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Figure 1: Left: a Minecraft map with 7M triangles accelerated by our software occlusion culling algorithm as seen by the viewer. Middle: a
top-view rendering where frustum culled geometry has been removed and the viewer is located in the lower right corner. Non-culled geometry
is darker and occlusion culled geometry is brighter. A substantial amount of geometry is occlusion culled before it is sent to the GPU. Right:
a visualization of our hierarchical depth representation, where dark is farther away. Our algorithm uses only 4 ms of CPU time on a single
thread, even when sending all geometry through our software occlusion culling engine. The Neu Rungholt map is courtesy of kescha.

Abstract
Efficient occlusion culling in dynamic scenes is a very important topic to the game and real-time graphics community in order
to accelerate rendering. We present a novel algorithm inspired by recent advances in depth culling for graphics hardware, but
adapted and optimized for SIMD-capable CPUs. Our algorithm has very low memory overhead and is 3× faster than previous
work, while culling 98% of all triangles culled by a full resolution depth buffer approach. It supports interleaving occluder
rasterization and occlusion queries without penalty, making it easy to use in scene graph traversal or rendering code.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Display Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Hidden line/surface re-
moval I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Visible line/surface algorithms

1. Introduction

Environments in modern games and real-time graphics applications
are steadily becoming more dynamic and the user is allowed more
freedom to interact with the virtual world. While this increases im-
mersion and makes the virtual environment feel more like the real
world, it also sets higher demands on data structures and culling
algorithms than ever before.

As a consequence, more and more game engines focus less on
traditional precomputed visibility determination algorithms, such
as potentially visible sets [ARB90, KCCO01, NBG02], and fa-
vor algorithms that rasterize significant occluders to a hierarchi-
cal depth buffer [GKM93]. Some recent examples of this are the
Frostbite engine [And09, Col11], the Umbra occlusion culling en-
gine (http://umbra3d.com/) and Intel’s software occlusion
culling framework [CMK∗16], which all rely on software rasteri-
zation to create a hierarchical depth buffer. This buffer is then used
to perform occlusion queries on the CPU before sending drawcalls

to the GPU. Haar and Aaltonen [HA15] propose a similar system
with the same components, but operating entirely on the GPU.

While accurate occlusion queries are desirable, most systems are
forced to balance performance and accuracy. For example, the work
of Andersson [And09] and Collin [Col11] use a very low reso-
lution depth buffer, and compensate by making occlusion meshes
inner-conservative. However, creating an inner-conservative mesh
is a difficult task. The mesh should be shrunk by the area of one
pixel, which in turn depends on projection and can potentially be
unbounded. This can lead to false negatives or erroneous culling,
and puts high requirements on the artists modeling the occlusion
meshes. In contrast, Intel’s occlusion culling demo uses a full res-
olution depth buffer, and will therefore not suffer from the same
shortcomings. However, performance is likely lower.

Compared to previous approaches, our main contribution is a hi-
erarchical depth representation that efficiently decouples depth and
coverage data. This is key for performance as we can very rapidly
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compute accurate coverage for a tile, essentially making tiles into
our smallest processing unit, rather than pixels as in previous work.
This allows us to keep the benefits of using high-resolution depth
buffers, while reaching performance similar to that of low resolu-
tion [And09,Col11], or even GPU-accelerated approaches [HA15].

Our work is heavily inspired by the recent work by Anders-
son et al. [AHAM15] on masked depth culling for graphics hard-
ware. We propose the following four extensions to their algorithm
to make it more suitable for software implementation.

• An algorithm for generating the coverage mask of a 32×8 pixel
tile in parallel using only a few SIMD-instructions.

• A novel depth update heuristic, similar to that of Anders-
son et al. [AHAM15], but trading accuracy for performance.

• A SIMD-friendly hierarchical depth buffer representation with
low memory overhead, tailored for occlusion culling.

• Low cost occluder rendering and occlusion query interleaving,
enabling simple and efficient scene graph traversal algorithms.

In addition, we provide an optimized implementation of the algo-
rithm. In Figure 1, we show an example of our algorithm applied to
a scene with complex occlusion.

2. Previous Work

For static scenes, one may precompute a potentially visible set
(PVS) [ARB90] or use portals and mirrors [LG95], for example,
and there is a wealth of research done on this topic. However, we
focus here on methods for dynamic occlusion culling since a ma-
jority of applications are non-static.

Greene et al. [GKM93,Gre96] presented the first algorithms that
used a hierarchical depth-based data structure, and this work has in-
fluenced graphics hardware substantially. Zhang et al. [ZMHH97]
introduced hierarchical occlusion maps, which also provided ap-
proximate occlusion testing due to the way their (full) hierarchy
was created. Morein [Mor00] described a hierarchical Z (HiZ) al-
gorithm with just one level in the hierarchy, which gives a number
of advantages in terms of hardware implementation. Most graphics
processors are likely to have some variant of HiZ occlusion culling
in order to improve performance.

Aila and Miettinen [AM04] unified a number of culling methods
into a system that could handle massive scenes with dynamic ob-
jects. The system, called dynamic potentially visible set (dPVS),
appears to have been the basis of Umbra more than 10 years
ago. For a while, Umbra supported both GPU and CPU occlu-
sion culling [SSMT11], but it is currently a software-only engine.
Bittner et al. [BWPP04] built a system based on hardware occlu-
sion queries, where a front-to-back traversal of the scene provided
for better culling together with interleaving of rendering of previ-
ously visible objects and queries. The field of hardware occlusion
queries has matured in itself by providing predicated rendering (ex-
ecuting a drawcall only if an occlusion query is successful, which
avoids costly communication between GPU and CPU), approxi-
mate queries (possibly using the GPU’s HiZ buffer), and an “any
fragments”-optimization which can terminate the query as soon as
a first visible fragment is found. In addition to the software occlu-
sion culling work presented in the introduction, Valient [Val11] ren-
dered a full resolution depth buffer and then conservatively scaled it

A B
Figure 2: An example triangle being rasterized on an AVX2-
capable processor. We traverse all 32× 8 pixel tiles overlapped by
the triangle’s bounding box and compute a 256-bit coverage mask
using simple bit operations and shifts. Note that we must consider
all three triangle edges in the marked (red) tiles, which overlap the
middle vertex (in y), and two edges elsewhere.

down to accelerate occlusion testing and Persson [Per12] computes
convex occlusion volumes from inner conservative occluder boxes,
and culls objects that are fully enclosed in such volumes. There
are also alternative, approximate algorithms that rely on down-
sampling and reprojecting the GPU’s depth buffer from previous
frames [KSS11, HA15] and use hole filling strategies for filling in
missing data. These algorithms may erroneously cull visible ob-
jects, and rely on relatively small changes in frame-to-frame vis-
ibility. Scenes with fast moving dynamic objects are particularly
troublesome as they are not handled well by the reprojection.

3. Algorithm and Implementation

We first implemented our algorithm in Intel’s software occlusion
culling framework [CMK∗16], and will therefore start with a brief
description of their system. Their occlusion culling is divided into
two main passes. The first pass identifies a set of significant,
large occluder meshes, performs basic view frustum and backface
culling, and transforms & rasterizes all non-culled triangles to a
full-resolution depth buffer. The depth buffer is then reduced by
computing the maximum depth for each 8×8 pixel tile, which cre-
ates a one-level hierarchical depth buffer [GKM93, Mor00]. The
second pass performs occlusion queries in software to determine
which objects are visible. The bounding box of each potential oc-
cludee is first view frustum culled and then transformed to screen
space to form a bounding rectangle with a minimum depth, Zbox

min.
The occlusion query is performed by quickly traversing the bound-
ing rectangle and testing the minimum depth, Zbox

min, against the rele-
vant depths stored in the hierarchical depth buffer, Ztile

max. The object
is only classified as occluded if Zbox

min > Ztile
max for all tiles overlapped

by the bounding rectangle.

Our rasterization algorithm is similar to any standard two-level
hierarchical rasterizer [MM00] with two main exceptions, which
will be described in greater detail below. First, we efficiently com-
pute coverage masks from triangle edges for an entire tile in paral-
lel. Since AVX2 supports 8-wide SIMD with 32-bit precision, we
have chosen 32× 8 as our preferred tile size, which is also shown
in Figure 2. As we will see, this allows us to very efficiently com-
pute coverage for 256 pixels in parallel, and it should be easily ex-
tendible to 512 pixels given the upcoming AVX-512 instruction set.
The second difference is our hierarchical depth buffer representa-
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Figure 3: Illustration of how bitshifting is used to create a coverage mask for an 8×8 pixel tile (we use 32×8 in practice). From left to right:
1) For each edge, we start with a bitmask with all bits set to one. 2) The leftmost edge is processed first and zeroes are shifted right until the
edge is met. 3) The second edge is processed and zeroes are shifted in from the right side until the edge is met. In practice we accomplish
this by shifting in zeroes from the left and inverting the final mask. 4) The tile is fully inside the last edge and no shifting is required. 5) All
bitmasks are and:ed together to form the final coverage mask.

tion, which bypasses the need for a full-resolution depth buffer, and
decouples depth and coverage data. This reduces memory usage by
an order of magnitude.

3.1. Efficient Triangle Coverage

Our coverage determination has many similarities with the original
edge fill rasterization algorithm [AW80], but is optimized to gener-
ate coverage for an entire SIMD-register in a few instructions.

First, looking at the scalar case, we rasterize a triangle by track-
ing the left and right events, where the triangle edges intersect each
scanline. They can be found by computing ∆x/∆y slopes for each
triangle edge, and incrementing the left and right events by the cor-
responding slope each time a new scanline is traversed. The slope
for either the left or right event changes when the scanline coin-
cides with the middle vertex (in y). This has been well-handled by
previous work, for example, by splitting the triangle into a top and
bottom part [AJ88].

Given the left and right events for a scanline, we create a 32-bit
coverage mask for 32 pixels in parallel by pre-loading a register
with all bits set, and using shift operations to clear out bits out-
side the range defined by the left and right events, as shown in the
pseudo-code below.

// Compute coverage for the 32-pixels at pos. x,
// given the left and right triangle events
function coverage(x, left, right)

return (~0 >> max(0, left - x))
& ~(~0 >> max(0, right - x))

We let each SIMD-lane operate on a different scanline, effectively
computing coverage for 32× 8 pixels in parallel. The main chal-
lenge in doing so is that while there are only two events per in-
dividual scanline (entering and exiting the triangle), all three edges
may contribute to the coverage of a tile. Therefore, we must modify
our coverage test to the following:

// Compute coverage for 32x8 pixel tile. Params
// are SIMD8 registers with 32 bits per lane
function coverageSIMD(x, e0, e1, e2, o0, o1, o2)

m0 = (~0 >> max(0, e0 - x)) ^ o0;
m1 = (~0 >> max(0, e1 - x)) ^ o1;
m2 = (~0 >> max(0, e2 - x)) ^ o2;
return m0 & m1 & m2;

The edge events, e0-e2, are similar to the left and right events
for the scanline version, and the masks o0-o2 are used to perform
bitwise not if an edge is considered a right event. That is, o1 is 0
for left facing edges and ~0 for right facing edges. This process is
visualized in Figure 3.

A triangle will always have at least one left facing and one right
facing edge, with the final edge being either left or right facing
based on triangle configuration. Thus, two of the xor-operations
above can be removed by sorting the triangle edges. In practice,
we go further than this in optimizing our implementation. The bit
inversion can be determined during triangle setup based on the ori-
entation of the remaining edge, and we use different code-paths
optimized for the two cases. Furthermore, referring again to Fig-
ure 2, we only need to consider all three edges in tiles overlap-
ping the middle vertex (in y). We divide the triangle in top, bottom,
and mid-segments, and only perform the full three edge tests in the
mid-segment using an optimized two-edge version for the top and
bottom part.

Precision Our coverage algorithm does not rely on edge func-
tions [Pin88], and it is therefore difficult to guarantee full compli-
ance with DirectX rasterization rules. For example, we use ∆x/∆y
slopes for tracking left and right events, and the resulting slope
must be rounded to some finite precision, which introduces a round-
ing error. The division operation may also lead to precision issues
for near-horizontal edges, and this is accentuated in our algorithm
due to the large tile size. While inexact rasterization may introduce
false positives, we note that most occlusion culling algorithms for
real-time applications already tolerate a small margin of error. For
example, the occlusion culling demo by Intel [CMK∗16] already
clamps vertex positions to integer coordinates to ensure that edge
functions can be represented using 32-bits. This may introduce an
error of up to one pixel, which is similar in size to the error pro-
duced by our algorithm.

It is possible to use Bresenham interpolation [Bre65] to create a
version of our algorithm that respects DirectX rasterization rules.
Bresenham interpolation does not introduce any precision loss and
can be used to accurately interpolate edges [LKV90]. We have
made an experimental implementation and empirically validated
that it matches the GPU’s rasterizer for a large set of random tri-
angles. However, we leave a SIMD-optimized implementation for
future work, and can therefore make no claims on performance.
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Figure 4: In this example, an 8×4 pixel tile is first fully covered by
a blue polygon, which is later partially covered by a yellow triangle.
Left: our HiZ-representation seen in screen space, where each sam-
ple belongs either to Z0

max or Z1
max. Right: along the depth axis (z),

we see that the yellow triangle is closer than the blue polygon. All
the yellow samples (left) are associated with Z1

max (working layer),
while all blue samples are associated with Z0

max (reference layer).

3.2. Hierarchical Depth Buffer

Our triangle coverage algorithm from the previous section gener-
ates a full AVX bitmask, where each 32-bit SIMD-lane corresponds
to 32× 1 pixels in a 32× 8 tile. We use an inexpensive shuffle to
rearrange the mask so that each SIMD-lane maps to a more well
formed 8×4 tile. For each 8×4 tile, our hierarchical depth buffer
stores two floating-point depth values Z0

max and Z1
max and a 32-bit

mask indicating which depth value each pixel is associated with.
By storing these values as a struct of arrays (SoA) for 4× 2 tiles,
we can efficiently depth test and update eight tiles in parallel using
AVX2 instructions. An example of a populated tile, and its repre-
sentation can be found in Figure 4.

Depth Buffer Update We need a method to conservatively update
our representation each time we rasterize a triangle that (partially)
covers a tile. It is possible to directly use the algorithm proposed
by Andersson et al. [AHAM15], and we have implemented it as
a reference. However, we propose a simpler approach inspired by
quad-fragment merging [FBH∗10], which is less accurate but more
performant. Our heuristic is more sensitive to render order than the
original work. However, it is often in the best interest to use a well
sorted rendering order in an occlusion culling engine, and we have
found it works well in practice.

function updateHiZBuffer(tile, tri)
// Discard working layer heuristic
dist1t = tile.zMax1 - tri.zMax
dist01 = tile.zMax0 - tile.zMax1
if (dist1t > dist01)

tile.zMax1 = 0
tile.mask = 0

// Merge current triangle into working layer
tile.zMax1 = max(tile.zMax1, tri.zMax)
tile.mask |= tri.coverageMask

// Overwrite ref. layer if working layer full
if (tile.mask == ~0)
tile.zMax0 = tile.zMax1
tile.zMax1 = 0
tile.mask = 0
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Figure 5: An example, from Figure 4, of when the Z0
max value (ref-

erence layer) is updated since the working layer (Z1
max) is covered

fully by the yellow and the black triangle.
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Figure 6: Top: two visualizations of the hierarchical depth buffer.
The left image is generated without using a heuristic for discarding
layers. Note that the silhouette of background objects leak through
occluders. The right image uses our simple heuristic and retains
nearly all the occlusion power of an exact depth buffer. Bottom:
our discard heuristic applied to the sample tile from Figure 4. The
black triangle discards the current working layer, and overwrites the
Z1

max value, according to our heuristic. The rationale is that a large
discontinuity in depth indicates that a new object is being rendered,
and that consecutive triangles will eventually cover the entire tile.

Referring to the pseudo-code, we assign the Z1
max value as the

working layer and Z0
max as the reference layer. After determin-

ing triangle coverage, we update the working layer as Z1
max =

max
(

Z1
max,Z

tri
max

)
, where Ztri

max is the maximum depth of the tri-
angle within the bounds of the tile, and combine the masks. The
tile is covered when the combined mask is full, and we can over-
write the reference layer and clear the working layer. This is illus-
trated in Figure 5. For details on how to compute accurate triangle
depth bounds, we refer to pages 856–857 in the book by Akenine-
Möller et al. [AMHH08].

In addition to the rules above, we need a heuristic for when to
discard the working layer. This helps preventing silhouettes leak-
ing through foreground occluders, as illustrated in Figure 6. As
shown above in the updateHiZBuffer() function, we discard
the working layer if the distance to the triangle is greater than the
distance between the working and reference layers. Our update pro-
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Clear Geom Proj Rast Gen Test Total
HiZ 377 33 163 2145 509 278 3505
Mask 23 33 161 584 0 255 1056

Table 1: Performance breakdown for the first frame of the scene in
Figure 7. Time in µs for the algorithmic passes required for gen-
erating the hierarchical depth buffer with the different algorithms.
Note that the total time for our algorithm is only about 1 ms.

Clear clear the exact depth buffer (HiZ) or masked hierarchical
depth buffer (Mask).

Geom select significant occluders and transform vertices to cam-
era space.

Proj per-triangle frustum/backface culling and projection.
Rast triangle setup, rasterization, and depth buffer update (HiZ)

or masked hierarchical depth buffer update (Mask).
Gen generate hierarchical depth buffer from per-pixel depth

buffer (only required for HiZ).
Test transform, project, and occlusion test all occludee objects.

cedure is designed to guarantee that Z0
max ≥ Z1

max, so we may use
the signed distances for a faster test, since we never want to discard
a working layer if the current triangle is farther away. Note that
when discarding the working layer, we clear both the mask and the
Z1

max value to 0, which may seem counter-intuitive. However, Z1
max

is updated using the maximum of Z1
max and Ztri

max, which makes ini-
tialization to 0 correct.

Hierarchical Depth Test While rasterizing occluders, we may
also perform hierarchical depth testing by discarding all tiles where
Ztri

max ≥ Z0
max. Our goal in doing so is not to perform occlusion

queries, but rather to optimize the rasterizer. For all discarded tiles,
we may skip coverage testing and updating the hierarchical depth
buffer. Even though these functions are heavily optimized, the hi-
erarchical depth test is simple enough to improve overall perfor-
mance significantly. Our update guarantees that Z0

max ≥ Z1
max, and

it is therefore sufficient to compare only to Z0
max. This makes our

culling test slightly less expensive than the one described by An-
dersson et al. [AHAM15].

While it seems natural to use hierarchical depth testing, we note
that this option is not available to most CPU-based culling frame-
works [And09,CMK∗16]. Recall that these algorithms compute the
hierarchical depth buffer from the full resolution depth buffer by
finding the maximum depth in each tile. Doing this while raster-
izing occluders would be prohibitively expensive. In contrast, this
option is available to us due to the light-weight update operations
of the masked depth representation.

Discussion Our hierarchical depth representation is similar to the
one proposed by Andersson et al. [AHAM15], but we omit the
Zmin-value as it is not needed for occlusion queries. It could be
useful in a hierarchical culling system for determining if an en-
tire group of objects is completely visible, thereby skipping further
occlusion queries. However, occlusion queries are typically inex-
pensive for visible objects as they may terminate whenever the first
visible pixel is found. Therefore, we leave it for future work to de-
termine if it is worthwhile to maintain the Zmin-value.

Figure 7: Total frame time and time spent on occlusion culling
(dashed lines) for the HiZ and Mask algorithms. For reference
and to motivate that culling is indeed beneficial in this application,
we also include total frame time with occlusion culling disabled
(denoted Frustum). Note that our algorithm is somewhat more
conservative than HiZ and culls 2% fewer triangles, but the total
performance is still much higher.

4. Results

In this section, we evaluate our algorithm (Mask) and compare
performance to the Hierarchical Z buffer algorithm [GKM93]
(HiZ). For reference, we also include simple view frustum culling
(Frustum) with drawcalls submitted in rough front-to-back order.
It represents a GPU limited workload without over-emphasizing
pixel shader cost, as the GPU’s hierarchical depth test will avoid
unnecessary shading in occluded regions.

All measurements were run at 1920× 1080 resolution both for
rendering and the occlusion buffer, and was made on a machine
with an Intel Core i7-4770 processor and a GeForce 760 GTX. We
wanted to focus on pure algorithmic performance rather than multi-
threading, and our algorithm typically runs at real-time rates on a
single core. We see this as a great strength as a game engine could
dedicate the remaining threads to other jobs, such as AI, collision
detection, and physics. With regards to threading, we see no reason
why our algorithm would scale worse than any other rasterization
based approach, but we leave this evaluation for future work.

We have integrated our algorithm into Intel’s software occlusion
culling framework [CMK∗16], and it is also from their framework
we have taken the optimized implementation of HiZ we use as a
performance baseline. This is further discussed in Section 4.1. We
also use a standalone framework built around the strengths of our
occlusion culling algorithm, and this is described in Section 4.2.

4.1. Intel Software Occlusion Culling Framework

The January 2016 version of this framework features a marketplace
scene with 2M triangles, and a 49K triangle occlusion mesh. It uses
an AVX2-optimized version of the Hierarchical Z buffer algorithm,
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Figure 8: The MPI Informatics building scene (courtesy of Max Planck Institute for Informatics). The graphs show time spent on occlusion
culling and total frame time.

and performs occlusion culling in a two step process. The occluder
mesh is first rasterized to a full resolution depth buffer, the depth
buffer is reduced by computing the maximum depth in each 8× 8
pixel tile, and finally occludee objects are occlusion queried against
the lower resolution hierarchical depth buffer.

We made two general optimizations to the framework, which we
have carried over to all evaluated algorithms. First, we removed
the exact bounding box occlusion query, which triangulates and
rasterizes each object’s transformed bounding box with pixel ac-
curacy. We kept only their coarse test, which traverses an object’s
screen space bounding rectangle and tests against the hierarchical
depth buffer. Our second optimization is that we introduced an axis-
aligned bounding box (AABB) tree for the occludees, and perform
hierarchical occlusion queries. Many occludees in the scene are
very small with each occlusion query representing only a handful
of triangles. Rather than modifying the scene, we considered it rea-
sonable to use a tree structure for a workload with this many small
individual objects. While these optimizations make the culling test
more conservative, and classify an additional 1% of the scene tri-
angles as visible, total frame time is reduced significantly.

In Table 1, we show a timing breakdown of the traditional Hi-
erarchical Z buffer algorithm and our algorithm. As can be seen
in the table, our algorithm reduces execution time by almost 4×
for the rasterization pass, which is the target of all our algorithmic
optimizations. Furthermore, we directly operate on the hierarchi-
cal depth representation and can therefore completely skip the pass
for generating the hierarchical depth buffer from the regular depth
buffer. Typically, this is done by computing the max depth of all
pixels in the tile, but we can directly use Z0

max as the conservative
max value. Similarly, the cost of clearing the depth buffer is greatly
reduced as our hierarchical representation uses ∼10% of the stor-
age of the full resolution depth buffer.

Figure 7 shows a breakdown of frame time during a short camera
animation. The diagram shows that total frame time is reduced con-

siderably with occlusion culling, compared to rendering all objects
inside the view frustum. This is in part due to reduced GPU load,
but also the CPU time spent in the rendering code is significantly
reduced. Total frame time with occlusion culling enabled is mostly
limited by CPU performance, and therefore scales very well for our
algorithm. Applications with more complex rendering may be lim-
ited by GPU performance, which diminishes the benefits of faster
culling. However, we remark that CPU time is often a scarce re-
source that the occlusion culling algorithm has to share with many
other tasks.

4.2. Interleaved Rasterization and Queries

We also implemented our algorithm in a stand-alone framework,
where we tailored the traversal and culling algorithm to the
strengths of our rasterizer. As shown in Listing 1, we store the
scene in an AABB-tree, and use a heap to traverse the nodes in ap-
proximate front-to-back order. During traversal, our code performs
frustum and occlusion queries to terminate traversal early.

While this may seem like a textbook example of an occlusion
culling system, we remark that there has traditionally been is-
sues with integrating traversal and occlusion culling this closely.
For software algorithms, such as HiZ, the overhead of generating
the hierarchical depth buffer is typically very large (see Table 1)
which makes it impractical to interleave rasterization and occlusion
queries. Similarly, for GPU algorithms, latency is much too large
to use hardware occlusion queries to guide fine-grained per-node
traversal decision, as this typically leads to synchronization issues
and stalling.

Our algorithm both rasterizes occluders and performs occlusion
queries directly to the hierarchical depth buffer. We therefore do
not incur any penalty from interleaving the two operations, which
makes fine-grained traversal algorithms simple to implement. As
we intend to show with our results, this is beneficial as we need
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Figure 9: Our second test scene is a Minecraft map named Neu Rungholt. The left diagram shows CPU time spent on occlusion culling, but
we have also added the total frame time for frustum culling into the same graph. The curves are directly comparable because the occlusion
culling algorithms efficiently remove almost all GPU work, making rendering CPU-bound. The diagram in the middle shows the number of
triangles submitted to the GPU and the diagram to the right shows the average depth complexity of those triangles.

Listing 1: Traverse and cull in approximate front-to-back order.

function traverseSceneTree(worldToClip)
heap = rootNode
while !heap.empty():

node = heap.pop()
if node.isLeaf():
rasterizeOccluders(node.triangles)
node.visible = true

else:
for c in node.children:

culled = frustumCull(c.AABB)
clipBB = transform(worldToClip, c.AABB)
rect = screenspaceRect(clipBB)
culled |= isOccluded(rect, clipBB.minZ)
if !culled:

heap.push(c, clipBB.minZ)

only perform work proportional to the number of non-occluded tri-
angles.

Our first test scene is shown Figure 8, along with occlusion
culling performance and total rendering time for a short camera an-
imation. The scene contains a total of 73M triangles, but for occlu-
sion we only use the architectural mesh with 143K triangles. This
scene is considerably more complex than the one used in Intel’s
demo and the occluder mesh contains many large but sliver trian-
gles, which are difficult to rasterize efficiently as they typically have
large screen space bounding rectangles. Still, we see that our algo-
rithm performs very well, having by far the best worst case frame
time, and only being outperformed by frustum culling in some very
rare cases which are already running at very high framerates.

Note that we include the HiZ algorithm for reference. This com-
parison was particularly difficult as we needed to balance the cost
of generating the hierarchical depth buffer with the gains of per-
forming fine grained occlusion culling (see Listing 1). We wanted
to keep HiZ as similar to the original implementation as possible,
so we decided to re-generate the hierarchical depth buffer every
N = 100 rasterized leaves as this gave the best overall performance
for both test scenes. It may not be fair to claim a 10× speed up for
our algorithm, but we conclude that it is very robust to complex oc-
cluder meshes, and that the interleaved traversal algorithm is very
beneficial in this scene.

Our second scene, Rungholt, shown in Figure 9, uses the entire
7M triangle mesh both for rendering and occlusion culling, which
makes it our most geometrically complex scene from an occlusion
culling standpoint. For this scene, it is very difficult to compete
with the raw GPU performance of simple frustum culling. We use
a simple surface shader, and the scene only contains one material
and texture, which makes it possible to submit everything to the
GPU without any shader/texture/state changes. We note that our al-
gorithm still performs very well, typically using well below 5 ms
running on a single core, but is outperformed by frustum culling
for some difficult camera positions. We find these results encour-
aging as we use the same assets and are essentially keeping even
steps with a discrete GPU using only a single CPU core, granted
that we only need to rasterize an approximate (but conservative)
hierarchical depth buffer and may exploit the scene data structure
to do early outs. It is possible to change the balance of this scene
by making pixel or vertex shaders more expensive (for example by
adding more light sources) or adding more state changes, and we
can easily tweak it to produce more convincing results but we opted
to keep it unmodified for fairness.

We believe that the gains of occlusion culling would likely be
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Figure 10: We limit the time spent on occlusion culling for one of
the more complex frames of the MPI Informatics building scene,
and study how many triangles and objects are classified as visible.

larger in a complex game engine where we could cull shader/tex-
ture/state changes and all CPU overhead related to managing scene
assets, as in Figure 7. Therefore, we also present the number of tri-
angles submitted to the GPU (see Figure 9) as an indication of the
workload. Note that this value is just an effect of the algorithms, and
independent of their execution time. Recall that the HiZ only re-
generates the hierarchical depth buffer periodically, which explains
why our algorithm culls more triangles for this scene.

Limited Time Budget Occlusion culling is often accelerated by
picking significant occluders using some heuristic approach. Our
traversal is sorted in front-to-back order, and it is therefore reason-
able to assume that the most significant occluders will be rasterized
first. If only a fixed amount of CPU time can be spent on culling,
then we periodically poll the system clock, and simply stop raster-
izing occluders if a given threshold has been exceeded. Occlusion
queries will still be performed, which makes it hard to guarantee to-
tal time spent on occlusion culling, but it is still a powerful way to
balance the cost of the CPU and GPU workloads. Figure 10 shows
the correlation between time spent on occlusion culling and culling
efficiency for the MPI Informatics building scene.

4.3. Scaling

We evaluate how our algorithm scales for various triangle sizes
using a synthetic benchmark which rasterizes 32k right-angled
isosceles triangles with randomized position and orientation. The
triangles are rendered back-to-front to make sure no fragments are
culled by our early depth test, to simplify comparison against HiZ.
As shown in Figure 11, our algorithm scales well for large triangles,
while approaching the performance of HiZ for very small triangles.
This is expected and we argue that it is a good trade-off for occlu-
sion culling. It is relatively easy to create low polygon meshes and
choose only the most significant occluders, and most game engines
already do this as an optimization. In contrast, it is much more dif-
ficult to guarantee correctness when using lower resolution render
targets. The second diagram of the figure shows CPU cycles per
rasterized pixel.

5. Conclusion

We have shown that the masked depth culling algo-
rithm [AHAM15] can be adapted to run efficiently on modern
CPUs. The evaluation shows that our algorithm is extremely

Figure 11: Top: CPU time for rasterizing 32k random occluder tri-
angles with varying size. This includes transform, projection, clip-
ping, backface culling, triangle setup, and rasterization. The two
algorithms begin to converge for very small triangles, but our al-
gorithm scales considerably better for large triangles. Bottom: the
same data normalized to CPU clock cycles per rasterized pixel.

efficient both in terms of performance and culling accuracy, and
we hope that it will inspire future rendering engines. Our algorithm
gives most of the benefits of rendering a full resolution depth
buffer, such as not requiring the occlusion meshes to account
for pixel and tile sizes to give a conservative result, or require
hole-filling heuristics to account for conservative rasterization. At
the same time, we retain much of the performance characteristics
of algorithms using low resolution depth buffers, as we can
compute coverage and update the hierarchical depth buffer for 256
pixels in parallel on AVX2-capable machines.

We hope that our work will inspire future research into conser-
vative but lossy culling algorithms that retain most of the efficiency
of exact algorithms. Future work may further improve on the hier-
archical depth buffer update heuristics to evaluate if depth buffer
quality may be improved without significantly impacting perfor-
mance. Similarly, it is questionable if full 32-bit floating point pre-
cision is really needed to represent the Zi

max reference values, and it
may be possible to improve performance further by packing them
as two 16-bit values instead. It would also be interesting to evaluate
the usefulness of a GPU implementation. Laine and Karras [LK11]
showed that it is extremely difficult to compete with the fixed-
function rasterizer. However, in systems where culling and visible
surface determination is performed using compute shaders [HA15],
there may be some merit in keeping the occlusion culling in the
same kernel.
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