
This is an author generated version. The original publication is available at www.springerlink.com

Efficient Multi-View Ray Tracing using Edge Detection and
Shader Reuse

Magnus Andersson · Björn Johnsson · Jacob Munkberg · Petrik

Clarberg · Jon Hasselgren · Tomas Akenine-Möller

Abstract Stereoscopic rendering and 3D stereo dis-

plays are quickly becoming mainstream. The natural

extension is autostereoscopic multi-view displays, which

by the use of parallax barriers or lenticular lenses, can

accommodate many simultaneous viewers without the

need for active or passive glasses. As these displays, for

the foreseeable future, will support only a rather lim-

ited number of views, there is a need for high-quality

interperspective antialiasing. We present a specialized

algorithm for efficient multi-view image generation from

a camera line using ray tracing, which builds on previ-

ous methods for multi-dimensional adaptive sampling

and reconstruction of light fields. We introduce multi-

view silhouette edges to detect sharp geometrical dis-

continuities in the radiance function. These are used to

significantly improve the quality of the reconstruction.

In addition, we exploit shader coherence by comput-
ing analytical visibility between shading points and the

camera line, and by sharing shading computations over

the camera line.

Keywords multi-view, ray tracing, adaptive sampling,

edge detection

1 Introduction

Already around the beginning of the 20th century, in-

ventions such as parallax barriers, lenticular lenses, and

integral photography saw the light of day [19]. These

form the basic foundations for stereoscopic and multi-

view displays available today about a hundred years

later. However, it is only during the past couple of years

that this technology has seen more widespread use. For

example, many new feature films are being produced

M. Andersson
Lund University/Intel Corporation,
E-mail: magnusa@cs.lth.se

with 3D in mind, and if this development continues,

3D cinema viewing may be more common than old-

fashioned “normal” (2D) viewing. Recently, stereo ren-

dering has also been re-introduced to real-time graph-

ics with products targeting game players, and in South

Korea, broadcasts of public television for stereo started

in January 2010. In addition, automultiscopic displays,

with many more than two views (e.g., 8 or 64) have

become publicly available, and there is ongoing stan-

dardization work to augment MPEG to handle multi-

ple views (see the previous work section and proposed

algorithm by Ramachandra et al. [25]). All this implies

that stereo and multi-view display technology is going

mainstream, and may soon be ubiquitous.

Hence, it is expected that rendering for such displays

will be increasingly important in the near future. For

ray tracing-based algorithms, techniques such as multi-

dimensional adaptive sampling (MDAS) [12] can eas-

ily render images for multi-view displays by sampling

in the image plane, (x, y), and along the camera axis,

v. While MDAS can be used for rendering any multi-

dimensional space, we focus on a specialized algorithm

for high-quality rendering using ray tracing with com-

plex shaders for multi-view images.

We present two core contributions. First, we detect

multi-view silhouette edges, which encode a subset of

the geometric edges in the scene. We use these multi-

view silhouette edges during reconstruction of the final

image to improve quality. Second, since shading is ex-

pensive, we exploit the special case of multi-view image

rendering by reusing the shading computations between

views when possible. This is done efficiently using ana-

lytical visibility. Apart from these techniques, our algo-

rithm uses adaptive sampling as described by Hachisuka

et al. [12]. We render images with substantially higher



2 Magnus Andersson et al.

image quality in equal amounts of time as state-of-the-

art adaptive sampling techniques.

2 Previous Work

The most relevant work is reviewed here. Techniques

and algorithms for multi-view rasterization are not dis-

cussed as they have little overlap with our work. We

note that sampling the camera line can be seen as a

temporal movement of the camera, and therefore, we

also include work done in temporal sampling and ray

tracing.

A four-dimensional light field [21,11] is described by

the plenoptic function. Isaksen et al. [18] introduce dy-

namically reparameterized light fields, which is a tech-

nique that enables real-time focus and depth-of-field ad-

justments from a full four-dimensional light field. Any

depth in the scene can appear in focus, by using a wide-

aperture reconstruction filter. Light field generation can

be done using both texture mapping-based algorithms

or using ray tracing. In the latter case, they simply it-

erate over the cameras. Our work focuses on a reduced

light field with three dimensions, where two dimensions

form the screen plane, and the third dimension is a line

where the camera can be positioned. We also use adap-

tive sampling, back tracing, and multi-view silhouette

edges, in contrast to previous algorithms.

A suitable kernel for recovering a continuous light

field signal from (sparse) samples is proposed by Stew-

art et al. [27]. They discuss how the reconstruction filter

should be modified to handle non-Lambertian BRDFs.

In addition, low-pass filtering is done to avoid ghost-

ing, and then they use the wide-aperture approach [18]

to isolate features around the focal plane. A high-pass

filter is used to extract these features and those details

are finally added back to the low-pass filtered version.

Determining the minimal sampling rate needed for

alias-free light field rendering is discussed by Chai et

al. [5]. They formalize previous results concerning light

field sampling to a mathematical framework. Given the

minimum and maximum depth of the scene, a recon-

struction filter with an optimal constant depth can be

designed. Recently, Egan et al. [9] presented a simi-

lar analysis for motion blur. Zhang and Cheng [29,30]

present non-rectangular sampling patterns and extend

previous work to non-Lambertian surfaces.

Halle [13] introduces the notion of interperspective

aliasing and presents early work on band-limiting sig-

nals for holographic stereograms. Both image-space fil-

ters and 3D filters with depth information are discussed.

By using a camera with a “wide” aperture when cap-

turing the light field, it will be perspectively filtered.

His PhD thesis presents a thorough overview of ren-

dering for multi-view displays [14], mostly focused on

rasterization-like algorithms. Contemporary displays us-

ing parallax barriers or lenticular lens arrays have a

limited number of views, and are prone to interperspec-

tive aliasing. Zwicker et al. [31] propose a pre-filtering

step to avoid high-frequency information that the dis-

play cannot handle. A general framework for automulti-

scopic display anti-aliasing is presented. They combine

the reconstruction filters by Stewart et al. and display

pre-filtering. Furthermore, by remapping/compressing

the depth range, more details can be preserved.

Kartch [20] discusses efficient rendering and com-

pression techniques for holographic stereograms. In or-

der to achieve this goal, scene polygons are mapped

into a four-dimensional space. He presents an extensive

overview of current autostereoscopic and holographic

techniques and their respective advantages and draw-

backs. He also presents an overview of compact lumi-

graph representations, comparing DCT and wavelet-

schemes for compression. Rendering is also discussed

in detail. If the cameras are placed along a coordinate

axis, v, and the image plane is parametrized with co-

ordinates (x, y), the triangle will sweep out a volume

in (x, y, v) space. He proposes a coherent rendering al-

gorithm based on (clipped) simplex primitives in four

dimensions.

View interpolation techniques [6,22] can be used to

approximate a large number of views by reprojecting

pixels from one or a few images with depth informa-

tion. The main problems are missing data due to oc-

clusion, and incorrect handling of view-dependent ef-

fects and transparency. This can be improved by using

deferred shading and multi-layer representations [23,

26], and interpolation-based techniques have gained in-

terest for multi-view video compression [32]. In con-

trast, our goal is high-quality multi-view image genera-

tion by directly sampling and reconstructing the three-

dimensional radiance function.

A lot of research has already been done in the field of

ray tracing stereoscopic images. In most cases, however,

the existing stereoscopic ray tracing algorithms repro-

ject samples from the left eye to the right eye, and de-

tect whether there were any occlusions [1,3,10]. These

algorithms only use two discrete camera locations (one

per eye location) instead of a full camera line. Havran

et al. [16] divide shaders into a view-dependent and

a view-independent part, and reuse the latter of these

between frames in animation. This technique resembles

our shader reuse over the camera line. Finally, we refer

to the article on spatio-temporal anti-aliasing by Sung

et al. [28], which includes a thorough survey of the field.

To reduce the number of samples needed, we use a

variant of multi-dimensional adaptive sampling (MDAS)



Efficient Multi-View Ray Tracing using Edge Detection and Shader Reuse 3

camera line

screen space

v

x

y

back tracing triangle

forward ray

intersection
point

Fig. 1 The three dimensions that we sample in our system
consists of the image space, (x, y), and a continuous camera
line, v. In our algorithm, we trace forward rays from a specific
point on the camera line, i.e., for a specific v-value. From
the intersection point on the hit surface, we create a back
tracing triangle, which originates from the intersection point
and connects with the entire camera line. This triangle is
used for both analytical visibility and for detecting multi-
view silhouette edges (Section 4).

[12]. This is a two-pass algorithm where in the first pass,

samples are generated in the multi-dimensional space,

focusing on regions where the local contrast between

samples is high. In the second pass, the image is recon-

structed by integrating the multi-dimensional function

along all dimensions but the image dimension. They

also compute structure tensors from gradients in order

to better filter edges. MDAS is used to render motion

blur, soft shadows, and depth of field.

Bala et al. [4] use edges projected to the image

plane to prevent sample exchange over edge discontinu-

ities during reconstruction. We extend this technique to

three-dimensional patches in xyv-space. Similar to our

reconstruction, Bala et al. also uses the projected edges

to divide pixels into regions to produce anti-aliasing.

3 Overview

In this section, we will briefly present an overview of

our rendering system. The space we want to sample has

three dimensions, denoted (x, y, v), where v is the view

parameter along the camera axis, and (x, y) are the

image space parameters. This is illustrated in Figure 1.

In our subsequent sections, where our algorithms are

described in detail, we often refer to the epipolar plane,

which is visualized in Figure 2.

Our goal is to sample and reconstruct the light field,

L(x, y, v), in order to display it in high quality on an au-

tomultiscopic display. These displays conceptually have

a grid of pixels, where each pixel can simultaneously dis-

play n distinct radiance values projected towards dif-

ferent positions, vi, along the camera axis. Each such

view is visible within a small range, and there is usu-

ally some overlap between views based on the optical

properties of the display. As the number of views is

limited (e.g., 8–64), the display is severely bandwidth-

limited along v. To avoid interperspective aliasing, L

x

y

x

v

Fig. 2 Top: a single image as seen from one point, v, on
the camera line, viewed in the xy-plane. Bottom: epipolar
image in the xv-plane for the black line (top) with a particular
y-coordinate. We used extreme disparity of the camera to
illustrate a wide range of events in the epipolar plane.

is integrated against a view-dependent filter, gi, in the

reconstruction step to compute n distinct images, Li:

Li(x, y) =

∫
L(x, y, v) gi(v)dv, (1)

This effectively replaces the strobing effect seen when

the human viewer moves, by blurring of all objects in

front of and behind the focus plane. To determine fi-

nal pixel values, Li is integrated against a spatial anti-

aliasing filter as usual.

Random sampling of L is expensive. For each sam-

ple, a ray has to be traced from v through (x, y), in

order to find the intersection with the scene, and the

shading has to be evaluated. We call these forward rays.

There has, however, been little work done on efficient

multi-view ray tracing. One approach that can be ap-

plied is multi-dimensional adaptive sampling (MDAS)
[12], which focuses samples to regions of rapid change,

and thus drastically reduces the total number of sam-

ples required. This is a general method, which can be

seen as performing edge detection in the multi-dimen-

sional space. Discontinuities in L have two main causes;

abrupt changes in the shading, and geometrical edges

in the scene. As each sample is shaded individually, the

method does not exploit the shading coherence that is

inherent in multi-view settings; the shading of a point

often varies very slowly along the camera axis, and for

the view-independent part, not at all.

We propose a specialized algorithm that extends

upon MDAS for multi-view ray tracing, which addresses

this inefficiency. Our adaptation still supports higher

dimensional sampling (such as area lights) to be han-

dled as usual by MDAS, as long as they do not affect

vertex positions (such as motion blur). In combination

with sampling of L using adaptive forward rays, as de-

scribed in MDAS, we also analytically detect geometric

silhouette edges by tracing a triangle backwards from an



4 Magnus Andersson et al.

intersection point towards the camera axis. This will be

described in Section 4.1. In Section 4.2, we introduce a

concept called multi-view silhouette edges to encode this

data. For shading discontinuities, we rely on adaptive

sampling.

The analytical detection of geometric edges provides

the exact extent of the visibility between a shading

point and the camera axis. Hence, we can insert any

number of additional samples along the segments known

to be visible, without any need for further ray tracing.

The shading of these extra back tracing samples has

a relatively low cost, as all view-independent computa-

tions can be re-used, e.g., the sampling of incident radi-

ance. See Section 4.3 for details. In the reconstruction

step, described in Section 5, a continuous function is

created based on the stored samples and edge informa-

tion. Whereas MDAS reconstructs edges by computing

per-sample gradients, we know the exact locations of

geometric silhouette edges. This significantly improves

the quality of the reconstruction, and hence of the final

integrated result.

4 Sample Generation

When a forward ray, as seen in Figure 1, hits a sur-

face, shading is computed and stored as a sample in

the (x, y, v)-set in a sample kD-tree. We note that for

the parts of the camera line, i.e., for the values of v,

from which this intersection point can be seen, all view-

independent parts of the shading can be reused. Our

goal is to exploit this to add additional, low-cost sam-

ples to the sample set. However, as shown in Figure 3,

this may cause sharp variations in the sample density

of different areas. Unless care is taken during recon-

struction, this may cause geometric edges to translate

slightly. These sharp variations mainly occur around

the geometric silhouette edges. We solve this using an

edge-aware reconstruction filter (Section 5).

4.1 Analytical Back Tracing

The back tracing part of our algorithm commences af-

ter a forward ray has hit an object at an intersection

point. The goal is to compute the parts of the camera

line that are visible from the intersection point. This

visibility is defined by the silhouette edges, and we find

these analytically using an approach where the last part

resembles shadow volume rendering [7] in the plane.

First, a back tracing triangle is created from the

intersection point and the camera line, as seen in Fig-

ure 1. The back tracing triangle is intersection tested

against the scene’s back facing triangles. When an in-

tersecting triangle is found, both of the triangle edges

that intersects the back tracing plane are inserted into

v

z

x

v

Fig. 3 Non-uniform sample densities due to back tracing.
The leftmost figure shows a scanline in the xz plane of a
scene with a red horizontal line with a gap in focus, and a
black horizontal line in the background. For each intersection
point, a number of back tracing samples are distributed along
the visible part of the camera line. In the middle figure, the
epipolar plane is shown after a moderate number of forward
rays has been traced and corresponding back tracing samples
has been distributed. Note that the sample density is both
significantly lower and less evenly distributed in the gray re-
gion. Finally, a close-up shows the incorrectly reconstructed
edge as a red line, compared to the correct regions (light red
and gray background). Using our approach, the correct result
is obtained.

camera line

back tracing 
triangle

early culled

0 +1 -1+1 -1 +1 0 +1 +1+2 0 +1

Fig. 4 Illustration of how analytical visibility is computed
from an intersection point (on the yellow circle) back to the
camera line. The back facing lines, as seen from the inter-
section point, are solid. Left: the triangles of objects that
cannot be early culled against the back tracing triangle are
processed. A hash table is used to quickly find the silhou-
ette points (black dots) on the remaining lines. Middle: the
winding of the silhouette points are used to give them either
a weight +1 or −1. Right: When the weights are summed
from left to right, the occluded parts are the segments with
summed weight greater than zero (black regions). The inner
silhouettes are discarded from further processing.

a hash table. If the edge is already in the hash table,

this means that it is shared by two back facing trian-

gles, and is removed from the table. For an edge to be a

silhouette, as seen from the intersection point, it must

be shared by one back facing and one forward facing

triangle. This means that the edges that remain in the

hash table after traversal are the potential silhouettes.

This is illustrated to the left in Figure 4. Using this ap-

proach, closed 2-manifold surfaces can be handled, but

by adding another hash table for front facing triangles,

open 2-manifold surfaces can also be handled.

When the potential silhouette edges have been found,

their intersection points with the plane of the back trac-

ing triangle are projected to the camera line and are

then processed from left to right. A counter is initial-

ized to the number of silhouette edges whose triangles

originates outside and to the left of the backtracing tri-



Efficient Multi-View Ray Tracing using Edge Detection and Shader Reuse 5

v

x

y
silhouette
edge

p0=(x0,y0,v0) p1=(x1,y0,v1)

p2=(x2,y1,v0)
p3=(x3,y1,v1)

Fig. 5 Multi-view silhouette edge generation. When the end
points of a silhouette edge are projected towards the end
points of the camera line, four points, p0, p1, p2, p3, are
obtained. These define the multi-view silhouette edge, which
is a bilinear patch. The multi-view silhouette edges are used
in our reconstruction algorithm to better preserve geometric
edges. Note that the focus plane is identical to the screen-
space plane in this figure.

angle. Each point has either weight +1 or −1 according

to their winding order, (indicated with small arrows in

Figure 4). Similar to shadow volume rendering [7], we

compute the sum of the weights along the camera line,

and when the sum is greater than zero, the camera line

is occluded—otherwise, it is visible from the intersec-

tion point. In the end, we only keep the outer silhou-

ette points, i.e., the end points of the black segments

in Figure 4. Note that since the intersection point is

visible from at least one point on the camera line, situ-

ations where the entire camera line is occluded cannot

occur. The silhouette tests are executed on the edges

of the primitives with no regards to the surface shader,

so transparent or alpha-textured geometry will be han-

dled as solid occluders, and are thus not supported. We

leave this for future work.

4.2 Multi-View Silhouette Edges

In this section, we describe how we generate silhouettes

in a multi-view setting. These multi-view silhouettes en-

code a subset of the geometric edges in the scene, and

are used in Section 5 to substantially improve the final

image quality in the reconstruction.

In the back tracing step described above, we have

identified a number of outer silhouette points. Each

such point is generated from a triangle edge, which

is a silhouette for at least some v on the camera line

and y in the image plane. Seen in the three-dimensional

(x, y, v)-space, these lines will trace out a surface which

is a bilinear patch. We call these patches multi-view

silhouette edges, but we will use the term patch inter-

changeably. The geometrical situation is illustrated in

Figure 5, where the multi-view silhouette edge is de-

fined by the four points, pi, i ∈ {0, 1, 2, 3}, obtained

by projecting the triangle edge end points towards the

silhouette
edge

v

intersection
point

v v

forward
ray

z

x

Fig. 6 A multi-view silhouette is clipped in the v-dimension.
We use the planes incident to the silhouette edge to limit the
extents of the multi-view silhouette edge along the v-axis. The
multi-view silhouette edges are clipped to the green intervals
on the v-axis. In all three cases, we can only keep the part of
the camera line where the edge is a silhouette, and where the
intersection point is visible.

end points of the camera line. Note that reducing the

dimensionality by fixating y or v to a specific value, the

patch will be reduced to a line segment in the xv- and

xy-plane, respectively.

Each multi-view silhouette edge locally partitions

the sampling domain into disjoint regions, which rep-

resent geometrical discontinuities in the scene, and this

is what we intend to exploit in the reconstruction step.

We note that it is only silhouettes that are visible from

the camera line that are of interest. We know that at

least one point on each patch is visible (the outer sil-

houette point found in the back tracing step), but other

parts may very well be occluded by other patches. In

general, only a limited region of each patch will be vis-

ible from the camera line. The ideal solution would be

to clip each patch against all others, in order to find

the correct partitioning. We note that our multi-view

silhouette edges resemble the EEE-events used when

computing discontinuity meshes for soft shadows [8],

however, our surfaces are more restricted and thus sim-

pler, since there are only two different y-values and two

different v-values. Despite this, full patch clipping is

still much too expensive for our purposes.

To reduce the complexity of clipping, we lower the

dimensionality of the problem by discretizing the y-

dimension into y-buckets. Hence, in each y-bucket, the

patch is reduced to a line segment, which lies in the

epipolar plane, so this gives us a much more tractable

2D clipping problem. A silhouette edge in the (x, v)

plane for some y can easily be retrieved by interpolating

between the points p0,p2 and p1,p3 respectively. The

depth of the silhouette can also be acquired by the in-

verse of the interpolation of 1
z for these end points. The

retrieved silhouette edge is overly conservative since the

edge is not necessarily an outer silhouette as seen from

the entire camera line. By clipping the camera line with

the two planes of the triangles that share the silhouette

edge we can determine the range in v over which the

edge is a true outer silhouette. The common case, and

the two special cases are shown in Figure 6. Note that



6 Magnus Andersson et al.

we only keep the portion of the multi-view silhouette

in which there is a point known to be visible from the

camera line (i.e., the part where the forward ray origi-

nated from). The silhouette is then inserted into an edge

kD-tree, held by the y-bucket, and is clipped against the

existing edges in that kD-tree.

When an existing edge and the new edge intersects,

the edge with the largest depth is clipped against the

other. The winding associated with an edge corresponds

to which side of it is occluded. Hence, the part of the

clipped edge that is in the non-occluded region of the

other edge is kept. However, the hit point where the

back facing triangle intersected the incoming silhouette

edge is known to be a part of the new edge, so even if it

is in the occluded region of an existing edge, we keep it

and rely on future back tracing to find the missing edge

information. A typical edge clipping scenario is shown

in Figure 7.

Instead of inserting the multi-view silhouette edge

in to all buckets the patch overlaps, we insert only in the

current y-bucket. We then rely on the back tracing from

other intersection points to repeatedly find the same

multi-view silhouette edge and insert it into the other

buckets. This may seem counterintuitive, but otherwise

occluded parts of the multi-view silhouette edge could

be inserted, resulting in incorrect discontinuities in the

light field. All per-patch setup (i.e., its corner points pi,

depth, etc) is computed only once and stored in a hash

table, keyed on the vertex id:s that make up the edge.

Finally, it should be noted that to find multi-view

silhouettes, we only shoot forward rays through the cen-

ters of y-buckets in the current implementation. This

avoids the problem of getting patches that are only vis-

ible along the forward ray’s y-coordinate, but not from

the y-bucket’s center. In our renderings, we used four

buckets per pixel, which did not give any apparent vi-

sual artifacts.

4.3 Shading Reuse

We define a back tracing sample as the radiance origi-

nating from the intersection point hit by a forward ray,

as seen from a point, v, on the camera line. Once the

analytical back tracing has identified a set of visible

segments on the camera line, a set of these back trac-

ing samples are generated very inexpensively in those

segments, and these samples are inserted into the sam-

ple kD-tree holding all the samples. We exploit shader

coherence by reusing shading computations for back

tracing samples generated from the same intersection

point. In addition, we can further reduce the shader

evaluations using careful interpolation, since some parts

of the shading equation vary slowly. Our technique is

x

v

x

v

x

v

b
fn

Fig. 7 Insertion and clipping in a y-bucket. Left: the exist-
ing multi-view silhouette edges and the intersection (the star)
between a new silhouette edge and the backtracing triangle.
Middle: the 2D edge, which is in perfect focus (vertical), rep-
resenting the new silhouette edge in this y-bucket, is added.
Right: the clipped result, where the new edge, n, is clipped
against the edges in the foreground, f, and clips one of the
edges in the background, b. The winding (arrows) of the clip-
ping edge determines which part to keep of the clipped edge.

v

shading
shaded samples
interpolated shading

locations of backtracing samples

Fig. 8 Illustration of our interpolation technique for shad-
ing. The locations of nbt = 8 back tracing samples (circles)
and nvd = 5 view-dependent shading samples (triangles) are
shown. The shading is evaluated (squares) at the back trac-
ing samples using interpolation of the shading samples. Note
that interpolation is replaced by clamping outside the shaded
samples’ range.

somewhat similar to approximate multi-view rasteriza-

tion [15].

Each forward ray will hit an intersection point that

needs to be shaded. In the simplest implementation,

we divide the shader into a view-dependent (VD) and

a view-independent (VI) part [16,20]. For every back

tracing sample, the VD part of the BRDF is evaluated.

This includes, for example, specular highlights, reflec-

tions, and refractions. The VI part of the BRDF is only

evaluated once for all the back tracing samples. Exam-

ples of this are irradiance gathering, visibility compu-

tations, and diffuse lighting. This alone results in a sig-

nificant speedup. We also note that colors derived from

anisotropic or mip mapped texture filtering belong to

VD. When looking towards a point on a surface, the

texture lookups will get different footprints depending

on the viewpoint.

Now, assume we have nbt back tracing samples,

where we want to evaluate approximate shading. Fur-

thermore, assume that the VD shading is computed at

nvd locations on the camera line, and texturing is done

at nt locations. We have observed that high-quality ap-

proximations of shading and texturing can be obtained

using interpolation even if nbt > nvd > nt. This is il-

lustrated in Figure 8. The type of quality that can be

achieved using our technique is shown in Figure 9. Note

that our approximation resembles that of RenderMan-

like motion blur rendering, where shading is evaluated

less often compared to visibility [2]. For texturing, we



Efficient Multi-View Ray Tracing using Edge Detection and Shader Reuse 7

1 2 4 6 8 10 12 16

Fig. 9 A specular sphere rendered with nbt = 16 back tracing samples (visibility) and a varying number of view-dependent
shading samples (nvd). Since the material used is highly view-dependent, the shading needs to be evaluated rather often for
faithful reconstruction.

have found that setting nt = 1 is sufficient. This intro-

duces a small error, but this has been insignificant for

all our images. In extreme cases, more texture samples

may be required.

The number of view-dependent (nvd) and texture

(nt) samples per forward ray is a variable parameter,

and can be adjusted depending on the shader. The back

tracing samples are jittered on the visible part of the

camera line, and for the sub-segment where the for-

ward ray originated in, the corresponding back trac-

ing sample is removed. Instead the forward ray is used

there, since it was generated by MDAS exactly where

the error measure was largest. It is important to note

that whereas MDAS always generates the next sample

in the region with the highest error, the back tracing

samples will, in general, be of lower importance since

they are located in regions with lower local error esti-

mates. Hence, there is no point in adding an excessive

number of back tracing samples, as this will make sam-

ple kD-tree lookups substantially slower. However, for

expensive shaders or when there are many views, the

benefit of reusing shader computations and evaluating

parts of the shaders at lower frequencies is still signifi-

cant. Currently, we let the user set the nbt, nvd, and nt
constants. See Section 6.

5 Multi-View Image Reconstruction

In this section, we describe our reconstruction algo-

rithm, which is, in many respects, similar to that of

multi-dimensional adaptive sampling (MDAS) [12]. How-

ever, there is a fundamental difference, which is the use

of multi-view silhouettes (Section 4.2) for more accu-

rate reconstruction around geometric edges. Recall that

all the samples are three-dimensional, i.e., have coor-

dinates (x, y, v). In addition, each sample has a color.

From this sample set, n different images will be recon-

structed, where n depends on the target display. For

example, for a stereo display, n = 2. See Figure 10 for

an illustration.

The first steps of our reconstruction follow those of

MDAS closely. First, the sample kD-tree is subdivided

until it contains only one sample per node. Then, as

each node is processed, the k nearest neighbor samples

in Euclidean space are found and stored in the node.

The samples found are representatives of the local radi-

ance that may ultimately affect the color in the kD-tree

v

x

y

view 0
view 1

view 2

sample
space
sample
space ...

gi

...

Fig. 10 After the sample generation step, we have a three-
dimensional sample set, (x, y, v), where v is the view dimen-
sion, i.e., the parameter along the camera line. From this
sample set, n images are reconstructed. In this case, n = 9,
where all nine images are shown at the bottom. An arbitrary
filter kernel, gi, along the v-axis can be used.

node region. Next, gradients are computed and used to

calculate the structure tensors for each node.

After this initial reconstruction setup, the final color

of a pixel is found by integrating along a line in the

v-dimension, with (x, y)-coordinates fixed to the pixel

center. In a multi-view setting, only a certain range

of v needs to be processed (see Figure 10) for a par-

ticular view. The intersection of the line with the kD-

tree nodes generate disjoint line segments. The clipped

line segment’s extent in the v-dimension determines the

color weight of the node. The node color is computed

by placing an integration point in the middle of the line

segment (xp, yp, v
node
mid ) and using an anisotropic near-

est neighbor filter. This filter uses the node’s structure

tensor to find the sample, out of the k nearest neighbor

representatives, with the shortest Mahalanobis distance

to the integration point [12].

MDAS reconstructs high-quality edges when the sam-

ple kD-tree has a faithful representation of the true edge

in itself, and MDAS sampling creates precisely that [12].

We modify MDAS reconstruction to exploit the multi-

view silhouette edges. This gives an edge-aware recon-

struction that is better suited the sample distribution

generated by our algorithm. Our sample distributions

will be less (locally) uniform (see Figure 3) due to in-

sertion of many inexpensive back tracing samples (Sec-

tion 4).

Therefore, we have developed an edge-aware recon-

struction technique that uses the multi-view silhouettes

to remedy this, and improves the reconstruction quality

for the type of sample set that our algorithm generates.

Instead of directly using the Mahalanobis nearest

neighbor, we now describe how to use the silhouette

edges obtained in Section 4.2. Conceptually, we search



8 Magnus Andersson et al.

x

v

x

y

{

pixel

vnode
mid

sample

v-line

Fig. 11 Left: a sample kD-tree node (green box) viewed in
the epipolar plane, xv. The plus is the integration point on
the integration line chosen for this kD-tree node, and black
circles are samples. At v = vnodemid , our algorithm searches in x
for the two closest multi-view silhouettes (red and blue lines).
Right: the closest multi-view silhouettes are evaluated for the
y-value of the pixel center, and hence the edges are projected
to screen space, xy. With two edges, four different cases can
occur, where the pixel area is split into 1–4 regions. The color
of each region is then computed using the closest samples in
each region.

for the two closest edges to the integration point in the

closest y-bucket edge kD-tree. Recall that the intersec-

tion of a multi-view silhouette edge, which is a bilinear

patch (Figure 5), with a plane y = yp is a line. This

line is used to compute the x-coordinates at v = vnodemid

for all the nearest multi-view silhouettes, and the two

closest edges (if any) with x < xp and x ≥ xp are kept.

This situation is illustrated to the left in Figure 11.

Each patch, which is found in this process, is extrap-

olated in all directions to partition the (x, y, v) space

into two disjoint sub-spaces. Each sample is then clas-

sified into one of these sub-spaces for each patch, giving

four possible combinations. Samples that are separated

by geometric edges in the scene are now classified into

different sets, and the node color can be calculated by

only considering the samples that are in the same sub-

space as the integration point.

As a further improvement, when there are 1–2 edges

overlapping a pixel for a sample kD-tree node we can

produce high-quality anti-aliased edges in the images.

Consider the cross section of the two patches at v =

vnodemid , which are lines in the xy plane. Clipped against

the pixel extents in xy, this can result in the four differ-

ent configurations as shown to the right in Figure 11,

where the pixel contains 1–4 of the regions. The ar-

eas, ai, of these clipped regions are computed, where

the sum is equal to the area of a pixel. Most of the

time, all but one ai = 0, since the common case is

that the patches do not intersect the pixel extents at

vnodemid . When this does occur, though, we perform sep-

arate anisotropic nearest neighbor filtering for each re-

gion with ai > 0. The final color contribution of a sam-

ple kD-tree node is then
∑4

i=1 aici, where ci is the color

of region i.

In some rare cases, there will not be any samples in

one or more regions overlapping a pixel. In this case,

the reconstructed color cannot be calculated, and our

remedy to this is to trace a new ray at a random loca-

tion within that region, and use the color of that sample

in the reconstruction. In order to avoid rebuilding the

sample kD-tree, recomputing structure tensors etc., we

simply discard the new sample after it has been used.

This was found to be faster.

It should also be noted that while the silhouette

patches greatly help by categorizing samples into dif-

ferent partitions, we only use a small subset of the lo-

cal patches for performance reasons. Furthermore, there

may even be patch information missing due to under-

sampling. This, however, has not proven to be a prob-

lem in our test scenes.

As described in Section 4.2, the y-dimension was

discretized to a small number of y-buckets per scanline.

As a consequence, this approach is prone to aliasing in

the y-direction. To counter this, we jitter the y-value of

the integration point within the pixel, for each node and

scanline during reconstruction, and use the y-bucket

containing jittered integration point as a representative

of the local geometry. This replaces aliasing with noise,

given a sufficient number of y-buckets.

6 Results

We have implemented our algorithms as well as MDAS

in our own ray tracer, which is similar to pbrt [24].

Our version of MDAS is at least as fast as Hachisuka et

al’s implementation. To be able to use a large number

of samples, we split the image into rectangular tiles.

Each tile is then sampled individually. The difference

compared to Hachisuka et al. [12] is that our tiles are

only split in the y-direction. Any split in the x- or v-

directions would limit the extent of the epipolar plane,

and thus reduce the advantage of our algorithm. Since

all steps are independent for every tile, we can easily

process the tiles in parallel using many threads. We

have observed close to linear speedups with both our

algorithm and MDAS using this approach.

Only Lambert and Phong shading were used in our

test scenes. For irradiance gathering, we used 128 direct

illumination rays and 16 indirect illumination rays with

8 secondary illumination rays per hit point (except for

the dragon scene, where 64 were used), which makes the

shading moderately expensive. All scenes were rendered

with high-quality texture filtering [17], and using an

overlapping box filter along the v-axis when filtering

out the different images. Note that our target display is

a Philips WoW 3D display with nine views, where each

image has 533× 400 pixels. In all our resulting images,

only one out of these nine images is chosen. However,

note that there is nothing in our algorithms that limits

our results to this particular display.



Efficient Multi-View Ray Tracing using Edge Detection and Shader Reuse 9

0 1000 2000 3000
−4.5

−4

−3.5

−3
(log(MSE)) (log(MSE))

(s) (s)

House scene Dragon scene

MDASMDAS

OurOur

2000 4000 6000 8000 10000 12000
−4

−3.5

−3

−2.5

Fig. 12 Error measurements for our algorithm (purple) and
MDAS (blue) of the house and dragon scenes. The rendering
time is on the x-axis and the log(MSE) over all nine views is
on the y-axis.

All images were rendered on a Mac Pro with two

6-core Intel Xeon at 2.93 GHz with 8 GB RAM. To

make it simpler to time different parts of the algo-

rithms, we always use single-threaded algorithms. We

split the y-dimension into 10 tiles to keep the memory

usage down. Note that we find k = 15 nearest neighbors

during reconstruction and allow six samples per node

during sampling, which is a reasonable value shown pre-

viously [12]. The MDAS-scaling factor for the entire

view axis, v, is set to 1.5. We use four y-buckets for all

our images.

For all our test scenes, we used nbt = 12 back trac-

ing samples. For the house and fairy (top and middle

in Figure 13) scenes, we found that using a single view-

dependent shading sample (nvd = 1) was enough to

produce high quality images. All the materials used in

these scenes (except for the waterspout in the house

scene) have subtle or no specular components, and thus

sparse shading works well. In contrast, the dragon in the

bottom part of Figure 13 has a very prominent specu-

lar component. Here, we used nvd = 6 view-dependent

shading samples to better capture this effect. In Fig-

ure 12, we plot the image quality as a function of ren-

dering time for two of our test scenes, using the loga-

rithm of mean-square error (MSE) :

log (MSE)=log (
1

3pv

views∑
v

pixels∑
p

∆R2
pv+∆G2

pv+∆B2
pv),

where each ∆ is the difference in pixel color compared

to the reference image. As can be seen, our algorithm

renders images with the same quality as MDAS in about

10-20% of the time (for that particular quality).

Our algorithm and MDAS spend different amounts

of time in the different parts of the algorithms. For our

test scenes, MDAS typically spends most of its time in

the sampling and shading step. Our algorithm is able

to quickly produce more samples due to shader reuse

and analytical back tracing, but on the other hand, our

filter cost per sample is higher. As a consequence, more

time is spent in the reconstruction step in our algo-

rithm. Below is a table comparing the average times

spent in each step for our algorithm and MDAS. The

reconstruction setup involves the kD-tree subdivision,

nearest neighbor (NN) lookup and tensor calculations,

where the NN setup alone amounts to roughly 90% of

the setup time.
House Fairy Dragon

Algorithm step MDAS Our MDAS Our MDAS Our

Sampling & shading 95% 66% 95% 65% >98% 60%
Reconstruction setup 4% 22% 4% 22% 1% 8%
Filtering 1% 12% 1% 13% <1% 32%

While the house and fairy scenes have relatively few

silhouette edges, the grass in the dragon scene produces

significantly more silhouettes. Consequently, our algo-

rithm has to spend more time in the filtering step, since

the cost of updating the active patches increases. There

are also more pixels that use the improved filtering de-

scribed in Section 5, and more regions lack samples and

hence require retracing with forward rays.

We found that, besides silhouette patches, our algo-

rithm benefits from the reused irradiance gathering. For

the dragon scene, we only trace about half the number

of forward rays compared to MDAS, but due to back

tracing, we have roughly five times more samples than

MDAS in the filtering step. As a consequence, we shoot

only half the number of irradiance gathering rays.

7 Conclusions and Future Work

We have presented a novel ray tracing algorithm, where

we have exploited the particular setting of multi-view

image generation. This was done by computing analyt-

ical visibility back from the intersection point of a for-

ward ray, and by quickly generating back trace samples,

which reuse common calculations for shading. In addi-

tion, we detected multi-view silhouette edges, and used

these during final reconstruction for improved image

quality around geometrical edges. Our results indicate

that we can render images with the same quality as gen-

erated by MDAS up to 13 times faster. An interesting

result of our research is that it opens up new avenues

for future work. We have shown that we can exploit ge-

ometrical information about edges to drastically reduce

the sample rate needed to generate an image, and we

believe that this can be explored also in other contexts,

such as depth of field and motion blur.

Acknowledgements We acknowledge support from the Swedish
Foundation for Strategic Research, and Tomas is a Royal
Swedish Academy of Sciences Research Fellow supported by
a grant from the Knut and Alice Wallenberg Foundation.

References

1. Adelson, S., Hodges, L.F.: Stereoscopic Ray-tracing. The
Visual Computer, 10(3), 127–144 (1993)

2. Apodaca, A., Gritz, L.: Advanced RenderMan: Creating
CGI for Motion Pictures. MKP (2000)

3. Badt, S.J.: Two Algorithms for Taking Advantage of
Temporal Coherence in Ray Tracing. The Visual Com-
puter, 4(3), 123–132 (1988)



10 Magnus Andersson et al.

Ground truth Ground truth MDAS Our Ground truth MDAS Our

Fig. 13 Image quality comparison for equal time renderings. The noise in our images is greatly reduced compared to MDAS.
The images are rendered with 16k initial random samples, after which adaptive sampling kicks in. Top: House scene (93.6k tris)
after 676s rendering with our algorithm and 712s with MDAS. Middle: Fairy scene (194k tris) after 504s with our algorithm
and 519s with MDAS. Bottom: Dragon scene (301k tris) after 4114s with our algorithm and 4973s with MDAS.

4. Bala, K., Walter, B., Greenberg, D.P.: Combining Edges
and Points for Interactive High-Quality Rendering. ACM
Transactions on Graphics 22, 631–640 (2003)

5. Chai, J.X., Tong, X., Chan, S.C., Shum, H.Y.: Plenoptic
Sampling. In: Proceedings of ACM SIGGRAPH, pp. 307–
318 (2000)

6. Chen, S.E., Williams, L.: View Interpolation for Image
Synthesis. In: Proceedings of ACM SIGGRAPH, pp. 279–
288 (1993)

7. Crow, F.: Shadow Algorithms for Computer Graphics. In:
Computer Graphics (Proceedings of ACM SIGGRAPH),
pp. 242–248 (1977)

8. Drettakis, G., Fiume, E.: A Fast Shadow Algorithm for
Area Light Sources using Backprojection. In: Proceedings
of ACM SIGGRAPH, pp. 223–230 (1994)

9. Egan, K., Tseng, Y.T., Holzschuch, N., Durand, F., Ra-
mamoorthi, R.: Frequency Analysis and Sheared Recon-
struction for Rendering Motion Blur. ACM Transactions
on Graphics, 28(3), article no 93 (2009)

10. Ezell, J.D., Hodges, L.F.: Some Preliminary Results on
Using Spatial Locality to Speed Up Ray Tracing of
Stereoscopic Images. In: Stereoscopic Displays and Ap-
plications (Proceedings of SPIE), vol. 1256, pp. 298–306
(1990)

11. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.:
The Lumigraph. In: Proceedings of ACM SIGGRAPH,
pp. 43–54 (1996)

12. Hachisuka, T., Jarosz, W., Weistroffer, R., K. Dale,
G.H., Zwicker, M., Jensen, H.: Multidimensional Adap-
tive Sampling and Reconstruction for Ray Tracing. ACM
Transactions on Graphics, 27(3), 33.1–33.10 (2008)

13. Halle, M.: Holographic Stereograms as Discrete Imaging
Systems. In: Practical Holography VIII (Proceedings of
SPIE), vol. 2176, pp. 73–84 (1994)

14. Halle, M.W.: Multiple Viewpoint Rendering for Three-
Dimensional Displays. Ph.D. thesis, MIT (1997)

15. Hasselgren, J., Akenine-Möller, T.: An Efficient Multi-
View Rasterization Architecture. In: Eurographics Sym-
posium on Rendering, pp. 61–72 (2006)

16. Havran, V., Damez, C., Myszkowski, K., Seidel, H.P.:
An Efficient Spatio-Temporal Architecture for Animation
Rendering. In: ACM SIGGRAPH Sketches & Applica-
tions (2003)

17. Igehy, H.: Tracing Ray Differentials. In: Proceedings of
ACM SIGGRAPH, pp. 179–186 (1999)

18. Isaksen, A., McMillan, L., Gortler, S.: Dynamically Repa-
rameterized Light Fields. In: Proceedings of ACM SIG-
GRAPH, pp. 297–306 (2000)

19. Javidi, B., Okano, F.: Three-Dimensional Television,
Video, and Display Technologies. Springer-Verlag (2002)

20. Kartch, D.: Efficient Rendering and Compression for Full-
Parallax Computer-Generated Holographic Stereograms.
Ph.D. thesis, Cornell University (2000)

21. Levoy, M., Hanrahan, P.: Light Field Rendering. In: Pro-
ceedings of ACM SIGGRAPH, pp. 13–42 (1996)

22. Mark, W.R., McMillan, L., Bishop, G.: Post-Rendering
3D Warping. In: Symposium on Interactive 3D Graphics,
pp. 7–16 (1997)

23. Max, N., Ohsaki, K.: Rendering Trees from Precomputed
Z-Buffer Views. In: Eurographics Rendering Workshop,
pp. 45–54 (1995)

24. Pharr, M., Humphreys, G.: Physically Based Rendering:
From Theory to Implementation. MKP (2004)

25. Ramachandra, V., Zwicker, M., Nguyen, T.: Display De-
pendent Coding For 3D Video on Automultiscopic Dis-
plays. In: IEEE International Conference on Image Pro-
cessing, pp. 2436–2439 (2008)

26. Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered
Depth Images. In: Proceedings of ACM SIGGRAPH,
pp. 231–242 (1998)

27. Stewart, J., Yu, J., Gortler, S., McMillan, L.: A New
Reconstruction Filter for Undersampled Light Fields.
In: Eurographics Symposium on Rendering, pp. 150–156
(2003)

28. Sung, K., Pearce, A., Wang, C.: Spatial-Temporal An-
tialiasing. IEEE Transactions on Visualization and Com-
puter Graphics, 8(2), 144–153 (2002)

29. Zhang, C., Chen, T.: Generalized Plenoptic Sampling.
Tech. Rep. AMP01-06, Carnegie Mellon (2001)

30. Zhang, C., Chen, T.: Spectral Analysis for Sampling
Image-Based Rendering Data. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 13(11), 1038–
1050 (2003)

31. Zwicker, M., Matusik, W., Durand, F., Pfister, H.: An-
tialiasing for Automultiscopic 3D Displays. In: Euro-
graphics Symposium on Rendering, pp. 73–82 (2006)

32. Zwicker, M., Yea, S., Vetro, A., Forlines, C., Matusik,
W., Pfister, H.: Display Pre-filtering for Multi-view Video
Compression. In: International Conference on Multime-
dia (ACM Multimedia), pp. 1046–1053 (2007)



Efficient Multi-View Ray Tracing using Edge Detection and Shader Reuse 11

Magnus Andersson received his M.Sc. in Com-

puter Science and Engineering from Lund University

2008 and has returned to pur-

sue his Ph.D., funded by the In-

tel Corporation. His main research

focus has been in the field of multi-

view rendering techniques, but re-

cent interests include many-core

rendering and compression.

Björn Johnsson studied Computer Science at

Lund University in 2002-2007. After that he worked

at Massive Entertainment for two

years as a game engine program-

mer before returning to Lund Uni-

versity to recieve his M.Sc. in Com-

puter Science in 2010. He is cur-

rently at Intel Corporation as a

Ph.D. student, enrolled at Lund University. Research

interests include multi-view rendering, real-time global

illumination and tree rendering.

Jacob Munkberg received his M.Sc. in Engi-

neering Physics from Chalmers University of Tech-

nology in 2002 and is currently

a Ph.D. student in the graph-

ics group at Lund University. He

has worked on texture compres-

sion and culling algorithms for the

real-time graphics pipeline. He is

currently working at Intel Cor-

poration. Current research inter-

ests are in graphics hardware and
high-quality rendering techniques.

Petrik Clarberg received his M.Sc. in Computer

Science and Engineering from Lund University in 2005.

He is currently a Ph.D. student

in the graphics group at Lund

University, while working at Intel

Corporation. Petrik has worked

on photo-realistic rendering, im-

portance sampling, shader analy-

sis, and texture compression, and

has published two papers at the

ACM SIGGRAPH conference. His research interests in-

clude high-quality rendering and graphics hardware.

Jon Hasselgren received his M.Sc. in Computer

Science and Engineering from Lund University in 2004.

He finished his Ph.D. in computer

graphics at Lund University graph-

ics group in 2009, and is cur-

rently working at Intel Corpora-

tion. Jon has worked on rasteriza-

tion, compression and culling al-

gorithms with focus on graphics

hardware, as well as GPU accel-

erated rendering algorithms. Cur-

rently his focus lies on graphics hardware and high-

quality rendering techniques.

Tomas Akenine-Möller received his M.Sc. in

Computer Science and Engineering from Lund Uni-

versity in 1995, and a Ph.D. in

graphics from Chalmers Univer-

sity of Technology in 1998. He

has worked on shadow generation,

mobile graphics, wavelets, high-

quality rendering, collision detec-

tion, and more. Tomas has sev-

eral papers published at the ACM SIGGRAPH con-

ference, and his first SIGGRAPH paper was on the

pioneering topic of mobile graphics together with Ja-

cob Ström in 2003. He co-authored the Real-Time Ren-

dering book with Eric Haines and Naty Hoffman, and

received the best paper award at Graphics Hardware

2005 with Jacob Ström for the ETC texture compres-

sion scheme, which is now part of the OpenGL ES API

and Android. Current research interests are in graphics

hardware, new computing architectures, novel visibil-

ity techniques, high-quality rapid rendering techniques,

and many-core rendering.


