
Masked Depth Culling for Graphics Hardware

Magnus Andersson1,2 Jon Hasselgren1 Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

0%

10%

20%

30%

40%

50%

60%

70%

0%

20%

40%

60%

80%

100%

Culled tiles Total Bandwidth (HiZ + Z)

INSTANT FEEDBACKFORWARD OurHeaven Benchmark, ship

Figure 1: Best case culling performance and bandwidth of our algorithm as compared to previous work. Our algorithm performs similarly
to an idealized version of the more complicated feedback algorithm, while keeping the simplicity of the much less efficient forward culling
approach. By compressing the depth representation, we show that we achieve significantly less bandwidth than competing algorithms.

Hierarchical depth culling is an important optimization, which is
present in all modern high performance graphics processors. We
present a novel culling algorithm based on a layered depth rep-
resentation, with a per-sample mask indicating which layer each
sample belongs to. Our algorithm is feed forward in nature in con-
trast to previous work, which rely on a delayed feedback loop. It
is simple to implement and has fewer constraints than competing
algorithms, which makes it easier to load-balance a hardware archi-
tecture. Compared to previous work our algorithm performs very
well, and it will often reach over 90% of the efficiency of an opti-
mal culling oracle. Furthermore, we can reduce bandwidth by up to
16% by compressing the hierarchical depth buffer.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Hidden line/surface re-
moval

Keywords: Occlusion Culling, Depth Buffer, Graphics Hardware

1 Introduction

Over 400 million graphics processors were sold in the notebook and
desktop segments in 2014. In each of these GPUs, there is a highly
optimized fixed-function hierarchical depth culling unit that uses
occlusion culling techniques on a per-tile basis [Greene et al. 1993;
Morein 2000]. Substantial engineering efforts have been spent fine-
tuning such units, in order to minimize memory traffic to the depth
buffer, which, in turn, improves performance and/or reduces power.
Occlusion culling is integrated transparently in GPUs, i.e., most
users enjoy its benefits without ever knowing it is there. The large

number of units shipped each year and the performance/power ben-
efits that comes with hierarchical depth culling makes it very im-
portant not only to increase efficiency, but also to make the imple-
mentation simpler and more robust to different use cases.

We present a novel culling algorithm that uses a layered depth rep-
resentation with a selection mask that associates each sample to a
layer. In our algorithm, culling and updating the representation is
very inexpensive and simple, and unlike previous methods we com-
pute accurate depth bounds without requiring an expensive feed-
back loop [Hasselgren and Akenine-Möller 2006]. Furthermore,
we have greater freedom in choosing tile size since we do not re-
quire scanning the depth values of all samples in the backend. This,
in turn, makes it easier to load-balance the graphics pipeline. See
Figure 1 for an example of the culling potential of our algorithm.

2 Previous Work

Greene et al. presented a culling system based on a complete depth
pyramid, with conservative zmax-values at each level [1993]. How-
ever, while highly influential, it is not practical to keep the entire
pyramid of depths updated at all times. Morein [2000] had a more
practical approach, where the maximum depth, zmax, was stored
and computed per tile. If the conservatively estimated minimum
depth of a triangle inside a tile is greater than the tile’s zmax, then
the portion of the triangle overlapping the tile can be culled. In
addition, it is also possible to store the minimum tile depth, zmin,
which is used to avoid depth reads. If the triangle’s conservatively
estimated maximum depth is smaller than zmin [Akenine-Möller
and Ström 2003], the triangle can trivially overwrite the tile (as-
suming no alpha/stencil test etc), and the read operation can be
skipped. From the literature [Hasselgren and Akenine-Möller 2006;
Morein 2000], we deduce that zmax is typically computed from the
per-sample depths in a tile, and must be passed to the hierarchical
depth test using a feedback loop. Ideally, the zmax-value of a tile
should be recomputed and updated every time the sample with the
maximum depth value is overwritten, but updates are typically less
frequent in order to reduce computations. For example, zmax may
be recomputed when a tile is evicted from the depth cache.

Author preprint

Fragment
shader

Depth
testRasterizer.

Color buffer
A

PI
sp

ec
ifi

ca
tio

n
H

ar
dw

ar
e

im
pl

em
en

ta
tio

n
Pr

ev
io

us
 w

or
k

O
ur

 p
ro

po
se

d
H

ar
dw

ar
e

im
pl

em
en

ta
tio

n

Coarse
depth test

Sample coverage
& z-interpolate

Early
depth test

Depth
test

Fragment
shader

Forward
HiZ update

Feedback
HiZ update Depth cacheHiZ cache

HiZ Unit Depth Unit

Masked coarse
depth test z-interpolate Early

depth test
Depth

test
Fragment

shader
Masked

HiZ update

Depth cacheHiZ cache

HiZ Unit Depth Unit

Rasterizer
sample coverage

Rasterizer
coarse coverage

Figure 2: Top: a simplified overview of the rasterizer, fragment shader, and depth units according the OpenGL and DirectX API specifications.
Middle: a hardware architecture, according to previous work, featuring a HiZ culling unit and an early depth test. The purpose of these
additional units is to improve performance through early occlusion culling. They are transparent to the programmer and can be implemented
without changing the API. Bottom: our proposed architecture. Our novel HiZ culling algorithm completely removes the need for feedback
HiZ updates by using a layered depth representation with a per-sample selection mask, which is efficient for culling and is easy to update.

Occlusion queries count the number of fragments passing the depth
test and can be used to cull entire objects [Bittner et al. 2004; Guthe
et al. 2006; Mattausch et al. 2008; Staneker et al. 2003] using sim-
ple proxy geometry, such as a bounding box. A system for dynamic
occlusion culling has been presented by Aila and Miettinen [2004],
and in the gaming industry, it has proven useful to base occlusion
queries on software rasterization to better load balance the CPU and
GPU [Collin 2011]. Zhang et al. [1997] proposed using hierarchi-
cal occlusion maps for occlusion queries. Rather than basing the
queries on the depth buffer, they use a full resolution, hierarchical
coverage map, and store depth separately in a low resolution depth
estimation buffer.

Our algorithm uses occluder merging inspired by the work of
Jouppi and Chang [1999]. They propose an algorithm for low-cost
anti-aliasing and transparency by storing low-precision depth plane
equations. A fixed number of planes are stored per pixel and over-
flow is handled using a merge heuristic. Similarly, Beaudoin and
Poulin [2004] extend MSAA [Akeley 1993] to use a hierarchical
indexing structure to reference a small set of color and depth values
per tile. To handle layer overflow they opted to reduce the sampling
rate, rather than using a lossy merge heuristic.

Greene and Kass extended their earlier work [Greene et al. 1993] to
include anti-aliasing with error bounds using interval arithmetic for
the shaders and quad tree subdivision for visibility handling [1994].
Furthermore, Greene et al. [1996] used a BSP tree to hierarchically
traverse the scene and the screen space using a pyramid of cover-
age masks for efficient anti-aliasing. In order to save pixel shading
work for small triangles, Fatahalian et al. [2010] gather and merge
quad-fragments from adjacent triangles, using an aggregate cov-
erage mask. The purpose of their mask differs from ours in that
they use it to avoid merging shading over geometric discontinu-
ities, while our masked representation is a lossy, but conservative,
approximation of the depth buffer.

3 Overview of Current Architectures

In order to contextualize our algorithm, we first describe a typical
implementation of a GPU depth pipeline as presented by previous
work [Hasselgren and Akenine-Möller 2006]. The top row of Fig-
ure 2 depicts the pipeline from a functional standpoint, as specified
in most modern graphics APIs. Depth and color buffers are progres-
sively updated as a sequence of triangles goes through the rendering
pipeline. For each sample, the depth of the closest triangle is stored
along with its color. The actual hardware pipeline typically differs
from the API specifications for performance reasons, and a com-
mon implementation can be seen in the middle row of Figure 2. In
the following, we will limit the discussion to a less than depth func-
tion to simplify the description, but the techniques generalize to all
types of depth functions used in popular API’s, such as DirectX,
OpenGL, and presumably also in the coming Vulkan API.

Rasterizer We skip the geometry processing part of the graph-
ics processor, and begin our discussion at the rasterizer unit. The
rasterizer is responsible for determining which samples overlap a
particular triangle. As an optimization, modern rasterizers typically
work on tiles, which are groups of w × h × d samples, where d is
the number of samples per pixel. A conservative test is performed
for each tile to determine if it is fully covered, is entirely outside
the triangle, or partially overlap it. Per-sample coverage testing is
only required for tiles partially overlapping the triangle. Once the
sample coverage is computed, each fragment is shaded using the
fragment shader, followed by the depth test which determines vis-
ibility. As can be seen in the middle row of Figure 2, a common
optimization is to place the per-sample coverage test after the hier-
archical z or HiZ unit. The rationale is that the HiZ may remove
or cull tiles before the per-sample coverage test occurs, which im-
proves the performance of that unit.

Author preprint 2

Author preprint

A B DC E

Layer 0 (roof)

Layer 1 (sky)

Culled

Not culled

Figure 3: A step by step illustration of how the fail-mask is calculated in our coarse depth test. A: The orange triangle is rasterized and
forwarded to the HiZ unit. B: The coarse depth buffer already contains a tile with two layers, namely, the roof in the foreground (brown)
and the sky background (blue). As indicated by the dashed lines, the triangle is occluded by the roof, while visible in front of the sky. C:
The triangle is overlap tested against the depth of the roof layer and since ztrimin > z0max, the result is the fail-mask indicated by the two red
pixels. D: The triangle is overlap tested against the sky, but cannot be culled. Thus, the fail-mask for this layer is actually empty, but we
indicate the three ambiguous pixels for clarity. E: The aggregate fail-mask. We cannot cull the triangle since the fail-mask does not contain
all pixels covered by the triangle. However, it would be possible to skip the depth test for the two red pixels.

HiZ Unit Depth testing may consume significant memory band-
width and compute power [Aila et al. 2003]. For this reason, the
hardware pipeline typically has a HiZ unit with the purpose of
quickly discarding (culling) or accepting tiles using a coarse depth
test, whenever the outcome of the depth test can be unambiguously
determined for the entire group of samples. For this purpose, the
HiZ unit maintains a conservative version of the depth buffer, re-
ferred to as the coarse depth buffer, which contains per-tile depth
bounds, [ztilemin, z

tile
max].

Coarse depth test When a tile reaches the HiZ unit, the first step
is to compute conservative bounds, [ztrimin, z

tri
max], of the depth of

the incoming triangle within the tile [Akenine-Möller et al. 2008].
These bounds are then tested against the coarse depth buffer us-
ing interval overlap tests. For example, for a less than depth func-
tion, we can conclude that the per-sample depth test will fail for all
samples if ztrimin ≥ ztilemax and pass if ztrimax < ztilemin. This leaves
an ambiguous depth range, where the outcome of the per-sample
depth test cannot be determined. Thus, the coarse depth test has
one of three outcomes, namely, fail, pass, or ambiguous. Failed,
i.e., culled, tiles are immediately thrown away and require no fur-
ther processing. Passing and ambiguous tiles are sent down the
pipeline for further processing, with the main difference being that
ambiguous tiles must be fully depth tested in the depth unit, while
trivially passing tiles can simply overwrite the contents of the depth
buffer. This is a small difference, but depending on the architec-
ture, write-only operations may result in lower bandwidth than the
read-modify-write operation required for performing the full depth
test [Akenine-Möller and Ström 2003].

Coarse depth buffer update As rendering progresses, the coarse
depth buffer is continually updated. From previous work [Morein
2000; Akenine-Möller and Ström 2003], we note that ztilemin and
ztilemax are updated separately in the pipeline using two different
mechanisms, namely, a forward update located immediately after
the coarse depth test and a feedback update located between the
depth unit and the HiZ unit. This is illustrated in the middle row in
Figure 2.

In the forward update stage, ztilemin can be efficiently computed as
ztilemin = min(ztrimin, z

tile
min). The ztilemax-value, however, can only be

updated if all the samples in the tile are overwritten. If the coverage
mask is fully set, then ztilemax = min(ztrimax, z

tile
max). Unfortunately,

this update scales very poorly when using smaller triangles since
they are less likely to completely overlap a tile. An example of the
irregular coverage resulting from solely using the forward stage can
be viewed in Figure 9.

A better ztilemax value is obtained using a feedback update. Here,
a max-reduction on an entire tile of depth samples is performed
in the depth unit and the result, zfeedbackmax , is sent to the HiZ unit
through the feedback mechanism, as depicted in Figure 2. To re-
duce the number of max-reductions performed, the feedback update
typically occurs each time a tile is evicted from the depth cache.
The feedback mechanism introduces a large delay, as the HiZ and
depth units may be separated by hundreds of cycles in the hard-
ware pipeline. Depending on the render state, we may also need to
wait for the fragment shader to be executed and for the tile to be
evicted from the cache before the update can occur. As a conse-
quence, ztilemax updates may lag behind, leading to decreased culling
rates. Furthermore, the delay has non-obvious side effects, such
as how to conservatively handle cases where the feedback message
originated from a different GPU-state than is currently active.

Depth Unit Similar to the HiZ unit, the depth unit typically works
on tiles of samples, but instead of performing a single test, each
sample is individually tested against the value stored in the depth
buffer. The size of a tile in the depth unit is typically correlated to
the size of a cache line, which in turn is determined by how much
data can be efficiently streamed to and from memory. It should
be noted that the feedback mechanism creates a constraint between
the tile sizes of the HiZ and depth unit. The max-reduction oper-
ation needs to be performed on the granularity of the tiles in the
HiZ buffer. Therefore, it is important that all data required for the
operation resides in the depth unit cache, and the easiest way to
guarantee this is to couple the tile sizes of the coarse depth buffer
and the regular depth buffer.

The most straightforward optimization in the depth unit is the early
depth test, which takes advantage of that depth testing can be per-
formed before fragment shading in many cases. This typically im-
proves performance significantly as fragment shading is expensive
and often a bottleneck. For the most part, it is safe to use the early
depth test, but it must be disabled when, for example, the fragment
shader alters the coverage through a discard operation, outputs a
depth value, or writes to an unordered access view (UAV) resource.

4 Algorithm

It is challenging to accurately update the maximum depth of the
tile without relying on the feedback mechanism. The key innova-
tion in our algorithm is an efficient and accurate way to update the
coarse depth buffer using only forward updates, which completely
removes the need for the feedback mechanism, as illustrated in the
bottom row of Figure 2. The updates are performed progressively

Author preprint 3

Author preprint

zmax
0zmax

1
max
triz zmax

0zmax
1

max
triz zmax

0zmax
1

max
triz zmax

0zmax
1

A B C D

z z z z
Merge

Figure 4: An example of our occluder merge heuristic for a single tile shown in normalized device coordinates (NDC). The occluded region,
as encoded by our algorithm, is shown in dark gray. A: a green, slanted primitive is rendered in front of two existing layers, illustrated with
red and blue lines respectively. B: each sample is classified as belonging to one of the layers to create sample masks. C: for our merge
heuristic, we find the closest pair of layers along the z-axis, which in this case is between z1max and ztrimax. D: we select the maximum of these
two depth values as the new z1max and fuse their sample masks to form a new selection mask.

in a streaming fashion and only use information about the current
triangle. No buffering of triangles or rendering history is required.

Without loss of generality, we limit the description of our algorithm
to only two depth layers1 per tile. Each tile has one zmin value and
two zimax values. In addition, we store a selection mask of one
bit per sample, which associates each sample with one of the two
layers, i. We keep the zmin update strategy described Section 3,
as it is simple and efficient. Each zimax must be greater or equal
to all samples associated with that layer. We achieve this using a
conservative merge of the incoming triangle and the layered repre-
sentation. In the following, we describe the coarse depth test and
update in detail.

Coarse depth test As described in Section 3, the triangle and its
coverage mask is provided by the rasterizer, which enables us to
compute ztrimin and ztrimax as before. Similar to how the coarse depth
tests are performed for zmin/zmax-culling, we do interval overlap
tests between [ztrimin, z

tri
max] and [zmin, z

i
max] for each layer, as out-

lined in Figure 3. Aggregate per-sample pass- and fail-masks can
be constructed from the triangle’s coverage mask and the selection
mask using simple bitwise operations. The exact depth test is only
required for the samples that are not present in either of the pass- or
fail-masks. Pseudo-code for how the coarse depth test is performed
is given in Listing 1 in the appendix.

Coarse depth buffer update Unless all samples were culled by
the coarse depth test, we must update the coarse depth buffer in a
way that makes it conservatively bound the contents of the depth
buffer. Updating the zmin-value is done as previously described in
Section 3. The challenge lies in updating the zimax values and the
selection mask. The incoming triangle forms a third depth layer, in
addition to the, up to, two layers already populating the tile. We
handle layer overflow by merging two of the layers using a heuris-
tic, as shown in Figure 4 and described in detail below.

First, consider a single sample, S, which belongs to layer i and is
also found to be overlapping the incoming triangle. With a less than
depth test, we know that the depth of S after the depth test will be
at most the minimum (closer) value of zimax and ztrimax. Based on
this observation, by comparing both zimax-values to ztrimax, we can
categorize which layer each sample belongs to – either its previous
layer, i, or the incoming triangle layer. From this, we construct
three non-overlapping sample masks signaling which of the three
layers, z0max, z1max, and ztrimax, each sample belongs to, as step B
in Figure 4 exemplifies.

After categorizing the samples, if there are any layers that do not
have samples associated with them (i.e., the sample mask is empty

1All depth layers are disjoint and jointly cover the entire tile. This is not
to be confused with layered depth images.

for a layer), the coarse buffer update is simple. Since the result-
ing number of layers is ≤ 2, the data will fit in our representation
and we can simply write the populated layers to the coarse depth
buffer. If there are samples in all three layers, we use a simple
distance-based heuristic to select which layers should be merged.
The underlying assumption is that triangles that have similar depth
values are likely to be part of the same surface. As illustrated in
step C in Figure 4, we first compute the distances between all of the
layers as

dT0 = |ztrimax − z0max|,
dT1 = |ztrimax − z1max|,
d01 = |z0max − z1max|.

The shortest distance is then used to determine which merge opera-
tion is performed, as depicted in step D in Figure 4.

1. If dT0 is smallest then z0max = max(ztrimax, z
0
max).

2. If dT1 is smallest then z1max = max(ztrimax, z
1
max).

3. Otherwise z0max = max(z0max, z
1
max) and z1max = ztrimax.

The sample masks of the two closest layers are also merged (us-
ing simple bitwise operations) to produce the new selection mask.
Pseudo-code for the update and merge functions can be found in
Listing 3 and Listing 4 in the appendix.

Switching Depth Functions Our algorithm can easily handle
depth function switches while rendering. For the greater than depth
functions, tiles are instead represented by two zimin values and one
zmax value. We store a single bit for each coarse depth buffer tile
indicating which representation is currently used. If the tile does
not match the current depth function we convert it before updat-
ing the coarse depth buffer. Conversion is performed by conser-
vatively swapping the min and max values. For example, if the
tile stored in the coarse depth buffer has two max layers, but the
depth function is changed to greater than, we convert the tile by
setting zmax = max(z0max, z

1
max) and z0min = z1min = zmin

and clearing the selection mask. The conversion is quite crude and
may lose a lot of culling information, but we have not found any
workload where this has been an issue, as depth function changes
are infrequent in most scenes. All standard OpenGL/DirectX depth
functions can be handled using the less than or greater than repre-
sentation.

Coarse depth test pipeline placement As can be seen in the
bottom row of Figure 2, our coarse depth test is based on the cov-
erage mask, which means that per-sample coverage testing must be
moved to the rasterizer block. As previously mentioned, placing
the per-sample coverage test behind the HiZ unit is beneficial, as

Author preprint 4

Author preprint

HiZ Unit

Masked coarse
depth test

Masked
HiZ update

HiZ cache

Rasterizer
coarse coverage Sample coverage

Figure 5: It is possible to modify the coarse depth test to rely only
on zmin/zmax, and not per-sample coverage results. Unlike our
solution illustrated in Figure 2 (bottom), this alternative implemen-
tation does not incur the expense of per-sample coverage testing
prior to HiZ, but can decrease efficiency as culling is performed on
more conservative information.

coverage testing may be skipped for culled tiles, reducing the load
of this unit.

We can achieve a similar effect by using an alternate coarse depth
test, where we perform an overlap test between the [ztrimin, z

tri
max]

and [zmin,max(z0max, z
1
max)] intervals, similar to the classic HiZ

test. As shown in Figure 5, we may then place the per-sample cov-
erage test between the coarse depth test and update, which results in
similar load balancing to previous work. This version of the coarse
depth test is less accurate, but most of the benefits of our algorithm
comes from the accurate update. Pseudo-code for this alternative
approach can be found in Listing 2 in the appendix. Compared to
the results presented in Section 5, the culling rate of our algorithm
decreases by 0.2 − 2.1 percentage points and total bandwidth in-
creases by 0.7−1.4 percentage points. It is also possible to perform
both versions of the coarse test, efficiently filtering most per-sample
coverage tests while retaining the benefits of the accurate version.

4.1 Compression

In order to reduce coarse depth buffer bandwidth, we use a simple
compression scheme when entries are evicted from the coarse depth
buffer, similar to how regular depth buffer compression works [Has-
selgren and Akenine-Möller 2006; Hasselgren et al. 2012].

Our compression scheme is inspired by zerotree encoding of
wavelet coefficients [Shapiro 1993]. Each tile is first split into a
set of blocks, each containing b samples. For each block, we store
a single bit signaling whether its samples contain a mix of indices
to both layers or if all samples belong to the same layer. If all in-
dices are the same, only one additional bit is required to assign the
entire block to the layer. A block containing indices to both layers
require an explicit mask with b bits. With this scheme, the com-
pressed selection mask cost, c, for the tile containing s samples is
c = 2 s

b
+ (b− 1)m, where m is the number of blocks that need to

be explicitly stored. The selection mask can be compressed with-
out loss if c ≤ s. Interestingly, we can limit m by performing lossy
compression, without introducing artifacts in the rendered image.
The coarse depth buffer representation is still valid (i.e., conserva-
tive w.r.t. the depth buffer) if we alter an index in the selection mask
to use the farther of the two zimax-values. It is thereby possible to
enforce a maximum value of m by forcing some blocks to use a
single layer, instead of a mix of both.

Furthermore, we decrease the precision of zmin and zimax. There
is a variety of possible options depending on the bit budget avail-
able, the depth buffer target format, and the expected distribution
of depth samples. We have opted to use a simple reduced precision
float with fewer exponent and mantissa bits. In addition, we only
use negative exponents and no sign bit, limiting the representable
range to [0, 1].

5 Results

When comparing different culling algorithms, there are two main
quantities that are of interest – memory bandwidth usage and
throughput. Bandwidth is primarily consumed by the depth unit
when reading and updating the depth buffer, and to a lesser extent
by the HiZ unit for maintaining the coarse depth buffer. The num-
ber of per-sample tests the depth unit has to perform depends on the
amount of tiles culled (failed) by the coarse depth test, and conse-
quently a higher culling rate leads to better throughput. Depending
on the system and the expected workloads, these quantities must be
balanced against each other for maximum performance. We evalu-
ated five different pipeline configurations listed below with regards
to bandwidth and culling rates (i.e., the percentage of tiles culled
by the coarse depth test):

• ORACLE - The HiZ unit replicates the exact depth buffer and
performs per-sample depth tests. For each sample, there is no
ambiguous outcome, only pass or fail. A tile is only classified
as ambiguous if it contains both samples passing and failing
the depth test. This pipeline is only used to get an upper bound
on possible cull rates.

• FORWARD - Only the forward update unit for zmin/zmax-
culling is enabled. A feedback unit with infinite delay will act
as a forward-only pipeline, which makes this configuration a
lower bound on the culling rate such a design can achieve.

• INSTANT FEEDBACK - Both the forward and the feedback
HiZ update mechanisms are used. zmax-updates are trig-
gered directly on depth buffer updates (i.e., as early and as
often as possible), and there is no feedback delay, which
gives us an upper (albeit unrealistic) bound on how well a
forward/feedback-design can perform.

• ZMASK - Our proposed feed forward algorithm.

• PACKED ZMASK - Our algorithm tailored to minimize band-
width. This variant requires an additional post-HiZ cache
compression stage, as described in Section 4.1.

Our results are based on a C++ hardware simulator, which models
the system on a functional level. We use a 32 kB depth cache and a
16 kB HiZ cache, both using a cache line size of 64 B (unless other-
wise stated) and both with a least recently used (LRU) replacement
policy. For our main results, found in Figure 6, we allocate a coarse
depth buffer which amounts to an overhead of 4 bits per depth sam-
ple for the FORWARD, INSTANT FEEDBACK, and ZMASK configu-
rations. With this storage, we can keep ztilemin and ztilemax in a 32 bit
format each at a 16 sample granularity for FORWARD and INSTANT
FEEDBACK (this corresponds to 4× 4 pixel tiles for single sample
targets and 2× 2 pixels for 4× multi-sample targets). For ZMASK
we store one zmin and two zimax at a 32 sample granularity, using
32 bits for each entry, as well as a 32 bit per-sample selection mask
(corresponding to 8 × 4 pixel tiles for single sample targets and
4× 2 pixel tiles for 4×MSAA targets). All configurations use the
common fast clears [Morein 2000] optimization to ensure that the
results are not biased by how the different algorithms handle clear
values.

The PACKED ZMASK is similar to the ZMASK algorithm, but uses
larger tiles (16 × 8 pixel and 8 × 4 pixel tiles for single and
4× MSAA targets respectively), and compresses them as they
are evicted from the HiZ cache. In the cache, each tile occupies
128 + 3 · 32 = 224 b, or 28 B of memory. Since we do not want
to alter the memory transaction size of 64 B, we group 4 tiles to a
common cache line of 112 B, which is compressed down to 64 B
on eviction. To achieve this level of compression, we use a reduced
precision float format with 4 exponent bits and 11 mantissa bits for
the zmin and zimax values, one bit to encode the test direction (see

Author preprint 5

Author preprint

World of Warcraft

World of Warcraft

0%
10%
20%
30%
40%
50%
60%
70%

Heaven Benchmark,
Ship

Heaven Benchmark,
Ship

 Titanfall Heaven Benchmark,
Town

Heaven Benchmark,
Town

Battlefield 4 Stone Giant

Stone Giant

3DMark 11

3DMark 11
0%

20%

40%

60%

80%

100%

Titanfall Battlefield 4

C
oa

rs
e

te
st

,

cu
lle

d
til

es
Ba

nd
wi

dth
ORACLE

ZMASK

INSTANT FEEDBACK

FORWARD

ZMASK (PACKED)

ZMASK

ZMASK (PACKED)

HiZ Z

INSTANT FEEDBACK

Heaven Benchmark, Ship Call of Duty: Ghosts Titanfall Bioshock Infinite Call of Duty: Black Ops II

Heaven Benchmark, Town Battlefield 4 Stone Giant Batman: Arkham City 3DMark 11Tom Clancy’s
Splinter Cell Blacklist

FORWARD

World of Warcraft

Call of Duty:
Ghosts

Call of Duty:
Ghosts

Call of Duty:
Black Ops II

Call of Duty:
Black Ops II

Bioshock Infinite

Bioshock Infinite

Batman:
Arkham City

Batman:
Arkham City

Tom Clancy’s
Splinter Cell Blacklist

Tom Clancy’s
Splinter Cell Blacklist

Figure 6: Top: the percentage of incoming 16 sample tiles (i.e. 2 × 2 pixels for 4× MSAA targets and 4 × 4 pixels for single sample
targets) that were culled by the coarse depth test for the different algorithms. A higher number means that less work is pushed through the
pipeline. Bottom: the simulated depth buffer (Z) and HiZ bandwidth, normalized to the FORWARD algorithm. The darker bars indicate
the HiZ bandwidth and the lighter bars is the depth buffer bandwidth. Note that even though the PACKED ZMASK culls fewer tiles and
has a higher depth buffer bandwidth, the total bandwidth is still very low due to the HiZ bandwidth savings. Note that the screen shots are
generated using our hardware simulator. While we strive to make it feature complete according to the latest OpenGL/DirectX specifications,
some visual differences may occur compared to commercial GPUs and production drivers.2

Section 4), and the remaining 82 bits are spent on storing the selec-
tion mask using the compression format described in Section 4.1.
Thus, when using the PACKED ZMASK pipeline, each tile occupies
1.75 bits per sample while in the cache, and reading or writing the
tile from/to memory uses 1 bit of bandwidth per sample. The tile
size was selected empirically by finding the best balance between
depth buffer bandwidth and HiZ bandwidth, as described in Fig-
ure 8.

Our main results are shown in Figure 6, where we present the
coarse culling rates and the bandwidth consumed by each pipeline.
The culling rates have been normalized to 16 sample tiles for the
ZMASK and PACKED ZMASK algorithm to simplify comparison.
Since the coarse depth test pass rates are very similar between the
algorithms, we focus solely on the number of culled tiles (i.e., tiles
where the depth test unambiguously fails) as a measure of through-
put. The test suite contains a number of traces from modern games,
with a variety of different render state combinations, and includes
1 − 4× MSAA buffers as well as auxiliary targets such as shadow
maps. As can be seen from the results, our algorithm is often
close to the ORACLE in terms of culling efficiency. The FOR-
WARD pipeline is always considerably less efficient than all of the

2Heaven Benchmark screenshots courtesy of UNIGINE Corp. World
of Warcraft, Call of Duty R©: Ghosts and Call of Duty R©: Black Ops II
screenshots courtesy of Activision Blizzard, Inc. Titanfall screenshot cour-
tesy of Respawn Entertainment. Bioshock Infinite Screenshot Courtesy of
Irrational Games and Take-Two Interactive Software, Inc. Battlefield 4, c©
2013 Electronic Arts Inc. Battlefield and Battlefield 4 are trademarks of
EA Digital Illusions CE AB. Image from Stone Giant demo, courtesy of
BitSquid. Batman: Arkham City screenshot courtesy of Rocksteady Stu-
dios. Tom Clancy’s Splinter Cell Blacklist screenshot courtesy of Ubisoft.
3DMark 11 screenshot courtesy of Futuremark.

alternatives. On average, we retain 90% of the rejection rate of
the ORACLE pipeline, with the more difficult cases typically being
scenes with a greater amount of alpha tested geometry, or scenes
that output depth in the fragment shader. Note that ZMASK uses
about 14% less total bandwidth compared to FORWARD, while IN-
STANT FEEDBACK uses about 18% less than FORWARD. It should
be noted, however, that INSTANT FEEDBACK is idealized and im-
practical to implement. Increasing the pipeline delay reveals the
weakness of the feedback algorithm, as we will show later in this
section. By increasing the tile size and enabling compression using
the PACKED ZMASK configuration, we lower the number of culled
tiles and depth buffer bandwidth increases as a result. However,
since the HiZ bandwidth is reduced, total bandwidth consumption
is approximately 30% less than FORWARD on average, which is a
substantial reduction.

The culling numbers presented for the ORACLE algorithm include
tiles where the coverage is modified by the fragment shader. Alpha
tested billboards, for examples, can have large, fully transparent
portions that are discarded in the fragment shader.

Feedback Delay As previously mentioned, the performance of
the feedback algorithm depends on how long delay can be expected
in the pipeline. We opted to implement the feedback mechanism on
depth buffer updates, rather than cache evicts, and simulate delay by
introducing a FIFO-queue when feeding the messages back. This
allows us to delay the messages by an arbitrary number of processed
tiles and study how increased delay affects system performance.

Figure 7 shows how the number of culled tiles and total simulated
depth buffer bandwidth (for both the coarse and exact depth buffers)
are affected by an increased delay compared to the ZMASK ap-

Author preprint 6

Author preprint

4.00 200

4.30 225

4.60 250

4.90 275

5.20 300

1 101 102 103 104 105 106

Feedback delay

C
oa

rs
e

te
st

, #
 c

ul
le

d
til

es
 (m

ill
io

ns
)

To
ta

l B
an

dw
id

th
 (M

B
)

107

FEEDBACK

ZMASK

culled tiles

FEEDBACK

ZMASK

Bandwidth

Figure 7: Artificial delay of the ztilemax feedback updates for the
Heaven Benchmark, Ship scene. Here, each unit corresponds to
delaying the feedback update by one processed tile. At a delay of
103 tiles, we see that the coarse depth test rejection rate starts to
drop, while the bandwidth rapidly increases. While part of the in-
creasing bandwidth is explained by reduced culling efficiency, the
lion’s share is due to cache behavior. As the delay increases, the
tiles referenced by the feedback messages may already have been
evicted from the HiZ cache, which may lead to cache thrashing
and increased bandwidth. This creates an intricate relation be-
tween the system delay, which may depend on depth buffer cache
size and shader execution, and the size of the HiZ cache. At 107

steps, the delay is so large that the rendering finishes before any of
the feedback updates occur, leaving only the forward updates (i.e.,
equivalent of running the FORWARD algorithm). Since there are
no delayed updates at this point, there are also no cache conflicts,
which explains the bandwidth reduction.

proach. As expected, the number of culled tiles decreases with
increasing delay. Similarly, total bandwidth usage increases sig-
nificantly for larger delays. When the delay becomes sufficiently
large, the coarse depth buffer entries may already have been evicted
from the HiZ cache before a feedback message is received. Con-
sequently, the data must be read back into the cache in order to
perform the feedback update, and the HiZ and feedback mecha-
nisms will compete for which data should be resident in the cache.
Therefore, it is important to balance the size of the HiZ cache and
the depth unit cache based on the expected delay of the system. Al-
ternatively, feedback updates of tiles not resident in the HiZ cache
could be discarded, which avoids thrashing at the cost of reducing
culling rates even further.

It should be noted that the delays of pipelining, shading, and
caching in a real system causes culling efficiency and bandwidth
to scale in a much more intricate way, and Figure 7 should only be
seen as indicative of the trend. In our system, we observe a signif-
icant bandwidth impact when using an evict-based feedback strat-
egy. If we halve the HiZ cache size to 8 kB, while keeping depth
cache constant, HiZ bandwidth increase by about 10% to 45%, de-
pending on the scene.

Tile size As our algorithm is of feed forward nature, it allows us
to easily decouple tile sizes of the coarse and exact depth buffers,
and this gives flexibility to chose whatever tile size gives the best
trade-off between culling efficiency and coarse depth buffer band-
width. In Figure 8, we show how our algorithm scales when varying
tile size. As a reference, we also include baseline results for the IN-
STANT FEEDBACK pipeline.

Multiple depth layers Our algorithm can be extended to use
more depth layers and we have observed some improvement in
culling rates when using three or four layers, as shown in Figure 9.
However, we feel that the improvement is not significant enough

0.80 0.9

0.85 1.0

0.90 1.1

0.95 1.2

1.00 1.3

16
ZMASK, samples per tile

C
oa

rs
e

te
st

, #
 c

ul
le

d
til

es

To
ta

l B
an

dw
id

thFEEDBACK

ZMASK

culled tiles
FEEDBACK

ZMASK

Bandwidth

32 64 128 256

Figure 8: The graph illustrates how bandwidth and culling rates
are affected by varying the tile size for ZMASK. The numbers are
combined over all of our test scenes, normalized to the INSTANT
FEEDBACK algorithm with fixed 16 sample tiles. To simplify im-
plementation, the cache line and memory transaction size match
the footprint of a single tile. Although depth buffer bandwidth in-
creases due to the lowered cull rate, the decrease in HiZ memory
traffic counter this effect. In our setup, the lowest combined band-
width occurs around 128 samples, which is the tile size selected for
the PACKED ZMASK algorithm.

to motivate the added complexity. Increasing the number of layers
requires more coarse depth buffer storage, as we must store addi-
tional zimax values and use more bits per sample to store the selec-
tion mask. It also complicates layer merging as the number of ways
that we can merge layers scales O(n2).

Stochastic motion blur As a proof of concept, we plugged the
ZMASK algorithm in to our existing framework which simulates a
stochastic rasterization pipeline in hardware to render images with
motion blur. The framework uses the TZSLICE algorithm [Akenine-
Möller et al. 2007] to perform zmax-culling, which is the most
bandwidth efficient variant of the more general tz-pyramid [Boulos
et al. 2010], according to Munkberg et al. [2011]. Updates to the
coarse depth buffer is done in the same way as the INSTANT FEED-
BACK algorithm. For TZSLICE, we used one 32-bit float zmax-
value for each slice of 4 × 4 × 1 (w × h × time) samples. For
ZMASK, we used 4 × 4 × 4 tiles (64 samples) with two layers.
Thus, both of these configurations use a 2 bit overhead per sample
of HiZ data. As can be seen in Figure 10, even without any algorith-
mic modifications, ZMASK compared very well to TZSLICE. Note
that these are early experiments and we believe that there is a lot
more potential for improvement in this area.

Limitations While our algorithm handles even complex geome-
try very well, the main drawback relative to the feedback approach
is that we cannot handle alpha testing, pixel shader discards, or
pixel shader depth writes as accurately. While this could be an issue
in extreme cases, none of our test applications seem to rely on al-
pha tested geometry for the main occluders (although we present an
abundance of examples using alpha testing). Note that the feedback
approach is also affected by alpha testing, as it implies deferring the
feedback update until after the shader has been executed. It should
also be noted that our algorithm could be used in conjunction with
feedback updates.

6 Conclusions

We have proposed a novel zmin/zmax-culling algorithm, which we
believe is an interesting and competitive alternative to the tradi-
tional feedback update mechanism. Our algorithm has similar per-
formance to that of an ideal feedback architecture (without delay),

Author preprint 7

Author preprint

C
ol

or
 b

uf
fe

r
D

ep
th

 b
uf

fe
r

D
iff

er
en

ce

Forward Instant feedback Zmask (2 layers) Zmask (4 layers)Frame buffer

618k 822k 804k 824k# culled tiles
Figure 9: The impact of multiple depth layers on the quality of the coarse depth buffer. The cropped images show the difference between
the zmax-value of the coarse depth buffer and the exact depth buffer. The forward pipeline has massive leakage along triangle edges, and
silhouette edge shows up in INSTANT FEEDBACK as only one zmax-value is stored per tile. The layer merging inaccuracies visible in the
two layer version of our algorithm almost entirely disappears with four layers. However, as can be seen in the table, two layers perform well
enough not to motivate the extra complexity of adding additional layers.

culled
94% 91% 84%

tiles

Figure 10: Three scenes with stochastic motion blur. We count
the number of 4 × 4 × 1 tiles culled with ZMASK compared to a
TZSLICE baseline.

but retains the benefits of a strict feed forward pipeline. This means
that implementation and validation is simplified as we do not need
to consider or handle hazards that may occur from the feedback de-
lay. Furthermore, as we decouple the tile sizes of the coarse and
regular depth buffers, we have great freedom in choosing tile sizes
and bit layout for the coarse depth buffer entries. This makes it easy
to load-balance a hardware system and simplifies the re-design cy-
cle if memory bus width or cache line size changes. Thus, we be-
lieve our approach is a cost-efficient and flexible solution that is
suitable for current and future GPUs.

Acknowledgements

We would like thank the anonymous reviewers for their feedback.
We also thank David Blythe and Mike Dwyer for supporting this
research. Tomas Akenine-Möller is a Royal Swedish Academy of
Sciences Research Fellow supported by a grant from the Knut and
Alice Wallenberg foundation. Thanks to the following people for
helping us with permissions for the screenshots in this paper: Beth
Thomas at UNIGINE Corp., Christer Ericson at Activision, Abbie
at Respawn Entertainment, Naty Hoffman at 2K Games, Martin
Lindell and Johan Andersson at EA Digital Illusions CE, Tobias
Persson at Bitsquid, Kelly Ekins at WB Games Montréal Inc., Guy
Perkins at Rocksteady Studios, Heather Steele at Ubisoft and James
Gallagher at Futuremark.

References

AILA, T., AND MIETTINEN, V. 2004. dPVS: An Occlusion
Culling System for Massive Dynamic Environments. IEEE Com-
puter Graphics and Applications 24, 2, 86–97.

AILA, T., MIETTINEN, V., AND NORDLUND, P. 2003. Delay
Streams for Graphics Hardware. ACM Transactions on Graphics
22, 3, 792–800.

AKELEY, K. 1993. RealityEngine Graphics. In Proceedings of
SIGGRAPH, 109–116.

AKENINE-MÖLLER, T., AND STRÖM, J. 2003. Graphics for
the Masses: A Hardware Rasterization Architecture for Mobile
Phones. ACM Transactions on Graphics 22, 3, 801–808.

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic Rasterization using Time-Continuous Trian-
gles. In Graphics Hardware, 7–16.

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008.
Real-Time Rendering, 3rd ed. AK Peters Ltd.

BEAUDOIN, P., AND POULIN, P. 2004. Compressed Multisam-
pling for Efficient Hardware Edge Antialiasing. In Graphics In-
terface, 169–176.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent Hierarchical Culling: Hardware Oc-
clusion Queries Made Useful. Computer Graphics Forum 23, 3,
615–624.

BOULOS, S., LUONG, E., FATAHALIAN, K., MORETON, H., AND
HANRAHAN, P. 2010. Space-Time Hierarchical Occlusion
Culling for Micropolygon Rendering with Motion Blur. In High
Performance Graphics, 11–18.

COLLIN, D., 2011. Culling the Battle Field. Game Developer’s
Conference.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,
MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010. Re-
ducing Shading on GPUs using Quad-Fragment Merging. ACM
Transactions on Graphics 29, 4, 67:1–67:8.

GREENE, N., AND KASS, M. 1994. Error-bounded Antialiased
Rendering of Complex Environments. In Proceedings of SIG-
GRAPH, 59–66.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical
Z-Buffer Visibility. In Proceedings of SIGGRAPH, 231–238.

GREENE, N. 1996. Hierarchical Polygon Tiling with Coverage
Masks. In Proceedings of SIGGRAPH, 65–74.

GUTHE, M., BALÁZS, Á., AND KLEIN, R. 2006. Near Opti-
mal Hierarchical Culling: Performance Driven Use of Hardware
Occlusion Queries. In Eurographics Symposium on Rendering,
207–214.

Author preprint 8

Author preprint

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2006. Efficient
Depth Buffer Compression. In Graphics Hardware, 103–110.

HASSELGREN, J., ANDERSSON, M., NILSSON, J., AND
AKENINE-MÖLLER, T. 2012. A Compressed Depth Cache.
Journal of Computer Graphics Techniques 1, 1, 101–118.

JOUPPI, N. P., AND CHANG, C.-F. 1999. Z3: An Economical
Hardware Technique for High-Quality Antialiasing and Trans-
parency. In Graphics Hardware, 85–93.

MATTAUSCH, O., BITTNER, J., AND WIMMER, M. 2008.
CHC++: Coherent Hierarchical Culling Revisited. Computer
Graphics Forum 27, 2, 221–230.

MOREIN, S. 2000. ATI Radeon HyperZ Technology. In Graphics
Hardware, Hot3D Proceedings.

MUNKBERG, J., CLARBERG, P., HASSELGREN, J., TOTH, R.,
SUGIHARA, M., AND AKENINE-MÖLLER, T. 2011. Hierarchi-
cal Stochastic Motion Blur Rasterization. In High Performance
Graphics, 107–118.

SHAPIRO, J. 1993. Embedded Image Coding using Zerotrees of
Wavelet Coefficients. IEEE Transactions on Signal Processing
41, 12, 3445–3462.

STANEKER, D., BARTZ, D., AND MEISSNER, M. 2003. Im-
proving Occlusion Query Efficiency with Occupancy Maps. In
IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, 111–118.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, III, K. E.
1997. Visibility Culling Using Hierarchical Occlusion Maps.
Proceedings of SIGGRAPH, 77–88.

Appendix

Coarse depth test The coarse depth test produces two per-
sample masks – a pass mask and a fail mask. The remainder of
the samples must to be tested using the regular per-sample depth
test.

Listing 1: Perform coarse depth test.

f u n c t i o n coarseZTest (tile , tri)
failMask0 = tri .zMin >= tile .zMax [0]

? tri .rastMask & ˜tile .mask : 0
failMask1 = tri .zMin >= tile .zMax [1]

? tri .rastMask & tile .mask : 0
failMask = failMask0 | failMask1
passMask = tri .zMax < tile .zMin ? tri .rastMask : 0
r e t u r n [passMask , failMask]

An alternative version of the coarse test may be performed before
the per-sample coverage test. Contrasting the version above, this
test does not account for coverage. We still observe good cull rates,
as the accurate update is the key to the performance of our algo-
rithm.

Listing 2: Perform coarse depth test without coverage mask.

f u n c t i o n coarseZTest_noMask (tile , tri)
i f tile .mask == 0 :

maxOfMax = tile .zMax [0]
e l s e i f tile .mask == ˜ 0 :

maxOfMax = tile .zMax [1]
e l s e :

maxOfMax = max (tile .zMax [0] , tile .zMax [1])
fail = tri .zMin >= maxOfMax
pass = tri .zMax < tile .zMin
r e t u r n [pass , fail]

Updating the coarse buffer The coarse buffer is trivially up-
dated if any of the layers are overwritten, while the heuristic-based
merge function is called to resolve complicated multi layered situ-
ations.

Listing 3: Update coarse depth buffer.

f u n c t i o n coarseZUpdate (tile , tri)
triMask0 = tri .zMax < tile .zMax [0]

? tri .rastMask & ˜tile .mask : 0
triMask1 = tri .zMax < tile .zMax [1]

? tri .rastMask & tile .mask : 0

triMask = triMask0 | triMask1
layer0Mask = ˜tile .mask & ˜triMask
layer1Mask = tile .mask & ˜triMask

i f triMask != 0 :
i f layer0Mask == 0 :

/ / Layer 0 i s empty and i s r e p l a c e d
tile .zMax [0] = tri .zMax
tile .mask = ˜triMask

e l s e i f layer1Mask == 0 :
/ / Layer 1 i s empty and i s r e p l a c e d
tile .zMax [1] = tri .zMax :
tile .mask = triMask

e l s e :
/ / A l l l a y e r s c o n t a i n samples , merge
merge (tile , tri , triMask)

Merging depth layers The merge function reduces three layers
to two and updates the selection mask.

Listing 4: Merging heuristic

f u n c t i o n mergeClosest (tile , tri , triMask)
dist0 = abs (tri .zMax − tile .zMax [0])
dist1 = abs (tri .zMax − tile .zMax [1])
dist2 = abs (tile .zMax [0] − tile .zMax [1])
i f dist0 < dist1 && dist1 < dist2 :

/ / Merge t r i a n g l e l a y e r wi th l a y e r 0
tile .zMax [0] = max (tile .zMax [0] , tri .zMax)
tile .mask = tile .mask & ˜triMask

e l s e i f dist1 < dist2 :
/ / Merge t r i a n g l e l a y e r wi th l a y e r 1
tile .zMax [1] = max (tile .zMax [1] , tri .zMax)
tile .mask = tile .mask | triMask

e l s e :
/ / Merge l a y e r 0 and 1
tile .zMax [0] = max (tile .zMax [0] , tile .zMax [1])
tile .zMax [1] = tri .zMax
tile .mask = triMask

Author preprint 9

