
Author preprint. To appear in ACM TOG 35(6).

Texture Space Caching and Reconstruction for Ray Tracing

Jacob Munkberg∗ Jon Hasselgren Petrik Clarberg Magnus Andersson Tomas Akenine-Möller

Intel Corporation

Path tracing 9.0 MRays Our 7.4 MRays Reference Path tracing 9.0 MRays Our 7.4 MRays Reference

Figure 1: By caching and reconstructing shading in texture space, we can significantly reduce noise in Monte Carlo ray tracing. In this
example, we show the Barbarian model with environment map illumination and depth of field. Our system reduces shading noise through
texture space caching and filtering. Additionally, we decouple primary visibility and denoise it separately using layered reconstruction.

Abstract

We present a texture space caching and reconstruction system for
Monte Carlo ray tracing. Our system gathers and filters shading
on-demand, including querying secondary rays, directly within a
filter footprint around the current shading point. We shade on local
grids in texture space with primary visibility decoupled from shad-
ing. Unique filters can be applied per material, where any terms
of the shader can be chosen to be included in each kernel. This
is a departure from recent screen space image reconstruction tech-
niques, which typically use a single, complex kernel with a set of
large auxiliary guide images as input. We show a number of high-
performance use cases for our system, including interactive denois-
ing of Monte Carlo ray tracing with motion/defocus blur, spatial
and temporal shading reuse, cached product importance sampling,
and filters based on linear regression in texture space.

Keywords: ray tracing, reconstruction, shading reuse, global illu-
mination, real-time rendering

Concepts: •Computing methodologies→ Ray tracing; Graph-
ics processors;

1 Introduction

Over the past five years or so, novel reconstruction and filtering
techniques have shown great promise in assisting both stochastic
rasterization and path tracing to substantially reduce total image
generation time. Very briefly, a sparsely sampled image together
with auxiliary data, e.g., surface normals and depth, are fed into a
reconstruction algorithm that attempts to reduce the noise in the in-

∗e-mail:jacob.munkberg@intel.com
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SA ’16 Technical Papers,, December 05 - 08, 2016, , Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982407

put image. The importance of all this research can be seen in that
screen space reconstruction techniques have recently gained trac-
tion in the offline rendering community. However, most of these
techniques take seconds or even minutes per frame and require sev-
eral full-screen auxiliary buffers to guide the reconstruction pro-
cess. In addition, due to an underlying assumption of noise-free
guide images, these approaches struggle when camera effects, such
as defocus and motion blur, are applied. For temporal consistency,
the initial sampling level needs to be substantially increased com-
pared to reconstructing a single frame. Otherwise, temporal, low
frequency artifacts remain.

While systems for accelerating visibility queries, such as Em-
bree [Wald et al. 2014] and OptiX [Parker et al. 2010] help re-
duce the total rendering time, modern workloads have complex
shaders implying that only a fraction of the total time is spent trac-
ing rays [Eisenacher et al. 2013]. Hence, efficient shading reuse for
ray tracing is highly desirable.

We present a system for shading reuse and reconstruction. The key
difference from other reconstruction methods is that ours operates
directly in texture space in order to alleviate some of the previous
limitations. Our system filters and caches shading on the surfaces
of objects in the scene, which enables temporal and spatial shading
reuse. Moreover, the local reconstruction can be material-specific,
so knowledge of the current material can be exploited to guide re-
construction. Filter kernels are applied in texture space and do not
need to handle inter-object visibility, nor do they require (poten-
tially noisy) screen space guide images. As a direct consequence,
we can often use very simple filters. Primary visibility is evaluated
separately and may reuse the filtered texture space shading at an
object hit. We show how efficient primary visibility filters are ap-
plied on top of the filtered texture space shading to obtain noise-free
defocus and motion blur.

Our goal is a flexible system for generating noise-free ray traced
images at modest ray budgets. We shade on quantized grids in tex-
ture space, and the results, although close to reference renderings,
are thus generally neither unbiased nor consistent. However, we be-
lieve this may be an important trade-off to reach low noise levels in
future real-time ray tracing scenarios. In Section 6, we explore a va-
riety of important applications of our system, including stereo/VR
rendering, interactive pre-visualization, spatial and temporal shad-
ing reuse, cached product importance sampling, and a comparison
against state-of-the-art screen space reconstruction.

1



Author preprint. To appear in ACM TOG 35(6).

2 Previous Work

Reconstruction There is a vast body of recent work in Monte
Carlo reconstruction algorithms in the research community. Since
2010, there has been over 20 ACM TOG papers in this area and we
refer to the recent survey by Zwicker et al. [2015] for an extensive
overview.

A common trait in many recent screen space methods is to use a set
of guide images, e.g., normals, depths, distance to closest occlud-
ers, etc., which are used to locally control the filter extents in order
to preserve sharp edges. Cross-bilateral filters based on such guides
can be evaluated in real time [Gastal and Oliveira 2012]. The selec-
tion of guide images and their respective weights are highly scene-
dependent. For example, recent work applied machine learning to
train a large set of weights (for 7 primary and 36 secondary fea-
tures) [Kalantari et al. 2015]. In the presence of defocus and motion
blur, the guide images are noisy, which limit their applicability. In
contrast, we apply filters in the texture space of each object and can
extract noise-free object-specific guides by querying the intersected
object without the need of full-screen buffers. Furthermore, once a
texture space region is filtered, this information does not have to be
persistent in memory, which enables reconstruction within a small
memory footprint.

To filter renderings with sparsely sampled global illumination and
defocus blur, a recent technique [Bauszat et al. 2015] reconstructs
shading per sample before approximating the lens integral over each
pixel. Both steps use adaptive manifolds [Gastal and Oliveira 2012]
based on guide images stored at sample rate. We similarly separate
the reconstruction of shading and visibility, but filter the former
on-demand in texture space using material-specific filters. This
avoids the significant cost of storing multiple sample rate guide
images. As a result of treating visibility separately, we can use
any domain-specific reconstruction method for primary visibility,
including motion and defocus blur, for example, Lehtinen et al.’s
algorithm [2011] or recent filters based on layered scene represen-
tations [Munkberg et al. 2014; Vaidyanathan et al. 2015].

These layered filters are inspired by recent work in frequency analy-
sis, which provides bandwidth estimates for specific effects, includ-
ing soft shadows, indirect illumination, depth of field, and motion
blur [Egan et al. 2009; Egan et al. 2011b; Egan et al. 2011a; Bel-
cour et al. 2013]. The main challenge is to formulate efficient im-
plementations of these high-dimensional filters. With intermediate
4D storage, a fast, approximate formulation of a sheared 4D filter
was recently presented [Yan et al. 2015]. Interactive reconstruction
has been formulated using coarser, axis-aligned filters [Mehta et al.
2012; Mehta et al. 2013; Mehta et al. 2014; Mehta et al. 2015]. An
important advantage of shading in texture space is that we can apply
unique filters per material and can directly apply these bandwidth
estimates in texture space kernels.

Application of separate filters for different effects has previously
been used in ray path decompositions [Zimmer et al. 2015], where
reflectance and irradiance are stored in separate buffers at each
bounce. Unique filters can be tailored for each effect, e.g., one filter
for direct and another for indirect illumination. Our system gives
the additional freedom to fine-tune this separation per material and
avoids the problem of primary visibility noise.

Shading reuse Path space filtering [Keller et al. 2014] locally
stores a vertex per path, typically the first non-specular hit. When
evaluating shading, a kNN-search is performed in a radius around
the path vertex, gathering radiance values from nearby vertices.
Shading is evaluated as a weighted sum of the colors of the ver-
tices within the search radius, which bears some resemblance to

level 0

level 1

level 2

level 3

level 4

unoccupied texel
patch

B

patch A patch C

}

pixel

Figure 2: Our per-face texture space shading structure visualized
using curves and one-dimensional mipmap textures. The footprint
of a pixel on a surface determines the mip level of the shading grid.

photon mapping [Jensen 2001]. Hou and Zhou [2010] use a sim-
pler 2D kNN-search for micropolygon ray tracing for motion and
defocus blur. Meyer and Anderson [2006] use statistical filtering
for spatial and temporal denoising, and suggest storing indirect il-
lumination at the same object space positions in each frame, either
in texture maps or in a point cloud. Our approach is somewhat
similar to these methods, but we explicitly store shading values in
texture space to avoid the expensive kNN-search and corresponding
spatial data structure.

Radiosity rendering methods were likely first to store shading in
textures. Heckbert [1990] used per-face textures to perform den-
sity estimation for diffuse radiosity and recomputed specular effects
separately. Bastos et al. [1997] improved radiosity reconstruction
in texture space using bicubic filtering. Texture atlases can also
be used for radiosity computations [Ray et al. 2003]. Luksch et
al. [2013] precompute light maps using clustering of virtual point
lights. The idea of decoupling shading from visibility is also com-
mon in Z-buffer techniques, and is at the core of the Reyes sys-
tem [Cook et al. 1987] where shading is performed on micropoly-
gon vertices. More recently, similar decoupling has been applied
also to multi-resolution and micropolygon ray tracing [Djeu et al.
2011; Hou and Zhou 2011]. Similarly, we shade at a per-face grid
in texture space. In contrast, we apply reconstruction filters directly
on the grids and do not rely on a tessellation matching our shading
resolution.

Our texture space caching system is inspired by decoupled shad-
ing caches [Burns et al. 2010; Ragan-Kelley et al. 2011; Gribel
et al. 2011] and recent techniques for evaluating and caching shad-
ing in texture space on patches [Clarberg et al. 2014] and triangle
meshes [Andersson et al. 2014; Hillesland and Yang 2016]. Al-
though those methods were designed for rasterization pipelines, we
apply a similar concept in a ray tracing setting where shading is
triggered on demand when a ray hits an object. We extend these
approaches with an additional level of caching to reconstruct and
reuse filtered shading values on-demand.

3 Texture Space Shading and Caching

In this section, we give an introduction to texture space shading,
before introducing our system and contributions in Section 4. The
concept of evaluating and storing shading values on the surfaces
of objects, i.e., in texture space, has been around for quite some
time. Light mapping is an old technique for storing statically com-
puted shading in textures, which are then applied as regular tex-
ture maps in real-time rendering of, for example, games. To handle
dynamically changing environments, shading has to be computed

2



Author preprint. To appear in ACM TOG 35(6).

u
v

uv

uv u
v

uv

uv

u
v

u
v

u

v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

uv

uv u
v

uv

uv

u
v

u
v

u

v

Figure 3: Our system filters and caches shading on grids in texture space by utilizing the parameterization provided by Ptex. At the hit point
(black dot), an appropriate shading grid resolution is computed based on the ray differentials. If the nearest grid cell is not already shaded,
a filter footprint is determined (blue ellipse), and all not previously shaded cells (gray squares) within the footprint are queued for shading.
Shading typically involves sending one or more secondary rays per cell (here one ray per cell, marked by the yellow dots), and accumulating
the result. Once all required cells are available, the reconstruction filter is evaluated in texture space and the filtered color is stored at the
grid cell that triggered the operation (yellow square). The system differentiates between shaded but not already filtered cells (called samples),
and filtered cells (texels), keeping both types cached only for as long as necessary and/or dictated by the cache capacity.

and cached on the fly. The core motivation is to allow costly shad-
ing computations to be amortized by reusing shading spatially and
temporally. Several recent papers have shown how to do this in
rasterization-based systems [Burns et al. 2010; Clarberg et al. 2014;
Hillesland and Yang 2016].

Texture space shading requires a two-dimensional u = (u, v) pa-
rameterization of the surfaces. Tessellated geometry provides a
natural parameterization as each quadrilateral patch is a [0, 1]2 do-
main, and Ptex [Burley and Lacewell 2008] provides the necessary
connectivity between patches. For non-tessellated triangle meshes,
existing texture parameterizations created by artists or automated
tools can be reused [Hillesland and Yang 2016]. In theory, our sys-
tem is thus not limited to any particular type of assets, although we
focus on the rendering of subdivision surfaces in this paper.

For a hit point u on a surface, the appropriate shading resolution
or texture level-of-detail (LOD) is determined based on the screen
space derivatives ∂u/∂x and ∂u/∂y [Gribel et al. 2011; Clarberg
et al. 2014; Hillesland and Yang 2016]. In a rasterizer, these deriva-
tives are given by finite differences, whereas the analogy in ray trac-
ing is ray differentials [Igehy 1999]. The goal is to choose the res-
olution so that a texel is approximately pixel-sized. This can then
be biased towards higher and lower shading resolutions, in order
to trade performance versus quality. Previous work all use slightly
different variations, and we compute the level-of-detail l as

l = log2 min

(
w‖∂u

∂x
‖, h‖∂u

∂y
‖
)
, (1)

where (w, h) is the base resolution of the texture, and l = 0 is
the base resolution and l > 0 smaller mip levels. Note that in
practice, textures are normally arranged in a mipmap hierarchy with
power-of-two resolutions, and often w = h. Equation 1 biases
the shading towards higher resolution when the anisotropy is large,
which avoids over-blurring the shading when viewing a surface at
an acute angle. Figure 2 shows an example.

Once the level-of-detail has been determined, u is quantized to the
nearest texel (û, v̂). We do this conservatively by selecting a mip
level i = blc (again biasing towards higher resolution) and comput-
ing quantized normalized texel coordinates as

(û, v̂) =

(
bu wic+ 0.5

wi
,
bv hic+ 0.5

hi

)
. (2)

It should be noted that if the final shading is filtered by a texture
filter, e.g., trilinear, bicubic, or anisotropic, multiple texels have to
be selected, one per filter tap, rather than a single nearest texel.

The shading computed for a texel (û, v̂) can either be cached in a
sparsely populated mipmap hierarchy [Gribel et al. 2011; Hilles-
land and Yang 2016] or in a fixed-size cache [Clarberg et al. 2014].
We have implementations of both strategies, as discussed in Sec-
tion 5. In the latter case, the cache key is computed as

key = hash(id, i, û, v̂), (3)

where id is a unique patch identifier, and i is the mip level. The hash
function can be any standard hash, and we use a simple scanline
texel ordering (see the supplemental material).

In the next section, we build on these fundamentals to introduce our
novel system for caching, filtering, and reconstructing shading in a
Monte Carlo ray tracer. We show that by moving state-of-the-art
filters to texture space, many unique benefits are made possible. In
addition to this, we believe our work is the first to analyze how well
texture space shading and caching works in a ray tracing context.

4 System

We have extended the publicly available Embree path tracer [Wald
et al. 2014; Benthin et al. 2015] with texture space caching and re-
construction. Our system allocates two different shading caches,
each parameterized in the local uv-coordinates of the face of a sub-
division mesh. These two caches temporarily hold either shading
samples, or filtered shading colors, which we denote texels. Shad-
ing samples are the inputs when reconstructing texels, and may hold
local attributes needed by the reconstruction filter, e.g., normals and
colors. The sample and texel caches are populated on demand as
part of shading and filtering. An overview of our system can be
seen in Figure 3.

Our system generates a full image using the following steps:

1. Trace a set of camera rays. At each intersection, quantize
to an appropriate shading grid resolution of the intersecting
face and retrieve the nearest texel through the texel cache, as
described in Section 3.

3



Author preprint. To appear in ACM TOG 35(6).

2. If the texel is not populated, compute the filter footprint at
this intersection point. The footprint may be a function of the
ray’s screen space extents, i.e., ray differentials, the material
at the hit point, etc.

3. For each shading sample under the footprint, check if it is al-
ready populated in the sample cache, and dispatch non-shaded
samples for shading.

4. Once all samples in the footprint are shaded, apply a recon-
struction filter and store the filtered color at the nearest texel.

In step 3, when shading a sample, we query the surface to obtain
the shading position and normal at the quantized (û, v̂) position
(using the Embree API call rtcInterpolate). In the current
implementation, this function re-evaluates the subdivision surface
at the chosen point. Shading then proceeds as usual by evaluating
material properties, sampling texture maps, and sending secondary
rays etc., depending on how the shader is written.

In steps 2 and 4, any reconstruction filter that operates over a 2D
domain can be applied, and we will show examples of several state-
of-the-art filters. To filter over adjacent faces, we gather samples in
a local footprint with the patch connectivity information provided
by Ptex [Burley and Lacewell 2008]. Since we are filtering on the
surface of objects, all samples under the footprint are known to be-
long to the same object and the filter can exploit material-specific
parameters. This a major strength compared to screen space filters,
which can pull in samples from any surface.

Another strength of our system is that it builds on the same shading
caching mechanisms as have been explored for rasterization-based
systems in the past, and one can imagine a hybrid renderer with
rasterization of primary visibility. Compared to previous work, we
add a second level of caching, as the evaluation of a texel can itself
trigger shading and caching of one or more samples. The samples
are lazily populated in their own shading cache, and can later be
reused when reconstruction filters are applied at neighboring tex-
els. This gives our system a high amount of shading reuse, and
makes it possible to apply reconstruction filters on demand as part
of shading.

To summarize, there are two main benefits of our system: 1) shad-
ing can be reused between rays, and the shading rate is decoupled
from the visibility rate and tessellation, and 2) material-specific re-
construction kernels are applied on-demand in texture space, with-
out storing feature buffers to disk. In Section 6, we will evaluate
these advantages in detail.

Example: Cached and Filtered Indirect Illumination It is easy
to adapt a renderer to use texture space caching. Replace the shader
term that you want to filter with a lookup in the texel cache, and
implement the corresponding callback functions for missing texels
and samples. These callbacks can be seen as the programmable
filter shader and surface shader of the material, similar to how many
current renderers support programmable surface shaders. Below,
we demonstrate our system on a simple path tracing example, where
the indirect illumination is cached and filtered in texture space.

1 // main render loop in standard path tracer
2 L = ComputeDirectLighting(...)
3 L += ComputeIndirect(...)
4 // our main render loop
5 L = ComputeDirectLighting(...)
6 L += TexelCallback(ray, ddx, ddy, filterRadius)

The render loop is divided in direct and indirect components. We
lazily evaluate, filter, and cache indirect lighting for each mesh face.

Ambient
occlusion Filter AO Di�useRust

surface
attribs

GlossyMetal

SpecPaint

Filter metal

Tex 
0..n

Blend

Blend

Tex 
n+1..2

Output

Figure 4: Example shader graph for an artist-created material, in
this case a rusty, painted metal. With our system, reconstruction
filters can be applied at any point in the graph to denoise shader
components. These exploit locality by operating in texture space,
and samples are only kept locally as long as needed.

The TexelCallback function first quantizes the intersection
point to find the nearest texel at the chosen mip. Next, the texel
cache is queried at the nearest texel, and if not in cache, shading is
lazily triggered for all samples within the filter footprint. Finally,
the shaded samples are weighted using a filter kernel of choice, and
the filtered result is stored in the current texel. Subsequent requests
to the same location will reuse the cached texel.

1 float3 TexelCallback(ray, ddx, ddy, filterRadius):
2 faceID = ray.faceID;
3 mip = ComputeMip(faceID, ddx, ddy)
4 uv = ClosestTexel(faceID, ray.u, ray.v, mip)
5 e = texelCache->GetTexel(faceID, uv, mip)
6 if !e.filtered: // gather taps
7 for s in Footprint(mip, filterRadius):
8 fs = SampleCallback(s.faceID, s.uv, mip)
9 w = FilterWeight(...)

10 cacc += fs.color * w
11 wacc += w
12 e.color = cacc / wacc
13 e.filtered = true
14 texelCache->setTexel(faceID, uv, mip, e)
15 return e.color

The SampleCallback function queries the cache, and if no
shaded sample is found at the requested position, the indirect light-
ing is evaluated. Each sample may contain additional attributes
needed by the filter kernel, e.g., surface normals.

1 sample SampleCallback(faceID, uv, mip):
2 s = sampleCache->GetSample(faceID, uv, mip)
3 if !s.shaded:
4 attribs = GetAttribsAt(faceID, uv, mip)
5 s.color = ComputeIndirect(...)
6 s.shaded = true
7 sampleCache->setSample(faceID, uv, mip, s)
8 return s

For clarity in this example, the cache requests are explicitly written
out and the reconstruction filter is a simple weighted average. In
general, the user is free to choose any texture space reconstruction
filter, and can freely decide which shader terms to cache. It is also
possible to hide the caching logic from the shader author.

Per-Material Filters We have the freedom to apply unique tex-
ture space reconstruction filters for each material or shading term,
as illustrated by the example in Figure 4. This mechanism is more
flexible than the approach commonly taken in offline rendering, i.e.,
dump a large set of intermediate render targets, filter each image
channel, and composite them together. We obtain the same effect
as part of shading, and avoid the additional memory traffic. Operat-
ing locally in texture space, our filters can be highly specialized and
take different per-material inputs. Doing this with screen space fil-

4



Author preprint. To appear in ACM TOG 35(6).

Input AM ARLP Our Reference
—

eq
ua

lr
ay

s
—

7.2 MRays relMSE: 0.30 7.2 MRays relMSE: 0.17 7.2 MRays relMSE: 0.068 7.0 MRays relMSE: 0.020 —
Time: 0.55s Time: 0.55s† Time: 0.55s + 0.33s‡ filter Time: 0.80s + 0.050s vis filter —

—
eq

ua
lt

im
e

—

14.4 MRays relMSE: 0.13 14.4 MRays relMSE: 0.14 14.4 MRays relMSE: 0.034 9.5 MRays relMSE: 0.018 —
Time: 1.0s Time: 1.0s† Time: 1.0s + 0.33s‡ Time: 1.0s + 0.050s vis filter —

Input AM ARLP Our Reference

†filtering time excluded. ‡filtering time from our multi-threaded CPU implementation. A GPU implementation may reduce this to about 50%.

Figure 5: Comparison with motion blur and ambient occlusion. All images were rendered at 768×768 pixels, where the first row of insets
(equal rays) were rendered with approximately 7 MRays and the second row (equal time) were rendered in approximately one second. Due to
motion blur, AM and ARLP fail to faithfully reconstruct noise-free visibility at low sample rates, which is revealed by relMSE. Note that this
is true for the equal time renderings, even if filtering times for AM and ARLP are excluded. Please zoom in to clearly see the differences.

ters would quickly lead to a combinatorial explosion, as there may
be thousands of shaders in a scene. For artistic control it is desir-
able to store and composite different image channels. In that case,
we can store already filtered channels, but do not have to dump all
intermediate data.

Furthermore, we can exploit knowledge of the material filter when
gathering samples. For example, if a filter discards taps with a nor-
mal difference over a threshold, we do not need to trigger shading
in locally back-facing regions. As a consequence of filtering lo-
cally, our filters can often be made much simpler than screen space
filters, which have to deal with visibility discontinuities/occlusions
and a mix of different materials. This is a benefit both in terms of
development complexity and execution time. In addition, our ker-
nels directly query the needed surface properties and do not rely on
guide images that may be corrupted by noisy primary visibility.

Primary Visibility Filter When using motion blur or depth of
field, we may optionally apply a filter to reduce visibility noise. Ex-
amples include the TLFR algorithm by Lehtinen et al. [2011] and
filters based on layered representations [Vaidyanathan et al. 2015;
Munkberg et al. 2014]. This is an attractive feature of our system,
i.e., that we can first apply a material-specific filter in texture space
to reduce shading noise and then separately filter visibility.

5 Implementation

We have implemented our framework in C++. The code uses the
Embree ray tracing kernels [Wald et al. 2014] and Ptex [Burley and
Lacewell 2008] for per-face textures on subdivision meshes. Our
code is multi-threaded using OpenMP.

Our filters are executed on-demand as part of shading by weighting
samples in a local region on the intersected object. Currently, fil-

tering is dispatched for individual texels, so we directly evaluate an
O(n2) kernel per texel, where n is the width of the filter. Alterna-
tively, one could dispatch filters for all texels in a patch and exploit
common filter optimizations over a region, using, e.g., separable fil-
ters. However, this may restrict the choice of kernels and increases
buffering requirements. Since the kernels in texture space can often
be made quite simple and of local extent, we have found the flex-
ibility/performance trade-off of directly evaluating simpler kernels
to be favorable, although this is an area for future investigation.

As mentioned earlier, the shading caches for texels and samples,
store values directly at the accessed mip levels of the shading grids.
Cache lookups are performed very frequently and must be efficient.
We therefore use simple direct mapped caches, rather than more
complex replacement strategies, and the cache is designed to min-
imize thread synchronization and potential stalls. When a filter is
evaluated, we first iterate through the footprint and determine if
each sample is either uninitialized, in process by another thread, or
shaded. The current thread will shade uninitialized samples, and
defer samples in process by another thread. The deferred samples
are only revisited after the entire footprint has been processed, by
which time they are likely finished by the other threads. This en-
sures that threads processing overlapping regions will not run in
lock-step, and efficiently limits thread synchronization to once per
filter kernel. In the current system, performance is largely limited
by the performance of the Ptex library and ray tracing.

In scenes with motion and defocus blur, we apply an open source
filter for fast layered 5D reconstruction [Hasselgren et al. 2015] as a
final step. This filter runs on the GPU with full-screen color, depth,
and motion vector buffers as input, while the rest of the system runs
asynchronously on the CPU. The uploading of these buffers to the
GPU currently consumes tens of milliseconds per frame, but these
memory transfers can easily be overlapped by the ray tracing and
shading of the next frame in interactive previews.

5



Author preprint. To appear in ACM TOG 35(6).

6 Results

Next, we show a set of use cases for our system. After that, we
investigate the scaling properties and performance of our algorithm.

There has been a vast amount of work in Monte Carlo reconstruc-
tion algorithms, which makes an exhaustive comparison difficult.
One of the most promising approaches is the work by Moon et
al. [2014; 2015] and we refer to their extensive comparisons for an
overview of expected image quality and run times for recent screen
space filters. When appropriate, we primarily compare to adaptive
rendering with linear predictions (ARLP) [Moon et al. 2015] and
to adaptive manifolds (AM) [Gastal and Oliveira 2012]. ARLP
has proven to be very competitive and supports both an advanced
filter and adaptive sampling. AM is included since it has one of
the fastest implementations of screen space bilateral filtering. Both
methods are run on the CPU with multi-threaded code due to the
lack of publicly available GPU implementations. We have opti-
mized the parameters for both AM and ARLP as best as possible
by trying many different variations. Further comparisons against
some other screen-space filters are included in Section 6.3.

Errors are reported in relative mean-square error (relMSE) [Rous-
selle et al. 2011], which is generated by first computing the sum
of (img − ref)2/(grayscale(ref)2 + ε) over the color channels in
each pixel. The relMSE is then the average of those values over all
pixels in the image, where we have used ε = 0.001. The input data
to each reconstruction algorithm comes from path tracing with low
discrepancy samples.

All measurements are done on a system with two Intel Xeon E5-
2680 v2 CPUs, each having 10 cores and 20 threads. The clock
frequency is 2.8 GHz with a turbo frequency of 3.6 GHz and 32 GB
of memory. The system also has an NVIDIA GTX 980.

6.1 Use Cases

Motion & Defocus Blur with Noisy Illumination We explore
how much we can smooth out noisy ray-traced direct illumination
and ambient occlusion with defocus and motion blur by applying
reconstruction at all appropriate locations of the rendering process.
Figure 5 shows an animated character rendered with ambient occlu-
sion and motion blur, and Figure 1 shows the character with defocus
blur and environment lighting. Our texture space filter is trivial; we
average samples with similar normals in a 13×13 window. More
precisely, if θ is the angle between the sample normals, we include
samples with cos θ > 0.9. Finally, we also apply a layered screen
space primary visibility filter [Hasselgren et al. 2015].

We reuse shading over the shutter time and over the lens, which is a
common approximation even in production rendering (e.g., Pixar’s
PRMan). Furthermore, the cache also enables spatial reuse. Al-
though biased, this approach is useful for interactive preview. For
AM, we have used σs = 6.0 and σt = 0.14, and for ARLP, we
found relMSE to be the lowest using non-adaptive sampling at these
sample rates (e.g., one pass with eight primary rays was better than
two passes of adaptive sampling with an average of four primary
rays in each). The ray traced input images, the AM images, and the
ARLP images were rendered using 8 primary rays and 1 ambient
occlusion ray per primary ray for the first row of insets. This was
changed to 16/1 in the second row (equal time). Neither AM nor
ARLP can reconstruct motion blur with high quality at lower sam-
pling rates due to significant visibility noise, which is also present
in the guide images, so additional primary rays proved most bene-
ficial. In addition, AM overly smooths out the ambient occlusion
noise, which can be seen in the lower row of Figure 5, where the
input image has lower relMSE. At much larger number of rays,
ARLP converges nicely using their adaptive sampling.

Texture space rank Screen space rank

Figure 6: Top: convergence plot comparing per-pixel linear re-
gression in screen space (PP-ARLP), sparse linear regression in
screen space (ARLP), and our linear regression in texture space.
The screen space approaches use two passes with half of the ray
budget each, where in the second pass, rays are adaptively dis-
tributed where needed, as suggested by Moon et al. Our texture
space linear regression does not use adaptive sampling. For this
scene, texture space linear regression has lower error than the
screen space variants. We fixed the primary rays’ screen space
xy-offsets to 16 predetermined positions to isolate shading quality
from primary visibility. Bottom: the rank of the local feature space,
where the heatmap scale goes from 2 (blue) to 9 (red). Note that the
texture space rank is lower overall. We used 64 spp and computed
rank for each texel/pixel for these visualizations.

For AM, we exclude filtering time altogether since the authors re-
port GPU reconstruction times of as little as 1–7 ms at the resolu-
tions we use. We report filtering times for ARLP using our multi-
threaded CPU implementation. However, an optimized GPU im-
plementation could likely reduce this further (Moon et al. report
GPU reconstruction times of about 0.4s for an 1k×1k image). For
fairness, the filtering time is separated for ARLP in the equal time
comparisons, while the numbers for our algorithm include every-
thing. Since our relMSE numbers are still lower, we claim better
performance at these sampling rates. These results show that a very
simple texture space filter is competitive to much more advanced
filters in screen space, and the possibility to apply a separate visi-
bility filter is an important feature of our system.

Linear Regression in Texture Space As a proof-of-concept of
advanced reconstruction in texture space, we have applied the linear
prediction filter with corresponding error estimate (ARLP) [Moon
et al. 2015]. We use a linear model around the center texel c as

f(xi) ≈ f(xc) +∇f(xc)
T (xi − xc). (4)

The feature vector xi consists of the quantized patch coordinates
and surface normal. Unlike ARLP, we do not include depth or tex-
ture as features. Depth is mostly useful to handle visibility edges,
which is not relevant in texture space. The surface texture can be

6



Author preprint. To appear in ACM TOG 35(6).

Figure 7: We compare path tracing (Path), texture space shading
without reconstruction filter (Tex), and texture space shading with
linear regression (TexFilter). We fixed the primary rays’ screen
space xy-offsets to 16 predetermined positions to isolate shading
quality from primary visibility. Upper row: a textured diffuse mate-
rial and low-frequency environment map. By reusing shading com-
putations in texture space, the error is lower at equal number of
rays. With linear regression in texture space, the error is drasti-
cally reduced. Lower row: high frequency environment map and a
GGX material with varying roughness. There is less shading reuse
potential due to high frequency lighting and material properties.
Texture space linear regression efficiently reduces the error.

directly queried at the quantized patch coordinate (û, v̂) and does
not need to be included in the reconstruction, i.e., we have a five-
dimensional feature space, instead of the nine-dimensional feature
space of ARLP. Furthermore, note that the feature normal is noise-
free, as we can directly query it from the surface at (û, v̂). We
gather all samples within a 17×17 texel footprint, and perform a
truncated SVD (TSVD) [Moon et al. 2014] to construct a reduced
feature space. Next, we create a set of linear models, each using
(2k + 1)2 texels, k ∈ 0, 1, . . . , 8, i.e., rings of radius k around
c. We follow Moon et al. [2015] and compute the linear models
using recursive least squares with corresponding error estimation.
The linear model with smallest estimated error is chosen, and its
least-square approximation f̂(xc) is the filtered color of texel c.

In contrast to ARLP, where linear models are adaptively placed in
screen space, we perform linear regression at each texel. An adap-
tive approach in texel space is possible, but requires keeping more
local data cached. We leave that for future work.

The complexity of computing all linear models using recursive least
squares in a footprint withN texels isO(Nd2), where d is the rank
of the reduced feature space [Moon et al. 2015]. Linear models in
texture space can be evaluated faster than the screen space equiva-
lent due to the lower dimensionality of the feature space. If d rep-
resents the rank of the feature space, then we have d ≤ 5 compared
to ARLP with d ≤ 9. In Figure 6, we show how the rank varies
in a simple test scene, and show a convergence plot of texture and
screen space linear regression.

In Figure 7, we show two versions of a scene with environment
map illumination. One purely diffuse with a low-frequency envi-
ronment map, the second with high frequency lighting and a micro-
facet GGX-material with spatially varying roughness. As shown in
the convergence plots, by moving shading to texture space, the error
is slightly lower, as many secondary rays can be shared. Combined
with texture space linear regression, the error is drastically reduced.
The texture space shading resolution governs the amount of shading
reuse. Increased resolution means higher fidelity but less reuse. In
this example, at very large number of rays, the chosen shading res-
olution in texture space caps the convergence rate. For the second
(microfacet) example, we include a material-specific roughness pa-
rameter as an additional scalar feature to the linear regression. This
is a trivial extension in texture space, but is not straightforward in
screen space, given a scene with multiple materials.

We have modified Moon et al.’s error estimation computation
slightly when estimating the error for a single texel (i.e., k = 0)
to favor larger filter kernels at low sample rates. They use the sam-
ple variance of the current texel. We use a 3×3 window, and if
n is the number of samples per texel, we compute a blend factor
β = clamp(1.0 − n/256, 0, 1), and multiply the per-texel vari-
ances with β for all but the center tap when accumulating the vari-
ances. The accumulated variance is then normalized with 1 + 8β,
i.e., the sum of the weights. For n ≥ 256, β = 0 and only the
variance of the current texel is included in the error estimate.

Cached Product Importance Sampling Consider direct illumi-
nation, where the outgoing radiance Lo, in a direction ωo, is given
by the integral over incoming directions, i.e.,

Lo(ωo) =

∫
L(ω)B(ωo, ω)V (ω)dω. (5)

L is the illumination from an environment map, B the reflectance
function, i.e., the BSDF times the cosine term, and V denotes vis-
ibility. Product importance sampling techniques [Clarberg et al.
2005; Clarberg and Akenine-Möller 2008] explicitly derive an im-
portance function of the reflectance function times the lighting
(B × L), which often results in lower variance than multiple im-
portance sampling [Veach 1998] for cases where both B and L are
complex. The main drawback is the cost of building product im-
portance sampling records (PSR), where a 2D slice of B is sam-
pled densely at each intersection point to construct a quad tree over
the samples. A quad tree of the environment map can be precom-
puted. Subsequently, the two quad trees are traversed in parallel to
generate a discretized importance function, which is used to guide
sampling [Clarberg and Akenine-Möller 2008].

To amortize the cost of building the PSR, we propose to adaptively
cache these records on-demand in texture space. All shading lo-
cations within a local footprint can then reuse a single PSR. Our
approach is unbiased, as the cached PSRs are only used to guide
sampling. The example in Figure 8 illustrates the generality of the
texture space caching system, and shows how large data structures
can be cached to accelerate advanced rendering tasks. In addition,
at relMSE=0.01, cached product importance sampling is 4× faster
than product importance sampling and 2.5× faster than multiple
importance sampling. Furthermore, a biased version of this ap-
proach would be even faster.

Diffuse Interreflection In a diffuse scene, our texture space sys-
tem can be seen as a flexible form of irradiance caching (IC) [Ward
et al. 1988]. Both approaches reuse expensive shading terms and
decouple primary visibility from shading. Next, the most important
differences are summarized. IC uses a 3D search structure, while

7



Author preprint. To appear in ACM TOG 35(6).

MIS PIS CPIS (Our) Reference
Render time: 1.24 s 8.4 s 2.0 s -

Figure 8: The Toad scene using a brushed metal material. We show multiple importance sampling (MIS), product importance sampling
(PIS), and cached product sampling (CPIS). The convergence plots show that PIS converges quickly, but is about 7× slower than MIS at
equal number of rays. However, CPIS is 4× faster than PIS at similar quality and about 2.5× faster than MIS.

Irradiance Cache A Irradiance Cache B Irradiance Cache C Our Reference

34 MRays 330k CRs×16 rays 37 MRays 5.3k CRs×1024 rays 37 MRays 21k CRs×256 rays 31 MRays 15 GRays
Time: 9.3 s Time: 10.2 s Time: 9.4 s Time: 2.2 s Time: 784 s

Irradiance Cache A Irradiance Cache B Irradiance Cache C Our Reference

Figure 9: Comparison against irradiance caching. Since irradiance caching is highly configurable, we present equal ray comparisons for
three configurations. A: many, coarsely sampled cache records (CRs), B: few, densely sampled records, and C: a middle ground with more
(decently sampled) records. As can be seen, with few rays per record, there is significant residual noise. With few records, there are visible
low-frequency interpolation artifacts. At the same ray budget, our texture space caching solution has very good quality. The irradiance cache
images were rendered using pbrt-v2’s implementation, while our method uses the Embree ray tracing system, so the render times are not
directly comparable and the lighting is slightly different. On a dual Xeon E5-2680, a path traced version of this scene renders about 3×
faster in our Embree framework than in pbrt-v2 (20.2 MRays/s vs. 6.6 MRays/s). In the comparisons above, we generate similar quality
output using texture space caching 4–5× faster than the irradiance caching renderer in pbrt-v2.

our system stores filtered values in texture space and requires a sur-
face parameterization. IC spends significant effort in placing the
cache records non-uniformly in the scene, with more records in re-
gions with complex visibility. Typically, the cache records are com-
puted in a separate render pass. In contrast, we evaluate and filter
shading over uniform grids in texture space, where the grid resolu-
tion is selected based on ray differentials. In animations, there may
be scintillation artifacts from IC due to temporal visibility changes
and temporally incoherent or noisy cached samples [Keller et al.
2014]. Our shading samples are instead static in object space. We
show examples of temporal shading reuse later in this section.

In Figure 9, we use the irradiance caching implementation avail-
able in pbrt-v2 [Pharr and Humphreys 2010] and compare three
configurations against our texture space system at equal number of
rays. As reconstruction filter for this comparison, we apply a Gaus-
sian kernel in a 20×20 window. We only include samples where
cos θ > 0.9, where θ is the angle between the sample normals.
Visually, the texture space solution is smoother, but still faithfully
captures the illumination changes. An equal-time comparison is

difficult given the two different rendering systems, but note that the
texture space system uses a single pass and avoids the kNN-search
and (multi-threaded) octree updates.

Temporal Reuse Temporal reuse is greatly simplified by shading
and filtering in texture space as samples remain static on the surface
even if the scene animates. For a given texel, we simply accumulate
the current sample to the one already residing in the cache, using a
simple infinite impulse response (IIR) filter,

ci = (1− α) · c+ α · ci−1, (6)

where c is the shaded color for the current frame and ci−1 is the
accumulated color from previous frames. We use α = 0.7 in Fig-
ure 10 and the video. Referring to the accompanying video, note
that image space approaches typically struggle when objects un-
dergo complex motion. For example, Moon et al. [2015] use a
heuristic based on world space positions and similar colors to guide
reprojection. This works well for camera animations, but is less
useful in regions with large object motion or deformation. In those

8



Author preprint. To appear in ACM TOG 35(6).

Input ARLP Our Reference

Figure 10: Two crops from frame 76 of the Barbarian animation.
Please refer to the supplemental video for the full animated se-
quence. Temporal shading reuse in texture space works surprisingly
well from sparsely sampled input.

cases, the motion may cause two completely different points on the
surface to map to similar world space positions in two consecutive
frames. As can be seen in the video, this leads to noise or overblur-
ring. An image comparison is also shown in Figure 10. Temporal
reprojection was not a main focus of Moon et al.’s work, but we
note that it is non-trivial to make screen space reprojection robust
with respect to object motion. Texture space reuse removes most
artifacts related to reprojection. Still, some remaining artifacts can
be seen in regions with rapidly varying shading.

Temporal reuse requires that the cache from the previous frame is
backed by memory, which is a reasonable requirement shared by
other methods. For the animation in the accompanying video, our
cache requires about 93 MB of storage for shading cache and frame-
buffer, while the algorithm of Moon et al. [2015] requires 83 MB
to store all auxiliary buffers and temporal models. Note that cache
storage is roughly proportional to the number of pixels in the ren-
dered image as we only filter visible texels, and mip mapping will
ensure we filter approximately once per pixel.

Shading Reuse for Stereo/VR Our system separates primary
visibility from the remainder of the ray path, so we can easily cache
and reuse view-independent shading between views, and get stereo
rendering at a fraction of the cost of two separate renders. For ex-
ample, in a diffuse scene, only the primary rays need to be traced
for the second view, plus a small amount of new texels shaded due
to disocclusion.

Figure 11 shows an example of the Toad mesh rendered for a head-
mounted display (HMD). In this case, view-independent ambient
occlusion is evaluated, cached, and denoised in texture space, while
the specular paths are re-traced in the second view to obtain cor-
rect specular reflections. Hence, the view-independent effects are
effectively reused between the two views. In fact, rendering the
view for the right eye only adds shading of 8.9% additional texels.
Note that due to the chromatic aberrations in the optical path of the
HMD’s display system, we need to trace individual rays to evalu-
ate the three primaries (red, green, blue) for each pixel. With our
system these three rays are relatively inexpensive as they can share
already evaluated shading to a large extent.

Soft Shadows A number of recent papers use frequency analysis
to provide bandwidth estimates for specific effects, including soft
shadows and indirect illumination [Egan et al. 2009; Egan et al.
2011b; Egan et al. 2011a; Belcour et al. 2013]. In texture space,
we can directly apply these bandwidth estimates to specific shader
terms. As a proof-of-concept, we apply a 4D soft shadow filter pro-

Path tracing: 201 Mrays Ours: 46 Mrays

Figure 11: The Toad model rendered for the Oculus Rift DK2 VR
headset, using 12 primary rays (4×RGB) per pixel and 8 ambi-
ent occlusion rays per hit point. With caching in texture space,
these primaries often reuse already cached shading, whereas a tra-
ditional path tracer would re-evaluate the shader at each hit. An-
other benefit is that view-independent effects are reused between the
two eyes, while specular shading is re-traced for each eye. The two
effects together reduce the total ray count by 4.4×, and only 8.9%
additional texels are shaded to evaluate ambient occlusion for the
second view.

posed by Mehta et al. [2012], which provides bandwidth estimates
based on distance to closest occluder in a local footprint. In Fig-
ure 12, we note that this domain-specific filter in texture space is
more efficient than ARLP when applied to the isolated effect of
shadow filtering.

6.2 Scaling Properties

Cache Size In Figure 13, we illustrate the effect of the sample
shading cache size. A limited cache footprint is particularly benefi-
cial for resource-limited applications, such as ray tracing of massive
models and production rendering. We therefore use high quality
settings and very high resolutions to create similar rendering con-
ditions. As a reference, the frame buffer alone requires 256 MB

Input ARLP MehtaTS Reference

Figure 12: Soft shadow denoising example, where we apply a do-
main specific shadow filter by Mehta et al. in texture space (denoted
MehtaTS) and compare it with ARLP. All examples but the refer-
ence use approximately 19 Mrays.

9



Author preprint. To appear in ACM TOG 35(6).

Figure 13: We render the Toad scene at high resolutions, and vary
the cache size to examine how shading rate scales. The diagram
to the right shows overshading for varying cache sizes and resolu-
tions, when compared to a reference with unlimited storage.

Figure 14: The Car scene with increasing filter size.

of storage at 4K×4K resolution, i.e., not including guide images
(normals, depth, etc.) which are typically required by screen space
filtering approaches. As can be seen from the graph, at this reso-
lution we shade an additional 2% to 27% when the cache size is
reduced from 256 MB to 16 MB, compared to an ideal, unlimited
cache. That is, the cache is efficient even when its size is reduced.

Image Size Referring to Figure 13 again, we note that our sys-
tem scales well with resolution. A 4× increase in resolution can be
counteracted by increasing the cache size by less than 2×. This
is expected, as higher resolution leads to more coherent cache
lookups. In contrast, image-based algorithms rely on guide im-
ages with storage directly proportional to image resolution. For
4K×4K renderings, our implementations of ARLP and AM re-
quire 1088 MB and 640 MB, respectively, for guide images alone.
This may be reduced by using half-float or fixed-point image for-
mats, but this may reduce performance or degrade image quality.
It can be argued that screen space tiling may alleviate this issue,
but we remark that most screen space algorithms are not evaluated
under such circumstances. Tiling may affect reconstruction perfor-
mance, or lead to redundant shading in systems where there is no
easy way to share data in tile guard bands, e.g., in a rendering sys-
tem where tiles are rendered on separate nodes.

Filter Size The graphs in Figure 14 show how shader invocations
and render time scale with filter size. Larger filters increase time
spent in filtering computations, but even with large filters (21× 21
samples), the rendering time is only doubled compared to no filter-
ing at all. Texture space filter footprints may include samples which
are occluded or backfacing from the viewer, causing the number of
shader invocations to grow as the footprint increases. Similarly, in
regions where the mip level changes, samples will be shaded for
both mip levels in the area overlapped by the filter footprint. This
effect may be reduced by propagating shading results up and down
the mip map pyramid [Gribel et al. 2011], but we leave such inves-
tigations to future work.

Shader Level of Detail As previously shown by Clarberg
et al. [2014], we can use the texture space shading cache to perform

Ref LOD 0 LOD 1 LOD 2 LOD 3

Time 14.0 s 6.5 s 3.5 s 2.5 s
Shader inv. 1.2M 0.49M 0.23M 0.14M
Rays 250M 110M 57M 38M
relMSE 0.005 0.012 0.026 0.060

Figure 15: Image crops from the Car scene (Figure 6), with mip
LOD biased by 1-3 levels to reduce shading rate. The shading and
shadowing quality is reduced for higher LOD.

Figure 16: Execution time for the Car scene as a function of the
number of threads, up to the number of cores of our computer.

shader level of detail (LOD) through subsampling. Low-frequency
shading components, such as diffuse indirect lighting and ambient
occlusion, may be evaluated at a rate that is lower than once per
texel without significantly reducing image quality.

We have experimented with a global LOD parameter, which bias
the mip level computation of the shading cache. In Figure 15, we
show performance for varying degrees of subsampling. Generous
speedups are obtained with reasonable image quality. This simple
scheme is beneficial in our pre-visualization application, as we may
increase frame rate further while still keeping shading quality at a
sufficient level. We demonstrate this in the accompanying video.

Thread Scaling In Figure 16, we show execution time as a func-
tion of the number of threads for the Car scene. Our system shows
very similar behavior to that of a path tracer. Hence, it is reasonable
to assume that our parallel cache implementation is efficient from a
threading perspective.

6.3 Comparisons Against Screen Space Filters

We compare against screen space filters in Figure 17, namely robust
denoising using feature and color information (RDFC) [Rousselle
et al. 2013], weighted linear regression (LWR) [Moon et al. 2014],
adaptive rendering using linear prediction (ARLP) [Moon et al.
2015], and a learning based filter (LBF) [Kalantari et al. 2015]. We
used the available source code, and adjusted the settings to get ap-
proximately equal number of rays. RDFC, LWR, ARLP, and LBF
each use a modified version of pbrt-v2 combined with CUDA-
kernels. The other algorithms are implemented in our Embree ray
tracing system (CPU only). Therefore, the render times are not di-
rectly comparable and the shading is slightly different. The source
code for ARLP is not publicly available, but the comparison image
was generated by the ARLP authors on our request.

RDFC was configured with two adaptive passes and the wnd rad
parameter set to 10 (default settings). For LWR and ARLP, four
passes with an average of 4 spp in each iteration was used. For
LBF we used the trained weights accompanying their source code.

10



Author preprint. To appear in ACM TOG 35(6).

Reference (pbrt) RDFC LBF LWR
17 GRays, 2690 s 31 MRays, 7.5 s 31 MRays, 20 s 31 MRays, 15 s

Reference (Embree) Path Our ARLP
15 GRays, 784 s 33 MRays, 1.7 s 31 MRays, 2.2 s 31 MRays, Time: N/A

Figure 17: Comparison against a variety of screen space filtering techniques rendered at 512×512 resolution, with approximately 16
samples per pixel (31 MRays). We compare against robust denoising using feature and color information (RDFC), a learning based filter
(LBF), weighted linear regression (LWR) and adaptive rendering using linear prediction (ARLP). All methods on the upper row, and ARLP
use modified versions of pbrt-v2 combined with CUDA-accelerated filter kernels. The algorithms in the box in the lower row use our
(CPU-only) Embree-based ray tracing system. Therefore, the render times are not directly comparable and the shading is slightly different.

Our algorithm applies a simple texture space kernel for the indirect
illumination. As reconstruction filter, we apply a Gaussian kernel
in a 20×20 window. We include samples if cos θ > 0.9, where θ is
the angle between the sample normals.

All algorithms efficiently reduce the residual noise. At close in-
spection, LBF produces some banding artifacts on the curved ob-
jects. LWR and ARLP overly smooth the hard shadow borders,
which may be due to the lack of visibility as a feature. RDFC faith-
fully captures the shadow borders, but on the car hood, some shad-
ing transitions look overly sharp. Our method uses a very simple
texture space filter and contains some residual noise on the planar
surfaces, but handles the shadow borders and shading on the curved
objects nicely. In terms of execution time, ARLP (as reported in
their paper) and our method have modest overhead compared to a
path traced input, while the other methods have significantly larger
overheads. However, keep in mind that the ray tracing engines are
different in this comparison and that some methods are GPU ac-
celerated. Note also that RDFC, ARLP, and LWR all use adaptive
sampling, while this is left for future work for our method.

7 Limitations

Texture space shading requires a surface parameterization on a per-
patch or per-mesh level, which is often readily available, e.g., we
use Ptex (mostly quad-patches) on subdivision and quad meshes.
For triangle meshes, mesh colors [Yuksel et al. 2010] or existing
texture parameterizations [Andersson et al. 2014; Hillesland and
Yang 2016] could be used. We also need the ability to query the
intersected surface for the position and normal at a texture coordi-
nate. Care must be taken to ensure that the result corresponds to
what an intersecting ray reports, taking tessellation and displace-
ment mapping into account. Previous solutions involve caching
the tessellated triangles and performing a barycentric-to-triangle
lookup [Clarberg et al. 2014]. This is not a major hurdle since trian-
gles are already cached for ray tracing [Wald et al. 2014], although
our current implementation does not yet do this.

One potential disadvantage is that invisible points may be shaded,
adding overhead compared to screen space methods. An example
is shown in Figure 18. One way to avoid this is to trace back to
the camera to exclude occluded points, which may be reasonable

11



Author preprint. To appear in ACM TOG 35(6).

hit point

}filter footprint

Figure 18: A point on the teapot, which intersects the yellow
ground plane, is hit and several shading values are requested in
order to filter shading at the hit point. Some of the shading points
are below the ground plane and may contribute to incorrect shading
since the red samples are not visible from the eye. One may argue,
however, that the object has been positioned in an invalid position.

if shading is expensive. Similarly, backfacing points may be ex-
cluded. Another aspect is that our system can perform accumula-
tion over frames in either texture space or in screen space, but not
simultaneously. The size of the texture space kernels should ideally
shrink with the number of samples for consistency, but that would
require retaining all samples across multiple frames, which is mem-
ory intensive. Path space filtering [Keller et al. 2014] faces a similar
difficulty and propose to hold as many vertices as fits in memory.

8 Conclusion

We have demonstrated the feasibility of a texture space caching sys-
tem within a ray tracing setting, and shown several applications of
shading reuse and filtering. These include interactive rendering of
ambient occlusion with motion blur and depth of field, VR ray trac-
ing, linear regression in texture space, cached product importance
sampling, and temporal reuse. In addition, we have shown that the
shading rate can be easily controlled and that the rate determines
the level of shading reuse. Our system also provides filtering over
adjacent faces/patches, which the streaming nature of rasterization-
based systems cannot handle. The decoupling of visibility and
shading means that (noisy) visibility from defocus and/or motion
blur does not corrupt the cached shading, and as a consequence, ex-
isting screen space filters can be applied to reduce visibility noise
as a post-process. We have only explored a small set of filtering
techniques, and we believe that there is a plethora of work in novel
material filters to be done. Adaptive sampling in texture space is an
interesting avenue for future work, and we believe that techniques
from global, adaptive sampling strategies could be applied.

Acknowledgements Thanks to Robert Toth and Jim Nilsson for
help with implementation and video, Charles Lingle and David
Blythe for supporting this research, and the ARLP authors for help
generating the comparison image in Figure 17. The Toad King is
courtesy of Craig Barr, 2008, Polymorphic3D. The Turtle Barbar-
ian model is courtesy of Autodesk (Jesse Sandifer is the original
artist). The Killeroo subdivison model is courtesy of Headus (meta-
morphosis) Pty Ltd. The car model is part of the OpenSubdiv SDK.

References

ANDERSSON, M., HASSELGREN, J., TOTH, R., AND AKENINE-
MÖLLER, T. 2014. Adaptive Texture Space Shading for
Stochastic Rendering. Computer Graphics Forum, 33, 2, 341–
350.

BASTOS, R., GOSLIN, M., AND ZHANG, H. 1997. Efficient Ra-
diosity Rendering using Textures and Bicubic Reconstruction. In
Symposium on Interactive 3D Graphics, 71–74.

BAUSZAT, P., EISEMANN, M., JOHN, S., AND MAGNOR, M.
2015. Sample-Based Manifold Filtering for Interactive Global
Illumination and Depth of Field. Computer Graphics Forum, 34,
1, 265–276.

BELCOUR, L., SOLER, C., SUBR, K., HOLZSCHUCH, N., AND
DURAND, F. 2013. 5D Covariance Tracing for Efficient Defocus
and Motion Blur. ACM Transactions on Graphics, 32, 3, 31:1–
31:18.

BENTHIN, C., WOOP, S., NIESSNER, M., SELGRAD, K., AND
WALD, I. 2015. Efficient Ray Tracing of Subdivision Surfaces
Using Tessellation Caching. In High-Performance Graphics, 5–
12.

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-Face Texture
Mapping for Production Rendering. In Eurographics Symposium
on Rendering, 1155–1164.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
Lazy Object-Space Shading Architecture with Decoupled Sam-
pling. In High-Performance Graphics, 19–28.

CLARBERG, P., AND AKENINE-MÖLLER, T. 2008. Practical
Product Importance Sampling for Direct Illumination. Com-
puter Graphics Forum (Proceedings of Eurographics 2008), 27,
2, 681–690.

CLARBERG, P., JAROSZ, W., AKENINE-MÖLLER, T., AND
JENSEN, H. W. 2005. Wavelet Importance Sampling: Effi-
ciently Evaluating Products of Complex Functions. ACM Trans-
actions on Graphics, 24, 3, 1166–1175.

CLARBERG, P., TOTH, R., HASSELGREN, J., NILSSON, J.,
AND AKENINE-MÖLLER, T. 2014. AMFS: Adaptive Multi-
Frequency Shading for Future Graphics Processors. ACM Trans-
actions on Graphics, 33, 4, 141:1–141:12.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87), ACM, vol. 21, 95–102.

DJEU, P., HUNT, W., WANG, R., ELHASSAN, I., STOLL, G.,
AND MARK, W. R. 2011. Razor: An Architecture for Dynamic
Multiresolution Ray Tracing. ACM Transactions on Graphics,
30, 5, 115:1–115:26.

EGAN, K., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F., AND
RAMAMOORTHI, R. 2009. Frequency Analysis and Sheared
Reconstruction for Rendering Motion Blur. ACM Transactions
on Graphics, 28, 3, 93:1–93:13.

EGAN, K., DURAND, F., AND RAMAMOORTHI, R. 2011. Prac-
tical Filtering for Efficient Ray-Traced Directional Occlusion.
ACM Transactions on Graphics, 30, 6, 180:1–180:10.

EGAN, K., HECHT, F., DURAND, F., AND RAMAMOORTHI, R.
2011. Frequency Analysis and Sheared Filtering for Shadow
Light Fields of Complex Occluders. ACM Transactions on
Graphics, 30, 2, 9:1–9:13.

EISENACHER, C., NICHOLS, G., SELLE, A., AND BURLEY, B.
2013. Sorted Deferred Shading for Production Path Tracing.
Computer Graphics Forum, 32, 4, 125–132.

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2012. Adaptive Mani-
folds for Real-Time High-Dimensional Filtering. ACM Transac-
tions on Graphics, 31, 4, 33:1–33:13.

GRIBEL, C. J., BARRINGER, R., AND AKENINE-MÖLLER, T.
2011. High-Quality Spatio-Temporal Rendering using Semi-

12



Author preprint. To appear in ACM TOG 35(6).

Analytical Visibility. ACM Transactions on Graphics, 30, 4,
54:1–54:12.

HASSELGREN, J., MUNKBERG, J., AND VAIDYANATHAN, K.
2015. Practical Layered Reconstruction for Defocus and Mo-
tion Blur. Journal of Computer Graphics Techniques (JCGT), 4,
2, 45–58.

HECKBERT, P. S. 1990. Adaptive Radiosity Textures for Bidi-
rectional Ray Tracing. In Computer Graphics (Proceedings of
SIGGRAPH 90), ACM, 145–154.

HILLESLAND, K. E., AND YANG, J. C. 2016. Texel Shading. In
Eurographics 2016 – Short Papers.

HOU, Q., AND ZHOU, K. 2011. A Shading Reuse Method for Effi-
cient Micropolygon Ray Tracing. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH Asia), 30, 6, 151:1–151:8.

HOU, Q., QIN, H., LI, W., GUO, B., AND ZHOU, K. 2010. Mi-
cropolygon Ray Tracing with Defocus and Motion Blur. ACM
Transactions on Graphics, 29, 4, 64:1–64:10.

IGEHY, H. 1999. Tracing Ray Differentials. In Proceedings of
SIGGRAPH 1999, ACM, 179–186.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. AK Peters Ltd.

KALANTARI, N. K., BAKO, S., AND SEN, P. 2015. A Ma-
chine Learning Approach for Filtering Monte Carlo Noise. ACM
Transactions on Graphics, 34, 4, 122:1–122:12.

KELLER, A., DAHM, K., AND BINDER, N. 2014. Path Space
Filtering for Integro-Approximation Problems. In Eleventh In-
ternational Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing.

LEHTINEN, J., AILA, T., CHEN, J., LAINE, S., AND DURAND, F.
2011. Temporal Light Field Reconstruction for Rendering Dis-
tribution Effects. ACM Transactions on Graphics, 30, 4, 55:1–
55:12.

LUKSCH, C., TOBLER, R. F., HABEL, R., SCHWÄRZLER, M.,
AND WIMMER, M. 2013. Fast Light-Map Computation with
Virtual Polygon Lights. In Proceedings of I3D, 87–94.

MEHTA, S., WANG, B., AND RAMAMOORTHI, R. 2012. Axis-
Aligned Filtering for Interactive Sampled Soft Shadows. ACM
Transactions on Graphics, 31, 6, 163:1–163:10.

MEHTA, S. U., WANG, B., RAMAMOORTHI, R., AND DURAND,
F. 2013. Axis-Aligned Filtering for Interactive Physically-based
Diffuse Indirect Lighting. ACM Transactions on Graphics, 32,
4, 96:1–96:12.

MEHTA, S. U., YAO, J., RAMAMOORTHI, R., AND DURAND,
F. 2014. Factored Axis-aligned Filtering for Rendering Multi-
ple Distribution Effects. ACM Transactions on Graphics, 33, 4,
57:1–57:12.

MEHTA, S. U., KIM, K., PAJAK, D., PULLI, K., KAUTZ, J., AND
RAMAMOORTHI, R. 2015. Filtering Environment Illumination
for Interactive Physically-Based Rendering in Mixed Reality. In
Eurographics Symposium on Rendering (EI&I).

MEYER, M., AND ANDERSON, J. 2006. Statistical Acceleration
for Animated Global Illumination. ACM Transactions on Graph-
ics, 25, 3, 1075–1080.

MOON, B., CARR, N., AND YOON, S.-E. 2014. Adaptive Ren-
dering Based on Weighted Local Regression. ACM Transactions
on Graphics, 33, 5, 170:1–170:14.

MOON, B., IGLESIAS-GUITIAN, J. A., YOON, S.-E., AND
MITCHELL, K. 2015. Adaptive Rendering with Linear Pre-
dictions. ACM Transactions on Graphics, 34, 4, 121:1–121:11.

MUNKBERG, J., VAIDYANATHAN, K., HASSELGREN, J., CLAR-
BERG, P., AND AKENINE-MÖLLER, T. 2014. Layered Light
Field Reconstruction for Defocus and Motion Blur. Computer
Graphics Forum, 33, 4, 81–92.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. Op-
tiX: A General Purpose Ray Tracing Engine. ACM Transactions
on Graphics, 29, 4, 66:1–66:13.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering: From Theory to Implementation, 2nd ed. Morgan Kauf-
mann.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics, 30, 3, 17:1–17:17.

RAY, N., ULYSSE, J.-C., CAVIN, X., AND LÉVY, B. 2003. Gen-
eration of Radiosity Texture Atlas for Realistic Real-Time Ren-
dering. In Eurographics 2003 – Short Papers.

ROUSSELLE, F., KNAUS, C., AND ZWICKER, M. 2011. Adaptive
Sampling and Reconstruction Using Greedy Error Minimization.
ACM Transactions on Graphics, 30, 6, 159:1–159:12.

ROUSSELLE, F., MANZI, M., AND ZWICKER, M. 2013. Ro-
bust Denoising using Feature and Color Information. Computer
Graphics Forum 32, 7, 121–130.

VAIDYANATHAN, K., MUNKBERG, J., CLARBERG, P., AND
SALVI, M. 2015. Layered Light Field Reconstruction for Defo-
cus Blur. ACM Transactions on Graphics, 34, 2, 23:1–23:12.

VEACH, E. 1998. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis.

WALD, I., WOOP, S., BENTHIN, C., JOHNSON, G. S., AND
ERNST, M. 2014. Embree: A Kernel Framework for Efficient
CPU Ray Tracing. ACM Transactions on Graphics, 33, 4, 143:1–
143:8.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A
Ray Tracing Solution for Diffuse Interreflection. In Computer
Graphics (Proceedings of SIGGRAPH 88), ACM, 85–92.

YAN, L.-Q., MEHTA, S. U., RAMAMOORTHI, R., AND DURAND,
F. 2015. Fast 4D Sheared Filtering for Interactive Rendering of
Distribution Effects. ACM Transactions on Graphics 35, 1, 7:1–
7:13.

YUKSEL, C., KEYSER, J., AND HOUSE, D. H. 2010. Mesh Col-
ors. ACM Transactions on Graphics, 29, 2, 15:1–15:11.

ZIMMER, H., ROUSSELLE, F., JAKOB, W., WANG, O., ADLER,
D., JAROSZ, W., SORKINE-HORNUNG, O., AND SORKINE-
HORNUNG, A. 2015. Path-space Motion Estimation and De-
composition for Robust Animation Filtering. Computer Graph-
ics Forum, 34, 4, 131–142.

ZWICKER, M., JAROSZ, W., LEHTINEN, J., MOON, B., RA-
MAMOORTHI, R., ROUSSELLE, F., SEN, P., SOLER, C., AND
YOON, S.-E. 2015. Recent Advances in Adaptive Sampling and
Reconstruction for Monte Carlo Rendering. Computer Graphics
Forum (Proceedings of Eurographics), 34, 2, 667–681.

13


