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Abstract
When rendering effects such as motion blur and defocus blur, shading can become very expensive if done in a
naïve way, i.e. shading each visibility sample. To improve performance, previous work often decouple shading
from visibility sampling using shader caching algorithms. We present a novel technique for reusing shading in a
stochastic rasterizer. Shading is computed hierarchically and sparsely in an object-space texture, and by selecting
an appropriate mipmap level for each triangle, we ensure that the shading rate is sufficiently high so that no
noticeable blurring is introduced in the rendered image. Furthermore, with a two-pass algorithm, we separate
shading from reuse and thus avoid GPU thread synchronization. Our method runs at real-time frame rates and is
up to 3× faster than previous methods. This is an important step forward for stochastic rasterization in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Stochastic rasterization [CCC87, AMMH07] continues to
be an interesting path forward for realistic camera mod-
els for real-time rendering. Camera effects, such as motion
blur and depth of field (also called defocus blur), are favor-
ably expressed with this technique. For good quality, the
number of samples per pixel often needs to be high, and
due to motion or lens effects, standard multi-sampled anti-
aliasing (MSAA) will often deteriorate to super-sampled
anti-aliasing [MCH∗11]. This, in turn, means that shading
becomes prohibitively expensive. Hence, better methods are
needed for shading in a stochastic rasterizer.

To this end, new hardware mechanisms for reusing shaded
values for many different rasterized fragments in a stochas-
tic rasterization setting have been proposed [RKLC∗11,
BFM10,CTM13]. Common to all of these approaches is that
they assume that shading is constant for a certain point on
a surface, regardless of motion and the lens. Note that this
assumption is heavily used even in high-quality production
renderers [CCC87].

In contrast to new hardware mechanisms, Liktor and
Dachsbacher [LD12] present a method that works on current
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graphics hardware. They use a compact geometry buffer,
which stores shading information independent of visibility.
When computing and storing new entries in this buffer they
rely on per-fragment synchronization and atomic counters.
While our method has the same goals, i.e., reusing shaded
values as efficiently as possible, it has been designed with-
out high frequency synchronization. The contributions of our
work are summarized below:

• A lock-free (no atomics) method for reusing shading val-
ues in a stochastic rasterizer.

• Sparse and adaptive evaluation of shading (triangles are
shaded directly into a hierarchical data structure).

• An algorithm well suited for current graphics processors.
• Results show that our method is substantially faster than

previous methods.

We believe that our method brings us one step closer to high-
quality real-time rendering of stochastic effects on current
graphics hardware.

2. Previous Work

The idea of decoupling shading rate from visibility sam-
pling [CCC87] is old and has frequently been used in off-
line or photo-realistic rendering systems to improve perfor-
mance. In the following, we will focus mainly on the more
recent approaches targeting real-time performance and GPU
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Figure 1: Caching shaded values works for both motion blur
(left) and defocus blur (right). The assumption, used by Cook
et al. and many others after them, is that the shading at a cer-
tain point on a triangle is independent of time and lens posi-
tion. Hence, shaded values can be cached and later reused.

implementations. The idea of a shading cache is illustrated
in Figure 1.

Many of the shading caches adopted for GPU im-
plementation target temporal reprojection of shaded col-
ors [NSL∗07, SaLY∗08]. While there is some overlap with
our work, we only wish to reuse shaded values over different
stochastic samples, and may therefore work with parametric
texture space shading. In contrast, temporal reprojection al-
gorithms typically work with screen space reprojection be-
tween frames and those techniques are thus not well suited
for exploiting coherency between samples in a single frame.

As our algorithm works in object- or texture-space,
it bears some resemblance to light mapping [AMHH08],
which has been a popular technique (primarily) for bak-
ing static global illumination for computer games. Illumi-
nation maps were used by Arvo [Arv86] for storing the
result of tracing rays from the light sources, and Heck-
bert [Hec90] stored radiosity in textures, which adapted their
size to the shaded content. Some similarities can be seen
between our approach and GPU accelerated light map gen-
eration [LTH∗13], although those algorithms are typically
more complex as they are targeted at solving light transport
through the scene. However, a big difference between light
map generation and our shading approach is that light maps
are typically view-independent and should be suitable for
viewing from any camera position. In contrast, since we will
recompute the shading every frame, we can use the camera
parameters to choose an appropriate sampling rate and tex-
ture filtering footprint. Texture space shading has also previ-
ously been used by Borshukov and Lewis [BL03] for realis-
tic skin rendering.

Recently, several decoupled shading approaches target-
ing real-time rendering and graphics hardware [RKLC∗11,
BFM10, VTS∗12, CTM13], have been developed. However,
these papers focus on new hardware implementations, and
are not easy to implement in the context of current genera-
tions of GPUs and graphics APIs. Of particular interest to
us is the work by Vaidyanathan et al. [VTS∗12] in which
they derive minimum shading rates for defocus and motion
blur. Liktor and Dachsbacher [LD12] built on the work by
Ragan-Kelley et al. [RKLC∗11] and presented a deferred
shading cache approach. They implemented their algorithm

using shader programs and showed performance gains on ex-
isting GPUs with stochastic rasterization. However, the algo-
rithm requires per-sample synchronization when the shading
cache is updated. This has a significant performance impact,
and consequently the algorithm starts being beneficial only
when expensive shaders are used.

Gribel et al. [GBAM11] use an object-space shading
cache for offline rendering with semi-analytical methods.
Similar to our approach, they also use a hierarchy and pop-
ulate it as needed. They allocate a large chunk of mem-
ory for their cache, where subsets of the hierarchy are allo-
cated lazily. Atomics must be used to avoid race conditions.
Adapting this algorithm to run on the GPU would probably
result in an algorithm similar to that of Liktor and Dachs-
bacher [LD12].

Although this paper focuses on the shading aspect, we
have also implemented a stochastic rasterizer for evalua-
tion purposes. Our implementation is very similar to that of
McGuire et al. [MESL10], but modified to perform shading
texture lookups in the pixel shader rather than computing
actual shading. We also use the five-dimensional sample-in-
triangle test proposed by Laine and Karras [LK11], as well
as the back-face culling test for motion and defocus blur by
Munkberg and Akenine-Möller [MAM11].

3. Algorithm

Our shading approach is split into two passes, called the
shading pass (Section 3.1) and the stochastic rasterization
pass (Section 3.2). In the first pass, illustrated in Figure 2,
we set up a hierarchical, i.e., mipmap-like, shading texture
for each object. We do this by rasterizing the current ob-
ject directly into the shading texture using the object’s para-
metric shading space (or texture space) coordinates. During
this pass, we also compute how each triangle will project on
screen during the succeeding stochastic rasterization pass,
and use that information to dynamically select an appropri-
ate mipmap level to render into. In the second pass, where we
typically wish to use stochastic rasterization effects, such as
defocus and/or motion blur, we simply fetch the color value
from the shading texture for each fragment. The division of
our algorithm into two passes is crucial to performance be-
cause it enables lock-free lookups of shaded values. This
should be compared to previous methods that require fine-
grained thread synchronization [LD12].

By switching from the “shade on miss” model of the orig-
inal cache systems, we lose the ability to shade only frag-
ments that are visible from the camera and risk overshading
if we choose a texture resolution that do not match the screen
resolution. Therefore, it is important not only to perform
back-face and frustum culling when setting up the shading
texture, but also to select a mipmap level in the shading tex-
ture that closely matches the screen space signal frequency
(including blur from depth of field).
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Figure 2: An illustration of our object-space texture shading approach. Left: the Dragon object rendered with defocus blur using
our object-space shading approach. Middle: the mesh rendered with shading to the object-space texture after view-frustum and
back-face culling (for the camera used in the left image). Right: the same mesh rendered to object space, with an appropriate
mipmap level selected per-triangle in the geometry shader. Note that the image in the middle is there for illustration purposes
only—our method renders only to the structure, called a shading texture, shown to the right.

We typically use one shading texture per object. If the
scene requires more textures than is possible to allocate, we
keep a pool of a few shading textures and alternate between
pass one and pass two. It is beneficial to merge smaller ob-
jects and use the same shading texture whenever possible,
since that minimizes the involved state changes when alter-
nating between the passes.

Next, the two passes of our algorithm are described in
more detail.

3.1. Shading Pass

The shading pass consists of two sub-passes, described in
Section 3.1.3, in which we sparsely populate a hierarchical
shading texture with shaded fragments. The stochastic ras-
terization pass can thereafter reuse these shaded values sev-
eral times. In contrast to other research dedicated to lowering
shading rate for stochastic rasterization, we propose to pay
the shading cost up front, prior to visibility determination,
which is similar to how Reyes handles shading [CCC87].

First, the mesh vertices need to be augmented with shad-
ing space coordinates, which must ensure that all surface
points on the mesh can be uniquely mapped to a loca-
tion in shading space. Texture coordinates are often al-
ready available and can double as the shading space so
long as there are no overlaps. We would also like to point
out that our algorithm can be used selectively, and alter-
native algorithms could be used for objects where non-
overlapping atlases are an issue. Furthermore, like previous
work [BFM10, RKLC∗11, VTS∗12, CTM13] all shading is
calculated at the center of the lens and at a fixed time. The
lack of view-dependent shading is widely regarded as an ac-
ceptable trade-off, given the complexity of the problem.

In Section 3.1.1 and 3.1.2, we describe the theory on how

to conservatively determine the highest shading frequency
required for any point on the primitive, in order to shade as
sparsely as possible. Section 3.1.3 then describes how this is
used in practice in order to generate the shading texture.

3.1.1. Shading Rate

Our algorithm for selecting shading rate is illustrated in Fig-
ure 3. Starting from a triangle in screen space, we use a
method, called anisotropic adaptive sampling (AAS), pro-
posed by Vaidyanathan et al. [VTS∗12]. Given a lens with
particular characteristics, AAS can be used to determine the
screen-space shading rate needed in order to capture a cer-
tain desired percentage of the frequency content due to de-
focus blur.

We use the thin lens model, where the (non-signed)
screen-space circle of confusion (CoC) radius can be mod-
elled as:

rc(w) =
∣∣∣c0 +wc1

w

∣∣∣ , (1)

where c0 and c1 are parameters derived from the cam-
era’s aperture and focal distance, and w is the vertex depth.
Note that the focus plane is located at w = −c0/c1, since
rc(−c0/c1) = 0. Similar to the derivation of AAS, we find
the smallest circle of confusion, min

w
rc(w), as shown in Fig-

ure 3B, and use it to bound the shading frequency. If the
circle of confusion is less than a pixel, or if the triangle
straddles the focus plane, the frequency is bound by the pixel
grid instead. This gives us a shading grid spacing, or inverse
shading rate, expressed in pixels:

d = max(a(min
w

rc(w)),1), (2)

where the function a depends on the aperture of the lens.
We use a circular lens in our models and use a(x) =
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Figure 3: Shading rate algorithm outline. A: triangle to be
rendered. B: we use the AAS algorithm to derive a screen
space shading grid, or inverse shading rate, which is dic-
tated by the minimum circle of confusion shown in red. C:
the shading grid is projected into shading space (note that it
is not aligned with the Cartesian grid).
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Figure 4: Finding the highest frequency in texture space.
A: transforming the AAS grid into texture space gives us a
projective grid that does not align with the Cartesian grid we
use for our shading space. B: the resolution of our shading
space corresponds to the smallest radius (red circle to the
left) of the filter kernels used.

x/2 [VTS∗12]. For mipmap level selection, we only con-
sider defocus blur, while the full AAS algorithm handles the
combination of both motion and defocus blur.

Once we have established a suitable shading grid spacing
in screen space (Equation 2), we wish to transform it into our
shading space. This is a projective transform, and we will
therefore end up with a grid similar to that shown in Fig-
ure 3C. It should be noted that this grid is not aligned with
the standard Cartesian grid, which we use for our shading
space. However, if we assume that shading is filtered using
EWA [Hec86] (or using hardware-accelerated anisotropic
filtering), we obtain the Gaussian filter kernels illustrated in
Figure 4A.

The filter kernels can be modeled as ellipses [Hec86], and
are usually computed from the screen-space derivatives, ∂T

∂x
and ∂T

∂y , for a shading space texture coordinate, T = (s, t).
We assume that the mapping (x,y)→ T is locally linear, and
therefore the shading grid spacing computed using AAS (d
from Equation 2) can be directly used to scale the screen-
space derivatives: d · ∂T

∂x and d · ∂T
∂y .

Given these derivatives, one may compute the minor axis

s

t
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Figure 5: A: a triangle and its corresponding shading space
along with texture derivatives with respect to x,y,u,v, and
t. Given these five derivatives, we generalize the method by
Loviscach [Lov05] to compute a single elliptical footprint,
which takes all partial derivatives into account. B: depend-
ing on whether we access the shading texture once per ras-
terized pixel (MSAA) or once per sample (SSAA), we should
pre-filter the shading texture with an appropriate footprint.
The figure shows a pixel footprint used for MSAA as the red
ellipse. If SSAA is used instead, we will get multiple lookups
in the shading texture, illustrated as the green ellipses, and
the footprints need to be scaled to reflect this.

of the ellipse as described in Appendix A. As shown in Fig-
ure 4A, the smallest minor axis:

r = min
x,y∈tri

Rminor(x,y), (3)

of any ellipse over the whole triangle indicates the highest
visible content frequency. It should be noted that this is a
non-trivial function that is difficult to bound conservatively.
We therefore conjecture that the minimum minor axis radius
across a triangle occurs in one of the triangle vertices. Cur-
rently, we have no firm proof for that, but it matches previ-
ous knowledge that the mipmap level can be perspectively
interpolated across a triangle in high quality [EWWL98].
Given the minimum radius, r, shown in Figure 4, we se-
lect the mipmap level as blog2 rc, and we end up with the
grid shown in Figure 4B. This choice ensures that we shade
densely enough to resolve details, while the actual filter foot-
print takes the non-discretized r into account.

In practice, the maximum shading frequency is limited by
the finest mipmap level resolution. Having a low resolution
shading texture and moving sufficiently close to an object
may cause some blockiness, and therefore it is important
to select a suitable maximum shading texture resolution for
each asset. Selecting a resolution that is too high only af-
fects memory consumption, as our shading system will pick
an appropriate mipmap level for actual shading.

3.1.2. Filtering

After selecting an appropriate mipmap level for the trian-
gle in the geometry shader, the triangle will be rasterized
to the shading texture. The pixel shader is executed for
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Figure 6: Without conservative rasterization, the regions
around triangle edges in the shading texture may have in-
complete information, which propagates to the final image
as shown here (emphasized in purple color).

every pixel in the shading texture that overlaps the trian-
gle, in the selected mipmap level. In the pixel shader, we
compute pre-filtered shading values, filtering over the foot-
print of each pixel with respect to (x,y,u,v, t), where (x,y)
are the screenspace coordinates, (u,v) are the lens coor-
dinates and t is the shutter time. In the pixel shader, we
must maintain enough triangle data so that we can compute
∂T
∂x ,

∂T
∂y ,

∂T
∂u ,

∂T
∂v ,

∂T
∂t , in order to determine the filter footprint.

We use a generalized form of the filter formulated by Lo-
viscach [Lov05], who only covered the case of screen space
and motion blur filtering. The full derivation of how the gen-
eralization is done is found in Appendix B. The resulting
combined filter has an elliptical kernel, which is used for
computing the shading of the pixel.

In practice, we let the hardware for anisotropic texture fil-
tering effectively perform the filtering for us, which is in
accordance with Loviscach’s approach. An example of the
combined filter for a sample position on a triangle with de-
focus and motion blur can be seen in Figure 5A.

We must make sure that the correct derivatives are used
when pre-filtering, depending on how the shading texture is
sampled in the subsequent stochastic rasterization pass, as
illustrated in Figure 5B. If supersampling is used, several
samples will be drawn from within the pixel, lens, and time
footprints in the shading texture. The pixel, lens, and time
derivatives must therefore be scaled prior to shading to en-
sure that the color value is correctly reconstructed. We as-
sume that we have N evenly distributed sample points, and
we therefore divide the (x,y) and (u,v) derivatives by

√
N as

this will distribute the pixel and lens area evenly among the
samples. Similarly, the time derivative is divided by N since
it is a one-dimensional attribute. For multisampling, we only
wish to retrieve one shaded value per pixel, and thus N = 1.
Regardless of what strategy we use for sampling the shading
texture, we use the grid resolution of the selected shading
texture mipmap level as a lower bound of the extent of the
filter.

3.1.3. Populating the Shading Texture

As described in the previous subsections, we now have meth-
ods to compute an appropriate shading rate, i.e., mipmap

sample
point

Figure 7: With standard rasterization rules, only the two
middle pixels in the bottom row would be considered to be
inside this triangle since those pixels’ center locations are
the only ones that are inside the triangle. However, our sam-
ple locations when looking up shading in the shading tex-
ture can be arbitrary inside the triangle. The red sample
point, for example, is inside the triangle, but the enclosing
pixel would not be rendered to with standard rasterization.
We overcome this with conservative rasterization, which pro-
cesses all pixels that are touched by the triangle (which in
this case includes all 4×2 pixels).

level, per triangle. The actual population of the shading
texture is done in two sub-passes. In the geometry shader
of the first sub-pass, the triangles are conservatively view-
frustum culled and are back-face culled with respect to the
lens and time, using the method described by Munkberg and
Akenine-Möller [MAM11]. The surviving triangles are then
rasterized to the shading texture using the shading space co-
ordinates transformed to the selected mipmap level as the
position attribute. In the pixel shading stage, we recompute
the texture footprint and perform the surface shading.

Current graphics APIs do not allow dynamically selecting
the output mipmap level, as mentioned in Section 3.1, and
we therefore manually maintain our own mipmap hierarchy.
Using this layout, we select a mipmap level for each triangle
by scaling and offsetting the texture coordinates. This en-
sures that we can use a standard hardware accelerated bilin-
ear texture lookup, instead of doing custom texture filtering
in the pixel shader, when performing the stochastic rasteri-
zation pass (described in Section 3.2).

Using standard rasterization results in artifacts in the fi-
nal image, which can be seen in Figure 6. The reason
for this is that our sample locations are arbitrary within
a triangle, while the rasterization hardware samples visi-
bility at the pixel center. This is explained further in Fig-
ure 7. As described next, we use conservative rasteriza-
tion [AMA05, HAMO05] in a second sub-pass to solve this
problem.

In the second sub-pass, the same set of triangles are ren-
dered with conservative rasterization. First, the culling and
shading rate computations from the first pass are repeated.
Next, we build the conservative outer hull [HAMO05] of
the input triangle for the selected mipmap level. It is im-
portant that the shaded values that are already computed in
the first sub-pass are not overwritten. To accomplish this, we
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Figure 8: The inner regions are yellow and the visible parts
of the outer regions are gray. Left: the inner regions of two
triangles are rendered in the first sub-pass. The depth is set
to zi. Right: the outer regions of the triangles are rendered
using conservative rasterization in the second sub-pass, with
depth zo, where zo > zi. Since the depth of the inner region
is closer than the depth of the outer region, the gray pixels
are only located around the triangles.

use a depth buffer in both the first and the second sub-pass
with the depth test set to less than. The first sub-pass writes
a smaller depth value the second sub-pass. This guarantees
that the formerly shaded values have priority over the latter.
An example of this process can be viewed in Figure 8.

3.2. Stochastic Rasterization Pass

In the second pass, we use a stochastic rasterizer, similar to
that of McGuire et. al [MESL10], to render the final image.
However, we want to point out that our shading algorithm is
orthogonal to the rasterization algorithm. For example, we
use optimized inside tests [LK11].

Since the shading texture was completely set up dur-
ing the first pass, we do not need to handle cache misses
and therefore the second pass becomes straightforward. In-
stead of traditional stochastic shading approaches [MESL10,
MCH∗11], we simply perform a texture lookup into the
shading texture for each sample being rendered. We must
use the exact same model as used in the first pass when
computing the mipmap level, since only one level per tri-
angle is populated with shaded data. The texture coordi-
nates for the shading texture can be interpolated using the
perspective-correct barycentric coordinates for a sample.
The barycentric coordinates are computed as a byproduct
of our sample-in-triangle inside test, which we also need to
execute for each sample as part of the stochastic rasteriza-
tion [AMMH07, MESL10].

By default, we use a per-sample frequency shader for the
stochastic rasterization pass. However, as an optimization it
is possible to run a per-pixel shader while still inside-testing
each sample. In this case, we only need to perform a single
texture lookup per pixel in an algorithm that mimics multi-
sampling. However, due to API limitations, it is only possi-
ble to output a single depth value if the shader is executed on
a per-pixel basis and this may lead to artifacts similar to the

Figure 9: Examples of artifacts caused by writing a single
depth compared to correct per-sample depth. The top row
uses the depth of the last covered sample, the middle row
uses the depth of the nearest sample, and the bottom row
uses the correct per-sample depth.

shading approach proposed by McGuire et al. [MESL10].
The artifacts may be quite severe in some cases, as illustrated
in Figure 9. However, the multisampling approach performs
significantly better than supersampling approaches on cur-
rent GPUs, and it may be valuable if performance is crucial.

After the stochastic rasterization pass has finished, the im-
age is complete. Since the hardware is used to composite the
framebuffer from all triangles in the second pass, blending
works as in any forward renderer. Note that this is not possi-
ble with deferred shading methods, such as the one proposed
by Liktor and Dachsbacher [LD12].

4. Results

We compare our implementation to the deferred shading
approach by Liktor and Dachsbacher [LD12] and stochas-
tic rasterization with supersampled shading. The original
stochastic rasterizer proposed by McGuire et al. [MESL10]
relied on multisampling, but it is easy to extend to super-
sampling and we used this as reference. When possible, we
implemented both supersampled and multisampled versions
of the algorithms, since multisampling is desired if perfor-
mance is a primary concern. We use supersampling unless
otherwise is indicated.

Our implementation of Liktor and Dachsbacher’s algo-
rithm differs somewhat from their description. In their im-
plementation, a cache maintains ssIDs, which uniquely iden-
tify a shading point in shading space, coupled with a partic-
ular primitive. In the geometry shader, each primitive is as-
signed a range of ssIDs, which is an operation that requires
an atomic counter to avoid collisions. However, they imple-
mented their algorithm using OpenGL 4.2, while we based
all our algorithms on Direct3D 11, which lacks unordered
access binding for the geometry shader stage. We remedied
this limitation by adding a 32-bit primitiveID field to
each cache entry to uniquely identify each shading point and
primitive coupling. The hash function was also modified to
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Figure 10: Results for our test scenes rendered with a variety of algorithms. In the diagrams, we present render times in
milliseconds (lower is better) for 4 and 8 samples per pixel (spp), respectively. The algorithms called MCGUIRE, LIKTOR, and
OUR are directly comparable in terms of image quality. The algorithms with (MSAA) in their names rely on multisampling,
and only do a single shader execution per pixel, with a single shading texture lookup. While this is beneficial for performance,
we can only output a single depth value per pixel, and there is a risk of artifacts due to inaccurate depth test, as illustrated in
Figure 9.

offset the cache address based on the primitiveID. The
cache size was set to 64k entries, and increasing this num-
ber did not result in significantly fewer shader executions. In
our implementation, the shading rate of defocused triangles
in Liktor and Dachsbacher’s algorithm is also reduced using
the AAS approach [VTS∗12] and filtered with the general-
ized form of Loviscach’s method [Lov05]. Our goal has been
to put together an implementation that is as close as possible
to Liktor and Dachsbacher’s to make for a fair comparison.

To evaluate the performance, we measured the average
rendering times for three different scenes with defocus blur.
The Arena dragon scene contains one object with 74k tri-
angles. The Chess scene is comprised of 12 objects with a
total of 29k triangles. The Armadillo scene uses a high tri-
angle count of 640k triangles. We can control shading com-
plexity by computing shading using between one and 256
directional light sources. This allows us to study how the
different algorithms scale with increasing shader cost. All
images were rendered at 1920× 1280 resolution. Through-
out our experiments, the finest mipmap level resolution of
the shading texture was set to 20482, which worked well for
all of our test scenes.

All benchmarks were run on a PC with an Intel Core i7
965 CPU, 6 GB RAM and an NVIDIA 780 GTX GPU with

3 GB RAM (the benchmark application is completely GPU
bound). Figure 10 shows the rendering time in milliseconds
for the different scenes using 4× and 8× MSAA. We note
that the algorithm by Liktor and Dachsbacher [LD12] is not
affected as much by shader complexity, and at some point,
their algorithm may be faster than ours. In the rightmost di-
agrams in Figure 10, Liktor and Dachsbacher’s algorithm
is faster at 256 light sources, and in the leftmost diagrams
we estimate that it will be faster when using about 512 light
sources. For reasonably complex shaders, our algorithm has
performance characteristics that makes it very desirable for
real-time rendering. The results are very encouraging since
our algorithm outperforms the best competing algorithm by
up to 3× in some cases.

The rendered image quality of our algorithm closely
matches that of the reference solution. In Figure 11, we com-
pare the image quality of McGuire’s algorithm using 128
samples per pixel against our algorithm with 8 and 128 sam-
ples per pixel.

4.1. Timings by Render Pass

We have timed the different passes in our algorithm. Not
surprisingly, the stochastic rasterization pass (Pass 2 Rast.),
which includes the lookups in the shading texture, makes
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Figure 11: Image quality comparison between our algorithm with 8 and 128 samples/pixel and McGuire’s algorithm with 128
samples/pixel. We ran the algorithms both with MSAA and SSAA enabled. Notice that the highlight in the green cutouts is less
prominent for MSAA compared to SSAA. The blue cutout shows that we are able to maintain high quality, even when the defocus
effect is close to zero. In the red cutout, we note that some texture detail is lost for MSAA, but this occurs both for our algorithm
and for the reference. Overall, we find that the major difference between the images stem from noise due to the lower number of
samples drawn.

up for the bulk of the time. Even though MSAA speeds
up the stochastic rasterization pass (Pass 2 MSAA) consid-
erably, it is still a major part of the total rendering time.
Roughly 80− 90% of the time is spent on the inside tests
within Pass 2, which means that the shading texture lookups
are relatively inexpensive. When creating the shading tex-
ture, we note that the sub-pass performing conservative ras-
terization (Pass 1 Cons.) requires more time than the sub-
pass doing normal rasterization (Pass 1 Shade) even though
it writes to considerably fewer pixels. The reason for this
is mainly that the geometry shader of the conservative ras-
terizer is quite expensive, and offsets whatever shading cost
we gain from the many pixels failing the depth test. This is
most apparent in the Armadillo scene as it has a very high
triangle count, and we note that our algorithm would ben-
efit greatly from faster algorithms for conservative rasteri-
zation [AMA05]. Finally, we note that 1–2 ms of the frame
time is spent in miscellaneous setup tasks, such as animation,
frame buffer clearing, and multi-sampling resolve, which are
not related to our texture space shading algorithm. The table
below shows a breakdown of rendering times (in millisec-
onds), of the Dragon and Armadillo scenes from Figure 10
with 16 light sources for shading.

[ms]
Dragon Armadillo

4× 8× 4× 8×
Misc 2.3 2.3 0.8 0.8

Pass 1 Shade 2.1 2.1 3.8 3.8
Pass 1 Cons. 2.3 2.3 11.9 11.9
Pass 2 Rast. 13.8 29.3 87.5 178.8

Pass 2 (MSAA) (7.1) (16.6) (46.1) (108.3)
Total 20.5 36.0 104.0 195.3

Total (MSAA) (13.6) (21.0) (62.1) (124.8)

5. Conclusions and Future Work

Shading cost needs to be substantially reduced in order to
make stochastic rasterization a viable rendering method. To
this end, we have presented a novel technique for reusing

shading for stochastic depth of field rasterization on current
GPUs, and shown significant performance improvements of
up to 3×. In contrast to deferred shading methods, we also
support blending. There are several interesting aspects that
we would like to research further in the future. Liktor and
Dachsbacher’s [LD12] algorithm shades very sparsely due
to their approach doing deferred shading, which means that
they get full benefit of occlusion and never have to shade any
occluded samples. However, it has to explicitly sync threads,
which proved expensive, and therefore the method performs
better only when very expensive shaders are used. It would
be useful to investigate how our algorithm would perform
with occlusion queries and/or software occlusion culling on
the CPU [Col11], which is often done in mature game en-
gines.

To minimize state changes for very large scenes, we
would like to develop a system for dynamically allocating
properly-sized shading textures (or using a part of a shading
texture) on a per-object basis. This would not require any
artist interaction and at the same time it would reduce state
changes significantly, which would also increase the perfor-
mance of our algorithm. Finally, we would like to extend the
frequency analysis to motion blur and to the combination
of motion and defocus blur. Currently, our system does not
compute optimized shading rates for motion blur—however
we would like to point out that our system can already han-
dle these effects too, even though we may over-shade.
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Appendix A: Elliptical Texture Filter

The task at hand is to find the minimal radius of the elliptical
footprint on the triangle. The projection of a pixel with cir-
cular footprint in the plane of the triangle is an ellipse with
arbitrary orientation. We let a screen space coordinate be de-
fined as (x,y) and texture space coordinates (s, t).

The elliptical footprint in texture space, centered around
(0,0), is:

E(s, t) = As2 +Bst +Ct2, (4)

where (s, t) is inside the ellipse if E(s, t) < F , and from
Heckbert [Hec86], we have the following:

A(x,y) = (∂t/∂x)2 +(∂t/∂y)2,

B(x,y) = −2
(

∂s
∂x

∂t
∂x

+
∂s
∂y

∂t
∂y

)
,

C(x,y) = (∂s/∂x)2 +(∂s/∂y)2,

F(x,y) =

(
∂s
∂x

∂t
∂y
− ∂s

∂y
∂t
∂x

)2

. (5)

Furthermore, if we introduce r =
√

(A−C)2 +B2, the min-
imum radius of the ellipse is given by:

Rminor(x,y) =
√

2F/(A+C+ r). (6)

To determine the highest resolution mipmap level needed
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somewhere over the triangle, our task is to find the minimal
value of Rminor over the surface of the triangle. More for-
mally we search for:

min
(x,y)∈Tri

[
R2

minor(x,y)
]
= min

(x,y)∈Tri

[
2F

A+C+ r

]
. (7)

The derivative of a perspective correctly interpolated at-
tribute can be expressed as [EWWL98]:

∂s
∂x

(x,y) =
c3x+ c4

Q2 ,

∂s
∂y

(x,y) =
c5y+ c6

Q2 , (8)

...

where:

Q = c0x+ c1y+ c2. (9)

The expression we try to minimize becomes a high order
irrational function. While it is possible to simplify this func-
tion somewhat, we have yet to find any elegant solution to
finding the minimum, or proving that the minimum lies in
any of the triangle’s vertices.

Appendix B: Filter Derivation

Loviscach [Lov05] showed how to efficiently filter textures
in time and space by extending elliptical weighted average
(EWA) filtering to handle motion. We generalize this ap-
proach to handle Gaussian filter kernels in n dimensions.
Like Loviscach, we make some local approximations about
the various dimensions that we wish to integrate over. First,
we assume that the texture coordinates are locally linear with
regard to the augmented variables, which means that we lo-
cally ignore effects such as perspective distortion. EWA al-
ready uses this approximation in (x,y), using concentric el-
lipses in (s, t). Second, Loviscach also approximates (s, t)
linearity in time, and we will do the same for all additional
variables. Finally, we locally assume that all variables are
independent of each other, again in line with Loviscach’s
work.

Sums of independent normal distributions are normal dis-
tributions. The Gaussian distribution in 2D is:

X =

(
s0
t0

)
+α

(
∂xs
∂xt

)
+β
(

∂ys
∂yt

)
, (10)

where α and β are normal distributions with zero mean.
Without loss of generality, we assume α and β are N(0,1)
distributions, as the variance can be chosen arbitrarily by
pre-scaling the partial derivatives. If we augment with a
number of additional independent distributions, we get:

Y =

(
s0
t0

)
+

n

∑
i

γi

(
∂Xi s
∂Xi t

)
, (11)

where γ1 = α, γ2 = β, X1 = x, X2 = y, and all γi are again
N(0,1) distributions.

Next, we focus on the distribution around the point
(s0, t0). Summing distributions is most easily accomplished
using characteristic functions. The characteristic function of
a sum of distributions is the product of the characteristic
functions of the distributions. The characteristic function for
the sum in Equation 11 is:

ΦY (p,q) = E
(

e
i

(
p
q

)
·

[
n
∑
i

γi

(
∂Xi s
∂Xi t

)])
= e

− p2

2

n
∑
i
(∂Xi s)

2

·e
−pq

n
∑
i

∂Xi s∂Xi t·e
− q2

2

n
∑
i
(∂Xi t)

2

.(12)

The distribution described by Equation 11 can be ex-
pressed as a sum of two independent distributions:

Z =

(
s0
t0

)
+ζ
(

e
f

)
+η

(
g
h

)
, (13)

where ζ and η are N(0,1) distributions. The characteristic
function for Z is:

ΦZ(p,q) = E
(

e
i

(
p
q

)
·

[
ζ

(
e
f

)
+η

(
g
h

)])
= e−

p2

2 (e2+g2) · e−pq(e f+gh) · e−
q2

2 ( f 2+h2).(14)

Comparing Equation 14 with Equation 12 reveals that
these are the same distribution as long as the following
equalities are true:

e2 +g2 = A :=
n
∑
i
(∂Xi s)

2,

e f +gh = B :=
n
∑
i

∂Xi s∂Xi t, (15)

f 2 +h2 =C :=
n
∑
i
(∂Xi t)

2.

The system of equations (15) is underdetermined with
three equations for four variables. Loviscach solved this
equation in three dimensions by aligning one distribution to
either the s- or t-axis, depending on which is more numeri-
cally robust [Lov05]. If A > C, the following expressions are
used:

e =
√

A, f = B/e, g = 0, h =

√
C− f 2, (16)

and otherwise:

h =
√

C, g = B/h, f = 0, e =
√

A−g2. (17)
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