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Abstract
We present two novel culling tests for rasterization of simultaneous depth of field and motion blur. These tests
efficiently reduce the set of xyuvt samples that need to be coverage tested within a screen space tile. The first test
finds linear bounds in ut- and vt-space using a separating line algorithm. We also derive a hyperplane in xyuvt-
space for each triangle edge, and all samples outside of these planes are culled in our second test. Based on these
tests, we present an efficient stochastic rasterizer, which has substantially higher sample test efficiency and lower
arithmetic cost than previous tile-based stochastic rasterizers.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Realistic camera effects, such as motion blur and depth of
field, rendered with accurate visibility, may provide a major
leap forward for image quality in real-time rendering. As a
result, the research activity in the field of stochastic raster-
ization [CCC87, AMMH07] has increased over the last few
years [FLB∗09,MESL10,MCH∗11,LAKL11,AMTMH12].

We note that the rasterizer in a contemporary graphics
processor is heavily optimized and implemented in power-
efficient, fixed-function hardware. In this paper, we focus
only on the visibility problem of stochastic rasterization with
the target being a new fixed-function unit. As a consequence,
we do not implement our work on top of current graphics
processors, e.g., in a compute shader. Also, we do not study
shading here, since stochastic rasterization does not increase
the shading rate substantially [CCC87, RKLC∗11].

Below, we briefly summarize the most related work on
tile-based stochastic rasterization techniques. From recent
rasterization research [MCH∗11, LAKL11, AMTMH12], it
is clear that there are many benefits to using a hierarchical
traversal with a test that culls samples on a per-tile basis.
For motion blur rasterization, Laine et al. [LAKL11] devel-
oped a tight axis-aligned test in a dual space. Munkberg et
al. [MCH∗11] used a moving triangle versus tile frustum
test, combined with a conservative edge test, with higher
culling efficiency as a result. Efficient depth of field (DOF)
culling tests have been developed using separating planes
between the tile and the triangle [AMTMH12]. Laine et
al. [LAKL11] used a similar test with a subset of the sep-
arating planes in their DOF algorithm.

Laine et al. [LAKL11] presented the first tile-based ras-
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Figure 1: A small out-of-focus triangle moves across the
screen (left). The axis-aligned bounds (right) for this trian-
gle in ut-space for a tile around x = 0, are very coarse, as
only samples in the diagonal strip can hit the triangle.

terization technique that handles simultaneous motion blur
and depth of field. We consider this a major step forward.
Culling is achieved by clipping down the extents of u, v, and
t individually. Consider Figure 1, where a small out-of-focus
triangle moves across the screen. With individual bounds for
u and t, all (u, t) samples within the red box will be tested,
while it is only the samples in the blue diagonal strip that
can possibly hit the triangle. In a recent technical report, de-
veloped independently of our work, Laine & Karras [LK11]
addressed this problem by extending the dual space motion
blur test to a trilinear equation that takes correlations be-
tween u&t and v&t into account. They formulated a culling
test where four bilinear patches are evaluated for each sam-
ple. While achieving very high culling rates, it is not clear
if this test is beneficial from an arithmetic cost perspective,
due to the significant per-sample cost.

In this paper, we first extend previous work on depth of
field rasterization by developing a novel test of a moving
and defocused triangle against a tile. This tests exploits cor-
relations in ut- and vt-space for tighter bounds and has a
lower cost than Laine & Karras’ trilinear test. For both mo-
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Figure 2: A potential separating line, passing through a
moving triangle vertex p j(t) and a tile side (at x = xi) in
screen space, intersects the camera lens at ui j(t).

tion blur [MCH∗11] and depth of field [AMTMH12], culling
using planes aligned to triangle edges can increase the ras-
terization performance substantially in scenes with large or
sliver triangles. Our second contribution is a triangle-edge
culling test, which builds upon a conservative bounding of
the five-dimensional edge equation. To our knowledge, there
is no prior tile against triangle edge test that works for simul-
taneous motion and defocus blur. Our culling tests support
arbitrary sampling patterns and provide trivial rejection tests
of all samples within a screen space tile.

2. Tile-Based Culling
In this section, we introduce two culling tests for stochastic
rasterization of simultaneous motion blur and depth of field.
A clip-space vertex of a triangle is denoted p = (px, py, pw).
We assume linear vertex motion, p(t) = (1− t)q+ tr. The
signed clip space circle of confusion radius of a moving ver-
tex p j(t) is a linear function c j(t) = (1− t)c0

j + t c1
j .

2.1. Culling with Linear Bounds in ut and vt Space
Previous work on depth of field rasterization [AMTMH12]
derives separating plane tests between a screen space tile
edge and a defocused triangle. Here, we generalize these
tests to also take motion into account. We further use the
result to derive linear bounds in ut- and vt-space.

In Figure 2, a potential separating line, passing through
a moving triangle vertex p j(t) and a tile corner (xi,yi), in
screen space, intersects the camera lens at:

( ui j(t) , vi j(t) ) =

(
nx

i ·p j(t)
c j(t)

,
ny

i ·p j(t)
k c j(t)

)
. (1)

nx
i = (−1,0,xi) and ny

i = (0,−1,yi) are normal vectors
for the tile-frustum planes (planes containing the origin
and a tile side) and k > 0 is a scalar that compensates
for non-square aspect ratios. For a given screen space tile,
the potential visible interval in the u-dimension denoted
û(t), on the lens for a moving triangle is given by: û(t) =
[mini, j ui j(t),maxi, j ui j(t)]. Note that by moving the denom-
inator in Equation 1 to the left-hand side and collecting
terms, this is the trilinear (dual space) equation [LK11].

To design an efficient culling test, we search for a con-
servative lower bound of all six (three vertices × two tile
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Figure 3: Left: u(x, t) is a rational function in t and linear in
x. We derive a lower and upper bilinear bound for the sur-
face. Right: given the bilinear bounds, we can, for a certain
screen space position x, derive a lower (umin(t)) and upper
(umax(t)) linear bound in ut-space.

edges) ui j(t) functions. We represent this bound as a lower
bilinear patch as shown in Figure 3. Appendix A includes
the derivation of the patch. For each tile, we evaluate the bi-
linear patch, which has been padded with the tile extents, at
the tile center and find a conservative bounding line in ut
space. Individual uvt samples below this line are culled by
a test on the form u < at + b. The upper linear bound is de-
rived similarly and gives a second line above which we can
cull samples. Applying the same technique to vi j(t) in Equa-
tion 1, we also derive two bounding lines in vt space. If the
triangle intersects the focal plane, e.g., c j(t) = 0, for some t,
the culling test is disabled. In total, we cull samples against
four bounding lines. The cost is eight linear interpolations
per tile and four linear interpolations per sample. Addition-
ally, by evaluating the four bounding lines at t = 0 and t = 1,
we get bounds for the u and v ranges per tile.

2.2. Culling using Linearized Edge Equations
In this section, we conservatively bound the edge equation
for a triangle with motion blur and depth of field using a
hyperplane, and use this hyperplane to cull samples.

An edge equation for a triangle with linear vertex motion
in clip space and depth of field is given by:

e(x,y,u,v, t) = (n(t)+m(t)× (u,kv,0)) · (x,y,1), (2)

where n(t) and m(t) are quadratic vectors in t. For each
screen space tile R, this equation can be bounded by a hyper-
plane P : a · x = 0 in xyuvt space, where x = (1,x,y,u,v, t),
such that:

e(x,y,u,v, t)> a ·x, ∀(x,y) ∈ R. (3)

The full derivation is included in Appendix B.

We recompute the hyperplane for each triangle edge and
tile, and use the planes to cull samples within the valid xyuvt
domain. A tile can be trivially rejected if the cube of valid
samples is entirely outside one hyperplane. This is done by
picking the corner c of the hypercube farthest in the negative
direction of the hyperplane normal. If a · c > 0, the tile can
be safely culled. Furthermore, the axis-aligned uvt bounds
can be refined by the hyperplanes. In general: a · x > 0⇔
xk >− 1

ak
∑i 6=k aixi, which gives bounds for each coordinate
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Scene BBOX LA LB LC NEW

FAIRY 28 28 28 28 67 (67)
blur 2.5 13 26 26 35 (44)
blur ×2 0.5 5.4 26 26 20 (23)

SPONZA 7.4 7.4 7.4 7.4 78 (79)
blur 2.9 6.2 7.2 7.2 32 (50)
blur ×2 1.4 5.2 7.2 7.2 20 (30)

HAIRBALL 6.7 6.7 6.7 6.7 20 (20)
blur 1.2 4.1 6.6 6.6 8.6 (14)
blur ×2 0.45 2.8 6.5 6.5 6.8 (8.8)

Table 1: Sample test efficiency (higher is better) results us-
ing 1× 1 pixel tiles. The first line for each scene shows the
STE of a static rendering, blur has DOF and MB and blur
×2 has double shutter time and lens radius. The STE scores
with hyperplane tests per sample are in the parenthesis.

axis. For example, using the hypercube corner c from above,
the temporal bounds can be refined by an inequality: t >
−(aconst +axcx +aycy +aucu +avcv)/at , for each edge.

In our implementation, we pad the hyperplanes with half
of a tile’s screen space extents in the triangle setup, and eval-
uate the inner product aconst + axcx + aycy once at the tile
center. Inspired by previous work [AMTMH12], we selec-
tively enable the hyperplane tests per triangle, by comparing
the screen space AABB of the triangle at (u,v, t) = (0,0,0)
with the screen space AABB of the blurred triangle. If the
former area is significantly smaller, the efficiency of the
edges will be low, and the test is disabled.

3. Results

For our practical stochastic rasterizer (NEW), we use three
culling tests, namely Laine et al.’s motion blur test in dual
space [LAKL11], the bilinear test from Section 2.1, and the
hyperplane test (Section 2.2). The triangle’s screen-space
AABB is computed using a previous technique [LK11]. We
compare against Laine et al.’s algorithm [LAKL11] (LA),
Laine & Karras’ algorithm [LK11] (LB) and the (unpub-
lished) combination of the two (LC). For reference, we also
include a brute-force rasterizer (BBOX), which tests all sam-
ples within the triangle’s bounding box. For a comparison
against other stochastic rasterization algorithms (e.g. INTER-
LEAVE and PIXAR [FLB∗09]), we refer to the analysis by
Laine et al. Our test scenes are presented in Figure 4. Sam-
ple test efficiency (STE) results, i.e., the fraction of the cov-
erage tested samples that hits the triangle are summarized in
Table 1. We analyze the general case of simultaneous mo-
tion blur and depth of field below. With only motion blur
or DOF, NEW has STE on par with state-of-the-art algo-
rithms [MCH∗11, AMTMH12], yet at a higher cost.

The cost of the per-primitive setup, per-tile, and per-
sample culling are summarized in Table 3, where we assume
that tests on the form u< umin can be carried out by the hard-
ware rasterizer at negligible cost. To give a rough estimate
of the arithmetic cost, we report execution times of software
implementations of all algorithms in Table 2. We use a tile

Scene BBOX LA LB LC NEW

FAIRY 1 1.3 1.4 1.6 0.8
blur 11 4.6 6.0 4.7 3.9
blur ×2 52 13 22 12 11

SPONZA 1 1.2 1.4 1.5 0.2
blur 2.6 1.6 2.1 1.9 0.7
blur ×2 5.7 2.3 3.3 2.5 1.5

HAIRBALL 1 1.5 1.7 1.8 1.0
blur 5.5 3.7 4.1 3.9 3.4
blur ×2 14 7.2 8.1 7.1 6.6

Table 2: Execution times (lower is better) for a CPU im-
plementation running on one core, with 2×2 pixel tiles and
16 samples per pixel, including triangle setup, rasterization,
Gouraud shading, and framebuffer updates. All numbers are
normalized against BBOX on the static scene.

FAIRY (23) SPONZA (92) HAIRBALL (3)

Figure 4: Test scenes (courtesy of Ingo Wald, Marko
Dabrovic and Samuli Laine) with the blur ×2 setting. The
average triangle area in pixels is indicated in parentheses.

size of 2×2 pixels in this measurement, as this was reported
to give better performance than 1× 1 pixel tiles in terms of
arithmetic cost in Laine et al’s paper [LAKL11]. Our algo-
rithm scales favorably in all scenes. Although Laine & Kar-
ras’ algorithm (LB) has higher STE than LA, the fine-grained
culling operations per sample do not pay off in our software
implementation. With modest or no blur, the overhead of the
per-sample culling makes the algorithms LB and LC more
expensive than the brute-force algorithm BBOX. Note that a
fixed-function hardware implementation may show different
behavior. We leave that study for future work.

Discussion We do not cull against the hyperplanes per
sample, which would add 9 fused multiply-add (FMA) opera-
tions to each sample test. In comparison, a single inside test
costs about 25 FMA operations [LAKL11]. In our software
implementation, these per-sample tests do not pay off. How-
ever, in a fixed-point hardware implementation it may be
worthwhile. For reference, the STE scores with per-sample
culling against the hyperplanes are included in Table 1 (num-
bers in parentheses). Our bilinear test is significantly less
expensive than Laine & Karras’ trilinear test and still allows
for fine-grained culling in ut- and vt-space. A hard case for

LA LB LC NEW

Per-triangle 500 400 700 900
Per-tile 40 16 56 50/130∗

Per-sample - 12 12 4

Table 3: Cost estimates (arithmetic ops) of culling. In prac-
tice, the per-sample cost dominates. With selective enabling
of the hyperplanes, the per-tile cost of NEW varies.
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Figure 5: Left: the green rational curve is bounded with an
upper and a lower linear segment: ua(t) = u(0)+t(u(1)−u(0))
and ub(t) = u( 1
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our coarser approximation is triangles with large perspective
motion. However, in most practical scenarios, the results in-
dicate that our test is a better option in terms of total ras-
terization cost. The hyperplane test is expensive per tile, but
efficient in scenes with modest blur, larger or sliver triangles.
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Appendix A: Bilinear Bounds in xut space
In Figure 3, we visualize one ui j(t) function for varying x, as a sur-
face: u j(x, t) = nx ·p j(t)/c j(t) = (x p jw (t)− p jx (t))/c j(t). We want
to bound this surface from below by a bilinear patch. We exploit that
u j(x, t) is linear in x and for a given x = x0, u j(x0, t) is a rational

function in t. If c j(t) 6= 0, ∀t ∈ [0,1], the rational function is mono-
tone and can be bounded by two linear functions ua(t) and ub(t), as
shown in Figure 5.

The bilinear patch must be conservative for all t ∈ [t0, t1]⊆ [0,1]
and within the screen space horizontal extents [x0,x1] of the moving
and defocused triangle. To find a lower bilinear bound, we proceed
as follows: first, fix x = x0 and evaluate min(ua(t),ub(t)), the mini-
mum of the upper and lower linear bounds for the rational function
u j(x0, t), at t = t0 and t = t1. Repeat the procedure for x = x1. This
gives us four points (one for each (xi, ti) corner) that define a bilin-
ear patch bounding u j(x, t) over [x0,x1]× [t0, t1]. The procedure is
repeated for all three u j(x, t) surfaces, and at each corner we keep
the minimum value. The four points define a bilinear patch which
is a lower bound of all three u j(x, t) functions. The points can be
computed in the triangle setup, where we also pad the bounds with
the half the tile size times the x-slope of the patch, so that we can
conservatively evaluate the patch once at the tile-center.

Appendix B: Linearized Edge Equations
In this section, we show that an edge equation from a triangle with
linear vertex motion in 2D homogeneous clip space and depth of
field can be written as:

e(x,y,u,v, t) = n(t) · (x,y,1)︸ ︷︷ ︸
en

+(m(t)× (u,kv,0)) · (x,y,1)︸ ︷︷ ︸
em

(4)

where n(t) and m(t) are quadratic vectors in t. Furthermore, we
bound the equation by a hyperplane in xyuvt space.

The clip space vertex position is given by: p′(u,v, t) = p(t) +
c(t)(u,k v,0), where c(t) is the signed clip space circle of confusion
radius of vertex p, and k > 0 is a scalar that compensates for non-
square aspect ratios. The edge equation’s normal is defined by:

p′0×p′1 = p0×p1 +(c1p0− c0p1)× (u,k v,0), (5)

where the first cross product can be expressed as:

p0(t)×p1(t) = (at2 +bt + c) = n(t). (6)

This is the normal of the time-dependent edge equation [AMMH07].
To obtain Equation 4, we introduce m(t) = c1(t)p0(t)− c0(t)p1(t).

For efficient culling, we bound Equation 4 within a screen space
region R by a hyperplane: a · x = 0, where x = (1,x,y,u,v, t), such
that e(x,y,u,v, t) > a ·x, ∀(x,y) ∈ R.

We follow previous work on motion blur rasterization [MCH∗11]
to linearize the first term (en) of Equation 4.

en = n(t) · (x,y,1) > o · (x,y,1)+ γt, ∀(x,y) ∈ R. (7)

To bound em = (m(t)×(u,kv,0)) ·(x,y,1) = (u,kv,0) ·((x,y,1)×
m(t)), we first bound each component of m(t) and express d̂ =

(x̂, ŷ,1)× m̂ as a vector of intervals: d̂ = (d̂x, d̂y, d̂z), where an inter-
val d̂ = [d,d]. A lower bound of em can then be written as:

em > min(d̂xu+ d̂ykv) > αu+βv+ξ, ∀(x,y) ∈ R. (8)

The coefficients are given by α = avg(d̂x), β = k avg(d̂y) and ξ =
−0.5(|d̂x|+ k|d̂y|), where avg(x̂) = 0.5(x+ x) and |x̂| = x− x.

To simplify the per-tile derivation of α,β and ξ, we express the
average and width of d̂x and d̂y as linear functions of the tile center
coordinates xc and yc respectively (in the triangle setup), padded to
take the half-tile extents into account.

Combining Equation 7 and 8, we have shown that:

e(x,y,u,v, t) = en + em > a ·x, (x,y) ∈ R, (9)

where x = (1,x,y,u,v, t) and a = (ξ+oz,ox,oy,α,β,γ). �
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