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Figure 1: The San Miguel scene with depth of field and large camera motion. The closeups show the input samples, the result
using our new reconstruction algorithm on the input samples, and the reference rendered with 1024 spp. The two images for
our algorithm show different filter search window configurations, where a larger window improves quality at the expense of
performance. Our novel reconstruction method dramatically reduces noise, and produces images close to the reference.

Abstract
Light field reconstruction algorithms can substantially decrease the noise in stochastically rendered images. Re-
cent algorithms for defocus blur alone are both fast and accurate. However, motion blur is a considerably more
complex type of camera effect, and as a consequence, current algorithms are either slow or too imprecise to use in
high quality rendering. We extend previous work on real-time light field reconstruction for defocus blur to handle
the case of simultaneous defocus and motion blur. By carefully introducing a few approximations, we derive a very
efficient sheared reconstruction filter, which produces high quality images even for a low number of input samples.
Our algorithm is temporally robust, and is about two orders of magnitude faster than previous work, making it
suitable for both real-time rendering and as a post-processing pass for offline rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

1. Introduction

Stochastic sampling is a powerful technique that can sim-
ulate realistic camera effects. This is achieved by evaluat-
ing a high-dimensional integral using point sampling. Mo-
tion blur is obtained by distributing samples in time over
the open camera shutter, and depth of field by point sam-
pling over the camera lens [Coo86]. However, as with most
Monte Carlo techniques, a large number of samples must be
drawn to reduce noise in the result. A different way to tackle
this problem is to instead spend efforts on reconstructing a
final image with substantially reduced noise from a sparsely

sampled light field, e.g., with as few as 4 or 8 samples per
pixel [LAC∗11, LALD12, VMCS13].

Accurately reconstructing the four-dimensional light field
for depth of field is well understood [SSD∗09, LAC∗11,
VMCS13]. The algorithm by Vaidyanathan et al. can recon-
struct images with defocus blur from a small number of sam-
ples per pixel with real-time performance. Reconstructing
motion blur, and the combination of motion blur and depth
of field is a much more difficult problem, as each object and
the camera can have arbitrary motion (i.e., a unique 3D mo-
tion vector for each vertex in the scene). In contrast, defocus
blur is purely a function of the vertex depth and a few cam-
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era constants. In this paper, we develop an algorithm that
is both accurate and fast for reconstructing and filtering the
light field for simultaneous motion and defocus blur.

By analyzing a diffuse, moving emitter in the frequency
domain using recent tools [DHS∗05, BSS∗13], and by cau-
tiously introducing approximations, we develop an efficient
filter that can be used in a layered composition frame-
work [ML85, VMCS13]. The input to our algorithm is a
stochastic, sparsely sampled light field with a fixed number
of samples per pixel. Such light fields can be generated at
interactive rates either by high-performance distributed ray
tracers, such as OptiX [PBD∗10] and Embree [WWB∗14],
or using stochastic rasterization [MESL10]. Since we do
not rely on adaptive sampling, our algorithm can be imple-
mented as a final reconstruction pass, orthogonal to the rest
of the rendering system, which is an important benefit.

Our algorithm fills an important gap in the field of light
field reconstruction algorithms. It competes with the qual-
ity of offline algorithms designed to work on stochastic light
fields [ETH∗09,LAC∗11,LALD12], while performing close
to the much more approximate techniques targeting real-
time rendering [MHBO12]. For typical scenes, our algo-
rithm runs in under 50 ms at 1280×720 on a discrete graph-
ics card, making it a potential candidate for real-time use in
the near future. It may also be useful as a post-processing
tool for reducing noise in offline rendering.

2. Previous Work

Light Field Frequency Analysis Chai et al. [CTCS00] de-
rive minimum sampling rates for plenoptic sampling of light
fields using frequency analysis. They also show that the
spectrum is mostly bounded by the minimum and max-
imum depth, and as a consequence, tighter bounds can
be obtained by splitting the light field into depth layers.
In their seminal work, Durand et al. [DHS∗05] present a
framework for analyzing light transport in the frequency
domain. Since then, these tools have been used and ex-
tended in several research projects. Egan et al. [ETH∗09]
analyze motion blur in the frequency domain, and develop
an adaptive sampling algorithm and a sheared reconstruc-
tion filter. Soler et al. [SSD∗09] present a similar analy-
sis for defocus blur. Similar frequency analysis has also
been done for soft shadows [EHDR11, MWR12] direc-
tional occlusion [EDR11], and diffuse indirect illumina-
tion [MWRD13]. Belcour et al. [BSS∗13] present a uni-
fied framework, where each transport operator, e.g., lens
refraction, translation, and motion, is expressed as a five-
dimensional matrix. They show that first-order motion can
be described by simple changes of coordinates in five dimen-
sions. Besides developing this useful framework, they also
apply their theory to develop a method for adaptive sampling
and reconstruction, which uses a filter that is an anisotropic
2D Gaussian in (x,y) and axis-aligned in the remaining di-
mensions (lens and time coordinates). The filters by Mehta

et al. [MWR12, MWRD13] are similarly axis-aligned in the
higher dimensions.

Reconstruction There is a wealth of post-processing meth-
ods, where visibility is only sampled at the center of the lens
and at one unique time. The image is computed by blurring
in a post pass based on auxiliary information, such as depth
and motion vectors [PC81,PC83]. There are also newer, phe-
nomenological post-processing methods targeting contem-
porary GPUs [MHBO12,GMN13]. Since such methods only
have access to a pinhole-generated image at a particular in-
stant in time, they can never converge to a fully correct im-
age. However, in the context of real-time rendering, such
methods are very valuable. Our ambition is different: we aim
to use a few stochastically generated samples per pixel, and
reconstruct an accurate image using filters applied to this
sparsely sampled five-dimensional light field. Ideally, our
algorithm should converge to the correct result when more
samples are added.

Lee et al. [LES10] generate depth layers using depth-
peeling from a pinhole camera and then ray trace through
this representation to generate plausible depth of field. Max
and Lerner [ML85] split up their scene in object layers, and
use a single motion vector per layer to produce a blurred
image and blurred opacity mask. The final image is then
obtained by compositing the layers back-to-front using the
over operator [PD84]. A similar approach is also taken by
Potmesil and Chakravarty [PC83]. This type of layer com-
positing, each holding also a blurred opacity mask, forms
the basis for the method by Vaidyanathan et al. [VMCS13].

In a separate line of research, image denoising filters
are applied to stochastically generated samples in order to
remove noise, while preserving important detail. Many of
these are based on variants of the bilateral filter [TM98]. For
example, Xu and Pattanaik [XP05] use a joint bilateral filter
for denoising of global illumination. Sen and Darabi [SD12]
improve on this by calculating the statistical dependency be-
tween the outputs and inputs of a rendering system, and use
this information to guide their image-space filter. The recon-
struction takes minutes, however. Other examples include al-
gorithms based on wavelet transforms [ODR09, DSHL10],
guided image filtering [BEM11], non-local means filter-
ing [RKZ12], and ray histograms [DMB∗14]. While most of
these methods have been developed for global illumination
or related effects, they can be successfully applied to mo-
tion and defocus blur. We believe image-space methods hold
great promise for fast and high-quality reconstruction, but
argue that these are best suited for adaptive rendering sys-
tems, where the possibility exists to refine difficult regions.

For non-adaptive rendering using a fixed number of input
samples, domain-specific methods that operate directly in
higher-dimensional space should intuitively be able to gen-
erate better results. In this case, the goal is to reconstruct
the light field for depth of field and motion blur by starting
with a sparse set of stochastically generated samples. Shirley

Author preprint



J. Munkberg et al. / Layered Reconstruction for Defocus and Motion Blur

et al. [SAC∗11] process samples front-to-back and sort a
large number of samples per pixel in order to use an ad-hoc
filter to produce the final image. Lehtinen et al. [LAC∗11]
present a higher-quality reconstruction method for high-
dimensional light fields, including motion blur, depth of
field, and soft shadows. They upsample a sparse light field
by exploiting depth and motion vectors, and resolve occlu-
sion by reconstructing plausible surfaces from the samples.
This important work has spurred new interest in reconstruc-
tion algorithms. Lehtinen et al. [LALD12] have also pre-
sented a more accurate method, primarily developed to re-
construct indirect illumination, which they show can be used
also for motion and defocus blur. However, this algorithm
was reported to be 3−4× slower than their previous method.
Vaidyanathan et al. [VMCS13] reconstruct defocus blur by
partitioning samples in screen space tiles and depth layers,
and derive an anisotropic, separable reconstruction filter for
each partition. In the combined case of defocus and motion
blur, the light field is anisotropic in a five-dimensional space,
and their reconstruction filter is no longer separable. We ex-
tend their framework with a new separable anisotropic filter,
motivated by a 5D light field analysis. We reconstruct defo-
cus and motion blur with near real-time performance.

3. Overview

Similar to previous work [LAC∗11], we work with light field
samples on the form: x : (xi,yi,ui,vi, ti) 7−→ (zi,di, li), e.g.,
the light field stores a depth zi, a 3D motion vector di, and ra-
diance value li, for each 5D input coordinate (xi,yi,ui,vi, ti),
where (xi,yi) are screen-space coordinates, (ui,vi) are lens
positions, and ti is the time within the frame. In contrast to
most previous work, our algorithm produces a smooth recon-
structed image by operating on a fixed number of light field
samples per pixel, instead of relying on a feedback loop for
adaptive sampling.

We first apply a light field analysis inspired by Belcour
et al. [BSS∗13] in Section 4 to study the anisotropy of the
light field in presence of defocus and motion blur. We make
a similar first order approximation of motion, where a a light
field sample’s motion vector is approximated by its projec-
tion on the xy-plane. Following their work, we assume a
Gaussian shutter function and lens aperture.

We depart significantly from Belcour et al. in the deriva-
tion of the reconstruction filter. Our filter is anisotropic in
xyuvt, while their filter is anisotropic only in xy. As a conse-
quence, we achieve much higher quality at equal number of
samples per pixel. The input samples are grouped into par-
titions, i.e., a set of depth layers for each screen space tile.
In contrast to most previous work, where unique filters per
pixel are derived, we formulate and apply a common sheared
reconstruction filter kernel in 5D for all samples within a
partition (Section 5). This, somewhat coarser, approxima-
tion allows for a very efficient implementation. We present a
non-trivial extension of the filter framework of Vaidyanathan
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Figure 2: The light field transformation from a moving dif-
fuse emitter (right) at depth z to the light field at the sen-
sor (left), following Belcour et al.’s analysis. For an efficient
filter implementation, we express the motion operation in
terms of rotations and a motion along the x-axis, and added
a change of basis C to transform from angles to lens coordi-
nates.

et al. [VMCS13], and show that the 5D filter is separable in
xut and yv. We carefully design a novel warped Gaussian
distribution such that even an anisotropic xut filter can be
plugged into their framework.

We evaluate the filter by integrating over uvt, and convolv-
ing in screen space xy. This gives us a filtered irradiance (e)
and opacity (α) for each layer. Finally, the layers are com-
posited in front-to-back order using alpha blending based on
the opacity values (Section 6). Implementation details are
discussed in Section 7, and we evaluate the visual quality
and performance in Section 8 and the accompanying video.

4. Light Field Analysis

In this section, we follow the light field analysis by Du-
rand et al. [DHS∗05], and include the extensions of a thin
lens [SSD∗09] and first-order motion [BSS∗13]. We use a
space-angle parametrization [DHS∗05]: (x,y,θ,φ, t), and let
corresponding frequencies be denoted Ω, e.g., x 7→ Ωx. We
transform the light field of a moving, emitter at depth z, to the
light field at the sensor using a sequence of linear operators.
The light field information will be used to derive a recon-
struction filter in Section 5. Our frequency analysis is only
valid for a diffuse, fully visible emitter, and does not take
occlusions or angular BRDF variations into account. Occlu-
sions are handled by partitioning samples into depth layers.
As shown in Figure 2, the sequence of operators is:

1. Transform out of the moving coordinate system (V−1
xy ).

2. Transport to the lens (Tz).
3. Refraction in lens and transport to sensor (LF ).
4. Coordinate transform C : (x,y,θ,φ, t)→ (x,y,u,v, t).

These four steps form a linear operator:

CLF TzV−1
xy , (1)

which transforms the light field from the moving coordi-
nate system at depth z to the light field at the sensor. All
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operators are 5× 5 matrixes [BSS∗13], which are included
in Appendix A for reference. The differences from Belcour
et al.’s analysis are that we include a coordinate transform
C : (θ,φ) 7→ (u,v), i.e., from angles to lens coordinates at the
sensor, and express the motion operator in terms of rotations
(around the z-axis) and motion along x: Vxy = R>z VxRz.

Inserting Vxy = R>z VxRz into Equation 1 gives:

CLF TzV−1
xy = R>z CLF TzV−1

x Rz = R>z MRz, (2)

where we have used CLF TzR>z = R>z CLF Tz. This equality
can easily be verified by performing the matrix multiplica-
tions. With the change of variables x′ = Rzx, the light field
transform can be expressed in the rotated frame (where the
motion vector is aligned with the x-axis) as the transform:

M =CLF TzV−1
x : (x,y,θ,φ, t)︸ ︷︷ ︸

at depth z

→ (x,y,u,v, t)︸ ︷︷ ︸
at sensor

. (3)

The expression for M on matrix form can be found in Ap-
pendix A. In the rotated coordinate system, the linear op-
erator (Equation 1) of the light field is simplified to M. As
we will see in Section 5, this simplified operator enables a
highly efficient reconstruction filter implementation.

In the Fourier domain, we denote frequencies at the sensor
with Ω̂ and frequencies at the moving frame at depth z with
Ω̂

z. In the same coordinate system as a moving diffuse emit-
ter, the radiance spectrum, expressed in (rotated) frequencies
Ω̂

z = (Ωz
x,Ω

z
y,Ω

z
θ
,Ωz

φ
,Ωz

t ), has the shape:

L(Ωz
x,Ω

z
y)δ(Ω

z
θ)δ(Ω

z
φ)δ(Ω

z
t ). (4)

L(Ωz
x,Ω

z
y) represents the spatial frequencies of the emitter.

A diffuse emitter has no angular variation, which gives the
Dirac, δ, in Ω

z
θ

and Ω
z
φ
. Also, in the moving frame, the emit-

ter is static, which gives the Dirac in Ω
z
t .

Assuming that the object is moving at a constant speed,
we can relate the spectrum at depth z to the spectrum at the
sensor using the linear transform, M, from Equation 2. When
applying a linear transform M in the primal domain, the
corresponding transform in the Fourier domain is ∝ M−>

[Hec89]. Thus, in our case: Ω̂ = M−>Ω̂
z, which can be used

to find expressions for the Dirac functions from Equation 4
in terms of sensor frequencies Ω̂ = (Ωx,Ωy,Ωu,Ωv,Ωt ). Us-
ing Ω̂

z = M>Ω̂ and inserting the expression for M from Ap-
pendix A we obtain:

δ(Ωz
θ
) = δ

( z−F
F

Ωx − zΩu

)
,

δ(Ωz
φ
) = δ

( z−F
F

Ωy − zΩv

)
,

δ(Ωz
t ) = δ

( d
F

Ωx −dΩu +Ωt

)
, (5)

where F is the focus plane, d is the length of the motion
vector, and we assume an image plane at unit length from
the lens. These equations show that the light field spectrum

Figure 3: Light field spectrum bandlimits in the (Ωx,Ωu,Ωt)
slice. For clarity of presentation, we only show the part of the
spectrum in the positive Ωt half-space. From Equation 7, the
spectrum has energy along a set of lines through the origin
(orange frustum). Depending on the motion amplitude and
defocus blur, the spectrum bandlimit in either Ωu (left), Ωt
(middle), or Ωx (right) will clip the frustum first. We approx-
imate this clipped frustum with a scaled and sheared Gaus-
sian distribution (visualized as a blue parallelepiped).

energy at the sensor is mostly restricted to a plane, Π, in 5D:

Π(Ωx,Ωy) : (Ωx,Ωy,c(z)Ωx,c(z)Ωy,−
d
z

Ωx), (6)

where we have introduced the notation c(z) = z−F
zF , which

is proportional to the circle of confusion. In the next sec-
tion, we will design a reconstruction filter that captures this
spectrum at the sensor.

5. Filter Design

We split our samples into screen space tiles, and partition
each tile into depth layers. The goal of this partitioning is to
reduce the variation in depth and motion vector (direction
and magnitude), thereby allowing for a better reconstruc-
tion filter in each partition. Vaidyanathan et al. [VMCS13]
assumed a Gaussian aperture, and designed a filter kernel
per partition. Their filter can be efficiently evaluated as an
integration over the uv dimensions, followed by a convo-
lution in screen space, xy. We extend their approach to in-
clude motion blur by assuming a Gaussian shutter function,
and aiming at integrating in the uvt dimensions first, fol-
lowed by screen space convolution. This is in contrast to
previous work on sheared filters [ETH∗09] and reprojection
techniques [LAC∗11], where a unique kernel is derived and
evaluated for each pixel, which includes performing a costly
search in a high-dimensional data structure of samples.

Fourier domain filter From Equation 6, the energy of the
light field spectrum for a diffuse emitter moving at con-
stant speed is described by a plane. For a partition of sam-
ples with similar depth values and motion vectors, assum-
ing no interaction between the emitters, i.e., no occlusion,
the spectrum will be mostly represented as a collection of
parametric planes. The planes’ coefficients are functions of
the samples’ depths and motion vectors. Since all planes go
through the origin, the spectrum of a set of samples will be
mostly bounded by a hyper-wedge, similar to how the shape
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of the spectrum is a wedge for a 2D slice, e.g., (Ωx,Ωu) or
(Ωx,Ωt) [CTCS00, ETH∗09].

A Gaussian aperture bandlimits the spectrum at Ωu =
±Ω

max
u , Ωv = ±Ω

max
v , and the Gaussian shutter at Ωt =

±Ω
max
t . Here, Ω

max
u = Ω

max
v = (2πσa)

−1, where σa is the
standard deviation of the aperture in the primal domain.
Ω

max
t is defined similarly, using σshutter. Ω

max
x stems from

the finite resolution of the image, σpixel.

In our rotated coordinate system (Equation 3), the Ωy
and Ωv components of the plane in Equation 6 are inde-
pendent of Ωt , so we can separate the filter design in the
(Ωy,Ωv) and (Ωx,Ωu,Ωt) subspaces. The filter in (Ωy,Ωv)
has been previously described in detail by Vaidyanathan
et al. [VMCS13], and can be efficiently implemented us-
ing oblique projections to capture the anisotropy of the light
field. We instead focus on the filter in the (Ωx,Ωu,Ωt) sub-
space.

Finding coordinate frame for a partition From Equa-
tion 6, in the (Ωx,Ωu,Ωt) subspace, the spectrum from a
diffuse emitter at depth z, moving with velocity d along the
x-axis will have energy along the parametric line:

r(Ωx) = Ωx

(
1,c(z),−d/z

)
. (7)

Within each partition of samples, there is some variation in
the circle of confusion c(z)∈ [cmin,cmax] and (signed) screen
space motion vectors− d

z ∈ [dmin,dmax]. For all samples in a
partition, we compute the average screen space motion vec-
tor and its variance per component. If the variance is small,
there is a common motion direction in the partition. The an-
gle ψ between the x-axis and the average motion vector de-
termines the rotation angle, i.e., the rotated frame defined by
Rz we apply to the input coordinates to simplify the light
field transform (Equation 2). This is shown in Figure 4. We
also slightly expand the [dmin,dmax] range as shown in Fig-
ure 4 (right) to account for variation in motion direction. The
lines produced by r(Ωx) with these variations in motions and
depth span a (double) frustum. Note that if the variance is too
high, there is no clear motion direction in the partition, and
we set d

z = 0 and ψ = 0. This will disable the motion blur
filter.

Depending on the magnitude of motion and the circle
of confusion, one of the bandlimits in Ωu, Ωt , or Ωx will
clip the frustum first, as shown in Figure 3. In cases where
the spectrum is clipped by bandlimits along two or more
axes, we simplify our filter design by selecting a single clip
plane that is intersected first by the corner ray rc(Ωx) =
Ωx(1,cmin,dmin). For each of the three clipping scenarios,
we approximate the clipped double frustum using a scaled
and sheared Gaussian distribution. Below, we discuss the
case when the spectrum is clipped against Ωu = Ω

max
u .

Clipping against Ωu = Ω
max
u : To approximate the clipped

spectrum (shown by the blue box in Figure 3 (left)), we

transform a three-dimensional isotropic Gaussian distribu-
tion in with a scaling, (sx,su,st), followed by a sequence of
two shears:

1. A shear in Ωx as function of Ωu: Ω
′
x = Ωx +αΩu.

2. A shear in Ωt as function of Ωx: Ω
′
t = Ωt +βΩx.

The concatenation of the scaling and shears is a matrix of
the form:

S =

 1 α 0
0 1 0
β αβ 1

 sx 0 0
0 su 0
0 0 st

 , (8)

where the parameters are derived in Appendix B. Given the
warp matrix, S, the Gaussian distribution in Fourier space
Ω̂ = (Ωx,Ωu,Ωt) can be written as [Hec89]:

w(Ω̂) = |S|−1e−
1
2 Ω̂
>(SS>)−1

Ω̂. (9)

However, Vaidyanathan et al. [VMCS13] showed that for a
2D warp matrix, if the shear in Ωx is independent of Ωu, the
filter can be efficiently evaluated. We extend this idea to 3D,
and search for a warp matrix on the form:

S′ =

 1 0 0
η 1 0
ξ 0 1

 s′x 0 0
0 s′u 0
0 0 s′t

 , (10)

i.e., both shears are purely functions of Ωx. To replace the
transform S with S′ without changing the Gaussian distribu-
tion, we solve the equation SST = S′S′T to obtain:

s′x = γ, s′u = sxsuγ
−1, s′t = st , η=αs2

uγ
−2, and ξ= β, (11)

where γ =
√

s2
x +α2s2

u. If the spectrum is instead clipped
against Ωt = Ω

max
t , the shear transformations are similar,

but with the Ωt and Ωu axes swapped. The case of clipping
against Ωx = Ω

max
x is even simpler, with S = S′.

Primal domain filter To create the corresponding filter
in the primal domain, we transform an (un-normalized)
isotropic Gaussian distribution with standard deviation σ =

1: w(x = (x,u, t);σ = 1) = e−
1
2 x>x, using S

′−>. The trans-
formed Gaussian is [Hec89]:

w(x) = |S′|e−
1
2 x>(S′S′>)x. (12)

This can be written as a product of three scalar Gaussians:

wshear(x,u, t) = w(x+ηu+ξt;σx)︸ ︷︷ ︸
wx

w(u;σu)︸ ︷︷ ︸
wu

w(t;σt)︸ ︷︷ ︸
wt

, (13)

where σx = (s′x)
−1,σu = (s′u)

−1, and σt = (s′t)
−1. This filter

is applied to the primal domain light field at the sensor within
the current depth layer. Our filter reverts exactly to a sheared
motion blur filter [ETH∗09] when the lens size is zero and to
Vaidyanathan’s [VMCS13] sheared defocus blur filter if the
motion vectors are zero. These are desirable properties.

Mehta et al. [MWR12] showed that an axis-aligned fil-
ter can be separated into an integration (in u) and convo-
lution (in x), which is critical for performance. However,

Author preprint



J. Munkberg et al. / Layered Reconstruction for Defocus and Motion Blur

dx

dy

dx

dy

dx

dy
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ψ

Figure 4: Bounding and rotating motion vectors. Left: find
the average motion vector and a bounding circle. Middle:
rotate an angle ψ such that the average motion vector aligns
with the x-axis. Right: find vmin and vmax by taking the
spread in motion vectors into account.

our signal in xut is highly anisotropic, which would not be
captured by an axis-aligned filter. Recently, Vaidyanathan
et al. [VMCS13] showed that also a sheared 2D filter (in xu
and yv for defocus blur) can be formulated as an integration
and convolution. We use their filter in the yv subspace, and as
shown above, we successfully extend their technique to the
3D xut subspace. With a careful selection of the warp matrix
(Equation 10), the primal domain filters (Equation 13) over
u and t are independent of x, which allows us to pre-integrate
over ut. The result is a very fast anisotropic filter.

6. Layer Visibility and Depth Layer Compositing

To composite the filtered layers together and take occlusion
between layers into account, we closely follow Vaidyanathan
et al.’s [VMCS13] approach. Samples are partitioned into
depth layers, and a sample in a layer k represents a ray that
has penetrated all layers j < k. Thus, we exploit that all sam-
ples in k contribute to the visibility approximation of layers
in front of it. We track layer radiance and opacity separately
per pixel, and composite layers front-to-back using a modi-
fied alpha blending. We approximate the irradiance by pre-
integrating the radiance and opacity over the lens and shutter
separately within each layer, i.e., when factoring in the radi-
ance from layer j, we directly use the product of the average
opacities over the lens and shutter for each layer in front of j.
This is in contrast to the exact result, obtained from integrat-
ing over the opacity of layers in front of j within the lens
integral and over the shutter. Please refer to Vaidyanathan
et al.’s paper for a discussion of this approximation.

7. Implementation

For each screen space tile containing N×N pixels, we col-
lect samples in a search window of size Ns×Ns. We typi-
cally use a tile size of N = 16 pixels and a search window
of Ns = 32 pixels, and have found this to be a good tradeoff
between quality and performance. If the primal domain fil-
ter extends beyond the search window, its width is clamped
in order to avoid truncation. This clamping is discussed in
Appendix C.

The samples in the search window are statically parti-
tioned in depth. We use a uniformly distributed set of depth
layers, and add a set of layers symmetrically around the
plane in focus, following Vaidyanathan et al. [VMCS13].
The number of active layers (i.e., layers containing samples)
in our test scenes for Ns = 44 are listed below.

Layers/tile(max) Layers/tile(avg)
ARENA 4 spp 5 1.9
CITADEL 4 spp 10 3.0
SANMIGUEL1 8 spp 11 5.3
SANMIGUEL2 8 spp 8 3.2
WALL 4 spp 10 3.1
HAIRBALL 8 spp 12 5.6

We combine the defocus filter from Vaidyanathan
et al. [VMCS13] in yv (with a shear ρ in yv) and the new
filter from Section 5 in xut. The 5D reconstruction filter (in
rotated coordinates) is a product of five scalar Gaussians:

w(x+ηu+ξt;σx)︸ ︷︷ ︸
wx

w(y+ρv;σy)︸ ︷︷ ︸
wy

w(u;σu)︸ ︷︷ ︸
wu

w(v;σv)︸ ︷︷ ︸
wv

w(t;σt)︸ ︷︷ ︸
wt

. (14)

The integrated opacity, ᾱ j, and irradiance, e j, for each
pixel in layer j are now computed by a reprojection step fol-
lowed by a screen space filter.

Algorithm 1 Reprojection step for layer j
for all light field samples (xi,yi,ui,vi, ti) do

Compute p, q (Eq. 16), and w = wu(ui)wv(vi)wt(ti)
if zi in depth range of layer j then

Iα(p,q) += w . opacity
Ie(p,q) += l(xi)w . irradiance
Iw(p,q) += w . weight

else if zi is in layer k > j then
Iw(p,q) += w . α = 0 in layer j

end if
end for

Reprojection The reprojection step is expressed in coordi-
nate system rotated in xy, which is unique for each layer
(i.e., determined by the direction of the layer’s average mo-
tion vector). Let R represent the upper left 2× 2 matrix
of Rz from Appendix A, i.e., a standard 2D rotation ma-
trix. For each input sample with index i, we accumulate the
weight w = wu(ui)wv(vi)wt(ti), weighted radiance wli, and
weighted opacity wαi at the rotated pixel position R[p,q]>:

R
[

p
q

]
=R

[
xi
yi

]
+

[
η 0
0 ρ

]
R
[

ui
vi

]
+

[
ξ

0

]
ti. (15)

However, in order to composite samples from different lay-
ers, we reproject and accumulate samples directly in the
(unrotated) (x,y) coordinate frame, by simply multiplying
Equation 15 with R−1 = R> from the left:[

p
q

]
=

[
xi
yi

]
+R>

[
η 0
0 ρ

]
R
[

ui
vi

]
+R>

[
ξ

0

]
ti. (16)
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Input (8 spp) Reprojection Full algorithm

Figure 5: A cutout from the rotating HAIRBALL scene. The
middle image shows our algorithm restricted to using only
the reprojection step, i.e., without screen space convolution.
Since the image is relatively sharp, this can be interpreted
as an indication that our visibility approximation works well
for complex scenes, even though we project all samples in
a depth layer along an average vector, and use a simplified
compositing (Section 6).

The complete reprojection step is outlined in Algorithm 1.
Note that we quantize (p,q) to pixels in our implementa-
tion. An example of only applying the reprojection step on a
sparsely sampled light field is shown in Figure 5.

Screen Space Filter After the reprojection, an anisotropic
Gaussian screen space filter (separable convolution in xy) is
applied over the reprojected samples. This filter is outlined
in Algorithm 2. Finally, as discussed in Section 6, the filtered

Algorithm 2 Screen space filter for layer j
for all pixels (x,y) in Ns do . along motion

for all k in [-radius, radius] do
x′ = x+ cos(ψ)k, y′ = y− sin(ψ)k, w = wx(k)
Get Iα, Ie, and Iw from Algorithm 1 at (x′,y′)
ᾱ j(x,y)+= Iαw, e j(x,y) += Iew, w̄(x,y)+= Iww

end for
end for
for all pixels (x,y) in Ns do . perp. to motion

for all k in [-radius, radius] do
x′ = x+ sin(ψ)k, y′ = y+ cos(ψ)k, w = wy(k)
ᾱ j(x,y)+=ᾱ j(x′,y′)w, e j(x,y) += e j(x′,y′)w,
w̄(x,y)+= w̄(x′,y′)w

end for
end for
for all pixels (x,y) in N do . normalization

ᾱ j(x,y) /= w̄(x,y), e j(x,y) /= w̄(x,y)
end for

layers are composited together using an approximate alpha
blending [VMCS13]. The irradiance is approximated as:

e(x,y)≈ e0(x,y)+
N−1

∑
j=1

e j(x,y)
j−1

∏
k=0

(1− ᾱk(x,y)). (17)

TLFR Our Ns = 32 Our Ns = 44
SSIM PSNR SSIM PSNR SSIM PSNR

ARENA 99.4 47.7 99.2 46.1 99.3 46.1
CITADEL 98.5 45.4 99.1 45.1 99.3 45.9
SANMIGUEL1 92.1 32.6 96.4 36.5 96.5 35.9
SANMIGUEL2 95.9 31.6 97.5 33.4 97.5 35.8
WALL 95.5 32.6 96.7 35.6 96.4 35.4

Table 1: Structural similarity index (SSIM) scores in %, and
peak signal to noise ratio (PSNR) in dB for all test scenes.
For both metrics, a higher score indicates less error.

8. Results

Image Quality Figure 1 and Figure 6 show reconstruction
quality with our algorithm for a variety of scenes. Figure 6
also includes a comparison with Lehtinen et al.’s [LAC∗11]
technique, denoted TLFR, which has reconstruction times
of 8-17 s on a discrete GPU. For ease of comparison, we
have modified their code to use a Gaussian shutter and aper-
ture. We obtain similar quality with reconstruction times in
28-80 ms. To evaluate image quality, we use the structural
similarity index (SSIM) [WBSS04], where we have aver-
aged over the color channels (RGB), as well as PSNR. As
can be seen in Table 1, our algorithm has better or similar
scores compared with TLFR. Our algorithm allows balanc-
ing quality and performance by tuning the size of the search
window, Ns. We have found that Ns = 32 produces high qual-
ity images in most cases and consider it the best tradeoff for
real-time applications. However, for high-quality rendering,
larger Ns may be desirable, as this helps reduce noise in re-
gions with very large defocus or motion blur. For our test
scenes, this was only noticeable in SAN MIGUEL 1 (Figure 1).
We include reconstructed images with Ns = 44 in the sup-
plemental material. This size is motivated by the available
on-chip memory in Direct3D 11 compute shaders.

In practice, we use a clamped filter that is smaller than
the maximum motion or circle of confusion in a scene. This
was done to limit the search window around each tile, and
is important for parallelization of the algorithm. However,
we have noted that image quality does not decrease signifi-
cantly due to this. The stochastic samples locally capture the
anisotropy of the motion or depth of field accurately, and the
filter typically has enough samples locally to suppress noise.

Compared to a reference solution and TLFR, our filter
has more noise in regions with large variations in motion.
TLFR tends to expand geometry around some silhouettes,
as can be seen around the leaves in the SAN MIGUEL 2 scene
in Figure 6. This effect may be less visible in a recent follow-
up work [LALD12], where the visibility approximation is
tuned by re-tracing all rays and checking for false positives.
However, that algorithm is 3−4× slower than TLFR.

The WALL scene in Figure 7 has many small objects with
vastly varying motion vectors. This is a difficult case for our
algorithm as it stresses our original assumption that the mo-
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Input samples Reconstructed Reference (1024 spp) TLFR (128 spp)

Figure 6: From top to bottom, the CITADEL (4 spp), ARENA (4 spp), and SAN MIGUEL 2 (8 spp) test scenes with simultaneous
motion and defocus blur. The reconstructed images are essentially noise-free, and closely match the reference images. CITADEL

is adapted from Epic Citadel courtesy of Epic Games, Inc. c©2013. SANMIGUEL is courtesy of Guillermo M. Leal Llaguno.

tion in a depth partition within a tile is approximately uni-
form. Please refer to the accompanying video for the entire
animation.

GPU Performance We have measured performance of our
implementation on a Geforce GTX 780 discrete graphics
card, with thermal design power (TDP) of 250 W, as well
on an Intel Iris Pro 5200 integrated GPU (TDP 47 W for
CPU+GPU). The image quality generated by our GPU im-
plementation closely matches the CPU implementation, with
the exception that HDR color depths are not handled as
well on the GPU. Direct3D 11 does not currently support
for floating point atomics in Direct3D 11, and parts of the
implementation therefore use a 16-bit fixed point color for-
mat internally. Performance is summarized in Table 2. The
implementation scales linearly with the number of samples
per pixel as shown in Figure 8. The algorithmic complex-
ity of reconstructing a pixel is linear in the side length of
the search window and number of non-empty depth layers.
Interestingly, the GTX 780 scales poorly when increasing
the search window. This is likely due to the 32× 32 pixel
window hitting a sweet spot, where all data fits in on-chip
memory. Performance on the Iris Pro scales proportionally
to search window size, and we have noted similar behavior
on AMD HD7900 hardware.

TLFR Our Our
GTX780, 250W GTX780, 250W IRIS PRO, 47W

ARENA 9726 ms 28 / 99 ms 150 / 229 ms
CITADEL 12825 ms 36 / 185 ms 220 / 434 ms
SANMIGUEL1 17111 ms 80 / 406 ms 450 / 808 ms
SANMIGUEL2 14425 ms 51 / 238 ms 308 / 536 ms
WALL 8281 ms 34 / 151 ms 198 / 363 ms

Table 2: Reconstruction times for different scenes. For our
algorithm, execution time is reported with Ns = 32 and Ns =
44 search windows, where we consider Ns = 32 to be a good
trade-off for real-time or interactive applications.

Comparison Against Axis-Aligned Filtering We initially
evaluated axis-aligned filters as an alternative to the sheared
filters that are used for reconstructing each layer. Those
filters are derived by computing axis-aligned frequency
bounds in the (Ωy,Ωv) and (Ωx,Ωu,Ωt) subspaces using
an approach similar to Mehta et al. [MWR12]. Belcour
et al. [BSS∗13] use an anisotropic Gaussian in the xyuvt do-
main and slice it to produce an anistropic Gaussian in xy.
This leads to a reconstruction filter that is axis-aligned in uvt.
Unlike their approaches with a per-pixel filter and adaptive
sampling, we apply a common filter for all samples within
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Input (4spp) Reconstructed Reference (256 spp)

Figure 7: A stress test for simultaneous motion blur and
depth of field. For the moving objects close to the static
floor, there are large variations in the motion vectors within
a depth partition, and our reconstruction filter becomes very
small. This shows up as noise in some tiles. Please refer to
the video to see this scene in motion.
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Figure 8: Performance and SSIM scores of our GPU im-
plementation (on GTX780), with increasing number of input
samples per pixel. We used the SAN MIGUEL 1 scene for this
test. The ceiling on image quality is due to that the refer-
ence image is generated using 1024 spp in pbrt with super-
sampled shading. Also, we do not account for shadows nor
non-diffuse shading. TLFR converges similarly in our tests.

each depth partition in our comparison. As mentioned above,
this common filter is anisotropic in xy, but axis-aligned in
uvt. Figure 9 shows a comparison of reconstruction quality
with axis-aligned vs. sheared filters on SAN MIGUEL 1. This
is the expected quality of Belcour’s and Mehta’s filters if
adapted to the same restrictions (fixed spp and fixed motion
per tile). The reconstruction quality with a common axis-
aligned filter for each depth partition in a tile is inadequate
for sparsely sampled inputs, unless combined with an adap-
tive sampling pass.

Limitations The layered visibility approximation may in-
troduce artifacts. The technique is fundamentally tile-based
(in both screen space and depth) with a fixed search win-
dow. For a thin object flying past the camera very quickly,
details can be missed. Still, with 8 spp and Ns = 44, we
have 15k samples within the tile, so the probability of com-

Axis-aligned Sheared (Our) Reference
SSIM: 86.3% SSIM: 95.8%

Figure 9: SAN MIGUEL 1 at 4 spp, reconstructed using an
axis-aligned filter vs. our sheared filter.

pletely missing objects is low. If there is too large variance
in motion within a depth partition, we revert to a small axis-
aligned filter. Furthermore, the algorithm does not incorpo-
rate shadows nor indirect illumination. e.g., a shadow on a
static receiver in focus is not filtered. Figure 10 highlights
these cases. At low input sampling rates, some streaking ar-
tifacts are visible, e.g., in the dragon’s head in Figure 6. This
can be mitigated by using a slightly larger pixel filter (σpixel),
but at the cost of minor decrease in sharpness.

Our Fourier analysis exploits bandlimits from the Gaus-
sian aperture and shutter, similar to previous work. One
could go “against the theory” and instead apply, e.g., a
hexagonal aperture in the filtering step (as suggested by
Mehta et al. [MWR12] for area lights). A 2N-gonal aperture
can be implemented as N separable filters.

We use the same approximate alpha blending as
Vaidyanathan et al. [VMCS13] (Equation 17). Please refer to
their paper for a thorough discussion of this approximation.
The blending formula is only approximated at layer j > 0
and it gets coarser as j increases (but the layer contribution
to the final pixel color typically decreases with increasing
j). Layer 0 (the frontmost layers) is not affected by this ap-
proximation. For example, a scene with a flat moving surface
sloping away from the camera (e.g., CITADEL) still produces
correct opacity.

9. Conclusions

In this paper, we have used recent frequency analysis tools
for light transport to derive an efficient layered reconstruc-
tion algorithm for simultaneous motion and defocus blur.
We have cautiously used a set of approximations, includ-
ing, Gaussian shutter and lens, analysis using a diffuse emit-
ter only, a layered representation, a single filter per parti-
tion, and using motion in only xy. Despite these approxima-
tions and the fact that motion and defocus blur reconstruc-
tion is a much more difficult problem to tackle than defo-
cus blur alone, we have demonstrated that using a fixed, pre-
determined number of stochastic samples per pixel (e.g., 4–
8) results in reconstructed images of very high quality. We
found that our image quality is on par with previous work,
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A

B

C
Input (8 spp) Our algorithm Ref. (1024 spp)

Figure 10: The three shapes move along x, y, and z respec-
tively. The large image shows our reconstructed result from
8 spp. If there is too much motion variation within a depth
layer, we revert to a small filter. This is visible on the bot-
tom of the moving objects (A). This effect diminishes with
increasing number of depth layers and smaller tile sizes, but
is an inherent limitation from our approximation of one mo-
tion direction per partition. At the top of the objects, there
is large depth separation, and the filter works fine (B). Fur-
thermore, we do not filter shadows or indirect illumination,
so soft shadows below the objects remain noisy (C).

or better. Our implementation on a high-end GPU with our
high-quality settings (which we recommend for offline ren-
dering) runs about 40−100× faster than the previously best
method for reconstruction (TLFR). Using our basic setting
(Ns = 32), we found that our algorithm is about 200−360×
faster, and this is what we recommend for real-time ren-
dering. Note that with the latter settings, the execution time
of our reconstruction pass is between 30–80 ms per frame,
which can be considered real time. Even on an integrated
graphics processor on a laptop, our algorithm runs at inter-
active rates. We believe that our work is a big step forward
for rapid and high-quality image reconstruction for motion
and defocus blur.
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Appendix A: Light Field Operators

In this section, we list the light transport operators [DHS∗05,
BSS∗13] applied to the primary domain light field. For the
lens operator, LF , we set the image plane at unit distance
from the lens and express it in terms of the distance to the
plane in focus, F , using the thin lens formula: 1

f = 1+ 1
F ,

where f is the focal length. At the sensor, we transform
from angular coordinates to lens coordinates: (u,v) = (x+
tanθ,y+ tanφ), which, similar to previous work, we locally
approximate with (x+ θ,y+ φ). We denote this coordinate
transform C : (x,y,θ,φ, t)→ (x,y,u,v, t), and concatenate C
to the lens operator. The lens and transport operators are:

CLF=


− 1

F 0 −1 0 0
0 − 1

F 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

, Tz=


1 0 −z 0 0
0 1 0 −z 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
We use Belcour et al.’s first order motion operator, but fur-
ther approximate 3D motion with motion purely in xy, so the
angular motion terms (dθ,dφ) are zero. Our motion operator
is applied in a rotated coordinate system (using the rotation
matrix Rz below), where the rotation angle ψ is chosen so
the motion in y is zero. Let c = cosψ and s = sinψ, then:

Vx=


1 0 0 0 d
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Rz=


c −s 0 0 0
s c 0 0 0
0 0 c −s 0
0 0 s c 0
0 0 0 0 1

.
The light field transform in a rotated coordinate system,
where the motion vector is aligned with the x-axis, is:

M =CLF TzV−1
x =


− 1

F 0 z−F
F 0 d

F
0 − 1

F 0 z−F
F 0

1 0 −z 0 −d
0 1 0 −z 0
0 0 0 0 1

 .
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Figure 11: Projection of the 3D frequency bounds (light or-
ange) shown in Figure 3 for the case where the spectrum gets
clipped along the Ωu axis. The blue box represents the Gaus-
sian distribution that approximates the frequency bounds.
Left: projection in the (Ωx,Ωu) space. Right: projection in
the (Ωx,Ωt) space, showing the frequency bounds and inter-
section of the spectrum with the Ωu = Ω

max
u plane (orange

polygon).

Appendix B: Filter Parameters

As discussed in Section 5, we approximate the clipped fre-
quency spectrum by applying a scale followed by two shears
to an isotropic Gaussian distribution. We derive the scale and
shear values separately for the three cases, where the spec-
trum gets clipped either at the Ωu, Ωt , or Ωx axis. Given
a primal domain Gaussian with standard deviation σ, we
choose the bandlimit as Ω

max = (2πσ)−1. In our implemen-
tation, we use σpixel = 1/3, σa = 1/3, and σshutter = 2/3.

Clipping against Ωu = Ω
max
u : Figure 11 (left) shows the

frequency bounds in the (Ωx,Ωu) space, where the spectrum
is clipped at Ωu = Ω

max
u . The transformed Gaussian, which

approximates the light field spectrum, is represented by the
blue parallelogram. This is derived from an isotropic unit
Gaussian, by first applying a scaling in frequency space by:

(sx,su,st) = 2πΩ
max
u

(∣∣∣∣cmax− cmin
2cmincmax

∣∣∣∣ ,1, ∣∣∣∣dmax−dmin
2cmin

∣∣∣∣) ,

where (sx,su) are equal to half of the width and height of the
parallelogram. Then shear an amount α in Ωx as function of
Ωu, where α = cmax+cmin

2cmincmax
. The scaling coefficient st , is ob-

tained by looking at Figure 11 (right), which shows a pro-
jection of the frequency bounds in the (Ωx,Ωt) space. Here,
the blue box, which represents the transformed 3D Gaussian,
projects to a parallelogram with height h = Ω

max
u

∣∣∣ dmax−dmin
cmin

∣∣∣.
This gives st = πh. Finally, the second shear β = dmax+dmin

2
applied in Ωt as function of Ωx is the average slope of the
light field spectrum in (Ωx,Ωt).

Appendix C: Filter Clamping

If the spatial extents of the primal domain filter extend be-
yond the search window, its width is clamped in order to
avoid truncation. In the Fourier domain, this corresponds to
an expansion of the included frequencies. Figure 12 shows

Ωu

Ωx

Ωu
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Ωx
clamp

Ωt

Ωx

2sx 

σx=(2�sx)
-1 

σx
clamp σx

clamp 

σu=(2�Ωu
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x

t
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Fourier

Primal

Figure 12: Projection of the filter bounds in the (Ωx,Ωu)
slice (left) and (Ωx,Ωt) (right). If the filter is too large in
the primal domain, we expand the frequency domain scale
factors sx and st , such that the filter in the primal domain
(lower row) is reduced. Optionally, as shown in red, we also
slightly adjust the shear coefficient β, such that the primal
filter encompasses more samples. This slightly increased im-
age quality in our test scenes.

an expanded Fourier domain filter for the case when the fre-
quency bounds are clipped against Ωu = Ω

max
u (Figure 3

left). We increase the scale factor sx such that the filter fre-
quency bounds grow, resulting in a more conservative filter
with smaller extents in the primal domain (bottom row). The
scale st is also increased and, optionally the shear β modi-
fied, as shown in Figure 12 (right). In our implementation,
we clamp the spatial extents of the primal domain spatial fil-
ter to σ

clamp
x = Ns−N

4 . This ensures that at least 95% (2σ) of
the clamped Gaussian filter’s integral lies within the search
window, which is sufficient to avoid tile artifacts. Clamping
is applied in a similar manner when the spectrum is clipped
against the other clip planes.
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