
High Performance Graphics (2014)
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Coarse Pixel Shading

K. Vaidyanathan1, M. Salvi1, R. Toth1, T. Foley1, T. Akenine-Möller1,2, J. Nilsson1,

J. Munkberg1, J. Hasselgren1, M. Sugihara1, P. Clarberg1, T. Janczak1, A. Lefohn

1Intel Corporation, 2Lund University

PS CPS UPSCALING PS CPS UPSCALING

CPS

PS

Figure 1: The CITADEL 1 scene, rendered at 2560⇥1440 with pixel-rate shading (PS) on the left and coarse pixel shading
(CPS) on the right, using a coarse pixel size of 2⇥2. CPS almost halves the number of shader invocations, yet shows few
perceivable differences on a high pixel density display, with a structural similarity index (SSIM) of 90.6%. In contrast, an image
rendered at 1280⇥720 and upscaled exhibits blurring at silhouette edges, and lower overall quality, with an SSIM of 86.9%.

Abstract

We present a novel architecture for flexible control of shading rates in a GPU pipeline, and demonstrate sub-
stantially reduced shading costs for various applications. We decouple shading and visibility by restricting and
quantizing shading rates to a finite set of screen-aligned grids, leading to simpler and fewer changes to the GPU
pipeline compared to alternative approaches. Our architecture introduces different mechanisms for programmable
control of the shading rate, which enables efficient shading in several scenarios, e.g., rendering for high pixel den-
sity displays, foveated rendering, and adaptive shading for motion and defocus blur. We also support shading at
multiple rates in a single pass, which allows the user to compute different shading terms at rates better matching
their frequency content.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

1. Introduction

A significant portion of the power cost in a 3D pipeline is due
to pixel shading [Poo12] and current trends towards higher
display resolutions and graphics quality, especially in hand-
held devices, are at odds with the need to minimize power
dissipation. Running pixel shaders more efficiently and with-
out compromising image quality would therefore be partic-
ularly advantageous.

Approaches for decoupled shading take advantage of the
fact that geometric occlusion typically introduces higher-
frequency details compared to surface shading, and perform
shading at a lower rate than visibility testing. Figure 1 shows
that decoupled shading is well suited for high pixel den-
sity displays, where the effects of reduced shading rates are
barely discernible from normal viewing distances. Shading
rates may be further reduced in regions of the screen that
are blurred or otherwise less perceivable to the user, for in-
stance regions affected by motion or defocus blur, or regions
outside the user’s foveal vision.

It is difficult to take advantage of these opportunities on
current graphics architectures, where shaders are restricted
to execute at per-pixel or per-sample rate. Shading rates may
be coarsely controlled by varying frame buffer resolution,
but this does not allow more fine grained variation of shad-
ing rates, e.g., per object, per triangle, or per image region,
which are still coupled to the visibility sampling rate.

In this paper, we introduce coarse pixel shading (CPS),
which is an architecture for varying shading rates in a ras-
terization pipeline, while keeping the visibility sampling
rate constant. Our work differs substantially from other de-
coupled shading schemes, such as the ones proposed by
Ragan-Kelly et al. [RKLC⇤11] and Burns et al. [BFM10].
We greatly simplify and constrain our approach so that it is
amenable to efficient implementation in current rasterization
pipelines. Our approach can be seen as a generalization of
multi-sample anti-aliasing (MSAA) [Ake93]. Where MSAA
uses a fixed number of visibility samples, and one shading
sample per pixel, CPS allows the number of shading sam-
ples to be varied, and further reduced. To support CPS, we
also introduce multi-rate shading, which allows a single ren-
dering pass to execute shading code at one or more different
rates: per group of pixels, per pixel, and per sample.

2. Background and Related Work

Many approaches have been proposed to improve shading
efficiency by sampling shading at a lower rate than visibil-
ity. Multi-sample anti-aliasing (MSAA) [Ake93] is one such
technique, often supported by GPU hardware. With MSAA,
multiple coverage samples (also called visibility samples)
are stored per pixel, but pixel shaders are only executed once
for each pixel covered by a primitive. This is in contrast to
super-sampling, in which shaders are executed once per cov-
ered sample.

In a stochastic renderer, MSAA cannot be employed ef-
ficiently [MCH⇤11], so other techniques have been devel-
oped. Ragan-Kelley et al. [RKLC⇤11] propose decoupled
sampling (DS), where shading and visibility are sampled in
a decoupled manner. Pixel shading is evaluated lazily over
an image-space shading grid and temporarily stored in a
memoization cache for reuse during stochastic rasterization
(SR) [CCC87, AMMH07]. Burns et al. [BFM10] use an-
other decoupled sampling approach, with shading sampled
uniformly in parametric patch space in an optimized Reyes
architecture [CCC87]. These techniques allow shading grids
with arbitrary grid spacing, which enables more flexible con-
trol of the shading rate.

Liktor and Dachsbacher [LD12] implement deferred
shading for SR with a software based memoization cache
on a GPU. Andersson et al. [AHTAM14] present another
GPU implementation of DS for SR, where shading is com-
puted in object space and stored in a sparse mipmap hierar-
chy [GBAM11] using conservative rasterization. In a second
pass, the scene is stochastically rasterized and shading re-
sults are looked up in the mipmap. Clarberg et al. [CTM13]
propose a hardware architecture to reduce shading rates for
SR in the context of tiled deferred shading, where coherence
is extracted by sorting shading point identifiers.

While our focus is on shading for rasterization, similar
approaches have also been applied to ray tracing. For exam-
ple, Stoll et al.’s Razor architecture [SMD⇤06] shades grids
in object-space and caches them for later reuse. They also
propose computing some shading terms at different rates,
i.e., view-independent computations are performed per ver-
tex, and view-dependent ones per sample.

Shading rates may also be varied non-uniformly, so de-
tail can be reduced in areas where it is unlikely to be no-
ticed. Ragan-Kelley et al. [RKLC⇤11] propose to scale the
spacing of the shading grid based on the absolute value of
the circle of confusion, reducing the shading rate in out-of-
focus regions. Vaidyanathan et al. [VTS⇤12] use an analy-
sis of the frequencies involved in light transport [DHS⇤05],
along with a set of tailored approximations, to derive suit-
able grid spacings for motion and defocus blur. Hasselgren
and Akenine-Möller [HAM07] present the programmable
culling unit (PCU), which uses an interval-based culling pro-
gram per tile to avoid work for a tile of fragments. In ad-
dition, fragment shader switching is used in order to take
a high-level decision per tile and select a fragment shader
based on the tile shader output.

Similarly, foveated rendering [GFD⇤12] exploits the fact
that a human observer only sees fine detail in a 5� circle
around their gaze direction to reduce shading costs without
perceivable error. Eye tracking is used to detect the viewer’s
gaze, and several layers are rendered with decreasing reso-
lution around this point using multiple passes. These layers
are then composited to produce the final image.

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

3. Algorithm

To allow shading at a lower rate than once per pixel, we in-
troduce the notion of a coarse pixel (CP). A CP is a group of
Nx ⇥Ny pixels, which will share the result of a single coarse
pixel shader (CPS) evaluation. This is similar to how multi-
ple visibility samples share a single pixel shader evaluation
with MSAA, with the difference that we can vary the shading
rate by varying the size of the CP. Similar to current GPUs,
we shade in groups of 2⇥2 CPs, called coarse quads (CQs),
to facilitate computing derivatives using finite differences.

As we will show in Section 6, many applications can ben-
efit from the ability to vary shading rates across different re-
gions of the screen. To enable such variation in the shading
rate, we divide the screen into tiles of size Tx ⇥Ty and allow
a different value of the CP size for each tile. Each tile maps
to a shading grid of CQs, with the selected CP size.

The key to our simplified decoupled sampling technique is
avoiding overlapping shading grids, which ensures that each
pixel unambiguously belongs to only one CQ. This can be
achieved by restricting the CP sizes to a finite set of values
that ensure that the shading grid is perfectly aligned with the
tile boundaries. With this assumption, our shading technique
can be summarized as follows:

Algorithm 1 Simplified decoupled sampling with CPS.
for each primitive:

for each covered tile on screen:
Rasterize tile and store visible fragments
Determine Nx,Ny for tile
Divide tile into CQs of size 2Nx ⇥2Ny
for each CQ with visible fragments:

Shade CQ
Write output color to all covered pixels

In order to ensure a perfectly aligned grid of CQs inside
a tile, we restrict the CP sizes such that the tile size is a
common multiple (e.g., the LCM) of all allowed CQ sizes.

3.1. Controlling Coarse Pixel Size

We have identified a small number of modes for control-
ling the CP size that are easy to use, yet powerful enough
to support a range of applications, as shown in Section 6. In
each case, the user does not directly specify a CP size, but
rather a pair of CP parameters (sx,sy) that specifies the de-
sired CP size. The CP parameters are then quantized to the
closest available CP size that meets or exceeds the requested
shading rate. Based on the selected mode, the CP parameters
(sx,sy) may be:

• interpolated from per-vertex shader outputs,
• set to a constant value using render state, or
• expressed as a radial function of screen coordinates.

Controlling the CP parameters with a shader output is
highly flexible, and allows many use cases to be expressed.

No Compensation Compensated LOD

Figure 2: A zoomed-in image, rendered with smoothly vary-
ing CP parameters having a smaller value towards the top
right and a larger value towards the bottom left. Quantiz-
ing the CP parameters can produce visible discontinuities in
the CP size (top), which can be masked by compensating the
LOD calculation in the texture sampler (bottom).

The ability to set constant CP parameters is provided for sim-
plicity. It is the least invasive method for adding CPS to an
existing application. The ability to use a radial function is
included specifically for foveated rendering [GFD⇤12]. As
a radial function cannot be robustly expressed using linear
interpolation of per-vertex attributes, we included a separate
mode for this special case.

In order to always meet the required shading rate, the
CP size, Nx ⇥Ny, is determined by computing conservative
lower bounds for |sx| and |sy| within the tile, and rounding
down to the nearest available CP size. The use of absolute
values here enables use of negative CP parameters, which
we take advantage of in the case of motion and defocus blur
as discussed in Section 6.4.

3.2. Texture LOD Compensation

There are two sources of quantization of CP sizes. First, the
CP size is evaluated only once per tile. Second, the CP size
is quantized to one of the finite available CP sizes. Both of
these sources cause discontinuities in the CP sizes as we
move from tile to tile, which may result in visible tile tran-
sitions as seen in Figure 2. To compensate for these dis-
continuities, we augment the texture sampler level of detail
(LOD) calculation to reflect the requested (un-quantized) CP
size. This can be done by scaling the finite differences of tex-
ture coordinates that are used to compute the texture LOD:

dnew
x = dx

|sx|
Nx

, dnew
y = dy

|sy|
Ny

,

where dx and dy are the finite differences of the texture co-
ordinates along the x- and y-axes respectively. The values of
(sx,sy) are evaluated for every CP, unlike the CP size which
is evaluated once per tile. Compensating the texture LOD
creates a smooth variation in image detail, which masks the
discontinuities in the CP size, as shown in Figure 2.

Although LOD compensation can be effective in many
cases, there are some scenarios where it might not be ap-
plicable, for example, with procedurally generated textures.
In such cases, LOD compensation techniques can possibly

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

Sample CP Pixel

Interpolated Attributes

Inter-Stage Data

Render
Target

Figure 3: Pipeline abstraction of the post rasterization
stages showing the different phases of shading and the
dataflow between the phases.

be applied in user space, based on the CP size and CP pa-
rameters, which are available as shader inputs.

3.3. Multi-Rate Shading

One of the key features of our proposed architecture is the
ability to execute shading at up to three different rates within
the same rendering pass. Some of the shader computations
can, e.g., be moved to a lower rate than once per pixel, while
certain high-frequency effects can be evaluated per pixel, or
even per visibility sample to reduce aliasing. Note that this
is not possible in current graphics APIs, as the pixel shader
can be configured to run at pixel or sample rate, but the two
are mutually exclusive. Conceptually, we divide the single
pixel shader stage of the graphics pipeline into three distinct
phases, one for each rate (see Figure 3). Hence, after a tile
is divided into coarse quads, each quad is shaded at one or
more different rates: per-CP, per-pixel, and per-sample.

4. Pipeline Description

Figure 4 illustrates how CPS can be integrated into an ex-
isting graphics pipeline. With our simplified decoupled sam-
pling technique, we can buffer rasterized samples for a given
tile and primitive in a tile buffer, and then invoke the pixel
shader on complete CQs. This solution closely resembles the
buffering performed for quad-based shading in current archi-
tectures. The tile buffer retains the screen coordinates and all
the necessary information to resolve visibility, such as depth
values and coverage information. When a new tile or a new
primitive is rasterized, the tile buffer is flushed, i.e., only a
single tile’s worth of data needs to be buffered.

Note that a memoization cache framework [RKLC⇤11]
could also be used to implement CPS, where samples pro-
duced by the rasterizer could trigger shading of CQs. How-
ever, such an approach is likely to require significant changes
to current hardware architectures.

5. User Abstraction

Figure 3 illustrates how CPS and multi-rate shading are in-
tegrated into the pipeline abstraction of an existing graphics
architecture like Direct3D 11 [Mic12]. Each shading phase
has access to interpolated per-vertex attributes and a small

 Rasterizer

Early Z

Tile BƵīĞr
Tx Ty

Generate
Coarse Quad

Evaluate
Coarse Pixel

Size

Quad Fragment

Coarse Quad

Shade

Figure 4: A portion of the GPU pipeline with modifications
for coarse pixel shading (in blue). The rasterizer tests input
primitives to generate quad fragments, which are buffered
for every Tx ⇥Ty tile on the screen. The buffered fragments
are mapped to coarse pixels and coarse quads, which are
shaded and then resolved into the output buffers.

struct VS_OUT { // Output attributes
float2 cpsize : SV_CoarsePixelSize;
...

};
VS_OUT VertexShader(VS_IN In) {

VS_OUT Out;
Out.cpsize = ComputeCPSize(In)
...
return Out;

}

[shadingphase("coarse-pixel")]
[nextshaderfunc("PixelShader")]
float4 CoarseShader(VS_OUT In) {

return ComputeDiffuse(In)
}

[shadingphase("pixel")]
float4 PixelShader(VS_OUT VSIn, float4 CPIn) {

return ComputeSpecular(VSIn, CPIn);
}

Figure 5: An example of multi-rate shading, where a low
frequency diffuse term is computed per coarse pixel and a
high frequency specular term is computed per pixel. The CP
size is controlled through the vertex shader.

amount of data may be communicated from one phase to
the next through user-defined shader outputs; the amount of
data allowed is an implementation-specific limit. Any of the
phases may also write outputs that will be consumed in later
pipeline stages (e.g., framebuffer blending), and we will dis-
cuss constraints on this below.

We considered many alternatives for exposing multi-rate
shading. Perhaps the simplest would be to expose each of
the phases of shading as a distinct pipeline stage, to which
shaders and resources can be bound through the graphics
API. We dismissed this option since a driver might be forced
to compile code behind the scenes to maintain the illusion of
logically distinct pipeline stages on architectures that would
execute the shading phases in the same shader thread. An-
other family of options would allow a single shader func-
tion to contain code that runs at different rates, either sepa-

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

rated by syntactic phase markers, or tagged with rate quali-
fiers [PMTH01,FH11]. Such approaches make the plumbing
of data between rates implicit, and could obscure the amount
of inter-phase data being used. We prefer to make such re-
source usage, which could impact performance, more imme-
diately visible to shader writers.

The solution we ultimately arrived at is a single concep-
tual pipeline stage, running a single shader compiled from up
to three different entry points, one for each rate as shown in
Figure 5. This approach provides programmers with a high
degree of visibility into, and control over, what code runs
at each rate, as well as what data flows between phases. The
simpler models described above may still be implemented as
layered abstractions in cases where control can be sacrificed
for ease of use.

5.1. System-Defined Shader Parameters

When CP size is being controlled by shader code
(see Section 3.1), an additional system-interpreted value,
SV_CoarsePixelSize, is made available to the last
shading stage before the rasterizer. This output is a two-
component vector, and corresponds to the CP parameters
(sx,sy) defined in Section 3.1. Typically this output will be
set in a vertex shader, but could also be defined in a hull,
domain, or geometry shader, if these are used.

In addition, shader code running at CP rate has
access to inputs for both the interpolated values of
the CP parameters before quantization, and the actual
coarse pixel size: SV_RequestedCoarsePixelSize
and SV_CoarsePixelSize, respectively. These two val-
ues together are sufficient for a shader to compute its own
LOD compensation (see Section 3.2), for use in compu-
tations that do not involve the texture sampler (e.g., pre-
filtering a procedural texture).

5.2. Shader Outputs

We initially expected that users would often want to com-
pute shader outputs at different rates, e.g., evaluating spec-
ular albedo at a lower rate than diffuse when outputting a
G-buffer. However, allowing outputs to be written from any
phase would lead to thorny semantic questions in the pres-
ence of operations like fragment discard. For example, a
shader could write one output at coarse rate, and then per-
form a conditional discard at pixel rate. A naïve interpre-
tation might say that the write in the coarse-rate code “al-
ready happened” and values should be written (and blended)
into the framebuffer before the discard. However, this
contradicts the mental model of the 3D pipeline in OpenGL
and Direct3D, where all pixel shading logically occurs be-
fore framebuffer blending.

To avoid such ill-defined semantics, we opt for a simple
restriction: a shader with multiple phases may only write

framebuffer outputs from the last phase. Restricting outputs
to the last phase could lead to worse performance, but in
practice we expect a compiler to be able to hoist writes from
a higher to a lower rate when it can prove that it is safe (e.g.,
when there are no discard operations). The same kind of
hoisting optimization can apply to shaders that conditionally
compute their output at per-pixel or per-sample rate.

6. Applications

In this section, we will discuss several important use cases,
where CPS can be used to significantly reduce the amount of
pixel shading work. This is by no means an exhaustive list,
as we expect many more use cases to be found and explored.

6.1. High-DPI Rendering

Rendering to the native resolution of high-DPI displays is
often a task too demanding for the GPU. The typical remedy
is to lower the rendered resolution and upsample the image,
which results in perceivable quality degradation along object
silhouettes, while changes in surface interiors are not as ap-
parent. Instead, by using CPS and setting the CP parameters
to a constant value, such as 2⇥2 pixels, we can achieve a dra-
matic reduction of shading rate while retaining most detail.
An example is shown in Figure 1, with hardly any perceiv-
able change in image quality at normal viewing distances.

With more flexible control over the shading rate, we can
enable a wider range of applications, as discussed below.

6.2. Shading Low-Detail Surfaces

Some materials have lots of surface detail, while others do
not. By choosing a CP parameter depending on the material
type, computations can be saved where the visual impact is
minimal. For instance, a particle system for rendering smoke
may be rather homogeneous and shaded at a low rate, while
a sign with text may warrant high resolution shading. Sim-
ilarly, objects in full shadow may possibly be shaded at a
lower rate than objects in bright sunlight.

6.3. Foveated Rendering

CPS makes it easier to shade efficiently with foveated ren-
dering [GFD⇤12], since we can avoid resending geometry
over multiple rendering passes. We use a configurable radial
function to control the shading rate with a few parameters:
the point that corresponds to the center of the gaze, c, aspect
ratio, a, inner and outer minor radii, ri and ro, and inner and
outer CP parameters, smin and smax. These quantities are il-
lustrated in Figure 6. For foveated rendering, ri should be set
to a size representing a view angle of about 5�, and a = 1 for
a circular falloff function.

Although our shading system supports arbitrary positions
for the high resolution region, we have observed that merely

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

Inner region

(s = smin)

dƌĂŶƐŝƟŽŶ�ƌĞŐŝŽŶ

2ri 2ro

Outer region

(s = smax)

c

Figure 6: Foveated rendering with different regions hav-
ing different shading rates. The inner region has the highest
shading rate, i.e., smallest value of (sx,sy), which decreases
smoothly over the transition region to reach the minimum
shading rate outside the outer ellipse. These rates, as well as
the ellipses that demarcate the boundaries of these regions,
are specified by the user.

fixing c at the center of the screen and using a wider as-
pect also produces good results, most notably when render-
ing from a first person perspective. We call this technique pe-
ripheral CPS rendering, in contrast to proper foveated ren-
dering, which is only possible with gaze tracking. Figure 8
(top) shows an example of peripheral CPS rendering.

6.4. Adaptive Shading for Camera Effects

Regions of the screen with motion or defocus blur typically
have a narrow frequency response and can be shaded at a
lower rate [RKLC⇤11, LD12, VTS⇤12]. With CPS, we can
control the shading rate in such regions by setting CP param-
eters in the vertex shader that are proportional to the screen
space velocity or circle of confusion at that vertex. Since the
vertex shader is evaluated before clipping, there may be ver-
tices behind the camera or at zero depth. For such cases, we
refrain from reducing shading rate to ensure robustness.

The CP parameters can be determined separately for the
x- and y-axes in order to generate anisotropic shading rates
for motion blur. By assigning negative CP parameters for
vertices in front of the focal plane and positive CP param-
eters for those behind, we can ensure that the CP parame-
ters will interpolate to zero at the focal plane. Similarly, as-
signing signed CP parameters for velocity ensures zero val-
ues at stationary points inside a moving primitive. Since the
screen space circle of confusion radius and velocity are lin-
ear functions in screen space, perspective-correct interpola-
tion should be disabled for the CP parameter in such cases.
Figure 8 (middle) shows a scene with defocus blur, rendered
with a lower shading rate in blurred regions using CPS.

6.5. Multi-Rate Shading

We have explored several different applications where multi-
rate shading provides a valuable tool for scaling quality
vs. performance. Figure 8 (bottom) shows an example appli-
cation, where a high quality ambient occlusion term is com-
puted every 2⇥2 pixels using voxel cone tracing [CNS⇤11],
while diffuse texture lookups are evaluated at a pixel rate

Coarse Quad

0 1

2 3

4 5

6 7

12 13

14 15

8 9

10 11

SIMD Lanes

0 1 2 3

4 5 6 7

CP

12 13 14 15

P

Figure 7: Multi-rate shading with a coarse quad having a
CP size of 2⇥ 2, scheduled in a single thread on a 4-wide
SIMD processor. The coarse pixel (CP) phase executes first,
followed by the pixel phase (P) which loops over all covered
2⇥2 pixels in the coarse quad.

to retain most of the surface detail. Similarly, complex low-
frequency lighting computations, such as indirect lighting,
can also be evaluated at a lower rate.

Another example is locally increasing the shading rate in
difficult regions. This may be done to compute shading at
a pixel or sample rate only around specular features, and
lower elsewhere. We have seen that it is fairly common for
today’s real-time workloads to implement a type of multi-
rate shading using a two-pass approach. In this case, the first
pass runs at pixel rate (MSAA), but discards difficult pixels
which are marked in a stencil buffer. The second pass then
runs shading per sample, but only for pixels marked in the
stencil buffer. Using CPS, such algorithms can be converted
to a single pass, which selectively computes the result in the
pixel- and sample-rate shaders. We additionally gain the ben-
efit of executing results at even lower rates, where possible.

CPS multi-rate shading can also be used to perform
culling on a per CP [HAM07] (e.g., 4⇥ 4 pixels) basis. We
show a proof-of-concept example in Figure 9.

7. Implementation

We evaluate CPS using a software implementation of the
pipeline in a CPU based functional Direct3D 11 simulator.
For our implementation, we use a tile size of 16⇥ 16 pixels
and allow CP size widths and heights of 1, 2, or 4. In order to
support the CPS programmer abstractions described in Sec-
tion 5, we extend the DirectX High Level Shading Language
and introduce new API functions. Our simulator is instru-
mented to measure the dynamic instruction count, in order
to give an indication of the cost of shading. We also track
all memory accesses to the color buffer for measuring color
bandwidth.

Scheduling: As discussed in Section 5, in addition to pixel
shading, we can introduce a coarse pixel (CP) as well as a
sample rate shading phase in the pipeline. There are sev-
eral potential implementation strategies for multi-rate shad-
ing depending on how these additional phases are sched-
uled across multiple processors and threads. We choose a
scheduling strategy, where the CP, pixel, and sample rate
shading phases are executed consecutively on the same

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

thread. Restricting the schedule in this manner enables a
simple implementation, which requires significantly fewer
changes to the pipeline. It eliminates the need to transport
data across phases since the data can reside in the same reg-
isters. It also avoids complex flow control mechanisms for
throttling inter-phase data.

Figure 7 shows a coarse quad with a CP size of 2 ⇥ 2
scheduled on a 4-wide SIMD processor, which we use for
our measurements. First, the four CPs in the coarse quad
are executed concurrently across the SIMD lanes which
facilitates computing of finite differences. Following the
coarse phase, the processor concurrently schedules 2 ⇥ 2
pixel quads inside the coarse quad, looping over all covered
quads. Since our scheduling scheme requires movement of
data across SIMD lanes when transitioning across phases,
we assume the availability of processor instructions to facil-
itate this in an efficient manner.

For SIMD widths greater than 4 (say 8 or 12), we can
schedule multiple coarse quads concurrently. However, since
each coarse quad can have a different number of covered pix-
els, a higher SIMD width can also lead to a reduced utiliza-
tion of some SIMD lanes as some pixel phase loops termi-
nate early. For improved efficiency with large SIMD widths,
one may choose a more optimal scheduling scheme that dis-
tributes the pixel phase work more evenly across SIMD lanes
or even separate threads.

Color Compression: Shading at a lower rate than once per
pixel has implications for how well color buffer compres-
sion works to reduce the memory bandwidth. A higher de-
gree of uniformity in color values within 2⇥2 or larger pixel
blocks generally reduces the entropy and makes compres-
sion more efficient. There are many existing methods for
color compression [RHAM07, SWR⇤08, RSAM10, PLS12]
that we expect to benefit from CPS. To exemplify that this
works in practice, we have selected the scheme by Pool et
al. [PLS12], which computes color differences between pix-
els, and then applies entropy coding over the differences us-
ing a Fibonacci encoder [FK96].

We have modified Pool et al.’s scheme so that the pixels
are always visited in a hierarchical manner using a prede-
fined Hilbert curve. As a consequence, the differences will
first be computed inside a 2⇥2 quad, and then inside a 4⇥4
region, and so on. When CPS is enabled, several colors in-
side some of these regions are likely to be the same, pro-
ducing zero differences, which are efficiently encoded using
a Fibonacci encoder. We use a cache line size of 128 bytes,
equivalent to 8⇥4 pixels for an RGBA8 render target. When
a line is evicted from the color cache, it is compressed, and if
the resulting size is less than or equal to 64 bytes, compres-
sion is successful, and we mark the line as compressed in a
separate control buffer and send only one 64 byte transac-
tion to memory. Otherwise, we send the uncompressed data
to memory in two 64 byte transactions. We model a 64 kB

CPS-Peripheral

PS

PS CPS PS CPS

PS CPS PS CPS

CPS-Adaptive

PS

CPS-Multi-Rate

PS

PS CPS PS CPSUPSCALED UPSCALED

PS CPS PS CPSUPSCALED UPSCALED

Figure 8: A comparison of per-pixel shading (PS) and
coarse pixel shading (CPS) for three different applications.
Top row: the CITADEL 1 scene rendered with peripheral CPS
with a coarse pixel (CP) size of 1⇥1 in the middle and 2⇥2
towards the screen border. Middle row: the CITADEL 2 scene
rendered with a post process depth of field effect using a
maximum CP size of 2⇥2 pixels in the blurred regions. Bot-
tom row: the POWER PLANT scene rendered with high quality
ambient occlusion computed with a CP size of 2⇥ 2 pixels
and diffuse textures evaluated per pixel.

color cache with an LRU replacement policy. Compression
results are reported in Section 8.2.

8. Results

We evaluate four scenes for image quality and performance
with CPS. Each scene corresponds to a specific application
as listed in Table 1. The CITADEL scenes are from the Epic
Citadel demo included in the Unreal Development Kit 2014-
02 and the POWER PLANT scene is from the Microsoft Di-
rectX SDK. For all scenes, we enable CPS only in the for-
ward rendering passes. Post processing effects are shaded at
a per-pixel rate to avoid blurring high frequency regions.

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

Scene Application SSIM (%) PSNR (dB)
CITADEL 1 High-DPI displays 90.6 32.80
CITADEL 2 Peripheral CPS 89.6 31.96
CITADEL 3 Adaptive shading 98.0 39.91
POWER PLANT Multi-Rate shading 99.8 51.46

Table 1: Image quality metrics with CPS.

The CITADEL 1 scene represents a typical use case for
high-DPI displays where the scene is rendered with a uni-
form CP size of 2⇥ 2 pixels. For this scene, we render at a
resolution of 2560⇥1440. All the other scenes are rendered
at a resolution of 1920⇥ 1080. The CITADEL 2 scene shows
an example application with peripheral CPS rendering. As
shown in Figure 6, we select a shading rate of once every
pixel inside an inner ellipse, 445 ⇥ 250 pixels large. The
transition region is defined by an outer ellipse, 623 ⇥ 350
pixels large. Outside the transition region, we select a lower
shading rate with a CP size of 2⇥ 2 pixels. The CITADEL 3
scene includes a post process depth of field effect, which is a
feature available in the Unreal Engine. The CP size is adap-
tively controlled by assigning CP parameters proportional to
the amount of blur on a per-vertex basis.

The POWER PLANT scene showcases the potential of CPS
and multi-rate shading to enable complex low frequency ef-
fects with a significantly reduced computational overhead.
In this scene, ambient occlusion is computed using voxel
cone tracing [CNS⇤11], at a rate of approximately once ev-
ery 2⇥ 2 pixels in the coarse pixel shader, while the rest of
the shading is evaluated at a pixel rate in the pixel shader.

8.1. Image Quality

Table 1 shows the structural similarity index
(SSIM) [WBSS04] and PSNR image quality metrics
with CPS as compared to per-pixel shading for the four
different scenes. We measure SSIM on the grayscale image
without downsampling. With the suggested downsampling
process for SSIM, we observed that the result was close
to 99% for all scenes. The measured image quality scores
are consistently high, indicating very little degradation in
image quality. In the following paragraphs, we present a
more detailed analysis of image quality for each of the four
applications.

Uniform Downsampling: Figure 1 shows a comparison of
the CITADEL 1 scene rendered with per-pixel shading and a
fixed CP size of 2⇥2 pixels. We also evaluate an alternative
approach (UPSCALING) where the scene is rendered at a quar-
ter resolution and then up-scaled to the target display using a
cubic filter [MN88]. Such a technique is often used to render
to high-DPI displays.

The difference between the images rendered with CPS
and per-pixel shading is hard to perceive when viewed on
a high-DPI display. With UPSCALING however, there is a vis-
ible degradation in quality along silhouette edges due to poor

sampling. This can be especially seen in the zoomed in re-
gions which have sharp silhouette edges. For regions with
high frequency textures, such as the sign board in Figure 1,
a higher shading rate can still be selected if desired, by con-
trolling the CP size.

Outside the silhouette regions, UPSCALING tends to pro-
duce smoother results than CPS. This is due to the simple
approach used by CPS to reconstruct the high-DPI image
from sub-sampled shading, where the shaded results for a
CP are merely copied to the pixels inside it, instead of ap-
plying a reconstruction filter. However, we find that these
differences are not perceptible on a high-DPI display.

Peripheral CPS rendering: Figure 8 (top) shows the
CITADEL 2 scene rendered with peripheral CPS. The red box
shows a region close to the center of the screen that is ren-
dered at a pixel rate and the blue box shows a region at the
periphery of the screen that is rendered with a CP size of
2⇥ 2 pixels. While shading in the peripheral region is blur-
rier, the sharp edges are preserved in both cases.

Adaptive Shading for Defocus Blur: Figure 8 (middle)
shows the CITADEL 3 scene rendered with a post process
defocus blur, where shading is evaluated at a lower rate in
the blurred regions using CPS. The red box shows an out of
focus region in the background where shading is evaluated
with a CP size of 2⇥ 2. Although some differences can be
seen in the zoomed in regions, these are barely observed in
the original image, which is also reflected in the high SSIM
score of 98.0%. We can also see that the post process defocus
blur masks the effects of shading at a lower rate. The qual-
ity of the post process blur filter that is applied also affects
the image quality with CPS. With a higher quality filter, we
expect even fewer differences between CPS and PS.

Multi-rate Shading: Multi-rate shading presents one of the
most compelling use cases for CPS with the potential to en-
able high quality lighting effects in future games. Figure 8
(bottom) shows the results for the POWER PLANT scene with
multi-rate shading, which has the highest SSIM scores as
well as a the largest reduction in shader computations with
CPS. The combined result with ambient occlusion and dif-
fuse textures is almost indistinguishable between the images
with and without CPS. The differences can only be noticed
when the ambient occlusion term is viewed separately as
shown in the cropped images on the right. We also evaluate
the UPSCALED approach discussed earlier, where ambient oc-
clusion is rendered at a quarter resolution, upscaled and then
combined with the diffuse texture. As compared to the UP-
SCALED result, image quality is remarkably better with CPS.

8.2. Performance

In order to evaluate potential performance gains with CPS,
we measure two key parameters that are indicative of end

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

Scene PS CPS Percentage of (CPS/PS)
CITADEL 1 523 260 49.7%
CITADEL 2 279 186 66.7%
CITADEL 3 444 359 80.9%
POWER PLANT 5115 1912 37.4%

Table 2: Executed pixel shader instructions (in millions)
with per-pixel shading (PS) and with CPS.

to end performance. The first parameter is the number of
pixel shader instructions that are executed, which estimates
the computational overhead of pixel shading. The second pa-
rameter is the color bandwidth which typically constitutes a
significant portion of the overall memory bandwidth. As dis-
cussed before, CPS can improve the effectiveness of color
compression, significantly reducing color bandwidth.

Table 2 shows a comparison of the number of executed
pixel shader instructions with per-pixel shading and CPS.
These instructions include both forward rendering passes
and post processing effects where CPS is not enabled. In
spite of this, we find that in most cases, the instruction count
with CPS is significantly lower than per-pixel shading, espe-
cially in the POWER PLANT scene where the shading cost with
CPS is close to a third of per-pixel shading.

The CITADEL 3 scene has relatively smaller savings where
the number of instructions with CPS is about 80 % of per-
pixel shading. This scene has a significantly higher post pro-
cessing cost, especially for computing the depth of field ef-
fect. Since CPS is not enabled for these expensive post pro-
cessing passes, we see reduced savings.

Culling: In Figure 9, we show a simple example of us-
ing CPS for culling, similar to the work by Hasselgren and
Akenine-Möller [HAM07]. This scene is based on the soft
particles example from the DirectX 11 SDK, which renders
2D sprites and generates alpha and depth values in the pixel
shader, by dynamically sampling a transparency texture to
create the illusion of an animated smoke volume.

We have modified this application to introduce a coarse
pixel shading phase with a CP size of 4⇥4 pixels that culls
particle regions that are fully transparent or occluded by
opaque geometry. We do this by computing an additional
transparency texture, storing a conservative max-value mip-
map of the alpha. Similarly we also compute a depth tex-
ture where each texel stores the maximum depth buffer value
within a 4⇥ 4 pixel region. In the CP phase, we perform a
lookup in the correct mip-level of the transparency texture
to cull transparent regions followed by a lookup in the depth
texture to cull occluded regions.

Including the added cost of creating the coarse depth
buffer and running the cull shader, we save about 35% of the
pixel shader (and CPS) instructions, and 45% of the texture
lookups. For a fair comparison, we also enhance the original
particle shader with an early discard against a = 0. Further-

Figure 9: A simple culling example of soft particles (left).
The right image shows the culling potential by discarding
fully transparent regions (yellow) in the coarse pixel shader,
and performing a coarse depth test (red).

300

350

400

450

500

550

600

0 50 100 150 200 250 300

C
ol

or
 b

an
dw

id
th

 [M
B

]

Frame

Uncompressed No CPS Peripheral CPS CPS

Figure 10: Post color cache memory traffic for a 300 frame
animation of CITADEL1.

more, our numbers do not include saved interpolation setup
due to culling, which may be beneficial on some architec-
tures. It might also be possible to leverage early depth culling
in hardware, by rendering particles with a certain minimum
depth to ensure that the depth tests are conservative. How-
ever determining such a minimum depth might be imprac-
tical, for example, in cases where the depth is animated or
generated procedurally in the pixel shader.

Memory Bandwidth: Figure 10 compares post color cache
memory traffic with per-pixel shading and CPS for a 300
frame animation of the CITADEL 1 scene, using the modi-
fied Pool et al.’s scheme for color compression. Compression
without any CPS (No CPS) achieves 16% traffic reduction
on average, while with CPS, the average reduction is 31%.
For peripheral CPS rendering, as expected, the reduction is
slightly less (26%) than uniform downsampling, but is still
significant. Note that with our color compression scheme,
the compression ratio is limited to 50%. With an improved
scheme, we can expect even higher compression ratios with
CPS. For scenes with multi-rate shading, we do not expect
significant reduction in color traffic with CPS since the re-
sulting color would still have high frequency content pro-
duced by the pixel-rate or sample-rate stages.

In addition to saving bandwidth with better compression,
CPS can also reduce the texture bandwidth due to the fewer
texture sample instructions that are executed and also since
the textures would be fetched from a higher mip-level. CPS
can also be used to render to a render target, which is then
accessed in a another pass through the texture sampler. In
such cases, the texture bandwidth can be reduced as well. It
would be interesting to evaluate the memory traffic with CPS
for these cases, but we leave such analyses for future work.

c� The Eurographics Association 2014.

Vaidyanathan et al. / Coarse Pixel Shading

9. Conclusion

We have introduced coarse pixel shading (CPS), a new algo-
rithm that can significantly reduce the cost of shading with
little to no perceivable impact on image quality. CPS fits nat-
urally in the evolution of the real-time graphics pipeline as it
introduces a new degree of flexibility through programmable
shading rates, while still addressing a real need for energy
efficiency for the fast growing market of hand-held devices.
We have demonstrated how our algorithm can be used in
several rendering scenarios and how it can be easily incor-
porated into an existing graphics pipeline, through small in-
cremental changes to the graphics hardware and extensions
to the user level interface. Based on this finding, we are opti-
mistic that an evolutionary step towards flexible shading can
be achieved in the near future, spurring the graphics com-
munity to develop several innovative techniques for efficient
rendering.

Acknowledgements: We thank Prasoonkumar Surti, Benty
Nir, Uzi Sarel and Tomer Bar On for their contributions. We
also thank David Blythe, Charles Lingle, and Tom Piazza for
supporting this research. The CITADEL test scenes are cour-
tesy of Epic Games, Inc. Tomas Akenine-Möller is a Royal
Swedish Academy of Sciences Research Fellow supported by
a grant from the Knut and Alice Wallenberg foundation.

References
[AHTAM14] ANDERSSON M., HASSELGREN J., TOTH R.,

AKENINE-MÖLLER T.: Adaptive Texture Space Shading for
Stochastic Rasterization. Computer Graphics Forum (Euro-
graphics 2014), 33, 2 (2014). 2

[Ake93] AKELEY K.: RealityEngine Graphics. In Proceedings of
SIGGRAPH 93 (1993), ACM, pp. 109–116. 2

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSEL-
GREN J.: Stochastic Rasterization using Time-Continuous Tri-
angles. In Graphics Hardware (2007), pp. 7–16. 2

[BFM10] BURNS C. A., FATAHALIAN K., MARK W. R.: A Lazy
Object-Space Shading Architecture with Decoupled Sampling.
In High Performance Graphics (2010), pp. 19–28. 2

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87) (1987), vol. 21, ACM, pp. 95–
102. 2

[CNS⇤11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive Indirect Illumination Using Voxel
Cone Tracing. Computer Graphics Forum (Proceedings of Pa-
cific Graphics 2011) 30, 7 (2011). 6, 8

[CTM13] CLARBERG P., TOTH R., MUNKBERG J.: A Sort-
Based Deferred Shading Architecture for Decoupled Sampling.
ACM Transactions on Graphics, 32, 4 (2013), 141:1–141:10. 2

[DHS⇤05] DURAND F., HOLZSCHUCH N., SOLER C., CHAN
E., SILLION F. X.: A Frequency Analysis of Light Transport.
ACM Transactions on Graphics, 24, 3 (2005), 1115–1126. 2

[FH11] FOLEY T., HANRAHAN P.: Spark: Modular, Composable
Shaders for Graphics Hardware. ACM Transactions on Graphics,
30, 4 (July 2011), 107:1–107:12. 5

[FK96] FRAENKEL A. S., KLEIN S. T.: Robust Universal Com-
plete Codes for Transmission and Compression. Discrete Applied
Mathematics, 64 (1996), 31–55. 7

[GBAM11] GRIBEL C. J., BARRINGER R., AKENINE-MÖLLER
T.: High-Quality Spatio-Temporal Rendering using Semi-
Analytical Visibility. ACM Transactions on Graphics, 30, 4
(2011), 54:1–54:12. 2

[GFD⇤12] GUENTER B., FINCH M., DRUCKER S., TAN D.,
SNYDER J.: Foveated 3D Graphics. ACM Transactions on
Graphics, 31, 6 (2012), 164:1–164:10. 2, 3, 5

[HAM07] HASSELGREN J., AKENINE-MÖLLER T.: PCU: The
Programmable Culling Unit. ACM Transactions on Graphics,
26, 3 (2007), 92.1–92.10. 2, 6, 9

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled Deferred
Shading for Hardware Rasterization. In Symposium on Interac-
tive 3D Graphics and Games (2012), pp. 143–150. 2, 6

[MCH⇤11] MUNKBERG J., CLARBERG P., HASSELGREN J.,
TOTH R., SUGIHARA M., AKENINE-MÖLLER T.: Hierarchi-
cal Stochastic Motion Blur Rasterization. In High Performance
Graphics (2011), pp. 107–118. 2

[Mic12] MICROSOFT: Rasterization Rules, 2012. URL:
http://msdn.microsoft.com/en-us/library/
windows/desktop/cc627092(v=vs.85).aspx. 4

[MN88] MITCHELL D. P., NETRAVALI A. N.: Reconstruction
Filters in Computer Graphics. In Computer Graphics (Proceed-
ings of SIGGRAPH 88) (1988), vol. 22, ACM. 8

[PLS12] POOL J., LASTRA A., SINGH M.: Lossless Com-
pression of Variable-Precision Floating-Point Buffers on GPUs.
In Symposium on Interactive 3D Graphics and Games (2012),
pp. 47–54. 7

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV S.,
HANRAHAN P.: A Real-Time Procedural Shading System for
Programmable Graphics Hardware. In Proceedings of SIG-
GRAPH 2000 (2001), ACM, pp. 159–170. 5

[Poo12] POOL J.: Energy-Precision Tradeoffs in the Graphics
Pipeline. PhD thesis, 2012. 2

[RHAM07] RASMUSSON J., HASSELGREN J., AKENINE-
MÖLLER T.: Exact and Error-Bounded Approximate Color
Buffer Compression and Decompression. In Graphics Hardware
(2007), pp. 41–48. 7

[RKLC⇤11] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics, 30, 3 (2011), 17:1–
17:17. 2, 4, 6

[RSAM10] RASMUSSON J., STRÖM J., AKENINE-MÖLLER
T.: Error-bounded Lossy Compression of Floating-point Color
Buffers using Quadtree Decomposition. The Visual Computer,
26, 1 (2010), 17–30. 7

[SMD⇤06] STOLL G., MARK W. R., DJEU P., WANG R., EL-
HASSAN I.: Razor: An Architecture for Dynamic Multiresolution
Ray Tracing. Tech. Rep. TR-06-21, Dept. of Computer Science,
University of Texas at Austin, 2006. 2

[SWR⇤08] STRÖM J., WENNERSTEN P., RASMUSSON J., HAS-
SELGREN J., MUNKBERG J., CLARBERG P., AKENINE-
MÖLLER T.: Floating-Point Buffer Compression in a Unified
Codec Architecture. In Graphics Hardware (2008), pp. 75–84. 7

[VTS⇤12] VAIDYANATHAN K., TOTH R., SALVI M., BOULOS
S., LEFOHN A.: Adaptive Image Space Shading for Motion and
Defocus Blur. In High Performance Graphics (2012), pp. 13–21.
2, 6

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.:
Image Quality Assessment: from Error Visibility to Structural
Similarity. IEEE Transactions on Image Processing, 13, 4 (april
2004), 600–612. 8

c� The Eurographics Association 2014.

http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092(v=vs.85).aspx

