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Abstract

Depth buffer performance is crucial to modern graphics hardware. This has led to a large number of algorithms for
reducing the depth buffer bandwidth. Unfortunately, these have mostly remained documented only in the form of
patents. Therefore, we present a survey on the design space of efficient depth buffer implementations. In addition,
we describe our novel depth buffer compression algorithm, which gives very high compression ratios.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: framebuffer opera-
tions

1. Introduction

The depth buffer was originally invented by Ed Catmull, but
first mentioned by Sutherland et al. [SSS74] in 1974. At that
time it was considered a naive brute force solution, but now it
is the de-facto standard in essentially all commercial graph-
ics hardware, primarily due to rapid increase in memory ca-
pacity and low memory cost.

A naive implementation requires huge amounts of mem-
ory bandwidth. Furthermore, it is not efficient to read
depth values one by one, since a wide memory bus or
burst accesses can greatly increase the available memory
bandwidth. Because of this, several improvements to the
depth buffer algorithm have been made. These include:
the tiled depth buffer, depth caching, tile tables [MWY03],
fast z-clears [Mor00], z-min culling [AMS03], z-max
culling [GKM93, Mor00], and depth buffer compres-
sion [MWY03]. A schematic illustration of a modern archi-
tecture implementing all these features is shown in Figure 1.

Many of the depth buffer algorithms mentioned above
have never been thoroughly described, and only exist in tex-
tual form as patents. In this paper, we attempt to remedy
this by presenting a survey of the modern depth buffer archi-
tecture, and the current depth compression algorithms. This
is done in Section 2 & 3, which can be considered previous
work. In Section 4 & 5, we present our novel depth compres-
sion algorithm, and thoroughly evaluate it by comparing it to
our own implementations of the algorithms from Section 3.

2. Architecture Overview

A schematic overview implementing several different algo-
rithms for reducing depth buffer bandwidth usage is shown
in Figure 1. Next, we describe how the depth buffer collabo-
rates with the other parts of a graphics hardware architecture.
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Figure 1: A modern depth buffer architecture. Only the tile
cache is needed to implement tiled depth buffering. The rest
of the architecture is dedicated to bandwidth and perfor-
mance optimizations. For a detailed description see Sec-
tion 2.

The purpose of the rasterizer is to identify which pixels
lie within the triangle currently being rendered. In order to
maximize memory coherency for the rest of the architecture,
it is often beneficial to first identify which tiles (a collection
of n×m pixels) that overlap the triangle. When the rasterizer
finds a tile that partially overlaps the triangle, it distributes
the pixels in that tile over a number of pixel pipelines. The
purpose of each pixel pipeline is to compute the depth and
color of a pixel. Each pixel pipeline contains a depth test
unit responsible for discarding pixels that are occluded by
previously drawn geometry.

Tiled depth buffering in its most simple form works by let-
ting the rasterizer read a complete tile of depth values from
the depth buffer and temporarily store it in on-chip memory.
The depth test in the pixel pipelines can then simply com-



Hasselgren, Akenine-Möller / Efficient Depth Buffer Compression

pare the depth value of the currently generated pixel with
the value in the locally stored tile. In order to increase over-
all performance, it is often motivated to cache more than one
tile of depth buffer values in on-chip memory. A costly mem-
ory access can be skipped altogether if a tile already exists
in the cache. The tiled architecture decrease the number of
memory accesses, while increasing the size of each access.
This is desirable since bursting makes it more efficient to
write big chunks of localized data.

There are several techniques to improve the performance
of a tiled depth buffer. A common factor for most of them is
that they require some form of “header” information for each
tile. Therefore, it is customary to use a tile table where the
header information is kept separately from the depth buffer
data. Ideally, the entire tile table is kept in on-chip memory,
but it is more likely that it is stored in external memory and
accessed through a cache. The cache is then typically orga-
nized in super-tiles (a tile consisting of tiles) in order to in-
crease the size of each memory access to the tile table. Each
tile table entry typically contains a number of “flag” bits, and
potentially the minimum and maximum depth values of the
corresponding tile.

The maximum and minimum depth values stored in the
tile table can be used as a base for different culling algo-
rithms. Culling mainly comes in two forms: z-max [GKM93,
Mor00] and z-min [AMS03]. Z-max culling uses a conser-
vative test to detect when all pixels in a tile are guaranteed to
fail the depth test. In such a case, we can discard the tile al-
ready in the rasterizer stage of the pipeline, yielding higher
performance. We can also avoid reading the depth buffer,
since we already know that all depth tests will fail. Similarly,
Z-min culling performs a conservative test to determine if all
pixels in a tile are guaranteed to pass the depth tests. If this
holds true, and the tile is entirely covered by the triangle
currently being rendered, then we know that all depth values
will be overwritten. Therefore we can simply clear an entry
in the depth cache, and need not read the depth buffer.

The flag bits in the tile table are used primarily to flag dif-
ferent modes of depth buffer compression. A modern depth
buffer architecture usually implements one or several com-
pression algorithms, or compressors. A compressor will, in
general, try to compress the tile to a fixed bit rate, and fails if
it cannot represent the tile in the given number of bits with-
out information loss. When writing a depth tile to memory,
we select the compressor with the lowest bit rate, that suc-
ceeds in compressing the tile. The flags in the tile table are
updated with an identifier unique to that compressor, and the
compressed data is written to memory. We must write the
tile in its uncompressed form if all available compressors
fail, and it is therefore still necessary to allocate enough ex-
ternal memory to hold an uncompressed depth buffer. When
a tile is read from memory, we simply read the compressor
identifier from the tile table, and decompress the data using
the corresponding decompression algorithm.

The main reason that depth compression algorithms can
fail is that the depth compression must be lossless. The com-
pression occurs each time a depth tile is written to memory,
which happens on a highly unpredictable basis. Lossy com-
pression amplifies the error each time a tile is compressed,
and this could easily make the resulting image unrecogniz-
able. Hence, lossy compression must be avoided.

3. Depth Buffer Compression - State of the Art

In this section, we describe existing compression algorithms.
It should be emphasized that we have extracted the informa-
tion below from patents, and that there may be variations of
the algorithms that perform better, but such knowledge usu-
ally stays in the companies. However, we still believe that
the general discussion of the algorithms is valuable.

A reasonable assumption is that each depth value is stored
in 24 bits.† In general, the depth is assumed to hold a
floating-point value in the range [0.0,1.0] after the projec-
tion matrix has applied. For hardware implementation, 0.0 is
mapped to the 24-bit integer 0, and 1.0 is mapped to 224−1.
Hence, integer arithmetic can be used.

We define the term compression probability as the frac-
tion of tiles that can be compressed by a given algorithm.
It should be noted that the compression probability depends
on the geometry being rendered, and can therefore only be
determined experimentally.

3.1. Fast z-clears

Fast z-clears [Mor02] is a method that can be viewed as a
simple form of compression algorithm. A flag combination
in the tile table entry is reserved specifically for cleared tiles.
When the hardware is instructed to clear the entire depth
buffer, it will instead fill the tile table with entries that are
flagged as cleared tiles. This means that the actual clearing
process is greatly sped up, but it also has a positive effect
when rendering geometry, since we need not read a depth
tile that is flagged as cleared.

Fast z-clears is a popular compression algorithm since it
gives good compression ratios and is very easy to imple-
ment.

3.2. Differential Differential Pulse Code Modulation

Differential differential pulse code modulation
(DDPCM) [DMFW02] is a compression scheme, which
exploits that the z-values are linearly interpolated in screen
space. This algorithm is based on computing the second
order depth differentials as shown in Figure 2. First,
first-order differentials are computed columnwise. The
procedure is repeated once again to compute the second-
order columnwise differentials. Finally, the row-order

† Generalizing to other bit rates is straightforward.



Hasselgren, Akenine-Möller / Efficient Depth Buffer Compression

z z z z

z z z z

z z z z

z z z z

z z z z

∆y ∆y ∆y ∆y

∆y ∆y ∆y ∆y

∆y ∆y ∆y ∆y

∆y ∆y ∆y ∆y

z z z z

∆ 2
∆ 2

∆ 2 ∆ 2

∆ 2 ∆ 2

∆ 2∆ 2 ∆ 2 ∆ 2

∆ 2∆ 2 ∆ 2 ∆ 2
∆ 2 ∆ 2 ∆ 2

∆ 2 ∆ 2 ∆ 2 ∆ 2

∆x

∆y

z

(a) (b)

(c) (d)
Figure 2: Computing the second order differentials. a) Orig-
inal tile, b) First order column differentials, c) Second order
column differentials, d) Second order row differentials.

differentials are computed for the two top rows, and we get
the representation shown in Figure 2d. If a tile is completely
covered by a single triangle, the second-order differentials
will be zero, due to the linear interpolation. In practice,
however, the second-order differential is a number in the
set {−1,0,+1} if depth values are interpolated at a higher
precision than they are stored in, which often is the case.

DeRoo et al. [DMFW02] propose a compression scheme
for 8× 8 pixel tiles that use 32 bits for storing a reference
value, 2×33 bits for x and y differentials, and 61×2 bits for
storing the second order differential of each remaining pixel
in the tile. This gives a total of 220 bits per tile in the best
case (when a tile is entirely covered by a single triangle). A
reasonable assumption would be that we read 256 bits from
the memory, which would give a 8 : 1 compression when
using a 32-bit depth buffer. Most of the other compression
algorithms are designed for a 24-bit depth format, so we ex-
tend this format to 24 bit depth for the sake of consistency.
In this case, we could sacrifice some precision by storing the
differentials as 2× 23 bits, and get a total of 192 bits per
tile, which gives the same compression ratio as for the 32 bit
mode.

In the scheme described above, two bits per pixel are used
to represent the second order differential. However, we only
need to represent the values: {−1,0,+1}. This leaves one
bit-combination that can be used to flag when the second-
order differential is outside the representable range. In that
case, we can store a fixed number of second-order differen-
tials in a higher resolution, and pick the next in order each
time an escape code occurs. This can increase the compres-
sion probability somewhat at the cost of a higher bit rate.

DeRoo et al. also briefly describe an extension of the
DDPCM algorithm that is capable of handling some cases
of tiles containing two different planes separated by a single
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Figure 3: Anchor encoding of a 4× 4 tile. The depth val-
ues of the z, ∆x and ∆y pixels form a plane. Compression
is achieved by using the plane as a predictor, and storing
an offset, d, for each pixel. Only 5 bits are used to store the
offsets.

edge. They compute the second order differentials from two
different reference points, the upper left and lower left pixels
of the tile. From these two representations, one break point is
determined along every column, such that pixels before and
after the break point belong to different planes. The break
points are then used to combine the two representations to a
single representation. A 24-bit version of this mode would
require 24×6+2×57+8×4 = 290 bits of storage.

The biggest drawback of the suggested two plane mode is
that compression only works when the two reference points
lie in different planes. This will only be true in half of the
cases, if we assume that all orientation and positioning of
the edge separating the two plane is equally probable.

3.3. Anchor encoding

Van Dyke and Margeson [VM05] suggest a compression
technique quite similar to the DDPCM scheme. The ap-
proach is based on 4×4 pixel tiles (although it could be gen-
eralized) and is illustrated in Figure 3. First, a fixed anchor
pixel, denoted z in the figure, is selected. The depth value
of the anchor pixel is always stored at full 24-bit resolution.
Two more depth values, ∆x and ∆y, are stored relatively to
the depth value of the anchor pixel, each with 15 bits of res-
olution. These three values form a plane, which can be used
to predict the depth values of the remaining pixels. Com-
pression is achieved by storing the difference between the
predicted, and actual depth value, for the remaining pixel.
The scheme uses 5 bits of resolution for each pixel, resulting
in a total of 119 bits (128 with a fast clear flag and a constant
stencil value for the whole tile).

The anchor encoding mode behaves quite similar to the
one plane mode of the DDPCM algorithm. The extra bits of
per-pixel resolution provide for some extra numerical stabil-
ity, but unfortunately do not seem to provide a significant
increase in terms of compression ratio.

3.4. Plane Encoding

The previously described algorithms use a plane to predict
the depth value of a pixel, and then correct the prediction
using additional information. Another approach is to skip
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Figure 4: Van Hook’s plane encoding uses ID numbers and
the rasterizer to generate a mask indicating which pixels be-
long to a certain triangle. The compression is done by find-
ing the first pixel with a particular ID and searching a win-
dow of nearby pixels, shown in gray, to compute a plane
representation for all pixels with that ID.

the correction factors and only store parameterized predic-
tion planes. This only works when the prediction planes are
stored in the same resolution that is used for the interpola-
tion.

Orenstein et al. [OPS∗05] present such a compression
scheme, where a single plane is stored per 4× 4 pixel tile.
They use a representation on the form Z(x,y) = C0 + xCx +
yCy with 40 bits of precision for each constant. A total of
120 bits is needed, leaving 8 bits for a stencil value. Exactly
how the constants are computed, is not detailed. However, it
is likely that they are obtained directly from the interpola-
tion unit of the rasterizer. Computing high resolution plane
constants from a set of low resolution depth values is not
trivial.

A similar scheme is suggested by Van Hook [Van03], but
they assume that the same precision (16, 24 or 32 bits) is
used for storing and interpolating the depth values. The com-
pression scheme can be seen as an extension of Orenstein’s
scheme, since it is able to handle several planes. It requires
communication between the rasterizer and the compression
algorithm. A counter is maintained for every tile cache entry.
The counter is incremented whenever rasterization of a new
triangle generates pixels in the tile, and each generated pixel
will be tagged with that value as an identifier, as shown in
Figure 4. The counter is usually given a limited resolution (4
bits is suggested) and if the counter overflows, no compres-
sion can be made. When a cache entry is compressed and
written to memory, the first pixel with a particular ID num-
ber is found. This pixel is used as a reference point for the
plane equation. The x and y differentials are found by search-
ing the pixels in a small window around the reference point.
Van Hook shows empirically that a window such as the one
shown in Figure 4 is sufficient to be able to compute plane
equations in 96% of the cases that could be handled with
an infinite size window (tests are only performed on a sim-
ple torus scene though). The suggested compression modes
stores a number of planes (2,4, or 8 with 24 bits per com-
ponent) and an identifier for each pixel, indicating to which

zmin zmax{ {

Representable range Representable range

Figure 5: The depth offset scheme compresses the depth
data by storing depth values in the gray regions as offsets
relative to either the z-min or z-max value.

plane that pixel belongs (1,2 or 3 bits depending on the num-
ber of planes), resulting in compression ratios varying from
6 : 1 to 2 : 1. The compression procedure will automatically
collapse any pixel ID numbers that is not currently in use.
ID numbers may go to waste as depth values are overwritten
when the depth test succeeds. Therefore, collapsing is im-
portant in order to avoid overflow of the ID counter. When
decompressing a tile, the ID counter is initialized to the num-
ber of planes that is indicated by the compression mode.

The strength of the Van Hook scheme is that it can handle
a large number of triangles overlapping a single tile, which is
an important feature when working with large tiles. A draw-
back is that we must also store the 4-bit ID numbers, and
the counter, in the depth tile cache. This will increase the
cache size by 4/24 = 16.6%, if we use a 4-bit ID number
per pixel. Another weakness is that the depth interpolation
must be done at the same resolution as the depth values are
stored in.

3.5. Depth Offset Compression

Morein and Natale’s [MN04] depth offset compression
scheme is illustrated in Figure 5. Although the patent is writ-
ten in a more general fashion, the figure illustrates its pri-
mary use. The depth offset compression scheme assumes
that the depth values in a tile often lie in a narrow inter-
val near either the z-min value or the z-max value. We can
compress such data by storing an n-bit offset value for ev-
ery depth value, where n is some pre-determined number
(typically 8 or 12) of bits. The most significant bit indicates
whether the depth value is encoded as an offset relative to
the z-min or z-max value, and the remaining bits represents
the offset. The compression fails if the depth offset value of
any pixel in a tile cannot be represented without loss in the
given number of bits.

This algorithm is particularly useful if we already store
the z-min and z-max values in the tile table for culling pur-
poses. Otherwise we must store the z-min and z-max values
in the compressed data, which increase the bit rate some-
what.

Orenstein et al. [OPS∗05] also present a compression al-
gorithm that is essentially a subset of Morein and Natale’s
algorithm. It is intended to complement the plane encoding
algorithm described in Section 3.4, but can also be imple-
mented independently. The depth value of a reference pixel
is stored along with offsets for the remaining pixels in the
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tile. This mode can be favorable in some cases if the z-min
and z-max values are not available.

The advantage of depth offset compression is that com-
pression is very inexpensive. It does not work very well
at high compression ratios, but gives excellent compression
probabilities at low compression rates. This makes it an ex-
cellent complementary algorithm to use for tiles that cannot
be handled with specialized plane compression algorithms
(Sections 3.2-3.4).

4. New Compression Algorithms

In this section, we present two modes of a new compression
scheme. As most other schemes, we try to achieve compres-
sion by representing each tile as number of planes and pre-
dict the depth values of the pixels using these planes.

In the majority of cases, depth values are interpolated at a
higher resolution than is used for storage, and this is what we
assume for our algorithm. We believe that this is an impor-
tant feature, especially in the case of homogeneous rasteriz-
ers where exact screen space interpolation can be difficult.
Allowing higher precision interpolation allows for some ex-
tra robustness.

In the following we will motivate that we only need the
integer differentials, and a one bit per pixel correction term,
in order to be able to reconstruct a rasterized plane. During
the rasterization process, the depth value of a pixel is given
through linear interpolation. Given an origin (x0,y0,z0) and
the screen space differentials ( ∆z

∆x , ∆z
∆x ), we can write the in-

terpolation equations as:

z(x,y) = z0 +(x− x0)
∆z
∆x

+(y− y0)
∆z
∆y

. (1)

The equation can be incrementally evaluated by stepping
in the x-direction (similar for y) by computing:

z(x+1,y) = z(x,y)+
∆z
∆x

. (2)

We can rewrite the differential of Equation 2 as a quotient
and remainder part, as shown below:

∆z
∆x

=
⌊

∆z
∆x

⌋
+

r
∆x

. (3)

Equation 2 can then be stepped through incrementally by
adding the quotient, b ∆z

∆xc, in each step, and by keeping track
of the accumulated remainder, r

∆x . When the accumulated
remainder exceeds one, it is propagated to the result. What
this amounts to in terms of compression is that we can store
the propagation of the remainder in one bit per pixel, as long
as we are able find the differentials (b ∆z

∆xc,b
∆z
∆yc). This rea-

soning has much in common with Bresenham’s line algo-
rithm.

(a) (b)
Figure 6: The leftmost image shows the points used to com-
pute our prediction plane. The rightmost image shows in
what order we traverse the pixels of a tile.
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Figure 7: The different steps of the one plane compression
algorithm, applied to a compressible example tile.

4.1. One plane mode

For our one plane mode, we assume that the entire tile is
covered by a single plane. We choose the upper left corner
as a reference pixel and compute the differentials ( ∆z

∆x , ∆z
∆y )

directly from the neighbors in the x- and y-directions,
as shown in Figure 6a. The result will be the integer
terms,(b ∆z

∆xc,b
∆z
∆yc), of the differentials, each with a poten-

tial correction term of one baked into it.

We then traverse the tile in the pattern shown in Figure 6b,
and compute the correction terms based on either the x or y
direction differentials (y direction when traversing the left-
most column, and x direction when traversing along a row).
If the first non-zero correction term of a row or column is
one, we flag that the corresponding differential as correct.
Accordingly, if the first non-zero element is minus one, we
flag that the differential contains a correction term. The flags
are sticky, and can therefore only be set once. We also per-
form tests to make sure that each correction value is rep-
resentable with one bit. If the test fails, the tile cannot be
compressed.

After the previous step, we will have a representation like
the one shown in Figure 7b. Just as in the figure, we can
get correction terms of -1 for the differentials that contain
an embedded correction term. Thus, we want to subtract one
from the differential (e.g. ∆z

∆x ), and to compensate for this,
we add one to all the per-pixel correction terms. Adding one
to the correction terms is trivial since they can only be -1
or 0. We can just invert the last bit of the correction terms
and interpret them as a one bit number. We get the corrected
representation of Figure 7c.

In order to optimize our format, we wish to align the size
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Figure 8: This figure illustrates the two plane compression
algorithm. a) Shows the original tile with depth values from
two different planes. The line indicates the edge separating
the two planes. b & c) We execute the one plane algorithm of
Section 4.1 for each corner of the tile. In this figure, we only
show the two correct corners for clarity. Note that the cor-
rection terms take on unrepresentable values when we cross
the separating edge. We use this to detect the breakpoints,
shown in gray. d) In a final step, we stitch together the two
solutions from (b) and (c), and make sure to correct the dif-
ferentials so that all correction terms are either 0 or 1. The
breakpoints are marked as a gray line.

of a compressed tile to the nearest power of two. In order
to do so, we sacrifice some accuracy when storing the dif-
ferentials, and reference point. Since the compression must
be lossless, the effect is that the compression probability
is slightly decreased, since the lower accuracy means that
fewer tiles can be compressed successfully. Interestingly,
storing the reference point at a lower resolution works quite
well if we assume that the most significant bits are set to
one. This is due to the non-linear distribution of the depth
values. For instance, assume we use the projection model
of OpenGL and have the near and far clip planes set to 1
and 100 respectively, then 21 bits will be enough to cover
93% of the representable depth range. In contrast, 21 bits
can only represent 12.5% of the range representable by a 24
bit number. We propose the following formats for our one
plane mode

tile point deltas correction total
4×4 21 14×2 1×15 64
8×8 24 20×2 1×63 127

4.2. Two plane mode

We also aim to compress tiles that contain two planes sep-
arated by a single edge. See Figure 8a for an example. In
order to do so, we must first extend our one plane algorithm
slightly. When we compute the correction terms, we already
perform tests to determine if the correction term can be rep-
resented with one bit. If this is not the case, then we call
the pixel a break point, as defined in Section 3.2, and store
its horizontal coordinate. We only store the first such break
point along each row. If a break point is found while travers-

ing along a column, rather than a row, then all remaining
rows are given a break point coordinate of zero. Figure 8b
shows the break points and correction terms resulting from
the tile in Figure 8a. As shown in the figure, we can use the
break points to identify all pixels that belong to a specific
plane.

We must also extend the one plane mode so that it can
operate from any of the corners as reference point. This is a
simple matter of reflecting the traversal scheme, from Fig-
ure 6, horizontally and/or vertically until the reference point
is where we want it to be.

We can now use the extended one plane algorithm to com-
press tiles containing two planes. Since we have limited the
algorithm to tiles with only a single separating edge, it is
possible to find two diagonally placed corners of the tile that
lie on opposite sides of the edge. There are only two configu-
rations of diagonally placed corners, which makes the prob-
lem quite simple. The basic idea is to run the extended one
plane algorithm for all four corners of the tile, and then find
the configuration of diagonal corners for which the break
points match. We then stitch together the correction terms
of both corners, by using the break point coordinates. The
result is shown in Figure 8d.

It should be noted that we need to impose a further restric-
tion on the break points. Assume that we wish to recreate
the depth value of a certain pixel, p, then we must be able
to recreate the depth values of the pixels that lie “before” p
in our fixed traversal order. In practice, this is not a problem
since we are able to chose the other configuration of diag-
onal corners. However, we must perform an extra test. The
break points must be either in falling or rising order, depend-
ing on which configuration of diagonal corners is used. As it
turns out, we can actually use this to our advantage when de-
signing the bit allocations for a tile. Since we know that the
break points are in rising or falling order, we can use fewer
bits for storing them. In our 4× 4 tile mode, we use this to
store the break points in just 7 bits. We do not use this in the
8×8 tile mode, as the logic would become too complicated.
Instead, we store the break points using log2(9

8) = 26 bits,
or with 4 bits per break point when possible.

We employ the same kind of bit length optimizations as
for the one plane mode. In addition, we need one bit, d, to
indicate which diagonal configuration is used, and some bits
for the break points, bp. Suggestions for bit allocations are
shown in the following table.

tile d point deltas bp correction total
4×4 1 23×2 15×4 7 1×15 128
8×8 1 22 + 21 15×4 26 1×63 192
8×8 1 24×2 24×4 32 1×63 240

5. Evaluation

In this section, we compare the performance, in terms of
bandwidth, of all depth compression algorithms described
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Figure 9: The first row shows a summary of the benchmark scenes. The diagrams in the second row show the average compres-
sion for all three scenes as a function of rendering resolution, for 4×4 and 8×8 pixel tiles. Finally, we show the depth buffer
bandwidth of 4×4 tiles, relative to the bandwidth of a Raw 8x8 depth buffer. It should be noted that this diagram does not take
tile table bandwidth into account.

in this paper. The tests were performed using our functional
simulator, implementing a tiled rasterizer that traverses tri-
angles a horizontal row of tiles at a time. We matched the
tile size of the rasterizer to the tile size of each depth buffer
implementation in order to maximize performance for all
compression algorithms. Furthermore, we assumed a 64 bit
wide memory bus, and accordingly, all our implementations
of compressors have been optimized to make the size of all
memory accesses aligned to 64 bits.

The depth buffer system in our functional simulator im-
plements all features described in Section 2. We used a depth
tile cache of approximately 2 kB, and full precision z-min
and z-max culling. Our tests show that compression rates are
only marginally affected by the cache size.‡ Similarly, the z-
min and z-max culling avoids a given fraction of the depth
tile fetches, independent of compression algorithm. There-
fore, it should affect all algorithms equally, and not affect
the trend of the results.

Most of the compression algorithms have two operational

‡ The efficiency of all algorithms increased slightly, and equally,
with a bigger cache. We tested cache sizes of 0.5, 1, 2 and 4 kb

modes. Therefore, we have chosen this as our target. Further-
more, two modes fit well into a two bit tile-table assuming
we also need to flag for uncompressed tiles and for fast z
clears. It is our opinion that using fast clears makes for a
fair comparison of the algorithms. All algorithms can eas-
ily handle cleared tiles, which means that our compressors
would be favored if this mode was excluded since they have
the lowest bit rate.

We evaluate the following compression configurations

• Raw 4x4/8x8: No compression.
• DDPCM: The one and two-plane mode (not using “es-

cape codes”) of the DDPCM compression scheme from
Section 3.2, 8× 8 pixel tiles. Bit rate: 3/5 bpp (bits per
pixel)

• Anchor: The anchor encoding scheme (Section 3.3), 4×4
pixel tiles. Note that this is the only compression scheme
in the test that only uses one compression mode. One bit-
combination in the tile table was left unused. Bit rate: 8
bpp.

• Plane encoding: Van Hook’s plane encoding mode from
section 3.4, 8×8 pixel tiles. Only the two and four plane
modes were used, since we only allow 2 compression
modes. This algorithm was given a slight favor in form
of a 16.6% bigger depth tile cache. Bit rate: 4/7 bpp.
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• Plane & depth offset: The plane (Section 3.4) and depth
offset (Section 3.5) encoding modes of Orenstein et al,
4× 4 pixel tiles. Bit rate: 8/16 bpp, 8 bits for the plane
mode and 16 bits for the depth offset mode.

• Depth Offset 4x4/8x8: Morein and Natale’s depth offset
compression mode from Section 3.5. We used two com-
pression modes, one using 12 bit offsets, and one with 16
bit offsets. Bit rate: 12/16 bits per pixel for both 4×4 and
8×8 tiles.

• Our 4x4/8x8: Our compression scheme, described in Sec-
tion 4. For the 8×8 tile mode, we used the 192 bit version
of the two plane mode in this evaluation. Bit rate: 4/8 bits
per pixel for 4× 4 tiles and 2/3 bits per pixel for 8× 8
tiles.

Our benchmarks were performed on three different
test scenes, depicted in Figure 9. Each test scene fea-
tures an animated camera with static geometry. Further-
more, we rendered each scene at four different resolutions:
160×120,320×240,640×480, and 1280 × 1024 pixels.
Varying the resolution is a simple way of simulating dif-
ferent levels of tessellation. As can be seen in Figure 9, we
cover scenes with great diversity in the average triangle area.

In the bottom half of Figure 9, we show the compression
ratio of each algorithm, grouped into algorithms for 4× 4
and 8×8 pixel tiles. We also present the compression of the
4× 4 tile algorithms, as compared to the bandwidth of the
Raw 8x8 mode. It should be noted that this relative com-
parison only takes the depth buffer bandwidth into account.
Thus, the bandwidth to the tile table will increase as the tile
size decrease. How much of an effect this will have on the
total bandwidth, will depend on the format of the tile table,
and on the efficiency of the culling.

For 8× 8 pixel tiles, our algorithm is the clear winner
among the algorithms supporting high resolution interpo-
lation, but it cannot quite compete with Van Hook’s plane
encoding algorithm. This is not very surprising considering
that the plane encoding algorithm is favored by a slightly
bigger depth tile cache, and avoids correction terms by im-
posing the restriction that depth values must be interpolated
in the same resolution that is used for storage.

For 4× 4 pixel tiles, the advantages of our algorithm be-
comes really clear. It is capable of bringing the two-plane
flexibility that is only seen in the 8×8 tile algorithms down
to 4×4 tiles, and still keeps a reasonably low bit rate. A two
plane mode for 4× 4 tiles is equal to having the flexibility
of eight planes (with some restrictions) in an 8×8 pixel tile.
This shows up in the evaluation, as our 4×4 tile compression
modes have the best compression ratio at all resolutions.

6. Conclusions

We hope that our survey of previously existing depth buffer
compression schemes will provide a valuable source for the
graphics hardware community, as these algorithms have not

been presented in an academic paper before. As we have
shown, our new compression algorithm provides competi-
tive compression for both 4× 4 and 8× 8 pixel tiles at var-
ious resolutions. We have avoided an exhaustive evaluation
of whether 4× 4 or 8× 8 tiles provide better performance,
since this is a very difficult undertaking which depends on
several other parameters. Our work here has been mostly on
an algorithmic level, and therefore, we leave more detailed
hardware implementations for future work. We are certain
that this is important, since such implementations may re-
veal other advantages and disadvantages of the algorithms.
Furthermore, we would like to examine how to best deal with
depth buffer compression of anti-aliased depth data.
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