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Figure 1: We demonstrate a number of novel use cases for (hypothetical) higher-dimensional rasterization hardware. In the first three, we
exploit the volumetric extents of time-continuous and defocused triangles to perform geometric computations, i.e., occlusion and collision
detection, caustic rendering, and use the rasterizer as a flexible tool for sampling. In the second set of applications, we render a scene from
multiple viewpoints simultaneously, in order to achieve effects such as glossy reflections/refractions, soft shadows, and multi-view rendering.

Abstract

This paper assumes the availability of a very fast higher-dimensional rasterizer in future graphics processors.
Working in up to five dimensions, i.e., adding time and lens parameters, it is well-known that this can be used
to render scenes with both motion blur and depth of field. Our hypothesis is that such a rasterizer can also be
used as a flexible tool for other, less conventional, usage areas, similar to how the two-dimensional rasterizer in
contemporary graphics processors has been used for widely different purposes other than the original intent. We
show six such examples, namely, continuous collision detection, caustics rendering, higher-dimensional sampling,
glossy reflections and refractions, motion blurred soft shadows, and finally multi-view rendering. The insights
gained from these examples are used to put together a coherent model for what a future graphics pipeline that
supports these and other use cases should look like. Our work intends to provide inspiration and motivation for
hardware and API design, as well as continued research in higher-dimensional rasterization and its uses.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware architecture—
Graphics processors I.3.7 [Computer Graphics]: Computer Graphics—Three-Dimensional Graphics and Realism-
Color, shading, shadowing, and texture

1. Introduction
The two-dimensional rasterizer in a graphics processor is
a highly optimized fixed-function unit. Conceptually, it is
just a loop over samples bounded by a geometric trian-
gle, with the capability to execute a program for each cov-
ered sample/pixel. Besides using it for rendering three-
dimensional geometry, the rasterizer has been employed
as a tool for a wide variety of topics, including, e.g.,
shadow algorithms [Cro77,Wil78], constructive solid geom-
etry [Wie96], Voronoi diagrams [HKL∗99], collision detec-
tion [GRLM03], caustics [EAMJ05], ray tracing for global
illumination [Hac05], curved surfaces [LB06], and more.

We note that higher-dimensional rasterization is currently
a very active research topic, and many efficient algorithms
are emerging [FLB∗09, MCH∗11, LAKL11, AMTMH12,
MAM12], as well as hardware studies [BFH10]. The con-
ventional usage area is correct visibility for motion blur and
depth of field. The assumption in this paper is that there
will be an efficient fixed-function 5D rasterizer, including
efficient shading [RKLC∗11], in future graphics processors.
Our hypothesis is that this new machinery can be used for
many other purposes beyond motion/defocus blur. We have
identified six such unconventional uses, of which some are
dependent on shading and some only utilize time, lens or
depth bounds produced by the rasterizer.
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Figure 2: An overview illustration of our five-dimensional rasterization pipeline. The input is defocused, motion blurred tri-
angles, rasterized in tile order. For each tile, a triangle-against-tile test is performed, and only tiles with non-empty intervals
(û, v̂, t̂) continue to the next stage. In the backend (top right), sample-inside-triangle testing is done, and surviving samples
shaded. In conservative rasterization mode (bottom right), a tile size of 1×1 pixels is used, and the sample-inside-triangle test
is bypassed. In this case, the pixel shader is executed once per tile and receives the tile intervals as inputs.

The applications can broadly be divided into two cate-
gories. The first set of algorithms exploit the fact that a mov-
ing and/or defocused triangle sweeps out a volume in three
to five-dimensional space. This capability opens up for a
number of less intuitive use cases. We show examples in i)
continuous collision detection, ii) caustic rendering, and iii)
higher-dimensional sampling. The stochastic rasterizer can
also be used to simultaneously render a scene from many dif-
ferent viewpoints, through appropriate choice of lens, focus
plane, samples, and use of the time dimension. The bene-
fits are increased shader/texture coherence and fewer geom-
etry passes. To illustrate this, we focus on iv) glossy reflec-
tions/refractions, v) motion blurred soft shadow mapping,
and vi) stereoscopic and multi-view rendering with motion
and defocus blur. Some screenshots are shown in Figure 1.

Based on the insights gained from these examples, we
present a complete model for an efficient and flexible
stochastic rasterization pipeline, including novel additions
such as conservative depth computations. Our work is rather
long term and speculative research in the sense that it as-
sumes the existence of something that is not (yet) readily
available. We provide a first set of algorithms for each topic,
but we want to emphasize that we do not explore these fully.
The core contributions are that our work:

1. Sketches out a space of new applications for higher-
dimensional rasterization.

2. Presents the first coherent model for efficient stochastic
rasterization, including some novel additions.

3. Highlights many practical design aspects, e.g., the impor-
tance of conservative rasterization and flexible sampling.

4. Provides motivation for further research in stochastic ras-
terization and its uses, as well as hardware and APIs.

We will start by describing our pipeline, and then present the
specific novel use cases that have motivated our design.

2. Our Five-Dimensional Rasterization Pipeline
In this section, we describe the 5D stochastic rasterization
pipeline that is used throughout this paper. An illustration of
our pipeline can be found in Figure 2. The input is a triangle
with defocused vertices at t =0 and at t =1 in order to han-

dle both motion blur and depth of field. It is assumed that
the vertices move linearly in world space, and we assume
the thin lens model for depth of field rasterization, similar to
other work [FLB∗09, LAKL11, AMTMH12]. Furthermore,
our pipeline can efficiently disable depth of field and only
render motion blur, and vice versa. This is useful in several
applications, e.g., continuous collision detection and caus-
tics (3D), and for glossy effects (4D), see Sections 3, 4, 6.

Each pixel is assumed to have n samples, where each sam-
ple has a fixed screen space position, (x,y), fixed lens param-
eters, (u,v), and a time, t. Although most applications need
well-distributed stochastic samples, which may be procedu-
rally generated [JK08], we have found several cases where
other sampling patterns are beneficial or even required. This
includes glossy rendering, soft shadows, and stereoscopic or
multi-view graphics (Sections 6, 7, 8). We thus propose the
hardware uses a reasonably large programmable sample ta-
ble, coupled with a scrambling method [KK02] for increased
randomness when desired.

Our traversal order is tile-based since such a rasteriza-
tion order has been shown to be beneficial in several dif-
ferent aspects [MCH∗11, LAKL11, AMTMH12, MAM12].
This includes reduced memory bandwidth usage to buffers
and textures, efficient handling of widely varying triangle
sizes, and the possibility of efficient depth buffer compres-
sion [AHAM11]. In addition, primitive setup is only done
once, and tile tests allow for arbitrary sample positions,
which makes for higher quality samples. Consequently, as
current graphics processors already employ a tile-based
traversal order, the transition from two to five dimensions
does not require a major pipeline re-design in this respect.

The output of a tile test is a set of intervals, (û, v̂, t̂), where
an interval is described as t̂ = [t, t], which is all t such that
t ≤ t ≤ t. These intervals are conservative estimates of the
samples that may overlap with the triangle being rendered.
Details on how to compute them in 5D can be found in previ-
ous work [LAKL11, MAM12]. In some cases, e.g., caustics
rendering (Section 4), we have found tighter bounds for the
time interval [GDAM10] to be beneficial, so the exact im-
plementation remains to be decided. In addition, we support
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optional, axis-aligned user clip planes, which can be speci-
fied to further limit the extents in uvt of a triangle. Each clip
plane is given as a lower or upper boundary, e.g., tclip, and
min/max operations are used to find the final set of sampling
intervals. This is a minor extension, but it allows more flex-
ible use of the rasterizer as a sampling engine (Section 5),
and it is consistent with current APIs that support clip planes
in x,y. We also introduce a way to compute a conservative
interval, ẑ, of the depth over the tile in order to perform
zmax-culling [GKM93] and zmin-culling [AMS03]. See Ap-
pendix A. The depth interval is also directly used in several
applications, including 5D occlusion queries and continuous
collision detection (Section 3).

As described in Figure 2, only tiles where all of the in-
tervals, û, v̂, t̂, are non-empty continue down the pipeline,
which is common practice. In the standard mode (top right
in the figure), each sample within those intervals is inside-
tested against the triangle, and surviving samples shaded.
Depending on the application, we use a shading memoiza-
tion cache [RKLC∗11], hereafter referred to as a shading
cache, or execute the pixel shader per sample. The shad-
ing cache is generally preferable, but some use cases like
caustics rendering and sampling (Sections 4, 5) require a 1:1
mapping between samples and shader executions.

By considering a large set of potential use cases, we have
found that it is often extremely valuable to be able to dis-
able sample testing altogether, and directly feed the inter-
vals (û, v̂, t̂, ẑ) output by the tile test to the pixel shader. In
this case, the pipeline behaves as a conservative rasterizer at
the granularity of the tile size [AMA05] in five dimensions,
and the pixel shader is executed per tile. We show examples
of using this for 5D occlusion queries, collision detection,
caustics, and sampling (Sections 3, 4, 5).

In the following sections, we will present each of our
example applications for five-dimensional rasterization in
more detail, in order to motivate the above design choices.

3. Five-Dimensional Occlusion Queries
Here, we generalize standard occlusion queries to five di-
mensions, which can be used for motion blurred and de-
focused occlusion culling. In addition, we also show that a
time-dependent occlusion query (no defocus) can be used for
continuous collision detection. Most contemporary graphics
processors and 3D APIs support a feature called occlusion
query [SA11]. An occlusion query (OQ) can be used to find
out how many fragments, n f , generated by a set of polygons
pass the depth test. For example, the faces of a bounding
box around a complex character can be used as an occlusion
query, and if n f is zero then the character is occluded with
respect to the contents of the depth buffer.

A sample-based way to extend occlusion queries to ac-
count for motion and defocus blur, is to render the object to
the depth buffer using the samples of the 5D rasterizer and
count the number of fragments that pass the test, i.e., in the

Figure 3: The gray area is the visible (i.e., not occluded) re-
gion in world space seen from a particular tile, where sam-
ples will pass the depth test and report the triangle as visible.

traditional sense. Figure 3 shows a moving triangle that is in
part occluded by other geometry during the shutter interval.
The gray area represents the time and lens intervals during
which the moving triangle is visible for a particular tile. In
a sampled approach, samples in the gray area will pass the
depth test and report the triangle as visible.

For motion blur and defocus blur, a relatively large num-
ber of samples per pixel (e.g., 16−64) may be needed for
sufficient occlusion query precision. Each occlusion sample
requires additional computation and bandwidth, but in many
cases, the number of fragments that pass is not needed. We
therefore propose to use a five-dimensional interval-based
occlusion query, which reduces these requirements substan-
tially. An interval-based occlusion query is similar to mo-
tion blur z-culling techniques [AMMH07, BLF∗10], where
zmin/zmax-values for tiles are stored in a fast memory. A tile
may also have several zmin/zmax-values for different time in-
tervals. In a 5D setting, this concept is extended to the u and
v lens parameters, i.e., zmin/zmax-values are stored for dis-
joint boxes covering the entire uvt-space for the tile. Con-
sequently, the occlusion rate is dependent on the number of
zmax-values per tile and also the tile size. With more subdi-
visions in time, efficiency for moving occluders increases.
Thus, as a complement to sample-based OQs, the user can
trade off occlusion rate for OQ speed.

When performing the query, the rasterizer provides inter-
vals, û, v̂, t̂, and ẑ, for each primitive and visited tile. The û, v̂,
and t̂ intervals are used to decide which boxes in uvt-space
need to be considered when doing the depth comparisons,
while the ẑ intervals (conservative, not generating any false
positives) are used in the actual comparisons. This means
that individual samples for each pixel in a tile need not be
touched, i.e., no expensive sample-inside-triangle tests or
depth computation have to be performed. As soon as one
comparison fails, the geometry is not fully occluded, and
further rasterization and testing can be aborted.

Continuous Collision Detection Collision detection (CD)
algorithms can be broadly divided into discrete and contin-
uous methods [RAC02]. A drawback of discrete methods
is that they may miss collisions involving fast-moving ob-
jects, e.g., a bullet shot through a thin paper. Continuous
collision detection (CCD) algorithms avoid these problems,
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Figure 4: A two-dimensional example of continuous colli-
sion detection between two lines. The red (moving down)
and blue (moving up) lines move from t=0 to t=1. For pix-
els A and B, the conservative bounds for time, t, and depth,
z, are visualized to the right. The lines can never overlap in
pixel A, since the red and blue boxes do not overlap in the
tz-plane. For pixel B, the lines do overlap.

sometimes called “tunneling” effects, by computing the first
time of contact between objects.

To accelerate CD, many image-based approaches run-
ning on the GPU have been proposed, starting with Shinya
and Forgue’s work [SF91]. Govindaraju et al. [GRLM03,
GLM06] presented an algorithm which computes the poten-
tially colliding set (PCS) for a set of objects. Pairs of objects
not in the PCS will definitely not collide. Below, we show
how to compute the PCS for CCD using a three-dimensional
rasterizer to determine whether two objects do not collide in
a certain period of time. A generalization to many objects
follow the lines of previous work [GRLM03].

We have chosen to describe our approach in relation to
Govindaraju et al.’s work, which works as follows. To de-
tect whether two objects do not (conservatively) collide at
a certain instant of time, the first object is rendered to the
depth buffer. In a second pass, the depth test is reversed,
and the second object is rendered with an occlusion query.
If no fragments pass, then there is no collision between the
two objects. We call this an overlap test. This is done ortho-
graphically in the xy, xz, and yz planes, and also from op-
posite directions, which sums to six overlap tests. If at least
one of these tests indicates that there is no collision, then the
pair does not belong to the PCS. As motion is introduced,
then the sample-based OQ, described above, can replace the
“static” OQ, but a conservatively correct PCS is not com-
puted when sampling at discrete times.

Instead, we propose a substantially different approach for
CCD, based on interval-based occlusion queries, which use
a conservative 3D rasterizer. We start with the case of two
triangles. For each pixel and triangle, where a 1×1 tile
test indicates overlap, we insert the time and depth inter-
vals (t̂ = [t, t], and ẑ = [z,z]), into a per-pixel buffer, e.g., let
RGBA = [t,z, t,z] be an axis-aligned bounding box in tz. If
the tz-boxes of two triangles overlap, they potentially collide
in that pixel. This is illustrated in Figure 4.

To handle many triangles per object, we initialize each
pixel to represent an empty bounding box. Then, for each
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Figure 5: Collision detection in a single pixel between an ob-
ject whose tz-fragments are red, and one object whose frag-
ments are blue. Left: bounding boxes of the union of all tz-
fragments for the red and blue objects are accumulated, and
overlap tested. Right: alternatively, test blue tz-fragments in-
dividually for overlap against the bounding box of all the
red fragments. This would be more efficient in this example,
since it would not detect any overlap.

xy xz yz

Figure 6: From left to right: orthographic xy, xz, and yz vi-
sualizations of pixels overlapping in time and in depth. For
each pixel that overlaps in depth, the pixel’s blue channel is
set, and if there is an overlap in time, the red channel is set.
Hence, only purple pixels overlap in time and in depth. Cur-
rent algorithms only use overlap in depth, while we use both
time and depth. In this case, we detect that the objects do not
overlap in the xz projection (middle image), while previous
algorithms would put them in the potentially colliding set,
since the two objects overlap in depth in all views.

triangle in the first object, the union of the current bound-
ing box and the incoming fragment’s box is computed using
min/max blending. For the second object, a similar buffer
is generated. When both buffers have been created, a box
vs box overlap test is performed for pixels with the same
xy-coordinates (Figure 5, left). For a particular pixel, no col-
lision can occur if the boxes do not overlap. Alternatively,
when the second object is rasterized, each tz-interval can be
directly tested for overlap with the first object’s bounding
box (Figure 5, right).

We have implemented our algorithm in a simulated ras-
terization pipeline. An example is shown to the left in Fig-
ure 1, where a “toaster” is dodging an approaching soccer
ball. For CCD, we use orthographic 3D rasterization in the
xy, xz, and yz planes, i.e., we use only three passes com-
pared to six passes using previous algorithms [GRLM03].
We visualize the pixels that overlap in depth and in time in
Figure 6. As can be seen, our method detects that these two
objects do not overlap, as opposed to traditional techniques
using overlap in depth only.

To summarize, for many applications, continuous (as op-
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Figure 7: The caustic volume from a generator triangle,
where the incoming light L is refracted based on the normals
n along directions r is shown to the left. Then follows three
methods for bounding the volume. Note that the rasterized
areas differ substantially.

posed to discrete) CD is indeed required. To that end, we
argue that the method of Govindaraju et al. does not take
time into account and adds all pairs with overlapping trajec-
tories to the PCS (and incur higher cost). Our contributions
are (i) an improved z-interval estimate (appendix), (ii) a first
description of continuous CD for triangle soups on the GPU,
and (iii) an inexpensive detection test (2D AABB).

We believe that occlusion queries for higher dimensional
rasterization will prove to be very useful, and we foresee
a wide range of uses. This includes, for example, modi-
fications to hierarchical occlusion culling [BWPP04] with
occlusion queries so that motion blur, depth of field, and
their combination can be even more efficiently rendered. For
time-continuous collision detection, there are many avenues
for further research. This includes self-collision, finding the
time of contact, and different hierarchical strategies for im-
proved performance.

4. Caustics Rendering
Caustics are the formation of focused patterns from light re-
fracted and reflected in curved surfaces or volumes. These
patterns add realism to a scene, e.g., the beautiful, shimmer-
ing light on the bottom of a swimming pool. The effect can
be created by simulating the traversal of photons, calculat-
ing the local light density at the receiving surface. Physically
correct methods [JC98], which inherently handle caustics as
well as other phenomena, are still too costly for real-time
use. Using graphics hardware, several approaches that trace
light beams have been proposed [Wat90, IDN02, EAMJ05,
LD11], as well as splatting-based methods [SKP07].

In beam tracing techniques, generator triangles repre-
sent the origin of caustic beams, e.g., an ocean surface.
The beams are created by letting incoming light be re-
fracted or reflected in the generator triangles. Ernst et al.’s
algorithm [EAMJ05], later refined by Liktor and Dachs-
bacher [LD11], generates surface or volume caustics by in-
tersecting the caustic beams with receiving surfaces or eye
rays, respectively. In dynamic scenes, the reflected/refracted
rays and the set of caustic beams are generated in each frame.
The generated caustics volumes are then rasterized, similar
to shadow volume rendering, and for each covered pixel, the
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Figure 8: A visualization of the number of pixel shader ex-
ecutions relative to the method by Ernst et al. for a volume
caustics example. Dark red represents 2,200 pixel shader ex-
ecutions. We use a motion blur rasterizer to render the caus-
tic volumes as moving triangles, which results in less fill-rate
than the two bounding volume methods.

light contribution of each volume is computed. A tight en-
closure of each beam is essential to decrease its screen space
area and reduce the fill rate when accumulating the light in-
tensity. As the sides of the caustic beams describe bilinear
patches, such fitting is not clear-cut. Ernst et al. use a bound-
ing prism approach with touching planes, while Liktor and
Dachsbacher refine this for heavily warped volumes.

A motion blur rasterizer can in this setting be used to
model the caustic volume. Instead of bounding the bilinear
patch sides of the caustic beam with a volume (see Figure 7),
the moving triangle is directly rasterized with the generator
triangle at t =0, and the end triangle at t =1 (with backface
culling disabled). The pixel shader is invoked for pixels cov-
ered by the moving triangle at any time, t ∈ [0,1]. To find
this overlap, and to reduce the fill-rate as much as possible,
we compute the exact time interval when the pixel is inside
all three moving triangle edges [GDAM10].

With our approach, a bounding volume is not needed and
the resulting fill rate is, in general, lower. Figure 7 shows
a warped triangle, and compares the screen space coverage
of the bounding volume methods with the area of the mo-
tion blurred triangle. In Figure 8, the three approaches are
compared in an ocean scene with 130,000 caustic volumes.
Here, our approach has lower fill-rate than the other two, and
avoids bounding volumes altogether.

The modeling of beams as moving triangles may enable
the use of rasterizer output in various other algorithms, e.g.,
to simplify pixel shaders. It would be interesting to explore
this concept in a broader sense. For instance, for volumet-
ric caustics, modeling of light attenuation through scattering
and absorption could possibly be approximated by the ras-
terizer’s depth interval; ẑ=[z,z], i.e., z− z can be used as an
approximation to the distance the eye ray travels in the beam.
For surface caustics, ẑ may be used to cull parts of the beams
that are completely occluded, and parts of the beams that are
definitely in front of the geometry in the depth buffer for the
current tile. By doing so, it is expected that the majority of
expensive pixel-in-volume tests can be avoided.

5. Sampling
Many applications in computer graphics, scientific and med-
ical visualization, and engineering need to draw random
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samples over an arbitrary domain. Examples in graph-
ics include rendering, texture synthesis, and object place-
ment [PH10]. A standard approach is to divide the sampling
domain into simpler shapes, pick a shape at random with
the correct probability, and place a sample in it. Although
not trivial to parallelize, several papers have shown it can be
done in general GPGPU code [Wei08, GM09, EDP∗11].

Our core insight is that a higher-dimensional raster-
izer performs many similar operations, including schedul-
ing/dispatching of the work, random selection, and rejec-
tion sampling against complex shapes in 3D–5D. Rasteriza-
tion also naturally decouples the sample placement from the
choice of tessellation, i.e., a sample that misses one primi-
tive falls into an adjacent, which is an added benefit com-
pared to methods that sample shapes independently. All this
ends up being a fair amount of code otherwise. The underly-
ing assumption is that a hardware rasterizer would be more
power-efficient, even if the algorithms have to be tweaked
a bit. Naturally, this is currently hard to prove, so we will
focus on sketching the idea and a few applications.

The 5D Rasterizer as a Volumetric Sampler The stochas-
tic rasterization process is usually illustrated in clip space by
moving/shearing a triangle’s vertices, but it can equivalently
be seen as the triangle carving out a volumetric shape, S,
in 5D xyuvt-space. This domain is filled with uniformly dis-
tributed samples, and the rasterizer quickly finds which ones
are inside S through tile tests as described in Section 2. The
analogy in 2D is a triangle in screen space, which cuts out a
set of uniform samples in xy. The volume of S directly con-
trols the expected number of samples, N, placed in it, i.e.,
E[N]=ρV(S), where ρ is the sampling density.

In 3D xyt-space, S is a generalized triangular prism with
the triangular end caps at t =0 and t =1 (or a tighter range
if user clip planes in t are used). Note that due to varying
per-vertex motion and perspective foreshortening, the edges
connecting the end caps may be curved and the sides are usu-
ally non-planar in xyt. This is non-intuitive, as the edges are
always straight lines in clip space, although the sides may
be bilinear patches [AMMH07]. When one extra dimension,
u, is added, each vertex is sheared in x as u varies. The
shear may be non-linear as it is a function of depth, which
is time-dependent. The carved out hypervolume has 12 ver-
tices, with end caps being generalized triangular prisms in
3D. Finally, in 5D, S is a complex shape with 24 vertices.

To sample an arbitrary domain, D, we first construct
a conservative bounding volume, B, so that D ⊆ B. The
bounding volume is then tessellated into a number of non-
overlapping, adjacent primitives, S, which are individually
rasterized. In 2D, this corresponds to tessellating the inte-
rior of an arbitrary bounding polygon into triangles. Due to
rasterization tie-breaking rules, any sample is guaranteed to
be placed in at most one primitive. Finally, the pixel shader
performs an analytical test per sample (in B), to reject any
remaining samples outside of D. Figure 9 shows an illustra-
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Figure 9: The stochastic rasterizer can be used as a flexible
sample generator in, e.g., numerical integration. In this ex-
ample, generalized triangular prisms conservatively bound
the integration domain (here a torus). The prisms are raster-
ized as motion blurred triangles in xyt-space (note the t-axis
pointing upwards). At each sample, the integrand is evalu-
ated and accumulated in the pixel shader. Similar strategies
apply to other sampling problems.
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Figure 10: The n-simplex is the simplest possible n-
dimensional polytope, consisting of n+1 vertices, with all
pairs connected by edges. The product of m simplices
makes an (n1, . . . ,nm)-simploid in ∑ni dimensions. The fig-
ure shows simplices in up to three dimensions, and an (2,1)-
simploid, i.e., triangular prism.

tive example in 3D. The exact sample placement is given by
the built-in low-discrepancy sample generator (Section 2).
Alternatively, the conservative mode can be used and any
number of random samples generated over the bounds ûv̂t̂.
In this case, the samples have to be manually tested against
S ∩D, not just D, since the bounds may overlap. Collec-
tively, the result is a uniform random sampling of D; the
hardware rasterizer performs an initial fast, but coarse sam-
ple culling, and the pixel shader performs a final fine-grained
test (which can be skipped if B=D).

To make S easier to work with, we can restrict the ver-
tex locations in such a way that all sides of the primitive
are planar. For example, in the 3D case, if we restrict each
vertex to not move in depth, and each pair of edges in the
triangular end caps of the prism to be parallel, all edges will
be straight and all sides planar. The result is a tapered trian-
gular prism. In general, we can place the vertices so that S
is an n-polytope (a geometric object with flat sides in n di-
mensions), where n≤5. The class of polytopes generated by
the stochastic rasterizer in 3D, 4D, and 5D, will formally be
(2,1), (2,1,1), and (2,1,1,1)-simploids [Moo92], respec-
tively. See Figure 10 for examples.
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Figure 11: Optimized dart throwing keeps track of the voids,
i.e., unsampled regions, in the sampling domain to guide
the insertion of new points. We represent voids as poly-
gons/polytopes, as shown in blue on the left. Candidate
points are generated in parallel by stochastically rasterizing
all voids, after random displacement and appropriate scaling.
Some examples in 3D are shown on the right.

Accelerated Dart Throwing Poisson-disk sampling using
dart throwing [Coo86] is one of the intriguing use cases for
our framework. The resulting blue noise samples are ideal
for many applications, e.g., stippling and texture synthesis.
In its basic form, dart throwing generates a large number of
random candidate points over D, but only keeps the ones
that are separated by a certain minimum distance. Modern
algorithms accelerate the process by tracking the voids, V ,
between samples using, e.g., octree cells or general poly-
topes [Wei08,EDP∗11]. Conceptually, the sampling domain,
D, is first subdivided into voids, which are put in an “active”
list, and the following operations are performed:

1. Select a void, V , from the active list with probability ac-
cording to its volume.

2. Choose a random candidate point, p, in the void.

3. Check if p meets the minimum distance criteria for the
neighboring points, and if so, add it to the point set.

4. Check if V is completely covered, and if not, split it into
smaller voids that are added to the active list.

With a stochastic rasterizer, we can perform steps (1) and (2)
on a large number of voids in parallel. Each void is repre-
sented as a single (or union of) simploids compatible with
the rasterizer. Figure 11 shows some examples. The expected
number of candidate points in each void is controlled by
uniformly scaling it, and the voids are independently and
randomly displaced to avoid bias. All voids in the active
list are then rasterized with the depth test disabled, and the
generated candidate points stored to a linear array (e.g., us-
ing an append buffer). A compute pass finally processes
the points to eliminate conflicts, and updates the active list.
When the active list is empty, a maximal distribution has
been achieved, i.e., no more points can be inserted.

Adaptive White Noise Non-uniformly distributed samples
in n dimensions can be achieved by sampling uniformly over
an appropriate domain in n+1 dimensions, and orthograph-
ically projecting the samples back to n dimensions. Intu-
itively, the shape of the sampling domain in Rn+1 is de-

x

y

P

Figure 12: Non-uniform samples can be created by sampling
the region under the density function (shown in green), ρ(x),
uniformly and projecting the generated samples on x. The
rasterizer quickly rejects all samples (gray) outside the ras-
terized triangles, and in the pixel shader, the remaining sam-
ples are tested against ρ to remove outliers (red). The same
technique applies in higher dimensions.

fined by viewing the density function, ρ(x), where x∈Rn,
as a height field. By generating samples under the height
field (x,ρ(x))∈Rn+1, and projecting on x, we effectively
get samples distributed according to ρ(x).

This is not fundamentally new, but the stochastic raster-
izer gives us an efficient way of sampling the height field
(x,ρ(x)) in up to five dimensions. This allows non-uniform
sampling in up to 4D. Figure 12 shows a simple example of a
1D density function, which is lifted to 2D, bounded and tes-
sellated, and sampled by rasterizing the resulting triangles.
Note that samples generated using this method have white
noise characteristics, as due to the projection, it is difficult
to ensure a minimum point distance (i.e., blue noise).

6. Planar Glossy Reflections and Refractions
To render glossy effects, it is necessary to sample the scene
in multiple directions from the surface point being shaded.
For planar surfaces, this can be implemented as a two-
dimensional shear of the reflected/refracted geometry. This
has been exploited in previous multi-pass approaches based
on accumulation buffering [DB97], or stochastic motion blur
rasterization [AMMH07]. Our solution is instead to use the
4D rasterizer to perform the entire 2D shear in a single pass.

For each frame, our method first generates a reflec-
tion/refraction map. The map is stochastically rendered with
correct occlusion into a multisampled render target and then
pre-filtered into a 2D texture, which is used as texture when
the scene is rendered from the original viewpoint. For re-
flections, we set the camera at the reflected position of the
primary camera, as illustrated in Figure 13 (left). Alterna-
tively, to compute a refraction map, we choose a single ray
from the primary camera and refract it correctly. We then
translate the camera, along the refraction plane normal, to
intersect this ray. In our implementation, the central ray of
the primary camera is used (right in Figure 13).

Our way of translating the camera results in an approx-
imate index of refraction that is correct at the chosen cen-
tral ray. However, it is progressively less accurate, but still
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glossy reflection

lens

glossy refraction

lens


Figure 13: The dotted cameras in the figure are used for
rendering the reflection map (left) and the refraction map
(right), respectively. The green lines indicate the direction
in which the primary camera is translated to find these po-
sitions. The frustums that our method sample using 4D ras-
terization are shown in red for a single texel. Note that the
reflecting/refracting plane (blue line) becomes both the fo-
cus plane and the near plane.

plausible, toward the edges of the image. For both reflection
and refraction, the viewport is chosen to tightly enclose the
glossy surface, which is also set as the focus plane. The cen-
ter of the lens is located at the reflection or refraction cam-
era position as described above, and the lens plane is parallel
to the reflection or refraction plane. This gives us a camera
setup with an off-center viewport, which can be used with
four-dimensional rasterization.

In our implementation, we use a uniform, stratified sam-
pling of a circular camera lens. This results in a visually
plausible BRDF, and although it is not physically based, it
is possible to control the roughness of the surface by setting
the size of the lens. For future work, it would be interesting
to examine different BRDFs, either by adjusting the sample
distribution or by calculating a weight for each sample. The
multi-sampled render target is finally resolved into a texture
and no specialized filter is required when sampling. Our re-
flection and refraction maps are generated in such a way that
they map directly to the glossy surface and can, if desired, be
weighted together according to the Fresnel term when ren-
dering the surface. Examples can be seen in Figure 14.

7. Motion Blurred Soft Shadow Mapping
We show that a five-dimensional stochastic rasterizer can be
set up to generate motion blurred soft shadows through a
variation of the shadow mapping algorithm [Wil78]. We note
that the (u,v) sample parameters may be used to stochasti-
cally vary the sample position on an area light source, as
shown in Figure 15. Furthermore, the time parameter may
be used to interpolate object motion similar to what is de-
scribed by Akenine-Möller et al. [AMMH07]. Using the
stochastic rasterizer, we can thus create a 5D visibility field
as seen from an area light source, i.e., a 5D shadow map.
This gives us visibility data similar to what is used by Lehti-
nen et al. [LAC∗11], which needs to be filtered to give a
low-noise estimate of visibility for every screen pixel.

Figure 14: Two renderings with 16 samples per texel for the
reflection/refraction maps, using a simple box resolve filter.
Left: glossy reflection. Right: glossy refraction. The bottom
row compares images with 16 and 64 samples per texel.

As lookups in a 5D data set are inherently difficult (of-
fline algorithms often use 5D kD-trees, for example), we
generate a 5D shadow map restricted to a small set of fixed
(u,v, t)-samples. This gives results equivalent to accumula-
tion buffering for soft shadows [HA90], but our 5D shadow
map is generated in a single render pass. The shadow map is
queried in the subsequent shading pass, which uses motion
blur rasterization with the same set of t parameters. With
this setup, the shadow map lookups can be made very ef-
ficient. The data structure is an array of 2D shadow maps,
which is indexed by t. Thus, in constant time, each sample’s
t parameter determines which shadow map and correspond-
ing projection matrix to use, and we perform a traditional
shadow map lookup using these. This implies that the 5D
shadow map needs to be queried per sample for correct mo-
tion blurred shadows, as the shadow map lookup depends on
the parameters of the samples seen from the camera. An ex-
ample of soft shadows with motion blur is shown in Figure 1,
generated with a set of 64 unique (u,v, t) values.

The most interesting venue for future work lies find-
ing hardware-friendly data structures that allow efficient
lookups in higher dimensions. This would enable more well-
distributed samples and produce noise instead of the band-
ing artifacts associated with accumulation buffering. We
note similarities to the work by Lehtinen et al. [LAC∗11],
but much work remains before such filtering approaches
can be used in the real-time domain. Another interest-
ing area of future work is lossy compression of visibility
data to make 5D shadow lookups more efficient at reason-
able loss of quality; for instance transforming the visibil-
ity data for more efficient lookup by extending the work of
Agrawala et al. [ARHM00].
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Figure 15: The camera setup used to create a 5D shadow
map. The (u,v) parameters position the shadow camera over
the area of the light source, and t is used for object motion.
For simplicity, we set the focus plane to infinity.
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Figure 16: Sampling for multi-view and stereoscopic render-
ing. The yellow areas show the full extent of the lens. The
green area shows a single view’s part of the lens.

8. Stochastic Multi-View Rasterization
Stereoscopic and multi-view rendering are seeing wide-
spread use due to the increased availability of 3D display
technology. Popular usage areas include films, games, and
medical applications. Stereo involves rendering separate im-
ages for the left/right eyes, while multi-view displays may
need between five and 64 different images [Dod05].

We use a stochastic 5D rasterizer to generate multi-view
images with motion blur and depth of field in a single pass.
This extends Hasselgren and Akenine-Möller’s [HAM06]
work for static multi-view rendering. Their shading cache
is directly applicable, but in our pipeline originally targeting
motion blur and depth of field, we use a memoization shad-
ing cache [RKLC∗11], allowing us to get shader reuse not
only between views, but also over time and the entire lens.
This is similar to what was suggested by Liktor and Dachs-
bacher [LD12], and we believe this will be a very important
use case for higher-dimensional rasterization.

The viewpoints are located on a camera line with
small distances in between. To avoid inter-perspective alias-
ing [ZMDP06], it is important to filter over a region of the
camera line when generating a view. With a standard 2D
rasterizer, multi-view images with motion blur and depth of
field can be generated by rendering a large set of images at
different positions on the camera line, lens and time [HA90]
and filter them together. This is impractical for many views,
has low shading and texture cache coherence, and requires
many geometry passes. In contrast, we render all views
stochastically in one pass with very high shading reuse.

If we add depth of field to a multi-view rendering setup,
the camera line becomes an oblong region/lens. We sam-
ple over this region in a single four-dimensional rasteriza-
tion pass, as seen in Figure 16. The fifth dimension of the

(a) (b)

Figure 17: Top: a pair of stereoscopic images with mo-
tion/defocus blur rendered using our 5D rasterizer with
eight samples per view. These images were constructed for
parallel-eye viewing, and hence the stereo effect can be seen
when the human viewer focuses at infinity. Bottom: multi-
view rendering with seven views, each filtered from a subre-
gion of the lens, in this case using overlapping box filters.

stochastic rasterizer is used for motion blur, as usual. For
stereoscopic rendering, the samples are divided into two
disjoint regions on the lens, which effectively creates two
smaller lenses, as can be seen to the left in Figure 16. The
images in Figure 17 were rendered using this approach. For
more efficient rasterization, the separate lens regions could
share the tile test for the v-axis, but perform separate tests
for the u-axis.

We have implemented stereoscopic and multi-view ren-
dering with motion and defocus blur in our pipeline
equipped with a shading cache (see Section 2). Rendering
the two stereo views in Figure 17 results in just a 10% in-
crease in shader invocations, compared to rendering a sin-
gle view only, using a shading cache with 1024 entries. For
multi-view rendering with seven views, the total increase in
pixel shader invocations is just 15% in this example.

9. Conclusion
We have presented a number of future-looking use cases for
higher-dimensional rasterization, as well as several improve-
ments to the pipeline itself, which we hope will help guide
future hardware and API design. Our inspiration came from
the analogy with the traditional rasterization pipeline, which
has been used for a wide range of tasks that were not im-
mediately obvious. We have shown that the same will likely
hold true for a stochastic rasterization pipeline.

One of our core insights is that the time and lens bounds
provided by recent tile-based traversal algorithms have a
much wider applicability than just sample culling. Seeing
the moving/defocused triangle as a volumetric primitive and
utilizing its extents in the different dimensions, opens up for
many interesting use cases. Our second set of applications
are more straightforward, but they highlight many practical
aspects of the design and present a useful model for think-
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ing about stochastic rasterization as a tool for efficiently
rendering a scene from many different viewpoints. Besides
the presented applications, it may also be possible to use
higher-dimensional rasterization in other related topics, such
as computer vision and computational photography.

The next step is to further analyze and improve the most
promising applications. We have focused on looking broadly
at what can be done with a higher-dimensional rasterizer,
but detailed simulations are necessary to reveal the true win-
ners. Other than that, the most obvious future work would
be to implement the full pipeline in hardware. We believe
and hope the graphics research community will continue to
explore topics along these lines, in which case our research
will have truly long term value.
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Figure 18: A conservative maximum depth bound from our
second test is expressed as a plane equation Π(t) that moves
linearly in time, which has larger (or equal) depth than the
triangle (as seen from the camera) at all times, t ∈ [0,1].

Appendix A: Conservative Depth Computations

For efficient zmin/zmax-culling, it is important to conservatively es-
timate the min/max depth of a triangle inside a tile. This is straight-
forward for static triangles, but considerably harder for motion
blurred triangles. The only known method [AMMH07] reverts to
using min/max of vertices when the triangle changes facing during
t ∈ [0,1], for example. This leads to poor bounds. In this discussion,
the vertices at t = 0 are denoted q0q1q2, and r0r1r2 at t = 1. Our ap-
proach is based on two types of tests, which gives tight estimates of
minimum and maximum depth over a motion blurred triangle inside
a tile. The first test is similar to the moving bounding box around
the triangle [MCH∗11], except that for the max depth computation,
we only use the farthest rectangle of the box, and vice versa.

The idea of the second test is to compute a plane equation through
the triangle at time t = 0 (t = 1), and move that linearly in t along
the plane’s normal direction, such that it always has the moving tri-
angle on one side of the plane. This is illustrated in Figure 18. For
example, the moving plane equation for maximum depth (based on
the triangle at t = 0), can be constructed as follows. The normal,
n, of the triangle at t = 0 is computed, and negated if nw < 0 in
order to ensure that it moves in the right direction. The plane equa-
tion is then n · x+ d = 0, where d = −n ·q0, and x is any point on
the plane. Next, we compute the maximum signed distance from the
plane over the vertices of the moving triangle at t = 1:

v =−max
i
(n · ri +d), i ∈ {0,1,2}. (1)

At this point, we have created a moving plane equation, which
moves in the direction of the plane normal: Π(t) : n ·x+d + vt = 0.
As can be seen, we have added the term vt, which ensures (by con-
struction) that the triangle is “below” the moving plane, Π(t). If Π(t)
does not sweep through the camera origin, e.g., d + vt 6= 0,∀t ∈
[0,1], then Π(t) has greater depth than the moving triangle at all
times, t ∈ [0,1]. Similarly, a moving plane equation can be derived
from the triangle normal at t = 1.

For each moving plane equation, the maximum depth is com-
puted over a tile by evaluating the plane equation at the appropriate
tile corner using the time interval, t̂, from the tile test. The minimum
of these two evaluations and the maximum depth from the first test
is used as a conservative maximum depth over the tile. Similar com-
putations are done for evaluating the minimum depth.

This approach can also be extended to handle depth of field.
Briefly, the depth estimations need to be done at the four corners
of the two-dimensional bounding box of the lens shape, and similar
to before, the second test has to be disabled if the plane sweeps over
any part of the lens (and not only a single camera point).


