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Figure 1: A close-up of the crown scene rendered using Embree 2.0 modified with our novel traversal algorithm. This scene renders, including
shading, frame buffer updates, and all other overhead, about 22% faster with our algorithm on a Haswell-based ultrabook. The performance
improvement comes from our traversal, which is 36% faster than the fastest traversal algorithm in Embree for this scene. For other scenes,
our traversal algorithm can be over 50% faster.

Abstract

While each new generation of processors gets larger caches and
more compute power, external memory bandwidth capabilities in-
crease at a much lower pace. Additionally, processors are equipped
with wide vector units that require low instruction level divergence
to be efficiently utilized. In order to exploit these trends for ray trac-
ing, we present an alternative to traditional depth-first ray traver-
sal that takes advantage of the available cache hierarchy, and pro-
vides high SIMD efficiency, while keeping memory bus traffic low.
Our main contribution is an efficient algorithm for traversing large
packets of rays against a bounding volume hierarchy in a way
that groups coherent rays during traversal. In contrast to previous
large packet traversal methods, our algorithm allows for individual
traversal order for each ray, which is essential for efficient ray trac-
ing. Ray tracing algorithms is a mature research field in computer
graphics, and despite this, our new technique increases traversal
performance by 36-53%, and is applicable to most ray tracers.
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1 Introduction

Ray tracing [Whitted 1980] is a flexible tool that forms the basis
for state of the art photo-realistic rendering algorithms. Recently, it
has also seen increasing use in real-time applications. One of the
core operations in a ray tracer is determining the closest visible sur-
face along a ray. The performance of this operation is critical and
is usually accelerated by building a spatial data structure over the
scene. One of the most popular spatial data structures is the bound-
ing volume hierarchy (BVH). The time required to trace a set of
rays against a BVH is dependent on the size of the scene, the distri-
bution of the rays, the quality of the BVH, and the performance of
the ray traversal algorithm. Our goal is to create a high-performance
ray traversal algorithm that is less sensitive to the size of the scene
and the distribution of the rays, compared to other packet tracing
approaches.

Modern CPUs employ a variety of techniques to improve per-
formance by rearranging programs to exploit inherent paral-
lelism [Hennessey and Pattersson 2011]. Superscalar CPUs can ex-
ecute multiple instructions simultaneously on different functional
units and pipelining is used to issue a new instruction each clock
cycle. This makes it possible to realize high throughput with many
independent instructions, even though the latency of different in-
structions may differ. When the CPU is unable to issue a new in-
struction, resources are wasted. Therefore, instruction scheduling
is performed both by the compiler and the CPU. However, efficient
scheduling is possible if and only if the algorithm contains enough
independent instructions at any given time. Our goal is to construct
a ray traversal algorithm that aligns well with current hardware, by
providing enough parallel work within a single instruction stream.

Data level parallelism attempts to make the most out of each in-
struction by performing the same computation on several data items
using single instruction multiple data (SIMD) execution. The ex-
tra performance scales linearly with SIMD width for suitable al-
gorithms and is very power efficient. Current trends indicate that
SIMD width will continue to increase in the future. For example,
contemporary CPUs have a SIMD width of 256 bits, the many-core
Xeon Phi architecture features 512-bit SIMD, and most GPUs have
a width of 1024 or 2048 bits. Algorithms need to have low instruc-
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tion level divergence in order to efficiently exploit increasing SIMD
width. Divergence leads to underutilization since SIMD lanes will
need to be masked out. This is not a trait generally attributed to
depth-first traversal. Even when packets of rays are traced in a
SIMD fashion, rays usually diverge quickly when incoherent, such
as for diffuse interreflections, for example.

As compute increases (wider SIMD and more cores), one of the
key challenges involves the external memory bandwidth and cache
design. To reduce latency and bandwidth, CPUs are equipped with
a large cache hierarchy in combination with sophisticated hardware
prefetchers that detect memory access patterns, and prefetch mem-
ory into a cache before it is needed. Our algorithm is designed to
have a predictable memory access pattern with high data coherence,
which substantially reduces the amount of memory bandwidth us-
age in our tests.

Over the last 30 years or so, the topic of ray tracing has been re-
searched thouroughly, and can in many ways be considered a ma-
ture research field. As a consequence, it is increasingly difficult to
develop algorithms that improve performance, and in particular so
for the core methods, such as traversal, intersection, and shading.
Despite this, our results show that total ray tracing performance can
be improved by 22–37%, while traversal alone is increased by 36–
53%, which is rather remarkable. In addition, we expect that our
techniques can be applied to a wide range of existing ray tracers,
since the BVH is the most popular spatial data structure.

2 Previous Work

As mentioned above, a substantial amount of research has been de-
voted to finding new and improved ray traversal algorithms in order
to make the entire ray tracing process faster. Here, we can only
review a small number of these papers, and we chose the ones that
are most relevant for our work.

Usually, a stack is maintained that contains the next node to be pro-
cessed during ray traversal. The technique has been combined with
various forms of ray sorting and tracing of whole packets [Wald
et al. 2001] of rays to improve performance. Sorting generally in-
curs some overhead and is usually a heuristic that hopes to improve
data locality and minimize divergence. Packets of rays are often
quite small and inevitably leads to divergence in all but the most co-
herent workloads (such as primary visibility). Stack-less ray traver-
sal [Hughes and Lim 2009; Laine 2010; Hapala et al. 2011; Bar-
ringer and Akenine-Möller 2013] is a more recent endeavor that
was, at least initially, motivated by the high overhead of main-
taining a traversal stack on previous generations of GPUs. More
recently, uses have been postulated to include cheap ray suspen-
sion and transfer on distributed systems or custom hardware [Ha-
pala et al. 2011], though no real demonstration of such system ex-
ists, to the best of our knowledge. Áfra and Szirmay-Kalos [2013]
present optimized stack-less traversal algorithms for CPUs, MIC,
and NVIDIA GPUs using multi-BVHs [Wald et al. 2008; Ernst and
Greiner 2008; Dammertz et al. 2008], where a BVH node usually
have four or more children in order to improve SIMD efficiency in
ray vs. many bounding volumes and intersection tests.

While both stack and stack-less traversal generally performs a
depth-first traversal with a small number of rays, Hanrahan [1986]
introduced breadth-first ray tracing to increase the number of cache
hits for geometry in a beam tracer. Stream filtering [Wald et al.
2007; Gribble and Ramani 2008; Tsakok 2009; Ramani et al. 2009]
builds upon the ideas of breadth-first ray tracing to test a large num-
ber of rays against the same BVH node or triangle, which may allow
high utilization of very wide SIMD. The downside of their approach
is mainly that all rays need to traverse the BVH in the same order.

Mora [2011] traverses large packets of rays against a set of trian-
gles, but perform traversal in such a way that a BVH is not needed.

When traversing a binary BVH at a certain node, and it is deter-
mined that a ray intersects both children, the algorithm must deter-
mine which node to traverse next, and which to postpone (usually
by pushing it to a stack). A very important optimization in ray trac-
ing is to let each ray start traversing the child node that is most likely
to occlude the ray, thus potentially making traversal into the other
child unnecessary. The order is often based on some heuristic, e.g.,
start with the node closest to the ray origin. One major disadvantage
in existing stream filtering approaches is that all rays must start with
the same node, meaning that, for highly divergent rays, about half
of the rays will start with a suboptimal node. Our approach com-
bines the strengths of stream filtering, in terms of SIMD efficiency
and memory locality, with the flexibility of a depth-first traversal so
that any ordering heuristic is possible for each individual ray.

Boulos et al. [2008] use ray packets of arbitrary size in order to ex-
ploit coherence otherwise hidden in separate smaller packets. They
combine BVH packet traversal (interval arithmetic), SIMD packet
tracing, and breadth-first ray tracing. However, they do not attempt
to allow for dynamic descent direction for each individual ray dur-
ing traversal, i.e., all rays in a packet must take the same path in the
tree. Tsako et al. [2009] combine multi-BVH traversal with stream
tracing of large packets in order to reduce the memory bandwidth
associated with single-ray tracing against an n-way BVH, while
eliminating the cost of filtering rays at each traversal step. They
maintain one stack of rays per SIMD lane that are referenced by a
single task stack. Again, the traversal order is the same for all rays.

Garanzha and Loop [2010] target GPU architectures and improve
performance by efficiently sorting rays for coherence and then
traversing coherent packets of rays using frustums in a breadth-first
manner. They use an Octo-BVH and traverse using an ordering
heuristic based solely on the average ray direction within a frus-
tum.

3 Overview

As previously mentioned, a stack, which contains nodes that are
still to be tested against the ray, is usually maintained during single-
ray traversal. If multiple rays are traversed simultaneously, rays
will typically have some of the same entries in their node stacks.
This observation forms the basis for our algorithm. The key idea
is that if multiple rays are to be tested against the same node, this
can be performed in a very efficient manner. First, memory fetches
for that node can be amortized over multiple rays. Second, since a
single node is tested against multiple rays that are completely inde-
pendent, we gain instruction level parallelism and have additional
opportunities for vectorization. This means that 1) SIMD execution
can be used, and 2) dependency chains that may stall the pipeline
can be avoided. In fact, if enough rays are tested against the same
node, vectorization can scale to any SIMD width.

We therefore form a ray stream, which is essentially just a collec-
tion of rays, e.g., the initial eye rays from a 16 × 16 pixel tile, or
some light paths in a global illumination renderer. When traversing
a ray stream against a BVH, our goal is to group rays that take the
same path in the tree, without restricting the path of each individ-
ual ray. As such, we allow for a flexible traversal order but utilize
coherence when present.

The subsequent section describes the details of the algorithm and
then follows implementation details in Section 5. Results are pre-
sented in Section 6 and finally, we offer some conclusions and ideas
for future work.
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Figure 2: Example traversal state showing the relationship be-
tween multiple single-ray stacks and our combined ray stream
stack. Na..f represents nodes of the BVH and Ra..d represents rays
traversed against it. Left: four single-ray stacks – note that since
a stack is a data structure that changes over time, we have chosen
to just visualize which nodes are visited by each ray. Middle: here
the BVH is shown, and next to each node, all the rays that visit that
node are listed. Right: our ray stream stack is visualized here, and
it is straightforward to confirm that those two stack representations
include exactly the same information. One part of our new traversal
algorithm is that we perform ray vs. node tests in the order provided
by the ray stream stack to increase SIMD efficiency.

4 Traversal Algorithm

In order to extract coherence from individual rays in a ray stream,
we remove the per-ray node stacks typically used in single-ray
traversal. We instead define a single ray stream stack that is shared
by all rays in a ray stream. In order to keep track of which rays
should be tested against a particular node in the ray stream stack,
each item in the stack has a list of pointers to associated rays. The
relationship between multiple single-ray stacks and our ray stream
stack is shown in Figure 2.

Ordinary stack-based tree traversal progresses in steps by testing a
single ray, or a small packet of rays, against a node at a time. Our
algorithm works in exactly the same way, only that, in our case, a
variable sized set of rays is tested against the node at each traversal
step. Testing the set of rays should ideally be performed in a loop
over the set of rays with few dependencies between loop iterations,
so that the loop can be unrolled to provide for instruction level par-
allelism and opportunities for vectorization. At the same time, we
desire to group rays that continue along the same path so coherence
can be continued to be exploited in the next traversal step.

Assume that an internal node contains pointers to its children, as
well as the bounding volumes of the children. A high level descrip-
tion of our algorithm can be found below:

1. Build a ray stream of, e.g., 4096 eye rays.
2. Set active rays to be all rays in the ray stream. This is es-

sentially a list of ray pointers or indices, referencing the ray
stream.

3. Fetch the BVH root node, and make it current node.
4. Using SIMD, test all active rays against the current node:

(a) If the node is internal, then test all rays against the BVs
of the children (two in the case of a binary BVH).

(b) If the node is a leaf, then test all rays against the trian-
gles in the leaf.

5. According to the result from step 4a, push stack items to the
ray stream stack, each with a BVH node and a corresponding
ray pointer list of associated rays.

6. If the stack is empty, we are done. Otherwise continue with
the next step.

7. Pop a stack item and make the item’s BVH node the current
node. Also make the associated list of rays the active rays.

8. Go to 4.
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Figure 3: To the left, a parent box is shown with a left and right
child, and four rays, Ra, Rb, Rc, and Rd, which illustrate the dif-
ferent types of paths that can be taken into the children of the parent
node. As mentioned in the text, our traversal algorithm needs three
stack items, here enumerated I, II, and III. Depending on which
path (left, right, left then right, or right then left) a ray takes, the
ray needs to be put into one or more stack items. For example, ray
Ra hits the left child only, and is therefore put into I. Rc hits the
right and then the left child, and is therefore put into II and III.
Note that the order is important here, i.e., stack items are visited in
the order given by the enumeration (I, II, and III).

This algorithmic description is fairly complete, but omits an impor-
tant optimization that switches to single-ray traversal as the active
rays becomes few. How this optimization is applied is discussed in
more detail in Section 5. The most interesting step in the algorithm
is arguably step 5 that deals with appending rays to the ray stream
stack. In fact, how to efficiently manage the ray stream stack and
its associated ray pointer lists during traversal is the topic of the
remaining part of this section.

When testing a set of rays against an internal node (Step 4a), the
outcome of the tests determines what stack items are added to the
ray stream stack in Step 5. The maximum number of stack items
that can be added, and to which child they each refer to, depends
on how many children each interior node of the BVH has and the
number of possible order configurations that are allowed for con-
tinued paths. For example, for BVH2 (Section 4.1), we need to
push a maximum of n = 3 stack items to the ray stream stack. The
specifics for BVH structures with 2 and 4 children are discussed in
Sections 4.1 and 4.2.

In order to support a streaming approach where each ray is tested
against the internal node once, we need an efficient way to append
rays to the stack. The upper limit on the number of stack items
that can be added, allows us to reserve space for all of them prior
to testing any rays, i.e., before Step 4. After testing a specific ray
(Step 4a) and determining how traversal should progress for that
ray, a pointer to the ray is appended to all stack items that make up
that particular path continuation. Once all rays have been tested,
the result is a set of stack items that reference zero or more rays.
Only those items that actually reference any rays are pushed to the
ray stream stack in Step 5.

The limited number of stack items added at a traversal step means
that memory for the ray pointer lists can be managed in a very ef-
ficient manner. If the maximum number of items is n, it is enough
to allocate n large lists for ray pointers at program start. At each
traversal step, ray pointers can simply be appended to the end of
these lists by incrementing a counter. Because the ray stream stack
always processes items in stack order, memory can be reclaimed
from the n lists by subtracting the counter of each list after pro-
cessing a stack item is complete. Note that we are usually reading
ray pointers from one of the lists that we are also appending to.
Given that we can never append more ray pointers than what we
have read, a careful implementation can read and append new ray
pointers in-place without any extra copying.
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Figure 4: Rays {0, 1, ..., 7} traversing the tree shown to the right. The nodes in the tree are named and leaf nodes are indicated using a
dashed outline. For illustrative purpose, traversal is based on ray index, i.e., the interval within brackets indicates what rays will enter a node
and the inequality between two siblings represents the ordering heuristic. No occlusion occurs in this example, so all paths are explored.
The states of the pre-allocated ray pointer lists are shown from left to right as traversal progresses and the numbers within a range indicate
individual rays, while the letter below indicates the associated node. At the bottom, the ray stream stack is shown, referencing ranges in the
pre-allocated ray pointer lists. The range that is next to be processed is highlighted in light red. The initial state, to the far left, is the result of
testing all rays against the immediate children of the root node. The strength of our algorithm is that all rays within a range can be efficiently
processed using SIMD execution.

4.1 BVH2

In this subsection, we describe how our traversal algorithm works
for a BVH2. Each internal node in a BVH2 structure has two chil-
dren, namely one left and one right. The following outcomes are
thus possible during the intersection test:

1. The ray misses both left and right children→ do nothing.

2. Traverse into left child.

3. Traverse into right child.

4. Traverse into left child, then right child.

5. Traverse into right child, then left child.

We now need to represent these cases using stack items, each refer-
ring to the left child or right child. The first case means that the path
is terminated, so it does not need a stack item. To accommodate the
following two cases, it is enough to have one stack item for each
node and the order of them is not important. However, in order to
accommodate the two possible orders when hitting both children,
we need to be able to order the left path before the right path in
some cases, as well as order the right path before the left path in
other cases. For this to work, three stack items are needed that ref-
erence the nodes left-right-left or right-left-right. This is explained
in Figure 3 for left-right-left. Note that these cases can be accom-
modated using two different configurations. Which configuration is
chosen is generally not important, however, the node that appears a
single time may have sightly better SIMD efficiency because of the
higher chance of maintaining larger packets as traversal continues.

As described previously, for efficient allocation of ray pointer lists
to the different stack items, we pre-allocate one large list of ray
pointers for each stack item that may be added during a traversal
step. The pre-allocated ray pointer lists need to be able to hold
all rays in the worst-case scenario. At most, each ray can exist in
a single stack item at each level of the tree, so, if the maximum
depth of the BVH is d = 32 and the number of rays traversed
simultaneously is m = 1024, the maximum size of a pre-allocated
ray pointer list is m× d = 32, 768.

A high level description of the traversal algorithm for BVH2 is
shown below. In this case, the left-right-left configuration was cho-
sen.

1. Build a ray stream of size m.
2. Allocate ray pointer lists Left|, Right||, and Left|||, each

with m × d entries, where d is the maximum depth of the
BVH.

3. Initialize counters cnt|, cnt||, and cnt||| to 0.

4. Set active rays to be all rays in the ray stream.
5. Fetch the BVH root node, and make it current node.
6. Using SIMD, test all active rays against the current node:

(a) If the node is internal, then test all rays against the BVs
of the two children. The outcome determines what to
do next:

i. If the right child was hit, append a pointer to the
ray to Right|| at position cnt||, and increment
cnt||.

ii. If the left child was hit and it was closer than the
right child, append to Left| and increment cnt|.

iii. If the left child was hit and it was farther than
the right child, append to Left||| and increment
cnt|||.

(b) If the node is a leaf, then test all rays against the trian-
gles in the leaf.

7. Create stack items for all ray pointer lists where rays were
added. Each item references the added range of ray point-
ers as well as the corresponding node (left or right). Then,
push applicable stack items in the following order: Left|||,
Right||, and Left|, so that Left| is popped next.

8. If the stack is empty, we are done. Otherwise continue with
the next step.

9. Pop a stack item and make the item’s BVH node the current
node. Also make the associated list of rays the active rays.
To free up memory from the pre-allocated ray pointer lists,
simply subtract the cnt variable this stack item refers to so
that it points to the beginning of the current stack item. Added
ray pointers will then overwrite the ones that were just read in
the next traversal step.

10. Go to 4.

A detailed example of a few rays traversing a simple BVH2 is
shown in Figure 4. Note how the ray stream stack consistently ref-
erences the last range of rays in the pre-allocated ray pointer lists.

4.2 BVH4

In the case of a BVH with four children per internal node, i.e., a
multi-BVH [Wald et al. 2008; Ernst and Greiner 2008; Dammertz
et al. 2008], the number of possible outcomes increases. In order
to reduce that number, we restrict the ordering to that of two levels
of a BVH2. Specifically, let {c0, c1, c2, c3} be the children of an
internal node of a BVH4. Conceptually, these nodes can then be
put into a BVH2 where the first level has children {left, right} and
children(left) = {c0, c1} and children(right) = {c2, c3}. This
approximation allows us to accommodate all cases using 9 stack



items, i.e., 3 were required by a BVH2 which indicates that 3 × 3
are sufficient for two levels in that tree.

Depending on how the BVH4 was created, this restriction can have
little to no performance impact since the order flexibility is compa-
rable to that of a BVH2. This would be the case if the BVH4 was
built by collapsing nodes in a BVH2. If the BVH4 is instead built
by iteratively splitting nodes with the best SAH cost, for example,
care should be taken to group nodes that are in the same vicinity.

Analogous to Section 4.1, multiple configurations of stack items
will be able to fulfill the ordering requirements. We used the fol-
lowing sequence of nodes for the stack items in our implementation:
c0-c1-c0-c2-c3-c2-c0-c1-c0.

For a BVH4, each ray may end up in three stack items at each level
of the tree, in the worst case. However, looking at a single ray
pointer list, it is sufficient to reserve space for all rays in all levels,
since every stack item at the same depth level corresponds to a dif-
ferent ray pointer list. Therefore, each pre-allocated ray pointer list
must have a size of m × d, where m is the number of rays, and d
is the maximum depth of the BVH, which is the same size required
for BVH2 per list. The number of lists increase for BVH4, but on
the other hand, the depth of the tree will decrease as well.

5 Implementation

As starting point for our implementation, we use Embree 2.0 [Woop
et al. 2013], which is a collection of highly optimized ray traversal
kernels and spatial data structures, and is widely used in the indus-
try. The traversal interface of Embree was extended to include sup-
port for ray streams. The example path tracer [Kajiya 1986] that
comes with Embree, modified with a few performance improve-
ments, was used to render all images, and it was also extended to
support our algorithm. Most notably, in addition to the original re-
cursive single-ray render loop, we added a separate render loop that
builds ray streams, in order to trace many rays simultaneously. The
new render loop eliminated recursion entirely and instead stored
the required light path data for each ray, intersected all rays, and
resumed each path in a loop. This approach is of similar spirit to
what Laine et al. [2013] did to separate material evaluation and path
extension from ray casting in a GPU path tracer. Care was taken so
that our new render loop traced the same number of rays and gen-
erated exactly the same end result as the original path tracer.

The path tracer is parallelized over multiple CPU cores by letting
multiple threads work steal tiles of the final image. We made use of
coherence within a tile by building a ray stream containing all pri-
mary rays generated from that tile. The initial tile size was 16× 16
pixels and we used 16 samples per pixel, resulting in 4096 initial
rays in a ray stream. Tile size variations are studied further in Sec-
tion 6, however. Note that the number of rays in a ray stream de-
creases as light paths are terminated, so efficiency may be lowered
after a few bounces. It could be possible to fill up the ray stream
with rays from a neighboring tile, for example, but for simplicity
and clarity of analysis, we did not attempt to do that.

Our traversal algorithm was optimized for the Intel Haswell archi-
tecture which provides support for 8-wide SIMD instructions for
floating-point operations. The ray stream stores a single ray in two
32-byte structures, specifically, one used during BVH traversal and
one used for triangle intersection. Each of these structures can be
fetched using a single 256-bit AVX load. The BVH version of the
ray holds the inverse of the ray direction to speed up slab tests. In
addition, the ray origin is premultiplied with the inverse ray direc-
tion. Hit point information was also stored in a separate 32-byte
structure, only accessed when an actual hit is registered.

When implementing the ray stream vs. internal BVH node test, dif-
ferent SIMD strategies were tested. The simplest and most parallel
version was to test 8 rays at a time with Struct of Arrays (SoA)
style SIMD. However, we found that the register pressure became
too high in this case. The winning strategy turned out to be testing
2 rays at a time by running a 4-wide single-ray SIMD box-test over
two rays simultaneously. Our ray pointer lists were implemented
as arrays of 16-bit integers that index into the ray stream during
traversal. For each loop iteration over the ray stream, we thus have
to fetch two 16-bit indices and two 32-byte rays. Due to the fre-
quent access, they are likely to be resident in the L1 or L2 cache
for reasonable ray stream sizes. Appending ray indices to the ray
pointer lists was done using scalar stores. We make use of fused
multiply-adds to perform the ray against bounding-box test, which
is a high throughput, high latency operation. During this latency, we
fetch the rays for the next loop iteration. In order to avoid fetching
invalid rays for the next iteration, we always pad with valid ray in-
dices at the end of each stack item, by duplicating the last ray index
in the item. The details of our implementation for BVH2 is shown
in Appendix A. While the tests for BVH2 and BVH4 are similar,
the benefits of BVH4 are twofold: 1) ray loads are amortized over
more bounding box tests, and 2) the capability to hide instruction
latency increase due to an increased number of slab tests.

As an optimization, our algorithm switches to an optimized single-
ray code path whenever there are less than n active rays. This code
path is very similar to the single-ray code in Embree, but has been
changed to work well with our 32-byte ray structures. For BVH2,
n was set to 8, which is a fairly low number. For BVH4, n was
instead set to 16, indicating that the overhead for this version is
higher, which is expected since up to 9 stack items are added at
each traversal step.

Another optimization we tried was to bin rays according to ray di-
rection, which is a technique used by many before us (see Eise-
nacher et al.’s work [2013] for a review of previous work). This
was accomplished by creating 8 initial stack items in the ray stream
stack, one for each possible sign configuration of x, y, and z. By
sweeping over all rays once and appending each ray to the appropri-
ate item, based on ray direction, we can ensure that all rays within
a stack item share the same directional sign. We can then move
any direction-dependent code out of the loop over the ray stream,
which incidentally reduced register pressure too. Binning rays did
not pay off for BVH2 as the lowered SIMD efficiency reduced per-
formance, and the instructions eliminated due to constant ray sign
partially resulted in more pipeline stalls. However, it was worth-
while for BVH4 as the register pressure in this case could be low-
ered by holding fewer node bounds at the same time. Furthermore,
the BVH4 implementation has more parallel work, meaning that
removed instructions gave a noticeable performance boost.

The renderer makes use of explicit light source sampling using
shadow rays at each bounce, which warrants special treatment for
these rays. When traversing a shadow ray against a BVH, the near-
est hit point is of no interest. Instead, we just want to determine
if anything is between a point and a light source. Because of this,
it is no longer clear that traversing into the closest node is the best
choice. Instead, traversal should continue into the child with the
highest chance of occluding a shadow ray [Ize and Hansen 2011].
However, altering the BVH with a new cost metric would be detri-
mental to the comparison to previous algorithms in Embree, so they
are therefore considered out of scope in this paper. Embree instead
relaxes the ordering requirement for shadow rays to avoid some
overhead. We do the same and implement shadow rays so that all
rays in the ray stream take the same path in the tree, which decreases
divergence and increases SIMD utilization. At each traversal step,
we have a single stack item for each node for shadow rays. The or-
der of these stack items are then determined by a simple heuristic:



the stack item with most rays should be processed first. We have
found this to work well in practice.

Embree also includes a set of packet traversal kernels [Wald et al.
2001], as well as hybrid kernels that starts with packets and
switches to single-ray traversal as utilization becomes low [Ben-
thin et al. 2012]. To use these kernels, it is the responsibility of the
renderer to manage ray packets. The example renderer that supports
these kernels constitutes a total rewrite of the single-ray renderer us-
ing ISPC [Pharr and Mark 2012], which makes the entire renderer
vectorized. This makes it a bit difficult to compare performance di-
rectly with our algorithm and single-ray traversal. For example, in
the case of incoherent rays, shading and path extension get lower
utilization as well. On the other hand, in the case of coherence be-
tween rays, shading would benefit from vectorization. We note this
difference but still make comparisons in Section 6. Also note that
with our algorithm, it may be possible to select between a scalar or
vectorized version of a shader based on groups of rays created dur-
ing traversal. However, we have chosen to keep the scalar shaders
intact for simplicity and to make the comparison with single-ray
traversal easier.

As ray-triangle test, all algorithms use parallel variations of the
Möller-Trumbore test [1997]. Our algorithm, as well as the single-
ray test, make use of an 8-wide SoA SIMD implementation, inter-
secting 8 triangles against a single ray at a time. The packet traver-
sal kernel instead tests 8 rays against 4 triangles at a time. The
hybrid traversal kernel switches between 8 rays against 4 triangles
and 1 ray against 4 triangles.

6 Results

We compare our algorithm to the single-ray, packet, and hybrid
traversal kernels available in Embree 2.0. When possible, we com-
pare using both BVH2 and BVH4 as spatial data structures, i.e.,
BVHs with two and four children, respectively. The BVH is built
using the standard settings in Embree, which uses an SAH-binned
construction algorithm [Wald 2007]. Since our traversal algo-
rithm was designed to generate exactly the same results as previous
traversal algorithms, the generated images are exactly the same, and
therefore, an image quality comparison is omitted. The algorithms
were evaluated on an ultrabook laptop with a 4-core Intel Haswell
Core i7-4750HQ CPU clocked at 2.0 GHz and with a turbo fre-
quency of 3.2 GHz. This chip has 4× 32 kB L1 instruction cache,
4×32 kB data cache, 4×256 kB L2 cache, 6 MB L3 cache, and 128
MB L4 EDRAM cache. The highest turbo frequency can only be
reached when a single core is active and by monitoring the CPU fre-
quency during rendering, we have found it to be stable at 2.8 GHz
on all cores. The thermal design power (TDP) of the CPU and GPU
combined is 47 W. Our modified version of Embree 2.0 was com-
piled with Intel C++ Studio XE 2013 Update 1 for Windows (com-
piler version 14.0.1) and all tests were performed in Windows 8.
The packet renderer was compiled with ISPC version 1.6.0.

The evaluation is based on four test scenes, namely, CROWN,
BENTLEY, DRAGON, and SANMIGUEL. The scenes and measured
performance are shown in Table 1. As can be seen, our algorithm
with BVH4 is the fastest for all scenes, while our BVH2 is the next
to fastest. Of the competing traversal methods, there is no clear
winner: Hybrid BVH4 is best for BENTLEY, while Single BVH4 is
best for the other. The last row reveals that total performance (in-
cluding even frame buffer updates) is between 22–37% higher with
our algorithm compared to the best of the competing methods. The
last row also reveals if we only look at the time it takes to perform
ray queries, i.e., including traversal and intersection testing (also in-
cluding the additional overhead of the new render loop that builds
ray streams), our traversal algorithm is 36–53% faster. Since our
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Figure 5: Performance and bandwidth usage of Our BVH4 when
changing the number of initial rays in a ray stream. In order to
avoid changing the ray distribution, samples per pixel was fixed at
16, and tile size was varied from 4 × 4 to 28 × 28 pixels. The
number of shadow rays that is traversed together is limited to the
same number. However, since more shadow rays may be generated
in the render loop (up to one per eye ray and light source), multiple
batches of shadow rays may be traversed to test all of them.

method is consistently and substantially faster for all test scenes,
we believe that this is a very encouraging result.

Bandwidth to and from DRAM was measured in gigabytes per sec-
ond using Intel VTune for an extended number of frames. Specifi-
cally, we let the renderer run for 30 seconds without measurements
and then measured bandwidth during a 60 second interval. This
number was divided by the number of rays per second because a
higher throughput of rays would increase the bandwidth usage over
a given time. The resulting value we use for comparison is thus
bytes per ray, also shown in Table 1. Note that this is not the stor-
age, but rather the average number of bytes needed to transfer to and
from DRAM per ray. Our traversal methods use a lower amount of
bandwidth per ray, or the same, as the other traversal algorithms.
This is likely one of the sources to our performance improvement.

In Figure 5, we have evaluated the performance our algorithm with
respect to different tile sizes. Recall that the number of samples per
pixel have been fixed to 16, and then we vary the tile size, in order
to build ray streams of different size. With a tile size of 12 × 12,
the number of rays in a stream is 12× 12× 16 = 2304, for exam-
ple. As can be seen, 6400 initial rays in a ray stream performs the
best, and this is equivalent to a tile size of 20×20 pixels. However,
the performance is relatively stable for tile sizes between 16 × 16
and 24 × 24 pixels. The number of bytes per ray (B/ray), reported
in Figure 5, has some variation among the scenes. Simply from
our recursion-less render loop, one can expect a reduction in mem-
ory bandwidth because of better data locality. For example, ray
queries is performed at the same time for all eye rays, and simi-
larly for all rays after each bounce, which should increase locality
of accesses in the BVH. Furthermore, shading happens without in-
terference from traversal, which should improve texture caching.
In addition, traversing large ray streams may also be beneficial for
memory bandwidth if the reduction in node fetches happens to in-
crease cache hits. This is, however, not certain, and the amount of
cache lines the ray stream occupies in the cache may actually de-
crease cache hits for the BVH. From the plot we see that a reduction



CROWN BENTLEY DRAGON SANMIGUEL

# triangles 4.9 million 2.3 million 7.3 million 7.9 million
Resolution 1280× 1024 1280× 1024 1280× 1024 1280× 1024

Ray queriesa 61% 64% 64% 79%

Speed BW Speed BW Speed BW Speed BW
Our BVH2 9.9 Mray/s 60 B/ray 15.7 Mray/s 40 B/ray 13.3 Mray/s 120 B/ray 7.8 Mray/s 130 B/ray
Our BVH4 10.6 Mray/s 60 B/ray 17.5 Mray/s 40 B/ray 15.1 Mray/s 110 B/ray 9.2 Mray/s 140 B/ray

Single BVH2 7.8 Mray/s 90 B/ray 11.7 Mray/s 80 B/ray 9.9 Mray/s 180 B/ray 5.6 Mray/s 150 B/ray
Single BVH4 8.7 Mray/s 100 B/ray 12.8 Mray/s 70 B/ray 11.9 Mray/s 120 B/ray 6.7 Mray/s 180 B/ray
Packet BVH2 5.2 Mray/s 250 B/ray 8.3 Mray/s 100 B/ray 8.5 Mray/s 220 B/ray 4.0 Mray/s 290 B/ray
Packet BVH4 5.4 Mray/s 220 B/ray 8.9 Mray/s 120 B/ray 8.3 Mray/s 200 B/ray 4.0 Mray/s 330 B/ray
Hybrid BVH4 8.3 Mray/s 160 B/ray 13.1 Mray/s 90 B/ray 11.5 Mray/s 170 B/ray 6.1 Mray/s 220 B/ray

Total | Traversal 22% 36% 34% 53% 27% 42% 37% 47%

aThe fraction of rendering time spent on BVH traversal and triangle tests was measured using single-ray BVH4.

Table 1: Performance (speed) numbers and bandwidth usage (BW), using a laptop CPU, for different algorithms when rendering four
scenes. All images were generated by accumulating 16 samples per pixel each frame. The numbers include all work the renderer does,
including generation of eye rays, shading, path extension, updating the frame buffer, and presenting the result on the screen. The overhead is
approximately linear with respect to the number of rays per second, because higher performance means higher frame rate and more updates
to the screen. The last row shows the total performance improvement to the left, and the speedup in terms of just the traversal (but including
the additional overhead of the new render loop that builds ray streams for Our) to the right, for each scene. Those numbers are the ratios
between our best method (Our BVH4) and the best competing technique (single, packet, hybrid), whose best result is marked in italics.

in memory bandwidth happens for BENTLEY and DRAGON, but not
to a great extent for CROWN and SANMIGUEL, for the ray stream
sizes that we investigated.

We also evaluated how our traversal algorithm behaved with vary-
ing field of view. The results can be seen in Figure 6, where it is
clear that the advantage of our algorithm is relatively large for all
angles, except for 8 degrees. In this particular case, only perfectly
reflective surfaces are visible within the view, which makes all rays
very coherent. As expected, Hybrid traversal performs extremely
well in this case and wins by about 10%. The advantage that Hy-
brid has over our algorithm is twofold. First, it does not spend any
time building ray streams and reordering rays, which is unnecessary
overhead when rays are fully coherent. Second, the render loop and
material evaluation is fully vectorized in this case due to the ISPC
renderer and the same material covers the entire view. However, it is
clear that this benefit disappears as soon as diffuse surfaces enters
the view, and for 32 degrees, our total performance is about 43%
higher compared to the fastest of Hybrid and Single BVH4. A nice
property of our algorithm is that it does very well for various sce-
narios without any surprising performance cliffs. If anything, the
diagram in Figure 6 reveals that the weaknesses of our algorithm is
when all rays are coherent and they hit a reflective surface (so the
rays continue to be rather coherent), or they hit a single large sur-
face. However, it should be pointed out that our algorithm is rather
fast in these cases, but the Hybrid may be faster.

In order to evaluate exactly where our performance improvement
comes from, we measured the fraction of time spent in the ray query
kernels (BVH traversal + intersection testing) using VTune during
an extended period of time for our test scenes. The measured frac-
tion was then multiplied by the ray throughput to get s/Gray (sec-

onds per gigaray). The results are shown in Table 2. These numbers
tell us exactly how much time ray queries take, and therefore, how
much our traversal algorithm improves performance, disregarding
the new render loop. This is very interesting since results including
the render loop already were reported in Table 1. The cycles per
instruction (CPI) shows how much the CPU pipeline stalls during
traversal, and it is clear that our algorithm has low CPI. To highlight
this fact, we show the same numbers (bottom row), but only for
our optimized loop, which tests ray streams against the BVH. The
rest of the ray query time in our algorithm is actually spent doing
triangle intersection or single-ray traversal once coherence is low.
Therefore, the optimized loop is the sole source for our increased
traversal performance. The CPI value for that loop is very close to
the optimal value for our target architecture, Haswell, which can
issue two instructions per clock. So, its ideal CPI is 0.5, and the
lower the reported CPI numbers are, the better.

For completeness, we also investigated the percentage of all ray
vs. BVH node tests that was performed inside the optimized loop.
We got the following results for BVH4 for the test scenes: CROWN:
76%, BENTLEY: 88%, DRAGON: 86%, and SANMIGUEL: 83%.

7 Conclusions and Future Work

Over the last 10–15 years, a lot of optimization research effort has
been spent on building better BVHs faster, and on parallelizing and
SIMDifying the core of the ray tracing algorithm, namely, traver-
sal, intersection testing, and shading. Embree is one of the most
optimized ray tracing frameworks, for a variety of CPUs, that we
know of, and it is widely used in the industry for this reason. By
completely changing the interface to Embree, we have been able to



CROWN BENTLEY DRAGON SANMIGUEL

CPI Time per ray CPI Time per ray CPI Time per ray CPI Time per ray

Single BVH4 Traversal 1.40 70 s/Gray 1.28 50 s/Gray 1.29 54 s/Gray 1.45 117 s/Gray
Our BVH4 Traversal 1.02 54 s/Gray 0.88 33 s/Gray 0.91 39 s/Gray 0.95 81 s/Gray

Our core loop only 0.61 16 s/Gray 0.61 13 s/Gray 0.60 15 s/Gray 0.60 31 s/Gray

Table 2: Here, we measure the fraction of time spent in the traversal kernels per ray (in seconds per gigaray). We compare Our BVH4 against
Single BVH4. In addition, we present cycles per instruction (CPI) as a measurement of how much the CPU pipeline stalls during traversal.
At the bottom, we show the same measurements, but only for our optimized loop that tests a ray stream against a BVH4.
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Figure 6: In this evaluation, we changed the field of view from 8
to 64 degrees, which has similar effects as moving away from an
object. As can be seen, our traversal algorithm is substantially
faster for all but the smallest field of view. In the smallest field of
view, only perfectly reflective surfaces can be seen which makes the
rays very coherent. In this case, hybrid traversal does extremely
well as expected, but quickly falls behind as diffuse surfaces enter
the view. Also, when the field of view becomes very large, most of
the image will contain a single large ground polygon, and therefore,
the hybrid traversal slowly catches up with our performance.

implement our novel algorithm that traverses the BVH with large
ray streams using a dynamic descent in the top part of the BVH,
and then switches to single-ray traversal. As we have demonstrated,
when measuring only the time it takes to perform the traversal, our
new algorithm is up to 53% faster. For future work, we would like
to test whether a memory-mapped layout of the scene can be used
to automatically render huge scenes with our traversal method. We
believe this should be possible, since our algorithm is good at re-
ducing memory bandwidth usage by visiting the same node with
many rays. Furthermore, we would like to investigate whether our
method is at all feasible on a GPU and for a Xeon Phi accelerator.
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A Core Loop Implementation for BVH2

Here we list our core loop implementation for testing a ray stream
against an internal node of a BVH2 acceleration structure. The code
is mainly written using AVX2 intrinsic functions, but we present it
using a simplified syntax to improve readability.1 The loop tests two
rays against the two bounding boxes of the children and stores ray
indices into the pre-allocated ray pointer lists. The input bounds are
organized as [minl,minr,maxl,maxr], i.e., a 4-wide vector, for
each coordinate axis, and are broadcast to 256 bits by duplicating
the 4 floats to both 128-bit lanes. After running through the loop,
stack items are created for the ray pointer lists where rays actually
were added. That part has been omitted for brevity.

1To restore the original source, add mm256 before and ps after func-
tions, replace m256 with m256, replace M with MM SHUFFLE, and re-
place the ∧ operator with a call to mm256 xor ps when used with vector
registers.

void coreLoopBvh2(
// AABBs for left and right children.
m256 bbX, m256 bbY, m256 bbZ,
// Pointers to the end of the pre-allocated ray pointer lists.
uint16* list0, uint16* list1, uint16* list2,
// Active rays (pointing into one of the pre-allocated ray pointer lists).
uint16* activeRays, uint16* lastActiveRay)
{
m256 negMask = set1(-0.0f);
m256 posNegMask = setr(0.0f, 0.0f, -0.0f, -0.0f, 0.0f, 0.0f, -0.0f, -0.0f);

m256 bbXneg = shuffle(bbX, bbX, M(1,0,3,2));
m256 bbYneg = shuffle(bbY, bbY, M(1,0,3,2));
m256 bbZneg = shuffle(bbZ, bbZ, M(1,0,3,2));

bbX ˆ= posNegMask; bbY ˆ= posNegMask; bbZ ˆ= posNegMask;
bbXneg ˆ= posNegMask; bbYneg ˆ= posNegMask; bbZneg ˆ= posNegMask;

uint32 nextIndexA = activeRays[0];
uint32 nextIndexB = activeRays[1];

m256 dirNearOrgFarA = load(rayData + nextIndexA);
m256 dirNearOrgFarB = load(rayData + nextIndexB);

m256 dirNear = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 0|(2<<4));
m256 orgFar = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 1|(3<<4));

m256 orgFarNeg = orgFar ˆ negMask;

m256 dirX = shuffle(dirNear, dirNear, M(0,0,0,0));
m256 dirY = shuffle(dirNear, dirNear, M(1,1,1,1));
m256 dirZ = shuffle(dirNear, dirNear, M(2,2,2,2));

uint32 mask = 0;
uint32 indexA = 0, indexB = 0;

for (; activeRays < lastActiveRay; ) {
uint32 leftHit = mask >> 4;
uint32 rightHit = (mask >> 5) & 1;
uint32 order = (mask >> 6) & rightHit;

m256 bbXray = blendv(bbX, bbXneg, dirX);
m256 orgX = shuffle(orgFar, orgFarNeg, M(0,0,0,0));
m256 bbYray = blendv(bbY, bbYneg, dirY);
m256 orgY = shuffle(orgFar, orgFarNeg, M(1,1,1,1));
m256 bbZray = blendv(bbZ, bbZneg, dirZ);
m256 orgZ = shuffle(orgFar, orgFarNeg, M(2,2,2,2));

*list0 = indexB; *list1 = indexB; *list2 = indexB;
list0 += leftHit & (1ˆorder);
list1 += rightHit;
list2 += leftHit & order;

indexA = nextIndexA;
indexB = nextIndexB;
activeRays += 2;
nextIndexA = activeRays[0];
nextIndexB = activeRays[1];

m256 nearFarX = fmsub(bbXray, dirX, orgX);
m256 nearFarY = fmsub(bbYray, dirY, orgY);
m256 nearFarZ = fmsub(bbZray, dirZ, orgZ);
m256 nearFarRay = shuffle(dirNear, orgFarNeg, M(3,3,3,3));

dirNearOrgFarA = load(rayData + nextIndexA);
dirNearOrgFarB = load(rayData + nextIndexB);

m256 nearFar = max(max(nearFarRay, nearFarX), max(nearFarY, nearFarZ));

mask = movemask(cmple(shuffle(nearFar, nearFar, M(0,1,1,0)),
shuffle(nearFar ˆ negMask, nearFar, M(0,0,3,2))));

dirNear = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 0|(2<<4));
orgFar = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 1|((3<<4));

dirX = shuffle(dirNear, dirNear, M(0,0,0,0));
dirY = shuffle(dirNear, dirNear, M(1,1,1,1));
dirZ = shuffle(dirNear, dirNear, M(2,2,2,2));

orgFarNeg = orgFar ˆ negMask;

leftHit = mask;
rightHit = (mask >> 1) & 1;
order = (mask >> 2) & rightHit;

*list0 = indexA; *list1 = indexA; *list2 = indexA;
list0 += leftHit & (1ˆorder);
list1 += rightHit;
list2 += leftHit & order;

}

if (indexA != indexB) { // Checks if the last index was duplicated (padding).
uint32 leftHit = mask >> 4;
uint32 rightHit = (mask >> 5) & 1;
uint32 order = (mask >> 6) & rightHit;

*list0 = indexB; *list1 = indexB; *list2 = indexB;
list0 += leftHit & (1ˆorder);
list1 += rightHit;
list2 += leftHit & order;

}
}


