/. 58, 67, 73

[3] F. C. Crow (1977) Shadow Algorithms for Computer Graphics. SIG-
GRAPH ’77 Proceedings, 242–248. 60, 67, 72

[4] R. Fernando, S. Fernandez, L. Bala, and D. P. Greenberg (2001) Adaptive
Shadow Maps. SIGGRAPH 2001 Proceedings, 387–390. 73

[5] B. Gooch, P. J. Sloan, A. Gooch, P. Shirley, and R. Riesenfeld (1999)
Interactive Technical Illustration. Symposium on Interactive 3D Graphics,
Proceedings 1999, 31–38. 73

[6] S. Gottschalk,M.C. Lin, and D. Manocha (1996) OBBTree: A Hierarchi-
cal Structure for Rapid Interference Detection. Computer Graphics (SIG-
GRAPH Proceedings ’96), 171–180. 65

[7] N. Greene (1994) Detecting Intersection of a Rectangular Solid and a Con-
vex Polyhedron. In: P. S. Heckbert (1994) Graphics Gems IV, pp. 74–82.
66

[8] E. A. Haines, and J. R. Wallace (1994) Shaft Culling for Efficient Ray-
Traced Radiosity. Photorealistic Rendering in Computer Graphics (Pro-
ceedings of the Second Eurographics Workshop on Rendering), Springer-

75

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

Verlag, New York, 122–138, also in SIGGRAPH ’91 Frontiers in Render-
ing course notes. 66

[9] E. Haines, and T. Möller (2001) Real-Time Shadows. Game Developers
Conference. 72

[10] E. Haines (2001) Soft Planar Shadows Using Plateaus. journal of graphics
tools, 6(1), 19–27. 73

[11] P. Heckbert, and M. Herf, (1997) Simulating Soft Shadows with Graphics
Hardware. Technical Report CMU-CS-97-104, Carnegie Mellon Univer-
sity. 73

[12] T. Heidmann, (1991) Real shadows, real time. Iris Universe, Silicon
Graphics Inc., No. 18, 23–31. 60

[13] W. Heidrich, S. Brabec, and H-P. Seidel (2000) Soft Shadow Maps for
Linear Lights. 11th Eurographics Workshop on Rendering, 269–280. 73

[14] T. Lokovic, and E. Veach (2000) Deep Shadow Maps. SIGGRAPH 2000
Proceedings, 385-392. 73

[15] S. Morein (2000) ATI Radeon—HyperZ Technology. SIG-
GRAPH/Eurographics Graphics Hardware Workshop 2000, Hot3D
session. 65

[16] S. Parker, P. Shirley, and B. Smits (1999) Single Sample Soft Shadows. TR
UUCS-98-019, Computer Science Department, University of Utah. 58

[17] W. T. Reeves, D. H. Salesin, and R. L. Cook (1987) Rendering Antialiased
Shadows with Depth Maps. SIGGRAPH ’87 Proceedings, 283–291. 72

[18] C. Soler, and F. X. Sillion (1998) Fast Calculation of Soft Shadow Textures
Using Convolution. SIGGRAPH ’98 Proceedings, 321–332. 58, 73

[19] L. Williams, (1978) Casting Curved Shadows on Curved Surfaces. SIG-
GRAPH ’78 Proceedings, 270–274. 72

[20] A. Woo, P. Poulin, and A. Fournier (1990) A Survey of Shadow Algo-
rithms. IEEE Computer Graphics and Applications, 10(6), 13–32. 72

76

PAPER II

Figure 9: This image was rendered
with the three pass algorithm in 7 fps
on a Pentium4 1700 MHz using soft-
ware and a GeForce3 graphics accel-
erator for the penumbra wedge render-
ing. The image size is 640×427 pix-
els.

Figure 10: These images show a frac-
tal landscape with 100k triangles used
as a complex shadow receiver. The
scene was rendered in 2.3 fps with-
out soft shadows, and in 1.75 fps with
soft shadows using the three pass al-
gorithm.

Figure 11: In this scene, the 2002 text
casts its soft shadow onto a number of
teapots and a floor. The image was
rendered in 3.6 fps with the three pass
algorithm.

Figure 12: This is an example of using
multiple light sources.

77

Interactive Rendering of Soft Shadows using an Optimized and Generalized ...

Author Biography

Ulf Assarsson received a M.Sc. degree in engineering physics from Chalmers
University of Technology in 1997. Since 1998 he is a Ph.D student in Computer
Graphics at the Department of Computer Engineering at Chalmers. His research
interests include realistic real-time rendering, and he is currently focusing on
real-time soft shadows.

Tomas Akenine-Möller is an assistant professor at the Department of Com-
puter Engineering at Chalmers University of Technology, Sweden. He has re-
ceived an MSc in Computer Science and Engineering from Lund University
of Technology, and a PhD in Computer Graphics at Chalmers University. He
is the coauthor with Eric Haines of the book "Real-Time Rendering", and his

78

PAPER II

main research interests are rapid and realistic real-time rendering, interactive
ray tracing, spatial data structures, and algorithms for future graphics hardware.

79

This page intentionally contains only this sentence.

Paper III

A Geometry-Based Soft Shadow Volume
Algorithm Using Graphics Hardware

Published in

Proceedings of ACM SIGGRAPH 2003,
Pages 511–520, 2003.

This page intentionally contains only this sentence.

A Geometry-based
Soft Shadow Volume Algorithm

using Graphics Hardware

Ulf Assarsson and Tomas Akenine-Möller
Chalmers University of Technology

Sweden

Abstract

Most previous soft shadow algorithms have either suffered from aliasing,
been too slow, or could only use a limited set of shadow casters and/or
receivers. Therefore, we present a strengthened soft shadow volume algo-
rithm that deals with these problems. Our critical improvements include
robust penumbra wedge construction, geometry-based visibility computa-
tion, and also simplified computation through a four-dimensional texture
lookup. This enables us to implement the algorithm using programmable
graphics hardware, and it results in images that most often are indistin-
guishable from images created as the average of 1024 hard shadow im-
ages. Furthermore, our algorithm can use both arbitrary shadow casters
and receivers. Also, one version of our algorithm completely avoids sam-
pling artifacts which is rare for soft shadow algorithms. As a bonus, the
four-dimensional texture lookup allows for small textured light sources,
and, even video textures can be used as light sources. Our algorithm
has been implemented in pure software, and also using the GeForce FX
emulator with pixel shaders. Our software implementation renders soft
shadows at 0.5–5 frames per second for the images in this paper. With
actual hardware, we expect that our algorithm will render soft shadows
in real time. An important performance measure is bandwidth usage. For
the same image quality, an algorithm using the accumulated hard shadow
images uses almost two orders of magnitude more bandwidth than our al-
gorithm.

CR Categories: I.3.7 [Computer Graphics]Three-Dimensional Graph-
ics and Realism–Color, Shading, Shadowing, and Texture
Keywords: soft shadows, graphics hardware, pixel shaders.

83

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

1 Introduction

Soft shadow generation is a fundamental and inherently difficult problem in
computer graphics. In general, shadows not only increase the level of realism in
the rendered images, but also help the user to determine spatial relationships be-
tween objects. In the real world, shadows are often soft since most light sources
have an area or volume. A soft shadow consists of an umbra, which is a region
where no light can reach directly from the light source, and a penumbra, which
is a smooth transition from no light to full light. In contrast, point light sources
generate shadows without the penumbra region, so the transition from no light to

Figure 1: An image texture of fire is used as a light source, making the alien cast
a soft shadow onto the fractal landscape. The soft shadow pass of this scene was
rendered at 0.8 frames per second.

full light is abrupt. Therefore, this type of shadow is often called a hard shadow.
However, point light sources rarely exist in the real world. In addition to that,
the hard-edged look can also be misinterpreted for geometric features, which
clearly is undesirable. For these reasons, soft shadows in computer-generated
imagery are in general preferred over hard shadows.

Previous algorithms for soft shadow generation have either been too slow
for real-time purposes, or have suffered from aliasing problems due to the algo-
rithm’s image-based nature, or only allowed a limited set of shadow receivers

84

PAPER III

and/or shadow casters. We overcome most of these problems by introducing a
set of new and critical improvements over a recently introduced soft shadow vol-
ume algorithm [2]. This algorithm used penumbra wedge primitives to model
the penumbra volume. Both the construction of the penumbra wedges and the
visibility computation inside the penumbra wedges were empirical, and this
severely limited the set of shadow casting objects that could be used, as pointed
out in that paper. Also, the quality of the soft shadows only matched a high-
quality rendering for a small set of scenes. Our contributions include the fol-
lowing:

1. geometry-based visibility computation,

2. a partitioning of the algorithm that allows for implementation using pro-
grammable shaders,

3. robust penumbra wedge computation, and

4. textured and video-textured light sources.

All this results in a robust algorithm with the ability to use arbitrary shadow
casters and receivers. Furthermore, spectacular effects are obtained, such as
light sources with textures on them, where each texel acts as a small rectangular
light source. A sequence of textures, here called a video texture, can also be
used as a light source. For example, images of animated fire can be used as seen
in Figure 1. In addition to that, the quality of the shadows is, in the majority
of cases, extremely close to that of a high-quality rendering (using 1024 point
samples on the area light source) of the same scene.

The rest of the paper is organized as follows. First, some previous work
is reviewed, and then our algorithm is presented, along with implementation
details. In Section 5, results are presented together with a discussion, and the
paper ends with a conclusion and suggestions for future work.

2 Previous Work

The research on shadow generation is vast, and here, only the most relevant
papers will be referenced. For general information about the classical shadow
algorithms, consult Woo et al.’s survey [28]. A more recent presentation cover-
ing real-time algorithms is also available [12].

There are several algorithms that generate soft shadows on planar surfaces.
Heckbert and Herf average hard shadows into an accumulation buffer from a
number of point samples on area light sources [15]. These images can then be
used as textures on the planar surfaces. Often between 64 and 256 samples are
needed, and therefore the algorithm is not perfectly suited for animated scenes.
Haines presents a drastically different algorithm, where a hard shadow is drawn

85

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

from the center of the light source [13]. Each silhouette vertex, as seen from
the light source, then generates a cone, which is drawn into the Z-buffer. The
light intensity in a cone varies from 1.0, in the center, to 0.0, at the border.
Between two such neighboring cones, a Coons patch is “drawn” with similar
light intensities. Haines notes that the umbra region is overstated.

For real-time rendering of hard shadows onto curved surfaces, shadow map-
ping [27] and shadow volumes [8] are probably the two most widely used al-
gorithms. The shadow mapping (SM) algorithm generates a depth buffer, the
shadow map, as seen from the light source, and then, during rendering from the
eye, this depth buffer is used to determine if a point is in shadow or not. Reeves
et al. presented percentage-closer filtering, which reduces aliasing along shadow
boundaries [22]. A hardware implementation of SM has been presented [23],
and today most commodity graphics hardware (e.g., NVIDIA GeForce3) has
SM with percentage-closer filtering implemented.

To reduce resolution problems with SM algorithms, both adaptive shadow
maps [11] and perspective shadow maps have been proposed [26]. By using
more than one shadow map, and interpolating visibility, soft shadows can be
generated as well [17]. Linear lights were used, and more shadow maps had
to be generated in complex visibility situations to guarantee a good result. Re-
cently, another soft version of shadow mapping has been presented [5], which
adapts Parker et al’s algorithm [21] for ray tracing soft shadows so that graphics
hardware could be used. The neighborhood of the sample in the depth map is
searched until a blocker or a maximum radius is found. This gives an approx-
imate penumbra level. The rendered images suffered from aliasing. Another
image-based soft shadow algorithm uses layered attenuation maps [1]. Interac-
tive frame rates (5–10 fps) for static scenes were achieved after seconds (5-30)
of precomputation, and for higher-quality images, a coherent ray tracer was pre-
sented.

The other classical real-time hard shadow algorithm is shadow volumes [8],
which can be implemented using the stencil buffer on commodity graphics hard-
ware [16]. We refer to this algorithm as the hard shadow volume algorithm. In
a first pass, the scene is rendered using ambient lighting. The second pass gen-
erates a shadow quadrilateral (quads) for each silhouette edge, as seen from the
light source. The definition of a silhouette edge is that one of the triangles that
are connected to it must be backfacing with respect to the light source, and the
other must be frontfacing. Those shadow quads are rendered as seen from the
eye, where front facing shadow quads increment the stencil buffer, and back fac-
ing decrement. After rendering all quads, the stencil buffer holds a mask, where
zeroes indicate no shadow, and numbers larger than zero indicate shadow. A
third pass, then renders the scene with full lighting where there is not shadow.
Everitt and Kilgard have presented algorithms to make the shadow volume ro-
bust, especially for cases when the eye is inside shadow [10].

86

PAPER III

light source

silhouette edge

Figure 2: Difficult situations for the previous wedge generation algorithm.
Left: The edge nearly points towards the light center, resulting in a non-convex
wedge. Right: The edge is shadowed by one adjacent edge that is closer to the
light source, making the left and right planes intersect inside the wedge. Unfor-
tunately, the two tops of the cones cannot be swapped to make a better-behaved
wedge, because that results in a discontinuity of the penumbra wedges between
this wedge and the adjacent wedges.

Recently, a soft shadow algorithm has been proposed that builds on the
shadow volume framework [2]. Each silhouette edge as seen from the light
source gives rise to a penumbra wedge, and such a penumbra wedge empir-
ically models the visibility with respect to the silhouette edge. However, as
pointed out in that paper, the algorithm had several severe limitations. Only
objects that had really simple silhouettes could be used as shadow casters. The
authors also pointed out that robustness problems could occur in their penumbra
wedge construction because adjacent wedges must share side planes. Further-
more, robustness issues occurred for the edge situations depicted in Figure 2.
The latter problems were handled by eliminating such edges from the silhouette
edge loop, making it better-shaped. The drawback is that the silhouette then no
longer is guaranteed to follow the geometry correctly, with visual artifacts as
a result. Their visibility computation was also empirical. All these problems
are eliminated with our algorithm. Our work builds upon that penumbra wedge
based algorithm. The hard shadow volume algorithm has also been combined

87

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

with a depth map [6], where 100 point samples were used to generate shadow
volumes. The overlap of these were computed using a depth map, and produced
soft shadows.

Soft shadows can also be generated by back projection algorithms. How-
ever, such algorithms are often very geometrically complex. See Drettakis and
Fiume [9] for an overview of existing work. By convolving an image of the
light source shape with a hard shadow, a soft shadow image can be generated
for planar configurations (a limited class of scenes) [25]. An error-driven hierar-
chical algorithm is presented based on this observation. Hart et al. presented an
algorithm for computing direct illumination base on lazy evaluation [14], with
rendering times of several minutes even for relatively simple scenes. Parker
et al. rendered soft shadows at interactive rates in a parallel ray tracer using
“soft-edged” objects at only one sample per pixel [21]. Sloan et al. precompute
radiance transfer and then renders several difficult light transport situations in
low-frequency environments [24]. This includes real-time soft shadows.

3 New Algorithm

Our algorithm first renders the scene using specular and diffuse lighting, and
then avisibility passcomputes a soft visibility mask in a visibility buffer (V-
buffer), which modulates the image of the first pass. In a final pass, ambient
lighting is added. This is illustrated in Figure 3.

visibility

mask

modulated

spec + diff

image

ambient

image

image with

soft

shadows

specular +

diffuse

image

Figure 3: Overview of how the soft shadow algorithm works. Our work focuses
on rapidly computing a visibility mask using a V-buffer, as seen from the eye
point.

The V-buffer stores avisibility factor, v, per pixel(x,y). If the point p =
(x,y,z), wherez is the Z-buffer value at pixel(x,y), can “see” all points on a
light source, i.e., without occlusion, thenv = 1. This is in contrast to a point
that is fully occluded, and thus hasv = 0. A point that can seex percent of a
light source hasv= x/100∈ [0,1]. Thus, if a point has 0< v< 1, then that point
is in the penumbra region.

88

PAPER III

light source

silhouette edge

light source

silhouette edge

(a) (b)

Figure 4: a) The penumbra volume generated by an edge. b) The penumbra
volume can degenerate to a single cone, i.e., one end cone completely encloses
the other end cone.

Next, we describe our algorithm in more detail, and the first part uses ar-
bitrary light sources. However, in Section 3.2.2 and in the rest of the paper,
we focus only on using rectangular light sources, since these allow for faster
computations.

3.1 Construction of Penumbra Wedges

One approximation in our algorithm is that we only use the shadow casting
objects’ silhouette edges as seen from a single point, often the center, of the
light source. This approximation has been used before [2], and its limitations
are discussed in Section 5. Here, a silhouette edge is connected to two triangles;
one frontfacing and the other backfacing. Such silhouettes can be found by
a brute-force algorithm that tests the edges of all triangles. Alternatively, one
can use a more efficient algorithm, such as the one presented by Markosian et
al. [19]. This part of the algorithm is seldom a bottleneck, but may be for high
density meshes.

For an arbitrary light source, theexact penumbra volumegenerated by a sil-
houette edge is the swept volume of a general cone from one vertex of the edge
to the other. The cone is created by reflecting the light source shape through the
sweeping point on the edge. This can be seen in Figure 4a. Computing exact
penumbra volumes is not feasible for real-time applications with dynamic envi-

89

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

ronments. However, we do not need the exact volume. In Section 3.2 we show
that the computations can be arranged so that the visibility of a point inside a
wedge can be computed independently of other wedges. It is then sufficient to
create a bounding volume that fully encloses the exact penumbra volume. We
chose a penumbra wedge defined by four planes (front, back, right, left) as our
bounding volume [2] as seen in Figure 5d. It is worth noting that the penumbra
volume will degenerate to a single cone, when one of the end cones completely
enclose the other end cone (see Figure 4b).

To efficiently and robustly compute a wedge enclosing the exact penumbra
volume, we do as follows. A silhouette edge is defined by two vertices,e0 and
e1. First, we find the edge’s vertex that is closest to the light source. Assume
that this ise1, without loss of generality. The other edge vertex is moved along
the direction towards the light center until it is at the same distance as the first
vertex. This vertex is denotede′0. These two vertices form a new edge which
will be the top of the wedge. See Figure 5a. Note that this newly formed edge is
created to guarantee that the wedge contains the entire penumbra volume of the
original edge, and that the original edge still is used for visibility computation.
As we will see in the next subsection, points inside the wedge but outside the real
penumbra volume will not affect visibility as can be expected. Second, the front
plane and back plane are defined as containing the new edge, and both these
planes are rotated around that edge so that they barely touch the light source on
each side. This is shown in Figure 5b. The right plane containse′0 and the vector
that is perpendicular to both vectore1e′0 and the vector frome′0 to the light center.
The left plane is defined similarly, but on the other side. Furthermore, both
planes should also barely touch the light source on each side. Finally, polygons
covering the faces on the penumbra wedge are extracted from the planes. These
polygons will be used for rasterization of the wedge, as described in Section 3.2.
See Figure 6 for examples of constructed wedges from a simple shadow casting
object.

An advantageous property of this procedure is that the wedges are created
independently of each other, which is key to making the algorithm robust, sim-
ple, and fast. Also, note that when a silhouette edge’s vertices are significantly
different distances from the light source, then the bounding volume will not be
a tight fit. While this still will result in a correct image, unnecessarily many pix-
els will be rasterized by the wedge. However, the majority of time is spent on
the points inside the exact penumbra volume generated by the silhouette edge,
and more such points are not included by making the wedge larger. It should be
pointed out that if the front and back planes are created so that they pass through
both e0 ande1, the wedge would, in general, not fully enclose the penumbra
volume. That is why we have to use an adjusted vertex, as described above.
Currently, we assume that geometry does not intersect light sources. However,
a geometrical objects may well surround the light source.

90

PAPER III

left plane
e1

right plane

e'00

lies in the right plane

lies in the left planee1

e0

(c) (d)

left plane
e1

right plane

e'0

lies in the right plane, front plane and back plane

lies in the left plane, front plane and back planee1

e0

front plane

back plane

(a) (b)

front plane

back plane

e1

e'0

e0

e'0

e0

d
d

lc

e1

arbitrary

light souce

penumbra

wedge

Figure 5: Wedge construction steps. a) Move the vertex furthest from the light
centerlc towardslc to the same distance as the other vertex. b) Create the front
and back planes. c) Create the left and right planes. d) The final wedge is the
volume inside the front, back, left, and right planes.

91

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

Figure 6: The wedges for a simple scene. At 512×512 resolution, this image
was rendered at 5 frames per second using our software implementation. Note
that there are wedges whose adjusted top edges differ a lot from the original
silhouette edge. This can especially be seen to the left of the cylinder. The
reason for this is that the vertices of the original silhouette edge are positioned
with largely different distances to the light source.

92

PAPER III

3.2 Visibility Computation

The visibility computation is divided into two passes. First, the hard shadow
quads, as used by the hard shadow volume algorithm [8], are rendered into
the V-buffer in order to overestimate the umbra region, and to detect entry/exit
events into the shadows. Secondly, the penumbra wedges are rendered to com-
pensate for the overstatement of the umbra. Together these passes render the
soft shadows. In the following two subsections, these two passes are described
in more detail. However, first, some two-dimensional examples of how these
two passes cooperate are given, as this simplifies the rest of the presentation.

In Figure 7, an area light source, a shadow casting object, and two penumbra
wedges are shown. The visibility for the pointsa, b, c, andd, are computed as

light source

shadow casting

object

eye

hard shadow quad

a

b
d c

silhouette points

penumbra

wedge

penumbra

wedge

Figure 7: A two-dimensional example of how the two passes in computing the
visibility cooperate. The two penumbra wedges, generated by the two silhouette
points of the shadow casting object, are outlined with dots.

follows. For pointsa andb, the algorithm works exactly as the hard shadow
volume algorithm, since both these points lie outside both penumbra wedges.
For point a, both the left and the right hard shadow quads are rendered, and
since the left is front facing, and the right is back facing, pointa will be outside
shadow. Pointb is only behind the left hard shadow quad, and is therefore fully
in shadow (umbra). For pointc, the left hard shadow quad is rendered, and then
during wedge rendering,c is found to be inside the left wedge. Therefore,c
is projected onto the light source through the left silhouette point to find out
how much to compensate in order to compute a more correct visibility factor.
Pointd is in front of all hard shadow quads, but it is inside the left wedge, and
therefored is projected onto the light source as well. Finally, its visibility factor
compensation is computed, and added to the V-buffer.

93

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

3.2.1 Visibility Pass 1

Initially, the V-buffer is cleared to 1.0, which indicates that the viewer is outside
any shadow regions. The hard shadow quads used by the hard shadow volume
algorithm are then rendered exactly as in that algorithm, i.e., for front facing
quads 1.0 is subtracted per pixel from the V-buffer, and for back facing quads,
1.0 is added.

An extremely important property of using the hard shadow quads, is that the
exact surface between the penumbra and the umbra volumes is not needed. As
mentioned in Section 3.1, computing this surface in three dimensions is both
difficult and time-consuming. Our algorithm simplifies this task greatly by ren-
dering the hard shadow volume, and then letting the subsequent pass compen-
sate for the penumbra region by rendering the penumbra wedges. It should be
emphasized that this first pass must be included, otherwise one cannot detect
whether a point is inside or outside shadows, only whether a point is in the
penumbra region or not. The previous algorithm [2] used an overly simplified
model of the penumbra/umbra surface, which was approximated by a quad per
silhouette edge. This limitation is removed by our two-pass algorithm.

3.2.2 Visibility Pass 2

In this pass, our goal is to compensate for the overstatement of the umbra region
from pass 1, and to compute visibility for all points,p = (x,y,z), wherez is the z-
buffer value at pixel(x,y), inside each wedge. In the following we assume that a
rectangular light source,L, is used, and that the hard shadow quads used in pass
1, were generated using a point in the middle of the rectangular light source. To
compute the visibility of a point,p, with respect to the set of silhouette edges of
a shadow casting object, imagine that a viewer is located atp looking atL. The
visibility of p is then the area of the light source that the viewer can see, divided
by total light source area [9].

Assume that we focus on a single penumbra wedge generated by a silhouette
edge,e0e1, and a point,p, inside that wedge. Here, we will explain how the
visibility factor for p is computed with respect toe0e1, and then follows an
explanation of how the collective visibility of all wedges gives the appearance
of soft shadows. First, the semi-infinite hard shadow quad,Q, through the edge
is projected, as seen fromp, onto the light source. This projection consists of the
projected edge, and from each projected edge endpoint an infinite edge, parallel
with the vector from the light source center to the projected edge endpoint,
is extended outwards. This can be seen to the left in Figure 8. Second, the
area of the intersection between the light source and the projected hard shadow
quad is computed and divided by the total light source area. We call this the
coverage, which is dark gray in the figure. For exact calculations, a simple
clipping algorithm can be used. However, as shown in Section 3.3, a more

94

PAPER III

efficient implementation is possible.

light

source
e

0

e
1projected

hard shadow

quad, Q

area covered

by projection

e
0

e
1

x ,y
1 1

x ,y
2 2

Figure 8: Left: Computation of coverage (dark gray area divided by total area)
of a pointp with respect to the edgee0e1. A three-dimensional view is shown,
wherep looks at the light source center. It can also be thought of as the pro-
jection of the hard shadow quad,Q, onto the light source as seen fromp. Note
thatQ, in theory, should be extended infinitely outwards frome0e1, and this is
shown as dashed in the figure. Right: the edge is clipped against the border of
the light source. This produces the 4-tuple(x1,y1,x2,y2) which is used as an
index into the four-dimensional coverage texture.

The pseudo code for rasterizing a wedge becomes quite simple as shown
below.

1 : rasterizeWedge(wedgeW, hard shadow quad Q,light L)
2 : for each pixel (x,y) covered by front facing triangles of wedge
3 : p = point(x,y,z); // z is depth buffer value
4 : if p is inside the wedge
5 : vp = projectQuadAndComputeCoverage(W,p,Q);
6 : if p is in positive half space of Q
7 : v(x,y) = v(x,y)−vp; // update V−buffer
8 : else
9 : v(x,y) = v(x,y)+vp; // update V−buffer

10 : end;
11 : end;
12 :end;

When this code is used for all silhouettes, the visible area of the light source is
essentially computed using Green’s theorem. If line 4 is true, thenp might be in
the penumbra region, and more computations must be made. Line 5 computes
the coverage, i.e., how much of the area light source that the projected quad
covers. This corresponds to the dark region in Figure 8 divided by the area of
the light source. The plane ofQ divides space into a negative half space, and a
positive half space. The negative half space is defined to be the part that includes
the umbra. This information is needed in line 6 to determine what operation (+
or −) should be used in order to evaluate Green’s theorem. An example of how

95

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

this works can be seen in Figure 9, which shows the view from pointp looking
towards the light source. The gray area is an occluder, i.e., a shadow casting

B

A

A

B

(a) (b) (c)

(d)

l
c

l
c l

c

A

-

B

=

1 - A + B

+

100% 30% 10% 80%

Figure 9: Splitting of shadow contribution for each wedge for a pointp. A and
B are two silhouette edges of a shadow casting object.

object, as seen fromp. Both edgeA and B contribute to the visibility ofp.
By setting the contributions fromA andB to be those of the virtual occluders
depicted in Figure 9b and c, using the technique illustrated in Figure 8, the
visible area can be computed without global knowledge of the silhouette.

3.3 Rapid Visibility Computation using 4D Textures

The visibility computation for rectangular light sources presented in Section 3.2
can be implemented efficiently using precomputed textures and pixel shaders.

The visibility value for a wedge and a pointp depends on how the edge
is projected onto the light source. Furthermore, it only depends on the part of
the projected edge that lies inside the light source region (left part of Figure 8).
Therefore, we start by projecting the edge onto the light source and clipping the
projected edge against the light source borders, keeping the part that is inside.

The two end points of the clipped projected edge,(x1,y1) and(x2,y2), can
together be used to index a four-dimensional lookup table. See the right part
of Figure 8. That is,f (x1,y1,x2,y2) returns the coverage with respect to the
edge. This can be implemented using dependent texture reads if we discretize
the function f . We strongly believe that this is the “right” place to introduce
discetization, since this function varies slowly.

Now, assume that the light source is discretized inton×n texel positions,

96

PAPER III

and that the first edge end point coincides with one of these positions, say(x1 =
a,y1 = b), wherea andb are integers. The next step creates ann×n subtexture
where each texel position represents the coordinates of the second edge end
point, (x2,y2). In each of these texels, we precompute the actual coverage with
respect to(x1 = a,y1 = b) and(x2,y2). This can be done with exact clipping
as described in Section 3.2.2. We precomputen×n suchn×n subtextures, and
store these in a single two-dimensional texture, called acoverage texture, as
shown in Figure 10. At runtime, we compute(x1,y1) and round to the nearest

Figure 10: Left: example of precomputed coverage texture withn = 32. Top
right: the original fire image. Bottom right: an undersampled 32× 32 texel
version of the original fire texture, used as light texture when computing the
coverage texture. Each of the small 32×32 squares in the coverage texture are
identified by the first edge end point,(x1,y1), and each texel in such a square
corresponds to the coordinate of the second edge end point,(x2,y2).

texel centers, which is used to identify which of then×n subtextures that should
be looked up. The second edge end point is then used to read the coverage
from that subtexture. To improve smoothness, we have experimented with using
bilinear filtering while doing this lookup. We also implemented bilinear filtering
for (x1,y1) in the pixel shader. This means that the four texel centers closest to
(x1,y1) are computed, and that four different subtextures are accessed using
bilinear filtering. Then, these four coverage values are filtered, again, using
bilinear filtering. This results in quadlinear filtering. However, our experience
is that for normal scenes, this filtering is not necessary. It could potentially be

97

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

useful for very large light sources, but we have not verified this yet.

In practice, we usen = 32, which results in a 1024×1024 texture, which is
reasonable texture usage. This also results in high quality images as can be seen
in Section 5. With a Pentium4 1.7 GHz processor, the precomputation of one
such coverage texture takes less than 3 minutes with a naive implementation.

Our technique using precomputed four-dimensional coverage textures can
easily be extended to handle light sources with textures on them. In fact, even
a sequence of textures, here called a video texture, can be used. Assume that
the light source is a rectangle with ann×n texture on it. This two-dimensional
texture can act as a light source, where each texel is a colored rectangular light.
Thus, the texture defines the colors of the light source, and since a black texel
implies absence of light, the texture also indirectly determines the shape of the
light source. For instance, the image of fire can be used. To produce the cov-
erage texture for a colored light source texture, we do as follows. Assume, we
compute only, say, the red component. For each texel in the coverage texture,
the sum of the red components that the corresponding projected quad covers is
computed and stored in the red component of that texel. The other components
are computed analogously.

Since we store each color component in 8 bits in a texel, a coverage tex-
ture for color-textured light sources requires 3 MB1 of storage whenn = 32.
For some applications, it may be reasonable to download a 3MB texture to
the graphics card per frame. To decrease bandwidth usage to texture mem-
ory, blending between two coverage textures is possible to allow longer time
between texture downloads. However, for short video textures, all coverage
textures can fit in texture memory.

4 Implementation

We have implemented the algorithm purely in software with exact clipping as
described in Section 3.2, and also with coverage textures. The implementation
with clipping avoids all sampling artifacts. However, our goal has been to imple-
ment the algorithm using programmable graphics hardware as well. Therefore
this section describes two such implementations.

The pixel shader implementations were done using NVIDIA’s Cg shading
language and the GeForce FX emulator. Here follow descriptions of implemen-
tations using both 32 and 8 bits for the V-buffer. For both versions, the pixel
shader code is about 250 instructions.

1For some hardware, 24 bit textures are stored in 32 bits, so for these cases, the texture usage
becomes 4 MB.

98

PAPER III

4.1 32-bit version

For the V-buffer, we used the 32-bit floating point texture capability with one
float per r, g, and b. This allows for managing textured light sources and colored
soft shadows. If a 16-bit floating point texture capability is available, it is likely
that those would suffice for most scenes.

The GeForce FX does not allow reading from and writing to the same texture
in the same pass. This complicates the implementation. Neither does it allow
blending to a floating point texture. Therefore, since each wedge is rendered
one by one into the V-buffer in order to add its shadow contribution, a temporary
rendering buffer must be used. For each rasterized pixel, the existing shadow
value in the V-buffer is read as a texture-value and is then added to the new
computed shadow contribution value and written to the temporary buffer. The
region of the temporary buffer corresponding to the rasterized wedge pixels are
then copied back to the V-buffer.

We chose to implement the umbra- and penumbra contribution in two dif-
ferent rendering passes (see Section 3.2) using pixel shaders. These passes add
values to the V-buffer and thus require the use of a temporary rendering buffer
and a succeeding copy-back. In total, this means that 4 rendering passes (the
umbra and penumbra passes and two copy-back passes) are required for each
wedge.

4.2 8-bit version

We have also evaluated an approach using an accuracy of only eight bits for the
visibility buffer. Here, only one component (i.e., intensity) could be used in the
coverage texture. One advantage is that no copy-back passes are required. Six
bits are used to get 64 levels in the penumbra, and two bits are used to manage
overflow that may arise when several penumbra regions overlap. The penumbra
contribution is rendered in a separate pass into the frame buffer. All additive
contribution is rendered to the red channel and all subtractive contribution is
rendered as positive values to the green channel using ordinary additive blend-
ing in OpenGL. Then, the frame buffer is read back and the two channels are
subtracted by the CPU to create a visibility mask, as shown in Figure 3. In the
future, we plan to let the hardware do this subtraction for us without read-back
to the CPU. The umbra contribution is rendered using the stencil buffer and the
result is merged into the visibility mask. Finally, the visibility mask is used to
modulate the diffuse and specular contribution in the final image.

99

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

5 Results and Discussion

In this section, we first present visual and performance results. Then follows a
discussion of, among other things, possible artifacts that can appear.

5.1 Visual Results

To verify our visual results, we often compare against an algorithm that places a
number, e.g., 1024, of point light samples on an area light source, and renders a
hard shadow image for each sample. The hard shadow volume algorithm is used
for this. The average of all these images produces a high-quality soft shadow
image. To shorten the text, we refer to this as, e.g., “1024-sample shadow.”

Figure 11 compares the result of the previously proposed penumbra wedge
algorithm [2] that this work is based upon, our algorithm, and a 1024-sample
shadow. As can be seen, our algorithm provides a dramatic increase in soft
shadow quality over the previous soft shadow volume algorithm, and our results
are also extremely similar to the 1024-sample shadow image.

Figure 11: Comparison of the previous penumbra wedge algorithm, our algo-
rithm, and using 1024 point light samples.

In Figure 1, an image of fire is used as a light source. It might be hard
to judge the quality of this image, and therefore Figure 12 uses a colored light
source as well. However, the light source here only consists of two colors. As
can be seen, the shadows are colored as one might expect. A related experiment
is shown in Figure 13, where a single texture is used to simulate the effect of
16 small area light sources. This is one of the rare cases where we actually get
sampling artifacts.

In Figure 14, we compare our algorithm to 256-sample shadows and 1024-
sample shadows. In these examples, a large square light source has been used.
As can be seen, no sampling artifacts can be seen for our algorithm, while they
are clearly visible using 256 samples. We believe that our algorithm behaves so
well because we discretize in a place where the function varies very slowly. This

100

PAPER III

Figure 12: Example of a simple textured light source with two colors, demon-
strating that the expected result is obtained.

101

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

Figure 13: Here, a single rectangular light replaces 16 small rectangular light
sources. Sampling artifacts can be seen in the shadow. This can be solved by
increasing the resolution of the coverage texture.

Figure 14: Soft shadow rendering of a fairy using (left to right) our algorithm,
256 samples on the area light source, and 1024 samples. Notice sampling arti-
facts on the middle image for the shadow of the left wing.

102

PAPER III

can also be seen in Figure 10. Sampling artifacts can probably occur using our
algorithm as well, especially when the light source is extremely large. However,
we have not experienced many problems with that.

In Figure 15, a set of overlapping objects in a more complex situation are
shown. Finally, we have been able to render a single image using actual hard-

Figure 15: A grid of 3×3×3 spheres is used as a shadow casting object.

ware.2 See Figure 16. The point here is to verify that the hardware can render
soft shadows with similar quality as our software implementation.

5.2 Performance Results

At this point, we have not optimized the code for our Cg implementations at all,
since we have not been able to locate bottlenecks due to lack of actual hardware.
Therefore, we only present performance results for our software implementa-
tion, followed by a discussion of bandwidth usage.

The scene in Figure 14 was rendered at 100×100, 256×256, and 512×512
resolutions. The actual image in the figure was rendered with the latter resolu-
tion. The frame rates were: 3, 0.51, and 0.14 frames per second. Similarly, the
scene in Figure 13 was rendered at 256×256, and 512×512 resolution. The

2Our program was sent to NVIDIA, and they rendered this image.

103

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

Figure 16: Left: image rendered using our software implementation. Right:
rendered using GeForce FX hardware.

frame rates were: 0.8, and 0.4 frames per second. When halving the side of the
square light source, the frame rate more than doubled for both scenes.

Another interesting fact about our algorithm is that it uses little bandwidth.
We compared the bandwidth usage for the shadow pass for the software imple-
mentation of our algorithm and for a 1024-sample shadow image. In this study,
we only counted depth buffer accesses and V-buffer/stencil buffer accesses. The
latter used 585 MB per frame, while our algorithm used only 6.0 MB. Thus,
the 1024-sample shadow version uses almost two orders of magnitude more
bandwidth. We believe that this comparison is fair, since fewer samples most
often are not sufficient to render high-quality images. Furthermore, we have not
found any algorithm with reasonable performance that can render images with
comparable soft shadow quality, so our choice of algorithm is also believed to
be fair. Even if 256 samples are used, about 146 MB was used, which still is
much more than 6 MB.

Our algorithm’s performance is linear in the number of silhouette edges and
in the number of pixels that are inside the wedges. Furthermore, the perfor-
mance is linear in the number of light sources, and in the number of shadow
casting objects.

104

PAPER III

5.3 Discussion

Due to approximations in the presented algorithm, artifacts can occur. We clas-
sify the artifacts as follows:

1. single silhouette artifact, and

2. object overlap artifact.

Artifact 1 occurs because we are only using a single silhouette as seen from
the center of the area or volume light source. This is obviously not always the
case; the silhouette may differ on different points on the light source. Artifact
2 occurs since two objects may overlap as seen from the light source, and our
algorithm treats these two objects independently and therefore combines their
shadowing effects incorrectly. For shadow casting objects such as an arbitrary
planar polygon, that do not generate artifact 1 and 2, our algorithm computes
physically correct visibility.

Figure 17 shows a scene with the objective to maximize the single silhouette
artifact. Figure 18 shows an example with object overlap artifacts. For both

Figure 17: Single silhouette error: the left image shows results from our algo-
rithm, and the right from rendering using 1024 point samples on the area light
source. Notice differences in the shadow under the box, and on the sides on the
box. The noise on the right light source are the 1024 sample locations.

105

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

figures, the left images show our algorithm. The right images were rendered
using 1024-sample shadows. Thus, these images are considered to provide very
accurate soft shadows. Since we only use the silhouette as seen from the center
point of the light source, artifact 1 occurs in Figure 17. As can be seen, the
umbra disappears using our algorithm, while there is a clear umbra region for
the other. Furthermore, the shadows on the sides of the box are clearly different.
This is also due to the single silhouette approximation. In the two bottom images
of Figure 18, it can be noticed that in this example the correct penumbra region is
smoother, while ours becomes too dark in the overlapping section. This occurs
since we, incorrectly, treat the two objects independently of each other.

As has been shown here, those artifacts can be pronounced in some cases,
and therefore our algorithm cannot be used when an exact result is desired.
However, for many applications, such as games, we believe that those artifacts
can be accepted, especially, since the errors are are hard to detect for, e.g., ani-
mated characters. Other applications may be able to use the presented algorithm
as well.

In general, for any shadow volume algorithm the following restrictions re-
garding geometry apply: the shadow casting objects must be polygonal and
closed (two-manifold) [4]. The z-fail algorithm [10] can easily be incorporated
into our algorithm to make the algorithm independent of whether the eye is in
shadow or not [3]. For the penumbra pass, this basically involves adding a bot-
tom plane to the wedge to close it and rasterize the back-facing wedge-triangles
instead of the front-facing. The solution of the robustness issues with the near-
and far clipping planes [10] could easily be included as well.

Regarding penumbra wedge construction, we have never experienced any
robustness issues. Also, it is possible to use any kind of area/volumetric light
source, but for fast rendering we have restricted our work to rectangular and
spherical light sources. It is trivial to modify visibility pass 2 (see Section 3.2.2)
to handle a spherical light source shape instead of a rectangular. In this case,
we do not use a precomputed coverage texture, since the computations become
much simpler, and therefore, all computations can be done in the pixel shader.
We have not yet experimented with spherical textured light sources.

6 Conclusion

We have presented a robust soft shadow volume algorithm that can render im-
ages that often are indistinguishable from images rendered using the average
of 1024 hard shadow images. The visibility computation pass of our algorithm
was inspired by the physics of the geometrical situation, which is key to the rel-
atively high quality. Another result is that we can use arbitrary shadow casting
and shadow receiving objects. Our algorithm can also handle light sources with
small textures, and even video textures on them. This allows for spectacular

106

PAPER III

Figure 18: Object overlap error: the left images show results from our algo-
rithm, and the right from rendering using 1024-sample shadows. The right im-
ages are correct, with their curved boundaries to the umbra. The left images
contain straight boundaries to the umbra.

107

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

effects such as animated fire used as a light source. We have implemented our
algorithm both in software and using the GeForce FX emulator. With actual
hardware, we expect that our algorithm will render soft shadows in real time.
Our most important task for the future is to run our algorithm using real hard-
ware, and to optimize our code for the hardware. We would also like to do a
more accurate comparison in terms of quality with other algorithms. Further-
more, it would be interesting to use Kautz and McCool’s [18] work on factoring
low frequency BRDF’s into sums of products for our four-dimensional coverage
textures. It might be possible to greatly reduce memory usage for coverage tex-
tures this way. We also plan to investigate when quadrilinear filtering is needed
for the coverage textures.

Acknowledgements: Thanks to Randy Fernando, Eric Haines, Mark Kilgard,
and Chris Seitz.

References

[1] Agrawala, M., R. Ramamoorthi, A. Heirich, and L. Moll, “Efficient
Image-Based Methods for Rendering Soft Shadows,”Proceedings of ACM
SIGGRAPH 2000, ACM Press/ACM/Siggraph, New York. K. Akeley, Ed.,
Computer Graphics Proceedings, Annual Conference Series, ACM, 375–
384. 86

[2] Akenine-Möller, Tomas, and Ulf Assarsson, “Approximate Soft Shadows
on Arbitrary Surfaces using Penumbra Wedges,”13th Eurographics Work-
shop on Rendering 2002, pp. 309–318, June 2002. 85, 87, 89, 90, 94,
100

[3] Assarsson, Ulf, and Tomas Akenine-Möller, “Interactive Rendering of Soft
Shadows using an Optimized and Generalized Penumbra Wedge Algo-
rithm,” submitted to theVisual Computer, 2002. 106

[4] Bergeron, P., “A General Version of Crow’s Shadow Volumes,”IEEE Com-
puter Graphics and Applications, 6(9):17–28, September 1986. 106

[5] Brabec, Stefan, and Hans-Peter Seidel, “Single Sample Soft Shadows us-
ing Depth Maps,”Graphics Interface 2002, pp. 219–228, 2002. 86

[6] Brotman, Lynne Shapiro, and Norman I. Badler, “Generating Soft Shad-
ows with a Depth Buffer Algorithm,”IEEE Computer Graphics and Ap-
plications 4, 10, pp. 5–12, October, 1984. 88

[7] Cohen, M. F., and J. R. Wallace,Radiosity and Realistic image Synthesis,
Academic Press Professional, 1993.

108

PAPER III

[8] Crow, Frank, “Shadow Algorithms for Computer Graphics,”Computer
Graphics (Proceedings of ACM SIGGRAPH 77), pp. 242–248, July 1977.
86, 93

[9] Drettakis, George, and Eugene Fiume, “A Fast Shadow Algorithm for Area
Light Sources Using Backprojection,”Computer Graphics (SIGGRAPH
1994), Annual Conference Series, pp 223–230, ACM SIGGRAPH, 1994.
88, 94

[10] Everitt, Cass, and Mark Kilgard, “Practical and Robust Sten-
ciled Shadow Volumes for Hardware-Accelerated Rendering,”
http://developer.nvidia.com/, 2002. 86, 106

[11] Fernando, R., S. Fernandez, K. Bala, and D. P. Greenberg, “Adaptive
Shadow Maps,”Proceedings of ACM SIGGRAPH 2001, pp. 387–390, Au-
gust 2001. 86

[12] Haines, Eric, and Tomas Möller, “Real-Time Shadows,”Game Developers
Conference, pp. 335–352, March, 2001. 85

[13] Haines, Eric, “Soft Planar Shadows Using Plateaus,”Journal of Graphics
Tools, 6(1):19–27, 2001. 86

[14] Hart, David, and Philip Dutré, and Donald P. Greenberg, “Direct Illumi-
nation with Lazy Visbility Evaluation,”Proceedings of ACM SIGGRAPH
99, pp. 147–154, August, 1999. 88

[15] Heckbert, Paul, and Michael Herf,Simulating Soft Shadows with Graphics
Hardware, Carnegie Mellon University, Technical Report CMU-CS-97-
104, January, 1997. 85

[16] Heidmann, Tim, “Real shadows, real time,”Iris Universe, no. 18, pp. 23–
31, November 1991. 86

[17] Heidrich, W., S. Brabec, and H-P. Seidel, “Soft Shadow Maps for Linear
Lights,” 11th Eurographics Workshop on Rendering, pp. 269–280, 2000.
86

[18] Kautz, J., and M. D. McCool, “Interactive Rendering with Arbitrary
BRDFs using Separable Approximations,”10th Eurographics Workshop
on Rendering, pp. 281–292, 1999. 108

[19] Markosian, Lee, and Michael A. Kowalski, and Samuel J. Trychin, and
Lubomir D. Bourdev, and Daniel Goldstein, and John F. Hughes, “Real-
Time Nonphotorealistic Rendering,”Proceedings of ACM SIGGRAPH 97,
ACM Press/ACM SIGGRAPH, New York. T. Whitted, Ed., Computer

109

A Geometry-based Soft Shadow Volume Algorithm using Graphics Hardware

Graphics Proceedings, Annual Conference Series, ACM, pp. 415–420,
August, 1997. 89

[20] Nishita, T. and E. Nakamae, “Half-Tone Representation of 3-D Objects
Illuminated by Area or Polyhedron Sources,”Proc. of IEEE Computer So-
cietyŠs Seventh International Computer Software and Applications Con-
ference (COMPSAC83), pp. 237-242, Nov 7-11, 1983.

[21] Parker, S., P. Shirley, and B. Smits,Single Sample Soft Shadows, Univer-
sity of Utah, Technical Report UUCS-98-019, October 1998. 86, 88

[22] Reeves, William T., and David H. Salesin, and Robert L. Cook, “Ren-
dering Antialiased Shadows with Depth Maps,”Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 87), pp 283–291, July, 1987. 86

[23] Segal, M., and C. Korobkin, and R. van Widenfelt, and J. Foran, and P.
Haeberli “Fast Shadows and Lighting Effects Using Texture Mapping,”
Computer Graphics (Proceedings of ACM SIGGRAPH 92), ACM, pp.
249–252, July, 1992. 86

[24] Sloan, Peter-Pike, Jan Kautz, and John Snyder, “Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments,”ACM Transactions on Graphics, (21)(3):527–536, July
2002. 88

[25] Soler, Cyril, and F. X. Sillion, “Fast Calculation of Soft Shadow Textures
Using Convolution,”Computer Graphics (SIGGRAPH 1998), Anual Con-
ference Series, pp 321–332, ACM SIGGRAPH, 1998. 88

[26] Stamminger, Marc, and George Drettakis, “Perspective Shadow Maps,”
ACM Transactions on Graphics, 21(3):557–562, July 2002. 86

[27] Williams, Lance, “Casting Curved Shadows on Curved Surfaces,”Com-
puter Graphics (Proceedings of ACM SIGGRAPH 92), pp. 270–274, Au-
gust 1978. 86

[28] Woo, A., P. Poulin, and A. Fournier, “A Survey of Shadow Algorithms,”
IEEE Computer Graphics and Applications, 10(6):13–32, November
1990. 85

110

Paper IV

An Optimized Soft Shadow Volume Algorithm
with Real-Time Performance

Published in

Graphics Hardware 2003,
ACM SIGGRAPH/Eurographics Workshop Proceedings,

Pages 33–40, 2003.

This page intentionally contains only this sentence.

An Optimized Soft Shadow Volume Algorithm
with Real-Time Performance

Ulf Assarsson,1 Michael Dougherty,2

Michael Mounier,2 and Tomas Akenine-Möller1

1 Department of Computer Engineering,
Chalmers University of Technology, Gothenburg, Sweden

2 Xbox Advanced Technology Group, Microsoft

Abstract

In this paper, we present several optimizations to our previously presented
soft shadow volume algorithm. Our optimizations include tighter wedges,
heavily optimized pixel shader code for both rectangular and spherical
light sources, a frame buffer blending technique to overcome the limita-
tion of 8-bit frame buffers, and a simple culling algorithm. These together
give real-time performance, and for simple models we get frame rates of
over 150 fps. For more complex models 50 fps is normal. In addition to
optimizations, two simple techniques for improving the visual quality are
also presented.

CR Categories: I.3.7 [Computer Graphics]Three-Dimensional Graph-
ics and Realism–Color, Shading, Shadowing, and Texture
Keywords: soft shadows, graphics hardware, pixel shaders.

1 Introduction

In the 1990’s, most real-time computer generated images did not contain shad-
ows. However, this started to change in the late 1990’s, and games begun to
use shadows as an important ingredient in their game play. For example, shad-
ows were often used to help the player orient herself. Furthermore, shadows
also naturally increase the level of realism. Today, the majority of games have
dynamic hard shadows implemented as a standard component. If one were to
remove the shadows from an application that used to have shadows, it would
immediately be much harder to determine spatial relationships, and the images
would get a more “flat” feeling. After working on dynamic soft shadows for
a few years [2, 4, 5], it is our experience that removing the softness of shad-
ows causes almost as great decrease in image quality as when one removes hard

113

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

shadows. Therefore, we conclude that dynamic soft shadows are very important
for real-time computer graphics.

Our work here focusses on substantially increasing the performance of our
previous soft shadow volume algorithms [2, 4, 5]. In that work, we lacked the
hardware needed to fully accelerate our algorithm. However, after obtaining
graphics hardware, we found that several optimizations were needed in order to
get real-time performance, and those are described in this paper. More specifi-
cally, we now create tighter wedges around the penumbra volume generated by
a silhouette edge. Furthermore, the pixel shader code has been made signifi-
cantly shorter for both spherical and rectangular light sources. To overcome the
8-bit limitation of the frame buffer, we present a technique that allows for higher
precision in the frame buffer, where we generate the soft shadow mask. Finally,
a simple culling technique is presented that further improves performance. Be-
sides these optimizations, we also present two methods for decreasing the arti-
facts that can appear.

The paper is organized as follows. First, some previous work is reviewed, a
brief presentation of the soft shadow volume algorithm, and then follows a sec-
tion with all our optimizations described. Section 5 describes how two artifacts
can be suppressed. Then follows results, conclusion and future work.

2 Previous Work

Shadow generation has become a well-documented topic within computer graph-
ics, and the amount of literature is vast. Therefore, we will only cover the papers
that are most relevant to our work. For an overview, consult Woo’s et al’s sur-
vey [20], and for real-time algorithms, consult Akenine-Möller and Haines [1].

The two most widely used real-time shadow algorithms are shadow map-
ping and shadow volumes. The shadow mapping algorithm by Williams [19],
renders a depth image, called the shadow map, as seen from the light source.
To create shadows, the scene is rendered from the eye, and for each pixel, its
corresponding depth with respect to the light source is compared to the shadow
map depth value. This determines whether the point is in shadow. To alleviate
resolution problems in the shadow maps, Fernanado et al. [11] presented an al-
gorithm that increased the shadow map resolution where it was needed the most,
and Stamminger and Drettakis presented perspective shadow maps for the same
reason [18]. Heidrich et al. [15] presented a soft version of the shadow map
algorithm. It could handle linear light sources by interpolating visibility us-
ing more than one shadow map. Recently, Brabec and Seidel presented a more
general soft shadow map algorithm [7]. Their work was inspired by Parker et
al’s [16] soft shadow generation technique for ray tracing. In that work, “soft-
edged” objects were ray traced at only one sample per pixel using a parallel
ray tracer. Thus, Brabec and Seidel presented a hardware-accelerated version of

114

PAPER IV

Parker et al’s algorithm.

The shadow volume algorithm by Crow [8] is often implemented using a
stencil buffer on commodity graphics hardware [14]. The algorithm first renders
the scene using ambient lighting. In a second pass, each silhouette edge as seen
from the light source creates a shadow volume quadrilateral which is rendered
from the eye. Note that all that is required for these silhouette edges is that two
polygons share that edge, and one of the polygons is frontfacing, and the other
is backfacing as seen from the light source. The generated quads are rendered
as seen from the eye. Frontfacing quads that pass the depth test add one to the
stencil buffer, and backfacing quads subtract one. Therefore, at the end of this
pass, the stencil buffer contains a mask where a zero indicate no shadow, and
anything else indicates that the pixel is in shadow. The third pass is rendered
with full lighting where the stencil buffer is zero. Everitt and Kilgard have
presented techniques to make the shadow volume robust, especially for cases
when the eye is inside shadow [10].

Our work has focused on extending the hard shadow volume algorithm so
that area and/or volume light sources can be used [2, 4, 5]. Our first paper pre-
sented an algorithm that could render shadow at interactive rates on arbitrary
surfaces [2]. However, the set of shadow casting objects was severely limited.
Recently, we have presented a much improved algorithm [5] that overcomes the
limitations of our first attempt. Arbitrary shadow casters can be used, and we
presented an implementation using graphics hardware. To speed up computa-
tions, a 4D texture lookup was used to quickly compute the coverage of silhou-
ette edges onto light sources. We have also presented a version that can handle
the eye-in-shadow problem, and a speed-up technique targeted for hardware [4].
After we obtained graphics hardware that was needed for an implementation
of our most recent algorithm [5], we realized that several optimizations were
needed in order to get real-time performance.

There are also several algorithms that only can handle planar soft shadows.
For example, Haines presents shadow plateaus, where a hard shadow, which is
used to model the umbra, is drawn from the center of the light source [12]. The
penumbra is rendered by letting each silhouette vertex, as seen from the light
source, generate a cone, which is drawn into the Z-buffer. The light intensity in a
cone varies from 1.0, in the center, to 0.0, at the border. A Coons patch is drawn
between two neighboring cones, and similar light intensities are used. Heck-
bert and Herf use the average of 64–256 hard shadows into an accumulation
buffer [13]. These images can then be used as textures on the planar surfaces.
Radiance transfer can be precomputed, as proposed by Sloan et al. [17], and
then used to render several difficult light transport situations in low-frequency
environments. Real-time soft shadows are included there.

115

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

3 Soft Shadow Volume Algorithm

In this section, a brief recap of the soft shadow algorithm [5] will be presented.
The first pass renders the entire scene with specular and diffuse lighting into
the frame buffer. The second pass computes a visibility mask into a visibility-
buffer (V-buffer), which is used to modulate the image of the first pass. Finally,
ambient lighting is added in a third pass. The computation of the visibility mask
renders the hard shadow quads for silhouette edges into the V-buffer. This is
done using an ordinary shadow volume algorithm for hard shadows, and that
pass ensures that the umbra regions receive full shadow. Each silhouette edge
is then used to create a penumbra wedge, which contains the penumbra volume
generated by that edge. The frontfacing triangles of each wedge is then rendered
with depth writing disabled. For each rasterized pixel(x,y) with z as a depth
value obtained from the first rendering pass, a pixel shader is executed. Note
that z is made available by creating a texture that contains the depth buffer of
the first rendering pass.

The hard shadow quad from a silhouette edge splits the wedge correspond-
ing to the same edge, in an inner and outer half (see Figure 2). For points
p = (x,y,z) located in the inner half of the wedge, the pixel shader computes
how much of the light sourcep can “see” with respect to the silhouette edge of
the wedge. This percentage value will be added to the V-buffer and compen-
sates for the full shadow given in the umbra pass by the hard shadow quad. For
pixels in the outer half of the wedge, the pixel shader will compute how much
of the light source that is covered with respect to the silhouette edge, and this
percentage value will instead be subtracted from the V-buffer. For pixels outside
the wedge, the light source will be fully visible or covered, and the modification
value will be zero in both cases. The accumulated effect of all this, is that a
visibility mask, which represent the soft shadow, is computed.

4 Optimizations

In this section, several optimizations are presented in order to obtain real-time
rendering using the soft shadow volume algorithm.

4.1 Tighter Wedges for Rectangular Light Sources

Our previously presented method created wedges from bounding spheres sur-
rounding the light source [5]. The penumbra volume corresponding to an edge
and a spherical light source is the swept volume of the circular cone created by
reflecting the light source through the sweeping point that moves from one edge
end point to the other (see Figure 1a). To handle robustness issues and avoid the
hyperbolic [12] front and back wedge surfaces along the edge, the edge vertex

116

PAPER IV

furthest from the light center is temporarily moved straight towards the light
center to a new location at the same distance from the light center as the other
edge vertex. Then, this new edge is used for sweeping the wedge volume. This
will make the front and back wedge surfaces planar, and the resulting wedge
will completely enclose the true penumbra volume (Figure 1c). This process
also simplifies the computation of the wedge polygons.

(a)

(c)

(b)

(d)

Figure 1: a) and b) show the penumbra volume for an edge for a spherical
and a rectangular light source respectively. c) and d) show the corresponding
wedges, which enclose the penumbra volumes. In c) and d) the inner left cone
is the reflected cone through the left silhouette vertex. The outer left cone is
generated from the relocated edge vertex.

Tighter wedges can be constructed if we exploit that the light source is rect-
angular. The penumbra volume is created as described above, with the exception
that the cones now have a rectangular base, as shown in Figure 1b.

For a spherical light source, a left and a right plane was used to close the
wedge on the sides. Now instead, we use the two leftmost and two rightmost
triangles respectively of the two end pyramids that are formed by the reflection
of the light source through the edge end points. This will result in a more tight
fitting wedge at the sides. Along the edge, this wedge will typically be thinner

117

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

than one created from a spherical light source (see Figure 1d). A bottom plane
may be added for the z-fail algorithm and culling (see section 4.4).

If an edge intersects the light source, that edge should be clipped against
the light source. In this case, all wedge planes are coplanar, and the wedge will
enclose everything on one side of the plane. This is correct behavior, but is
inconvenient for real-time applications, since rasterization of such a wedge may
be very expensive.

4.2 Optimized Pixel Shaders

We have implemented two optimized pixel shaders that handle both spherical
and rectangular light sources.

The shaders were tested on an ATI 9700 Pro. The test program first gener-
ates shadow volumes and wedge geometry on the CPU. The plane for the hard
shadow quad separates the wedge in an inner and outer half. It is worth not-
ing that on the ATI 9700 Pro, this polygon needed to match the shadow volume
polygon used to determine the shadow approximation exactly (including culling
order) for the stencil operations explained below to align correctly. The shadow
volume quad itself does not extend all the way out to the wedge sides. There-
fore, one more polygon on either side of the hard shadow quad is added that lies
in the separating plane and closes the wedge halves (see Figure 2).

The test program then renders the world space per-pixel positions of shadow
receiving objects to a 16 bit per channel float texture that is used by the wedge
pixel shaders. This is to avoid computing the screen space to world space trans-
formation of the pixel position in the pixel shader, which is more expensive. It
should be noted that if the screen space position were used, thez-coordinates
would have to be available through a depth texture, which means that a tex-
ture lookup is necessary anyhow. Next, the shadow volumes are rendered and
the V-buffer is incremented and decremented in the usual fashion to determine
the shadow approximation. Then, the wedges are rendered to produce the soft
shadows in the V-buffer. Each wedge side is rendered separately and stencil
operations are used in order to separate positive and negative V-buffer contribu-
tions and to avoid rendering pixels that do not intersect a wedge. This is done by
applying the culling method, described in Section 4.4, on each wedge half. A
final pass uses the resulting V-buffer in a per-pixel diffuse and specular lighting
calculation.

Also, hardware user defined clipping planes were used since the default
guard band clipping on the ATI 9700 Pro introduced enough error in the clipped
texture coordinates to cause visual artifacts.

118

PAPER IV

(a) (b)

light source

edgeedge

Figure 2: The wedge is split by the hard shadow quad in an outer and inner half.
Since the hard shadow quad does not extend all the way out to the left and right
wedge sides, two triangles are used on either side to achieve the split. Together,
these three polygons constitute the wedge center polygons. a) shows an example
for a spherical light source, and b) for a rectangular light source.

4.2.1 Spherical Light Source Shader

The spherical light source shader uses the cone defined by the point to be shaded
and the spherical light source as shown in Figure 3 to clip the silhouette edge.
The clipped silhouette edge is then projected to the plane defined by the light
source center and the ray from the light source center to the point to be shaded.
The projected points are used to determine the coverage.

The shader first transforms the silhouette edge from world space into light
space where the light center is located on thez-axis atz = 1, the light radius
is one, and the point to be shaded is at the origin. The line described by the
transformed points is then clipped against the light cone which is now described
by the cone equationx2+y2 = z2 (see Figure 4). Solving the quadratic resulting
from the equation of the intersection of the line and cone, with intersection
points below thexy plane being rejected, does the clipping. The clipped points
c0 andc1 are projected on thez = 1 plane by a simple division byz.

The resulting 2D point values (p0 andp1 in Figure 5) are used in two sep-
arate texture lookups into a cube-map that implementsatan2(y,x) to obtainθ0

andθ1. atan2(y,x) returns the arctangent ofy
x in the range -π to π radians. The

two angles characterize the minor arc defined by the intersections of the rays
from the light center top0 andp1 and the unit circle.θ0 andθ1 are then used
in another 2D texture lookup (Figure 5b) to obtain the area defined by the circle
center and the minor arc. The area derived from the cross product ofp0 andp1

is subtracted from this value and divided by the area of the unit circle to give the

119

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

final coverage (shaded in gray on Figure 5a).

Light Center

Point to be Shaded

Silhouette Edge

Z

X

Y

Projection Plane

Figure 3: The spherical light source clipping cone and projection plane shown
in world space.

4.2.2 Rectangular Light Source Shader

To compute coverage it is necessary to project the edge onto the light source and
clip it to the border of the light source. For robustness it is better to clip the edge
first and then project it; otherwise points behind the origin of the projection
will be inverted. Both clipping and projection can be done efficiently using
homogenous coordinates. The endpoints of the edge are initially transformed
so that the point to be shaded is at the origin and the normal to the light source
plane is parallel to thez-axis. The matrix for the projection is computed with
the point to be shaded as the origin of the projection and the near plane as the
rectangular light source. The endpoints of the edge are then transformed into
clip space using the projection transform, followed by homogenous clipping
to each side of the rectangular light source. After clipping, the endpoints are
projected by dividing by the homogenousw-coordinate. The endpoints can then
be used to look up the area in a 4D coverage texture or be used for analytic
computation of the area.

For non-textured rectangular light sources, the coverage of the projected sil-
houette edge quadrilateral can be computed analytically instead of being com-
puted using a 4D coverage texture. The advantage of computing the coverage
analytically is that higher accuracy is possible using less texture space. The
area covered by the projected edge quadrilateral is equal to the light source area
between the two vectors of infinite length from the center of the light source

120

PAPER IV

p1p0 Light Center

Y
X

Z

c0

Point to be Shaded

Silhouette Edge
c1

Figure 4: The clipping of the silhouette edge with the light cone in light space.
The clipped edge end pointsc0 andc1 are then projected onto the planez = 1,
which givesp0 andp1.

through the projected clipped endpoints of the edge minus the area of the trian-
gle defined by the center of the light source and the projected clipped endpoints
of the edge (Figure 6a). The area of the triangle defined by the center of the light
source and the projected clipped endpoints is computed using a 2D cross prod-
uct. The light source area between the two vectors of infinite length is looked
up in a 2D texture (Figure 6b) based on the angles of elevation for the two vec-
tors (θ0 andθ1). A cube-map that implementsatan2(y,x) is used to look up the
angles to the two vectors.

4.3 Frame Buffer Blending

Current generation consumer graphics hardware (GeForceFX and Radeon 9700)
can only blend to 8-bit per component frame buffers. The previous implemen-
tation of the soft shadow algorithm either 1) used 32-bit float buffers and cir-
cumvented the blending by rendering a wedge to a temporary buffer, using the
frame buffer as a texture, and a following copy-back pass to the frame buffer, or
2) used the lower 6 bits of single 8-bit component while reserving the upper 2
bits for overflow. It is desirable to have at least 8 bits of precision when the final
results are displayed using 8-bit RGB-components to avoid precision artifacts.
Additive frame buffer blending can be accomplished with greater than 8-bit pre-
cision by splitting values across multiple 8-bit components of the frame buffer.
A number of the most significant bits of each component are reserved to allow
for overflow. The number of bits reserved is based on the expected maximum
number of overlapping wedge polygons.n bits allows for up to 2n levels of
overlap.

121

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

 p0

p1

θ0
θ1

Light CenterX

Y

(a) (b)

Figure 5: a) The coverage is computed from the projected 2D pointsp0 andp1

in projected space. b) Area lookup texture.

In our implementation, two ordinary 8-bit per component rgba buffers are
used for the V-buffer. One of the buffers contains the additive contribution and
one of the buffers contains the subtractive contribution. The additive contri-
butions are computed by drawing the back half of all wedges into the additive
buffer and the subtractive contributions are computed by drawing the front half
of all wedges into the subtractive buffer. An alternative implementation could
use the multiple render target support of current generation graphics hardware to
draw into both buffers simultaneously. We have found that on complex models
more than 16 levels of overlap occur, requiring that 5 bits be reserved for carry,
so a 12-bit coverage value is split across the four components of each buffer.
For each of the four 8-bit components, the upper 5 bits are reserved for overflow
and the lower 3 bits contain 3 bits of the 12-bit value.

Future generations of graphics hardware may be able to blend to 16-bit per
component frame buffers making splitting up values unnecessary.

4.4 Culling

A consequence of the soft shadow volume algorithm is that the rendering of
the wedges only affects those pixels whose corresponding points (formed as
(x,y,z), where(x,y) are the pixel coordinates, andz is the depth at(x,y)) are
located inside the wedges. Put differently, the rendering of a wedge can only
affect a point if it is inside the penumbra region. Still, the wedges normally
cover many more pixels whose corresponding points are not inside wedges. For
these points, it is unnecessary to execute the rather expensive pixel shader.

Therefore, ideally, the pixel shader should only be executed for points in-

122

PAPER IV

(a) (b)

c

p0

p1
θ0

θ1

Figure 6: a) The area covered by the silhouette edge (p1p0) projected onto the
light source is equal to the area of the light source covered by the triangle defined
by the light centerc and the two vectors (c,p0) and (c,p1) extended to infinity
minus the area of the triangle (c,p0,p1). b) Area lookup texture.

side the wedge, and culling should reject all other pixels whose corresponding
points are outside the wedges. This culling can be done using two passes and
combining the depth-test and the stencil test.

The culling is also used as the mechanism to separate the inner and outer
wedge half contributions from each other, since points in an inner wedge half
should give positive V-buffer contribution and points in an outer half should
give negative contribution. In our first approach, when rendering a wedge, the
plane equation for the hard shadow quad was used in the pixel shader to classify
a point as being in the inner or outer wedge half. However, that approach can
lead to precision errors for points that lie in or very close to the hard shadow
quad plane, resulting in visual artifacts. Instead, each wedge half (depicted in
Figure 2) is rendered separately, as follows.

First, the frontfacing triangles of the wedge half are rendered into the stencil
buffer, while setting the stencil buffer elements to one for each fragment that
passes the depth test. The depth test is set toGL_GREATER, i.e., only passing
for fragments with points farther away than the frontfacing triangles. Then, the
backfacing wedge half triangles are rendered into the V-buffer using the pixel
shader and with both the stencil test and the depth test enabled. The stencil test
is set to only pass for stencil values equal to one, and the depth test is set to
GL_LESS. i.e., only passing for fragments with points closer to the eye than
the backfacing triangle planes. If either of these tests fail, the point at that pixel

123

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

is located outside the wedge half, and the fragment is culled from rendering.
Early rejection in the hardware can then avoid executing the shader for culled
fragments.

It should be noted that for this culling to be successful, it is required that the
hardware is capable of doing early depth rejection and early stencil rejection.
In general, a pixel shader may affect the depth value which will affect the out-
come of the depth test, which in turn may affect the outcome of the stencil test,
depending on what stencil function that is used. In our case, the pixel shader
does not affect the depth values, and thus, the depth and stencil tests can be done
before executing the shader.

5 Improving the Visual Results

We have reported that the soft shadow volume algorithm can suffer from two
types of artifacts [5]. The first is that the soft shadows are created incorrectly
for overlapping geometry, and the second is due to that only a single silhouette is
used for the shadow casting objects. In this section, two very simple techniques,
which can improve the visual results, are presented.

5.1 Overlap Approximation

The soft shadow volume algorithm can accurately render soft shadows for a
single closed loop. However, the combination of soft shadows from several
objects is more difficult, as can be seen in Figure 7.

light source light source

Figure 7: Overlap problems due incorrect combination of coverage. The light
gray shadow caster covers 16 percent of the light source, while the darker gray
shadow caster cover 4 percent. To the left, the shadow casters together covers
20 percent, while to the right they cover 16 percent.

The left part shows two pieces of gray-shaded geometry projected onto a
square light source. The geometry does not overlap on the light source. Our

124

PAPER IV

algorithm handles this case correctly. However, it always assumes that the ge-
ometry is non-overlapping, so for the situation in the right part of Figure 7, the
same geometry with different positions should create another coverage. Unfor-
tunately, our algorithm treats the situation to the right in the same way as to the
left, i.e., the result is the same.

To ameliorate this, a probabilistic approach is taken. Each silhouette loop is
rendered separately, so that a visibility mask is created for each silhouette loop.
Next, these two visibility mask images should be combined per pixel. Now
assume, thatA coverscA percent of the light source, andB coverscB percent.
Since no information on how the geometry overlaps is available, it appears to be
advantageous to produce a result that is in between the two extremes. Therefore,
the following combined result is used per pixel:

c = max(cA,cB)+
1
2

min(cA,cB), (1)

which implies that a result in between the two extremes shown in Figure 7 is
obtained.

Splitting the silhouettes into single silhouette loops is easy to do in real time.
It is worth mentioning that a vertex of a silhouette edge always is connected to
an even number of silhouette edges [3], which simplifies the task. The algorithm
will have to render each silhouette loop separately and merge the visibility result
with the result from the other rendered loops. To avoid using several buffers, the
soft shadow contribution of a silhouette loop can be rendered into, for instance,
the r- and g-component of the frame buffer. Then the result for the affected
pixels could be merged, according to Equation 1, with the total result residing
in the b- andα-component. This merging can be done by an intermediate pass
between rendering each silhouette loop. The pass should also clear the values
in the r- and g-components.

5.2 Single Silhouette Approximation

The silhouette edges are generated from only one sample location on the light
source. This is obviously not physically accurate, since the silhouette edges,
as seen from the sample location, may vary for different samples on the light
source.

It is possible to reduce the effect of both the single silhouette artifact and the
overlap approximation by splitting a large area light source into some smaller.
The rationale for this is that the quality of the soft shadows are good for small
light sources, but gets worse for larger. For a large light source, the probability
is higher that several independent silhouette loops contribute to the soft shadow
at a pixel, than for a small light source. Since more sample points for the sil-
houettes are added, the single silhouette artifact will be reduced as well.

125

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

It is possible to achieve a correct result by increasing the number of splits
to infinity or to a point where there is no longer any visual change in the result.
This is closely related to the technique that uses multisampling of hard shad-
ows to get a soft result. However, for a visually pleasing result, our penumbra
wedge method typically requires two orders of magnitude fewer sample loca-
tions. Figure 8 shows a worst case scenario for the single silhouette artifact,
now improved by splitting one large area light source into four smaller of equal
size, together covering the same area as the larger. The reference image to the
right shows the result of using 1024 samples points and blending hard shadows.

It should be emphasized that usingn small light sources, covering the same
area as one larger light source, is not necessarilyn times as expensive than
using the single larger light source. The cost of the soft shadow algorithm is
proportional to the number of pixels with points located inside the wedges, and
the wedges generated from each smaller light source will be significantly thinner
than those generated from the larger light source.

Figure 9 shows an example of a more complex scene. Near the center of
the shadow in the leftmost image the overlap artifact is pronounced. There are a
lot of silhouette edges that are in shadow and falsely give shadow contribution.
This results in an overly dark shadow, which can be seen when comparing to
the more correct result in the rightmost reference image. Here, it can clearly
be seen that, typically, very good quality is achieved by splitting the larger light
source into only a few smaller ones.

6 Results

The pixel shader for spherical light sources requires 59 arithmetical and 4 tex-
ture load instructions. The optimized pixel shader program for a textured light
source, using the 4D coverage texture lookup, consists of 61 arithmetic instruc-
tions and 2 texture load instructions. The optimized shader for a non-textured
light, using the analytic coverage texture, consists of 60 arithmetic instructions
and 5 texture load instructions. Code for all the three shaders are available on-
line at:
• http://www.ce.chalmers.se/staff/uffe/NonTexturedRect.txt
• http://www.ce.chalmers.se/staff/uffe/TexturedRect.txt
• http://www.ce.chalmers.se/staff/uffe/Sphere.txt.

Note that our original code for rectangular light sources consisted of 250 in-
structions [5]. Figure 10 and Figure 11 shows two scenes with a comparison of
image quality and frame rate between using hard shadows, soft shadows from a
spherical light, square light and large rectangular light. Our original implemen-
tation renders the cylinder scene in about 8–10 fps and the alien scene in 3–4 fps
for both spherical and rectangular light sources. With our optimized algorithm,
the frame rate is 15-20 times higher, as can be seen in the two figures.

126

PAPER IV

The optimized wedge generation method for rectangular light sources cre-
ates tighter wedges that typically improve the overall frame rate with 1.2-2
times, which for Figure 9a) gives an overall speedup of 1.5 times. Regarding
the culling optimization (see Section 4.4), we have only observed a small perfor-
mance increase of about 5%, but since this is scene and hardware dependent, we
believe that there are situations when it can perform better. Worth noting is that
culling comes for free since it is the mechanism to separate the contributions
from the inner and outer wedge halves.

The optimized shader for the non-textured spherical light source uses about
324KB of texture memory in total. A six-face cube-map of 128× 128 16 bit
values per face is used for the angle lookups. A 256×256 single channel 16-bit
texture is used for the area lookup. A 1024 1D texture of four 8-bit channels is
used to convert the coverage value into a subtractive or additive visibility value
split over the r,b,g,a components.

For the non-textured rectangular light source shader, about 270KB of texture
memory is used. A six-faced cube-map of 128×128 16-bit values per face is
used for the angle lookup. A 256×256 single channel 8-bit per texel texture
is used for area lookup, and the same 1024 entries texture as for the spherical
light is used for splitting the visibility contribution over the rgba-components.
A textured rectangular light source requires 1MB of texture memory for the 4D
coverage texture for a single-colored light source, and 3MB if the light source
is rgb-colored, as before [5].

7 Conclusions

We have presented several optimizations to our original soft shadow algorithm
that greatly improves the performance. The old algorithm typically rendered the
scenes shown in this paper in 1-10 fps. With the optimizations presented here,
frame rates of up to 150 fps are achieved (see Figure 10). The main improve-
ments consist of three modified fragment shaders; one for spherical and two for
rectangular light sources, that lowers the number of shader instructions from
250 to 63, 63 and 65 respectively. The fragment shaders also utilize an ordinary
frame buffer with 8 bits per rgba-component to get 12 bits of precision for the
soft shadow contribution. This circumvents the problem that, on current hard-
ware, blending typically cannot be done to a frame buffer with 16 or 32 bits per
rgba-component. The old algorithm had to use extra rendering passes or lower
the precision to 5 bits for the soft shadows.

Furthermore, a method is presented for creating tighter wedges, which typ-
ically improves the overall frame rate with 1.2 to 2 times. A culling technique
is also described that can increase performance a bit. Finally, we show how
to improve the visual quality by reducing the effects of the overlap and sin-
gle silhouette approximations. With the improvements presented in this paper,

127

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

real-time soft shadows with very good quality can now be used in, for instance,
games and virtual reality applications.

8 Future Work

The wedge generated for a small silhouette edge is often quite large. A silhou-
ette edge simplification algorithm could be implemented to save a significant
amount of wedge overdraw. One easy win would be to collapse two connected
silhouette edges which are roughly parallel into a single edge.

By using vertex shaders for the wedge generation, the CPU will be offloaded
so that it can do other more useful work (game logic, collision detection, etc).
We will implement this shortly.

Acknowledgements

We wish to give a great thanks to Greg James and Gary King for sharing their
technique of combining buffer channels with few bits to achieve a virtual buffer
channel with many bits. Their technique is similar to the one described in this
paper, which was developed independently by Michael Mounier. We also want
to thank Randy Fernando, Mark Kilgard, and Chris Seitz at NVIDIA.

References

[1] T. Akenine-Möller and E Haines,Real-Time Rendering, 2nd edition, June
2002. 114

[2] T. Akenine-Möller and U. Assarsson, “Rapid Soft Shadows on Arbitrary
Surfaces using Penumbra Wedges,”Eurographics Workshop on Rendering
2002, pp. 309–318, June 2002. 113, 114, 115

[3] T. Akenine-Möller and U. Assarsson, “On Shadow Volume Silhouettes,”
submitted toJournal of Graphics Tools, 2003. 125

[4] U. Assarsson and T. Akenine-Möller, “Interactive Rendering of Soft Shad-
ows using an Optimized and Generalized Penumbra Wedge Algorithm,”
submitted to theVisual Computer, 2002. 113, 114, 115

[5] U. Assarsson and T. Akenine-Möller, “A Geometry-Based Soft Shadow
Volume Algorithm using Graphics Hardware,” to appear inSIGGRAPH
2003, July 2003. 113, 114, 115, 116, 124, 126, 127

[6] P. Bergeron, “A General Version of Crow’s Shadow Volumes,”IEEE Com-
puter Graphics and Applications, 6(9):17–28, September 1986.

128

PAPER IV

[7] S. Brabec, and H-P. Seidel, “Single Sample Soft Shadows using Depth
Maps,”Graphics Interface 2002, pp. 219–228, 2002. 114

[8] F. Crow, “Shadow Algorithms for Computer Graphics,”Computer Graphics
(Proceedings of ACM SIGGRAPH 77), pp. 242–248, July 1977. 115

[9] D. Eberly, “Intersection of a Line and a Cone,”http://www.magic-
software.com, Magic Software Inc., October 2000.

[10] C. Everitt and M. Kilgard, “Practical and Robust Stenciled Shadow Vol-
umes for Hardware-Accelerated Rendering,”http://developer.nvidia.com/,
2002. 115

[11] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg, “Adaptive
Shadow Maps,”Proceedings of ACM SIGGRAPH 2001, pp. 387–390, Au-
gust 2001. 114

[12] E. Haines, “Soft Planar Shadows Using Plateaus,”Journal of Graphics
Tools, 6(1):19–27, 2001. 115, 116

[13] P. Heckbert and M. Herf,Simulating Soft Shadows with Graphics Hard-
ware, Carnegie Mellon University, Technical Report CMU-CS-97-104, Jan-
uary, 1997. 115

[14] T. Heidmann, “Real shadows, real time,”Iris Universe, no. 18, pp. 23–31,
November 1991. 115

[15] W. Heidrich, S. Brabec, and H-P. Seidel, “Soft Shadow Maps for Linear
Lights,” 11th Eurographics Workshop on Rendering, pp. 269–280, 2000.
114

[16] S. Parker, P. Shirley, and B. Smits,Single Sample Soft Shadows, University
of Utah, Technical Report UUCS-98-019, October 1998. 114

[17] P-P. Sloan, J. Kautz, and J. Snyder, “Precomputed Radiance Transfer
for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environ-
ments,”ACM Transactions on Graphics, (21)(3):527–536, July 2002. 115

[18] M. Stamminger, and G. Drettakis, “Perspective Shadow Maps,”ACM
Transactions on Graphics, 21(3):557–562, July 2002. 114

[19] L. Williams, “Casting Curved Shadows on Curved Surfaces,”Computer
Graphics (Proceedings of ACM SIGGRAPH 92), pp. 270–274, August
1978. 114

[20] A. Woo, P. Poulin, and A. Fournier, “A Survey of Shadow Algorithms,”
IEEE Computer Graphics and Applications, 10(6):13–32, November 1990.
114

129

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance

Figure 8: One area light source, 2× 2 area light sources, 1024 point light
sources.

Figure 9: One area light source, 2×2 area light sources, 3×3 area light sources,
1024 point light sources.

Figure 10: Comparison of appearance and frame rate for a cylinder with hard
shadow, soft shadow from a spherical light source, soft shadow from a square
light source, and soft shadow from a wide rectangular light source .

Figure 11: Same situations as for Figure 10, but for a more complex shadow
caster.

130

Paper V

On Shadow Volume Silhouettes

Submitted to

Journal of Graphics Tools, April 4, 2003.

This page intentionally contains only this sentence.

On Shadow Volume Silhouettes

Tomas Akenine-Möller and Ulf Assarsson
Chalmers University of Technology

Abstract

In shadow volume rendering, the shadow volume silhouette edges
are used to create primitives that model the shadow volume. A com-
mon misconception is that the vertices on such silhouettes can only
be connected to two silhouette edges, i.e., have degree two. Fur-
thermore, some believe that the degree of such a vertex can have
any degree. In this short note, we present a geometric proof that
shows that the degree of a silhouette vertex must be even, and not
necessarily two.

1 Introduction

The shadow volume (SV) algorithm [4] has become a very popular al-
gorithm for real-time rendering [5] of hard shadows. Recently, the SV
algorithm has been extended to handle soft shadow as well [1, 2]. In
all these algorithms the shadow volume silhouette (SVS) of the shadow
casting objects are found. An edge of such an SVS is connected to two
polygons, where one is frontfacing and the other is backfacing as seen
from the light source. The degree of an SVS vertex is the number of SVS
edges connected to it. Note that silhouettes with edges as defined here
may not necessarily be true silhouettes, and should therefore rather be re-
ferred to as possible silhouettes. For example, an SVS edge may very well
be in shadow of another geometric object. In order for SV algorithms to
work properly, the shadow casting objects must be polygonal and closed
(two-manifold) [3].

During our research on soft shadows, we realized (to our surprise)
that a vertex of an SVS can be connected to more than two SVS edges.
This might be obvious to some, but we have realized that many others
also believed (or believe) that an SVS vertex must have degree two. This
is not so, as we will show.

133

On Shadow Volume Silhouettes

2 The Degree of SVS Vertices

Theorem The degree of a shadow volume silhouette vertex is always
even.

In the following, when we say vertex or edge, we refer to a SVS ver-
tex or edge.

Proof: A geometric proof by contradiction follows here. Assume that
we have a vertex with degree two, which is the smallest degree of a ver-
tex. The definition of an edge says that the geometry connected to the
edge on one side must be frontfacing (FF) and on the other side it must
be backfacing (BF), or vice versa. This is illustrated in Figure 1a. Now,
assume that we desire to augment the vertex so that it has degree three.
This is done by inserting an edge, c, that connects to the vertex. See
Figure 1b. Note that the same must hold for this new edge: FF on one
side and BF on the other. However, as can be seen to the right in the
figure, the geometry between edge b and c now contains both FF and BF
geometry, which implies that a new edge must be located there. When
the new edge c was inserted, one can also swap places between the FF and
BF for c, but this leads to the same inconsistency. The only difference
is that another new edge appears between a and c. Induction gives that
each newly inserted edge that makes the degree odd generates a new edge
to maintain consistency.

BF
BF

FF
FF

silhouette edges

BF
BF

FF
FF

FF
BF

BF

BF
FF

FF

FF
BF

a
b

a a
b b

c c

d

v

Figure 1: Left: two silhouette edges a and b meet at a vertex v. Assume
that a light source is located above the edges, and that the geometry
above the edges are front facing (FF) as seen from the light source, and
that the geometry below is backfacing (BF). Middle: add a new silhouette
edge, c. Right: To cure the FF/BF inconsistency, a new edge d must be
inserted.

At this point we have shown that the degree of an SVS vertex must be
even. To prove that it can be larger than two, we give a simple example
of a very simple geometrical model with vertices with degree four. See
Figure 2.

Finally, we end this short note with an intuitive example that explains

134

PAPER V

x

y

x

z

Figure 2: The left and middle parts illustrate a simple object from two
orthographic views. To the right, a projection of the three-dimensional
object is shown. Here, we asssume that a light source is located where
the viewer is. This implies that the black continuous loop is an SVS, and
the black dashed loop is another SVS. The circled vertices have degree
four.

why SVSs with vertices with odd degrees would not work for shadow
volume based algorithms. As can be seen in Figure 3, such scenes would
easily create inconsistent results as well. In our silhouette generation
software, we have seen vertices with degrees 2,4,6, and 8.

in in out

inoutoutviewer

viewer

degree threeSVS

Figure 3: An example of incorrect shadow volumes. To understand the
purpose of this illustration, imagine that the two view rays coincide. Nor-
mally, one would expect that the reciprocity law holds here, i.e., the left
viewer experiences exactly what the right viewer experiences (only differ-
ence is direction).

References

[1] Akenine-Möller, Tomas, and Ulf Assarsson, “Approximate Soft
Shadows on Arbitrary Surfaces using Penumbra Wedges,” 13th Eu-
rographics Workshop on Rendering, pp. 309–318, June 2002. 133

[2] Assarsson, Ulf, and Tomas Akenine-Möller, “A Geometry-based Soft
Shadow Volume Algorithm using Graphics Hardware,” to appear in
SIGGRAPH 2003, 2003. 133

135

On Shadow Volume Silhouettes

[3] Bergeron, P., “A General Version of Crow’s Shadow Volumes,” IEEE
Computer Graphics and Applications, vol. 6, no. 9., pp. 17–28,
September 1986. 133

[4] Crow, Frank, “Shadow Algorithms for Computer Graphics,” Com-
puter Graphics (Proceedings of ACM SIGGRAPH 77), pp. 242–248,
July 1977. 133

[5] Heidmann, Tim, “Real shadows, real time,” Iris Universe, no. 18,
pp. 23–31, November 1991. 133

136

	Introduction
	Overall Objective and Research Question
	Why Previous Methods Do Not Suffice
	High Quality but Insufficient Speed
	High Speed but Insufficient Quality

	Methodology
	Main Contribution
	Thesis Structure

	A Real-Time Soft Shadow Volume Algorithm
	Preliminaries
	Approximate Soft Shadows using Penumbra Wedges
	Problem
	Methodology
	Contribution

	An Optimized and Generalized Penumbra Wedge Algorithm
	Problem
	Methodology
	Contribution

	A Geometry-Based Soft Shadow Volume Algorithm
	Problem
	Methodology
	Contribution

	Soft Shadows with Real-Time Performance
	Problem
	Methodology
	Contribution

	On Shadow Volume Silhouettes
	Problem
	Methodology
	Contribution

	Discussion
	Future Work
	Acknowledgements
	References
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	omslag.pdf
	Introduction
	Overall Objective and Research Question
	Why Previous Methods Do Not Suffice
	High Quality but Insufficient Speed
	High Speed but Insufficient Quality

	Methodology
	Main Contribution
	Thesis Structure

	A Real-Time Soft Shadow Volume Algorithm
	Preliminaries
	Approximate Soft Shadows using Penumbra Wedges
	Problem
	Methodology
	Contribution

	An Optimized and Generalized Penumbra Wedge Algorithm
	Problem
	Methodology
	Contribution

	A Geometry-Based Soft Shadow Volume Algorithm
	Problem
	Methodology
	Contribution

	Soft Shadows with Real-Time Performance
	Problem
	Methodology
	Contribution

	On Shadow Volume Silhouettes
	Problem
	Methodology
	Contribution

	Discussion
	Future Work
	Acknowledgements
	References
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V

	soft_egrw_final.pdf
	Introduction
	Related Work
	Shadow Volumes
	New Algorithm
	Constructing Penumbra Wedges
	Light Intensity Interpolation

	Optimizations
	Implementation
	Results
	Discussion
	Future Work
	Conclusions

	soft_hardware_thesis.pdf
	Introduction
	Review of the Soft Shadow Algorithm using Penumbra Wedges
	A Restructured Soft Shadow Algorithm
	Occlusion Culling
	Eye Inside Shadow Regions
	Implementation
	Three Pass Algorithm
	Single Pass Algorithm

	Simulation Results
	Related Work
	Discussion and Future Work
	Conclusion

	soft_sig2003_final.pdf
	Introduction
	Previous Work
	New Algorithm
	Construction of Penumbra Wedges
	Visibility Computation
	Visibility Pass 1
	Visibility Pass 2

	Rapid Visibility Computation using 4D Textures

	Implementation
	32-bit version
	8-bit version

	Results and Discussion
	Visual Results
	Performance Results
	Discussion

	Conclusion

	soft_optimized.pdf
	Introduction
	Previous Work
	Soft Shadow Volume Algorithm
	Optimizations
	Tighter Wedges for Rectangular Light Sources
	Optimized Pixel Shaders
	Spherical Light Source Shader
	Rectangular Light Source Shader

	Frame Buffer Blending
	Culling

	Improving the Visual Results
	Overlap Approximation
	Single Silhouette Approximation

	Results
	Conclusions
	Future Work

	silhouettes.pdf
	Introduction
	The Degree of SVS Vertices

