
Theory and Analysis of Higher-Order Motion Blur Rasterization

Carl Johan Gribel1 Jacob Munkberg2 Jon Hasselgren2 Tomas Akenine-Möller1,2

1Lund University and 2Intel Corporation

Abstract

A common assumption in motion blur rendering is that the triangle
vertices move in straight lines. In this paper, we focus on scenar-
ios where this assumption is no longer valid, such as motion due
to fast rotation and other non-linear characteristics. To that end,
we present a higher-order representation of vertex motion based on
Bézier curves, which allows for more complex motion paths, and
we derive the necessary mathematics for these. In addition, we
extend previous work to handle higher-order motion by develop-
ing a new tile vs. triangle overlap test. We find that our tile-based
rasterizer outperforms all other methods in terms of sample test ef-
ficiency, and that our generalization of an interval-based rasterizer
is often fastest in terms of wall clock rendering time. In addition,
we use our tile test to improve rasterization performance by up to a
factor 5× for semi-analytical motion blur rendering

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: motion blur, rasterization

1 Introduction

Motion blur rendering is used both in feature film graphics and for
real-time rendering. Usually, the vertices move in linear paths, and
higher-order motion is not used at all, used infrequently, or may be
approximated by a set of linear vertex motion paths. The setting for
our study is cases where higher-order motion blur matters, and this
includes, for example, high-quality, long exposure renderings, i.e.,
most likely for feature films or still images. To correctly capture
long, curved motion trails, the temporal visibility integral must be
carefully integrated. Each visibility evaluation is expensive, and
many evaluations per pixel are needed to get down to acceptable
noise levels. We face a computationally expensive problem, where
high quality is of utmost concern.

In animated real-time rendering, it is unlikely that the quality dif-
ference between, e.g., per-vertex linear motion trails and quadratic
motion trails matters. Furthermore, the added cost of evaluating
complex motion may be too expensive for an interactive applica-
tion. Some care must be taken, however. Fast rotations are poorly
approximated by linear per-vertex motion, and the artifacts can be
quite surprising. Figure 1 shows an example of this.

The straightforward way of handling fast rotations (and other
non-linear motion effects) is to add more linear segments within
the frame and perform per-vertex linear motion blur rasterization
within each segment. However, many linear segments may be

Linear motion Quadratic motion

Figure 1: The CLOTH BALL animation from the UNC Dynamic Scene
Benchmark, with small triangles moving in circular arcs around the
center of the ball. Left: When linearly interpolating the vertex posi-
tions between frame 73 and 93, there are severe shrinking artifacts
in the motion blurred rendering. Right: We interpolate quadrati-
cally between three frames (73, 83 & 93) to create a curved motion
trail for each vertex.

needed to get acceptable quality, and the number of segments is an-
other parameter to tweak. The purpose of our research is therefore
to investigate the consequences and cost of directly using per-vertex
motion trails specified as higher-order Bézier curves, i.e., quadratic
curves and up.

Many previous techniques for efficient culling of a moving prim-
itive against a screen space region break down if the per-vertex
motion trails are no longer linear [Laine et al. 2011; Munkberg
et al. 2011; Munkberg and Akenine-Möller 2012]. A naı̈ve ap-
proach of simply testing all samples within the bounding box of
the moving primitive is extremely costly. To avoid this, we present
a new tile versus triangle test where each vertex is specified using
a higher-order Bézier curve. In typical scenes, this reduces the ren-
der time with an order of a magnitude, since the majority of sam-
ples outside the moving primitive are culled early on. In addition,
we also present a generalization of the interval-based rasterization
technique to higher-order motion. Our generalization is surpris-
ingly competitive in terms of wall clock time, while our tile-based
rasterizer is better in terms of sample test efficiency.

Finally, we also analyze how previous semi-analytic motion blur
rasterization (where the coverage test is solved analytically, but the
depth function is approximated) generalizes to higher-order motion,
and we propose a method to approximate the depth function in a
way to avoid rendering errors.

2 Previous Work

There is a wealth of previous work on motion blur and stochastic
rasterization. Sung et al. [2002] have a comprehensive survey of
work on motion blur algorithms up to 2002, and we refer the in-
terested reader to that survey for more information about the older
algorithms.

Stochastic rasterization has become a popular research topic over
the last few years. Cook et al. [1987] were first to use stochastic

rasterization in their REYES renderer, where primitives are split
and diced until sufficiently small in screen space. Shading is com-
puted once, and then spread out over samples covering a moving
primitive. Akenine-Möller et al. [2007] introduced time-dependent
edge functions and rasterized an oriented box around the moving
triangle. After that, a lot of focus has been spent on making the
traversal more efficient. Fatahalian et al. [2009] presented details
about Pixar’s rasterization method, called INTERVAL, and also in-
troduced another method called INTERLEAVE, which is based on
interleaved sampling [Keller and Heidrich 2001]. A thorough anal-
ysis of the efficiency in a data-parallel setting was given. They also
introduced the notion of sample test efficiency (STE), which is an
efficiency measure of a rasterizer.

To make rasterization more efficient, researchers started developing
tile tests. Laine et al. [2011] introduced a tile test in dual space for
motion blur (3D), a screen space test for depth of field (4D), and the
combination (5D). Munkberg et al. [2011] presented a similar test
for motion blur based on the moving triangle’s clip space bound-
ing box, and also added an edge versus tile test for higher culling
rates. Half-space culling has also been used for efficient tile tests
for depth of field rasterization [Akenine-Möller et al. 2012]. Laine
& Karras [2011] improved the culling efficiency of the dual space
tile test in cases with simultaneous defocus and motion blur (5D) by
taking correlations between time and lens parameters into account.
Hyper-plane culling was then introduced for efficient tile tests for
5D rasterization [Munkberg and Akenine-Möller 2012], where lin-
ear bounds in ut- and vt- space were combined with a hyper-plane
test for higher STE and lower total arithmetic cost.

Gribel et al. [2010] used time-dependent edge equations to analyti-
cally compute the overlap in time for a single sample point. This al-
lowed them to render temporally alias-free images by solving time-
continuous edge equations. A visibility engine based on depth inter-
vals was also presented together with an oracle-based compression
method. Line sampling [Jones and Perry 2000] has been used to ex-
tend motion blur and depth of field rasterization algorithms. Gribel
et al. [2011] extended their previous method, which computed an
analytical overlap in time, with lines samples in the spatial domain.
Tzeng et al. [2012] used analytical line sampling over the lens, sim-
ilar to how a motion blur rasterization was used to render depth of
field [Akenine-Möller et al. 2007], for rapid rendering on the GPU.

Other methods have been proposed to speed up the pipeline, such
as conservative backface culling for 3D, 4D, and 5D rasteriza-
tion [Munkberg and Akenine-Möller 2011] and a hierarchical TZ-
pyramid was introduced for space-time occlusion culling [Boulos
et al. 2010]. Decoupled sampling techniques [Ragan-Kelley et al.
2011; Burns et al. 2010] decouple shading from visibility, with the
goal of shading as little as possible. The shaded samples are stored
in a cache for later reuse.

It should be noted that, as far as we know, all methods above use
linear vertex motion, with the exception of the backface culling
work [Munkberg and Akenine-Möller 2011], which is generalized
to higher-order motion. The topic of our paper is to explore what
happens when the order of the vertex motion is increased.

3 Theory

Linear per-vertex motion in three dimensions may look surprisingly
complex when rendered on screen. This is mostly due to that after
projection, the screen space vertex movement is a rational function
in time. This makes time-dependent clipping very hard, for ex-
ample. The projected motion trails in screen space are still straight
lines, but their acceleration differ. With higher-order per-vertex mo-
tion, the vertex motion is determined by a curve in space. Note
that higher-order vertex motion makes the depth function higher

A B C

Figure 2: Due to the quadratic motion in depth in these examples,
the screen space projection of the moving primitive can be very
complex. We let a black triangle move in x from left to right and
approach the camera at t = 0.5. A: Quadratic motion trails in xz.
B: Here, the triangle circles around the camera, and is behind the
camera at t = 0.5. C: Same as B, but the triangle also rotates 180
degrees locally around the z-axis.

Reference Linear

Four linear segments Accumulation (64)

Figure 3: A triangle with 90◦ rotation in the xy-plane approx-
imated by quadratic Bézier curves. The upper left image shows
a reference image with 256 spp. With linear motion trails (upper
right), the swept area is reduced. If the motion is approximated
with four piecewise linear segments, we approach the correct re-
sults, but still have artifacts (lower left). Finally, by using accumu-
lation buffering, we can avoid higher-order coverage tests, but get
ghosting artifacts, even at 64 accumulation passes. Zoom in on the
electronic version of the paper to see these effects more clearly.

order as well, which means that a triangle vertex can intersect the
w = 0 plane more than once. In Figure 2, we show a few, some-
what unintuitive, examples of a single triangle with different types
of quadratic motion.

Furthermore, the visibility integral is more complex and must be
evaluated with high resolution, e.g., many temporal samples. In
Figure 3, we show that coarse piecewise linear approximations of
the movement, or a too small set of unique sample times, show up
as noticeable artifacts. In this paper, we will discuss techniques to
render these images efficiently with high quality.

3.1 Higher-Order Edge Equations

In this section, we will generalize the theory of edge equations for
the case where the vertex motion paths are Bézier curves.

We use a notation similar to previous work [Gribel et al. 2010],
where p(t) is a vertex in homogeneous clip space, i.e., the projec-
tion matrix has been applied but not perspective division. A vertex

moving along a Bézier curve is then described by [Farin 2002]:

p(t) =

n∑
i=0

Bn
i (t)pi, (1)

where t is the time, which spans the unit interval t ∈ [0, 1], n
is the degree of the curve (n = 1 gives linear interpolation), pi,
i ∈ [0, . . . , n], are the control points, and Bn

i (t) are the Bernstein
polynomials.

Recall that a homogeneous edge function [Akenine-Möller et al.
2007] for an edge between two vertices p and q is defined as
e(x, y) = npq · (x, y, 1), where npq = p × q can be said to be
the “normal” of the edge. Substituting p and q for two vertices
moving along Bézier curves, p(t) and q(t), we get:

npq(t) = p(t)× q(t) =

n∑
i,j

(
n
i

)(
n
j

)(
2n
i+j

) B2n
i+j(t)

(
pi × qj

)
=

2n∑
k=0

B2n
k (t)ck, (2)

where ck are described by:

ck =
∑

i+j=k

(
n
i

)(
n
j

)(
2n
i+j

) pi × qj . (3)

Note that ck can be thought of as the control points of the normal
npq(t). As can be seen, Equation 2 is a Bézier curve of degree 2n,
and the edge equation is given by:

e(x, y, t) = npq(t) · (x, y, 1). (4)

This is the generalized scalar triple product of the edge equation for
higher-order Bézier per-vertex motion. A sample point is inside a
triangle if all three edge equations evaluate to ei(x, y, t) ≤ 0.

In this paper, we will use this expression for the edge equation both
when designing an analytical coverage test and for an efficient trian-
gle edge versus screen space tile culling test. For stochastic sample
testing, however, it is more efficient to interpolate the triangle ver-
tices for a given time, and use a variant of the sample test suggested
by Laine et. al [2011].

4 Traversal

In this section, we describe different alternatives for efficient traver-
sal when rasterizing triangles undergoing higher-order motion. The
core idea is to reduce the number of coverage tests by quickly dis-
carding samples that cannot hit the moving triangle.

4.1 Higher-Order Interval Rasterization

A simple approach to reduce the cost of rasterizing a moving object
is to subdivide the motion into many smaller temporal intervals,
thereby solving a simpler problem in each segment. This is the
idea of the INTERVAL rasterization algorithm (first proposed by Pixar
and described by Fatahalian et al. [2009]). We extend it to support
higher-order motion as follows. For each interval [ta, tb], the Bézier
curves for each vertex are reparameterized to obtain a new set of
control points, representing the same curve segment within [ta, tb].
Using the blossom notation [Farin 2002], the new control points are
given by b[ts, ts],b[ts, te] and b[te, te] for the quadratic case. The
same technique generalizes easily to higher-order motion.

To compute a screen-space bounding box for the moving trian-
gle within [ts, te], we feed the nine new control points (three per

vertex) into Laine & Karras’ algorithm for efficient screen-space
bounds [2011]. Note that higher-order motion trails often result in
larger screen-space bounding boxes. Please refer back to Figure 1
for an example.

Finally, each coverage test is modified such that the triangle is posi-
tioned for the unique sample time. In the quadratic case, the added
cost of positioning a moving triangle compared to linear motion
makes the cost of the coverage test increase by about 50% (31 vs
21 fused multiply-add operations).

If many temporal subdivisions are used, the motion within each
segment may be linearized with minor impact on quality, and in that
case, a standard linear motion coverage test can be used. However,
with only a few segments, piecewise linear motion may result in
objectionable artifacts (see Figure 3).

Rasterization algorithms that sample the triangle temporally with
a fixed set of sample times, such as accumulation buffering and
interleaved sampling [Keller and Heidrich 2001] trivially extend
to higher-order motion. The triangle (moving with curved motion
trails) is only positioned once for each sample time, and a stan-
dard 2D rasterizer coverage test can be used. However, note that
in cases where higher-order motion matters, the ghosting artifacts
from these algorithms can be highly visible, and many unique sam-
ple times are needed.

4.2 Tile-based Traversal

In some rendering algorithms, it is beneficial to traverse hierar-
chically in screen space, and only visit every pixel or tile over-
lapping the moving triangle once per primitive. For example, in
semi-analytical motion blur rendering [Gribel et al. 2010], an ana-
lytical coverage test computes the visibility integral valid over the
entire shutter time for each pixel, and one want to avoid comput-
ing this redundantly. Tile-based rasterizers also have the benefit of
supporting many optimizations, such as hierarchical traversal, oc-
clusion culling, and increased cache coherence [Munkberg et al.
2011]. Furthermore, some shading approaches benefit of having a
local visibility estimate for a triangle before shading.

In this section, we extend the work by Laine et al. [2011], Laine
& Karras [2011], and Munkberg et al. [2011] by presenting new
generalized tile tests for higher-order motion. Similar to previous
work, we use both the triangle vertices and the triangle edges to
design efficient culling tests against each screen-space tile.

Tile – Vertex Overlap Test Figure 4 shows a flatland illustration
of the problem we need to solve in the tile vs. vertex overlap test.
We derive the temporal overlap along the tile’s extents in x and
y, and compute the final result as the intersection of the resulting
time intervals. Below, we describe the x-overlap test. For every tile
on the screen, we set up two tile frustum planes aligned with the
sides of the tile. Each frustum plane is defined by its plane equation
ni · p = 0, where ni is the frustum plane’s outward normal (note
that these planes go through the origin). This setup is shown in
Figure 4.

We now need to find the intersection of the frustum planes against
a vertex, p(t), moving along a Bézier curve in three dimensions.
If all of the triangle’s vertices are outside a frustum plane in an
interval t ∈ [a, b], we can safely ignore testing any samples within
that time interval.

The intersection of a Bézier curve, p(t) =
∑
Bj(t)cj , and a plane,

ni · p = 0, is given by:∑
j

Bj(t)ni · cj = 0, (5)

x

w

x=γ

n=(-1,0,γ)

origin

screen space (w=1)

tile frustum plane

tile
t=0

t=1

Figure 4: A tile (green) in screen space and its two frustum planes
bounding the x-extents of the tile. The planes are defined in xyw-
space. The left frustum plane, passing through the point (γ, 0, 1)
has a normal n = (−1, 0, γ). We search for the intersections of
the three moving triangle vertices with this plane (marked as red
circles).

which is a scalar polynomial equation of the same degree as the
Bézier curve, p(t). Note that if the vertex motion is, for example,
quadratic, a triangle vertex can enter a frustum plane twice within
the frame.

Now, let us study the intersection with the plane passing through
the left side of the tile. The normal of the left tile frustum plane has
y-coordinate zero. As shown in Figure 4, we let the screen-space
x-coordinate be parameterized by γ ∈ [−1, 1]. The normal vector
then becomes ni(γ) = (−1, 0, γ).

If we insert this normal into Equation 5, we get:∑
j

Bj(t)ni(γ) · cj = 0⇐⇒
∑
j

Bj(t)dj(γ) = 0, (6)

where dj(γ) = −cjx +γcjw is the orthogonal distance to the plane
of each control point. Note that the following (see Equation 6) is a
tensor product surface:

s(t, γ) =
∑
j

Bj(t)dj(γ), (7)

which is linear in γ and the degree of the Bézier curve in t.

Solving s(t, γ′) = 0 for a given γ′ gives us the times when a ver-
tex passes through the frustum plane through x = γ′. The naı̈ve
approach is to interpolate each scalar control point to dj(γ′) =
−cjx + γ′cjw , and find the solutions to the polynomial equation∑

j Bj(t)dj(γ
′) = 0.

Our key insight is that because the surface is linear in γ, we can
bound s(t, γ) at γ = −1 and γ = 1 with subdividable linear ef-
ficient function enclosures (slefes) [Peters 2003], and then linearly
interpolate these bounds in γ. Let {ai}, i ∈ [0, n] denote the break-
points of the lower slefe at γ = −1 (i.e., a piecewise linear lower
bound of s(t,−1)) and {bi}, the corresponding breakpoints of the
lower slefe at γ = 1, bounding s(t, 1).

As can be seen in the example with quadratic motion in Figure 5,
the slefes sweep out two bilinear patches defined by the vertices

b0

a0

v0
v1

v2

a1

a2

b1

b2

Figure 5: A surface with the lower bound outlined in red. The
lower bound consists of two bilinear patches for quadratic per-
vertex motion. The ai coefficients represent breakpoints of the
lower slefe at γ = −1 and bi at γ = 1. The vi coefficients rep-
resent a piecewise linear bound (blue) valid for a specific gamma
value. The vi’s are obtained by linear interpolation of ai and bi.

(a0,a1,b1,b0) and (a1,a2,b2,b1). In our implementation, we
compute the ai and bi slefe breakpoints in the triangle setup.

For a given tile coordinate, γ′, we linearly interpolate between ai

and bi to obtain the vertices, vi(γ
′), as shown in Figure 5. For

quadratic motion, this gives us two linear segments:

l0(t) = (1− t)v0(γ′) + tv1(γ′),

l1(t) = (1− t)v1(γ′) + tv2(γ′), (8)

where we solve for the (up to two) t-values using li(t) = 0.

This technique generalizes to motion along Bézier curves of degree
n, where there will be n piecewise linear segments, and up to n
t-values where li(t) = 0.

Triangle Test To generalize the test from a single vertex to a tri-
angle, we compute slefes for all three vertices and take the min/max
of the slefe breakpoints, ai and bi. Here, we use minimum for the
lower and maximum for the upper bound slefe respectively. This
gives us a conservative lower and upper bound slefe for the union
of the surfaces si(t, γ) for all three vertices. Again, this can be per-
formed once in the triangle setup. For each tile, we then interpolate
one set of vi coefficients for the triangle. If all vi are positive for a
frustum plane, the triangle can be culled for that tile.

To compute a t-interval of potential overlap, we need to determine
the time tin when the triangle first enters the tile frustum, and a
time tout when the triangle leaves the tile frustum (please refer to
Figure 4 for an example). It is for this reason that we keep both the
lower and upper bound slefes. We can derive tin from the solutions
to li(t) = 0 using the lower bounds. To obtain tout, we proceed as
above, but instead use the upper bound slefe to compute the linear
li(t) functions. With this, we obtain an interval [tin, tout] for when
the triangle overlaps with the tile’s range in x. The same procedure
is then executed for the two tile frustum planes bounding the tile’s
range in y to obtain another interval in t. Finally, the intersection
of these two intervals is a conservative interval of potential overlap.
In practice, instead of bounding using γ = −1 and γ = 1, we use
the extents of the triangle’s screen-space bounding box for tighter
bounds. The total cost per tile for the culling test is roughly double
that of Laine et al.’s tile culling test for linear motion blur [2011].

t=0 t=0.25 t=1t=0.5 t=0.75

cull cull cull

cull

t

e(t)

Figure 6: Solving for e(t) ≤ 0 for quadratic edge functions
(n = 2). By finding a lower slefe bound (red) for the edge equa-
tion’s projection on the tile center, we can cull more regions than
the convex hull (blue) derived from the curve’s control points. The
analytical region where e(t) < 0 is marked in green. The black
circles are the control points of the Bézier curve.

Tile – Edge Overlap Test Next, we sketch a test for a moving
edge against a screen-space tile, when the edge’s vertices move
along Bézier curves.

As shown in Section 3, the edge equation is a Bézier curve of degree
2n. At triangle setup, we compute the 2n + 1 control points, ci,
according to Equation 4 for this edge. Then, for each tile:

1. Compute the 2n+ 1 scalar control points, di = ci · (x, y, 1).
The overlap with the tile and the edge is determined by when
the Bézier curve e(t) = Bi(t)dj is less than zero.

2. If all di > 0 the tile can be culled.

3. Compute a lower slefe from di to obtain 2n + 1 breakpoints
d′i.

4. If all d′i > 0 the tile can be culled.

5. if d′i > 0 and d′i+1 > 0 the moving edge is outside the current
tile within the interval ti = 1

2n
[i, i + 1]. This last step is

illustrated in Figure 6 for n = 2, i.e., for quadratic vertex
paths.

6. Conservative times of intersection are obtained by solving for
when the line segments (i

2n
, di) : (i+1

2n
, di+1) intersect the

x-axis.

Note that the unit time interval (t ∈ [0, 1]) is split into 2n sub-
intervals above. For quadratic motion, this means that the unit time
interval is split into four sub-intervals. The total cost per tile to
evaluate the test for all three triangle edges, including solving for
the times of intersection, is roughly 200 operations.

Note that we do not have to evaluate at all four tile corners if we pad
the control points at triangle setup. Let half the tile width (height)
be denoted ∆w (∆h). With ∆ = (∆w,∆h, 0) we have:

ci · (p±∆) ≥ ci · p− (|cix |∆w + |ciy |∆h). (9)

The second term is independent of p, so we subtract it from the
w-component of ci at the triangle setup, and only need to evaluate
ci · p per tile to get a conservative lower bound over the tile.

Finally, the time intervals of overlap obtained from the moving
edges can be intersected with the intervals from the moving ver-
tices, and only in the remaining interval do we evaluate coverage

tests. In our results, we study the efficiency of these two tests com-
bined.

5 Semi-Analytical Rendering

Inside Test and Barycentric Interpolation Equation 4 can be
interpreted geometrically as a volume in homogeneous space, i.e.,
a polyhedra bounded by the view-point, the edge surface, and the
sample point. The sign of this volume depends on the sample point
being outside (positive) or inside (negative) the edge. Equation 4
can thus be utilized as an inside function during rasterization. When
the order of motion is n, the order of the edge equation becomes
2n, as can be seen in Equation 2. For quadratic per-vertex motion
(n = 2), Equation 4 has order 4, meaning that a sample point can
go from being inside to outside, or the opposite, up to four times as
the edge moves. A sample point is inside a triangle if all three edge
equations evaluate to ei(x, y, t) ≤ 0.

The perspective-correct barycentric coordinates are defined as:

bi(x, y, t) =
ei(x, y, t)∑
j ej(x, y, t)

. (10)

The normalized depth (z
w

) at a sample point for a triangle
{p0(t),p1(t),p2(t)} can be interpolated as:

z

w
(x, y, t) =

∑
i bi(x, y, t)piz (t)∑
i bi(x, y, t)piw (t)

. (11)

Note that each term in the sum is a polynomial of degree 3n in t,
e.g., for quadratic motion, the normalized depth is a rational func-
tion of degree 6. Alternatively, one can use w directly, which is a
rational function of degree 6 in the numerator and degree four in
the denominator. See the work by Andersson et al. [2013] for more
information about the depth function for a moving triangle.

Semi-Analytical Rasterization In a semi-analytical rasterizer,
the edge equations (Equation 4) of each triangle are solved instead
of sampled. The acquired roots are used to generate inside-intervals
over continuous intervals of time, ∆t. Intervals generated during
rasterization are stored per sample in lists and resolved for final
visibility at the end of the rendering pass. We use an algorithm
that overall is similar to that of Gribel et al. [2010], including an
oracle-based, lossy interval compression algorithm. In addition, the
fast opaque-geometry resolve algorithm by Barringer et al. [2012]
is employed. Two different quartic solvers are used, namely, a di-
rect analytical solver [Glassner 1990; Paeth 1995] and an iterative
solver based on Bézier clipping [Sederberg and Nishita 1990].

One aspect of the algorithm that need renewed consideration for
higher-order motion is the way depth is handled over each interval.
In the linear motion case, Gribel et al. [2010] approximate depth
as a linear function over ∆t, and even though they show that the
error introduced this way is limited, this is an assumption we can-
not make since vertices are now moving quadratically instead of
linearly. To this end, we use a refinement scheme similar to Gri-
bel et al. [2011], where intervals are split if the approximation error
exceeds a tolerance. Each interval evaluates the true depth in its
endpoints, and splitting an interval effectively means that the depth
function is sampled accurately in one additional point in t.

Consider Figure 7 for a simplified failure case. During this frame,
a red triangle moves to the front and back again while a blue trian-
gle passes by behind it. If depth is linearised, the red triangle will
be erroneously occluded by the blue one. By measuring and lim-
iting the approximation error, e.g., to 1% of the depth range, and

z

t

actual depth

depth
approximation

incorrect occlusion{
z

t

Figure 7: Simplification of how overly crude depth approximations
can lead to visibility errors. A red triangle jo-jo’s toward the cam-
era while a blue triangle passes by behind it. When the depth of
the red triangle is linearized, it wrongly becomes occluded by the
blue one. By splitting the interval, adaptively if needed, the effects
of this error can be reduced or, as here, even eliminated.

TILE INTERVAL
Tile size Num intervals

Scene 4× 4 2× 2 1× 1 4 16 64
CLOTHBALL 11 18 24 1.2 6.4 15
SPONZA 47 65 79 10 18 21
BIGGUY 17 27 36 3.1 11 18
BEN 12 21 34 0.68 5.2 14
HAND 30 46 62 7.8 19 24
HAIRBALL 3.5 7.5 14 0.75 2.8 4.8

Table 1: Sample test efficiency (higher is better) results using our
set of test scenes. The tile tests with 1×1 tiles have consistently the
highest STE.

splitting the interval, this error can be reduced. We estimate this er-
ror by sampling the true depth function at the midpoint of ∆t, and
compare it to the linearized depth function. Note that this scheme
does not completely eliminate the problem, but it limits the extents
of intervals that are erroneously occluded. In Section 6, we present
measurements of this error in practical scenes.

6 Results

6.1 Culling Test Efficiency

In this section, we evaluate different traversal strategies for higher-
order motion. Unless noted otherwise, all results in this section are
generated with 64 samples per pixel with a simple shader reinter-
preting the normal as a color. We use a standard set of test scenes
as shown in Figure 8. All scenes contain large, non-linear motion.

We denote the tile-based traversal using the tests from Section 4.2
TILE, and compare against our generalizations of INTERVAL from Sec-
tion 4.1. For reference, we also include an INTERLEAVE rasterizer
with a fixed set of sample times. In our test scenes, we used 256
sample times in INTERLEAVE (using 2×2 tiles in xy) to match the
visual quality of 64 pseudo-random stochastic samples per pixel.

In Table 1, we report sample test efficiency (STE), i.e., how many
of the tested samples that hits the primitive. As can be seen, the tile
tests from Section 4.2 have consistently the highest STE scores. As
expected, STE increases with smaller tile sizes and more intervals,
respectively.

SPONZA HAIRBALL

CLOTH BALL BEN

BIGGUY HAND

Figure 8: The test scenes used in the evaluation. All rendered at
1024× 1024 pixels, using 64 samples per pixel.

However, by only looking at STE, the cost of executing culling tests
is not taken into account, and in practice, depending on the archi-
tecture, they may actually account for a large fraction of the total
execution time. In practice, this is an intricate problem. For exam-
ple, when using INTERVAL with N intervals for a static scene, every
triangle position is unnecessarily interpolated N − 1 times. For
large motion, on the other hand, the temporal subdivision is critical
to reduce the number of coverage test. The tile tests are executed
for each tile covered by the moving primitive’s bounding box, and
for large motion trails, this cost may be significant.

Our approach to discuss the costs is to report execution times for
reasonably optimized scalar, single-threaded implementations of
the algorithms. In Table 2, we use the same set of algorithm as
in the STE evaluation above (Table 1), and we encourage the reader
to compare the two tables. Our generalized INTERVAL (Section 4.1)
with many temporal subdivisions is the faster option in most scenes,
especially for scenes with many small triangles. For scenes with
larger triangles (Sponza and Hand) the tile tests are more efficient.
This is due to culling against triangle edges. Note that there is no
clear relationship between STE and execution time. In practice, the
cost of culling versus STE must be balanced for the target platform.

TILE INTERVAL
Tile size Num intervals

Scene 4× 4 2× 2 1× 1 4 16 64
CLOTH BALL 1 1.38 3.5 4.3 0.93 0.61
SPONZA 1 1.0 1.7 2.8 1.8 2.0
BIGGUY 1 1.2 2.4 2.9 1.1 0.77
BEN 1 1.6 4.3 7.1 1.1 0.52
HAND 1 1.1 1.7 1.1 1.2 1.1
HAIRBALL 1 1.0 2.0 2.8 0.87 0.65

Table 2: Performance results using our set of test scenes (lower is
better). For each scene, the fastest version is marked with bold font.
All results are normalized relative to TILE with 4× 4 tiles.

Performance Scaling From Table 2, we note that the tile-based
traversal strategy is less efficient for highly tessellated scenes, such
as the HAIRBALL scene, while it performs very well for lower and
moderate tessellation. However, recent work has shown that level
of detail algorithms can be aggressively applied to stochastic ren-
dering for both geometry [Tzeng et al. 2012] (for defocus blur) and
shading [Vaidyanathan et al. 2012]. Figure 9 shows the visual im-
pact of a drastic reduction in tessellation rate for one of our test
scenes. A general observation is that a lower level of detail can be
used when the amount of blur is high.

In Figure 10, we vary the amount of motion in the Crytek SPONZA

scene, and compare the performance scaling of TILE, INTERVAL and
INTERLEAVE. For small motion, TILE is faster, and has substantially
higher STE. However, as the motion increases, the STE scores
and performance converges. For highly tessellated scenes, INTER-
VAL scales better.

Our results are interesting from many perspectives. For example,
our generalized INTERVAL method is the best recommendation for a
software-based implementation, since it is faster in terms of wall
clock rendering time. However, note that these performance num-
bers may not directly translate to an efficient parallel implementa-
tion nor an efficient hardware implementation of the algorithms. In
fact, it is likely that a hardware implementation would favor the tile-
based approach due to the many advantages, e.g., occlusion culling,
shading, and cache performance, that come with such a traversal or-
der. However, a thorough evaluation of this is left for future work.
In addition, INTERVAL and INTERLEAVE do not provide any benefit for
semi-analytical rendering, while TILE does.

Importance of Slefes Instead of using slefes when bounding
the moving triangle, we could directly use the convex hull around
the triangle’s Bézier control points for coarser but slightly cheaper
bounds. For highly non-linear motion, however, the convex hull
around the control points is often overly conservative. This is il-
lustrated in Figure 6. In addition, the difference in cost is modest.
For the tile-vertex overlap text, the slefes are computed once in the
triangle setup. For the tile-edge test, the difference in cost of com-
puting a lower slefe and a lower convex hull of a fourth order Bézier
curve is only a few instructions. For completeness, we include the
STE scores for TILE with and without slefes below, measured using
1× 1 pixel tiles.

CLOTH SPONZA BIGGUY BEN HAND HAIRB

Slefes 24 79 36 34 62 14
C hull 2.4 71 3.6 7.4 36 5.5

Note that the tighter bounds from slefes result in significantly
higher STE scores for many scenes, particularly in the two scenes
with large rotations (CLOTH BALL and BIGGUY).

0.4M tris 5700 tris

Figure 9: Two versions of the BigGuy character with Phong shad-
ing, one with 5700 triangles, the other with 0.4M triangles. Note
that there is hardly any visual difference (PSNR: 47dB) but the ren-
der time for the left image is 5× longer.

Rotation: 0◦ 20◦ 40◦

STE (%): 62|23|22 47|19|20 37|16|19
Rel. time: 1.0|2.9|1.7 2.1|3.4|2.0 3.4|4.0|2.1

Figure 10: Test with increasing motion on the Crytek Sponza scene.
The STE (higher is better) and timings (lower is better) are on the
form (TILE | INTERVAL|INTERLEAVE) and are normalized relative to the
leftmost timing for TILE. We use 4× 4 tiles and 64 intervals for this
benchmark (fastest settings for large blurs).

Piecewise Linear Motion For reference, we also implemented
a version of INTERVAL that uses piecewise linear segments in each
interval to reduce the cost of each coverage test. Interestingly, this
did not give a large performance benefit. The reason for this is that
for good quality in our test scenes, 16 linear segments or more are
needed. As the number of segments grow, the cost of traversal and
control flow grows relatively to the cost of the inside test. With
64 intervals, we noticed less than 20% performance increase for
piecewise linear motion for our scalar implementation. The STE
scores are very similar to those of INTERVAL.

6.2 Semi-Analytical Rendering

Figure 11 and 12 show a series of images rendered with our exper-
imental semi-analytical rasterizer. We use two quality metrics: the
peak signal-to-noise ratio (PSNR) for direct image quality com-
pared to a reference image, and Visibility Accuracy. The latter is
the rate, with respect to a stochastically sampled reference image,
by which the correct primitive is visible. This metric takes accu-
racy in both t and z into account. The scenes are intended to stress
the rasterizer in various ways: SPONZA contains varying degrees of
camera rotation while BEN and HAND display motion with high depth
complexity.

In our evaluation of the semi-analytical rasterizer, all images were
rendered in 800×800 resolution. For reference images 512 samples
per pixel were used. The semi-analytical rasterizer samples once
at pixel centres. To isolate measurements to temporal visibility,
the spatial samples of the reference images were fixed to the pixel

centres as well, while being distributed along t as usual. Constant
shading was used per primitive to remove illumination frequencies.
Depth approximation errors were limited by splitting intervals with
errors exceeding 1% of the depth range.

Both BEN and HAND display very high quality, with PSNR in the
49 − 50dB range and 97 − 99% visibility accuracy. Since both
scenes contain significant motion over the z-axis, this seems to in-
dicate that the suggested depth approximation is reasonable. SPONZA

contains highly tessellated objects mixed with large floor and wall
polygons. Since motion is induced by camera rotation, the motion
applies to all parts of the scene, which make errors present at more
places in the image. Hence, the PSNR is lower, around 41− 42dB,
which may be acceptable.

To find roots of the quartic edge equations, we evaluated two
solvers, namely, a power-based analytical quartic solver [Glass-
ner 1990; Paeth 1995] and Bézier clipping [Sederberg and Nishita
1990]. Bézier clipping operates on Bernstein form polynomials and
finds roots iteratively in the [0, 1]-range in ascending order. As a
root is found, it is deflated [Press et al. 2007], and the process con-
tinues with a lower order polynomial. Both solvers produce prac-
tically identical visual results, as can be seen in Figure 12. Our
experience is that the power-based solver is fast and, despite re-
quiring a conversion to power form, still quite robust. It comes
with a hit-or-miss approach however. Customization possibilities
are limited and once roots start to drift, they are difficult to redeem.
Bézier clipping offer the opposite: highly customizable, perpetual
convergence even in hard cases (up to 150 iterations are needed in
difficult cases, such as BEN’s arms), but to a higher computational
cost. Since the edge equations are already defined on Bernstein
form, no conversion is needed when using Bézier clipping. It is
also applicable to not only quartics, but polynomials of any order.

The tile tests described in Section 4.2 can easily be applied to
the semi-analytical motion blur rasterizer. We can benefit from
the early reject test to cull entire tiles, and we also gain signifi-
cant performance by incrementally computing the intersection of
the time intervals received from the tile tests and the time intervals
from the analytical edge tests, and terminating if an empty interval
is obtained. On the tests scenes in Figure 8, this gives us a per-
formance improvement between 1.7× and 4.9× (average: 2.7×),
when compared to an implementation such as initially described by
Gribel et. al [2010].

7 Conclusions and Future Work

In this paper we derive mathematical background for high-order
vertex motion and provide practical contributions for its imple-
mentation in a rasterization framework. Notably, we present novel
tile tests for high-order motion, which greatly reduces the of num-
ber of inside tests compared to existing algorithms. In addition,
we also present an INTERVAL-based algorithm generalized to higher-
order motion. Interestingly, our INTERVAL-based rasterizer is faster in
terms of wall clock rendering time, while our tile-based rasterizer is
better in terms of sample test efficiency (STE). As we have argued,
both of these may be useful, but in different contexts. Furthermore,
we extend previous work on semi-analytical rasterization to higher
order motion, and show that our novel tile tests are beneficial for
that use case.

One important topic for future work is shading. Even though any
shading model can be utilized in any of the rasterizers, we have lim-
ited ourselves to simple shading models and brute force sampling
in this paper. In the setting of higher-order motion, with complex
and prolonged motion, it is of particular relevance to consider reuse
strategies, such as decoupled and cached shading. Also, more work
can be done in terms of time-dependent filtering and mipmapping.

SPONZA Camera rotation 12◦ SPONZA Camera rotation 20◦

BEN Frame: 1-5-10 HAND Frame 1-5-10

Figure 11: Semi-analytical rendering with shading. The shading
sampling rate is 64 per visible t-interval. Note the smooth visibility
and absence of temporal aliasing. In static regions, some spatial
aliasing can be seen, which is due to the fact that only one spatial
sample is used per pixel. Also note the long motion paths of BEN’s
hands, along z and in the xy-plane, respectively. Measurements of
these images are presented in Figure 12. The polygon counts are
262k for SPONZA, 78k for BEN, and 16k for HAND.

In addition, an implementation in software running on a GPU would
also be interesting for future work.

Finally, we argue that even though high-order motion has a narrow
scope of application and is unnecessary in most normal settings,
it is very powerful in those special cases where motion becomes
aggressive and complex, and should therefore be accessible for the
community nevertheless.

Acknowledgements We thank the anonymous reviewers and In-
tel’s Advanced Rendering Technology team for their valuable feed-
back. We also thank Tom Piazza and Charles Lingle for support-
ing this research. The BEN and HAND animation sequences come
from the Utah 3D Animation Repository. CLOTHBALL comes from
UNC Dynamic Scene Benchmarks. HAIRBALL is courtesy of Samuli
Laine. BIGGUY is courtesy of Bay Raitt, Valve. Sponza is courtesy of
Marko Dabrovic/Frank Meinl. Tomas is a Royal Swedish Academy
of Sciences Research Fellow supported by a grant from the Knut
and Alice Wallenberg Foundation.

References

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic Rasterization using Time-Continuous Trian-
gles. In Graphics Hardware, 7–16.

AKENINE-MÖLLER, T., TOTH, R., MUNKBERG, J., AND HAS-
SELGREN, J. 2012. Efficient Depth of Field Rasterization using
a Tile Test based on Half-Space Culling. Computer Graphics
Forum, 31, 1, 3–18.

Semi-analytical

Reference

SPONZA rot 12◦ SPONZA rot 20◦ BEN Frame: 1-5-10 HAND Frame 1-5-10
PSNR, Power solver : 42.7dB 41.1dB 49.1dB 50.7dB
PSNR, Bézier clipping: 42.7dB 41.1dB 49.1dB 50.7dB
Vis.Acc. Power solver: 98.3% 97.4% 97.7% 99.5%
Vis.Acc. Bézier clipping: 98.3% 97.4% 97.8% 99.6%

Figure 12: Quality measurements for semi-analytical renderings. Higher PSNR indicates better visual resemblance to the reference image.
The Visibility Accuracy provides the rate over a distribution of (x, y, t)-samples by which primitives are correctly visible, again compared to
a stochastic reference. Reference images were rendered using 512 stochastic samples per pixel.

ANDERSSON, M., MUNKBERG, J., AND AKENINE-MÖLLER, T.
2013. Stochastic Depth Buffer Compression using Generalized
Plane Encoding. Computer Graphics Forum, 32, 2, 103–112.

BARRINGER, R., GRIBEL, C. J., AND AKENINE-MÖLLER, T.
2012. High-Quality Curve Rendering using Line Sampled Visi-
bility. ACM Transactions on Graphics, 31, 6, 162:1–162:10.

BOULOS, S., LUONG, E., FATAHALIAN, K., MORETON, H., AND
HANRAHAN, P. 2010. Space-Time Hierarchical Occlusion
Culling for Micropolygon Rendering with Motion Blur. In High
Performance Graphics, 11–18.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
Lazy Object-Space Shading Architecture With Decoupled Sam-
pling. In High Performance Graphics, 19–28.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87), 96–102.

FARIN, G. 2002. Curves and Surfaces for CAGD—A Practical
Guide, 5th ed. Morgan-Kaufmann.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-Parallel Ras-
terization of Micropolygons with Defocus and Motion Blur. In
High Performance Graphics, 59–68.

GLASSNER, A. S. 1990. Graphics Gems. Academic Press, Inc.

GRIBEL, C. J., DOGGETT, M., AND AKENINE-MÖLLER, T.
2010. Analytical Motion Blur Rasterization with Compression.
In High-Performance Graphics, 163–172.

GRIBEL, C. J., BARRINGER, R., AND AKENINE-MÖLLER, T.
2011. High-Quality Spatio-Temporal Rendering using Semi-
Analytical Visibility. ACM Transactions on Graphics, 30, 4,
54:1–54:11.

JONES, T. R., AND PERRY, R. N. 2000. Antialiasing with Line
Samples. In Eurographics Workshop on Rendering, 197–205.

KELLER, A., AND HEIDRICH, W. 2001. Interleaved Sampling. In
Eurographics Workshop on Rendering, 269–276.

LAINE, S., AND KARRAS, T. 2011. Improved Dual-Space Bounds
for Simultaneous Motion and Defocus Blur. NVIDIA Technical
Report NVR-2011-004, Nov.

LAINE, S., AILA, T., KARRAS, T., AND LEHTINEN, J. 2011.
Clipless Dual-Space Bounds for Faster Stochastic Rasterization.
ACM Transactions on Graphics, 30, 4, 106:1–106:6.

MUNKBERG, J., AND AKENINE-MÖLLER, T. 2011. Backface
Culling for Motion Blur and Depth of Field. Journal of Graph-
ics, GPU, and Game Tools, 15, 12, 123–139.

MUNKBERG, J., AND AKENINE-MÖLLER, T. 2012. Hyperplane
Culling for Stochastic Rasterization. In Eurographics – Short
Papers, 105–108.

MUNKBERG, J., CLARBERG, P., HASSELGREN, J., TOTH, R.,
SUGIHARA, M., AND AKENINE-MÖLLER, T. 2011. Hierarchi-
cal Stochastic Motion Blur Rasterization. In High Performance
Graphics, 107–118.

PAETH, A. W. 1995. Graphics Gems V. Academic Press, Inc.

PETERS, J. 2003. Mid-Structures Linking Curved and Linear Ge-
ometry. In SIAM Conference on Geometric Design and Comput-
ing, 1–10.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 2007. Numerical Recipes – The Art of Scien-
tific Computing, 3rd edition ed. Cambridge University Press.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics, 30, 3, 17:1–17:17.

SEDERBERG, T., AND NISHITA, T. 1990. Curve Intersection using
Bézier Clipping. Computer-Aided Design, 22, 9, 538–549.

SUNG, K., PEARCE, A., AND WANG, C. 2002. Spatial-Temporal
Antialiasing. IEEE Transactions on Visualization and Computer
Graphics, 8, 2, 144–153.

TZENG, S., PATNEY, A., DAVIDSON, A., EBEIDA, M. S.,
MITCHELL, S. A., AND OWENS, J. D. 2012. High-Quality Par-
allel Depth-of-Field Using Line Samples. In High Performance
Graphics, 23–31.

VAIDYANATHAN, K., TOTH, R., SALVI, M., BOULOS, S., AND
LEFOHN, A. 2012. Adaptive Image Space Shading for Motion
and Defocus Blur. In High Performance Graphics, 13–21.

