
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Comparison of Projection Methods for Rendering Virtual Reality

Robert Toth†, Jim Nilsson, Tomas Akenine-Möller

Intel Corporation

MPP 2x2Cube 4 Cube 5 MRS 3x3 Baseline MPP 3x3

Figure 1: The different types of projections that we evaluate in this paper. From left to right: BASELINE, CUBE 4, CUBE 5, MRS 3×3,
MPP 2×2, and MPP 3×3, where MRS is multi-resolution shading and MPP is multi-plane projection. Note that the total resolution per
projection is not comparable against other projections (merely to illustrate type of projection).

Abstract
Virtual reality is rapidly gaining popularity, and may soon become a common way of viewing 3D environments. While stereo
rendering has been performed on consumer grade graphics processors for a while now, the new wave of virtual reality display
devices have two properties that typical applications have not needed to consider before. Pixels no longer appear on regular
grids and the displays subtend a wide field-of-view. In this paper, we evaluate several techniques designed to efficiently render
for head-mounted displays with such properties. We show that the amount of rendered pixels can be reduced down to 36%
without compromising visual fidelity compared to traditional rendering, by rendering multiple optimized sub-projections.

1. Introduction

For as long as graphic displays have been around, they have mostly
been regular grids of pixels, and with good reason. Regular struc-
tures are easy to manufacture, easy to index, and easy to render to.
In addition, many man-years have been spent on optimizing raster-
ization on regular structures, so this process is very fast. Regular
grids of pixels have served well as the fundamental image structure
for both 2D and 3D graphics, and continue to do so even today.
As versatile as regular grids may be, they come with one fairly
significant limitation, namely, that they are quite inefficient at rep-
resenting images spanning a wide field-of-view. This inefficiency
stems from two factors. First, the periphery of the display is farther
away from the observer compared to the display center, resulting in
increasing angular pixel density towards the periphery. Second, the
periphery is viewed at an angle, causing perspective foreshortening
and further increasing angular pixel density and anisotropy towards
the periphery. For a display spanning 90◦ field-of-view, the angular
pixel density is 2.8 times as high at the edge as at the center.

† e-mail: robert.m.toth@intel.com

Until recently, this has not been an important issue for most peo-
ple, as we tend to use displays in a manner such that they rarely
subtend more than about 45◦ of our visual field (consider your TV,
computer display, or a typical cinema screen). At such small an-
gles, the edge-to-center angular pixel density ratio is low, a mere
1.3 at 45◦.

New immersive technologies are changing the way we view
virtual environments. In particular, modern virtual reality head
mounted displays (HMDs) present images spanning a much wider
field-of-view than traditional displays. These HMDs are still based
on regular grid displays, located close to the wearer’s eyes. For the
user to be able to clearly see the displayed image, the display sur-
face is viewed through a lens system, making the display appear at
a distance of several meters. These very same lenses serve another
purpose, namely to counteract the poor angular pixel density prop-
erties of the regular grid display. By using lenses with pincushion
distortion, the angular pixel density can be adjusted such that an
undeservedly large fraction of the pixels do not end up in the pe-
riphery. This makes modern HMDs different from typical displays
in a fundamental way as pixels do not appear on a flat, regular grid.

As mentioned above, rasterization-based graphics hardware

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Figure 2: In this paper, we study and evaluate several projection
methods for more efficient VR rendering. Left: standard rendering
for one eye using a single plane. Middle: multi-plane projection
using 4 planes. Right: multi-plane projection with 9 planes.

work on regular grids for good reasons. The incremental cost of
rasterizing a pixel on a regular grid is only three additions and test-
ing of three bits [Pin88]. Furthermore, the reciprocal w-component
is a linear function over the grid, which allows for efficient compu-
tation and storage of depth and other interpolated values. Comput-
ing bounds on primitives is as trivial as computing the minimum
and maximum of projected vertex coordinates. Due to these factors
and others, uniform grids will likely remain the sample pattern on
which rasterization hardware operate (subsamples can have arbi-
trary constant offsets relative to the uniformly spaced pixels, with-
out foregoing the listed benefits.) To bridge the mismatch between
uniformly rasterized grids and the non-uniform appearance of dis-
play pixels, the rasterized image is distorted in a final processing
stage before being displayed. Emerging real-time ray tracing hard-
ware may cast rays directly along the apparent direction of each
pixel, but until such hardware matures, we are bound to continue
rendering and distorting regular grids.

While the distortion stage can compensate for the mismatch be-
tween rasterized grids and the displayed pixel distribution, this
comes at a cost. The grid’s resolution must be adapted to the
worst-case mapping density, lest the distorted result lose sharpness.
Therefore, at highly distorted areas, many pixels may need to be
rendered for each displayed pixel. The mismatch between rasteri-
zation and display can be reduced by using multiple sub-projections
to produce a piecewise regular grid approximation of the non-linear
display distribution. Depending on the distortion function, this can
drastically reduce the required number of rendered pixels.

In this paper, we evaluate several ways of arranging sub-
projections and optimize these as to minimize the required number
of rendered pixels. See Figure 1. We also evaluate visual quality im-
plications both for static images and in animation. Next, we present
an overview of the algorithms that we use in this paper, and as such,
the next section also serves as a review of relevant work.

2. Overview of Algorithms

In this section, we describe different algorithms to render images
used as sources for the subsequent distortion computation. We be-
gin by describing the most relevant algorithms which we have eval-
uated, and conclude this section by giving a brief overview of other
algorithms which we have chosen not to include in our evaluation.
Figure 1 visualizes some of the algorithms we investigate.

2.1. Basic perspective projection

Emerging VR APIs are at the time of writing still in beta stages, but
none seem to provide information aimed at allowing applications to
efficiently render using multiple projections.

We denote the simplest choice of rendering a single image (per
eye) as BASELINE, and it will serve as a reference against which
the other methods can be compared.

2.2. Cube projection

Thirty years ago, Greene and Heckbert [GH86] faced the prob-
lem of wide-angle non-linear pixel distributions when rendering for
Omnimax cinema. In order to produce the 180◦ fisheye-distorted
images required by the Omnimax projector, they saw two options.
They could either modify all of their rendering tools to render di-
rectly in the required non-linear space, or let their unmodified tools
render sides of a cube map [Gre86] and use a separate processing
stage to combine and distort them into the required projection. They
chose the latter approach and introduced the elliptically weighted
average (EWA) filter to achieve high quality distorted images at a
reasonable computational cost.

We evaluate two versions of partial cube mapping, namely, the
four-sided layout proposed by Greene and Heckbert [GH86] for
Omnimax projection and a five-sided layout missing only the rear-
facing side. We refer to these as CUBE 4 and CUBE 5, respectively.

2.3. Multi-Res Shading

NVIDIA introduced multi-resolution shading (MRS) as part of
their Gameworks VR suite [NVI15]. A single projection plane is
divided into a grid of M×N co-planar sub-projections. The resolu-
tion of each sub-projection can be controlled individually, and so it
is a significant improvement over BASELINE. Unlike CUBE 4 and
CUBE 5, it cannot be used for projections exceeding 180◦.

MRS can be implemented using any M × N number of sub-
projections, though symmetry favours odd numbers for M and N.
We refrain from using an excessive number of sub-projections and
concentrate on evaluating only MRS 3×3, which is the number of
planes used in the MRS programming guide.

2.4. Multi-Plane Projection

To reduce the pixel density mismatch between the rasterized image
and the final display image, we present a novel technique which we
call multi-plane projection (MPP). The nonlinear projection is syn-
thesized from M×N connected linear sub-projections. Like MRS,
the required resolution of each sub-projection can be determined in-
dividually. Further, the projection planes of each row and column of
sub-projections can be tilted, stretched, and sheared, while preserv-
ing the original connectivity. This allows a great degree of freedom
in the exact shape of sub-projections. In particular, MRS is a sub-
set of possible MPP configurations. Two examples, MPP 2×2 and
MPP 3×3, are illustrated in Figure 2. We limit our evaluation to
MPP 2×2, MPP 3×2, and MPP 3×3 in order to keep the number
of sub-projections to render within reason.

Lorenz and Döllner [LD09] rendered architectural visualizations

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Figure 3: Left: the four sub-projections of MPP 2×2 are shown
with masking enabled. Parts that are not rendered are here shown
as a gray checkerboard pattern. Right: the distorted result is unaf-
fected by masking, since the masked area is never sampled.

to be projected onto cylindrical surfaces. To avoid the blurring from
resampling a cube map, they divided the cylindrical projection into
160 slices and approximated each by a perspective projection. They
used this piecewise perspective projection (PPP) as an alternative
to a post-process distortion. The authors tried applying PPP to a
generic camera distortion consisting of 32,258 triangular perspec-
tive projections, but achieved performance far inferior to image-
based techniques. While there are similarities between their work
and MPP, there is a major difference in that they sought to replace
image-based distortion processing, necessitating a large number of
sub-projections optimized for direct visualization. Instead, we opti-
mize image-based distortion processing by adapting the source im-
ages to better suit the subsequent distortion.

2.5. Variations

CUBE, MPP, and MRS all use multiple sub-projections to generate
the full projection. The resolution required for each sub-projection
can be determined individually. This can potentially cause a visi-
ble resolution discontinuity where sub-projections meet, if resul-
tions are lowered for performance reasons. We therefore evalu-
ate two variants of these algorithms – unconstrained, where the
resolution of each sub-projection is determined without consider-
ing neighboring sub-projections, and constrained, where the reso-
lutions are constrained such that neighboring sub-projections will
have an equal number of pixels along shared edges, using the high-
est resolution of the connected sub-projections. The constrained
variants thus require as high resolution as the unconstrained vari-
ants at best, and higher resolution in general.

Some regions of the sub-projections will not contribute to the
final warped projection. Rendering to those regions can be pre-
vented by using a stencil buffer [Vla15] or priming the depth buffer,
thus preventing pixel shading from taking place. We refer to this as
masking. An example of masking can be seen in Figure 3. Masking
reduces shading computations and texture bandwidth usage, but it

still requires triangle setup, rasterization, and depth/stencil testing
to take place before the masked pixels can be discarded.

2.6. Other projection techniques

There are other techniques to either directly perform non-linear
projection or otherwise approximate the required pixel density for
later distortion.

Vertex shaders can be used to compute non-linear projections
at vertices [BAS02, LGMM07]. While this method is feasible for
finely tessellated objects, it is unsuitable for triangles spanning
more than a few pixels as interpolation will not match the desired
projection. This can cause various issues, such as visually deformed
geometry and erroneous depth resolution.

With the advent of geometry shaders, bounding shapes of com-
plex projections can be rasterized, leaving per-sample visibility
testing to the pixel shader [TL08, MESL10]. Unfortunately, this
class of algorithms has some significant performance implications.
There is a computational overhead in performing per-sample vis-
ibility tests in the pixel shader, and a large amount of data needs
to be written from the geometry shader for each triangle. Interpo-
lation of depth and other attributes must be performed in the pixel
shader. Early depth testing [MS04] is either disabled (for purely
feed-forward systems) or impaired (for systems including feed-
back.) Planar surfaces no longer have planar depth equations ei-
ther, so compression also suffers [Mor00,HAM06]. For the reasons
listed above, we deem methods of this class infeasible for rendering
complex scenes.

Various modifications to hardware rasterization have been pro-
posed. As discussed in Section 1, non-linear methods [GHFP08]
lack the efficiency of linear perspective projections. Coarse pixel
shading (CPS) [VST∗14, HGF14] has recently been proposed as a
hardware-friendly way of reducing pixel shading, and can be ap-
plied to the periphery of an image to more closely resemble the
desired pixel distribution. CPS does not alter actual pixel density,
and so does not reduce rasterization cost, nor color and depth band-
width usage. While the pixel density shape is more general than
MRS, local densities are limited to powers of two, which limits its
usefulness for our use case.

Guenter et al. [GFD∗12] developed a system for foveated ren-
dering using eye tracking. Their method uses overlapping cascades
of varying size and resolution, with small high-resolution cascades
being composited on top of large low-resolution cascades. A simi-
lar method using cascades could be employed for our purposes as
well. We choose not to evaluate an adaptation of foveated render-
ing as it shares characteristics with MRS but is more constrained
and would have significant overlap between cascades, necessitating
heavy masking.

Finally, while real-time ray tracing may make all of this obsolete
one day, it has yet to prove itself capable of matching or exceeding
rasterization-based systems for real-time rendering.

We have chosen to focus on CUBE, MRS, and MPP. They can
all be implemented on any existing graphics hardware, do not suf-
fer from image artifacts, and are reasonably easy to integrate into
applications.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Listing 1: Pseudocode for stochastic optimization. As the temper-
ature slowly decreases over many iterations, the Perturb function
makes smaller and smaller parameter changes on average.

1 function Optimize(iterations, temperature, cooldown):
2 best_params = initial_parameters
3 best_cost = EvaluateCost(best_params)
4 while iterations > 0:
5 new_params = Perturb(best_params, temperature)
6 new_cost = EvaluateCost(new_params)
7 if new_cost < best_cost:
8 best_params = new_params
9 best_cost = new_cost

10 temperature = temperature * cooldown
11 iterations = iterations - 1
12 return best_params, best_cost

3. Optimization

Each algorithm has a parameter space with some number of degrees
of freedom, which we denote k. The parameter space can include
angles at which projection planes are split, tilting and shearing of
each sub-projection, and so forth. For a full description of the vari-
ous parameter spaces, see Appendix A. We seek the parameter vec-
tor p̂ ∈ Rk that minimizes some cost function C : Rk→ R,

p̂ = argmin
p∈Rk

C(p). (1)

In the following, we will use the term algorithm to mean a partic-
ular configuration of either CUBE N, MRS M×N, or MPP M×N.
Hence, as each algorithm has a pre-determined number of sub-
projections, the cost of culling and issuing drawcalls should not
be particularly sensitive to the exact set of parameters chosen. The
per-pixel costs, on the other hand, are proportional to the sub-
projections’ resolutions, which in turn are highly dependent on the
parameters. We therefore define the cost metric as

C(p) = ∑
i

Ci(p) (2)

Ci(p) = wi(p)hi(p)mi(p), (3)

where wi and hi are the pixel width and height of sub-projection i,
and mi is the masked ratio of the sub-projection. For non-masked
variants, mi = 1. While any optimization strategy can be used to
find the globally optimal parameter vector p̂, we employ stochastic
optimization [PTVF07]. Pseudocode for our implementation can
be found in Listing 1.

There are many ways to define what resolution a given sub-
projection should have. One could turn to Fourier analysis, under
the assumption that the underlying signal is band-limited and will
be perfectly reconstructed. Alternatively, one could base the res-
olution on how a hardware texture sampler would select mip lev-
els when sampling the sub-projections to synthesize the final im-
age. We have opted for a third option, which is to compute resolu-
tions from cell spacings in local lattices as described below. Which
method is preferable is subject to debate, but this is not the focus of
our work. While we expect the results to vary slightly based on the
chosen definition, this is a secondary effect and should not penalize
any specific algorithm.

Pseudocode for how we opted to compute sub-projection reso-

Listing 2: Pseudo-code for determining the resolution of a sub-
projection i with parameters p. This is executed once per sub-
projection for each iteration of the stochastic optimization process.

1 function LatticeResolution(dndx, dndy):
2 if abs(dndx.y) > abs(dndy.y):
3 sx = dndy.x - dndx.x * dndy.y / dndx.y
4 else:
5 sx = dndx.x - dndy.x * dndx.y / dndy.y
6 if abs(dndx.x) > abs(dndy.x):
7 sy = dndy.y - dndx.y * dndy.x / dndx.x
8 else:
9 sy = dndx.y - dndy.y * dndx.x / dndy.x

10 return 2/abs(sx), 2/abs(sy)
11
12 function ViewFrustumCull(v):
13 return abs(v.x) > v.w || abs(v.y) > v.w
14
15 function Percentile(list, percentile):
16 sort_ascending(list)
17 index = list.length * percentile
18 return list[index]
19
20 function Resolution(p, i):
21 M = SubProjectionMatrix(p, i)
22 resolutions_x = empty list
23 resolutions_y = empty list
24 for each display pixel j:
25 clip = M * view_vector[j]
26 ndc[j] = ViewFrustumCull(clip) ? NaN : clip.xy / clip.w
27 for each display pixel j:
28 if ndc[j] is not NaN:
29 dndx = ddx(ndc at j)
30 dndy = ddy(ndc at j)
31 rx, ry = LatticeResolution(dndx, dndy)
32 resolutions_x.append(rx)
33 resolutions_y.append(ry)
34 res_x = Percentile(resolutions_x, 0.99)
35 res_y = Percentile(resolutions_y, 0.99)
36 return res_x, res_y

lutions is presented in Listing 2. Given a set of parameters p, we
first compute the sub-projection matrix Mi corresponding to those
parameters. We then compute the clip-space vector along which
each display pixel appears. We ignore all pixels falling outside the
sub-projection’s frustum, and compute the normalized device coor-
dinates (NDCs) n∈ [−1,1]2, for the remaining pixels. With x,y be-
ing display pixel coordinates, the partial derivatives ∂n/∂x, ∂n/∂y
are used to define a local lattice and a corresponding resolution, as
illustrated in Figure 4. The lattice is computed per display pixel, so
we need to combine all the per-pixel resolution requirements into
one resolution to be used for the entire sub-projection. We simply
use the 99th percentile of requested widths and heights. Our input
vector fields are slightly noisy, and this choice prevents outlier data
from causing resolutions higher than called for.

4. Results

We have optimized the parameters of each of the algorithms dis-
cussed in Section 2, using the process described in Section 3. We
have optimized both with unconstrained resolutions, where each
sub-projection can have any resolution, and with constrained res-
olutions, where adjacent sub-projections must have the same reso-
lution along the shared edge (but not orthogonally to it). We also
optimize for both unmasked and masked variants. Unless otherwise
noted, presented results are unconstrained and are not employing
masking. Where we do present results with masking, we assume
zero cost of masked pixels. The true cost of masking therefore lies

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Optimized costs, megapixels
Device StarVR Vive Pre DK2 DK1

Constrained No Yes No Yes No Yes No Yes
BASELINE 10.49−11.30 10.49−11.30 2.72−3.28 2.72−3.28 1.93−1.93 1.93−1.93 1.15−1.23 1.15−1.23

CUBE 4 6.18−9.56 6.22−10.67 1.74−2.27 1.78−2.31 1.46−1.88 1.46−1.90 0.61−0.79 0.61−0.79
CUBE 5 5.49−5.74 6.93−7.07 1.64−1.73 1.74−1.84 1.41−1.41 1.52−1.52 0.60−0.60 0.77−0.80

MRS 3×3 4.86−5.14 5.51−5.86 1.77−1.98 1.92−2.16 1.39−1.39 1.49−1.49 0.65−0.67 0.74−0.74
MPP 2×2 3.59−4.70 3.60−4.71 1.41−1.87 1.41−1.90 1.19−1.51 1.19−1.51 0.49−0.66 0.49−0.68
MPP 3×2 3.55−4.41 3.58−4.43 1.33−1.68 1.34−1.71 1.16−1.37 1.16−1.38 0.46−0.59 0.46−0.60
MPP 3×3 3.40−4.03 3.64−4.27 1.25−1.47 1.29−1.57 1.12−1.24 1.13−1.28 0.43−0.49 0.44−0.52

Table 1: Amount of pixels that need to be rendered per eye for each algorithm. Constrained configurations use matching resolutions along
edges between sub-projections. The lower bound of the ranges employ masking, while the upper bound does not. Masked configurations do
not count peripheral pixels not contributing to the distorted image. All devices benefit from using multiple sub-projections, but the advantage
is largest for devices with wide field-of-view, such as StarVR. Of the tested algorithms, MPP 3×3 consistently outperforms the others.

PLANTS SANMIGUEL SIBENIK SPONZA VILLA

St
ar

V
R

V
iv

e
Pr

e
D

K
2

D
K

1

Figure 6: Left eye view of five scenes from PBRT, rendered for three HMDs. We evaluate the different algorithms using these scenes to
demonstrate that the algorithms are equivalent in terms of visual quality when using high-quality distortion. Rendered images for all scenes,
algorithms and most HMDs are available as supplemental material.

Image quality compared to ground truth
Scene PLANTS SANMIGUEL SIBENIK SPONZA VILLA

BASELINE 42.4±1.6dB 31.4±1.0dB 40.3±2.4dB 34.2±1.3dB 31.9±1.6dB
CUBE 4 42.2±2.1dB 30.8±2.5dB 39.1±2.2dB 33.9±2.0dB 32.9±2.0dB
CUBE 5 41.7±1.9dB 30.4±1.5dB 39.5±2.7dB 33.6±1.7dB 31.6±1.8dB

MRS 3×3 41.6±1.9dB 30.6±1.4dB 39.0±2.3dB 33.8±1.6dB 31.7±1.7dB
MPP 2×2 41.0±1.0dB 29.8±1.0dB 38.3±1.8dB 32.9±1.4dB 31.0±1.5dB
MPP 3×2 41.0±1.1dB 29.7±1.2dB 38.5±2.0dB 33.2±1.3dB 31.1±1.5dB
MPP 3×3 40.9±1.3dB 29.6±1.3dB 38.4±2.1dB 33.1±1.5dB 31.0±1.5dB

Table 2: For each scene, the PSNR of each algorithm as compared to a high quality reference ray traced directly in distorted space. Each
data point shows the range of PSNR for three of the HMDs (StarVR, DK1, DK2). As can be seen, the choice of algorithm has a rather
insignificant impact on quality. The small variations most likely primarily stem from resolution differences (c.f. Table 1).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Figure 4: Given two NDC vectors (red), we construct a lattice
(black). Each axis of the lattice periodically crosses the green x-
and y-axis. Pixel spacing is chosen based on the first intersections
(blue circles) along both the x-and y-axis. The sub-projection res-
olution follows from the required pixel spacing (yellow rectangle).
This corresponds to lines 1–10 in Listing 2.

Figure 5: A scene rendered for the left eye of the four devices
used for our results. From left to right: Starbreeze StarVR (2560×
1440), HTC Vive Pre (1080× 1200), Oculus DK2 (960× 1080),
and Oculus DK1 (640×800).

somewhere between the reported non-masked and masked results,
depending on the application (see Section 2.5 for details.) We have
performed all of the optimizations using four different lens distor-
tions: an Oculus DK2 using its ‘A’-lenses, providing 100◦ field-of-
view in 1.04 MP per eye with low distortion; an Oculus DK1 using
its ‘A’-lenses, providing 110◦ field-of-view in 0.51 MP per eye with
more distortion; an HTC Vive Pre, providing 110◦ field-of-view in
1.30 MP per eye with similar distortion; and a Starbreeze StarVR,
prodiving 210◦ field-of-view in 3.69 MP per eye with the largest
distortion of the four devices. The four distortions are shown in
Figure 5. For each algorithm, the total number of pixels summed
over each sub-projection is listed in Table 1.

To validate the correctness and image quality of each algorithm,
we have rendered several scenes with each of them using PBRT
(extended with more flexible camera models.) These can be seen
in Figure 6. Reference images were produced by directly ray trac-

Batch count and render time
Device StarVR Vive Pre DK2 DK1

BASELINE 231 (9.4 ms) 215 (1.2 ms) 207 (1.2 ms) 213 (1.2 ms)
CUBE 4 433 (9.6 ms) 426 (2.6 ms) 410 (2.7 ms) 440 (2.8 ms)
CUBE 5 450 (8.3 ms) 432 (2.7 ms) 424 (2.7 ms) 431 (2.7 ms)

MRS 3×3 666 (10.4 ms) 636 (4.3 ms) 617 (4.3 ms) 620 (4.2 ms)
MPP 2×2 390 (6.5 ms) 395 (2.4 ms) 373 (2.3 ms) 424 (2.5 ms)
MPP 3×2 477 (7.1 ms) 508 (3.2 ms) 488 (3.1 ms) 527 (3.4 ms)
MPP 3×3 630 (8.5 ms) 674 (4.4 ms) 631 (4.3 ms) 654 (4.3 ms)

Table 3: Number of batches issued by Unity 5.3 to render the scene
shown in Figure 9, as well as corresponding render times for our
user-space implementation.

Reference BASELINE LQ MPP 3×3 LQ

Figure 7: Impact of using multiple sub-projections instead of one
when trading distortion performance for quality. The reference dis-
torts the single BASELINE sub-projection with 64 EWA filtered
samples using PBRT. BASELINE LQ and MPP 3×3 LQ are dis-
torted using a single bilinear sample per pixel. Heavy minification
in the periphery with BASELINE LQ causes aliasing. MPP 3×3
LQ has less minification and therefore exhibit no visible aliasing.
Near the image center, minification is modest for both algorithms,
resulting in similar quality for both.

ing the distorted image, using a per-pixel distortion map contain-
ing camera-space view vectors. A large number of rays were used
(256 rays/pixel) to eliminate Monte-Carlo noise. For the remaining
images, each sub-projection was first ray-traced to an image with
a large number of rays (256 rays/pixel) to eliminate Monte-Carlo
noise. The resulting images were then texture mapped onto planes
corresponding to each sub-projection, and these were subsequently
ray traced using the reference method at 64 rays/pixel to produce
the distorted images. Table 2 shows, for each scene, PSNR of each
algorithm as compared to the reference rendering. The quality of
warping from sub-projection to the final image will be limited by
real-time constraints. We have therefore included a comparison of
how the different algorithms fare when only a single bilinear tex-
ture lookup is used per display pixel in Figure 7.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90

DK2

bi
n

sp
re

ad

cone half angle (degrees)

MPP 2x2
MPP 3x2
MPP 3x3
MRS 3x3

1

1.5

2

2.5

3

3.5

4

4.5
 MPP 3x2

bi
n

sp
re

ad

0 10 20 30 40 50 60 70 80 90
cone half angle (degrees)

DK1
DK2
StarVR

Figure 8: In these diagrams, we show bin spread (overlap) over
sub-projections as a function of the half-angle of a cone. Top:
bin spread for MPP and MRS when rendering for the DK2. Bot-
tom: bin spread for MPP 3×2 when rendering for DK1, DK2,
and StarVR. The simulated cones represent object bounds used for
culling purposes. At one extreme, an object with small extents is un-
likely to straddle the border between sub-projections, thus having
an average bin spread near 1. At the other end, objects subtending
a large angle overlap many of the sub-projections on average.

Figure 9: The Blacksmith scene by Unity. We have created multi-
camera setups in Unity 5.3 for each algorithm, and measured the
number of batches issued by Unity to render them all, as well as
render time (see Table 3.) From left to right: StarVR, DK2, & DK1.

When rendering to multiple sub-projections, drawcalls of a
scene should not be re-submitted to the GPU once for each sub-
projection. Instead, view-frustum culling should be performed for
each sub-projection in order to issue drawcalls only to the sub-
projections which the geometry overlaps. Figure 8 shows a chart
of expected overlap, also called bin spread [CSI∗98], as a function
of object size. We numerically simulate bin spread for the opti-
mized configurations by randomizing cone directions and comput-
ing cone-frustum intersections. We vary cone half-angles between
zero and 90◦ (i.e., a solid angle of 2π sr,) and disregard from any

cone not intersecting any sub-projection frustum so that we simu-
late only objects that need to be rendered.

To see the effect using a professional game engine and high
quality assets, we have created user-space camera configurations
in Unity 5.3 for all of the techniques, and rendered the Blacksmith
scene shown in Figure 9. The number of drawcalls used for the var-
ious algorithms is listed in Table 3. The render times on our system
(Intel Core i7-3960X, NVIDIA GTX 970) are also included.

5. Discussion

The authors believe immersive display technology will continue
to increase in field-of-view, and that it is time to rethink the way
we use rasterization to render for such displays. While most first-
generation consumer-grade VR equipment will likely have charac-
teristics close to those of DK2 or Vive Pre, we believe this will
rapidly shift to be more in line with StarVR, and then continue be-
yond what is achievable today. The exact nature of angular pixel
distribution remains an open question, but it seems clear that the
single planar projection (BASELINE) used for traditional displays
is ill-suited for this type of immersive technology. In the long term,
ray tracing may make emerging display pixel distributions a non-
issue, but for now, rasterization remains the only viable option for
high quality real-time graphics in immersive environments. Luck-
ily, rasterization can be used in different ways than originally en-
visioned, and we have therefore investigated several ways in which
to make rasterization better suited for this new task.

The base premise of most techniques we have looked at is that
by rendering several sub-projections instead of just one, each pro-
jection can be made significantly less expensive by locally lower-
ing the resolution without compromising visual quality. We have
showed in Table 2 that all methods presented meet high quality
standards for the final images, and Figure 7 shows that most of
them work better than BASELINE even when distortion process-
ing is implemented with performance, rather than quality, in mind.
It is worth noting that any image quality issues in rendering the
sub-projections themselves will propagate to the distorted end re-
sult. Geometric aliasing may make the underlying planar structure
noticeable as the orientation of staircase artifacts will change at
sub-projection borders. While a full user study is outside the scope
of this work, subjective evaluation by the authors did not reveal
any visible artifacts at sub-projection edges using the optimized
parameters. When lowering the resolution by 2× in each direction,
such a change in aliasing pattern could be noticed, but the authors
found the effect to be insignificant in comparison to the aliasing
itself, which under those circumstances was highly objectionable.
Theoretically, if the distortion processing exhibits sharpness pat-
terns due to aliasing when sampling sub-projection texels, those
patterns may abruptly change characteristics where sub-projections
meet. Again, subjective evaluation by the authors did not reveal any
sharpness patterns, neither at sub-projection edges nor elsewhere.
We therefore recommend using non-constrained, non-planar meth-
ods, as these provide the largest savings, with no visible down-
sides. Constrained or co-planar methods should only be used if
application-specific algorithms require some aspect thereof, such
as each edge pixel having a single well-defined neighbor in the ad-
jacent sub-projection.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

Absolute performance is, as always, highly dependent on the
content being rendered. It also depends on how optimized the ren-
dering engine is for the techniques being employed. We have there-
fore focused on two key metrics, namely, the total number of pix-
els spanned by all sub-projections, and the statistically expected
number of sub-projections overlapped by objects. The first met-
ric should correlate well with per-pixel work, such as rasterization,
pixel shading, texture bandwidth usage, and so on. The second met-
ric should correlate well with CPU overhead for dispatching draw-
calls and GPU time for state changes and vertex processing.

Looking at the pixel metric in Table 1, we make several observa-
tions. Using multiple sub-projections is highly beneficial, with up
to 64% reduction of pixels compared to BASELINE. The difference
depends on the amount of distortion, and highly distorted devices
have more to gain by using multiple sub-projections. CUBE 5 often
falls between MPP 2×2 and MPP 3×2, as might be expected from
the number of sub-projections, but its topology requires opposing
sub-projections to be parallel to each other, which limits its flexibil-
ity and causes it to perform rather poorly in some cases. MPP 2×2
is better than MRS 3×3 with high distortion, and vice versa with
low distortion, so the choice seems to depend on the devices being
targeted. As expected, MPP 3×3 is superior to MRS 3×3 with an
equal amount of sub-projections due to the additional degrees of
freedom it offers.

With regards to the overlap metric, Figure 8 shows that using a
set of N sub-projections does not increase bin spread by N. Many
objects are contained entirely within a single sub-projection and do
not incur significantly more processing overhead than if we were
to render only a single projection. This is also evident in Table 3,
where we implement the algorithms in Unity 5.3 to verify this the-
ory. For 4, 5, 6, and 9 views, we get average bin spreads of 1.8, 2.0,
2.3, and 2.9, respectively. It is worth noting that the Unity game en-
gine is unaware of the coherent nature of the sub-projections, and
is rendering one camera to completion at a time.

With only simple pixel shading and a naïve implementation of
rendering multiple sub-projections, the overhead of rendering ob-
jects several times outweigh the savings from reduced pixel pro-
cessing. This can be seen in Table 3, where only StarVR (the
highest-resolution device) has enough pixels for this to be the dom-
inating cost. Should the algorithms be implemented and optimized
for in the engine, performance per sub-projection would likely im-
prove. Modern graphics APIs such as Direct3D12, Vulkan, and
Metal, have been designed to dramatically reduce the cost of is-
suing many drawcalls, further making the CPU overhead less of
an issue. There are many ways in which multiple projections can
be rendered on modern graphics hardware, some of which we list
here.

1. One projection can be rendered to completion at a time. This is
what our proof-of-concept implementation in Unity does.

2. Geometry shaders can replicate primitives to sub-projections.
3. Instancing can be used to do the same using extensions (e.g.,

GL_AMD_VERTEX_SHADER_VIEWPORT_INDEX which is
supported by all major vendors), typically with better perfor-
mance than using a geometry shader.

4. MRS was most probably specifically designed to leverage
the GL_NV_viewport_array2 extension, with which MRS

can be rendered in a single pass by careful configuration of
viewports and scissor regions.

5. A recent extension, GL_OVR_multiview, allows all algo-
rithms we have evaluated to be rendered in a single pass.

The resolution requirements we present assume the target pixel
density to match the display pixel density. Targeting a higher den-
sity to increase sharpness is possible even in the presence of multi-
ple sub-projections, by simply scaling the resolution of each. Simi-
larly, dynamically scaling resolution to achieve performance goals
is also possible, though magnification during distortion may reveal
the underlying plane structure if scaling down too agressively.

Regardless of chosen algorithm, the use of multiple sub-
projections makes image-space processing techniques (e.g., bloom,
defocus and motion blur, SSAO) more difficult to perform pre-
distortion, as filter footprints may extend into adjacent sub-
projections. Using the constrained variants may make such tech-
niques easier to implement, but still more complex than for BASE-
LINE. It is worth noting that many image-space effect implemen-
tations are uniform over a projection, thus assuming a reasonably
small field-of-view. This may translate poorly to VR unless they are
adapted to take projection properties into account such that they fil-
ter over the desired solid angle.

We used the devices’ distortion to define our required sub-
projection resolution. It is conceivable to use other targets as well,
e.g., an ad-hoc importance map or based on the human visual sys-
tem. However, optimizing the parameters of an algorithm takes
considerable time, so we do not believe these algorithms should be
used for eye-tracking purposes unless parameters are pre-computed
and tabulated in some way. It might be better to combine one of the
presented algorithms with foveated rendering [GFD∗12] or coarse
pixel shading [VST∗14] to efficiently render both the foveal region
and the periphery.

Overall, we feel that MPP 2×2 should meet the needs of appli-
cations in the immediate future, and that MPP 3×3 might be a good
choice in a few years when consumer devices with wider field-
of-view become widely available. Any application implementing
MPP should be able to support various layouts and choose a suit-
able one depending on the connected HMD and on GPU perfor-
mance characteristics.

6. Future work

We believe eye tracking cameras will be an essential component
in future HMDs due to their versatility. They can be used for au-
tomatic calibration, adjust for pupil location dependent lens distor-
tion, interaction in virtual worlds, establishing eye contact in social
applications, and accelerate rendering. We therefore see rendering
for devices with wide field-of-view in the presence of eye tracking
as an important avenue of future work, exploring the best way of
combining the distortion-based wide field-of-view algorithms pre-
sented herein with foveated rendering based algorithms.

A user study for finding subjectively acceptable ad-hoc resolu-
tion target maps for different HMDs would be useful in further re-
ducing the computational cost than what our objective resolution
target allows. Ideally, HMD vendors should provide APIs to query

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

R. Toth & J. Nilsson & T. Akenine-Möller / Comparison of Projection Methods for Rendering Virtual Reality

such data (or directly provide sub-projection configurations) based
on such user studies conducted for each specific device.

Efficient distortion-aware image-based techniques need to be de-
veloped for special effects we have come to expect from modern
3D graphics, such as bloom, defocus blur and motion blur. Filter
kernels that have been separable when rendering for traditional dis-
plays may no longer be so due to spatially varying filter footprints,
and so new algorithms may be required to tackle these issues again.
These algorithms also need to be adapted to seamlessly filter over
multiple sub-projections.

Acknowledgements

We would like to thank Emmanuel Marquez and Lionel Anton at
Starbreeze for providing us with distortion data for StarVR. We
would also like to thank Alex Vlachos at Valve for providing us
with a Vive Pre, and Warren Hunt at Oculus for providing us with
DK2s. Finally, we would like to thank David Blythe and Charles
Lingle at Intel for supporting this research.

References
[BAS02] BRABEC S., ANNEN T., SEIDEL H.-P.: Shadow Mapping for

Hemispherical and Omnidirectional Light Sources. In Computer Graph-
ics International (2002), pp. 397–408. 3

[CSI∗98] CHEN M., STOLL G., IGEHY H., PROUDFOOT K., HANRA-
HAN P.: Simple Models of the Impact of Overlap in Bucket Rendering.
In Graphics Hardware (1998), pp. 105–112. 7

[GFD∗12] GUENTER B., FINCH M., DRUCKER S., TAN D., SNYDER
J.: Foveated 3D Graphics. ACM Transactions on Graphics, 31, 6 (2012),
164:1–164:10. 3, 8

[GH86] GREENE N., HECKBERT P.: Creating Raster Omnimax Images
from Multiple Perspective Views Using the Elliptical Weighted Average
Filter. IEEE Computer Graphics and Applications, 6, 6 (June 1986),
21–27. 2

[GHFP08] GASCUEL J.-D., HOLZSCHUCH N., FOURNIER G.,
PÉROCHE B.: Fast Non-Linear Projections using Graphics Hardware.
In ACM Symposium on Interactive 3D Graphics and Games (2008),
pp. 107–114. 3

[Gre86] GREENE N.: Environment Mapping and Other Applications of
World Projections. Computer Graphics and Applications, IEEE 6, 11
(November 1986), 21–29. 2

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: Efficient Depth
Buffer Compression. In Graphics Hardware (2006), pp. 103–110. 3

[HGF14] HE Y., GU Y., FATAHALIAN K.: Extending the Graphics
Pipeline with Adaptive, Multi-Rate Shading. ACM Transactions on
Graphics, 3, 4 (2014), 142:1–142:12. 3

[LD09] LORENZ H., DÖLLNER J.: Real-time Piecewise Perspective Pro-
jections. In International Conference on Computer Graphics Theory and
Applications (2009), pp. 147–155. 2

[LGMM07] LLOYD D. B., GOVINDARAJU N. K., MOLNAR S. E.,
MANOCHA D.: Practical Logarithmic Rasterization for Low-error
Shadow Maps. In Graphics Hardware (2007), pp. 17–24. 3

[MESL10] MCGUIRE M., ENDERTON E., SHIRLEY P., LUEBKE D.:
Real-Time Stochastic Rasterization on Conventional GPU Architectures.
In High-Performance Graphics (2010), pp. 173–182. 3

[Mor00] MOREIN S.: ATI Radeon HyperZ Technology. In Graphics
Hardware, Hot3D Proceedings (2000). 3

[MS04] MITCHELL J. L., SANDER P. V.: Applications of Explicit Early-
Z Culling. In Real-Time Shading (ACM SIGGRAPH Courses) (2004). 3

[NVI15] NVIDIA: Multi-Res Shading. Programming Guide, November
2015. PG-07866-001_v01. 2

[Pin88] PINEDA J.: A Parallel Algorithm for Polygon Rasterization. In
Computer Graphics (Proceedings of SIGGRAPH 88) (1988), vol. 22,
ACM, pp. 17–20. 2

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T.,
FLANNERY B. P.: Numerical Recipes: The Art of Scientific Computing,
3rd ed. Cambridge University Press, 2007. 4

[TL08] TOTH R., LINDER E.: Stochastic Depth of Field using Hardware
Accellerated Rasterization. Master’s thesis, Lund University, 2008. 3

[Vla15] VLACHOS A.: Advanced VR Rendering. Game Developer’s
Conference (presentation), 2015. 3

[VST∗14] VAIDYANATHAN K., SALVI M., TOTH R., FOLEY T.,
AKENINE-MÖLLER T., NILSSON J., MUNKBERG J., HASSELGREN J.,
SUGIHARA M., CLARBERG P., JANCZAK T., LEFOHN A.: Coarse Pixel
Shading. In High-Performance Graphics (2014), pp. 9–18. 3, 8

Appendix A: Parameter spaces

The three HMDs we have optimized for are all symmetric around
the horizontal plane. We have therefore omitted some degrees of
freedom (DOF) which would produce assymetric configurations.
We rely on per-pixel view vectors as input. Below, we use a coor-
dinate convention in which x is right, y is up, and z is back.

BASELINE only has a single DOF, namely the projection plane
normal’s azimuth. The projection plane extents are given by the
extents of the view vectors’ intersections with the projection plane.

CUBE 4 has four DOF. One edge lies on the xz-plane, along some
angle. The top and bottom planes joined by this edge are separated
by some aperture angle. The shared edge’s endpoints define where
the left and right planes are located.

CUBE 5 can be seen as BASELINE extruded by some depth, and
therefore has two DOF.

MRS 3×3 has five DOF: the BASELINE azimuth, and the top,
bottom, left, and right fractions where the projection is split to form
sub-projections.

MPP M×N has 2M + d 3
2 (N− 1)e− 2 DOF. There are M− 2

azimuthal angles at which the xz-plane is split, in addition to the
two endpoints which are given by the view vectors. Each of the
M columns can also be tilted to some angle in the xz-plane. Each
of the bN/2c sub-projection rows above the horizontal plane can be
sheared both in the xy- and yz-planes. Finally, there are b(N−1)/2c
rows with adjustable heights, not counting the topmost (and bot-
tommost) rows which are given by the view vectors.

There are two additional degrees of freedom we have omitted, in
addition to the symmetry-breaking ones mentioned above, as both
CUBE 4 and CUBE 5 could be sheared in the xz-plane.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

