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Abstract
In this paper, we derive compact representations of the depth function for a triangle undergoing motion or defocus
blur. Unlike a static primitive, where the depth function is planar, the depth function is a rational function in time
and the lens parameters. Furthermore, we show how these compact depth functions can be used to design an
efficient depth buffer compressor/decompressor, which significantly lowers total depth buffer bandwidth usage for
a range of test scenes. In addition, our compressor/decompressor is simpler in the number of operations needed
to execute, which makes our algorithm more amenable for hardware implementation than previous methods.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data com-
paction and compression—I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Depth buffering is the standard technique to resolve visibil-
ity between objects in a rasterization pipeline. A depth buffer
holds a depth value for each sample, representing the current
closest depth of all previously rendered triangles overlap-
ping the sample. In a stochastic rasterizer with many samples
per pixel, the depth buffer bandwidth requirements are much
higher than usual, and the depth data should be compressed
if possible. The depth value, d, can be defined in a number
of ways. In current graphics hardware APIs, the normalized
depth, d =

zclip
wclip

, is used since it is bounded to [0,1], and
distributes much of the resolution closer to the viewer. Al-
ternatively, the raw floating-point value, wclip, can be stored.
The former representation has the important property that
the depth of a triangle can be linearly interpolated in screen
space, which is exploited by many depth buffer compression
formats. Unfortunately, for moving and defocused triangles,
this is no longer true. Therefore, we analyze the mathemati-
cal expression for the depth functions in the case of motion
blur and depth of field. We show that although the expres-
sions may appear somewhat complicated, they can be effec-
tively simplified, and compact forms for the depth functions
can be used to design algorithms with substantially better
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average compression ratios for stochastic rasterization. Our
method only targets motion or defocus blur, but for com-
pleteness, we also include the derivation for simultaneous
motion blur and depth of field in Appendix A.

In general, we assume that the compressors and
decompressors exist in a depth system, as described
by Hasselgren and Akenine-Möller [HAM06]. Compres-
sion/decompression is applied to a tile, which typically is
the set of depth samples inside a rectangular screen-space
region. Due to bus widths, compression algorithms, and tile
sizes, only a few different compression ratios, e.g., 25% &
50%, are usually available. Typically, a few bits (e.g., two)
are stored on-chip, or in a cache, and these are used to in-
dicate the compression level of a tile, or whether the tile is
uncompressed or in a fast clear mode.

2. Previous Work

Previous depth compression research targeting static ge-
ometry typically exploits that the depth function, d(x,y) =
z(x,y)
w(x,y) , is linear in screen space, (x,y), and this can be
used to achieve high compression ratios. Morein was the
first to describe a depth compression system, and he used
a differential-differential pulse code modulation (DDPCM)
method for compression [Mor00]. By examining patent
data bases on depth compression, Hasselgren and Akenine-
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Möller presented a survey on a handful of compression al-
gorithms [HAM06].

One of the most successful depth compression algorithms
is plane encoding [HAM06], where the rasterizer feeds the
exact plane equations to the compressor together with a cov-
erage mask indicating which samples/pixels inside a tile that
are covered by the triangle. The general idea is simple. When
a triangle is rendered to a tile, first check whether there is
space in the compressed representation of the tile for another
triangle plane equation. If so, we store the plane equation,
and update the plane-selection bit mask of the tile to indi-
cate which samples point to the new plane equation. When
there is not enough space to fit any more plane equations,
we need to decompress the current depths, update with the
new incoming depth data, and then store the depth in an un-
compressed format. To decompress a tile, just loop over the
samples, and look at the plane selection bit mask to obtain
the plane equation for the sample, and evaluate that plane
equation for the particular, (x,y), of the sample. A com-
pressed tile will be able to store n plane equations together
with a plane selection bit mask with dlogne bits per sample,
where n depends on the parameters of the depth compression
system, and the desired compression ratio. In this paper, we
generalize this method so that it works for motion blur and
defocus blur, and we optimize the depth function represen-
tations.

Anchor encoding is a method similar to plane encoding.
It uses approximate plane equations (derived from the depth
data itself, instead of being fed from the rasterizer), and en-
codes the differences, also called residuals, between each
depth value and the predicted depth from the approximate
plane equation. Depth offset encoding is probably one of the
simplest methods. First, the minimum, Zmin, and the maxi-
mum, Zmax, depths of a tile are found. Each sample then uses
a bit to signal whether it is encoded relative to the min or the
max, and the difference is encoded using as many bits that
are left to reach the desired compression ratio.

The first public algorithm for compressing floating-point
depth [SWR∗08] reinterpreted the floats as integers, and
used a predictor based on a small set of depths in the tile.
The residuals, i.e., the difference between the predicted val-
ues and the real depths, were then entropy encoded using
Golomb-Rice encoding. A general method for compressing
floating-point data was presented by Pool et al. [PLS12]. The
differences between a sequence of floating-point numbers is
encoded using an entropy encode based on Fibonacci codes.

A compressed depth cache was recently docu-
mented [HANAM13], and some improvements to depth
buffering were described. In particular, when data is sent
uncompressed, smaller tile sizes are used compared to when
the tiles are compressed. We will also use this feature in our
research presented here.

Color buffer compression algorithms [RHAM07,
SWR∗08, RSAM08] are working on different data (color

instead of depth), but otherwise, those algorithms operate in
a similar system inside the graphics processor as do depth
compression.

Gribel et al. [GDAM10] perform lossy compression of a
time-dependent depth function per pixel. However, this ap-
proach requires a unique depth function per pixel, and does
not solve the problem of compressing stochastically gener-
ated buffers over a tile of pixels. They derive the depth func-
tion for a motion blurred triangle and note that when the tri-
angle is moving, the linearity of the depth in screen space is
broken. From their work, we know that the depth is a rational
cubic function of time, t, for a given sample position (x,y).

Recently, higher-order rasterization, i.e., for motion blur
and depth of field, has become a popular research topic. All
existing methods for static geometry, except depth offset en-
coding, break down in a stochastic rasterizer [AMMH07,
AHAM11]. In the depth compression work by Andersson et
al. [AHAM11], the time dimension was incorporated in the
compression schemes, which led to improved depth buffer
compression for stochastic motion blur. By focusing on both
motion blur and defocus blur, we solve a much larger prob-
lem. In addition, we analyze the depth functions and simplify
their representations into very compact forms.

3. Background

In this section, we give some background on barycentric in-
terpolation and show how the depth function, d = z

w , is com-
puted for static triangles. Towards the end of this section, we
show a generalized version of the depth function without de-
riving the details. All this information is highly useful for the
understanding of the rest of the paper.

Suppose we have a triangle with clip space vertex po-
sitions pk = [pkx , pky , pkw ], k ∈ {0,1,2}. In homogeneous
rasterization, the 2D homogeneous (2DH) edge equation,
ek = nk · x, corresponds to a distance calculation of an im-
age plane position, x = [x,y,1]T, and the edge plane, which
passes through the origin, with, for example, n2 = p0×p1.

Let us introduce an arbitrary per-vertex attribute, Ak,
that we wish to interpolate over the triangle. McCool et
al. [MWM02] showed that each of the barycentric coordi-
nates, B0,B1,B2, of the triangle can be found by evaluating
and normalizing the corresponding 2DH edge equation, such
that Bk =

ek
e0+e1+e2

. The interpolated attribute, A, for a given
sample point, x, can then be found by standard barycentric
interpolation:

A(x,y) =
2

∑
k=0

AkBk =
A0e0 +A1e1 +A2e2

e0 + e1 + e2
. (1)

The depth value, d, is formed by interpolating z and w indi-
vidually, and then performing a division:

d(x,y) =
z(x,y)
w(x,y)

=
∑zkBk

∑wkBk
=

∑zkek

∑wkek
. (2)
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If we look at the denominator, we see that:†

2

∑
k=0

wkek = (
2

∑
k=0

wk pi×p j) ·x (3)

= [0,0,det(p0,p1,p2)] ·x = det(p0,p1,p2),

which is independent of (x,y). This is six times the signed
volume of the tetrahedron spanned by the origin and the tri-
angle, which can be used to detect if a triangle is backfacing.

If we use a standard projection matrix, such that the trans-
formation of (zcam,1) to clip space (z,w) can be expressed
as (c.f., the standard Direct3D projection matrix):

z = a zcam +b, w = zcam, (4)

then the depth function can be simplified. The coefficients
a and b depend solely on znear and z f ar. Combining Equa-
tions 2 and 4 and simplifying gives us:

d(x,y) =
z(x,y)
w(x,y)

= a+
b∑ek

∑wkek
. (5)

We have now derived the 2D depth function, which is widely
used in rendering systems today. However, Equation 5 can
be augmented so that it holds for depth sampled in higher
dimensions. For example, adding motion blur and depth of
field means that z, w, and the edge equations are functions of
shutter time, t, and lens position, (u,v). Thus, we can write
the depth function on a more general form:

d(x,y, . . .) = a+
b∑ek(x,y, . . .)

∑wk(x,y, . . .)ek(x,y, . . .)
, (6)

where . . . should be replaced with the new, augmented di-
mensions.

4. Generalized Plane Encoding

In Section 2, we described how the plane encoding method
works for static triangle rendering. For higher-order rasteri-
zation, including motion blur and defocus blur, static plane
equations cannot be used to represent the depth functions,
because the depth functions are much more complex in those
cases. For motion blur, the depth function is a cubic rational
polynomial [GDAM10], for example. Therefore, the goal of
our work in this paper is to generalize the plane encoding
method in order to also handle motion blur and defocus blur.

Our new generalized plane encoding (GPE) algorithm
is nearly identical to static plane encoding, except that the
plane equations for motion blurred and/or defocused plane
equations use more storage, and that the depth functions are
more expensive to evaluate. This can be seen in Equation 6,
which is based on more complicated edge equations, ek, and
wk-components. However, in Section 5, we will show how
the required number of coefficients for specific cases can be

† Throughout the paper, we will sum over k, k ∈ {0,1,2} and use
the notation i = (k+1) mod 3 and j = (k+2) mod 3.

substantially reduced, which makes it possible to fit more
planes in the compressed representation. This in turn makes
for higher compression ratios and faster depth evaluation.

Similar to static plane encoding, the compression repre-
sentation for generalized depth (motion and defocus blur, for
example) includes a variable number of generalized plane
equations (Section 5), and a plane selector bitmask per sam-
ple. If there are at most n plane equations in the compressed
representation, then each sample needs dlogne bits for the
plane selector bitmask. Next, we simplify the depth func-
tions for higher-order rasterization.

5. Generalized Depth Function Derivations

In the following subsections, we will derive compact depth
functions for motion blurred and defocused triangles. Some
readers may want to skip to the results in Section 7. Since
we ultimately could not simplify the combined defocus and
motion blur case, we skip that derivation in this section and
refer interested readers to Appendix A.

5.1. Motion Blur

We begin the depth function derivation for motion blur by
setting up time-dependent attribute interpolation in matrix
form. Then, we move on to reducing the number of coeffi-
cients needed to exactly represent the interpolated depth of
a triangle.

The naïve approach to store the depth functions for a mo-
tion blurred triangle is to retain all vertex positions at t = 0
and t = 1, which are comprised of a total of 4× 3× 2 =
24 coordinate values (e.g., floating-point). If the projec-
tion matrix is known, and can be stored globally, then only
3× 3× 2 = 18 coordinate values are needed, as z then can
be derived from w. In the following section, we show how
the depth function can be rewritten and simplified to contain
only 13 values, which enables more efficient storage.

Time-dependent Barycentric Interpolation In the deriva-
tion below, we assume that vertices move linearly in clip
space within each frame. Thus, the vertex position, pk, be-
comes a function of time:

pk(t) = qk + tdk, (7)

where dk is the corresponding motion vector for vertex k.
Akenine-Möller et al. [AMMH07] showed that since the ver-
tices depend on time, the 2DH edge equations form 2nd de-
gree polynomials in t:

ek(x,y, t) = (pi(t)×p j(t)) ·x = (hk +gkt + fkt2) ·x, (8)

where

hk = qi×q j, gk = qi×d j +di×q j, fk = di×d j. (9)

For convenience, we rewrite the edge equation in matrix
form:
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ek(x,y, t) = t2Ckx, where Ck =

 hkx hky hkw
gkx gky gkw
fkx fky fkw

 ,
(10)

where t2 = [1, t, t2] is a row vector and x = [x,y,1]T is a col-
umn vector. By combining the matrix notation and Equation
1, we have a general expression of how to interpolate a ver-
tex attribute, Ak, over a motion blurred triangle:

A(x,y, t) =
t2(∑AkCk)x

t2 ∑Ckx
. (11)

However, if the attribute itself varies with t, e.g., Ak(t) =
Ao

k + tAd
k , we obtain a general expression for interpolating a

time-dependent attribute over the triangle, with a numerator
of cubic degree:

A(x,y, t) =
t2 ∑((Ao

k + tAd
k )Ck)x

t2 ∑Ckx
=

t3CAx
t2 ∑Ckx

, (12)

where t3 = [1, t, t2, t3], and the vertex attributes, Ak, are mul-
tiplied with each Ck and summed to form the 4× 3 coeffi-
cient matrix CA.

To compute the depth function d = z
w , we perform

barycentric interpolation of the z- and w-components of the
clip space vertex positions, which are now linear functions
of t, e.g., z(t) = qz + tdz and w(t) = qw + tdw.

Let us consider the depth function, d(x,y, t):

d(x,y, t) =
z(x,y, t)
w(x,y, t)

=
t2 ∑((qkz + tdkz)Ck)x
t2 ∑((qkw + tdkw)Ck)x

=
t3Czx
t3Cwx

,

(13)
where:

Cz = ∑(qkz

 Ck

0 0 0


︸ ︷︷ ︸

Ck

+dkz


0 0 0

Ck


︸ ︷︷ ︸

Ck

), (14)

and Cw is defined correspondingly. We now have the depth
function in a convenient form, but the number of coefficients
needed are no less than directly storing the vertex positions.
We will now examine the contents of the coefficient matri-
ces, Cz and Cw, in order to simplify their expressions.

Using Equation 14 and the definition of Ck, we can ex-
press the first and last row of Cw as:

Cw0 = ∑qkw hk = ∑qkw qi×q j = [0,0,det(q0,q1,q2)],

Cw3 = ∑dkw fk = [0,0,det(d0,d1,d2)], (15)

where, in the last step, the terms cancel out to zero for the x-
and y-components. The two remaining rows can be simpli-
fied in a similar fashion:

Cw1 = ∑(qkw gk +dkw hk)

= ∑(qkw(di×q j +qi×d j)+dkw(qi×q j))

= [0,0,∑det(dk,qi,q j)], (16)

Cw2 = ∑(qkw fk +dkw gk) = [0,0,∑det(qk,di,d j)].

Using these expressions, we can formulate t3Cwx as a cubic
function in t independent of (x,y):

t3Cwx = ∆0 +∆1t +∆2t2 +∆3t3, (17)

where:
∆0 = det(q0,q1,q2),

∆1 = ∑det(dk,qi,q j),

∆2 = ∑det(qk,di,d j),

∆3 = det(d0,d1,d2).

Expressed differently, the denominator t3Cwx is
the backface status for the moving triangle, e.g.,
det(p0(t),p1(t),p2(t)) [MAM11].

As a result of these simplifications, we reveal that t3Cwx
has no dependency on x and y and is reduced to a cubic poly-
nomial in t, needing only 4 coefficients. Thus, with this an-
alysis, we have shown that the depth function can be repre-
sented by 12 (for Cz) +4 (for Cw) = 16 coefficients, which
should be compared to the 24 coefficients needed to store all
vertex positions. Our new formulation is substantially more
compact.

Further optimization If we use a standard projection ma-
trix, according to Equation 4, we can simplify the depth
function further. If we return to Equation 14, and insert the
constraint from the projection matrix, i.e., qz = aqw +b and
dz = zt1 − zt0 = a(wt1 −wt0) = adw, we obtain:

Cz = ∑
(
qkz Ck +dkz Ck

)
= ∑

(
(aqkw +b)Ck +adkw Ck

)
= aCw +b∑Ck. (18)

We combine this result with Equation 13 to finally arrive at:

d(x,y, t) =
t3Czx
t3Cwx

=
t3(aCw +b∑Ck)x

t3Cwx
= a+b

t3(∑Ck)x
t3Cwx

= a+b
t2(∑Ck)x

∆0 +∆1t +∆2t2 +∆3t3
. (19)

As can be seen above, we have reduced the representation
of the depth function from 24 scalar values down to 13 (with
the assumption that a and b are given by the graphics API).
Later, we will show that this significantly improves the com-
pression ratio for depth functions with motion blur.

Equal Motion Vectors Next, we consider an extra opti-
mization for the special case of linear translation along a
vector, since this is a common use case in some applications.
In the examples below, we assume that a standard projec-
tion matrix is used (i.e., Equation 4). The transformed clip
space positions, p′ = [p′x, p′y, p′w], of each triangle vertex are:
p′k = qk +d, where d = [dx,dy,dw] is a vector in clip space
(xyw).

With all motion vectors equal for the three vertices of a
triangle, we can derive a simplified depth function. Note that
the coefficients fk = 0, and

det(d0,d1,d2) = det(d,d,d) = 0,
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det(qi,d j,dk) = det(qi,d,d) = 0. (20)

Furthermore, it holds that:

∑gk = ∑d× (q j−qi) = d×∑(q j−qi) = 0. (21)

The depth function can then be simplified as:

d(x,y, t) = a+b
x ·∑hk

∆0 +∆1t
. (22)

We have reduced the representation of the depth function
from 18 scalar values down to 5 (again with the assumption
that a and b are given by the graphics API).

5.2. Depth of Field

There are not as many opportunities to simplify the depth
function for defocus blur as there are for motion blur. If we
simply store all vertex positions, then 4× 3 = 12 coordi-
nate values are needed. If, however, the projection matrix is
known, the number is reduced to 3×3 = 9. We assume that
the camera focal distance and lens aspect are known glob-
ally. In the following section, we will show how to reduce
the storage requirement of the depth function to 8 scalar co-
efficients for a defocused triangle.

When depth of field is enabled, a clip-space vertex posi-
tion is sheared in xy as a function of the lens coordinates
(u,v). The vertex position is expressed as:

pk = qk + cku′, (23)

where ck is the signed clip space circle of confusion radius,
u′ = [u,ξv,0], and and ξ is a scalar coefficient that adjusts
the lens aspect ratio. Note that ck is unique for each vertex
and is typically a function of the depth. We use these vertices
to set up the edge equations:

ek(x,y,u,v) = (pi(u,v)×p j(u,v)) ·x

= (qi×q j +u′× (ciq j− c jqi)) ·x

= (hk +u′×mk) ·x,

where we have introduced mk = (ciq j−c jqi) and hk = qi×
q j to simplify notation. With u = [u,ξv,1], we can write the
edge equation in matrix form as:

ek(x,y,u,v) = uCkx, (24)

where:

Ck =

 0 −mkw mky

mkw 0 −mkx

hkx hky hkw

 . (25)

Analogous to the motion blur case, we can express the depth
function as a rational function in (x,y,u,v) as follows:

d(x,y,u,v) =
z(x,y,u,v)
w(x,y,u,v)

=
uCzx
uCwx

, (26)

where Cz = ∑qkz Ck and Cw = ∑qkw Ck. By combining the
observation that:

∑qkw mkw = ∑qkw(ciq jw − c jqiw) = 0, (27)

and the top row in Equation 15, Cw is reduced to a single col-
umn, similar to the motion blur case. Thus, the denominator
can be written as:

uCwx = u

 0 0 ∑qkw mky

0 0 −∑qkw mkx

0 0 det(q0,q1,q2)

x = ∆uu+∆vv+∆0.

(28)
This is equal to det(p0(u,v),p1(u,v),p2(u,v)), which is also
the backface status for a defocused triangle [MAM11].

If we introduce the restrictions on the projection matrix
from Equation 4, then Cz can be expressed in the following
manner:

Cz = ∑qkz Ck = ∑((aqkw +b)Ck) = aCw +b∑Ck. (29)

If we further assume that the clip-space circle of confu-
sion radius follows the thin lens model, it can be written as
ck = αpkw +β. With this, we see that:

∑mkw = ∑(ciq jw − c jqiw)

= ∑((αqiw +β)q jw − (αq jw +β)qiw) (30)

= α∑(qiw p jw −q jw piw)+β∑(q jw −qiw) = 0,

and ∑Ck takes the form:

∑Ck =

 0 0 ∑mky

0 0 −∑mkx

∑hkx ∑hky ∑hkw

 . (31)

With this, we have shown that:

d(x,y,u,v) =
uCzx
uCwx

= a+b
∑hk ·x+∑mky u−∑mkx ξv

∆uu+∆vv+∆0
,

(32)
which can be represented with 8 scalar coefficients (given
that a and b are known). Note that the denominator is linear
in each variable.

6. Implementation

We have implemented all our algorithms in a software ras-
terizer augmented with a depth system [HAM06] contain-
ing depth codecs (compressors and decompressors), a depth
cache, culling data, and a tile table, which will be described
in detail below. To reduce the design space, we chose a cache
line size of 512 bits, i.e., 64 bytes, which is a reasonable and
realistic size for our purposes. The implication of this choice
is that a tile, which is stored using 512 · n bits, can be com-
pressed down to 512 ·m bits, where 1 ≤ m < n in order to
reduce bandwidth usage.

For our results, we present numbers for both 24b integer
depth as well as for the complementary depth (1− z) [LJ99]
representation for 32b floating-point buffers. The reason is
that this technique has been widely adopted as a superior
method on the Xbox 360 (though with 24 bits floating point),
since it provides a better distribution of the depths. For all
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Figure 1: Left: motion blur for 4× 4 pixels where there are
four samples per pixel (indicated by the four different lay-
ers). In total, there are 4× 4× 4 samples here. If n layers
are used we denote such a tile 4× 4× n. As an example, if
each layer is compressed as a separate tile, then we denote
these tiles by 4×4×1. Right: we use the same notation for
defocus blur, but with a different meaning. Here, the lens has
been divided into 2× 2 smaller lens regions, and as before,
there are four samples per pixel (again indicated by the four
layers). However, for defocus blur, 4× 4× n means that n
lens regions are compressed together as a tile.

our tests, we use a sample depth cache of 64 kB with least-
recently used (LRU) replacement strategy.

Even though motion blur is three-dimensional, and defo-
cus blur uses four dimensions, we are using the same tile no-
tation for both these cases in order to simplify the discussion.
An explanation of our notation can be found in Figure 1. We
perform Z-max culling [GKM93] per 4× 4× 1 tiles for 4
spp and 2×2×4 for 16 spp, where we store zmax of the tile
using 15 bits. If all of the samples within the tile are cleared,
we flag this with one additional bit. If an incoming trian-
gle passed the Z-max test, the per-sample z-test is executed,
and the tile’s zmax is recomputed if any sample pass the per-
sample test. For complementary depth zmin is used instead.

The tile table, which is accessed through a small cache
or stored in an on-chip memory, stores a tile header for
each tile. For simplicity, we let the header store eight bits,
where one combination indicates that the tile is stored un-
compressed, while the remaining combinations are used to
indicate different compression modes. In Section 7, we de-
scribe which tile sizes have been used for the different al-
gorithms. Using a 32kB cache, we have seen that the to-
tal memory bandwidth usage for culling and tile headers is
about 10% of the total raw depth buffer bandwidth in gen-
eral, and approximately the same for all algorithms. Note
that culling is essential to performance and is orthogonal to
depth buffer compression. Therefore, we chose to exclude
those numbers from our measurements and instead just fo-
cus on the depth data bandwidth.

Our implementation of the generalized plane encoder, de-
noted GPE, is straightforward. For motion blur, the raster-
izer forwards information about the type of motion applied
to each triangle. The three different types of motion that we
support are static (no motion), only translation, and arbitrary
linear per-vertex motion. In each case, the encoder receives

Figure 3: Left: a false-color visualization of the different
GPE modes for the Chess scene. Pure red represents uncom-
pressed regions, and blue the modes with the highest com-
pression ratio (16:1). Right: the stochastic depth buffer for
the chess scene.

a set of coefficients, representing the depth function for the
current triangle. In addition, the rasterizer forwards a cov-
erage mask, which indicates which samples are inside the
triangle. The depth is evaluated for these samples, and depth
testing is performed. A depth function of a previously drawn
triangle is removed if all of its sample indices are covered
by the incoming triangle’s coverage mask. The depth of field
encoder works in exactly the same way, except that there are
no special types for defocus blur that are forwarded.

As shown in the four leftmost images in Figure 2, the
number of coefficients needed per triangle is a function of
the motion type and varies per triangle from 3 (static), 5
(translation) to 13 (per-vertex motion). Recall that these re-
ductions in the number of coefficients were derived in Sec-
tion 5. A compressed tile may include x static plane equa-
tions, y depth functions for translated triangles, and z depth
functions with arbitrary per-vertex motion. The total stor-
age for the depth function coefficients is then 3x+ 5y+ 13z
floats. Additionally, for each sample, we need to indicate
which depth function to use (or if the sample is cleared),
which is stored with dlog2(x+ y+ z+ 1)e bits per sample.
We work on 16×16×1 tiles for 4 spp and 8×8×4 tiles for
16 spp, or 16 cache lines, which can be compressed down to
one cache line in the best case. Total storage for motion blur
is then (3x+5y+13z)×32+dlog2(x+y+ z+1)e×256. If
this sum is less than 16 cache lines, we can reduce the depth
bandwidth usage. To simplify the exposition in this paper,
we allow only compression to 1, 2, 3, 4, and 8 cache lines,
and only use one set of functions for each tile. It is trivial
to extend the compressor to the intermediate compression
rates as well. Figure 3 shows an example on the usage of the
modes in one of our test scenes.

For defocus blur, the expression is simplified, as the depth
function is always stored with 8 coefficients per triangle
(see Figure 2). If the number of depth functions in a mode
is denoted n, the number of bits per mode is given by
8× n× 32+ 256dlog2(n+ 1)e. The set of modes we have
used in this paper is listed in Appendix B.

Note that all coefficients are stored using 32b float, re-
gardless if the depth buffer is 24 or 32 bits. While this pre-
cision will not produce the same result as interpolating the
depth directly from the vertices, we also would like to note
that there is currently no strict rules for how depth should
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Static (3) Dolly (5) Translation (5) Per-vertex motion (13) DOF (8) Per-vertex+DOF (18)

Figure 2: Different configurations of motion blur and depth of field on a simple scene. Below each image, the number of
coefficients needed to store the generalized depth function is shown.

be interpolated in a stochastic rasterizer. If we use the same
(compressed) representation in the codec and for depth in-
terpolation, we are guaranteed that the compressed data is
lossless. Using the same representation for compression and
interpolation makes the algorithms consistent, which is per-
haps the most important property. However there is still a
question if the interpolation is stable and accurate enough
to represent the depth range of the scene. Unfortunately we
have not done any formal analysis, and have to defer that to
future work.

In absence of any compression/decompression units, it
makes more sense to use a tile size that fits into a single
cache line [HANAM13]. Therefore, we allow keeping raw
data in cache line sized tiles if the compression unit was un-
able to compress data beyond the raw storage requirement.
However, for compressed tiles, we only allow memory trans-
actions from and to the cache of the entire tile. Our baseline,
denoted RAW, simply uses uncompressed data on cache line
size tiles, which is a much more efficient baseline than previ-
ously used [AHAM11, HANAM13] (where the RAW repre-
sents uncompressed on the same tile size as the compressed
tiles). Since the baseline is more efficient, it means our re-
sults are even more significant compared to previous work.

7. Results

In this section, we first describe the set of codecs (compres-
sor and decompressor) we use in the comparison study and
then report results on a set of representative test scenes.

Codecs We denote the uncompressed method as RAW be-
low. Note that the RAW mode include Z-max culling and a
clear bit per tile, as described in Section 6. An uncompressed
4×4×1 (4 spp) or 2×2×4 (16 spp) tile occupies one cache
line, i.e., 16× 32 = 512 bits. Our method is denoted GPE,
and a detailed implementation description can be found in
Section 6.

We compare against a depth offset (DO) codec, working
on 8× 8× 1 tiles for 4 spp, and 4× 4× 4 tiles for 16 spp,
where the min and max values are stored in full precision
and a per-sample bit indicates if the sample should be delta-
encoded w.r.t. the min or the max value. We use three dif-
ferent allocations of the delta bits per sample: 6, 14, and 22.

With these layouts, we can compress the four cache lines of
depth samples down to one (4:1), two (4:2), and three (4:3)
cache lines, respectively. The two bits needed to select one
of the three modes or if the sample is cleared are stored in
the tile header.

By including time, t, in the predictor functions for a plane
encoder, better compression ratios could be achieved for mo-
tion blur rasterization [AHAM11]. This technique analyzes
all samples in the tile and fits a low-order polynomial sur-
face to the depth samples and encode each sample with an
offset from this surface. We include this encoder (denoted
AHAM11) in our results and refer to the cited paper for a
detailed description of this compression format. We use the
same tile sizes as for the DO compressor. Note that unlike
GPE, the AHAM11 encoder does not rely on coefficients
from the rasterizer, but works directly on sample data. The
drawback, however, is that the derivation of the approximate
surface and subsequent delta computations are significantly
more expensive than directly storing the exact generalized
depth function. AHAM11 cannot handle defocus blur.

In a post-cache codec the compressor/decompressor is lo-
cated between the cache and the higher memory levels. In
a pre-cache codec the compressor/decompressor is located
between the Z-unit and the cache, which means that data
can be stored in compressed format in the cache. Note that
AHAM11 is a post-cache codec, while DO is a pre-cache
codec‡. GPE is a pre-cache codec as well, similar to plane
encoding for static triangles. For a more detailed overview
of pre- vs post-cache codecs, we refer to the paper by Has-
selgren et al. [HANAM13].

Test Scenes The Chess scene contains a mix of highly tes-
sellated geometry (chess pieces) and a coarse base plane. All
objects are animated with rigid body motion. The DOF chess
scene (32k triangles) has more pieces than the motion blur
chess scene (26k triangles). The Airship scene (157k trian-
gles) is taken from the Unigine Heaven 2 DX11 demo (on
normal tessellation setting), and has been enhanced with a
moving camera. This is the only scene tested which uses the

‡ DO can be either pre- or post-cache codec, but we use pre-cache
since it gives better results [HANAM13].
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depth functions optimized for camera translation. Dragon
(162k triangles) shows an animated dragon with skinning
and a rotating camera. Sponza is the CryTek Sponza scene
with a camera rotating around the view vector. The scene has
103k triangles for motion blur and 99k triangles for DOF. Fi-
nally, the Hand scene (15k triangles) is a key-frame anima-
tion of a hand with complex motion. All triangle counts are
reported after view frustum culling. Furthermore, in Airship
and Dragon, the triangle counts are after backface culling.
All scenes are rendered at 1080p.

The results for motion blur can be seen in Table 1, where
the resulting bandwidth for each algorithm is given rela-
tive to the RAW baseline. While the numbers reveal sub-
stantial savings with our algorithm, it is also interesting to
treat the previously best algorithm (which is AHAM11 for
most scenes) as the baseline, and see what the improvement
is compared to that algorithm. For example, for a comple-
mentary depth floating point buffer (F32) at four samples per
pixel (spp), we see that the relative bandwidth on the Chess
scene is 37/64 ≈ 58%, which is a large improvement. For
Airship, this number is 64%, while it is about 77-80% for
Dragon and Sponza. The Hand scene is extremely difficult
since it only has per-vertex motion (most expensive) on a
densely tessellated mesh, and GPE is unable to compress it
further. For 16 spp F32, the corresponding numbers are (from
Chess to Hand): 64%, 60%, 80%, 68%, and 89%.

For defocus blur, the results can be found in Table 2. The
results are even more encouraging. The relative bandwidth,
computed as described above for motion blur, compared to
the best algorithm (DO) is (from Chess to Hand): 44%, 74%,
70%, 49%, and 88% for 4 spp. For 16 spp, the corresponding
numbers are: 35%, 67%, 66%, 34%, and 67%.

Encoder Complexity Analysis Here, we attempt to do a
rough comparison of the complexity of the encoder of GPE
vs AHAM11, where we assume that there are n samples per
tile. AHAM11 starts by finding min and max of the depths,
which results in ≈ 2n operations. Each depth value is then
binned (n ops) and the largest gap in the bins is found, which
splits the samples into two layers. The last step is excluded
in our complexity estimate, since it is hard to estimate. For
the whole set of samples, and for each of the two layers, a
bounding box in x and y is found (4n ops), and the box is split
into 2×2 regions, or 2×2×2 regions (depending on which
mode is used). In each region, the min and the max depth is
found (≈ n ops). For each of the two layers and the whole set
of samples, the three modes in AHAM11 uses Cramer’s rule
to compute the predictor function. We estimate this to about
25 FMA (fused multiply-add) operations. The residuals are
found by evaluating the predictor and computing the dif-
ference. For the three modes, the predictor evaluation costs
4n, 4n, and 9n ops respectively (including residual compu-
tation). Since each sample belongs to the whole set, as well
as to one of the two layers, the steps after binning are per-
formed twice per sample. An under-conservative estimation

of AHAM11 is then n(2+ 1)+ 2n(4+ 1+ 4+ 4+ 9) = 47n
ops plus 9 · 25 = 225 ops for Cramer’s rule, i..e, a total of
47n + 225 ops. GPE computes the coefficients, which for
the most expensive case (per-vertex motion) costs about 130
FMA ops, and then updates the selection masks, which we
estimate to be n operations. Since 47n+225� n+130 (for
n = 8×8 samples), we conclude that our encoder is more ef-
ficient. The per sample cost for reconstructing a depth value
is 5 to 13 operations for GPE and 4 to 9 for AHAM11, de-
pending on which depth function or predictor is used. Fur-
thermore, if the stochastic rasterizer performs a backface
test, most of the computations needed for the depth func-
tion coefficients can be shared. In that scenario, we estimate
the constant factor for GPE to be only 20 ops.

8. Conclusions and Future Work

We have presented a generalized plane encoding (GPE)
method, where we optimized the depth function represen-
tation significantly for motion blur and depth of field sepa-
rately. GPE provides substantial depth buffer bandwidth sav-
ings compared to all previous methods. Our research can
have high impact, since we believe that it gets us a bit closer
to having a fixed-function stochastic rasterizer in a graphics
processor with depth buffer compression.

At this point, we have not been able to provide any pos-
itive results for the combination of motion blur and DOF.
In future work, we would like to use the theory developed
in Appendix A to design more efficient predictors. Although
we concluded that the generalized depth function for the case
of simultaneous motion blur and depth of field is too expen-
sive in practice, we could analyze the size of each coefficient
for a large collection of scenes, and obtain a lower order ap-
proximation. As a final step, the residuals would be encoded.
Yet another avenue for future research is to explore the depth
function for motion blur with non-linear vertex paths.
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Appendix A - Motion Blur + Depth of Field

Following the derivation for motion blur and depth of field,
we want to create general depth functions for the case of
triangles undergoing simultaneous motion blur and depth of
field. We first consider the 5D edge equation [MAM12]:

ek(x,y,u,v, t) = (nk(t)+u′×mk(t)) ·x, (33)

where u′ = (u,ξv,0), nk(t) = pi(t)× p j(t), and mk(t) =
ci(t)p j(t)− c j(t)pi(t). The interpolation formula becomes:

A(x,y,u,v, t) = ∑Akek(x,y,u,v, t)
∑ek(x,y,u,v, t)

. (34)

Our first goal is to derive a compact formulation of the de-
nominator in Equation 6:

∑ pkw(t)ek(x,y,u,v, t)

= ∑ pkw(t)nk(t) ·x+∑(pkw(t)u
′×mk(t)) ·x. (35)

From Equation 17, we have: ∑ pkw(t)nk(t) ·x=∑
3
0 ∆it i. Sim-

ilarly, by generalizing Equation 27, we obtain:

∑ pkw(t)mkw(t) = 0, (36)

which can be used to simplify the term below:

∑(pkw(t)u
′×mk(t)) ·x

=
(

0,0,u∑ pkw(t)mky(t)−ξv∑ pkw(t)mkx(t)
)
·x

= u
3

∑
0

γit
i +ξv

3

∑
0

δit
i. (37)

Simplification for the thin lens model If we assume that
the clip space circle of confusion radius follows the thin lens
model, it can be written as ck(t) = αpwk (t)+β. We use the
equality:

∑(pkw(t)u
′×mk(t)) ·x = u′ ·∑ck(t)pi(t)×p j(t), (38)

and see that:

u′ ·∑ck(t)pi(t)×p j(t)

= u′ ·∑((αpkw(t)+β)pi(t)×p j(t)) (39)

= βu′ ·∑(pi(t)×p j(t)) = u
2

∑
0

γit
i +ξv

2

∑
0

δit
i.

We have shown that the denominator can be expressed as:

∑ pkw(t)ek(x,y,u,v, t) = u
2

∑
0

γit
i +ξ v

2

∑
0

δit
i +

3

∑
0

∆it
i,

(40)
which can be represented by 10 coefficients. The numerator:

∑e(x,y,u,v, t) = (∑nk(t)+u′×∑mk(t)) ·x, (41)

can be represented by 18 coefficients, but again, if we as-
sume that the clip space circle of confusion radius follows
the thin lens model, we can generalize Equation 31 and
see that ∑mkw(t) = 0. Then we obtain (u′×∑mk(t)) · x =

u∑mky(t)−ξv∑mkx(t) = u∑
2
0 λit i +ξv∑

2
0 κit i.

Mode x y z c cache lines
0 29 0 0 1 8
1 0 17 0 1 8
2 0 0 8 0 8
3 0 0 7 1 8
4 10 0 0 1 4
5 0 8 0 0 4
6 0 7 0 1 4
7 0 0 3 1 4
8 8 0 0 0 3
9 7 0 0 1 3
10 0 4 0 1 3
11 0 0 2 1 3
12 4 0 0 0 2
13 0 3 0 1 2
14 0 0 1 1 2
15 2 0 0 0 1
16 0 1 0 1 1
17 0 0 1 0 1

Table 3: GPE compression modes for motion blur.

Mode number of planes c cache lines
0 12 1 8
1 5 1 4
2 4 0 3
3 3 1 3
4 2 1 2
5 1 1 1

Table 4: GPE compression modes for defocus blur.

Thus, we can represent the depth function, d = z/w, with
25 coefficients. Note that simply storing the vertices, [x,y,w],
would require 3× 3× 2 = 18 values, which is a more com-
pact representation. We conclude that for the combination of
motion and defocus blur, the raw vertex representation is a
better alternative in term of storage. Our derivation was still
included in order to help others avoid going down this trail
of simplifying the equations.

Appendix B - Compression modes for GPE

The total storage cost of a compressed block is: (3x +
5y+ 13z)× 32 bits for the depth function coefficients plus
dlog2(x+y+z+1)e×256 bits to indicate which depth func-
tion to use for each of the 256 samples (or if the sample is
cleared). As an additional optimization, if no samples are
cleared, we skip the clear bit in some modes. If a clear bit
is present in the mode, this is indicated as c = 1 in Table 3.
Similarly, we show the modes for defocus blur in Table 4.
We empirically found a reasonable subset of the large search
space of possible predictor combinations that worked well in
our test scenes.
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